An algorithm for calculating the QR and singular value decompositions of polynomial matrices

In this paper, a new algorithm for calculating the QR decomposition (QRD) of a polynomial matrix is introduced. This algorithm amounts to transforming a polynomial matrix to upper triangular form by application of a series of paraunitary matrices such as elementary delay and rotation matrices. It is shown that this algorithm can also be used to formulate the singular value decomposition (SVD) of a polynomial matrix, which essentially amounts to diagonalizing a polynomial matrix again by application of a series of paraunitary matrices. Example matrices are used to demonstrate both types of decomposition. Mathematical proofs of convergence of both decompositions are also outlined. Finally, a possible application of such decompositions in multichannel signal processing is discussed.