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Abstract— Due to the complexity of the natural world, a 
programmer cannot foresee all possible situations a connected and 
autonomous vehicle (CAV) will face during its operation, and 
hence, CAVs will need to learn to make decisions autonomously. 
Due to the sensing of its surroundings and information exchanged 
with other vehicles and road infrastructure a CAV will have access 
to large amounts of useful data. While different control algorithms 
have been proposed for CAVs, the benefits brought about by 
connectedness of autonomous vehicles to other vehicles and to the 
infrastructure, and its implications on policy learning has not been 
investigated in literature. This paper investigates a data driven 
driving policy learning framework through an agent-based 
modelling approaches. The contributions of the paper are two-
fold. A dynamic programming framework is proposed for in-
vehicle policy learning with and without connectivity to 
neighboring vehicles.  The simulation results indicate that while a 
CAV can learn to make autonomous decisions, vehicle-to-vehicle 
(V2V) communication of information improves this capability. 
Furthermore, to overcome the limitations of sensing in a CAV, the 
paper proposes a novel concept for infrastructure-led policy 
learning and communication with autonomous vehicles. In 
infrastructure-led policy learning, road-side infrastructure senses 
and captures successful vehicle maneuvers and learns an optimal 
policy from those temporal sequences, and when a vehicle 
approaches the road-side unit, the policy is communicated to the 
CAV.  Deep-imitation learning methodology is proposed to 
develop such an infrastructure-led policy learning framework. 

Keywords— Agent-based Learning, Reinforcement learning, 
Driving policy, Data driven control, imitation learning 

I. INTRODUCTION  
The emergence of connected and autonomous vehicles 

(CAVs) marks a new phase of innovation in automotive and 
transportation industries since the development of personal 
automobiles [1]. Once technologically matured, CAVs would be 
able to move autonomously without the aid of a human driver 
and be able to communicate with other vehicles and traffic 
infrastructure. The promised benefits of CAVs are numerous, 

such as, reduced congestion, better fuel efficiency, reduced 
environmental pollution, reduced number of traffic related 
casualties and increased personal independence. The continuing 
evolution of sensor technologies, high speed communication 
infrastructure, machine learning and artificial intelligence will 
eventually bring us the above benefits.  

A CAV is composed of four major technological 
components. The first is the perception system, which is 
responsible for sensing the environment to understand its 
surroundings. The second component is the localization and 
mapping system that enables the vehicle to know its current 
location. The third component is responsible for the driving 
policy. The driving policy refers to the decision making 
capability of a CAV under various situations, such as 
negotiating at roundabouts, giving way to vehicles and 
pedestrians, and overtaking vehicles.  Finally, the CAVs will be 
connected. It is expected that the CAVs will be connected to the 
surrounding vehicles: vehicle to vehicle connectivity (V2V), to 
the infrastructure: Vehicle to Infrastructure (V2I) and to 
anything else such as the internet: Vehicle to Anything (V2X), 
through wireless communications links [2]. While there are 
many challenges still to be addressed for high speed wireless 
connectivity for vehicular applications [3], the IEEE802.11p 
Wireless Access in Vehicular Environments (Wave) is 
considered the most relevant standard that currently caters to the 
requirements of such applications [4].  

The connectedness of the CAV’s can be useful for many 
important functions related to intelligent mobility. One 
important use case is to exchange sensor data between vehicles 
for improved perception of the surroundings [5], which enables 
to reduce the accidents. Connected vehicles also enables 
centralized traffic control to ease congestion in smart city 
applications [6]. For example in Compass4D, a pilot project 
funded by the EU, it was demonstrated that 15% reductions in 
fuel efficiency can be achieved through V2I communication to 
control the flow of traffic [7]. Another interesting application of 
connectivity is in “vehicle platooning”, where a group of 
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vehicles with common interests maintain a small and constant 
distance to each other [8].  Connectivity is also a key enabler of 
intelligent mobility applications such as ubiquitous taxi services. 
Furthermore, various infotainment applications such as 
music/video streaming or in-car WiFi connectivity, are expected 
to be delivered to the CAVs through high speed wireless internet 
connectivity [4]. All the above examples lead to a significant 
amount of data that are been collected and shared between 
CAVs. This leads to the question, whether CAV could learn 
interesting patterns from these data? Could a CAV 
autonomously evolve to make better decisions over time? Data 
driven approaches are emerging within the scope of CAV 
research to utilize this data in effective ways. In [9], authors 
propose a data-driven control algorithm derivation for connected 
vehicle to account for unknown system dynamics such as human 
factors.  

