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Abstract 

The focus of this thesis is on the evaluation of input modalities for generic 

input tasks, such inputting text and pointer based interaction. In particular, 

input systems that can be used within a wearable computing system are 

examined in terms of human-wearable computer interaction. The literature 

identified a lack of empirical research into the use of input devices for text 

input and pointing, when used as part of a wearable computing system. 

The research carried out within this thesis took an approach that 

acknowledged the movement condition of the user of a wearable system, and 

evaluated the wearable input devices while the participants were mobile and 

stationary. Each experiment was based on the user's time on task, their 

accuracy, and a NASA TLX assessment which provided the participant's 

subjective workload. The input devices assessed were 'off the shelf' systems. 

These were chosen as they are readily available to a wider range of users 

than bespoke inpu~ systems. Text based input was examined first. The text 
. ". ' 

input systems evaluated were::a keyb~ard,; an on-screen keyboard, a 

handwriting recognition system, a voice 'recognition system and a wrist-
. . 

keyboard (sometimes known as a wrist-worn keyboard). It was found that the 

most appropriate text input system to use overall, was the handwriting 

recognition system, (This is forther explored in the discussion of Chapters 
~ . . 

three and seven.) ' 
' . ~ 

The text input evaluations were followed by a series of four experiments that 

examined pointing devices, and assessed their appropriateness as part of a 

wearable computing system. The devices were; an off-table mouse, a speech 

recognition system, a stylus and a track-pad. These were assessed in relation 



to the following generic pointing tasks: target acquisition, dragging and 

dropping, and trajectory-based interaction. Overall the stylus was found to be 

the most appropriate input device for use with a wearable system, when used 

as a pointing device. (This isforther covered in Chapters four to six.) 

By completing this series of experiments, evidence has been scientifically 

established that can support both a wearable computer designer and a 

wearable user's choice of input device. These choices can be made in regard 

to generic interface task activities such as: inputting text, target acquisition, 

dragging and dropping and trajectory-based interaction. 
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Chapter 1: Thesis Introduction 
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1.1 Introduction 

Within our lives we use a whole range of objects. Some of these objects are simple, easy 

and 'natural' to use. The way we interact with and use these many objects comes from 

our socialisation, cognitive experience and cultural acceptance of the way objects should 

be and are used within our society. 

Wearable computers are 'body-worn' computing systems. They a can be worn in a 

variety of different ways, from belt-based to vest-based configurations, or even integrated 

into the user's clothes. The advantages of using such systems are: they allow the user to 

interact while they are mobile, wearing a computer enables the user to use computer

based technologies in any locale and they can provide continual access to information, as 

they are always with the user. 

The aim of the research reported in this thesis is to give an insight into the way that 

wearable computers can exist as an extension of the user and their knowledge. 

Computing, cognition, interaction and culture are the four of the main areas of study that 

impact upon our understanding of any wearable computing system. One way to initially 

understand the user's interaction with a wearable computer may be to examine wearable 

computers in terms of their input mechanisms. 

1.1.1 The Specific Focus of This Thesis 

The specific focus of this thesis is the evaluation and use of input systems. In particular 

the thesis aims to examine the input modalities that are used within a wearable computing 

system and examine these in terms of human-wearable computer interaction. This will be 

done through adapting a critical evaluation of the existing research in the field and also 

through a series of scientific experiments. 
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1.1.2 The Contribution of This Thesis 

Wearable computing is a subset of mobile computing and has become an area of 

academic research in its own right (Bass Et al. 1999). Wearable computers in their 

current form consist of a modular that can be worn. They consist of a power supply and 

CPU/Data-storage/Memory unit which is able to be connected to input/output peripherals 

such as: monocular displays, wrist keyboards, off-table mice, microphones and a whole 

range of input/output devices, that will be further discussed in the later chapters of the 

thesis. Wearable computers are distinctly different from other computer-based technology 

as they are designed to be worn and therefore used in a variety of contexts and 

environments as a viable on body (body worn) computing system. 

The aim of this thesis is to research and evaluate human wearable computer interaction 

paradigms that will enable the user of a wearable computing system to have a more 

usable relationship with the system they use. This thesis will primarily focus upon the 

input modalities that are available to wearable computers users. 

The key aims and contributions of this thesis are as follows: 

• To examine and present techniques for the evaluation of input systems for use 

with wearable computers. 

• To present a set of empirical results that can aid in the design and choice of input 

systems for use with wearable computers. 

• To provide a research platform on which other Wearable Computing-focused 

Human Interaction studies can be based. 

• To provide a set of metrics based on input speeds and error rates through 

scientific empirical investigation that relate to the use of input systems for 

wearable computers, while the user is stationary and mobile. 
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1.1.3 The Thesis Structure 

In this section a general outline of the thesis is provided for the reader. The research 

literature relating to the experiments outlined can be found within Chapter two. Each 

experimental chapter provides an introduction to the experiment and related research. A 

graphical representation of the thesis can be found in figure 1.1. This provides a 'road

map' of the research conducted within the thesis. 

Chapter I. This chapter introduces the field of wearable computing in a historical 

manner, and places this thesis in context as a scientific piece of academic research. It 

provides an introduction to the literature review and explains the layout of the thesis. 

Chapter 2. This chapter begins by outlining the key characteristics of a wearable 

computing system. The literature review then goes on to discuss the concept of the 

wearable computing paradigm. It further discusses the application of wearable computers 

and goes on to look at their common characteristics. This is then expanded upon to focus 

on input systems that can be used with wearable computers, for text input and as pointing 

devices. Also explored is the concept of the audio-centric wearable computer and 

evaluation strategies for investigating input devices. One of the issues raised by the 

literature review relates to the lack of empirical research into input devices for generic 

tasks such as text input and pointing in regard to wearable computing systems. This steers 

the thesis to further explore input devices for wearable computers in two particular areas: 

text input and pointer-based input. 

Chapter 3. This chapter took four off-the-shelf text input systems: speech recognition, 

handwriting recognition, a wrist-worn keyboard and a QWERTY style virtual keyboard. 

The four input systems were chosen because the research literature had previously 

demonstrated that they were systems that had been used with wearable and mobile 

computer systems. The text input systems were evaluated in terms of the time taken to 

complete the task, the errors made while completing that task and the participants' 

subjective workload. The text input systems were evaluated while that participant was 

wearing a computer whilst in stationary and mobile environments. 
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Chapter 4. This chapter expands the experimental framework found in Appendix 5 by 

measuring the errors made during the performed task, and by having the participant select 

five target sizes instead of one. Each participant selected 1000 targets throughout the 

course of the study. The targets were selected while the participant was standing 

stationary and while mobile, using the vest-based wearable compute. It was found that 

the fastest device when used for target selection was the stylus, while both standing 

stationary and mobile. 

Chapter 5. This chapter takes the three input devices used in Chapter five, and further 

evaluates their appropriateness as pointing devices for dragging and dropping when used 

as part of a wearable computer system. This study expands upon the studies in the 

literature and evaluates the pointing devices in terms of their use with a wearable 

computing system, while the users were mobile. The elements used to evaluate the 

devices were taken from the framework laid down in chapter 3. These were the time 

taken to complete the task, the errors made during the task and the subjective workload of 

the participants 

Chapter 6. This chapter is the last chapter in the series of pointer-based evaluations for 

wearable computers and focuses on the use of wearable input devices for trajectory-based 

interaction. It furthers the evaluation of the three input devices in chapters five and six to 

provide a broader overview, relating to the way that many wearable users use input 

devices for a variety of pointer based interactions; from target selection and dragging and 

dropping, to trajectory-based interaction for steering through menus. As in previous 

experiments, the participants wore a Xybemaut vest-based wearable computer and did the 

task while stationary and mobile. 

Chapter 7. This chapter reviews the findings from chapters three, four, five and six. It 

presents an overview of the findings, and presents them in a more 'useable' format. The 

findings are presented in a tabular manner. This allows the reader to see which input 

devices performed the best in relation to their input speed, accuracy and cognitive 

workload. This allows the users/designers of wearable systems to see what may be the 

most appropriate input device for the task they are to accomplish. For example, the task 
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may require the user to input alphanumeric data quickly, while mobile. 

Chapter 8. This chapter concludes by focusing on the original contributions to knowledge 

that this thesis has made. It then goes on to examine the future directions in which the 

work that has been carried out could be further expanded and offers a series of research 

routes. The pages following this conclude the thesis and end with a personal reflection. 
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1.1.4 Wearing a Computer 

Different tasks ca ll for users to wear their computers in different configurations. This is 

sometimes referred to in the literature as wearability - how a user wears their wearable 

computing system (Gamperele Et al. 1998; Watkins and Dunne 2003). It is no use 

wearing a full vest-mounted system if all the user needs is simple GPS information, but 

on the other hand it would be inappropriate to give a user such as a soldier a PDA if they 

constantly need to be sending and receiving AR-based tactical information, maps, 

weapons reports; photographs and wounded reports, the hardware would most likely be 

held in vest based configuration such as the Land Warrior System (Murray 2000). 

A whole range of different systems have been developed and adopted by di fferent users 

to carry wearable computers, from vest-based systems (Kortuem Et al. 1998; Woolley Et 

al. 2002) belt-based (Starner Et al. 1995; Mills & Beliveau 1998) through to digital body 

piercings (Eves Et al. 2000) that can be worn, and illuminated to tell the user when they 

have an incoming mobile phone message. The actual definition of what a wearable 

computer is, is further ' clouded ' by the use of such terminology as: body-worn (Bass, 

Siewiorek, Smai lagic and Stivoric 1995; Randall & Muller, 2000, 2002; M ann 1997), on

body (Starner 2004) and body-wearable (NASA 2000). These terminologies have been 

used to define a variety of wearable computi ng systems. Many definitions, such as vest

worn or belt-worn, refer to the way that the system is worn (the placement on the body). 

This di scussion is further explored in regard to the literature in Chapter 2. 

Bill inghurst (2002) furthers the debate on the definition of wearable computing by 

arguing that cell phones could be thought of as wearable computers. He writes; 

"While it may be debatable that a cell phone is a wearable computer, the distinction 
becomes more uncertain when you consider the combination of devices that a person may 
be carrying, such as P DA, digital camera, cell phone, hear/. rate monitor and GPS 
receiver. These devices are chosen based on their individual altributes yet together they 
may provide more functionality than a general-purpose wearable machine." (Billinghurst 
2002). 
In light of the proliferation of designs that enable cell phone users to wear their phones by 

using: neck-straps, pouches and cell phone pockets in jackets; Billinghurst's discourse on 

the cell phone as a wearable computer is valuable. 
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A variety of rucksack:/backpack ' wearable' systems have been developed. The benefit of 

using these systems is in their application as a prototyping tool such as the 'Touring 

Machine", a mobile augmented reality system (Fiener Et al. 1997), the "Tinmith" project 

(Piekarski and Thomas 2002) and the orientation and way-finding system developed for 

visually impaired users (Ross and Blasch 2000). Using a backpack-worn wearable 

computer may be preferable for some disabled users; such as the visually impaired, as it 

is less obvious that they are wearing a computer which could lead to some level of social 

exclusion. 

To further understand wearable computers, the concept of computerised-clothing should 

also be explored. This type of wearable computing is more akin to the everyday clothes 

that we already wear as it attempts to merge and integrate everyday wear (clothes) with 

computer-based technologies. Randall (Randall & Muller, 2000, 2002; Randall 200 I) 

coined this Bristol Fashion, but a more thorough investigation into the literature suggests 

a parallel evolution in the design of such systems by Philips (Eves Et al. 2000), 

Rekimoto/Sony (200 I) and thee-SUIT (Toney, Mulley, Thomas and Piekarski 2002). 

Phi lips (Eves Et al. 2002) integrates a level of computerised technology into clothing and 

explores the use of smart fabrics and their relation to fashion and society. Several novel 

concepts have been developed: from a suit with an integrated smart fabric keyboard to 

electronic sportswear that can monitor the user's pulse, temperature and blood pressure 

and even a jacket for snowboarding that can warn the user of dangerous conditions, 

which contains heating elements and a radio link. Other examples of Phi lips des igns can 

be seen below. 
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Wearable Mp3 Player Smart Fabric Controls Play Jacket 

Figure 1.2: Clothing-based Wearable Computers. 

For a full breakdown of the wearable computing systems developed in figure 1.2 see -
http ://www.design.philips.com/about/design/section- 13526/ 

These systems are very di fferent from the previous vest-based and wearable backpack 

designs that we have just discussed. They are d ifferent, because computers have been 

integrated into the 'fabric' of everyday clothing, but there are several problems that have 

to be noted when examining this branch of wearable computing: 

1 : Clothes have to be washed so the technology has to be removed (Karvonen & 

Parkkinen 1994); if the wearable is waterproof it requires the user to have another 

garment with the same fu nctionality. 

2: The systems explored here are on the who le are designed to perform a dedicated task 

and as such are designed for task-specific applications, e.g. an MP3 player. 

3: Clothes do eventually wear out, become unfashionable and some users such as children 

grow out of their clothes. This means that the technology needs to be transferable to other 

garments. 

4: Weather conditions often affect the clothes we wear. How do we design for this? 

5: How can the designers of such garments apply a physical metric to the placing of 

controls on the garment or is it a matter of using the "one size fits all' design approach? 

6. Are there technological issues, such as the size and heat of computing technology that 

can affect the 'wearability' of these garments? 
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Although there are problems with fabric-based systems, there are also benefits. One of 

the benefits is the elimination of heavy cabling, as Orth (1998) suggests, "Using sewn 

fabric sensors and circuits allowed us to eliminate uncomfortable and heavy wires, 

connectors and electronics." 

One interesting slant on wearing a computer is what can be called the wearable thin client 

paradigm. Systems such as the Panasonic Toughbook CF07LZ5ZY (Panasonic 2002) 

allow the user to leave the 'core' system containing the CPU, memory and hard drive up 

to 300 feet away from the screen, which means the user only has to carry the wireless 

touch screen, which equates to no cabling weight. The Toughbook can be worn on the 

wrist, placed in a drop down pocket case or simply clipped to a clipboard. 

The advantage that this system has over the other vest and belt-based systems is its ability 

to remain socially and physically unobtrusive, which the literature suggests may be 

beneficial to the user (Rekimoto 200 I). In some situations the unobtrusive nature of 

wearable computing technology can be important, where time is an issue for example. 

While conducting a contextual interview with a user of a wearable system he said that "I 

used to waste up to an hour showing other people the system I was using; as soon as they 

saw the HMD they wanted to have a go". There are implications related to the novelty of 

new technologies, and these can impact upon the user's task when used in a social rather 

than an individual setting (Ockerman & Pritchett 1998). 

1.1.5 Conclusion 

This introduction has introduced the concept of wearable computing and discussed some 

of the discourses that exist around the definition of these systems. It outlined the key 

contributions that the thesis will make and shows the outline of each chapter. Figure I. I 

graphically represents the structure of the thesis. The next chapter further examines the 

literature and focuses more specifically on input for wearable computing systems. 

Alan Chamberlain 19 



An Analysis oflnteraction in the Context of Wearable Computers 

Chapter 2: Literature Review 
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2. 1 A Review of Wearable Computing 

2.1.1 Introduction 

This chapter explores the concept of wearable computing and the associated technologies 

that come together to form this field of research. It characterises wearable computing in a 

more formal way so as to set an agenda for the style of the thesis, which will be reflected 

throughout the rest of this thesis. 

2.2 A Characterisation of Wearable Computing 

It is important to see the field of wearable computing as a multi-faceted field of computer 

science that when dissected includes the following elements: Mobile Computing, 

Ubiquitous Computing, HCI, Ergonomics and Networking.Wearable computers have 

been classified in several ways (Bass 1997; Rhodes 1997; Mann 1998). Rhodes (1997) 

characterises wearable computers in the following ways: 

Portable while operational: The most distinguishing feature of a wearable is that it can 

be used while walking or otherwise moving around. This distinguishes wearables from 

both desktop and laptop computers. 

Hands-free use: Military and industrial applications for wearables especially emphasize 

their hands-free aspect, and concentrate on speech input and heads-up display or voice 

output. Other wearables might also use chording-keyboards, dials and/or joysticks to 

minimize the tying up of a user's hands. 

Sensors: In addition to user-inputs, a wearable should have sensors for the physical 

environment. Such sensors might include wireless communications, GPS, cameras or 

microphones. 

"Proactive": A wearable should be able to convey information to its user even when not 

actively being used. For example, if your computer wants to let you know you have new 
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email and who it's from, it should be able to communicate this information to you 

immediately. 

Always on, always running: By default a wearable is always on and working, sensing, 

and acting. This is opposed to the normal use of pen-based PDAs, which normally sit in 

one's pocket and are only woken up when a task needs to be done. 

Bass ( 1997) defines the properties of wearable computers in a more concise manner, but 

also argues that wearable computers should 'exist within the corporeal envelope of the 

user', what we might think of as the users 'space', both physically and mentally: 

"They may be used while the wearer is in motion 

They may be used while one or both hands are free, or occupied with other tasks 

They exist within the corporeal envelope of the user, i.e., it should be not merely attached 

to the body but becomes an integral part of the person's clothing 

They must allow the user to maintain control 

They must exhibit constancy, in the sense that they should be constantly available. " Bass 

(1997) 

Bass (1997), Rhodes (1997) and Mann (1998) use a common descriptive set of features to 

describe the properties of wearable computing systems. Mann' s (1998) keynote address 

of the 1998 International Conference on Wearable Computing offers a more descriptive 

outline of what a wearable computer is. This shares common ground with both Bass' and 

Rhodes' descriptions (below) 

"A wearable computer is a computer that is subsumed into the personal space of the 
user, controlled by the user, and has both operational and interactional constancy, i.e. is 
always on and always accessible .. .it is a device that is always with the user, and into 
which the user can always enter commands and execute a set of such entered commands, 
and in which the user can do so while walking around or doing other activities" (Mann 
1998) 
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Mann (1998) then extends his definition to stress that the main difference between other 

wearable technology-based devices, is that they are not able to be programmed (re

configurable ), whereas wearable computers are. 

"what sets the wearable computer apart from other wearable devices such as 
wristwatches, regular eyeglasses, wearable radios, etc ... these other wearable devices 
that are not programmable (re-configurable), the wearable computer is as re
configurable as the familiar desktop" (Mann 1998) 

What is interesting is that in the years since Mann 's (1998) paper was given that there are 

now many devices that can be programmed and are highly re-configurable. Mobile 

phones are now java enabled and run java-based programs, while some watches have the 

Palm Operating System, but the key difference is that these devices have a sole purpose 

and are developments of other technologies. The mobile phone is an extension of the 

nonnal land-line based telephone, while the Palm watch is an extension of the 

wristwatch. 

After examining the three definitions it is clear to see that there are commonalities 

between these definitions: 

1. Wearable computers should be able to be used while the user is mobile. 

2. The user should be able to enter data and control the system. 

3. The system should allow the user to use the system in a hands-free or reduced handed 

mode. 

4. The system needs to be worn. 

Within the literature we have identified that there are some shared ways that wearable 

computers have been defined by Mann (1998), Bass (1997) and Rhodes (1997), but to 

further understand wearable computing we must examine the systems themselves and see 

how they are worn, as this is the main feature that separates them from other forms of 

computing technology. 
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2.2.1 Wearable Computing Tasks 

This section aims to give an overview of some of the application areas and tasks that 

wearable computers are used for. One of the key differences between desktop computers 

and wearable computers is the ability to wear and use wearable computers in a variety of 

different locations. When the user wears their wearable computer the computer goes 

wherever the user goes. This means that wearable computing technology is ideal for in

field tasks (Matias, MacKenzie & Buxton 1996; Smith Et al. 1995; McConnell 2004; 

Nusser Et al. 200 I) and environments where a desktop or laptop computer is not able to 

be used in an appropriate manner (Schmidt Et al. 2000). 

"A wearable is well suited to work "in the field." This includes data collection and 
retrieval in out-of-doors situations, such as: field service, inventory, surveying, etc. As 
well, highly mobile in-door work can also benefit from having a wearable. For example, 
inspectors performing on-site evaluations of factories can take notes and call-up 
information." (Matias, MacKenzie & Buxton 1996). 

As wearable computers can be used in-field, it means that they are used in a varied range 

of environments from underwater scenarios (WetPC 2001), archaeological sites (Cross Et 

al. 2002), through to systems designed for use in space (Matias, MacKenzie & Buxton 

1996; Carr Et al. 2002). The WearSA T (Carr Et al. 2002) system allowed its users to 

monitor oxygen levels, the user's orientation, call up maps and diagrams, and examine 

daily tasks through a menu-based system. 
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Figure 1.1: lnformation Management Screens from WearSA T (Carr Et al. 2002) 

Other systems have been designed for on-site aviation maintenance. These systems were 

primarily designed so faults could be identified, recorded and the parts ordered (Smith Et 

al. 1995). As McConell writes, the use of wearable computers for aviation-based 

' breakdowns' provides a " highly convenient means for performing non-routine 

maintenance tasks with immediate, real-time data entry" (McConnell 2004). Other 

wearable computing systems such as the WetPC (2002) allow the user to effectively 

gather data, access and edit textual material when in underwater environments and 

performing work such as logging data positions in coral reefs. The interface for the 

WetPC system is shown below in figure 1.2. This interface consists of a series of buttons 

for dedicated selection, and a text box, for inputting descriptive information. 
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Figure 1.2: The WetPC interface for entering data on seabed (WetPc 2002). 

For a full overview of the WetPc system see
http://wetpc.com.au!html/technology/wearable.htm#diverdiagram 

Similarly Nusser (Et al. 2001) state that the main task that many wearable computer users 

perform is collecting field data; as we have seen this field data can be collected in a 

variety of places. An interesting use of a wearable computing system was the Threat 

Response system (Rensing Et al. 2002), an in-field system that allowed its user to capture 

images of human faces and identifying them as a threat or friend. The interface is for this 

system is seen below figure 1.3. lt allows the user to point and click (target selection) a 

series of buttons that perform dedicated functions, such as search, back and main menu. 
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Figure 1.3: Threat Response Wearable Interface. (Rensing Et al. 2002). 

Btirgy (Et al. 2002) report on a system designed for the inspection of bridges and 

buildings. The key tasks of this system were data gathering and access to data. Btirgy (Et 

al. 2002) further expand upon their system by defining the tasks performed by the ir 

system in three main ways that are outlined below. 

Primary Task: No interaction with the device; i.e. no IT support is needed and applied 

Support Task: Sole interaction with the device and the device supports the user in 

providing information or accepting information; i.e. ' productive' steps are done; e.g. 

reading a manual or inputting inspection results. 

Control Task: Sole interaction with the device, but the task only involves navigating 

through the software; i.e. no ' productive' steps are done - scrolling down a page, opening 

a file or putting a file in a folder. (Btirgy Et al. 2002) 

What Btirgy (Et al. 2002) starts to address is the relationship between the task 

requirements, user requirements and the interface, input and output modalities that are 

appropriate to allow the user to complete their task in a useable manner. As we have 

previously seen, many wearable systems are used in 'the field ' . Because of this the user 

must be able to input data and receive data in an appropriate manner. 
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The graphical user interfaces that we have shown in this section have been specifically 

designed for wearable users to input, manipulate and access information; and although 

they are not desktop-based they do share elements with desktop based interfaces such as 

the ability to input data, buttons for selecting functions and menu-based interfaces (Basko 

Et al. 2002). Although there are similarities between wearable and desktop interfaces, 

interaction with a wearable can be done while the wearer is mobile and in a variety of 

locations, while on the other hand, the desktop user is always stationary. Because 

interaction with wearable computers can happen whi le the user is mobile, there is a need 

for metrics in regard to wearable input devices (Bi.irgy Et al. 2002). By empirically 

evaluating wearable input devices we may be able to establish what the most appropriate 

input devices/systems are for use with wearable computing systems. 

2.2.2 Summary 

In the review of the literature relating to this, we have found that the most common way 

of wearing a computer is in a vest-based system, although there have been no studies that 

have reviewed how many systems have been designed to be worn in that manner. We 

have also seen that the style of wearing a computer depends upon the way it is to be used; 

a simple MP3 player could be integrated into clothing, but a system previously mentioned 

such as the Land Warrior (Murray, 2000) requires the user to carry many other 

components, such as a backpack or compass. By wearing a computer in a vest-based 

system the user can distribute the weight comfortably over their torso. The system seen 

below is the commercially available Xybemaut MA V, worn in a vest. These systems are 

widely available as an off-the-shelf system. 
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Figure 1.4. A Vest Worn Xybemaut Wearable Computer 

For a full overview of the wearable computing products available from Xybemaut 
see - http://www.xybemaut.com/home.asp 

The architecture of this wearable system is modular in design. The CPU is the core unit 

which allows the connection of any appropriate output devices, such as a Head Mounted 

Display and touch screen (tlat panel display in the diagram above). This system also 

allows the user to connect a whole series of input peripherals from microphones and 

touch-pads to wrist-mounted keyboards and stylus for interacting with the touch screen. 

The wearable computer is very adaptable in its design, as it allows the architecture of the 

computer to be configured in a way that supports the user' s needs and the task that needs 

to be accomplished. The task and user requirements can impact upon the design of the 

software, the input and output modalities, the input and output technologies and the 

configuration of the wearable system. 
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2.3 Introduction -Text Input 

Earlier in this chapter it was noted that the literature that defined wearable computers 

shared four common characteristics. 

1. Wearable computers should be able to be used while the user is mobile. 

2. The user should be able to enter data and control the system. 

3. The system should allow the user to use the system in a hands-free or reduced handed 

mode. 

4. The system needs to be worn. 

In the previous section (1.1.4) the 4th definition was examined; in this section we aim to 

address the other three. As 2 and 3 both relate to input we shall follow this theme through 

and relate them to 1. Wearable computers should be able to be used while the user is 

mobile, examining the literature to see if any research upon data input has been carried 

out while the user has been mobile. This is dependent on the task that the user needs to 

accomplish. 

Wearable computing user input paradigms have had to adapt to the contexts where they 

are used, the task and context are reflected in the way that the wearable computing 

system is designed and used. One of the concerns for any wearable user is the choice of 

input device or input system as this is an integral part of interfacing with the application. 

Using existing desktop input devices is not appropriate for wearable users for several 

reasons. The desktop interaction paradigm involves a user sitting in front of a monitor 

and using a mouse and keyboard to interact with the computer. The act of being mobile 

and wearing a computer places different constraints upon the user, that the desktop does 

not. Desktop keyboards are, "difficult to use in particular settings and circumstances, 

such as conducting inventory on the shop floor or a geology survey in the 

wildemess ... using a keyboard is cumbersome" {NIST 2001) . The same can be said of 

the mouse. If we are using a computer while mobile, using a desktop mouse as a pointing 
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device is not a viable pointing solution, making the user stop and find a flat surface every 

time they needed to move the cursor is not appropriate (Rhodes 1997). Desktop devices 

are designed to be used on flat surfaces, hence the term 'desktop'; weight is not an issue 

as devices such as keyboards and mice do not have to be carried around for sustained 

periods. For a wearable user we not only have to consider the weight of the device, but 

also the weight of the cabling. The device has to be small enough to be worn 'on body' 

and possibly to be stored on the wearer too. The user may also be required to input with 

one hand or be working in a hands-free environment (Noble Et al. 1997). The wearable 

computer user may be stationary or mobile when they use an input device, so any input 

devices must have a high level of usability while the user is mobile. 

Integrating existing desktop devices is not a satisfactory design solution, but focusing on 

the use of desktop devices in a mobile environment has pointed out six very important 

factors for us to consider when designing and evaluating an input system for mobile use. 

The task requirements for a mobile user can dictate: the weight of a device and 

connectors, its size, where to store the input device when not in use, mobile usability, 

wearing a device and how does the user input in a non-traditional desktop manner? 

Wearable computing input models can be defined as two groups; physical and non

physical devices (Dix Et al. 2004). Physical refers to many types of input devices such as 

keyboards, joysticks, stylus/light pens, touch-pads and mice, while voice/speech 

recognition and eye gaze can be defined as non-physical. 

A range of devices has been developed and adopted for use with wearable computers and 

users on the move. These range from off-the-shelf text input devices such as the wrist 

keyboard, speech recognition software and finger mice, through to custom devices that 

have been developed, such as chording gloves, half-keyboards (Matias Et al. 1994, 

1996), twiddlers (Lyons Et al. 2003), smart fabrics (Rantanen Et al. 2000, 2001) and 

virtual keyboards (Howard & Howard 2001). 

It is a difficult and abstract task to think of other ways of inputting text, especially after 

the full size QWERTY keyboard input method has been dominant as a text interaction 
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style for over a hundred years ( 1868) and the mouse has become a standard pointing 

device for many desktop users. 

How can we move the cursor without a mouse while the user is mobile? How can we 

input textual information if we are mobile? And are there already existing systems that 

can be used or adapted to be used as part of a wearable computing system? It is questions 

such as these, and the associated problems and issues that arise from such questioning, 

that have given rise to a generation of wearable and mobile computing research. This 

research has focused upon the development of new and interesting interaction modalities 

and paradigms for non-desktop computers. 

One of the key issues that has not yet been fully investigated is the usability of wearable 

interaction paradigms and the users' physical and cognitive workload while they are 

mobile and wearing a computer. 

This section of the dissertation examines some of these new input modalities and gives 

examples of already existing text input technologies as a comparative exercise. It 

explores their use and looks at the problems and issues associated with these technologies 

and their use. We start with an examination of text input; as Mackenzie and Soukoreff 

(2002) write "Although text entry is by no means new in mobile computing, there has 

been a burst of research on the topic in recent years. There are several reasons for this 

heightened interest: First, mobile computing is on the rise and has spawned new 

application domains such as wearable computing". 

2.3.1 Text Input 

The first part of this section will critically approach the subject of text input in relation to 

wearable computing-based input. When referring to text input we are examining the use 

of technologies that are used as part of a wearable input paradigm/system for the input of 

alphanumeric data. There are many different types of text input devices that are available 

commercially and custom-made for use with wearable computers. An approach will be 

taken in this review that encompasses a wide range of text input systems; from common 
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input devices such as the keyboard, through to more 'obscure' devices such as the 

Twiddler (Lyons Et al. 2003), the ISOIIEC 9995-8 (1994) keypad, and half-keyboard 

designs (Matias Et al. 1993,1994,1996) that have been used as part of a wearable 

computing system. 

2.3.2 Numeric Input 

Text input has been the primarily focus of this investigation so far, but there are other 

important studies that have focused upon numeric input. This is important because there 

are many systems that rely on numeric input. The use of such systems may range from 

telephoning a friend to collecting stock data in a warehouse. It is often the case that 

numeric keyboards can be used to input textual data, such as the ISO/IEC 9995- 8 1994 

Keyboard!Keypad and TNT (The Number Typer) (Ingmarsson Et al. 2004). The TNT 

system was developed to take advantage of a television remote control and allow the user 

to input a variety of information using its ten-key (1 to 0) layout. In its simplest form, the 

user can use the 1 key to input the letter a. Its design was focused around inputting 

information, such as: the time, day and programme title into home multi-media terminals 

and interactive TV. 

Other studies have focused on sonically-enhanced numeric buttons using PDA's 

(Brewster 2002). This study found that by sonically-enhancing buttons on the screen of 

the PDA, the usability was improved overall. When the button sizes were reduced from 

5mm to 2.5mm there was little loss in relation to the user's quantitative performance 

when doing data input tasks, although the user's workload with these smaller buttons was 

significantly raised. The study proved that the usability of mobile devices using small 

onscreen-buttons is raised if a level of sonification is added to the buttons. 

2.3.3 Keyboard Input 

Keyboard input for a majority of desktop computer users is the most used mode of text

based input. The traditional 'off the shelf 'computer system invariably comprises of a 

base unit, monitor mouse and keyboard. It is important to examine the keyboard as it may 
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be a way of allowing the user to transfer the skills they have acquired using this input 

device to a wearable computing based environment. The QWERTY keyboard has existed 

for over a hundred years, and was originally designed in an attempt to stop the frequent 

type-bar jams of mechanical typewriters and was much later adopted as the layout for the 

computer keyboard. The layout design in 1868 by Christopher Latham Sholes worked by 

separating the most frequently used letter pairings in an attempt to stop the mechanism 

jamming. However, as Matias, MacKenzie and Buxton (1996) write, "The QWERTY 

keyboard has been much maligned over the years. It has been called, by various authors: 

"less than efficient" (Noyes, 1983, p. 269), "drastically suboptimal" (Gould, 1987, p. 16), 

"one of the worst possible arrangement[ s] for touch typing" (No yes, 1983, p. 267), "the 

wrong standard" (Gould, 1987, p. 23), and a "technological dinosaur" (Gopher & Raij, 

1988, p. 601), it still remains the predominant method of text input for users today. 

QWERTY KEYBOARD 

Tab 

Ctrl 

h~JI\~ww·.corrpu~erhope.com 

Figure 2: The QWERTY keyboard layout 

As the literature suggests (Matias, MacKenzie and Buxton 1996), the QWERTY 

keyboard is a badly designed for text input, but compared to the original ABC layout that 

the QWERTY keyboard superseded, the QWERTY keyboard is in some cases faster to 

use (Noyes 1983). Other keyboard layouts have been designed, most notably the Dvorak 

keyboard, which places the most commonly used characters together in the touch typists 

'home row'. Although finger movement (distance moved to other keys) was reduced by 

up to 90% there was only a 2%-5% increase in typing speed (Potosnak 1988). This may 

Alan Chamberlain 34 



An Analysis oflnteraction in the Context of Wearable Computers 

seem minimal but using a Dvorak keyboard layout gives a reduced finger movement rate 

of up to 90%, which puts less physical stress upon the users fingers and therefore should 

equate to fewer instances of RSI (Repetitive strain Injury), an important factor when 

related to daily use. Yet the Dvorak keyboard is little used in comparison to the 

QWERTY layout. 

2.3.4 Wrist-Worn Keyboards 

Wrist-Worn Keyboards conform to the layout of the QWERTY keyboard, but are 

essentially smaller versions of desktop keyboards, as yet no ABC or Dvorak wrist-worn 

keyboard are available. A smaller incarnation of their desktop counterparts, the 

keyboardlkeypad has an important role to play as an input intermediary between the user 

and the computer in a wearable computing system. The wrist-worn/mounted keyboard at 

first glance would seem to be a 'quick fix' solution as it is easy for users to transfer their 

already existing cognitive models of the desktop keyboard onto the wrist-worn system, 

although the wrist-worn keyboard is not without its own problems, as we shall discuss 

later. 
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Figure 2. 1: WristPC Keyboard (above) 

Full detail s and specifications for the keyboard in figure 2. 1 can be found at

http://www.l3sys.com/keybd/keybd.html 

Mobi le and wearable computing devices need to be smaller than conventional desktop 

computers, because they are carried in pockets, worn in vest systems (Sawhney 2000) 

and worn by their users in belt based systems. Therefore it is important that they a re 

lightweight, easy to store and enable their users to have them 'on-body' for sustained 

periods of time. A solution to this problem is for the user to wear the keyboard. These 

factors have lead to a miniturisation of the associated input peripherals, essentially for the 

reasons previously explained: size, weight and storage. 

Surprisingly, li ttle investigation and research have been done on analysing wrist-worn 

QWERTY keyboards in terms of their usability, input times and error rates, although they 

are widely available. Jn a study by Thomas Et al. (1997) it was found that the wrist 

keyboard (or forearm keyboard as it was known in this study) was much quicker to use 

than both a belt-worn mouse and a chord keyboard in relation to doing a variety of tasks 
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such as text input, although this may be due to the users' already existing familiarity with 

the QWERTY layout. The study also did not require the user to use the system whilst 

mobile, thereby ignoring a whole range of issues that affect wearable user whilst mobile. 

There are also underlying issues that relate to the users' physiology in terms of the long 

term use of wrist keyboards that have yet to be investigated. RSI, although not the focus 

of this research, could be a factor in using wrist-worn keyboards. One only has to use a 

wrist keyboard for a while to notice there is some strain placed on the typing wrist elbow, 

shoulder and back, while the wrist wearing the keyboard has to be held still, involving 

even more muscle groups, and that is only when the user is stationary. Researching the 

physical factors influencing the wearing of technologies is a big task (Gemperle, 

Kasabach and Stivoric, 1999; Knight Et al. 2002); although researchers are starting to 

make inroads into the field it is a difficult area to investigate because of the changing 

state of the environment and impact upon the users' physical movements. 

Other wrist-worn keyboard models do exist that are designed to be used with wearable 

computers, such as the Matias half-QWERTY keyboard (Matias Et al. 1994) Figure 2.2. 

This was initially designed to help with the transfer of two-handed typing skills to a 

single-handed keyboard design. The half-QWERTY system works by the user using the 

space bar to toggle between the two halves of the keyboard; e.g. to type S but the user 

would press the S key, but if the space was pressed first the S key would change to the L 

key. Matias (Et al. 1993) reported by that experiments had found the half-keyboard to 

'exceed the speed of handwriting', and touch typists <10 hours (10 1 hour long sessions) 

to learn before they could reach speeds of up to 40+wpm (23.8 to 42.8 wpm). 
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Figure 2.2: Matias half keyboard (Matias Et al. 1994) 

For more information regarding the half keyboard see- http://half-qwerty.cornl 

The design of the half-keyboard is problematic for the following reasons: firstly, the user 

needs substantial training, 10 hours training for a touch typist (as used in the experiment) 

to reach 40wpm, but how does this training time relate to non touch typists who have to 

look at the keyboard to type ('hunt and peck typists')? The second problem is that when 

the user is typing they have to press the space and therefore they are making more 

keystrokes and more keystrokes can relate to more time and errors. A solution to this may 

be to build a level of text prediction into the software or auto error correction. Matias (Et 

al. 1994) also reports a 7.44 percent error rate, which he admits is double that of the 

touch typists' original full size QWERTY input, which means there would have to be a 

large amount of corrections to make. This system would be of little use for real-time 

tasks, such as reporting an accident or number plate, because of that error rate. The half

QWERTY was later developed as the main text input modality for a wearable computer 

for use in microgravity space and other non-desktop environments (Matias Et al. 1996). 

Although it is commercially available, it is not supplied by any of the major wearable 

computer manufacturers, who prefer to stick with the standard QWERTY-based wrist

worn device. 
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2.3.5 Summary 

The QWERTY wrist worn keyboard uses some of the users' existing knowledge, which 

is a positive feature of the system, as users instantly recognise the system, but there are 

negative factors associated with using wrist-worn keyboards in general. Using keyboard 

commands such as Ctrl+Alt+Delete are difficult for user a user to accomplish using one 

hand. Key combinations may depend on the task that is being performed; if the 

Ctrl+Ait+Delete combination was needed frequently, software could be written to accept 

a different key combination, such as SPACE+Ait. As Goldstein (Et al. 1998) state, 1fthe 

QWERTY keyboard is miniaturised, usability suffers both regarding effectiveness and 

efficiency', so in reducing the keyboard size we may also be reducing its usability. Using 

a wrist-worn keyboard does not allow the user to be 'hands free', although the user can 

hold or control something in the other hand whilst they are typing. In physical terms of 

the hardware configuration on the user's body, it adds more cables, it's another peripheral 

for the user to consider (uses up a port) and common sense reveals the problems 

involving clutter that looking at a keyboard through an augmented reality display would 

cause. 

2.4 The ISO/IEC 9995· 81994 Keyboard/Keypad 

The ISOIIEC 9995-8 1994 12-key Keyboard!Keypad is the keyboard input configuration 

mostly used on a majority of mobile phones. As mobile phones become part of the fabric 

of everyday life and the instances of SMS messaging rise the 12-key keyboard becomes 

an important text input modality in its own right. If we examine the rise in SMS 

messaging, it has risen to from 16.5 billion in 2002 to 22 billion in 2003 (T-Mobile 

2004). Over a billion people own mobile phones worldwide. It is therefore important to 

examine the 12-key keyboard as a viable form of mobile text entry. There have even been 

instances of touch typing using this configuration reported; "teens in Finland are learning 

to touch type with their thumbs," said Marc Retting, a member of HannaHodge, a market 

research firm in Chicago (Batista, 2001). Yet other critics such as Goldstein (1998) claim 
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' the 12-key keypad (0-9, *, #) is not adequate for touch-typing' , but no reference is made 

to any study or definition of touch typing. Other mobile phone keyboard layouts do exist, 

such as Fastap, seen in Figure 2.3. This increases the key density of mobi le phones on 

average by 240%, by adding more keys, placed at the corners of the main keys (Hare 

2002). 

Figure 2.3 A Fastap Keyboard layout. 

Further information on Fastap products can be found at - http://www.digitwireless.com/ 

Modern mobile phones are capable of allowing the user to input text in 2 different ways, 

multi-key input and predictive input Multi-key means that to write a word such as on the 

user must press button 6, three times for the o and two times for the n: all together five 

presses for a two-letter word. Predictive text input attempts to match a word to the key 

pattern that the user selects. So the user simply presses the keys with the coordinating 

letters upon them. As we can see from the diagram below, to write the word ' how' the 

user simply has to press buttons l=h, 6=o and 9=w. This takes three presses instead of 

six. Although T9 prediction is not perfect s ince some words have the same key 

sequences, such as 'cake' and 'calf , and if this situation occurs the user selects the ' next 

word ' function key to select the word required, but these cases are rare (MacKenzie Et al. 

200 I). In a recent report/user survey conducted by Digit Wireless (Hare 2002) it was 

found that 45% of users use T9 prediction, while 50% sti ll use multi-key (Hare 2002). 
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What this displays is that T9 input has a large level of acceptance and usage within the 

mobile market, although this maybe counterbalanced by the fact that Nokia uses T9 as its 

main form of predictive input; interestingly the survey did not report on any other forms 

prediction such as Motorola's iTap. 

h 0 w 
Ji;st o<eSS CI"Ce just !litiS CYa~ Jost ~ O>Cil 

1 2.:-1Jdef 
4 ghi 5 jkl 6mno 

7 pqr 8 tuv 9wxyz 

Figure 2.4: Diagram ofT9 Predictive Input, see- http://www.t9.com/ 

2.4.1 Summary 

Using an lSOIJEC 9995- 8 1994 Keyboard/Keypad, seems like an ideal text input 

solution. Keystroke input times are fast and the keyboards are small. This keyboard 

layout is used by a large amount of people and so skills transfer would be an easy for the 

user. 12 key keyboard layouts were used because a fu lly usable QWERTY keyboard 

layout cannot fit onto a small mobile phone. The 12 key layout is an inherited design 

from existing telephones, whose original designers did not design it for text input. The 

typing style used for input is thumb based, so the user holds the handset in their palm and 

uses their thumbs to type. This could become uncomfortable after sustained periods of 

input. 

2.5 Stylus-Based Input 

A stylus is a pen like device that is used scribe, tap and control a cursor. Stylus based 

input systems fall into four main categories: traditional handwriting recognition, stroke 
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based input, soft keyboards (sometimes referred to as virtual keyboards) and gestural

based input. 

2.5.1 Handwriting Recognition 

Handwriting recognition is a very desirable input modality as a majority of people can 

either handwrite or print. Mapping the user's already existing knowledge and motor skills 

onto another technology is an ideal so lution as it minimises the amount of training needed 

to interact with and use the system (Connell 2000). It could be sa id that, "data entry using 

a pen forms a natural, convenient interface" (Connell 2000). In a wearable handwriting 

interaction paradigm, the paper and the pen which we normally associate with 

handwriting are replaced with a touch-screen and a stylus; no cables are needed for the 

stylus and the input source is in the same place as the output source. One advantage of 

using a stylus with a touch-screen is the ability to augment the user' s written material 

with pictures and diagrams that can be integrated into a document or formalised at a later 

date using software such as Microsoft Journal. 

Figure 2.5: User uses handwriting recognition system. 

Vest-based Xyber panel with stylus 
http://www.xybernaut.com/Solutions/accessories/accessories_display.asp 

The main two types of ' naturaP writing input are, cursive Goined handwriting) and 

printed writing. Soukorefrs Et al. study (Et al. 1995), examines handwriting input speeds 
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for paper-based systems to provide an index for what we may expect the range of input 

speeds using a computer-based handwriting recognition system. Printing-based input 

ranged from I2wpm to 23wpm (Bailey I987. Card Et al. I983); in comparison cursive 

handwriting speeds are somewhat higher, ranging from I6wpm (Devoe I967) to 30wpm 

(Wilkund and Dumas I 987) for advanced users. What are not compared in these studies, 

however, are the other factors that are associated with handwriting recognition based 

systems such as error rate, which may involve a level of auto correction, and error 

feedback, the amount of time the handwriting takes to be processed by the system, the 

interface through which the user inputs the text and most importantly the impact that 

being mobile will have upon the user in terms of input speed and error rate. As we have 

already noted, the user of any wearable system will certainly be mobile so we must 

examine the impact of mobility upon the users input performance. 

2.5.2 Symbolic/Stroke Based Stylus Input 

Symbolic/stroke based input is when a symbol refers to a letter. These include systems 

such as Unistrokes, shown in Figure 2.6 (Goldberg & Richardson I993) and Graffiti 

(Blickenstorfer I995) (for a full investigation of Graffiti refer to MacKenzie, and Zhang 

(I997)). Unistrokes, so called because it takes one stroke to scribe each letter, was a 

system developed by Xerox at its Palo Alto Research Centre (Goldberg & Richardson, 

I 993). It is a strictly alphabetical system and contains no punctuation, numbers or other 

special characters. These have to be used by dedicating your own strokes to other 

symbols Chang Et al. (I994) notes that the best form of text entry relies on transference 

of existing handwriting skills, with reference to studies by Wolf Et al. (I99I) and 

McQueen (I994), but Chang also references two other studies by Veniola (Et al. I994) 

and Goldberg (Et al. I 993), noting that stroke-based text input is problematic because the 

strokes first have to be learnt. This means the user has to learn the strokes before full 

input functionality can be achieved, but Microsoft's Jot as seen below in Figure 2.7, uses 

symbols that look the same as standard letters, in an attempt to lower learning times. It 

also allows users to use up to four different symbols for each character; it also 

incorporated the Unistrokes alphabet into its pattern recognition system. Goldberg & 
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Richardson's (I 993) original study founds an input rate of 2.8 characters per second, but 

failed to take into account errors within that rate. Another single stroke system was the 

minimal device-independent text input method, MDTIM (lsokoski 1999). Isokoski found 

a 7.5wpm average using this system, but the symbols developed by Isokoski are abstract 

and need to be learnt by the user before faster input speeds may be obtained . 

t c; - r J' 1 .J/ L ~ 
a b c d e f g b i j k I m 

n cs >o o< ' s- v u l/lo /Z 
n 0 p q r s t u V W X y z 

Figure 2.6: The Unistroke alphabet above (MacKenzie and Zhang 1997). 

0(;)~/\ b.Lt5 B c ddbD e~ l~f" 
a b c d e r 

951GB 1.-h}{ n 5jJJ f~-k 1JL 
g h i j k l 

IYlfYl 'hl\JN 60 l>.P 1't rRR 
m n 0 p q r 

$ 4~\f uu V1J w X 
B t u V W" X 

~'I Z"'3-
y z 

Figure 2.7: Microsoft Jot character recognition set (MacKenzie and Soukoreff2002). 
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A vision-based single stroke character recognition system for wearable computers 

(Faruk-Ozer Et al. 2001) was developed as an evolution of the stylus touch-pad/screen 

model. It uses a vision-based system (mounted camera) to recognize each stroke that the 

user makes. So in theory the user could be in any environment wearing this technology 

and be able to input textual information anywhere, as long as they had a stylus and the 

camera was pointed at it. The main problem with this system is that it was never 

integrated into a wearable computer and no evaluation was carried out while the user was 

mobile; this could obviously add extra movement, such as the sway of the body and its 

effect on the limbs that could affect the recognition system (Schmidt, Gellersen and Merz 

2000); however it was evaluated using three different lighting conditions to mimic the 

lighting conditions in different environments that the user may be in. The developers 

reported a recognition rate of 97% and I 0 words per minute (wpm) compared to the 30 

wpm reported in other studies on the Graffiti system (MacKenzie and Zhang 1997). 

2.5.3 Soft Keyboards 

Soft keyboards, short for software keyboards, are sometimes referred to as virtual or on

screen keyboards when they relate to a desktop keyboard layout. They are software based 

graphical representation of character layouts; the character is chosen mainly by means of 

a stylus but can be used with mice, arrow keys or fingers. The user does not have to touch 

the screen if they are using a mouse or the arrow keys, but can instead hover. These 

keyboards, do not necessarily have to conform to the layout of standard keyboards, but 

may be circular, such as the Cirrin soft keyboard (Mankoff and Abowd 1989), or 

rearranged like the Opti (MacKenzie and Zhang 1999) and Metropolis (Hunter Et al. 

2000) designs. 

The soft keyboard is very flexible as it lends itself to a variety of designs, so depending 

upon the task and users' required layout, the keyboard could be designed accordingly. 

The ability to have a flexible input interface is especially useful to users who are 

differently-abled, who may have limited hand, finger or body movement. For example, 
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the Cubon keyboard (Zhai Et al. 2000), originally designed for rehabilitation is 

specifically for users to use one finger or a head based pointer. 

V u p 

q m i t g c k z 

I j g I n r e h b y X I 
f 0 a. d 1 w 

space J 
Figure 2.8: The Cubon Keyboard (Zhai Et al. 2000). 

The soft keyboard could be highly adaptable as part of pervasive or context-aware 

wearable computing system. Depending on the environment of the user and who the user 

is, the soft keyboard interface could adapt to a user's needs accordingly. If low light 

levels are sensed the output could become brighter; if a user who is visually impaired is 

known to be using the system, the keys could instantly become larger brighter and the 

system could offer audio feedback, such as the repeating of characters and words that 

have been input. Although, this would be a function of an whole system incorporating a 

soft keyboard, rather than an actual property of the soft keyboard itself. 

Unlike wrist keyboards and chord keyboards the soft keyboard focuses the user's gaze in 

a single location, the screen, so the input and output are displayed in the same area. This 

is an advantage when learning as the novice user does not have to keep looking for 

feedback in another on-body location. The downside to this is that the 'keyboard' takes 

up valuable screen real estate, which is problematic, because devices that often use soft 

keyboards are mobile and wearable computers such as Palm Pilots, Windows CE devices 

and Xybemaut tablets have small screens with the result that the keyboard is often 

reduced to the smallest usable size. Studies have shown that larger the key size does 

equate to a higher level of words per minute and a lower task load and it also helps if 

audio is used as a feedback method (Brewster 1999), but sonically enhancing buttons can 
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have its drawbacks as some users can find this annoying (Potosnak 1988). In systems 

such as Microsoft's onscreen keyboard, visual feedback is used, but if the user is using a 

stylus to input, the feedback may also be physical; when the user touches the screen they 

are feeling the pressure that the stylus exerts upon their fingers. This tells us that there are 

two levels of feedback that may be needed in such a system: one that informs the user 

that they are doing the task, such as the audio click of a key, and one that shows that the 

task has been done, for instance the word appearing upon the screen. 