In this paper we investigate opportunities that arise from the 
proliferation of data within a CAV. In particular, this paper 
focuses on optimal policy learning in autonomous vehicles over 
its life time. For example, how could it make better decisions to 
reach its destination while avoiding crashes with other objects 
or road side infrastructure? We consider a use case where a CAV 
is able to make driving decisions based on information shared 
by other CAVs. The proposed framework is based on agent 
based learning paradigm where a CAV is modelled as a rational 
agent that tries to maximize its utility. Furthermore, an 
infrastructure-led policy learning and communicating 
framework is proposed based on deep-imitation learning.  

The rest of this paper is organized as follows: the section II 
provides an overview of the agent based learning paradigm and 
section III describes the experimental setup and the results and 
section IV concludes the paper with reference to some future 
work.  

II. RELATED WORK 
In this section we will discuss work related to driving policy 

learning in connected autonmous vehicles. This section is 
organized as follows: section A describes work related to policy 
learning in CAVs, including applications of Vehicle-to-
Infrastructure (V2I) communication. The section B describes the 
foundations of imitation learning and its applications in 
driverless vehicle technology.  

A. Policy learning in CAVs  
Policy learning is the process by which an autonomous 

vehicle comes to learn which action to take given a particular 
situation. The situation, or the state in which the CAV is 
operating is identified through sensing the environment and 
understanding it.  

Different types of control problems were formulated for 
CAVs considering the cases of range-limited V2V 
communication and input saturation to minimize the errors of 
distance and velocity and to optimize the fuel usage [9]. In [9] 
authors employed an adaptive dynamic programming technique, 
to derive the optimal controllers without relying on the 
knowledge of system dynamics. The effectiveness of the 
proposed approaches in [9] was demonstrated via the online 

learning control of the connected vehicles in platform for traffic 
microsimulation. 

Reinforcement learning was utilized for longitudinal control 
of autonomous vehicles [10]. A deep Reinforcement learning 
algorithm based on neural network-based Q-function 
approximation was proposed for ramp merging process for 
autonomous vehicles [11]. The ramp merging process involves 
interactions with other vehicles whose behaviors dynamic and 
varied and which influences the actions of the merging vehicles. 
Similarly, reinforcement learning based controllers were 
proposed for autonomous vehicles for tasks such as lane 
changing [12] and overtaking decisions[13].   

While policy learning in CAV is an emerging area of 
research, agent-based models are utilized for various control 
functions in vehicle control. A learning based cruise control 
algorithm was proposed in [14].  

B. Applications of Deep imitation learning  
Imitation learning is the process of learning by imitating 

certain set of actions. Imitation learning from human drivers for 
the task of lane keeping assistance in highway and country roads 
using grayscale images from a single front view camera was 
proposed in [15]. The employed method in [15] utilizes 
convolutional neural networks (CNN) to analyze the images to 
develop an appropriate policy to adhere to the lanes. 

Deep imitation learning was proposed as a method to model 
the defensive behavior of football players [16]. In [16], 
Multiview video based player tracking data are collected and the 
team behavior is learnt. For this purpose, a recurrent neural 
network, specifically a Long-Short Term Memory (LSTM) 
network is trained with sequences of player tracking data.  

C. Contributions of this paper  
While different aspects of control systems have been 

developed for CAVs, the advantages of connectedness of 
vehicles and its implications for policy learning has not been 
investigated in literature.  

The contributions of this paper are two fold: firstly, we 
propose a dynamic programming approach for policy learning 
in an autonomous vehicle and compare it with a situation where 
the vehicles are connected to each other to share sensor 
information. Secondly, we propose a framework for policy 
learning at road-side units, and for policies to be communicated 
to approaching vehicles. This way road-side units, at which 
many examples of successful vehicle maneuverers can be 
observed, could be utilized for the safety of CAVs. 

III. AGENT BASED MODELLING FRAMEWORK FOR CAVS 
In this section we will discuss the agent based learning 
framework that will be used for algorithm development in this 
paper.  

A. Foundations of Reinforcement Learning  
In the recent past, reinforcement learning has been utilized 

in attractive research projects. DeepMind, a modern technique 
research organization hosted in London, which concentrates on 

Identify applicable sponsor/s here. If no sponsors, delete this text box 
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data mining and machine learning, has made landmark progress 
on reinforcement learning research. The world champion in 
‘Go’, Lee Sedol was beaten by the deep mind developed 
program called AlphaGo [17]. The Figure 1 illustrates the 
fundamental process of reinforcement learning. Actions taken in 
the current environment would transfer the agent to a different 
state, and a reward would be given based on how good the action 
was. A utility function that assigns a different reward value for 
each possible actions in the same state, could be used to evaluate 
the best action in that particular state. This interaction scenario 
gives a general idea of reinforcement learning and builds the 
foundation cooperating with Markov Decision Processes (MDP) 
and Bellman equations [18]. 