Using any kind of soft keyboard is an ocular-centric task; it relies upon the user's visual 

attention being focused in one place, both for input and output (non-audio). The user's 

attention is partially focused upon the GUI; this is the opposite of what Brewster (2003) 

coined an eyes-free system. 
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Soft Keyboard WPM -Type- Study Table 

Key WPM = Words Per Minute p = predicted rate a = actual rate 

Study Type Novice Average WPM Expert WPM 

WPM 

sears Et al. 
QWERTY 9.9 X 2 1.1 

1993 

MacKenzie Et 
QWERTY I 8.9p 1 20.2a I X 43.2p 

al. 1999 

Dvorak 

I 8.7p I 8.5a I X 38.7p 

ABC 

I 9.0p 1 10.6a I X 40.9p 

Telephone 1 9.1 p 1 8. 1a I X 43.5p 

Just type I 9.8p I 7.3a I X 44.2p 

Bohan Et al. 
QWERTY 26 

1999 

T9 19 

MacKenzie & 
OPT I I I 17a I X 1 ss.2p 144.3a 1 

Zhang 1999 

Table 2.1: Soft keyboard layouts with their input speeds. 

The table above shows different soft keyboard layouts and the times they have recorded 

and theoretically predicted for the use of soft keyboard input. Both the QWERTY (20.2a 

wpm) and ABC ( I 0.6a wpm) layouts had fast input rates for novice users. This is 
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probably because the users are very fam iliar with these layout models. In examining 

MacKenzie' s (Et al. 1999) upper and lower input limits for the QWERTY soft keyboard 

model of 8.9p wpm and 43.2p wpm, it is clear to see there is a difference between these 

and the 26 wpm input rate using the QWERTY layout recorded by Bohan (Et al. 1999). 

Interestingly, the OPTJ layout offered a lower actual input level of 17 wpm and an expert 

level of 44.2 wpm giving it an average of 30.65 wpm average (MacKenzie & Zhang 

1999). So in examining these studies, what the evidence illustrates to us is that the 

QWERTY layout is initially the fastest to use for novice users, but users can become 

much faster at inputting text using a different keyboard layout such as the OPTI. 

As soft keyboards are software based they are able to have any key assigned to a 

function, such as cut and paste or a macro function. Designs like the POBox 

(Masui 1998), designed to minimize key presses, offer an added level of functionality; if 

the key f is presses a small menu appears offering the user the nine most common words 

they use beginning with the letter f, but this does take up screen real estate which would 

be a problem on devices with smaller screens. The POBox could be used in Japanese or 

English mode. 

2.5.4 Summary 

Stylus-based systems are especially useful for users of touch screen based systems. These 

systems are software based so they also reduce cabling and a ll the user needs is a stylus, 

which is lightweight, easy to use and economical. Many of these systems currently exist 

on mobile systems such as Palm Pilots and Win CE devices; these have also been 

integrated into wearable systems such as the Xybemaut MA V (Comdex 2004) by others 

(Smailagic and Siewiorek 2002; Kumar Et al. 200 I; Reitmayr and Schmalstieg 200 I). 

Another recognized problem of using a system like this is that it focuses the user' s 

attention into one place (Brewster and Walker 2000), so this system may not be 

appropriate for tasks that require the user to look at what they are doing while they record 

data. Having the keyboard on screen or a space to input on-screen a lso takes up screen 

space, which gives less room for other operations to happen on the screen. 
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As we previously saw in the literature, the soft keyboard only allows the user to focus on 

one key at a time, which is akin to typing with one finger, so input speeds are slower than 

two/one-handed typing systems that were reported on earlier. Although have we have 

seen there is a wealth of evaluation into the stylus-based input, there were no systems that 

actually took input speeds for users while they were mobile. This is odd as most of the 

systems that we have seen are implemented in one type of mobile device or another; 

indeed some of the papers that were reviewed here claim their system was for use with 

wearable computers, but then go on to say that they have not yet used the system with a 

wearable computer. It is plain to see that what this review is bringing to light is a lack of 

research into text input devices for wearable computers, while the participant is mobile 

and wearing a computer. 

2.6 Alternative Text Input Methods 

A whole range of other input devices have been designed with the mobility of the user in 

mind. Although they do not adhere to the traditional stylus, voice, and keyboard input 

models, it is important to briefly examine these designs in their contexts of as wearable 

interfaces for alpha numerical data. A double mouse text input system was developed by 

Nakamura, Tsukamoto and N ishio (2001). This system worked by using combinations of 

two mouse trackball movements. Other suggested systems have used ' tilting' technology 

for text input. This technology uses an accelerometer to judge the direction in which the 

user is tilting the device in which they are inputting text. By tilting in different directions, 

different items can be selected. Dunlop (2004) uses this technology in a wristwatch-based 

system, while Wigdor Et al. (2003) employs the use of this technology to input text into a 

mobile phone. As Sazawal Et al. (2002) write, "Tilting has proved to be a successfu l 

mechanism to enable selection on tab-like devices, and so we decided to apply a s imilar 

approach to text entry. A tilt-based approach to writing offers an alternative to the stylus 

when screen space is small or nonexistent. Tilt-to-write also offers a one-handed method 

for text entry." Using a tilt-based system also means the users do not need any additional 

input devices, such as styli or mice and it is an easy system to initia lly understand, as it 

mimics physical actions that occur in the real world. 
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Another interesting wearable text input system was the finger-joint wearab le keypad 

(Goldstein and Chincholle 1999). This was essentially an evolution of Rosenburg's 

( 1998) chording glove. The system worked by essentially using the finger joints a as a 

keypad. Different functions could be used by pressing the nails of the hand. Although 

their research claims that training was ' negligible', no analysis was given in the research. 

This system was renamed as the joint-gesture palm-keypad (Goldstein Et al. 2000). 

A s imilar system was produced by Fukumoto Et al. ( 1994), previous to Rosenburg's 

glove based design, but this did not have to re ly upon the thumb selecting each character. 

The Finger-Ring placed a set of rings around the user's fingers of one hand and allowed 

the user to input text or commands though maki ng a finger-tip typing action . This action 

could be made against any surface, making the system portable but not hands-free. The 

finger-ring was later developed into a wireless system where a full evaluation was done 

on its input speeds and a specialized training system was deve loped (Fukumoto Et al. 

1997). 

Figures 2.9 & 2.10 Finger Ring (Fukumoto Et al. 1994). (Fukumoto Et al. 1997). 

Although an impressive input rate of 210 letters per minute (average) was reached, the 

user needed specialized training that was based around the piano keyboard layout 

(although the training is not thoroughly explained in this paper). This input rate is 

representative of lab-based trials, but different tasks may give different input rates. 
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Using a hand/glove-based input may seem like an ideal solution, but in many real life 

situations both hands are needed to complete real world tasks (Rekimoto 2001 ); 

Reikimoto, goes on to say "Many current wearable input devices look unusual , or too "hi

tech", and often prevent normal social activities, such as shaking hands. Even though it is 

functional for the purpose of demonstration, it often becomes troublesome, even for the 

user, to wear it long-term in everyday situations. In contrast, traditional wearable 

accessories, such as wristwatches, eyeglasses, j ewellery, and clothes are a vital part of 

our lifestyle and are designed for comfortable long-time use. Wearable devices should be 

as acceptable as today's accessories, or they should be a part of these things." (Rekimoto 

200 I). Instead of obtrusive physical devices, Rekimoto developed two systems: the wrist 

gesture which was built into a digital wristwatch and gesture pad, a gesture recognition 

syste m that cou ld be embedded into the users clothing. 

The Gesture Wrist (200 I) system, seen in Figure 2. 1 I is based around a wristwatch and is 

small and unobtrusive. The basic idea is that the user can learn different hand signals that 

they can use wh ile wearing a computer in any location. Rekimoto also embedded the 

recognition technology into a su it jacket. Gesture pads are placed throughout the jacket 

and the user makes the previous ly learnt gestures on top of the pads. What is not 

answered by this research is the question, "why the pads are placed where they are. how 

many gestures can the system can recognize and what are the gestures based on?" 

Although the idea of using gestures in this case is to make the user's interaction with 

wearable technology less socially obtrusive, it may prove that using gestures in public is 

not socially unobtrusive and could put off some users. So although the system may be 

small or hidden from other people that we may interact with, the method of input is 

certainly not. 
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AcceleratiOn Sensor P1ezo Actuator 

Rece1ver Electrodes Transmitter Electrode 

Figure 2.11 Gesture Wrist (Rekimoto 200 I). 

See- http://www.csl.sony.co.jp/ person/rekimoto/gwrist/ 

There has been other research that has place input systems into fabric, but these have 

merely been existing designs such as a QWERTY keyboard sewn into a s leeve and while 

novel in material usage they were not in design terms. There are also problems with 

embedding technology into clothes (Lehikoinen and Roykee 1994) as we has previously 

discussed previous ly in the thesis. 

Figure 2. 12: Embroided Keypad. (Orth, Post and Cooper 1998) 
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2.6.1 Summary 

Although interesting, the use of the specia lized custom input devices as we have 

examined here often only re late to the project that conceived them, and as such are often 

one-off projects. Real world users do not always have the access, time or knowledge to 

develop such technologies while they do have the abi lity to buy 'off the shelf systems 

such as voice input technologies, wrist keyboards and stylus-based devices. These 

specialised systems are important in the realms of research and design. Systems such as 

the gestura! systems mentioned in this chapter and Orth 's (EL al. 1998) fabric-based input 

systems may reduce unwanted cable weight and may lead to a greater level of social 

acceptance of wearable devices. Still, there needs to be more research done on currently 

existing input systems, as there has been little empirical research into the integration of 

this type of technology with wearable computers. 

2.7 Speech and Sound 

This section explores speech recognition, both in the areas of text input and as a 

command-based input. In a wearable computing system where the task analysis has 

identified a hands-free requirement, speech input/control can be an ideal solution for text 

input (Smith, Bass and Siege! 1995; Smailagic 1997; Buergy 200 I; Smailagic and 

Siewiorek 2002). lt is desirable because, besides its hands-free (Rhodes and Crabtree 

1998), eyes-free qualities (Brewster 2000), it is lightweight and therefore causes less 

physical stresses to the wearable systems user (Gemperle, Kasabach and Stivoric, 1999), 

it is fast; indeed claims have been made that some software sucb as Dragon's Naturally 

Speaking 6 offers up to 160 words per minute (2.6 words a second) (Scansoft 2002). The 

literature (lsokoski 1999) also discovered that speech recognition is over sixteen times 

faster than other input devices, when related to studies such as lsokoski ( 1999) that 

compared words per minute input, using the trackball, mouse, joystick and track-pad for 

text input. There are many off-the-shelf packages and speech engines that are available 

for development. One of the main problems with such systems is the accuracy of word or 

command recognition. This problem was identified at the Boeing Workshop on wearable 

computing 1997. 
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"The quality of recognition is a function of the size of the vocabulary, the acoustic 
characteristics of the environment and the microphone, and the quality of the recognition 
algorithms. A recognition rate of 90% still means that one word in ten is incorrectly 
recognized. Current speech systems operating in ideal circumstances have a recognition 
rate of over 95% (one error in twenty words). " (Boeing 1997) 

The recognition rate can lead to further problems and time delay/usage when the 

unrecognised words have to be corrected. If error correction is a problem, we must ask 

ourselves; "In a hands free situation how can we correct errors in voice recognition 

systems?" (Boeing I 997). Can speech recognition systems be relied upon to correct their 

own errors? 

ln systems such as IBM's Via Voice, Dragon's Naturally Speaking and Philips' Free 

Speech the mouse is used to correct mistakes, but this is not a viable solution in a hands 

free context, as the user is not able to use the mouse. Trying to correct mistakes by voice 

can be done, but can also be extremely problematic; for instance, "how would the user 

correct a mistake by voice? And what would happen if the user of the speech recognition 

system encountered a mistake while trying to solve a mistake?" This sort of scenario 

could put the user under a large amount of stress and raise the user's subjective task load 

when using the system. lt is easy to see how using a simple sentence to control a spoken 

system could end up taking far longer than the user would expect. Human speech patterns 

are intricate, complicated and are mostly based around human-to-human interaction. 

There may be a whole range of contextual, geographical and psycho-socio impacts that 

affect the way we communicate with each other. 

Although we hear speech (spoken language) as a collection of words, each separate yet 

placed together in such a way as to form a sentence, the sentence when spoken has no 

spaces between the words (known as coarticulation); it is only our knowledge of the 

language and the way that we psychologically interpret speech that enables us to hear 

each word separately. The biggest problem that computers have is deciphering these 

words as separate entities (Michie and Johnson 1985). 

Alan Chamberlain 55 



An Analysis oflnteraction in the Context of Wearable Computers 

Using natural language sentence structures can also be problematic in two other ways. 

The first is the size of the vocabulary dictionary used, although contemporary speech 

recognition systems such as Via Voice may have a vocabulary of 80,000 words, this does 

not take into account the large amount of slang and jargon terms used in everyday I ife. 

Vocabulary size, if too small, can be a hindrance, while on the other hand problems can 

occur if the vocabu lary is too large. Many words and phrases can sound the same or 

similar, yet have completely different semantic meanings, for example: ' bye' and ' buy', 

'son' and 'sun', ' hi ' and ' high' all sound the same. If the speech recognition system is 

used to control the interface, a large vocabulary may prove difficult for the user to 

remember. 

In mobile devices where small amounts of memory are used the vocabulary is even 

smaller and can be embedded within the hardware (IBM 2004). In Via Voice's latest 

embedded mobile incarnation the vocabulary size is a mere 50 words and it can run on 

Palm and Pocket PC platforms. 50 words may prove inadequate for full scale text input, 

depending upon the task, but may be adequate if used for command entry, for example: 

' open file' , ' exit', 'view' and ' save' are all commands that one might want to use for 

speech command control, as opposed to ' full ' natural language based text entry . 

A way to resolve some of the recognition problems is through training, and by 

implementing what is known as the 'scaffolding' technique (Rosson, Carroll and Bellamy 

1990). New users are given a scaled down, s imple, easy-to-learn version of a full 

application. This provides basic functionality and is quicker to learn than the full 

package. As the user progresses and gathers more experience and expertise in the 

application, another version of the interface can be used to give the user more options, 

flexibility and therefore functionality. 

These different iterations of the user interface allow the user to seamlessly graduate from 

a novice to an expert user of the package at their own pace. This 'scaffolding' technique 

could be applied to the use of speech recognition systems. First giving the user a limited 

vocabulary that allows them to get user; to the system and have limited functionality, 
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then allowing them to develop their ski ll s and adapt to using more spoken commands. 

This may prove more comfortable to the user, instead of giving the user a large cognitive 

workload, we are creating a steady learning curve with a small amount of workload at 

every step of the learning curve. The start of the process could even be as simple as 

learning to turn the system on and off, which is a very important first step to learn in 

hands-free environment and also directly relates to the user interface design guidelines 

for wearable computer speech recognition applications (Najjar Et al. 1998). It is argued 

in the literature that speech input applications are not useable in environments where 

there is a high level of background noise (Siege! and Bauer 1997)· it could be argued that 

a throat microphone (Figure 2.13) may be of more use than a conventional microphone 

when used with acceptable levels of background noise (Rhodes 1998; Randall and Muller 

2000) or a directional noise cancelling microphone (Peckham 1994), so only audio input 

originating from the direction of the users mouth may be picked up. 

Figure 2. 13 Throat Microphone. 

ee- http://www.rahq.com/throat_microphone.htm 

If the background noise levels are too high it is far better to use other input devices, such 

as wrist-keyboard (Ditlea 2000). Background noise can interfere with the recognition-rate 

of a speech-recognition system, as Yankelovich Et al. ( 1995) notes, "Background noise, 

especially words spoken by passers by, can be mistaken for the user's voice." This may 

cause problems for the users of speech recognition systems, such as input errors and a 

degree of variabil ity in terms of the recognition rate. If the users are in environments 

where there is a level of background noise that will impact upon the recognition rate of 

Alan Chamberlain 57 



An Analysis of Interaction in the Context of Wearable Computers 

their system, the system may be rendered un-useable. As we have seen, this could be 

from other speech acts from passers by, traffic, and environmental factors such as wind

noise on a microphone. 

There have been attempts to minimize the effects of background noise using a 

combination of speech recognition and visua l tracking of the lips (Bregler and 

Omohundro 1995), the use of noi se cancelling microphones (Gauvin El al. 1996) and a 

range of different filtering algorithms developed to solve the problem of background 

noise (Gales and Young 1995). Yet, in settings with high background noise levels, 

recognition still remains a problem. As Gales and Young ( 1995) state, " Increasingly, as 

they are applied in real world applications, speech recognition systems must operate in 

situations where it is not possible to control the acoustic environment. This may result in 

a serious mismatch between the training and test conditions, which often causes a 

dramatic degradation in the performance of these systems." 

If hands-free input is required it may be poss ible to combine two forms of input, or 

design a combined input system that can be used with a voice recognition system, such 

as the CMU (Carnegie Melon University) hypertext dia l (Smith 1995) which allows its 

users to jog through menus then select the required option directly by voice; although 

this involves its users learning to use two input devices as oppose to one, this was 

beneficial in the long term in contexts where noise levels fluctuated dramatically. 

Difficulties such as frustration, or the user getting ' lost' and repeating tasks can occur 

when feedback is not continuous (Shneiderman 1993). Speech recognition is not 

instantaneous; it takes a small amount of time before the text appears on the screen. This 

can sometimes leave users wondering where they are when dictating text. "You'd have to 

wait I 0 seconds after some voice commands because of processing lime, " said Bruce 

Knaack who, as manager of licensing and so lutions for IBM's Persona l Systems Group, 

oversaw the pilot tests of the Wearable PC prototypes (Ditlea 2000). In the literature it is 

also reported that off-the-peg speech recognition packages (Dragon Naturally Speaking 6 

Alan Chamberlain 58 



An Analysis oflnteraction in the Context of Wearable Computers 

2002) have got faster, but there is still a noticeable Jag while using them (Greenburg 

2002). 

A set of wearable computing speech recognition design principles (Najjar Et al. 1998) 

were produced to be used by designers/developers using speech recognition as part of a 

wearable computing system. The fifteen guidelines are categorised under the following 

three headings: General, Software and Hardware, and are expanded upon below. 

Although the guidelines provide a platform for the use of speech recognition as part of a 

wearable computing system, some important principles that have not been fully 

considered that impact upon the integration and use of speech recognition as an input 

modality for wearable computers. The following are the original guidelines plus an 

extension of the guidelines:-

·-------, 

cognition Design Principles {Najjar Et al. 1998) Wearable Computing Speech Re 

nd hands are busy or when the user is moving. Uses eech when the user's e es a 
Train the s eech recognition syste 
Iteratively evaluate and re-desi n 

m in the user's work environment. 

~ Kee small the number of words i 
Keep short each speech input. 

the speech recognition application. 
n the speech recognition vocabulary. 

nctly different from each other. Use s eech inputs that sound dist_i _ 
Provide immediate feedback for e 
Kee the user interface sim le. 

ve speech in put. 

Make error correction obvious. 
A void Modes. 

ts. 
ce. 

Don't use s eech to e9sition objec 
Use a command-based user interfa 
Allow users to quickly and easily 
Consider usin he~hones or an 

turn off and on the speech recogniser. 
ea hone for auditory feedback. 

Use fu ll du lex audio. ----
Use a hi hly directional, noise-cancelling...;.;m...;.;i...:..c.:...:ro:...;p:...:..h:...:o..:..;n...:..e.:..... ---------------l 
Consider providing a back-up input technique to speech. 

Table 2.1 : Table of Wearable Computing Speech Recognition Design Principles (Na.ijar 
Et al. 1998). 
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After examining the guidelines it was obvious that these could be developed further in 
relation to the literature. Table 2.1: (above) shows the extension of the guidelines. 

Table 2.2: Extended Audio lnput/Output Guidelines (below) 

Extended Guidelines based on Previous Literature 

Give the user a list of words they can use to instantly control the system. 
Use the users' already existing knowledge to develop the vocabulary used, e.g. back, 
forwards~ and knowledge of existing software such as Internet Explorer etc. 
Take into account the scaffolding effect 
Do not allow audio feedback to occur at the same time as audio input. Confusion occurs. 
Make all audio hardware (microphone) as lightweight as possible to avoid physical 
stresses. If long-term wear of equipment is part of the working life of the hardware it is 
important to use light weight equipment; it may also be important to make equipment 
more rugged depending on the physical stresses and strains it is placed under (Baber and 
Noyes 1996; Kalawsy 2000). 

2.7.1 Audio Application Areas 

So far we have addressed the problems and issues that are associated with the use of 

speech recognition in wearable computing systems, but we have not yet looked at the 

application areas where speech recognition as part of a wearable computing system could 

be beneficial to its user. Speech recognition is used in a huge variety of professions and 

real life situations: medical, legal, business, commercial/warehouse, universal access 

handheld devices, toys and education and automobile applications, according to 

Weinschenk and Barker (2000). 

The main area of research for speech recognition applications as part of a wearable 

computing system is often called the 'hands-free environment' (Bass Et al. 1995, Gloria 

Et al. 1998). This includes scenarios where the user is on the move, using their hands and 

eyes for tasks other than input, or needs to input two different sets of information into 

two different systems (Helander, 1993; Jones, Frankish, and Hapeshi, 1992; Peckham, 

1994; Simpson Et al. 1985). Although speech recognition, as an input modality, seems to 

be an ' obvious' way to interact with a ~mputer (Freed, 1997; Newsome, 1997; Slater 

1997) the key problem is that talking to a cb mputer is not the same as talking to a human 

being. Users have to learn speech recognition systems. 
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2. 7.2 Audio Based Wearable Computing 

We have seen that there are problems associated with speech as an input modality, but 

speech (audio) can be beneficial as an output modality too. Many tasks require the user to 

look at a keyboard or screen to input data, and as such it is difficult for users to focus all 

of their attention on the interface, because they may be engaged in other non interface 

based tasks while mobile (Brewster Et al. 2003· Brewster 2002). Using the wearable 

system may be a secondary task and as such the user will not focus their attention 

constantly on the display. lt should be noted that when users are using desktop systems, 

many of them are using them for a primary task, such as typing, using other 'office' 

based applications, developing or browsing, whether it's the intemet, databases or other 

documents. When using a wearable or mobile system the task may not involve using the 

wearable system at all. 

The nature of many wearable computing systems relies heavily on the user's visual 

channel, and as such is problematic in terms of focusing the user's attention constantly 

' on-screen' or on the ' input device'; this places users in a non eyes-free situation which 

could be problematic if the user has to constantly check the visual interface; this is 

especially true if the user is involved in a task that requires their full visual attention. As 

Rhodes ( 1998) explains, "Because audio does not distract the user in the same way as a 

screen or display interface, audio output is especially useful where the user is driving, 

involved in delicate operations, or may be visually impaired" (Rhodes 1998), but this 

may depend upon the level of background noise and the type of information that is to be 

conveyed. Within our own existence, most of us do not live in a purely v isual world. We 

rely on a combination of sound, vision , touch, smell and taste to interpret the world we 

inhabit; even hearing-impaired users can use sound waves/vibrations that add another 

dimension to their understanding of their environment. Adding the ability to use sound as 

or part of a wearable interface may give support to the visual elements of the interface 

and add "synergies and further informational dimensions" to the system (Biattner & 

Dannenberg, 1992). 
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The output may be given to the user by means of an earphone-based system or through 

speakers that may be built into the environment or hardware. The system's output may be 

music-based, a variety of sounds or speech. The type of audio output used may alter the 

levels of interaction with a wearable system. A system may be fully audio based, which 

may be designed for a visually impaired user or may just have the odd audio indicator, to 

say for example that mail has arrived or on a scroll bar; experiments have shown an 

auditory enhanced scroll bar to be quicker and have a lower error rate than conventional 

scroll bars (Brewster, Wright & Edwards, 1994). Audio output can be an excellent way of 

providing the user with feedback in respect of the state of the system. Ln our everyday life 

we use audio to speak and convey information, to alert us, and to hear the state of various 

systems from microwaves to telephones. Each intrinsic sound, whether it is speech-based 

or not, contains a level of semantic mean ing/s, which the user can learn understand and 

interpret. 

2.8.3 Audio Centric Wearable Computing 

A majority of the research has been aimed at visual and multimodal/media-based 

wearable computers, as was seen in chapter one. With in the literature there are many 

references to the ' Nomadic Radio' project (Sawney and Schmidt 1999). The Nomadic 

Radio is an audio-centric wearable computer that has no visual output metaphors. In an 

attempt to uni fy the interface the researchers brought together a wide range of audio 

based components, such as voice mail, email, diary dates, calendar, updates and 

news/media broadcasts. As we can see from the illustration below the input consisted of a 

voice recognition system, while the output could be synthetic speech, audio cues and for 

spatialised audio. 
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Figure 2. 14: Nomad I, Nomadic Radio. From (Sawhney and Schmandt 1998). 

The Nomadic Radio project attempted to take the audio input/output interface metaphor 

to a pure audio only leve l and integrated it within a wearab le computing parad igm. The 

Nomadic Rad io proj ect was discontinued in 1999 and there were no plans to put the 

system into production or develop it further. One of the benefits of using auditory 

techniques on a wearable device is that it provides hands- free access and navigation as 

well as lightweight and expressive notification (Sawhney and Schmandt 1998). Leav ing 

the user s hands free allows for a greater flexibi lity, not only in terms of the user' s ability 

to accomplish a wider range of tasks but also in allowing the user the freedom to express 

themselves in terms of their body language and to use gesture-based signals, wh ich may 

be an important factor for someone using sign language to s ign language interpreter. 

2.8.4 Summary 

Using speech recognition systems to control and input data into a wearable computing 

system seems like the ideal solution to the problem of inputting whist mobile. There are 

many problems that are associated with the use of speech recognition: low and variab le 

recognition rates, variabi lity of background audio levels impacting upon the recognit ion 

and having to learn a spoken series of commands to control a system. There are also 

issues relating to the comfort levels of users interacting with (speaking to) computers. 

However, there are benefits to using audio-based input and output, such as allowing the 
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user to be eyes-tree (Brewster Et al. 2003) and therefore not focusing their attention in 

one place and also by providing a means that allows the user to interact with their system 

in a hands-free manner. 

There are entire wearable systems, such as the Nomadic Radio (Sawney and Schmidt 

1999) that have been developed. These rely purely upon the user' s speech for input and 

have audio-only output. Both audio input and output are important areas that need to be 

considered when developing any wearable system. 

2.9 Pointer-Based Input 

One way of interacting with wearable computers is through the use of pointing devices. 

These devices may be touchpads (track-pads), off-table mice, the stylus or speech to 

select interface items. This section explores the devices and literature by relating to them 

and their use in terms of their interaction with the wearable graphical user interface 

MacKenzie, Kauppinen and Silfverberg 200 I). The interaction techniques that have been 

specified are: trajectory-based interaction (Accot and Zhai , 1997 and 1999), target 

selection (Smith, Ho, Ark and Zhai, 2000; Thomas, Grimmer, Zucco and Milanese 2002; 

Curry, Hobs and Toube 1996) and dragging and dropping (MacKenzie, Sellen and 

Buxton 1991 ; tnkpen 200 I). This is not a technology review but instead offers an insight 

into wearable pointer-based interaction. 

2.9.1 Gestura! Input 

Gesture recognition allows the user to interact with a computer by using body 

movements. These movements may be hand-based (Tsukada and Yasumura 2002; 

Bowden Et a/2004), use arm and upper body movement (Kang, Lee and Jung 2004), and 

involve head-based gesturing (Brewster, Lumsden, Bell, Hall and Tasker 2003). Unlike 

recognition systems that use the arms and hands as the source of the gestures to be 

recognised, head-based interaction is hands-free. This means that the user can use their 

hands to accomplish physical tasks and still use head-based gestures to interface with a 

computer. 
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Other benefits of using gesture recognition systems are that the user can interact with 

computer-based systems without the need for physical input devices such as mice 

joysticks and keyboards. Gestures that are already learnt, such as nodding the head to say 

yes, or shaking the head to mean no, may be also be used and may slow down the time it 

takes to learn how to use a gesture-based system. 

Systems such as Ubi-Finger (Tsukada and Yasumura 2002) a gestura! input device for 

mobile and ubiquitous environments have been developed. This system allowed the user 

to be mobile in a ubiquitous environment and control elements within that environment, 

by using gestures. At its simplest, the user could make a gesture, such as pointing to 

switch on and off electric lights. One of the drawbacks of using this system was that the 

user needed to wear a cabled device on their finger, which attached them to the 

recognition system. The Touch-Player (Pirhonen, Brewster and Holguin 2002) allowed 

the user to make gestures on a PDA in order to interact with an MP3 player. This system 

allowed the user to use ' natural ' gestures to select different functions . The user used their 

finger to make gestures on the screen of the PDA, these were: 

• Sweep across screen left side---+ right side= next track (this could be reversed for left
handed users) 

• Sweep across screen right side ---+ left side = previous track 

• Single tap = start/stop 

• Sweep from bottom ---+ top of screen = volume up 

• Sweep from top ---+ bottom of screen = volume down 

(Pirhonen, Brewster and Holguin 2002) 

Kang, Lee and Jung (2004) developed a gestura! method for playing the computer game 

Quake (see - http://www.idsoftware.com/). Their system consisted of a series of ten 

gestures that allowed the player to run, fight and move from s ide to side. ln this paper 

they outlined the problems that they had come across during the development of the 

gestura! system. Unintentional movements by the user, such as a scratch of the head, 
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were interpreted by the system as a command. Continual gestures (eo-articulation) were 

sometimes not recognised, as it was difficult for the system to see where one gesture 

finished and another started, and the user had to first learn the gestures. Their study found 

that any gesture-based system should be: fast, reliable, economically viable and easy to 

use and learn. 

2.9.2 Target Selection 

Target selection is when the user uses an input system to point at an item on the screen. 

These items may be buttons on a web page, selection boxes on an order form, folders or 

icons on a desktop or radio buttons. It is therefore important to investigate this area, 

because of the wide range of GUI-based ' targets' that can be selected. Studies have been 

carried out on touch screens (Sears and Shneiderman 1991 ), pen based systems 

(McCiintock and 1-loiem 1993), eye-based interaction (Bates 1999) and desktop systems, 

and with a variety of devices. 

Figure 2.15: The Gili AR wearable interface. A five button point and click interface. 
See- http://wearables.essex.ac.uk/sulawesi/ io/gi li.htrnl 

Point and click based interfaces do exist on wearable systems (Schmidt, Gellersen and 

Beigl 2000 Gili 1998), yet little empirical research has been carried out on the range of 

input devices that could be used in conjunction with wearable interfaces that use this type 

of interfacing strategy. 
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2.9.3 Trajectory Based Interaction 

A trajectory is the path of a moving body through space. In terms of trajectory-based 

interaction, it is the physical path that a user takes to accompl ish tasks such as; writing, 

drawing, selecting command lines (see figure 2.14) and navigating through menu 

structures (see figure 2.13), when using a graphical user interface. As Acott an Zhai 

( 1997) state, "Trajectory-based interactions, such as navigati ng through nested-menus, 

drawing curves, and moving in 30 worlds, are becoming common tasks in modern 

computer interfaces." If we examine appl ications that exist today such as browsers, word 

processing software and desktop publishing applications it is difficult to find a piece of 

software that does not use drop down menus to offer options, or scroll bars that allow the 

user to move a screen up and down. Even selecting text on a command line requires a 

user to use a degree of trajectory-based interaction to select text on that I in e. 
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Figure 2. 16: A typical trajectory based task. Steering thought the menus in Internet 
Explorer. The screenshot was taken from a ' traced-trajectory' menu route using 
Microsoft's Internet Explorer. 
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<title>This Page Intentionally Left Blank</title> 
<meta namem"blank" conten1:•";-)"> 
<meta name="keywords" content•"this page intentionally left blank, blank pages, TPILB-Projec 
<meu name-"descr1et1on" content•" Th1s P~e Intentional Left: Blank (according to the reciJII 
<meta name-"robots • comem-"i ndex follow"> 
<l ink rel-"next " href-"whythat . htm'" title-"Why this eage i ntentionally left blank 71 "> 
<l ink rel•"last " href•"c00111ents.html" title- "c00111ents '> 
<link rev•"made" href• "hnp://www.LarsKasper.com"> 

Figure 2. 17: Steering through a command line interface, to select a line of text. 
The screenshot was taken from the text editing screen of Microsoft's Front Page. 

Other wearable menu-based structures, such as pie menus (Schmidt Et al. 2000), as seen 

below in Figure 2. 18, also require the user steer to different parts of the menu, although 

these are not as prevalent as drop down and on-screen linear type menus. 

Figure 2. I 8: wGU I. (Schmidt Et al. 2000) 

Other systems that have been primarily used for this type of interaction with wearable 

computers have been the Blasko and Feiner's (2002) synaptic touch pad, which split a 

touchpad into three sections each relating to a menu and was belt worn. Similarly the 

QBIC, a Wearable Computer integrated in a Belt, designed and built by the wearable 

computing lab at Zurich (Wearable Computing Lab 2004) also use their touchpad (track

pad) system belt mounted. However, it has been found that the most appropriate place for 

users to have a touchpad attached is the upper thigh (Thomas, Grimmer, Zucco and 

Milanese 2002). 
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2.9.4 Dragging and Dropping 

This section examines direct manipulation in relation to the use of pointing devices as 

part of a wearable computing system. As we have previously seen, there are two other 

methods of using a pointing device within a WIMP based interface: target selection and 

trajectory-based interaction. 

Dragging and dropping (Dix, Finlay, Abowd and Beat 2004) is a metaphor used to 

explain the action of placing items within the structure of the graphical user interface. lt 

is most commonly associated with WIMP based systems and the movement of files, 

folders and shortcuts within this environment. This system is used within a wide variety 

of contexts word processing packages, email clients and using desktop publishing 

packages. We can see from the diagram below that the process is a direct manipulation of 

one file onto another that uses a real world metaphor. The folder (or file) is first dragged 

over to the folder with an input device and then dropped (placed) into the folder. Often, 

as the file is dragged over the folder, the folder will be highlighted, to show that the drop 

function can now be performed. The diagram below graphically represents this process. 

I) Folder A & folder B 2) Folder A is dragged over to B 

3) Folder A is dragged over to B 4) Folder A is dropped into/onto B 

5) Folder A is inside folder B 

Figure 2.19 Dragging and Dropping. 
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One novel use of the drag and drop' metaphor was developed by Rekimoto (1997, 

200 I). Called the 'Pick and Drop ' (Rekimoto 1997) system, the wearable user was able to 

select a target, in this case an image on the screen of a device, and drag it across to the 

visual display of another device. 

Figure 2.20: Pick and Drop. (Rekimoto 1997). 

Folders can be dragged from one device to another. They can be dragged from one 

mobile device and dropped to another, or from a large screen to a mobile device. 

This action was coined hyperdragging, and was used with a variety of devices from 

mobi le phones (Kohno and Rekimoto 2002) through to mobile computers and large 

screen displays (Rekimoto and Saitoh 1999). Other wearable drag and drop systems have 

included Fie ldNotes (www.xybernaut.com), a system designed for automated fie ld data 

collection and mapping, produced by the wearable computing manufacturer Xybernaut. 

This system relies heavily on manipulation by dragging and dropping data. The Graylevel 

Visual-Glove (lannizotto Et al. 2001) was a vision based hand-tracking system, which 

recognized different gestures made by the user's hand; before use the user was required 

to learn a set of hand movements that related to different tasks to be performed by the 

system, such as dragging a file into a folder. Although the system worked within a 

desktop environment its developers did not port it to a wearable platform. Other tracking 

systems have been developed (Kurata 2002) but they are not yet sophisticated enough to 

Alan Chamberlain 70 



An Analysis of Interaction in the Context of Wearable Computers 

take into account the differing light levels that can occur whilst mobile and the low power 

consumption that many wearable users often need for extended in-field use. Other 

systems (Brewster 1998) have evaluated the effects of sonically enhancing the drag and 

drop process. The experimenter found that sonic-highlighting in relation to a dragging 

and dropping task significantly lowered workload, time on task and significantly 

increased system usability. Although these results were not specifically aimed at 

wearable computer users, nevertheless providing multimodal cues to tell a user if they 

have correctly completed a task is a very powerful feedback-based interactive technique. 

This is important as it allows the user to use a visua l or audio-centric "eyes-free" system. 

2.9.5 Summary 

The literature defines pointer-based interaction as three distinct categories: target 

selection (Smith, Ho, Ark and Zhai 2000; Thomas, Grimmer, Zucco and Milanese 2002; 

Curry, Hobs and Toube 1996), trajectory-based interaction (Aeon and Zhai 1997; 1999) 

and dragging and dropping (Accot and Zhai, 1997 and 1999). As we have seen, within 

the literature there are a variety of pointer-based interaction methodologies that allow the 

user to use: touch screens (Sears and Shneiderman 199 1 ), pen based systems 

(McCiintock and Hoiem 1993), eye-based interaction (Bates 1999) and gestura! 

interaction (Brewster, Lumsden, Bell, Hall and Tasker 2003; Pirhonen, Brewster and 

Holguin 2002). Within these studies there has been research into the impact of walking 

and using gestura! menu selection (Brewster, Lumsden, Bell , HaJI and Tasker 2003) and 

gesture for interface-based manipulation (Pirhonen, Brewster and Holguin 2002). 

Importantly, both of these studies offer an insight into the effects of movement upon a 

user within a dual-task environment. Yet, w hat needs to be examined further is 

interaction with widely available ' off-the-shelf technologies, such as off-table mice and 

stylus-based interaction. 
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2. 10 Evaluation of Input Devices for Wearable Users 

Many pointing device studies (Accot and Zhai 1997; MacKenzie, Kauppinen and 

Si lfverberg 200 I; Card, English and Burr 1978) have been focused upon desktop 

interaction. These studies, although useful, have not fully explored the use of pointing 

devices for use with wearable computing systems. Indeed, Curry Et al. ( 1996) attempt to 

relate their findings to the use of wearable computers, but this research was carried out 

using a desktop system and can only be seen as a indication that more empirical work 

with ' actual' wearable computer systems is needed. A commonly used assessment 

method for comparing pointing devices is the application of Fitts' law (MacKenzie, 

Sellen and Buxton 1991; MacKenzie, Kauppinen and Si lfverberg 2001). However, 

problems occur when Fitts' law is app lied to evaluate and assess wearable pointing 

devices; while the user is mobile the ' targets' the user selects are not stationary. 

Therefore, Fitts' law cannot be related to users that are mobile, because the target sizes 

and distances involved in a Fitts' law-based evaluation need to be constant. This is 

because the display may be moving with the motion of the body, which obviously 

impacts upon the movement of the objects to be displayed. 

Other systems have been used in an attempt to assess the user whilst mobile, such as the 

PPWS (percentage preferred walking speed) of the user (Brewster, Lumsden, Bell, Hall , 

and Tasker 2003; Lumsden and Brewster 2003). This compares a user's 'normal ' walking 

speed to the speed when the user is performing a task whilst mobile. Unfortunately, the 

origins of this assessment method lie in the evaluation of visually impaired users and 

their stress levels in relation to different navigational tasks (Clark-Carter Et al. 1986) and 

there are no associated usability metrics relating to this method. Brewster's (Et al. 2003) 

results relating to frustration scale (scores)in a NASA TLX workload assessment could 

have been correlated to the PPWS to see if there is indeed a relationship between stress 

and walking speeds for non-visually impaired users, this work has not yet been done. 
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2.1 0.1 Workload 

Workload can be defined ' ... as the effort invested by the human operator into task 

performance; workload arises from the interaction between a particular task and the 

performer" (Hart and Wickens 1990). The concept of workload arises from the 

theoretical ' viewpoint' that humans have a set of limited cognitive abilities that can be 

' invested' into the performance of a variety of tasks. It relates directly to research into 

attention, processing capacity, dual-task performance, and allocation of mental resources 

(Schvaneveldt Et al. 1998). The use o f workload is especially prevalent within studies 

relating to the evaluation of mobile devices (Brewster 1999 (HCf), 1999 (CH I); Lumsden 

& Brewster 2003). This is because it allows evaluators to compare similar tasks that are 

done in a mobile and a stationary manner. ln effect, it enables the eva luators to further 

examine the effect of movement upon the user' s workload, by comparing a stationary 

user completing a task in comparison to a user dual-tasking; walking while completing 

the same task. This is important, as it can highlight trade-offs that may occur while the 

user is mobile, such as a rise in mental workload . For a discussion on the debates relating 

to the definition of workload see Braarud (200 I) and Schvaneveldt Et al. ( 1998). 

There are problems associated with the use of workload when corre lating between 

workload and objective measures of performance such as: heart-rate, error-rate and time 

on task. ' Objective measures of performance sometimes correlate strongly with 

perceived workload or effort, sometimes not. However, this dissociation cannot be taken 

as an indication of measurement problems when it comes to workload per se. 

Performance and workload measures are sensitive to different task factors." (Svensson 

Et al. 1997). For example, one impacting factor may be the location of the task. It could 

be theorised that the workload may differ for the same task in different environments 

depending on the user' s relation to that environment. Users may have to put more mental 

effort into conducting similar tasks in unfamiliar settings as opposed to familiar settings. 

This is a point that an evaluator may need to be aware of when conducting workload 

assessments that relate to the use of real world settings. The use of real world settings 

may be more variable than a lab based environment and therefore different environmental 
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factors such as noise, lots of people, traffic and lighting/weather could all impact upon a 

user's workload. 

The workload experienced by mobile users has been assessed traditionally using a 

workload assessment exercise called NASA TLX (Task Load Index). This system has 

been used to find the workload of users in many wearable computing studies (Brewster Et 

al. 2003; Tang Et al. 2003; Billinghurst Et al. 1998). This system can be paper-based or a 

computerised version is available that outputs a workload score at the end of the 

assessment. lt is a multi-dimensional assessment method that is based on the average 

score of six sub-scalar elements: Mental Demands, Physical Demands, Temporal 

Demands, Own Performance, Effort and Frustration. These combined elements make up 

the users final workload (or WWL, weighted workload) score. 

See Appendix 6 for the user instructions that come with the computerised version of 

NASA TLX. (To obtain a computerised version of NASA TLX contact, The Navy Cenler 

for Applied Research in Artificial Intelligence (NCARAI)) -

(http://www .nrl.navy .mi 1/aic/). 

2.10.2 The Dual-Task Paradigm 

Many users have the ability to multi-task. They are able to walk and talk, drive and listen 

to the radio. or text a message to a friend using a mobile phone while walking. When 

users perform two tasks simultaneously in this manner, it is known as the dual-task 

paradigm. There is often a primary task, such as changing the tracks on an MP3 player 

and a secondary task such as walking (Pirhonen, Brewster and Holguin 2002).The dual

task paradigm is especially pertinent to evaluators working within the field of mobile

HCI, as mobile users can use their systems while they are moving (mobile). This means 

they can perform a primary task, such as inputting data into a PDA for example and a 

secondary task such as navigating around obstacles (people) on a busy street (Kjeldskov 

& Skov 2003). 

Alan Chamberlain 74 



An Analysis of interaction in the Context of Wearable Computers 

As Hommel ( 1998) writes, " When people perform more than one task at a time, their 

performance often decreases more or less dramatically, even if the tasks are quite simple. 

According to an assumption of Welford (1952), this is so because the architecture of the 

human information-processing system does not allow for the transformation of more than 

one stimulus into a response at a time: somewhere on the way from sensory coding to 

muscle contraction there must be a bottleneck that renders human information processing 

a single-channel system." (Hommel 1998) 

lt is often the case that, when a user is dual-tasking there are trade-offs in relation to the 

user's ability to successfully perform both tasks. A good example of these trade-offs 

comes in the form of stud ies that have shown that drivers are not able to give their full 

attention to the task of driving, while they are having a mobile phone conversation 

(Strayer & Johnston 200 I; Strayer, Drews & Johnston 2003). Their driving is hindered by 

attempting to dual-task, when placing their attention and trying to focus in two places 

concurrently. Interestingly, other studies (Schumacher et a l 2001; Hazeltine,Teague & 

lvry 2002) have shown that with practice and when an equal emphasis is placed on each 

task, the dual-task 'costs' are minimal. 

Goodman, Brewster and Gray (2004) discuss a range of factors that can be measured to 

evaluate users while they are mobile. Besides the time taken to complete a task and the 

errors made, there are also specific measurements that relate directly to a user's 

movement. The distance a user walks, how fast they walk and the route they take are all 

valuable indicators of the impact an interface, or different input and output systems can 

have upon the user. 

Studies by Petrie Et al. ( 1998), Pirhonen, Brewster and Holguin (2002) and Brewster, 

Lumsden, Bell, Hall and Tasker (2003) have all employed the dual-task paradigm to 

evaluate users while mobile and using mobile and wearable computing technologies. This 

is because the act of being mobile places the mobile users firmly within the dual-task 

paradigm. They are attempting to do two tasks simultaneously, wh ich, as we have seen, 

leads to trade-offs when the user's attention is shared between two tasks. Using dual-task 
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theory to evaluate users is not without its flaws: "Despite its intuitive appeal , the 

commonly held assumption that there is some general limitation on dual-task 

performance has been shown to be seriously tlawed .. . Central to this has been the inabili ty 

to measure the attentional demands of tasks, without which there is no way to determine 

whether their joint demands exceed the hypothetical general limit" (Bourke 1997). 

Petrie Et al. ( 1997) evaluated a wearable navigation aid for the visually impaired. To 

evaluate this system she employed several tests that ranged from a NASA TLX workload 

assessment, through to the time taken to walk a set route and analysed the participant's 

preferred percentage walking speed (PPWS). PPWS (Ciark-Carter Et al. 1986) is an 

assessment method that takes the participant s average walking speed around a set 

distance, and uses this as a metric against which the participant's walking speed while 

doing other tasks can be correlated. In Petrie's (Et al. 1997) evaluation the visually 

impaired participants navigated using their primary navigation system (a long cane or a 

guide dog) while in the other condition the participants also used a wearable navigation 

aid to help them find their way to a set location . Interestingly, the participants preferred 

using their primary nav igation system combined with the use of the wearable navigation 

aid, this condition also had a lower workload. 

We also find these techniques taken forwards to analyse gestura! interaction by Pirhonen, 

Brewster and Holguin (2002). They found that using gestures to control the Touch

Player, when compared to the standard Media-Player (MP3 players): reduced the 

participants' subjective workload, allowed them to complete the task while walking at a 

pace closer to their PPWS and complete the experiment more quickly. By analysing the 

PPWS of the participants it can be hypothesised that there may be a relationship between 

walking speeds and usability, when the pa rticipant is engaged in a dual-task scenario. The 

more usable a system is, the nearer their pace is to their PPWS (the slower they are, the 

less usable the system). Other studies have also used walking speeds to assess the 

usability of mobile computer-based systems (Brewster, Lumsden, Bell, Hall and Tasker 

2003; Lumsden and Brewster 2003). 
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From this review of the literature there was evidence that many mobile computer users 

are involved in dual-tasking. Mobile users may be inputting text whi le walking, using 

gestures to interact with software system, or using navigation aids. What this can suggest 

is that there are trade-offs in relation to the performance of the user. It may be suggested 

therefore that a user will perform better when doing two single tasks, such as walking 

around an obstacle course and then using a gesture-based system. By doing the task 

simultaneously there may be a performance loss until, as the literature suggests, the user 

is practised at doing the tasks at the same time. This performance loss may be in the form 

of: a slowing down of the participant' s walking speed, a higher subjective workload or 

raised stress levels. 

2.1 0.3 Mobile and Stationary Interaction 

When we examine wearable computer based interaction with pointing devices, rather 

than desktop-based interaction, we have to remember that the user may be on the move, 

there may be no flat surfaces available to use with a conventional mouse, and there could 

be a high level of variable background noise that may impact upon the use of voice 

recognition systems if used (Na.ijar, Ockerman and Thompson 1998). Therefore the 

mobile user has a limited amount of devices that they can use for input. The user may 

also be in a situation where they have to dual task. The task of pointing may also be a 

sub-task supporting the user' s primary task. The user's environment and movement can 

be continually changing this research intends to investigate two different movement 

conditions, standing and walking, these may affect the user's performance when using 

input devices. 

We also need to take into account the type of display system that the user is wearing: 

many PDA' s have small screens, the system may be an output-only screen integrated into 

clothing, a touch screen that the user can also use as an input device, a head mounted 

display system or an audio-centric system such as Sawhney Et al. (2000), or the Camegie 

Mellon TIA Series (Smailagic 1997). Each of these separate output systems has qualities 

that may affect the pointing system we choose for a wearable computer user to use. For 
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example, would it be impossible to use a stylus for pointing with a HMD (Head Mounted 

Display) or an auditory feedback system? There may also be requirements placed upon 

the user that mean that a method of hands-free input and gestural-interaction are the only 

viable input methods available. One key, and often neglected issue, is the use of devices 

while mobile. Wearable computers are able to go wherever the user goes and because of 

this they can be used while the user is mobile. It may also be the case that the user is 

continually interacting with the system, or the system is monitoring them. An important 

factor in this research may be to assess the user in both stationary and mobile conditions, 

as its importance has been noted in other studies (Brewster, Lumsden, Be ll , Hall and 

Tasker 2003; Lumsden and Brewster 2003). 

Although there have been studies relating wearable computing and text-based input, as 

we have already seen earlier in the chapter, no empirical results were reported that relate 

to the user while wearing a computer. Studies relating to input with wearable computers 

have found that it is important to recognise the movement condition of the wearable user, 

whether it was walking, running or standing still, and that this movement impacts upon 

the task performed by the user. Some studies have taken into account the movement of 

the user when using mobile devices, both Brewster (2002) in relation to audio feedback 

on PDAs and importantly Petri Et al. (1998) in their examination of wearable computers 

and visually impaired users, and both have stressed the need for evaluation in real world 

envirionments. 