 

Markov decision processes are fundamental to the 
development of active reinforcement learning algorithms. The 
state transition in RL can be described as a Markov process, 
where the future states are dependent on the current state only 
and are independent of the states in the past. An active 
reinforcement learning approach known as Q-value iteration is 
used to find the optimal reward function and the transition 
model. Q-value iteration uses direct rewards value as samples, 
and update the corresponding Q-value by a proportional 
summation with the initial value, which depends on learning rate 
𝛼𝛼 as given below, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅(𝑠𝑠, 𝑠𝑠, 𝑠𝑠′) + 𝛾𝛾 ∙ 𝑠𝑠𝑠𝑠𝑚𝑚
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑠𝑠′). (1)  

𝑄𝑄(𝑠𝑠, 𝑠𝑠) ← (1 − 𝛼𝛼) ∙ 𝑄𝑄(𝑠𝑠, 𝑠𝑠) + 𝛼𝛼 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (2) 

Where R(s,a,s’) is the immediate reward value given when 
an action a is taken at state s, which moves the agent to state s’. 
Q(x,y) in equations (1) and (2) refers to the expected future 
reward if action y is taken at state x. The agent acts in a rational 
manner to maximize its discounted future reward. 𝛾𝛾 is the 
discount factor. A dynamic programming approach is used to 
solve the above equations in an iterative manner. 

B. Micro-simulation Framework for CAV policy learning 
The CAV is simulated as a car that acquires sensor data of its 

surroundings and exchanges speed information with other 
vehicles in its surroundings through V2V communication. Each 
vehicle is simulated as a point on a 2D grid and ignores any 
spatial parameters such as the size of the vehicle. The Figure 2 
illustrates the structure of the environmental scanner 

implemented on the CAV, which simulates a 7 directional 
scanner. 

At a given state, the agent can take nine (3x3) actions, which 
control the movement direction and speed. They are the three 
direction actions: maintain current direction, which mean no 
change in the status of vehicle, move left and move right and 
the three speed actions: maintain, increase and reduce the speed 
of agent. Other decisions, such as making turns at intersections 
or stop at target point, will not be considered in the current 
study. The immediate reward function for the agent is 
summarized in Table 1. 

The prototype environment simulates a straight road that is 
66 units long with two lanes of 1 unit width.  The movement of 
each agent is simulated as a maze walk, where they move 
number of units at each time step according to the current speed. 
There would be a number of other randomly located vehicles, 
acting as obstacles for the intelligent agent, trying to move to 
the same destination. In this experiment we consider only one 
intelligent agent that adapts its decisions over time and the rest 
of the vehicles will move at a constant speed over a single 
simulation. The simulation set the lane above, which is the left-
hand lane as a normal speed route, vehicles would move at one 
speed unit, and the other lane is for overtaking, where vehicles 
would have one speed unit higher. The intelligent agent would 
be able to change directions and speeds as discussed before. To 
simulate V2V communication, if the radar detects an obstacle 
vehicle through its environmental scanner, the agent will 
request for the speed of the vehicle. The obstacle vehicle would 

 
Figure 2. The structure of the environmental scanner on the 
simulated CAV.  

 
Figure 1. The reinforcement learning interaction between the 
agent and its environment.  

Table 1. Immediate rewards function 

Condition (State/Action) Value  

Alive or Goal 0.1  

Shift to right or left -0.1  

Crash or Bump -10  

Speed less than limit and alive 
or goal speed/10  

Speed less than limit with 
bump or crash - speed  

Speed over limit - 2×speed  
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give its speed-reading to the agent, which enables the agent to 
use additional information to define the state of the 
environment. 

C. Deep Imitation Learning for Infrastructure-led policy 
learning 

The above sections described how a CAV with sensing and 
V2V communication ability could be trained to learn behavior 
over time. While such a model is suitable for simple scenarios 
like straight line driving, CAV’s often come to deal with more 
tricky scenarios such as negotiations at roundabouts, joining 
motorways (freeways) and giving way to pedestrians etc. 
Moreover, most of such negotiating situations could be unique 
in its appearance with a unique local context attached to it. Eg. 
There could be tricky points such as give-way situations, which 
may go unnoticed to the driver / CAV if it has not come across 
it before. Could the road-side infrastructure located at such 
points, look at the traffic scenarios and learn the optimal 
behavior of a vehicle that is approaching it? If this is possible, 
then, when a vehicle is approaching the tricky point of 
negotiation, the infrastructure could instruct the CAV of the 
best policy. 