However, it is important to focus on the real world, in real world situations there is much 

more variablitiy that relates to the user's environment such as the weather, lighting 

conditions, background noise, the amount of other users in that environment, how 

dangerous the environment is, as well as a vast range of factors that one may find in the 

user' s natural day to day environment. Although this is certailny true, it is a lso true that 

every user' s use environment is different and therefore it must be noted that controlling a 

natural environment so that every participant will have a uniform experience is near 

impossible. So for any experimental investigation it is necessary that we take into acount 

that the user may be mobile while using their wearable ssyem. It is therefore important 

that a mobile condition be implemented, but this must initially be within a controlled 
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environment to create a uniform set of user experiences so as not to negatively affect any 

resulting data. 

2.1 0.4 Overall Conclusion 

It has been found that wearable computers share similar features but they have a 

disparate range of uses: from underwater systems, such as the WetPC, military-based 

wearable computers like the Land Warrior and generic ' off-the-shelf' systems such as 

those made by Xybernaut. Interfaces have been designed for AR, there have been audio

centric systems and even gesture-based systems, but many of these have been special 

one-off systems made in academia. Lf a user is to obtain a wearable system, they can 

either bui ld their own, such as Steve Mann's wearcam (often known as ' homebrew' 

systems), or buy a ready built system, such as the Xybernaut MA series wearable 

computers. 

What this thesis aims do is to examine some of the ' off-the-shelf' input devices for text 

input and as pointing devices for wearable computers. These devices will be chosen 

because they are easily available to a wide range of users, and therefore have more 

relevance to 'real life' usage. The wearable computer that will be used will be a 

Xybernaut MAIV, a system that is widely available and comes with a Windows based 

operating system. 

In order to carry out these evaluations, an experimental approach will be taken. This will 

encompass a range of evaluation techniques that have been used in the literature. These 

will be t ime on task, error rate and an examination of the user' s subjective workload. The 

li terature suggests that the user will use their device while mobile and stationary and 

therefore it will be imperative to build a level of mobile use into these experiments. It 

was discovered that many text input and pointer based tasks are generic tasks, and as such 

the experiments are not aimed at a particular product or application, but are based on 

previous ' generic' input-based studies. 
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Chapter 3: An Evaluation of Four Text 
Input Devices for Wearable 

Computers 
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3. 1 Introduction 

It was noted within the literature that one of the primary concerns for any wearable user 

is the choice of input system/device, as this is an integral part of interfacing with the 

wearable system for control and information input (Mann 1998; Bass Et al. 1997; Rhodes 

1998). This is a major problem when designing software for the users of wearable 

computers as there is little empirical evidence to support a designer's, developer's or 

wearer's choice of interface in regard to simple generic tasks, such as text input, a 

commonly noted task performed by many wearable computer users. 

Using existing desktop input devices is not appropriate for wearable users for several 

reasons; the desktop interaction paradigm involves a user sitting in front of a monitor and 

using a mouse and keyboard to interact with the computer, whereas the wearab le 

interaction paradigm allows the user to be mobile and a range of env ironmental factors 

affect the user's choice of modality (Schmidt Et al. 2000). The act of being mobile and 

wearing a computer places constraints upon the user that the desktop does not (Gemperle 

Et al. 1998). Desktop keyboards are 'difficult to use in particular settings and 

circumstances, such as conducting inventory on the shop floor or a geology survey in the 

wilderness .. . using a keyboard is cumbersome" (NIST 200 I). The same can be said of 

other input devices such as the mouse, if we are using a computer whi le mobi le; using a 

desktop mouse as a pointing device is not a v.iable pointing solution, since making the 

user stop and find a flat surface every time they needed to move the cursor is not 

appropriate (Rhodes 1998). Desktop devices are designed for use on flat surfaces, hence 

the term ' desktop'; they are essentiall y a range of devices that are designed for use on a 

desk. 

For a wearable user we not only have to consider the weight of the device, but also the 

size of the device; it has to be small and light enough to be worn 'on body' and possibly 

to be stored on the wearer too (Thomas Et al. 202). The user may also be required to 

input with one hand (Matias Et al. 1993), working in a hands-free (Noble Et al. 1997) or 

eyes free environment (Brewster Et al. 2003) The user may be stationary or mobile when 

they use an input device (Randell and Muller 2000), so any input devices must have a 
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high level of usability while the user is mobile. Therefore the task that the user is 

completing impacts upon the input and output modalities that are available and can 

support the user's needs. This study aims to find the best text input system for use by a 

wearable computer user. This criterion for judging this wi ll be based on input times, error 

rates and the participant's subjective workload. 

3.2 Rationale 

Thomas Et al. ( 1997) carried out some initial investigation into text input devices for 

wearable computers. The study did not require the user to wear a computer. instead the 

user interacted with a desktop system and no experimental data was recorded while the 

user was mobile and the user did not wear a computer. After reviewing the literature it 

became apparent that a different experimental methodology from Thomas Et al. (1997) 

was needed to evaluate text input devices for wearable computers. This was done for 

several reasons: evaluations with wearable computers need the user to wear a wearable 

computing system; there are put systems that have been specifically des igned or have 

been previously used with a wearable systems and the study needs to show the 

differences that mobility has upon the user. 

Some studies have taken into account the movement of the user when using mobile 

devices, both Brewster (2002) in relation to audio feedback on PDAs and Petrie Et al. 

(1998) in their examination of wearable computers and visually impaired u ers, and 

Johnson (1998) has stressed the need for evaluation in real world envirionments. 

In real world situations there is much more variablitiy that relates to the user' s 

environment, such as the weather and a whole other range of factors that one may find in 

the user's natural day-to-day environment. Although this is certainly true, it is also true 

that every user' s natural environments are different and therefore it must be noted that 

controlling a natural environment in order to give the participant a uniform experience is 

nearly impossible. So for these trials we have taken into acount that the user may be 
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mobile and wearing a computer, and implemented a movement level within the 

experimental conditions that examines the participant whilst mobile. 

The empirical research is formed around three strands of data. These related to the ti me 

taken to do the task and the amount of errors produced by the participant (any deviation 

from the text is classed as an error) and a task load rating. Unlike previous research that 

has been desktop based (Thomas Et al. 1997), we take into account two movement 

conditions: the participants were assessed while stationary and mobile (walking around 

stationary cones). This evaluation strategy relates more closely to the mobile conditions 

of a wearable computer user and therefore provides a more valid insight. lt was 

important to use a wearable computer for evaluative purposes as some studies (Faruk-

6zer Et al. 200 I; Thomas Et al. 1997) fai l to evaluate their wearable systems on 

wearable computers. After the completion of each part of the experiment the user is then 

asked to take a NASA TLX assessment. NASA TLX is a system for assessing the 

participant's subjective workload. It derives a weighted work load (WWL) from the way 

the participants rate six subscales: mental demands, physical demands, temporal 

demands, participant's performance, effort, and frustration. The use of NASA TLX as a 

task load assessment tool can be found throughout the research literature (Hart and 

Wickens 1990; Brewster and Cryer 1999). 

3.2.1 Hypotheses 

The null hypotheses are as fo llows: 

1. The input device type does not effect the time taken to complete the text input tasks. 

2. The input device type does not have an effect on the error rate of the text input tasks. 

3. The movement condition of the participant standing and walking has no effect on the 

time taken to complete the task or error rate. 

4. The input device type does not affect the subjective workload of the participant. 
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3.3 Method 

3.3.1 Apparatus 

The wearable computer used in all of the experiments was a Xybernaut MA IV. This 

computer weighed exactly 900g and measured 19 x 6.2 x 12 cm size. The Xybemaut MA 

IV had an lntel Pentium MMX 233 MHz CPU and a 128 MB of SDRAM installed. The 

size of the hard-drive was 4.308. The display unit used in the experiments was a 

Xybernaut FPD (flat-panel display) touch-screen. The screen had a diagonal display and 

weighed 520g. The operating system was Windows 2000. The touch screen was used 

instead of an augmented reality system as a previous pilot study that we had conducted 

had shown binocular rivalry (Larame and Ware 2002) to be a factor that could affect the 

user's performance, because of feelings of nausea, dizziness and watering eyes. This 

happens when a very different image is seen by each eye, as can be the case when using 

monocular displays. Instead of the user seeing one ' whole' image, their brain flicks 

between both images, continually seeing one image and then the other. This causes the 

physical side-effects previously mentioned. The apparatus listed here was used in all of 

the experiments in the thesis. 

Microsoft Notepad was used as the base text input software. The following were used in 

the trial to input text: a Xybemaut wrist worn keyboard model kbd 00400 (figure 4.1 ), the 

Windows 2000 on-screen keyboard and stylus, MyScript (for Windows 2000/NT) 

handwriting recognition system by Vision Objects, with stylus. MyScript was chosen as it 

needed very li ttle user training to recognise hand-printed (non-cursive) standard printed 

writing. MyScript is a widely used handwriting recognition system as it is the underlying 

recognition system used by the tablet pc version of Windows XP. 

The speech recognition system used was Naturally Speaking Professional six, voice 

recognition software, by Dragon Software, along with a Labtec single ear piece 

microphone-headset. The speech recognition system required the users to take part in an 

initial training exercise. The exercise was part of the speech recognition package and 
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required the participants to read sections from ' A lice in Wonderland' . Six road cones 

were placed at one metre intervals for the movement section of the experiment. This was 

found to be a satisfactory distance for the participants to walk around. Error correction 

was not used. 

Figure 3. 1: Touch screen - vest-based. Figure 3.2: Xybernaut Wrist Keyboard . 

For more information on figures 3. 1 and 3.2 see-

Figure 3. 1: http://www.xybernaut.com/Solutions/accessories/accessories_display.asp 

Figure 3.2: http://www.xybemaut.com/Solutions/accessories/accessories_additional.asp#Key 

The principles of the input system to be used were shown to the participants. Each 

participant was allowed to write a small amount of text to see if they had understood how 

to use the input system. The participants wrote Hello World, and their name. If the 

participants had any questions they were answered by the experimenter. No auto

correcting was used in any of the input systems used in th is experiment. 

3.3.2 The Text Used 

Two sets of text were used in the trials (seen in Table 3). These were used because they 

contained an equal amount of letters, a large amount of the same letters and an equal 

amount of spaces (the same keystrokes), th is allowed the experiment to be fu lly 

counterba lanced. They were designed spec ifically for this experiment to remove any 

carry-over effects. The two texts were of equal size: characters without spaces 119, 
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characters with spaces 143. It was designed to take into account the issues that have been 

outlined in other text input evaluations (MacKenzie and Soukoreff2002) such as the lack 

of numbers and punctuation. 

Text 1 

Pack my box with five dozen liquor jugs. 
9231558470. AIU ! 
He relies on everything listing round to me. 
H659 EJF. 
mirage super slime tribesman 

Text2 

Lazy dogs jump over the quick brown fox. 
1879452630. EOU ? 
Here lies one very thin silting ground tome. 
K327 NTO. 
sugar empire miles brainstem 

Table 3: The two sets of texts used in the experiment. 

The two sets of text were checked against the speech recognition dictionary of the 

software and any words that did not previously exist there were added. ldeally real world 

users in 'day-to-day' situations would be used to evaluate text entry, but there are 

obvious problems in matching what the user wanted to say with what the user actually 

says. In this experiment we used the two texts that have been designed for evaluation 

purposes. There are other phrase sets available, such as those developed by MacKenzie 

and Soukoreff {2003), but these did not take into account the use of numerical and 

punctuation-based input in written language. 

3.3.3 Design 

The experiment consisted of a 2 by 4 mixed design. The 2 independent variables (I V) 

were the movement condition and input device condition. The 2 levels of the movement 

condition fV were standing and walking. The 4 levels of text input IV types were wrist 

keyboard, on-screen keyboard, speech recognition and handwriting recognition. These 

input devices were chosen as they are readily available 'off the shelf' and therefore have 

pre-existing drivers and support available. 
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There were three dependent variables measured : the time to input the text, the errors in 

the inputted text and a task load rating. The movement condition (standing and walking) 

and the input text ( I or 2) were counterbalanced using a Latin-Square design. 

This experimental design is used in the three experiments that follow thi s one. The two 

independent variables (IV) are the movement condition and input device condition and 

the two levels of the movement condition IV are standing and walking. The walking 

section of the experiment as explained in the procedure (below) was also carried through 

to these experiments. In these experiments there are three levels of pointer input IV types. 

These are stylus, ofT-tab le mouse and a track-pad. As previously mentioned there are 

three dependent variables that are measured: the time on task, the errors made during the 

task and the task load rating. Ten participants were assigned to each input type. (This 

section will be referred to in the following experiments to avoid repetition). 

3.3.4 Procedure 

The participants then put on the vest-based wearable computing system; depending on the 

handedness ofthe participant the touch screen and the wrist keyboard could be moved to 

either the left or right had side of the participant. They were then asked to walk in a 

straight line for I 0 metres, to see if the vest was comfortable; if not, the vest could be 

adjusted to fit more comfortably. Each of the 40 participants spent a session 

training/understanding the principles of their assigned input system. The participants 

were requested to input text whilst walking and to input text whilst standing stationary, 

the order of this being done in relation to the counterbalancing. The text (text] or text2) 

was di splayed on the screen in Notepad for the participants to read. During the speech 

condition, the participants read out each word and spoke the non-lexical letter strings; 

digit strings were read out character by character; the letter strings were read out in an 

alphabetical manner. The participant was asked to walk around six stationary road cones 

placed one metre apart in a straight line while taking part in the walking part of the 

experiment, as seen in Figure 3.2. 
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Figure 3.2: An example of participants walking around obstacles used in this experiment. 
From Pirhonen, Brewster and Holguin (2002). 

There was no background noise during the experiments as this might have conflicted with 

the voice recognition software. After finishing each movement condition of the 

experiment, the participant completed a NASA task load assessment. 

3.4 Results 

A mixed factorial ANOYA was carried out upon each data set. Tukey HSD post-hoc tests 

were used to find where the actual significance differences between the devices lay (Field 

2000; Howell 2002; Gravetter and Wallnau 1985). Tukey HSD post-hoc tests were used, 

as they allow a pairwise comparison of all the treatment groups, and minimise the 

probability of a type I error occurring. This wou ld occur if the null hypothesis was 

rejected when it was true 

3.4.1 Time 

The results based on the time on task are displayed in Table 3.1. The data from this 

experiment can be found in Appendix 1. Table 3. 1 displays the average time along with 

the standard deviations. This is based on the mean, speech recognition was the fastest 

method of input in both movement conditions, while the on-screen keyboard was the 

slowest in both movement conditions. All of the results re lating to this experiment can be 

found in Appendix I. 
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Descript ive Stat istics - Time (Seconds) 

Movement Device Type Mean Standard Dev. 
Standing Speech Recognition 33.054 6 .385 

On-Screen Keyboard 230.847 67.723 
Handwriting Recognition 168.287 46.693 
Wrist Keyboard 192.341 62.628 

Walking Speech Recognition 35.039 5.992 
On-Screen Keyboard 250.410 94.519 
Handwriting Recognition 203.033 39.981 
Wrist Keyboard 224.076 52.424 

Table 3.1: Wearable text input tab le (Time- seconds). 
The table shows the participant's mean input times and standard deviations for both 
movement conditions. 

A mixed factor ANOVA was used to statistically analyse the results using SPSS. There 

was a highly significant main effect of input device type (F(3 36), = 30.938, p<O.OO I), 

suggesting that the time taken to input the text was significantly affected by the input 

device type. 

Tukey H D post-hoc tests revealed highly significant differences between speech 

recognition and the other input devices on ly. The largest difference occurred between 

speech recognition and the on-screen keyboard (p<O.OO I) with a mean difference of 

206.582 seconds. This was followed by speech recognition and the wrist-keyboard 

(p<O.OO I) with a mean difference of 174. 162 seconds and finall y between speech 

recogn ition and handwriting recognition (p<O.OOl) with a mean difference of 151.61 3 

seconds. These differences are represented in Graph 3.1 . The post-hoc tests found no 

significance differences between the on-screen keyboard, handwriting recognition and 

wrist-worn keyboard input devices. 

There was a high ly sign ificant main effect of movement (F( I ,36), = 16.320, p<O.OO I), 

with walking being 22.007 seconds s lower than standing. There was no significant 

interaction between the input device type and movement condition 
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Graph 3.1: Wearable text input graph (Time- seconds). 

o Stand 

oWalk 

This graph shows the participant's mean input times while standing and walking. They 
are shown here with standard deviation error bars. 

3.4.2 Error 

Any deviation from the initial texts was counted as an error. These were counted and 

recorded by the experimenter. A mixed factor ANOY A showed that the errors made were 

significantly affected by the input device type (F( I 36), = 8.906, p<O.O I). The mean 

errors and standard deviations can be seen in Table 3.2. 

Alan Chamberlain 90 



An Analysis of Interaction in the Context of Wearable Computers 

Descriptive Statistics -Errors 

Movement Device Type Mean Standard Dev 
Standing Speech Recognition 7.40 4.377 

On-Screen Keyboard 3.50 1.84 1 
Handwriting Recognition 2.80 1.476 
Wrist Keyboard 3.90 1.792 

Walking Speech Recognition 10.60 5.948 
On-Screen Keyboard 6.50 2.593 
Handwriting Recognition 2.80 1.033 
Wrist Keyboard 5.70 1.829 

Table 3.2: Wearable text input (Errors made on task). 
The table shows the mean amount of errors made whi le standing and walking. They are 
shown here w ith their associated standard deviations. 

Graph 3.2 gives a more intuitive representation of the mean amount of errors from each 

device while standing and walking. The errors were higher in the walking level of the 

experiment, except for handwriting recognition which interestingly had a consistent mean 

error rate of2.8 per 143 characters in both movement levels. This is examined in further 

detail in the discussion section. 

There was a highly significant main effect of movement. Overall the mean errors were 

higher for the walking level of the movement condition (F ( I ,36), = 23.11 4, p<O.O I), with 

the largest mean difference occurring between movement levels on the speech 

recognition condition, a difference of 3.2 errors per text set. There was also highly 

significant interaction between the device type and the movement condition (F (3,36), = 

8.906, p<0.05) suggesting a relationship between movement and the type of input device. 

Interestingly the handwriting recognition system had the same amount of errors in both 

movement conditions. These results are further expanded upon in the discussion section. 

Tukey HSD post-hoc tests showed highly significant differences between speech 

recogn ition and all of the other input devices; on-screen keyboard {p=O.O 13), wrist 

keyboard (p=0.008) and the largest difference occurred between speech recognition and 
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hand writing recognition at (p<O.OO I). On further examination of the post-hoc results it 

was found that there were no significant differences in the comparative tests between 

handwriting recognition, wrist keyboard and on-screen keyboard. The significance lay 

between speech recognition and the other input devices only. 
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Graph 3.2: Wearable text input (Errors made on task). 

o Stand 

c Walk 

Mean errors for each text input device while standing and walking, shown with standard 
deviation error bars 

3.4.3 Workload 

After each movement level and input type, the participant completed a software-based 

NASA TLX assessment to assess their subjective workload (NASA TLX v 1.0 - Ames 

Research). The Weighted Workload was calculated by this software package. The mean 

workload results are shown in Table 3.3 (next page). 
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Descriptive Statistics - Workload 

Movement Device Type Mean Standard Dev 
Standing Speech Recognition 30.0 9.820 

On-Screen Keyboard 27.4 12.842 
Handwriting Recognition 24.5 17.083 
Wrist Keyboard 50.0 12.337 

Walking Speech Recognition 38.8 6.972 
On-Screen Keyboard 45.7 12.667 
Handwriting Recognition 33.2 8.469 
Wrist Keyboard 50.7 13.182 

Table 3.3: Wearable text input (Mean- Workload) . 
Average WWL (Weighted Workload) score for each text input device while standing and 
walking, shown with their associated standard deviations. 

The results from these assessments can be seen graphically illustrated in Graph 3.3, these 

were analysed using a mixed factor ANOVA. lt was found that there was a significant 

main effect of device type upon the participants' subjective workload (F (3,36), = 12.846, 

p=O.OI). Tukey HSD post-hoc tests found high ly significant differences, but on ly 

between the wrist keyboard and each of the other three devices: speech recognition 

(p=0.002), on-screen keyboard (p=0.008), with the main difference occurring between 

the wrist keyboard and handwriting recognition (p<O.OO I), with the wrist-keyboard 

having a significantly higher workload. There was no significant interaction between the 

device type and movement levels. A significant main effect of movement was found 

between device type and movement F (1 ,36), =702.903, p<O.OOI). This shows that the 

movement levels had a signifi cant effect upon the input device in terms of workload. 

Graph 3.3 indicates that the largest difference relates to the on-screen keyboard, while the 

smallest difference relates to the wrist keyboard. 
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Graph 3.3: Wearable text input (Mean - Workload). 

I 

o Stand 

oWalk 

Average WWL (Weighted Workload) score for each text input device while standing and 
walking, displayed with standard deviation error bars 

A further analysis of the six subscales that make up the WWL were carried out in order to 

examine the effects of the different input devices on the six NASA TLX subscales. In 

order to do this we carried out a series of mixed factor ANOY As. There were no 

significant main effects found for performance or for frustration. The results for the four 

remaining subscales are given here. The analysis ofthe mental demands subscale found a 

highly s ignificant main effect of input device type upon mental demands (F (I ,36) = 

29.424, p=O.O I). The post-hoc tests found highly significant differences between the pair

wise comparisons as follows: on-screen keyboard and speech recognition (p=O.O I), on

screen keyboard and wrist keyboard (p=0.003), and wrist keyboard compared with 

handwriting recognition (p=0.004). This suggests that the significance here occurs mainly 

between the on-screen keyboard and other devices, but interestingly not between on

screen keyboard and handwriting recognition. This may be because they are both 'stylus' 
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based systems, but more research would have to be carried out to answer this. A highly 

significant main effect of input device on physical demands was shown by the analysis (F 

(I 36),= 14.429 p=O.OI). The post-hoc tests found highly significant differences between 

the wrist keyboard and all of the other input devices: speech recognition (p=O.OO I), on

screen keyboard (p=O.O 18), handwriting recognition (p=0.003). This difference showed 

the wrist keyboard to be the most subjectively physically demanding input device. 

Speech recognition was the least physically demanding input system. 

There was a significant main effect of device type upon temporal demands (F (I ,36), 

=8.360 p=0.006). The post-hoc tests displayed a highly significant difference between 

the wrist keyboard and other text input devices: speech recognition (p<O.OOl), on-screen 

keyboard (p<O.O L ), handwriting recognition (p<O.OO I). lt was found that the wrist 

keyboard had the highest subjective temporal demands, while speech recognition had the 

lowest, a difference of 62 on the scale. A significant main effect of device type on the 

effort rating was found (F (I ,36),=4.325 p<0.05). The only significance in the post-hoc 

tests was displayed between the wrist keyboard and handwriting recognition (p<0.05) 

with the wrist keyboard showing significantly higher effort than handwriting recognition. 

3.5 Discussion 

This evaluation has shown that out of the four input devices, speech recognition, although 

the fastest also had the highest error rate and second highest cognitive workload. This 

experiment did not allow the participants to correct any mistakes made in the text. Other 

studies (Karat, Halverson, Horn and Karat 1999) have found that when participants are 

allowed to correct their input, the keyboard was faster than speech recognition. This was 

in relation to desktop users. The study in this chapter found that without correction, 

speech was the fastest method of input, but it also had the highest amount of errors. lt 

could be hypothesised that correcting al l of the errors may make speech recognition a 

slower system to use. 
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The slowest method of text input was the on-screen keyboard, this may have been 

because, "QWERTY is a poor choice for stylus keyboarding. The polarizing positions of 

common English digraphs in QWERTY, mean that the stylus has to move back and forth 

more frequently and over greater distances than necessary. The key to a good virtual 

keyboard is exactly opposite to the idea behind QWE RTY." (Zhai, Kristensson and Smith 

2004). Yet the results have shown that the on-screen keyboard did not have the highest 

cognitive workload or the highest error rate. It may have been the case that participants 

took longer to do the task in order to get fewer errors. 

While the wrist-keyboard was not the slowest input system used, it was slower than both 

speech recognition and handwriting recognition. This may have been because of the 

small key sizes and also because the user is expected to type with one hand. As Zhai Et 

al. (2004) state, "Typing on these keyboards is difficult due to their reduced size that 

prevents ten finger touch typing." (Zhai, Kristensson and Smith 2004). Interestingly a 

participant commented on this fact after finishing the task. 

The significant results from the analysis meant that we could reject the first null 

hypothesis, as we have proved that the type of input device does have a significant effect 

upon the input time. The rejected null hypothesis was: 1. The input device type does not 

affoct the time taken to complete the text input tasks. We were also able to reject the 

second null hypothesis which was: 2. The input device type does not have an effect on the 

error rate of the text input tasks. The results had previously shown that the type of input 

device used did significantly affect the error rate. A significant interaction was also found 

between the input device and error rate. 

On further analysis we found that the error rate for the handwriting recognition condition 

was the same for both the standing and walking levels of the experiment. This had an 

average of 2.8 errors, made in both of the movement levels. This suggests that the 

different movement levels had no impact upon the error rate of this input device. This 

may be because handwriting as a form of text input is practised by many users on a daily 
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basis; therefore many users are used to using this input system in a variety of different 

settings, such as standing and walking. lt also uses the affordances of the pen 

(Kristensson 2004). Handwriting-recognition was not the fastest method of input, but 

had the lowest errors and workload. This may be because, as Lemmens Et al. (2000) 

state, "A possible explanation is that participants striving for as few errors as possible 

take more time in the dual-task situation.' (Lemmens El al. 2000). lt could also be 

hypothesized that the text was not difficult or long enough to thoroughly examine the 

effects of walking upon handwriting recognition. It might be possible to further extend 

this study by using longer tracts of text such as the phrase sets developed by MacKenzie 

and Soukoreff (2003) (these can be found at- http://www.yorku.ca/mack/PhraseSets.zip). 

The use of evaluative software and methods, such as those developed by Soukoreff and 

MacKenzie (2004) may have also aided in the collection of error based data, as this 

would have identi fled any possible corrections that the participants made. 

The results also meant that we could partially reject the third null hypothesis: 3. The 

movement condition of the participant standing and walking has no effect on the 

lime taken to complete the task or error rate. This was because the movement condition 

had a significant effect on the error rate, but the movement condition did not have a 

significant effect on the time it took to complete the task. 

lf we examine the overall workload we can reject the 41
h null hypothesis which was: 4. 

The input type does no/ affect the subjeclive task load of the participanl. There was a 

significant difference between the input devices in relation to the participants' weighted 

workload. On c loser inspection there were no significant main effects for performance or 

frustration found in relation to the input device types. So, overall there was a significant 

main effect of the input devices on workload, but at the lower subscale level, onl y four of 

the categories - mental demands, physical demands, temporal demands and effort -

showed any significance relating to the input device used. 

Although speech recognition had the highest error rate, it is one of the few plausible 

methods of hands free' input, along with body-gestura! input systems (Brewster, 
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Lumsden, Bell, Hall and Tasker 2003). In certain circumstances speech may be the only 

input modality available to a user. The nature of many wearable computing systems relies 

heavily on the user' s visual channel, and this is problematic in terms of focusing the 

user s attention constantly 'on-screen or on ' input device', thus placing users in a non 

eyes-free situation which can detract from the user's task. However, it must be noted that 

there are audio-centric wearable systems (Sawhney and Schmandt 2000). It may therefore 

be appropriate for a level of auto-correction to be implemented into the speech 

recognition, such as the auto-correct facility found in Microsoft word, or earcons 

(Biattner Et al. 1989) that alert the user of a syntactical mistake or other error in the text, 

as Rhodes ( 1998) explains: " Because audio does not distract the user in the same way as 

a screen or display interface, audio output is especially useful where the user is driving, 

involved in delicate operations, or may be visually impaired", but this may depend upon 

the level of background noise and the type of information that is to be conveyed. 

Interestingly the input system that fared best overall was the handwriting recognition 

system; it had the lowest error rate and lowest workload although it had the second fastest 

input time, and the error rate was not affected by the movement conditions. This suggests 

that the users may be able to compensate more for physical movement when they are 

inputting text in this manner. One advantage of using a stylus with a touch screen is the 

ability to augment the users' written material with pictures and diagrams that can be 

integrated into a document or formalised at a later date using software such as Microsoft 

Journal. The stylus also requires no cables; this may be an advantage as it removes the 

danger of entanglement. Being cable-free reduced the burden of an already computer

laden user, although some studies (Lumsden and Brewster 2003) have found that users 

who were carrying extra weight seemed oblivious to it. As handwriting recognition is 

mainly software-based, the interface could also be adapted to a variety of users' 

preferences. Another advantage of using a stylus is that it can also be used as a pointing 

device. 

As we noted earlier, there was no significant interaction between the device type and the 

movement conditions in relation to the time on task, yet there was s ignificant interaction 

between device type and the movement condition in relation to the errors in the text. This 
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may have been in part due to the participants slowing down while in motion in an attempt 

to avoid errors. 

This research has opened up many areas of future research that apply to our work and to 

the work of others working in this area. The next step in this research is to further 

examine the devices in relationship to their longer term use, by us ing task oriented 

evaluation, and so further evaluate their usability and appropriateness to mobile wearable 

users. The stylus used in the handwriting condition can also be used as a pointing device; 

it would be intriguing to see it compared to other pointing devices used with wearable 

computing systems, such as off-table mice. 

During the experiment it was noted that all participants moved slowly around the cones. 

This is because they were dual-tasking. Their attention was focused in two places 

simultaneously. One was the text input task, while the other was walking around the 

obstacles. It would have certajnJy been advantageous to have measured the distance as 

this would have provided another set of metrics that could have been used to evaluate the 

user' s performance (Brewster, Lumsden, Bell, Hall, and Tasker 2003; Lumsden and 

Brewster 2003). Interestingly in Karat, Halverson, Horn and Karat's ( 1999) study users 

when questioned, said "they found it harder to speak and think and easier to use a 

keyboard and think". Yet, the investigation carried out in this chapter found that the wrist 

keyboard had the highest workload. This may be due to the fact that the user's visual 

attention was being focused on the keyboard for input, the screen for output (feedback) 

and the path they needed to take to avoid the obstacles in their way. In this study we can 

hypothesise that handwriting recognition was the best overall text input device because 

users have a lot of prior knowledge of the system, as it mimics pen and paper based 

systems, the user' s attention is focused on the screen for input and output (attention may 

be focused in other places if the user is dual tasking) and it has a small cognitive 

workload. 
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3.6 Conclusion 

This set of experiments has highlighted that the text input systems used in this experiment 

have a significant effect on the user in terms of time and error rates and significantly 

affects the amount of workload that a user experiences. 

Ln relating back to the contributions of the thesis we have: presented techniques for the 

evaluation of input systems for use with wearab le computers from the li terature, 

presented a set of empirical results that can aid in the design and choice of input systems 

for use with wearable computer and provided a research platform on which other 

Wearable Computing-focused Human Interaction studies can be based. This research also 

forms a set of metrics based on input speeds and error rates through scientific empirical 

investigation that relate to the use of input systems for wearable computers, while the 

user is stationary and mobile. 

This experiment importantly found that overall handwriting recognition had significantly 

fewer errors and gave the user significantly less workload as compared to the other input 

systems. Speech recognition was the fastest input system, but also had the highest error 

rate. It may be the case that the text sets used in this experiment were too constrained to 

examine the appropriateness of speech recognition as an input system for mobi le users. In 

this experiment the background no ise was controlled (it was low level). In many 

environments there is a continually changing background noise level. There are other 

factors associated with the users' voice, such as accent, speech patterns and the effects of: 

stress, background noise levels (Lombard effect (Chi and Oh 1996)) and emotion upon 

the user. They need to be addressed equa lly. The results showed that there was a 

significant difference in terms of the users' mobility upon input errors and workload, with 

walking having a higher workload and more input errors than standing. 

We found that although speech recogn ition was the fastest method of input, it had the 

highest error rate and second largest workload . It has been noted within the li terature 

that, ' it is very hard to handwrite wh ile on the move.' (Brewster, Lumsden, Bell, Hall and 

Tasker 2003). The study in this chapter found that handwriting recognition had the lowest 
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workload and error rate and had the second fastest input time; there was no significant 

difference in relation to the mean errors made between the standing and walking levels of 

the movement condition (as discussed in the discussion). This however does not suggest 

that handwriting is easy to use while on the move, but we may hypothesise that it is not 

as hard (in terms of errors and cognitive workload) as the other three systems evaluated. 

It may simply be the case that the participants found that they could transfer their existing 

handwriting skills over to the handwriting recognition system. The wrist keyboard had 

the longest input time and the highest workload, but there was no significant difference 

between the amount of errors using the wrist keyboard or the on-screen keyboard. The 

on-screen keyboard had the third fastest input time and also showed the greatest 

difference in input errors between standing and walking. 
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Chapter 4: An Extended Evaluation of 
Three Wearable Computing Input 

Devices for Target Selection 

Alan Chamberlain 102 



An Analysis of Interaction in the Context of Wearable Computers 

4.1 Introduction 

This experiment examines the users' performance and compares the input devices used, 

in terms of their accuracy, speed and cognitive workload when used to complete a target 

selection task as part of a wearable computing system. This study leads on from the 

previous experiment in chapter five and is primarily aimed at comparing stylus, track-pad 

and ofT-table mouse. The targets selected in a real world scenario may be as diverse as 

icons, buttons, textboxes, radio buttons or drop down menus. In this experiment the track

pad replaced the speech recognition system. Jt was added to the experiment as it is a 

commonly used input device for laptop users and is easily available 'off the shel f item. 

Although there have been studies relating wearable computing and pointer based input, as 

we have already seen, few report empirical results that relate to the user while wearing a 

computer. Studies relating to input with wearable computers have found that it is 

important to recognise the movement condition of the wearable user, whether it was 

walking, running or standing still, and that this movement impacts upon the task 

performed by the user. Some studies have taken into account the movement of the user 

when us ing mobile devices, both Brewster (2002) in relation to audio feedback on PDAs 

and importantly Petri Et al. ( 1998) in their examination of wearable computers and 

visually impaired users. Both have stressed the need for evaluation in real world 

envirionments. The way in which a user interacts with a pointer based system whilst 

mobile and using a wearable computer is complex, and dependent upon a who le range of 

factors that we will further discuss. lt is important to focus design and evaluation in the 

real world, because it can help to guide and focus evaluations in relation to the user s task 

within their day-to-day environment, although this can be problematic when a uniform 

set of experiences is needed so as not to bias any experimental results. In real world 

situations there is much more variablity relating to the user's envirionment such as: the 

weather, lighting conditions, background noise (Najjar, Ockerman and Thompson, 1998), 

the number of other users in that environment and how dangerous the environment is, as 

well as a vast range of factors that one may find in the user's natural day-to-day 

environment. Every user' s envirionment is different, and therefore it must be noted that 
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attempting to control a ' natural ' environment so as to create a uniform experience is near 

impossible; this may also prove contrary to where and how the user actually uses their 

system. So, for any experimenta l investigation it is necessary that we take into account 

certain factors: firstly, all participants in an experiment must have a set of uniform 

experiences and secondly, that the user may be mobile while using their wearable system. 

It is therefore important that a mobile condition be implemented within any evaluation 

structure, but this must initially be within a controlled environment to create a uniform 

set of user experiences so as not to negatively affect any resulting data. 

4.1.1 Rationale 

The experiment compared three input methods that can be used for target selection with a 

wearable computing system. The input methods were stylus, a track-pad and an off-table 

mouse. These devices were chosen because they are commonly available to many 

wearable computer users. The experiment contained two movement conditions and used 

one target size. This first experiment used time and errors as dependent variables and a 

cognitive workload scoring system (NASA TLX). The use of NASA TLX as a task load 

assessment tool can be found throughout the research literature (Hart and Wickens 1990; 

Hart and Staveland 1988). This software also recorded any errors made by the 

participant, when the participant missed the target. 

This study was designed with three goals in mind: to compare the three input methods in 

terms of speed, errors and workload; to detect if any of the input methods or any 

experimental techniques used cou ld cause problems in future generations of experiments; 

and to examine and identify any factors affecting the use of pointing devices whilst the 

user is mobi le and wearing a computer. 

ln this experiment we excluded voice recognition. The main reason for this was its poor 

performance in a previous target selection pilot study (Appendix 5). It should be pointed 

out that long-term usage of speech recognition software may heav ily impact upon the 

performance of the input system and therefore contribute to its accuracy. Speech 
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recognition is also one of the few feasible means of input that could be used in a hands

free environment, but for this study we are comparing three devices that require the user 

to use their hand. 

4.1.2 Hypotheses 

The null hypotheses are as follows: 

hi . The input device type does not affect the time taken to complete the target select ion 

task. 

h2. The input device type does not have an effect on the error rate of the target selection 

task. 

h3. The movement condition of the participant standing and walking has no effect on the 

time taken to complete the task or on the error rate. 

h4. The input device type does not affect the subjective workload of the participant. 

h5. The movement condition does not affect the subjective workload of the participant. 

4.1.3 Participants 
30 participants took part in the study. The participants were volunteers from the staff and 

student body of Loughborough University. The participants that took part in the trials 

were na"ive to the purpose of the experiment and had no previous experience using the 

target selection devices used in the trial or of using wearable computers. The participants 

were put into groups of ten at random. This was a lso the same in the two experiments 

fo llowing this one. 

4.2 Method 

4.2.1 Apparatus 

The three input devices used are shown below. The consisted of: a stylus and touch

screen (used in Chapter 3), an off-table mouse and a track-pad. These devices will also be 

used in the pointing experiments in Chapters five and six. The wearable computing 

system used was the vest-based Xybemaut MA JV as used in Chapter three. 
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Figure 4.1: Stylus Figure 4.2: Off-Table mouse. Figure 4.3: Track-pad (Cirque) 

For more information on the pointing devices used in the experiments see-

Figure 4.2 - http://www .trust.corn/products/prod uct.aspx ?artnr= 12772 
Figure 4.3- http://www.cirque.com/products/easy.html 

4.2.2 Design 

The experiment consisted of a 2 x 3 mixed factor design: a between-subjects design on 

the input device level and within subjects on the movement level. This des ign was chosen 

to avoid carry-over effects between the two movement conditions. The two levels of the 

movement condition IV were standing and walking. The three levels of target selection IV 

types were a Xybernaut stylus, a Cirque track-pad and an off-table mouse. There were 

three dependent variables measured. These were the time to select the target and the 

amount of target misses (errors) and the subjective workload of the participant, taken in 

each movement condition. 

4.2.3 Procedure 

Each participant was asked to put on the wearable computer in the vest-based system. 

The vest was then corrected to fit the participant. Depending on the counterbalancing, the 

participant either started the experiment standing or walking. They were asked to select 

each target that appeared on the screen. The target selection was started off by selecting 

the first target and then the participant would then use the said device to select the targets. 

Upon the last selection the software would stop producing targets. Once the practical 

experiment had finished the participant completed a NASA TLX assessment. This was 

carried out in each movement level. During the walking section of the experiment, the 

participant would select targets while walking around six road cones placed at one metre 

intervals. 
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A software package was used by IBM called IDtest was used to run the target selection 

experiment. 500 targets with a diameter of I 0, 20, 30, 40 and 50 pixels (2.5mm 5mm, 

7.5mm, I Omm and 12.5mm) were used in the experiment, each participant selecting 1000 

targets in all (500 standing, 500 walking). The target sizes were chosen to combine 

experiments previously done in the literature by (Smith Et al. 2000; C urry Et al. 1996) 

and to make the experiment more difficult for the participant to complete. It was 

theorised that having different target sizes would test the performance of the input device 

in a more thorough manner. lt was found that this was an ideal number for the 

participants to select, as previous test runs had shown participants unwilling to select 

more targets. A screen size of 600 by 400 was selected to fit onto the portable Xybernaut 

screen. The position of the targets was randomly generated on the screen by the software. 

The software allowed the user to select different randomisation patterns (where the 

targets appeared on the screen): these patterns were selected by entering a numerical 

value. To minimise carry over effects caused by using the same pattern in each 

movement condition , an online number randomisation tool (http ://www.randomizer.org/) 

was used to create two numerical values. These were the numbers I 0 and 13. At the end 

of each experiment a text file was created that gave the amount of errors during the 

experiment. 

e-......., .. - 0 

• 
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Figure 4.4: Screen shots from the target acq uisition experiment. 

The participant selected targets as they came on the screen; each participant selected 500 

targets while standing/stationary and 500 while walking in a figure of eight through six 

traffic cones, spaced at one metre intervals. Overall 20,000 target selections were timed. 

The experimental data collected was used to provide the mean movement time for each 

participant, mean errors made and workload rating. This data was analysed using a mixed 

factor ANOVA based statistical method (Field 2000). The participant's cognitive 

workload was measured in each condition using NASA TLX to provide us with the 

participant's subjective workload. This was important as it gave a reliable set of 

diagnostic data that could be used to examine and compare the participants' workloads in 

relation to the use of one of the input devices. The experiments were timed using a 

stopwatch. Errors made on the task were target misses. These were recorded by the IDtest 

software. 

4.2.4 Training Task 

In order that each participant understood the principles behind the task they were to 

complete, so they were asked to first take part in a pre-evaluation task. They selected five 

targets using the stylus, track-pad or thumb mouse. This proved beneficial as it allowed 

the participant to get a fuller understanding of the task and also allowed the user to 

computer was comfortable. 
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4.3 Results 

Three sets of data were collected for each participant in the walking and standing section 

of the experiment. Three sets of data were collected in both movement conditions. This 

was done whi le the participant was walking and whi le they were standing; this allowed 

the effect of movement upon the user to be examined. The three sets of data related to the 

time taken to complete the task in seconds, the amount of errors made during the 

completion of the task and the weighted workload of the participant calculated by NASA 

TLX. If there was a significant effect of the input device upon the participants ' weighted 

workload, the results were further explored at the subscale level. The data relating to th is 

experiment can be found in Appendix 2. 

4.3.1 Results-Time 

Three groups of I 0 participants were timed, each using a different input device: group I 

used a stylus, group 2 used the off-table mouse and group 3 used a track-pad. This was 

done in order to find out which device was the quickest when used to select targets on the 

screen. Table 4. 1 shows the mean times it took for each input device group to finish the 

task, along with their associated standard deviations. 

Descriptive Statistics - Time 

Movement Device Type Mean Standard Dev 
Standing Stylus 545.246 18.72427 

Off-Table 1463.552 102.4597 
Track-pad 747.209 64.00642 
Total 918.669 406.4954 

Walking Stylus 646.698 33.36 
Off-Table 1619.732 84.254 
Track-pad 1043.744 150.0511 
Total 1103.391 417.8717 

Table 4. I : Wearable target selection. (Time- seconds) 

Mean input times with associated standard deviations for the participants while standing 
and walking. 
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There was a significant main effect of the device type upon the time taken to complete 

the target acquisition task (F(2,27) = 442.373, p<O.O I). Graph 4.1 further illustrates these 

differences. Similarly a significant main effect of movement was found (F( I ,27) = 

109.507, p<O.O I). A highly significant interaction was reported between the input device 

and movement (F(2,27) = I 0.832, p<O.O 1). 
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Graph 4.1: Wearable target selection. (Time- seconds). 

o Stand 

cWalk 

This shows the mean input times for the 3 devices, whi le both walking and standing with 
standard deviation bars. 

Tukey HSD post-hoc tests displayed a highly significant difference between the three 

different input devices. The largest difference was found between the stylus and off-table 

mouse with p<O.OOI , while the smallest difference was found between the stylus and 

track-pad as seen in Table 4.1, p<O.OO I. There was also a highly significant difference 

between the trackpad and off-table mouse p<0.001. 
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4.3.2 Results - Error 

Table 4.2 presents the means and standard deviations for each input device group while 

standing and walking. These are based on the errors made while completing the target 

acquisition task. 

Descriptive Statistics - Errors 

Movement Device Type Mean Standard Dev 
Standing Stylus 59.5 15.58668 

Off-Table 35.3 14.69732 
Track-pad 76.6 7.560129 
Total 57.13 21 .38116 

Walking Stylus 51 24.11546 
Off-Table 31 .3 12.84134 
Track-pad 80.8 8.638415 
Total 54.367 26.13689 

Table 4.2: Wearable target selection. (Errors made on task) 
Mean errors made and standard deviations for participants whil e standing and walki ng. 

There was a significant main effect of the device type upon the errors was found (F(2,27) 

= 37.03, p<O.OI). No sign ificant main effect of movement was shown (F( I ,27) = 0.686, 

p<0.5). Similarly, no significant interaction between the movement and input device type 

was displayed (F(2,27) = 1.239, p<0.5). 
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Graph 4.2: Wearable target selection. (Errors made on task). 
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oWalk 

This shows the mean errors made for the 3 devices, both whi le walking and standing with 
standard deviation bars. 

Following a Tukey HSD post-hoc test the pairwise comparison found highly significant 

differences between the stylus and off-table mouse at p<O.O I, between the stylus and 

track-pad with p<O.O I and between the off-table mouse and track-pad p<O.O I. The largest 

difference was between the trackpad and off-table mouse, while the smallest difference 

was between the off-table mouse and stylus. These differences are illustrated in Graph 

4.2 

4.3.3 Results - Workload 

The table below (Table 4.3) shows the mean workload (WWL) scores from the NASA 

TLX assessment that the participants carried out after each of the two stages of the 

experiment. As we can see from the results displayed within the table, the stylus had the 

lowest workload while used standing and walking. The off-table mouse had the highest 

workload whi le standing, while the track-pad had the highest workload when walking. 
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Descriptive Statistics - Workload 

Movement Device Type Mean Standard Dev 
Standing Stylus 24.1 8 .9 

Off-Table 47.2 6.2 
Track-pad 46.8 13.9 
Total 39.3 14.7 

Walking Stylus 33.1 11 .3 
Off-Table 49.5 9.2 
Track-pad 65.4 13.2 
Total 49.3 17.3 

Table 4.3: Wearable target selection. (Mean - Workload) 

Average workload scores and standard deviations. 

Overall there is a significant main effect of device on the weighted workload (WWL) 

with stylus having the lowest WWL (F(2 27) = 32.667, p<O.O I). A significant main effect 

of movement was also found (F( I ,27) = 13.338, p<0.05). These differences are furthe r 

represented in Graph 4.3. There was no s ignificant interaction between the device type 

and movement (F(2,27) = 3.004, p<O. I ). 
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Graph 4.3: Wearable target selection. (Mean - Workload). 
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This shows the mean workload scores for the 3 devices, while both walking and standing. 
They are shown here with their associated standard deviation error bars. 

The Tukey HSD post-hoc tests resulted in the fo llowing: a highly sign ificant difference 

between the stylus and off-table mouse p<O.O I; s imilarly a highly significant difference 

between the stylus and track-pad was shown p<O.Ol; but no significant difference 

between the off-table mouse and track-pad p<0.5. 

The results for this analysis have been tabulated into two paired table sets to more clearly 

represent the six sets of results from the NASA TLX assessment that was carried out by 

each participant (seen below). The tables show the significant main effects of device and 

movement; no interaction was found. 
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Table 4.4: Wearable target selection. (Workload Subscales 1.) 

This shows the significance of device and movement for the NASA TLX subscales 
. d . h bl N . 'ti . . fl d con tame m t eta e. o s1gm 1cant mteract10n was oun 

NASA-TLX 
Mental Demands Physical Demands Temporal Demands 

Main Effects 

Device No Signi ficance F{2,27)=29.303,p<O.O I F(2,27)=24.916,p<O.O I 

Movement F(1 ,27)=6.189, p<O.OI No significance No significance 

Table 4.4: Wearable target selection. (Workload Subscales 1.1 ) 

This table is paired w ith table 6.3 and shows the Tukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TLX 
Mental Demands Physical Demands Temporal Demands 

Post-hoc 

Stylus - Mouse No igni ficance p<O.Ol p<0.05 
Mean Diff34.75 Mean Diff 15.75 

Stylus-Track-pad No Significance p<O.OI p<O.OI 
Mean Diff34.25 Mean DiiT35.75 

Track-pad-
No Significance No Significance 

p<O.OI 
Mouse Mean Diff20.00 

They also show the resu lts from the Tukey HSD post-hoc comparisons and the mean 

differences that occurred between the pairwise comparisons. l t was found that the device 

w ith the lowest mean average in each subscale was the stylus. 
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Table 4.5: Wearable target selection. (Workload Subscales 2.) 

This shows the significance of device and movement for the NASA TLX subscales 
contained in the table. No significant interaction was found 

NASA-TLX 
Effort 

Main Effects 
Performance Frustration 

Device F(2,27)=26.756,p<O.O I F(2,27)=4.596, p<O.O l F(2,27)= 17 .116,p<O.O I 

Movement F( l ,27)= 12.322,p<O.O I No significance F( I ,27)=7.226,p<O.O I 

Table 4.6: Wearable target selection. ( Workload Subscales 2.1) 

This table is paired with table 6.5 and shows the Tukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TLX 
Effort Performance Frustration 

Post-hoc 

Stylus - Mouse 
p<O.OI No Significance 

p<O.OS 
Mean Diff22.50 Mean Diff27.25 

Stylus-Track-pad 
p<O.OI p<O.OI p<O.OI 

Mean Diff37.00 Mean Diff 15.00 Mean Diff33.75 
Track-pad- p<O.OS 

No Significance No Significance 
Mouse Mean Diff 14.50 

4.3.4 Discussion 

From Graph 4.1 , it can be seen that the stylus was the fastest input device in both 

movement conditions. The slowest input device was the off-table mouse, followed by the 

track-pad. The reason for the off-table mouse being the slowest device may be due to the 

fact that the participants using this system had two mechanisms to control. The fi rst is the 

trackball to control the movement of ' on-screen items and the second is the trigger to 

select the items. Interestingly, participants using the off-table mouse made the least 

amount of errors. This could a lso be due the des ign of this device making the act of 

selection a two-part process; the participant first has to position the 'cursor' over the 

target with the trackball and then use the target to select. We can hypothesise that this 

two-part process leads to fewer errors. The sty lus used a 'pecking' action, and the track-
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pad users dragged their finger across the pad and then tapped on the pad to select. It may 

also be the case that this made the task more difficult to perform, because the participants 

were doing three tasks: walking, controlling a cursor and using a trigger to select. Yet, the 

trackpad had a higher mean workload than the off-table mouse in the walking level of 

this experiment. It has been noted by Svennson Et al. ( 1997) that objective measures of 

performance cannot be correlated to perceived workload. Therefore, it is possible that a 

user who performs well on their task may see it as having a high workload. This is a case 

where further subjective questioning of the participants, could have given further insights 

into the properties of the three input devices. 