To handle such situations, in this section, we propose a novel 
algorithm for infrastructure-led policy learning. The system 
architecture for the proposed scheme for policy learning and 
communication is illustrated in figure 4. According to figure 4, 
the cameras and sensors based at key junctions and 
intersections will capture the passing vehicles and pedestrians. 
The captured data will be analyzed to recognize vehicle, 

pedestrians and other objects of interest. A sequential data 
classifier will classify positive negotiations from negative 
negotiations. The positive negotiations are temporal sequences 
of events without any casualties or collisions. Once positive 
sequences of events are identified, the event sequences are 
utilized to learn an optimal policy for vehicle control. The 
optimal policy is learnt through imitation learning. Recurrent 
neural networks provide a framework to efficiently learn 
patterns in sequential data streams. In particular, Long-Short 
Term Memory (LSTM) networks are suitable variation of 
recurrent neural networks, that does not suffer from the 
vanishing gradient problem associated with vanilla recurrent 
neural networks.  

An example sequence of a positive outcome is depicted in 
figure 5. The sequence of steps taken by the marked car is a 
successful sequence of actions that a driver could follow to join 
the motorway. Our proposal is that, similar outcomes can be 
collected and the sequential pattern can be learnt. To learn the 
sequential patterns, and to come up with an optimal policy, the 
state of the environment will be encoded in a vector that 
represents the distance and speed of each vehicle in its 
surrounding, and fed in to the LSTM network. The output of 
the LSTM network will be the speed and angle of the vehicle at 
each time step. The pattern learnt, will yield in an optimal 
policy. Now when a CAV that has not experience this setting in 
the past comes to negotiate at this junction, the learnt policy can 
be transferred to it. This way we can overcome the requirement 
for a CAV to experience situations multiple times to learn a 
policy. 

 
Figure 3. System architecture for proposed Data-driven Vehicle-Infrastructure Policy Communication Scheme 

Physical infrastructure 
with sensing

Scene Perception and 
positive example 
identification

Deep imitation learning 
for Data-driven driving 
policy

Policy uploading to 
vehicles approaching 
infrastructure

 
Figure 4. An example sequence of states when a vehicle is trying to join a motorway/freeway 
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D. Simulation Framework for Infrastructure-led policy 
learning 

To illustrate the benefits of the proposed infrastructure-led 
policy learning scheme, we develop an experimental testbed 
based on a micro simulation framework and a python/Keras 
based neural network setup. While we do not have in possession 
a suitable data set, it is assumed that through sensing and 
perception an output similar to figure 4 can be obtained. 
Therefore, for the purpose of this simulation, the Simulation of 
Urban Mobility (SUMO) open source platform is utilized [19]. 
The output of the SUMO platform is dumped in XML format, 
which is processed to identify appropriate sequences of events, 
surrounding vehicles, and speed, and position of vehicles. 
Several positive outcomes are collected, and encoded, and fed 
to the LSTM network as training data. Once the network is 
trained, it will be used to predict the sequential actions of a 
CAV that is intending to join the motorway. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
This section describes the experimental testbed, the 

simulation results and the discussion of the results. 

A. Experimental Conditions 
For evaluating dynamic programming-based policy learning 

method for CAV, a simulation environment has been 
implemented in Matlab 2017a environment. Three different 
experiments are performed to test the fundamental process of 
decision making. The learning rate α and discount factor γ is set 
to 0.4 and 0.95, respectively. The maximum speed of the agent 
is set at 3 units per time step.    

The infrastructure-led policy learning scheme is simulated 
with SUMO micro-simulation platform (version 0.32.0) and the 
LSTM network is implemented based on the Keras/python 
package. 

B. Simulation Results 
Figure 5 shows a sequence of changes between agent and 

obstacle vehicles at different time steps. The orange square 
represents the location of agent; blue squares are the moving 
obstacle vehicles. The numbers above each picture are 

 
Figure 5. A sequence sample of agent actions.  