In the literature review it was found that trade-offs can occur when a user is attempting to 

do two tasks simultaneously (referred to as dual-tasking). lt was noted that during the 

experiment that the participants s lowed down to select the targets and manoeuvre around 

the objects, so they could select the targets at a similar rate to the standing condition. lt 

could be hypothesised that in relation to other studies (Pirhonen, Brewster and Holguin 

2002; Brewster, Lumsden, Bell, Hall, and Tasker 2003; Lumsden and Brewster 2003), 

this slowing down was a performance loss in re lation to the participant' s walking speed, 

while there was an increase in accuracy-based performance. The participants using the 

off-table mouse and stylus, both made fewer errors while walking. 

We can safely reject the first null hypothesis (hl), because we were ab le to report a 

significant time difference between the three different devices. This suggests that for 

tasks that involve a target acquisition task to be performed quickly, the stylus is the 

quickest device in this evaluation. lt may therefore be suggested that it is the most 

appropriate device to use for fast target acquisition-based tasks. 

There was a significant interaction between the movement of the participant and the input 

device, the track-pad having the largest time difference. It took longer to use walking, 

while the stylus took more time to use in the same condition and although the off-table 

mouse was the slowest device to use it showed the second-lowest time difference 

between the movement conditions, followed by the off-table mouse and stylus. This 
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interaction shows that there is not a uniform effect shared by a ll of the input devices in 

relation to the way that movement affects the input time. 

These tests were done under laboratory conditions where the participants could see and 

predict the obstacles that would be in their way. ln a real world environment, where 

professionals, such as the armed forces, explorers and telecommunications engineers, 

may be interacting with a wearable system while on the move, they can often be placed in 

situations where the terrain/obstacles is/are not as predictable as a lab based environment. 

There may also be other factors that could impact upon the test in the real world, such as 

stress levels, differing light levels and the weather. It may be assumed from the results 

that for target selection the stylus is significantly faster to use than the off-table mouse 

used in these trials. 

As previously mentioned the off-table mouse was the slowest device to use, it produces 

the fewer errors; 35 while standing and 31 while walking. The device that had the largest 

amount of errors was the track-pad, these were almost double the amount of errors made 

by the users of the off-table mouse. The errors made with the track-pad were 67 while 

standing and 80 while walking, followed by the stylus at 59 and 51 errors made on the 

task. Surprisingly both the ofT-table mouse and stylus made more errors in the standing 

section of the experiment and less in the walking part. This may have been in part to 

people trying to be extra careful in the walking parts of the experiment or it. 

The second null hypothesis (h2) can also be safely rejected as each input device' s error 

rate sign ificantly differed. The third null hypothesis (h3) can only be partially rejected, 

because although there was a significant effect of movement upon the input time of the 

device, there was no significant effect upon the errors made. 

In examining the differences between the three input devices, it can clearly be seen from 

Graph 4.3 that the input device with the lowest significant workload in both movement 

conditions was the stylus. Therefore, the fourth null hypothesis (h4) can be rejected as the 

there was a significant effect of input device upon the participants' workload. imilarly 
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there was a lso a significant main effect of movement on the participants. This means that 

we are also able to reject the fifth null hypothesis (h5), as the participants' workload 

while standing was significantly different (higher) while walking. This suggests that the 

act of being mobile can raise a wearable user's workload. Interestingly the input device 

with the highest workload while mobile was the track-pad; this may have been because it 

was worn on the participant's body, as opposed to being held by the participant. 

On a further analysis of the six NASA TLX subscales only one scale, Mental Demands, 

showed no significant effect of device. The subscales Mental Demands, Physical 

Demands and Performance showed no significant effect of movement, suggesting that 

there was no significant difference between the participants' score while stationary and 

while mobile. 

This evaluation was ab le to successfu ll y compare the three input devices and gain a va lid 

insight into the effect of mobi li ty on the wearable user, wh ile using the input device for 

target selection. There are other 'avenues' of exploration that this experimental procedure 

could also be used to investigate, such as an input device's appropriateness for selecting 

targets of different sizes while mobile. This could be used in the design of interfaces for 

mobi le devices. In this experiment the mobile environment was in the same location as 

the stationary environment. This was done in order to not bias the experiment, but it 

wou ld be en lightening to carry out the experiments in 'real world ' scenarios. 

4.4 Conclusion 

This experiment has found that, of the three input devices evaluated (off-table mouse, 

track-pad and stylus) the stylus was the most effective for target selection while both 

stationary and mobile. This experiment used three evaluation techniques based on: the 

time taken to complete the task, the errors made during that task and the subjective 

workload of the participants involved in the task. The stylus performed best in relation to 

all of these. 
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These are interesting results, because it would be expected that the user would perform 

worse (in terms of errors) while mobile, as they are placed within a dual-task scenario. lt 

may have been the case that participants slowed sufficiently to overcome the dual focus 

of attention that can cause an impaired performance on one task. It could also be the case 

that the task of target selection is so 'easy' that the act of being mobile has little effect 

upon the user. This would call for further investigation in relation to the user' s movement 

as we have previously seen in the discussion 

Evaluating wearable computers while the user is mobile is a complex and multi-facetted 

task. Although this experiment has found the stylus to be the most effective device for 

target selection it may not be appropriate when used for other pointer-based interfacing 

techniques, for example dragging and dropping and trajectory based interaction. it is 

therefore necessary to further explore the pointing devices used in this experiment in 

further experiments that test their appropriateness in regard to dragging and dropping and 

trajectory based tasks. 
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Chapter 5: An Experiment to Evaluate Three 
Wearable Computing Input Devices for 

Dragging and Dropping 
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5.1 Introduction 

At the desktop users primarily use a mouse to drag and drop. In a mobile environment it 

is difficult for the user to use a mouse because they are designed to be used on a smooth 

flat surface such as the desktop. This is not always an option that is available to the 

wearable user as they cou ld be running though a jungle, in a desert or even working at the 

top of a telegraph pole 10 metres off the ground. Wearable users need input devices that 

allow them to use their interface whi le on the move. Drag and drop interfaces have been 

designed for wearable computer users (Kaefer and Weiss 2003; Butz Et al. 1999), but 

these systems were not evaluated while the user was mobile. Th is section of the thesi s 

evaluates the three input devices used in the previous experiment and examines their 

performance for dragging and dropping. It may be the case that the use of the drag and 

drop widget is not appropriate for mobile interaction and this will be discussed in regard 

to the findings of the experiment, in the discussion section of this chapter. 

For further explanations of the drag and drop process see Brewster ( 1998) in relation to 

sonically-enhanced dragging and dropping, and Inkpen (200 1) for a comparison of drag 

and drop, and point and click interaction styles of children. 

5.1.1 Rationale 

The rationale behind this experiment is to further understand the three pointing devices 

used in chapter s ix and to further understand their appropriateness for use with a wearable 

computing system while the user is mobile. Many mobile systems have employed the 

drag and drop interaction metaphor (Rekimoto 1997; Rekimoto and Saitoh 1999; 

lannizotto Et al. 200 I; Kohno and Rekimoto 2002) yet little empirical research exists that 

has been conducted whi le the users were mobile. 

5.1.2 Hypothesis 

The null hypotheses are as follows: 

hl. The input device type does not affect the time taken to complete the dragging and 

dropping task. 
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h2. The input device type does not have an effect on the error rate of the dragging and 

dropping task. 

113. The movement condition of the participant standing and walking has no effect on the 

time taken to complete the task or error rate. 

h4. The input device type does not affect the subjective workload of the participant. 

h5. The movement condition does not affect the subjective workload of the participant. 

5.2 Method 

5.2.3 Design 

A 2 x 3 mixed factor design was used for the design of this experiment. This combined a 

between and within groups design as used in the previous experiment. The three pointing 

devices and wearable computer were the same as Chapter 4. The dependent variables 

recorded were: the time to complete the task, the errors made by the participant and the 

participant's subjective workload. Errors occurred if the participant dropped the selected 

item anywhere other than on the ' drop' target. These were recorded by the software. The 

participants were put into groups of ten. Each group was assigned one of three input 

devices: the stylus, off table mouse or track-pad. Overall thirty participants took part in 

the experimental trial. To stop carry-over effects the task used two different 

randomisation patterns. Each participant did one of the two different patterns in each 

movement condition. The three groups often participants were chosen at random through 

'blind ' selection. 
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Figure 5.1: Screen shots from the dragging and dropping experiment. 

Each participant dragged and dropped 540 items in both movement conditions. The order 

in which the participants took part in the experiments was balanced us ing a Latin square 

method. There were six different target diameter sizes of 10, 20, 30, 40, 50 and 60 pixels 

(2.5mm, 5mm, 7.5mm, IOmm, 12.5 mm and 15mm). There were three different dragging 

distances which were: I 00, 200 and 300 pixels (25mm, 50mm and 75mm). Targets were 

dragged at three different angles; at 0, 45 and 90 degrees. There were 54 different 

combinations that the participant completed. The targets appeared on the screen in a 

random fashion. The randomisation patterns could be seJected in relation to a numerical 

value, as explained in the previous chapter. To avoid carry over effects, the two numbers 

generated by the randomisation software used in Chapter 4 were used again. Screen shots 

from the experiment can be seen in Figure 5.1. 
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5.2.4 Procedure 

The participant was first asked to put on the vest containing the computer. This was 

adjusted until the vest fitted the participant. The participant was either assigned an off

table mouse, track-pad or stylus depending on the input group that they had been 

assigned to. The participant was then shown how to use their device and then carried out 

of one of the dragging and dropping tasks on a monitor. Each participant did the 

experiment while standing and walking. The order of this was done in relation to the 

counterbalancing. The participant dragged and dropped 540 targets in each condition. To 

complete the task the participant had to drag each target, and drop it onto the other 

appearing on the screen; screen shots from this task can be seen in Figure 5.1. Two 

targets appeared on the screen, a black and a red target. The aim was to drag the black 

target onto the red target. This process had three steps that can be seen in Figure 5.2. 

2 

3 

0 

Two targets appear on the screen 

The black target is then selected (it 
turns into a square). It is dragged over 
to the red target 

Dragging 

The square is then dropped onto the 
red target (it goes white). The process 
starts again wi th the targets appearing 
in a different position. 

Figure 5.2: The Drag and Drop Process. 

In the movement condition, the participant walked around six road cones in a figure of 

eight. The participant was timed and the error rate was recorded by the software used to 

Alan Chamberlain 125 



An Analysis of Interaction in the Context of Wearable Computers 

create the task. After completing each part of the experiment the participant was asked to 

complete a NASA TLX assessment exercise. 

5.3 Results 

Three sets of data were collected for each participant in both the walking and standing 

sections of the experiment. The three sets of data were collected in both movement 

conditions. This was done while the participant was walking and while they were 

standing; this allowed the effect of movement upon the user to be examined. The three 

sets of data related to the time taken to complete the task in seconds, the amount of errors 

made during the completion of the task and the weighted workload of the participant 

calculated by NASA TLX. If there was a sign ificant effect of the input device upon the 

participants' weighted workload, the resu lts were further explored at the subscale level. 

The data relating to this experiment can be found in Appendix 3. 

5.3.1 Results - Time 

The mean time and their standard deviations for this study are presented in Table 5. 1. 

Graph 5. 1 illustrates these results in a graphical manner. 

Descriptive Statistics - Time 

Movement Device Type Mean Standard Oev 
Standing Stylus 295.056 110.912 

Off-Table 340.959 53.748 
Track-pad 301 .577 54.280 
Total 312.530 77.807 

Walking Stylus 508.844 108.068 
Off-Table 720.920 209.568 
Track-pad 688.639 111 .441 
Total 639.467 173.533 

Table 5.1: Wearable dragging and dropping. (Time - seconds) 
Mean input times with their associated standard deviations, for participant while standing 
and walking. 
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There was a significant main effect of the device type upon the time taken to complete 

the task (F(2,27) = 74.23, p<0.05). There was a highly s ignificant main effect of 

movement upon the device type used to complete the task (F( I ,27) = 148.57, p<O.O I). 

There was significant interaction between device type and movement (F(2,27) = 4.45, p< 

0.05). This further expanded upon within the discussion. 

1000 

900 
-;-

800 -o 
c:: 
0 
(.) 700 Cl) 

~ 
600 

.¥ 
Ul 
1'0 500 1-
c:: 
0 400 
Cl) 

E 
300 i= 

c:: 
1'0 200 Cl) 