 
(a) 

 
(b) 

 
(c) 

Figure 6. Simulation results for comparison between the agent 
performance with and without V2V communication. (a) 
Average time to reach destination. (b) Amount of crashes (c) 
Frequency of quick finish (reach destination<40 time units). 
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demonstrating the current speed of agent, seven readings from 
each direction, and the action it made to move it from previous 
states. From the initial five pictures, it shows that the agent tried 
to increase the speed and move to overtake other objects. From 
the last three pictures and changing speed values, it can be seen 
that a decision was taken to decrease the speed and follow the 
other vehicles, as there is no possible way to overtake them. 

In the next set of results, we compare between the two 
situations where the agent learns with just the environment 
scanner and when the agent has access to speed information of 
the surrounding vehicles exchanged through V2V 
communication. Firstly, let’s consider the average time cost, i.e. 
the number of time steps that the agent took to get from the 
starting point to its target successfully. As the graph in Figure 
6(a) illustrates, the time consumption to get to the destination 
gradually decreases as the number of iterations of experiment 
increases. This means that the agent self learns to make better 
decisions as it experiences more situations. It takes 
Approximately 25 units of time in average to reach the 
destination after 100,000 iterations of Q-learning. The pattern of 
the agent with vehicle communication, to share speed 
information of the surrounding neighbors, demonstrate to 
converge quickly than the scenario without the V2V 
communication. At the same time the time consumption to reach 
the destination gradually decreases too. 

 In Figure 6(b), the probability of crashing illustrates the rate 
of agent having crashes with other vehicle or bumping to the 
wall. It clearly present that after a period of Q-learning, the agent 
would have the ability to avoid obstacles, while its moving and 
reduces the possibility of having crashes with others. The Figure 
6(b) also presents that with V2V communication, the agent 
keeps a lower possibility of crashing, compared to agent without 
V2V communication, which has a higher potential to crash   

Lastly, the Figure 6(c) shows the percentage of time an agent 
takes a faster route, which costs less than 40 units of time. 

The initial results of the infrastructure-led policy learning 
framework can be illustrated as given in Figure 7 (a)-(c). The 
figures in 7(a)-(c) illustrates three different instances of a vehicle 
trying to join a motorway. In the three different instances, we 
compare the variation of speed of the vehicle as given by the 
micro-simulation platform and the speed predicted by the 
proposed LSTM network at different timesteps.  

C. Discussion of Results 
The above results illustrate a significant improvement and an 

efficiency of learning after the first two thousand iterations. In 
the following iterations, the pattern of changing is slowing 
down. While the process of decision-making in the agent 
improves over the iterations, the agent with vehicle speed 
communication seems to have a better performance than the 
agent with only the environmental scanner. 

In summary, agent with V2V communication would have a 
better efficiency in learning to make better driving policies; 
With the additional parameters obtained through V2V 
communication, the agent could perform better as it can explore 
of more states, due to unknown policies of the states it never 
reached before. Thus, the speed information shared by the 

vehicles act as an important additional dimension, which 
significantly improves the decision making capability of the 
simulated CAV.  

Considering with the complexity of state locating, the agent 
with vehicle speed communication has approximately twice the 
number of dimensions to represent its state of the environment. 
As the simulation conditions become complex, such as for V2I 
communication or when considering real CAVs, this would lead 
to bottlenecks in terms of computational complexity. Deep 
reinforcement learning promises to tackle such situations of very 
high dimensions. 

For the infrastructure-led policy learning framework, while 
the results illustrated in figures 7 are encouraging, the results 
could be improved further by tuning the structure of the LSTM 
network and increasing the number of training data sequences. 
It has to be noted, that only a simple LSTM network was setup 
in this case to prototype the idea. 

V. CONCLUSIONS AND FUTURE WORK 
The connected autonomous vehicles (CAVs) operate by 

sensing its surroundings and exchanging information from other 
vehicles and infrastructure. This paper investigated the 
possibility for CAVs to learn from these data sources and derive 
its own safe driving policies. A reinforcement learning 
framework is presented in the paper, which simulates the self-
evolution of a CAV over its lifetime. The results indicated that 
overtime the CAVs are able to learn useful policies to avoid 
crashes and achieve its objectives in more efficient ways. 
Vehicle to vehicle communication enables additional useful 
information to be acquired by CAVs, which in turn enables 
CAVs to learn driving policies more efficiently. Furthermore, the 
paper proposed an infrastructure-led policy learning and 
communication framework based on deep imitation learning. 
The initial validation results based on a microsimulation 
platform and a LSTM network were encouraging. The future 
work will investigate complex driving policies such as 
roundabout negotiations, cooperative learning between CAVs 
and deep reinforcement learning to traverse larger state spaces. 
Furthermore, we will validate the infrastructure-led policy 
learning framework with real world datasets on vehicle tracking. 
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