:5: 
100 

0 

-
-

--

- 1-

-

Stylus 

- -
1-

-- lo I~ 

I -

1 1-

-

Off-Table Mouse 

Input Devices 

.-

- ~~~ 

T 
1 

-

Trackpad 

Graph 5.1: Wearable dragging and dropping. (Time- seconds). 
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This shows the mean input times for the 3 devices, both while walking and standing with 
standard deviation bars. 

Tukey HSD post-hoc tests provided the following results, derived from the pairwise 

comparisons. There was a significant difference between the stylus and off-table mouse, 

p = 0.0 15, but there was no significance between the stylus and track-pad with p = 0.11 0, 

or between the off-table mouse and track-pad, p = l .OO. 

Alan Chamberlain 127 



An Analysis of Interaction in the Context of Wearable Computers 

5.3.2 Results - Error 

The means and standard deviations for this study are shown in Table 5.2, Graph 5.2 

shows these results. 

Descriptive Statistics - Errors 

Movement Device Type Mean Standard Dev 
Standing Stylus 76.2 17.041 

Off-Table 295.8 74.118 
Track-pad 251 .9 84.856 
Total 207.97 115.509 

Walking Stylus 96.3 18.625 
Off-Table 340.4 53.610 
Track-pad 298.9 63.320 
Total 245.2 118.358 

Table 5.2: Wearable dragging and dropping. (Errors made on task). 
Mean number of errors made, with associated standard deviations 

There was a highly significant main effect of the device type upon the errors made wh ile 

completing the task (F(2,27) = 751.33, p<O.O I). There was a significant main effect of 

movement upon the device type used to complete the task (F( I,27) = 725.79, p<O.Ol). 

There was no significant interaction between device type and movement (F(2,27) = 1.37, 

p<0.5). 
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Graph 5.2: Wearable dragging and droppi ng. (Errors made on task). 
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The graph shows the mean errors made for the 3 devices, both while walking and 
standing with standard deviation bars. 

Tukey HSD post-hoc pairwise comparisons provided the following results: there was a 

highly significant difference between the stylus and off-table mouse, p<O.O I, and 

between the stylus and track-pad , p<O.O I, but not between the track-pad and off-table 

mouse,p <0.5. 
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5.3.3 Results Workload 

The table below (Table 5.3) shows the mean average workload (WWL) scores from the 

NASA TLX assessment. Each participant carried out the assessment after each of the two 

stages of the experiment. The results displayed in Table 5.3 demonstrated that the stylus 

had the lowest workload while used standing and walking. The track-pad marginally had 

the highest workload while standing, followed by the track-pad. In mobile movement 

condition the off-table mouse had the highest workload. By examining Graph 5.3 it can 

be seen how close the results for the off-table mouse and track-pad were. 

Descriptive Statistics - Workload 

Movement Device Type Mean Standard Dev 
Standing Stylus 28.4 18.00 

Off-Table 64.5 10.39 
Track-pad 64.7 6.91 
Total 52.5 21.21 

Walking Stylus 32.4 8.19 
Off-Table 68.6 15.24 
Track-pad 67.9 16.67 
Total 56.3 21.79 

Table 5.3: Wearable dragging and dropping. (Mean- Workload) 
Average work load scores and standard deviations 

A mixed factorial ANOVA showed that the only significance that occurred was a highly 

significant main effect of device (F(2,27) = 46.878, p<O.O I. No significant results could 

be reported for movement or for any interaction that may have occurred between device 

and movement. 
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The graph shows the mean workload scores for the 3 devices, while both walking and 
standing. They are shown here with their associated standard deviation error bars. 

Tukey HSD post-hoc found that the sign ificant effect of device occurred between the 

stylus and ofT-table mouse, p<O.O I (mean difference 36.150), and also between the stylus 

and track-pad, p<O.O I (mean difference 35.900). 

After a highly significant effect of device was found when comparing the overall 

weighted workload, further analyses of the six NASA TLX subscales was carried out. 

The paired tables below show the overall main effects, the Tukey HSD post-hoc results 

and the mean differences between each input device. These were put into a tabular format 

to enable an easier understanding of the results 
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Table 5.4: Wearable dragging and dropping. (Workload Subscales 1.) 

The table shows the significance of device and movement for the NASA TLX subscales 

contained in the table. No significant interaction was found between device and 

movement. 

NASA-TLX 
Mental Demands Physical Demands Temporal Demands 

Main Effects 

Device F(2,27)=9.472,p<O.O I F(2,27)=25.432,p<O.O I F(2,27)=33.809,p<O.O l 

Movement No Significance No significance No significance 

Table 5.5: Wearable dragging and dropping. (Workload Subscales 1. 1) 

This table is paired with table 5.4 and shows the Tukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TLX 
Mental Demands Physical Demands Temporal Demands 

Post-hoc 

Stylus - Mouse 
p<O.OI p<O.Ol p<O.OI 

Mean Diff 27.5 Mean Diff 41.50 Mean Diff 36.50 

Stylus -Track-pad 
p<O.Ol p<O.Ol p<O.O l 

Mean Diff23.5 Mean Diff 31.50 Mean Diff39.50 
Track-pad-

No Signi'ficance No Significance 
No Significance 

Mouse 

The tables also show the results from the Tukey HSD post-hoc comparisons and the mean 

differences that occurred between the pa irwise comparisons. It was fo und that the device 

with the lowest mean average in each subscale was the stylus. Every subscale analysis 

showed a main effect of device. Only the subscales of frustration and effort displayed a 

main effect of movement. No significant interaction between device and movement can 

be reported. 
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Table 5.6: Wearable dragging and dropping. (Workload Subscales 2.) 

This table shows the significance of device and movement for the NASA TLX subscales 
contained in the table. No significant interaction was found between device and 
movement. 

NASA-TLX 
Effort 

Main Effects 
Performance Frustration 

Device F(2,27)=37.245,p<0.01 F(2,27)= 18.303, p<O.O I F(2,27)=31.738,p<O.Ol 

Movement F(l ,27)=0.41 ,p<0.05 No significance F( I ,27)=5. 360,p<0.05 

Table 5.7: Wearable dragging and dropping. (WorkJoad Subscales 2.1) 

This table is paired with tab le 5.6 and shows the Tukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TLX 
Effort Performance Frustration 

Post-hoc 

Stylus - Mouse 
p<O.Ol p<O.Ol p<O.Ol 

Mean Diff38.75 Mean Diff 34.250 Mean Diff29.450 

Stylus -Track-pad 
p<O.OI p<O.O I p<O.OI 

Mean Diff35.00 Mean Diff 34.500 Mean Diff 32.0 
Track-pad -

No Significance No Significance No Significance 
Mouse 

The post-hoc analyses found only significant differences between the stylus and other 

devices. Overall the largest difference occurred between the off-table mouse and stylus. 

No significant results could be reported for the off-table- track-pad comparison. 

5.3.4 Discussion 

ln examining the resu lts it is clear that there was a significant difference between the 

devices relating to the input time, and therefore we can reject the first nu 11 hypothesis 

(hl). The fastest input device while the participants were standing was the stylus at 295 

seconds, followed by the track-pad at 30 I seconds, with the off-table mouse being the 
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slowest input device, resulting in an input time of 340 seconds. From this we can say that 

the stylus was the fastest device to use for a dragging and dropping type task while 

stationary, although the stylus (while standing) had the largest standard deviation at 110 

seconds (this was due to one participant taking 594 seconds to complete the task, nearly 

twice the mean time on task), as compared to the off-table mouse at 53 seconds and the 

track-pad at 54 seconds. This suggested that there was a larger fluctuation of input times 

for the stylus while standing and the off-table mouse while walking, when compared to 

the other devices. When examining the input times while the participant is walking we 

can see from Graph 5.1 that the stylus remained the fastest input device, with an input 

speed of 508 seconds, followed by track-pad at 688 seconds and the off-table mouse 720 

seconds. These initial findings showed that the stylus was the fastest in both movement 

conditions, with only a 213 second difference, as opposed to the track pad at 387 and the 

off-table mouse at 380 seconds. So, although the off-table mouse was the s lowest device 

overall, it had the second-smallest difference between the movement conditions. 

The stylus was the fastest device to use. This may have been because people found this 

device easy to use and did not continually have to focus on the task, whereas the off-tab le 

mouse and track-pad have a level of nove lty (newness); for most users it may have been 

the first time they had used such devices. Many of the participants will understand the 

concepts behind using the stylus almost immediately, as it relates to other systems in the 

world, such as a pen/pencil and paper. Participants us ing the other two systems may have 

found the input systems harder to use as they were not used to them. In examining the 

workload, it is apparent that both the off-table mouse and trackpad had higher workloads 

than the stylus. 

A sign ificant interaction between the input device and movement was reported. This 

suggests that the stylus users were able to complete the task much faster than the other 

device users. In examining Graph 5.1, we can clearly see that the stylus had the lowest 

input time difference between standing and wallcing, followed by the track pad and off

table mouse. This suggests some level of device-dependent effect on the time to complete 

Alan Chamberlain 134 



An Analysis of Interaction in the Context of Wearable Computers 

the task in response to the movement conditions. If the results had been similar there 

would have been no significant interaction. 

The device which had the least amount of errors in both conditions was the stylus, 

fo llowed by the track-pad and off-table mouse, as seen in Table 5.2. The stylus had the 

smallest difference in errors between the two movement conditions; a difference of only 

20 errors. The off-table mouse had an error difference of 45, whi le the track-pad had the 

highest difference with 47 errors. This suggests that while either stationary or mobile the 

stylus is the best input device to use, both in terms of time, as discussed earlier, and errors 

made, as discussed here. The results reported a significant difference between the 

devices, and therefore we can reject the second null hypothesi s (h2). On further analysis 

of the post-hoc resu lts it can be seen that a significant result was only found between the 

stylus and track-pad, and the stylus and off-table mouse, with the largest difference 

overall occurring between the stylus and off-table mouse. Interestingly, in this study there 

were more errors made while the participant was walking. In the previous experiment the 

participants made fewer errors whi le walking. This suggests that the pointing devices 

may be harder to use for dragging and dropping while mobile. It would normally be 

expected that the task would be harder to accomplish, as the participant would be dual

tasking (as described in section 2.1 0.2). There would normally be an 'impairment' of 

performance; this cou ld be in terms of: time, errors and/or workload. 

The off-table mouse had the highest error rate and was also the slowest device to use. 

This may be explained by the fo llowing quote relating to the use of a trackball from 

another dragging and dropping based experiment (MacKenzie Et al. 1991 ), "The 

interaction between muscle and limb groups was considerable. This was not the case with 

the mouse or tablet". This is interesting, because, a lthough called an off-table mouse this 

input device is effectively a small trackball which can be used while away from the 

desktop, which may be why it is so slow to use and makes the most errors. 
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The third null hypothesis (h3) can also be rejected as it was found that there was a 

sign ificant effect on both input time and the errors made whi le doing the task. The overall 

differences were a mean rise of 38 errors in the walking condition, and a rise of 326.93 

seconds. The timed results when related to the error-based results seem to suggest a 

proportional link between the time taken to complete the task and the errors made while 

completing the task. This may be explained by the fact that each time an error is made it 

has to be corrected by the users, and therefore it took extra time to complete the task. 

The device with the lowest workload in both conditions was the stylus. It had a 

s ign ificantly lower workload than both the off-table mouse and the track-pad. The null 

hypothesis (h4) can therefore be rejected. No significant main effect of movement was 

reported so we are not able to reject the fifth null hypothesis (h5). This suggests that for a 

generic target selection task in this case there is very little difference on the participants' 

workload in relation to them standing still or walking while doing the task. If we examine 

the overall workload, the o·ff-table mouse and track-pad barely differ: 0.2 whi le standing 

and 0.7 wh ile walking. From these results we can surmise that the participants did not 

find the track-pad any more difficult to use than the mouse, and vice versa. The 

difference occurs between the types of device used and is not dependent on the way they 

were moving when they completed the task. It must however be noted that some 

participants did seem to walk slower than 'average' when completing the mobile part of 

the experiment. The experiment could have used a treadmi ll instead, but this was 

considered dangerous; if a participant slowed too much they could easily fa ll. Using a 

treadmi 11 could have allowed the recording of the distance the participant walked and 

how far they walked, while using their input device. This could have then been correlated 

against their mean walking speed (when not using the input device) to see which device 

most affected the user's performance, in terms of their walking pace. There additionally 

could have been a way of measuring the participants' walking speed to examine how 

much s lower they went when inputting. It might have been more revealing if the heart 

rate had been monitored to investigate stress levels. Like the other experiments this could 

be extended to focus on the most appropriate input device for certain target s izes to be 

dropped. It could also be further extended to accommodate real world settings and 
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eventually task based scenarios. 

5.4 Conclusion 

This experiment found that the most appropriate device for dragging and dropping from 

the three evaluated was the stylus. This was in terms of the assessment criteria; these 

were the time on task, errors made while completing the task and the weighted workload 

of the participant. The stylus was significantly faster while stationary and moving, had 

significantly fewer errors while stationary and moving, and also had the lowest workload. 

One revealing finding of this study was the lack of a significant main effect of movement 

relating to the participants' workloads. This suggests that the act of being mobile for this 

task under these experimental conditions did not affect the users' workload. The worst 

device of the three was the off-table mouse, closely followed by the track-pad. 

This study found that the performance ofthe participants was worse in the walking levels 

of the experiment. This contradicts the findings of the previous experiment, where the 

participants using the off-table mouse and stylus made fewer errors on the walking level. 

Thi s may suggest that dragging and dropping as an interaction style is harder than target 

selecting, when the participant is mobile (walking). This itself brings into doubt whether 

the dragging and dropping is an appropriate sty le of interaction for mobile users. It can be 

hypothesised that the reduction in performance while walking was caused by the 

participants havi ng to dual-task (Pirhonen, Brewster and Holguin 2002; Brewster, 

Lumsden, Bell, Hall, and Tasker 2003; Lumsden and Brewster 2003). There may also be 

a relation between the participants having to move objects on the screen as well as having 

to move themselves, because they are doing tasks that require similar types of attention 

simultaneously (this could be akin to patting one's head and rubbing one's tummy). This 

could relate to work carried out that found dual-task scenarios requiring the user to use 

the same modality for both tasks (such as speaking and listening simultaneously) are very 

difficult for the user to divide their attention between (see Allport, Antonis and Reynolds 

1972). This often causes a loss in performance. 
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In this experiment participants walked around cones placed in their path, and as the 

results suggest, their performance while mobile was significantly worse than while 

stationary. One area that would be interesting to evaluate is the speed at which the 

participants move, walking and running. It could be hypothesised from the results of this 

experiment that a user running and trying to drag and drop may perform even worse than 

one who is walking. 

This experiment could be further expanded in several ways. Firstly, it would be 

interesting to assess the users in different environments to see if that had an impact upon 

the users' workload. Although this study has evaluated the devices in terms of a generic 

pointer based task as specified by Mackenzie Et al. (1992), a next step forward would be 

to implement the knowledge gained into an interface for mobile users. This interface 

experiment could be an adaptive interface for wearable users that adapted e lements such 

as: buttons, radio buttons and menu structures to relate to the movement conditi.ons and 

environment. This experiment could easily be adapted to evaluate the effect of sonically 

enhanced drag and drop on mobile wearable users. After completing the experiment it 

was realised that important information about the walking level of the experiment (in 

regard to dual-tasking and the participant's performance) could have been gained if the 

participants walking speed and distance had been recorded as previously discussed. 
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Chapter 6: An Experiment to Evaluate 
Three Wearable Computing Input Devices 

for Trajectory-Based Interaction 
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6.1 Introduction 

In this experiment, 27 different combinations of ' tunnels' were used for the participant to 

steer through as we found that this made the task more complicated. The original 

experiment used two tunnel amplitudes (A= 250, and I 000 pixels) and three path widths 

(W= 35, 45, and 70 pixels) see Figure 6. 1. Another factor was introduced into the 

experiment: the angle at which the tunnels were presented to the participants. Tunnels 

were presented to the participant at three angles, these were: slanting at 45 degrees, 

horizontally at 0 degrees and vertically at 90 degrees. This was done in an attempt to 

mimic the way that a user carries out trajectory-based tasks such as navigating through 

nested menu structures. The 45 degree tunnel s were used to represent the task of steering 

through pie menus. This was done to relate to ex isting wearable computer interfaces 

(Brewster Et al. 2003; Butz Et al. 1999; Lumsden Et al. 2003). The tunnel amplitudes 

(lengths) and widths (heights) also had to be altered. This was done to accommodate the 

use of a smaller screen, and is further discussed in the methodology section below. 

Width fYV) 1 r £ _.--

Amplitude (A) 

Figure 6. 1, Width and amp I itude of the tunnels. 

6.1.1 Rationale 

In Chapter 5 we found that the stylus was the most effective pointing device for target 

selection and in Chapter 4 it was found to be the best device for wearable users to use for 

dragging and dropping tasks. These experiments proved that the stylus was a better 

pointing device for selecting on-screen targets and for dragging and dropping tasks than 

the off-tab le mouse and track-pad . Pointing devices are not only used for target 

acquisition, but can also be used for dragging and dropping and trajectory-based 

interactions. As Acott ( 1997) States "Trajectory-based interactions, such as navigating 

through nested-menus, drawing curves, and moving in 30 worlds, are becoming common 

tasks in modern computer interfaces." This is further expanded upon in Section 2.7.2. As 
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many wearable interfaces require the user to interact with trajectory based interfaces 

(Schmidt Et al. 2000, Blasko and Fiener 2002), it is important to evaluate the pointing 

devices used so far in regard to this. 

6.1.2 Hypotheses 

The null hypotheses are as fol lows: 

hi. The input device type does not affect the time taken to complete the steering task. 

h2. The input device type does not have an effect on the error rate of the steering task. 

h3. The movement condition of the participant standing and walking has no effect on the 

time taken to complete the task or error rate. 

h4. The input device type does not affect the subjective workload of the participant. 

h5. The movement condition does not affect the subjective workload of the participant. 

6.2 Method 

6.2.1 Design 

This experiment used the same design and apparatus as used in the previous two chapters. 

A 2 x 3 mixed factor design was used for the des ign of this experiment. This combined a 

between and within groups design. To stop carry-over effects the steering tasks used two 

different randomisation patterns (as used in Chapters four and five). 

Each of the thirty participants steered through 540 tunnels in both movement conditions. 

The order in which the participants took part in the experiments was balanced us ing a 

Latin square method. The length, ampli tude and angle of the tunnel s were as follows: the 

lengths were 64, 128 and 256 (16mm 32mm and 64mm), the amplitudes were 12,24 and 

36 (3mm, 6mm and 9mm). The angles at which the tunnels were displayed were 0 45 

and 90 degrees. There were 27 different tunnel combinations that the participant 

completed. An example of what each participant saw is shown below in Figure 6. 1. 
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6.2.2 Procedure 

The participant was first asked to put on the vest containing the computer. This was 

adjusted until the participant felt comfortable. T he participant was either assigned an off

table mouse or stylus, depending on the input group that they had been assigned to. The 

participant was then shown how to use their device, on an example of one of the steering 

tasks on a monitor. This was done a minimal amount of times to reduce carry-over 

efTects. Each participant did the experiment while standing and walking. The order of this 

was done in relation to the counterbalancing. The participant steered though 540 tunnels 

in each condition. To complete each tunnel, the participant positioned the cursor in the 

green start box and had to steer through the tunne l until the cursor appeared in the red 

finish box; an example of the tunnels can be seen in Figure 6.1. In the movement 

condition, the participant walked around six road cones in a figure of eight. The 

participant was timed using a stopwatch and the error rate was recorded by the software 

used to create the steering test. Errors were steering outside of the 'tunnel ' or stopping the 

task (lifting the stylus off the screen, the participant lifting their finger off the trackpad or 

releasing the trigger of the mouse). After completing each part of the experiment the 

participant was asked to complete a NASA TLX assessment exercise. 
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[E _[_] 

Figure 6.1: Wearable trajectory-based input (Experiment Screenshots). 

Screen shots from the experiment, participants started at the green end of the tunnel and 
had to navigate their way through to the red end of the tunnel. The tunnels are at 0, 45, 90 
degrees. 

6.3 Results 

Three sets of data were collected for each participant in the walking and standing sections 

of the experiment. Three sets of data were collected in both movement conditions. This 

was done while the participant was walking and while they were standing; this a llowed 

the effect of movement upon the user to be examined. The three sets of data related to 

the time taken to complete the task in seconds, the amount of errors made during the 

completion of the task and the weighted work load of the participant calculated by NASA 

TLX. If there was a significant effect of the input device upon the participants weighted 

workload the results were further explored at the subscale level. A mixed factorial 

ANOYA was carried out upon each data set. Full results can be found in Appendix 4. 

6.3.1 Results - Time 

The means and standard deviations for this study are displayed in Table 8.1, Graph 8.1. 

illustrates the results. 
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Descriptive Statistics - Time 

Movement Device TyRe Mean Standard Dev 
Standing Stylus 316.033 81 .56315 

Off-Table 867.336 328.5203 
Track-pad 523.344 284.5992 
Total 568.9043 337.8933 

Walking Stylus 571 .541 119.9539 
Off-Table 1836.563 349.6757 
Track-pad 1165.986 125.9976 
Total 1191 .363 568.8434 

Table 6.1: Wearable trajectory-based input. (Time- seconds). 
Mean input times (seconds) and standard deviations for the trajectory-based task, while 

standing and walking. 

There was a significant main effect of the device type upon the time taken to complete 

the task (F(2,27) = 86.839, p<0.05). Similarly, a significant main effect of movement 

upon the device type used to complete the task was found (F( I ,27) = 85. 19, p<0.05). 

There was significant interaction between device type and movement (F(2,27) = 9.356, 

p<0.05). This is further expanded upon within the discussion. 
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Graph 6.1 : Wearable trajectory-based input. (Time- seconds). 

o Stand 

cWalk 

The graph shows the mean input times for the 3 devices, both while walking and standing 
with standard deviation bars. 

A Tukey HSD post-hoc test was carried out on the data. The pairwise comparisons found 

highly significant differences p<O.O I between all of the devices. If we examine the 

overall means, it can be seen that the greatest difference occurs between the stylus and 

off-table mouse at 1816.325 seconds, while the smallest difference occurred between the 

sty lus and track-pad at 801.765 seconds, and the difference between the track-pad and 

off-table mouse was I 014.569. This is graphically illustrated in Graph 6.1. 
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6.3.2 Results - Error 

The means and standard deviations for thi s study relating to error are shown in Table 6.2. 

Graph 6.2 illustrates these results in a more intuitive manner. 

Descriptive Statistics - Errors 

Movement Device Type Mean Standard Dev 
Standing Stylus 94.90 34.35582 

Off-Table 441 .00 128.8091 
Track-pad 302.00 85.24084 
Total 279.3 169.38 

Walking Stylus 303.90 93.17063 
Off-Table 819.40 97.66064 
Track-pad 388.20 103.8501 
Total 503.83 248.464 

Table 6.2: Wearable trajectory-based input. (Mean - Errors made on task) 
Mean errors and standard deviations for the trajectory-based task, while standing and 
walking. 

A mixed factor ANOVA found a significant main effect of the device type (F(2,27) = 

74.23, p<0.05). A significant main effect of movement upon the device type used to 

complete the task was revealed (F( l ,27) = 148.95, p<0.05). There was s ign ificant 

interaction between device type and movement (F(2,27) = 2 1.20, p <0.05). The interaction 

is further discussed within the discussion section of the study. 
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Graph 6.2: Wearable trajectory-based input. (Mean - Errors made on task) . 
This shows the mean errors made for the 3 devices, both walking and standing, with 
standard deviation bars. 

After a Tukey HSD post-hoc test was carried o ut, the pairwise comparison found highly 

significant differences all at p<O.O I between the devices. The combined overa ll 

difference between stylus and off-table mouse was 861.6 errors, between the off-table 

mouse and track-pad it was 570.2 errors, and between the stylus and track-pad there was 

a difference of 29 t.4 errors. 

6.3.3 Results - Workload 

After each part of the experiment the participant completed a NASA TLX (taskload 

assessment) exercise. This was done in order to find the participant's workload in both 

movement conditions whi le using one of the three input devices. The results for this are 

presented in Table 6.3 which shows the mean average scores for each input device 

grouping and the standard deviation. Graph 6.3 graphically represents this data. The 

results reported are further expanded upon in the discussion section of the report. 
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Descriptive Statistics - Workload 

Movement Device Ty):!e Mean Standard Dev 
Standing Stylus 30.5 9.395 

Off-Table 69.7 17.204 
Track-pad 63.6 9.155 
Total 54.6 21.262 

Walking Stylus 44.6 12.020 
Off-Table 71.4 10.782 
Track-pad 66.6 11 .177 
Total 60.8 16.141 

Table 6.3: Wearable trajectory-based input. (Mean - Workload). 
Mean workload scores and standard deviations for the trajectory-based task, while 
standing and walking. 

A mixed factorial ANOVA revealed a highly significant effect of input device (F(2,27) = 

32.899, p<O.O I). The workload was rated highest by the off-table mouse users, while 

standing and walking. The lowest scores were given by the stylus users. There was a 

significant effect of movement, (F( I ,27) = 6.243, p<0.05). The largest difference between 

the movement conditions was with the stylus; thi s was a 14 point difference. There was 

no significant interaction between input device and movement (F(2,27) = 4.461 , p< 0.5). 
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Graph 6.3: Wearable trajectory-based input. (Mean- Workload). 
The graph shows the mean workload scores for the 3 devices, while both walking and 
standing. They are shown here with their associated standard deviation error bars. 

Tukey HSD post-hoc comparisons found the significant differences to lie between the 

stylus and off-table; p<O.O I, and between the stylus and track-pad, p<O.O I. No 

significance could be reported between the off-table mouse and track-pad, p=0.667. 

These results can be further interpreted from Graph 6.3. 

To further understand the workload result a series of ANOV As were carried out on each 

of the six subscales that are used to make up the final weighted workload. 

Table 6.4: Wearable trajectory-based interaction. (Workload Subscales 1.) 

The table shows the sign ificance of device and movement for the NASA TLX subscales 

contained in the table. No significant interaction was found between device and 

movement. 

NASA-TU< 
Mental Demands Physical Demands Temporal Demands 

Main Effects 

Device F(2 27)=6. 763,p<O.O I F(2,27)= 18.342,p<O.OO I F(2,27)= 19.045,p<O.OO I 

Movement No Significance No significance No significance 

Table 6.5 : Wearable trajectory-based interaction. (Workload Subscales 1.1) 

This table is paired with table 6.4 and shows the Tukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TU< 
Mental Demands Physical Demands Temporal Demands 

Post-hoc 

Stylus - Mouse 
p<O.OOI p<O.OOI p<O.OOI 

Mean Diff24.00 Mean Diff3 1.50 Mean Di ff36.75 

Stylus -Track-pad 
p<O.OS p<O.OOI p<O.OOI 

Mean Diff21.00 Mean Diff30.75 Mean Diff 33.75 
Track-pad - No Significance No Significance No Significance 
Mouse 
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T he tables a lso show the results from the Tu key HSD post-hoc compari sons and the mean 

di fferences that occurred between the pa irwise comparisons. It was fou nd that the device 

with the lowest mean average in each subscale was the stylus. Every subscale analysis 

showed a main e ffect of device. Only the subscales of performance displayed a main 

effect of movement. No significant interaction between device and movement can be 

reported . 

Tab le 6.6: Wearable traj ectory-based inte raction. (Workload Subscales 2.) 

T his table shows the significance of device and movement for the NASA TLX subscales 
contained in the table. No significant interaction was found between device a nd 
movement. 

NASA-TLX 
Effort Performance Frustration 

Main Effects 

Device F(2,27)= 19.464,p<O.OO I F(2,27)=24.724, p<O.OO I F(2,27)= 12.68 1 ,p<O.OO I 

Movement No Significance F( I ,27)=4.537,p<0.05 No Significance 

Table 6 .7 : Wearable traj ectory-based interaction. (WorkJoad Subscales 2. 1) 

This table is paired with Table 6.6 and shows the T ukey HSD post-hoc results from the 
pairwise comparisons. 

NASA-TLX 
Effort Performance 

Post-hoc 
Frustration 

Stylus - Mouse 
p<O.Ol p<O.OI p<O.OOI 

Mean Diff 33.00 Mean Diff 34.00 Mean Diff 35.250 

Stylus - Track-pad p<O.O I p<O.OI p<O.OI 
Mean Diff 30.75 Mean Diff25.111 Mean Diff22.250 

Track-pad-
No Significance No Significance No Significance 

Mouse 
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The post-hoc analyses found only s ignificant differences between the stylus and other 

devices. Overall the largest difference occurred between the off-table mouse and stylus. 

No significant resul ts could be reported for the off-table - track-pad comparison. 

6.3.4 Discussion 

Overall , participants using the stylus performed better than those using the off-table 

mouse and trackpad. As reported in the results section, the time taken to complete the 

task and the errors made almost doubled when the participants completed the task while 

walking. We can hypothesise that this was due to the participants having to dual-task. 

This hypothesis may be supported by the fact that during the mobile part of the 

experiment the participants had to be reminded to keep moving, as they tended to s low 

down while doing the task. lt could have been possible to put the participants upon a 

walking/running machine, but if the participant slowed down too much they could fa ll 

off. This work could be extended by timing the participants' walking speed and 

correlating the results with that speed to see if there is a s ignificant relationship between 

device usabi lity and walking speeds (Pirhonen, Brewster and Holguin 2002; Brewster, 

Lumsden, Bell , Hall , and Tasker 2003; Lumsden and Brewster 2003). 

One thing that could be questioned is the appropriateness of trajectory-based interfaces 

for mobi le-wearable computer users. The resul ts show that the participants' performance 

was worse while walking; participants had to be reminded to keep a constant pace. We 

can theori se that trajectory-based interaction of this type wou ld be extremely difficult to 

use in s ituations where the user has to keep up a constant pace, or faster than average 

pace e.g. running. In a lab based situation the participant knew how the obstacles were 

laid out, but running in an unpredictable environment, such as a busy street or on in 

locations with uneven surfaces, the participant wou ld not be able to focus all of their 

attention onto the screen without slowing; this may be a case where audio-centric 

interfaces may play an important role in mobi le interaction (Brewster and Murray 2000). 

This is because the user does not have to focus their visual attention in more than one 

place (Brewster, Lumsden, Bell, Hall, and Tasker 2003) 
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This study found that there was signifi cant diffe rence between the three input devices, in 

terms of time and the errors made while completing the task. It was discovered that the 

device that was the qu ickest to use and had the lowest error rate was the stylus; the 

slowest device was the off-table mouse, which also had the highest error rate as described 

in the post-hoc results section . These findings meant that the null hypotheses hi and h2 

could be rejected. 

A further analysis of the results found that the device with the sma llest time difference 

between doing the task stationary and while mobile was the stylus. T his suggests that for 

mobile tasks that consist of trajectory based interaction, and where interfaces such as 

those outlined in the introduction a re used, the stylus is the most appropriate input device. 

The worst device was the off-table mouse. The interact ion suggests that the type of input 

device and the movement condition interact in the ir effect on the time taken to complete 

the task. By looking at Graph 6. 1, we can surmise that it takes more ti me to complete the 

task when the participant is walking than when they are stati onary, but as we have seen, 

this difference was not uniform. The la rgest difference occurred while using the off-table 

mouse, a difference of 969.22 seconds; the second s lowest device was the track-pad at 

642.64, whi le the stylus had the smallest difference at 255.5 seconds. Interestingly we 

can see that the input times for the stylus while that participant was walking, in Table 6. 1, 

were very similar to the input time for the track-pad while the participant is stationary. 

The third hypothesis (h3) can now be rejected, as there was a significant effect of 

movement upon both the time taken to complete the task and the errors made while 

completing the task. In effect movement slows down the user and it may be suggested 

that this makes the user's task more difficult, causing more errors. Jt was found that the 

stylus and track-pad had the small est difference both in terms of errors made and time; 

this may because they use a very similar form of physical manipulation. When using the 

track-pad, one uses one' s finger to point and move the cursor and when using the stylus 

and touch screen the user uses a stylus, which becomes an extension ofthe hand to po int. 

The findings in this experiment also found that like the previous experiment participants 
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made more errors while walking, this was in contrast to the target selection experiment. 

The find ings for this experiment may relate to the diffi culty of the task. 

ln thi s discussion it is important to suggest how the experiment might be modified so that 

this work may be extended and perhaps modified, thereby leading into or expanding other 

studies. This study was able to perfectly examine the hypothesis, but there are areas that 

could be investigated further. One area that could be further explored is the long term use 

of wearable input-devices. This could be done by a participant who could do a who le 

series of trials over weeks to see if there is any improvemen~ and then we could also 

examine the learning rates of the participant. These results could be compared with real 

world users to explore the differences between everyday users and the participants in the 

experiment. Another factor that needs to be further understood is the interaction between 

the user and their environment, although if any data from these experiments were to be 

statistically ana lysed, each user might have to have had a set of uniform experiences, so 

as not to bias the experiment in any way. One interesting off-shoot of this analysis would 

be to examine each device's ability in relation to certa in tunnel s izes, thereby judging the 

device in terms of its ability to be used for very accurate traj ectory based tasks. Although 

this study did use different tunnel sizes and lengths, the errors made and time taken to 

complete a certain tunnel s ize were not recorded. 

From the results and Graph 6.3, it is clearly illustrated that the stylus had the lowest 

workload (WWL). Therefore, we are able to reject the forth hypothesis (.h4), because 

there was a sign ificant main effect of input device upon the participants ' subjective 

work.loads. We are a lso able to rej ect the fi fth hypothesis (h5), because a significant main 

effect of movement was reported, which means that the act of be ing mobile has an effect 

on the participants' subjective workload: it raises it. This suggests that mentally the 

participant finds the device more subjectively difficult to use while walking. As a 

s ign ificant d ifference was found between the input devices in relation to their workload, a 

further analysis ofthe subscales that make up the workload was carried out. This in depth 

analysis found that there was a significant effect of device within each of the scales 

examined. The ana lys is also found that the stylus gave the lowest result in each of the 
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scales. The post-hoc results confirmed this by only finding significance between the 

stylus and two other input devices in every subscale analysis. Only the performance scale 

reported a significant effect of movement. 

When applying these findings to wearable systems and users, it is important to take into 

consideration the output modality/technologies that the user is wearing. Out of the 3 

devices that we evaluated only 2 could be used with an augmented reality system, as the 

stylus relies on a touch screen based system. This may be able to be replaced by some 

form of body-worn graphics tablet. However, what we can derive from these results is 

that overall for both standing and walking the errors made and time it took to complete 

the task were the lowest for the stylus, when used in conjunction with a fo ld-down touch 

screen. When a wearable user is mobile, physical movements are more erratic. A user 

may be walking, running or climbing; so controlling an input device such a stylus will 

prove more difficult while mobile than being at a desktop. There are also other 

environmental factors that can affect the type of device used; trackball devices (mice) are 

not good in dirty or dusty environments as their mechanisms can quickly get clogged and 

not work properly. Gloves in colder environments may also impede users' ability to use 

the device. This may certainly be so in the case of track-pads as they have to be used bare 

handed and a stylus would be difficult to hold. 

There are further ways that future evaluators cou ld expand this experiment. One would be 

to examine the devices with long term users of wearable technology. The devices could 

also be evaluated in different environmental settings and with different user groups such 

as the elderly. Future evaluations would aim to use more participants and to further 

explore the user's subjective opinions of input device use in a range of environments and 

for each user to use a range of input devices, instead of a single input device. 

6.4 Conclusion 

The experiment detailed in this chapter found that there were s ignificant main effects of 

device in relation to: the time on task; the errors made whi le completing the task; and the 

participants' subjective workJoads. Out of the three devices tested, the sty lus had the 
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lowest error rate, fastest input time and had the lowest subjective workload, followed by 

the track-pad and off-table mouse. This experiment has importantly shown that when a 

wearable user is mobile, it has a negative effect on thei r ability to use input devices to 

perform trajectory-based tasks, such as navigating through menus. These findings can 

also help software developers, wearable computer users and wearable hardware designers 

to develop strategies to cope with the difficulties that mobility can case the wearable user. 

The findings in this chapter also lead to the questioning of trajectory-based interaction as 

an appropriate interaction style for mobile wearable users. This was because participants 

completing the task while mobile performed worse in terms of the time taken to complete 

the task and the errors the participants made, than in the standing condition. 

For generic trajectory based tasks the stylus should be the preferred choice of input 

device. In situations where it is not possible to use the stylus, the track-pad is an ideal 

secondary input device. The stylus is an ideal input device as its weight is minimal, it is 

economically viable, it is cable-free and its usage mimics other ' real world ' devices that 

the user should be familiar with, such as a pen or pencil. The problems associated with 

using are that it may need to be attached to the body to prevent it being lost, it is difficult 

to use with head-mounted displays and it may be problematic for users with little manual 

dexterity, such as older people. 
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Chapter 7: Experimental Review 

Alan Chamberlain 156 



An Analysis of Interaction in the Context of Wearable Computers 

7.1 Introduction 

This chapter presents and discusses the work carried out thus far within this thesis. It 

presents an overall review of the findings from the experiments. From the scientific 

evidence it identifies the most appropriate text input and pointing device for wearable 

computer users. It discusses the empirical and subjective evidence, and also examines the 

evaluation methods that were used to collect the data. The outline of the findings in this 

chapter fini shes the research in an appropriate place to form the final conclus ions and 

discussions put forth within the next chapter. 

7.2 Wearable Text Input 

There is strong evidence to suggest that the act of being mobile has a negative effect upon 

the wearable computer user' s time to complete a text input task, the amount of errors they 

make and their cognitive workload. This means that the participant is mentally working 

harder to input text, it takes longer to input text and the user makes more errors when 

doing so. Secondly, the experimental data in Chapter three proved that there was a 

significant difference in tenns of time, error and workJoad between the four text input 

systems in this trial. The results for this experiment can be seen in sections 3.4. 1 to 3.4.3 

and pertain only to the use of Roman alphabet script. This experiment required the 

participants to walk around road cones in a figure of eight motion while they inputted 

text, but it may be the case that different tasks and environments may impact differently 

upon the user's input time, error rate and cognitive workload. However, at this stage, this 

is hypothetical. 

The speech recognition system had the lowest input time (33 seconds) while the user was 

stationary and the fastest while the user was in motion (35 seconds) . The speech 

recogn ition system also had the lowest difference between the stationary and mobile 

conditions: 33 seconds standing and 35 while the user was mobile. There was no 

sign ificant difference between the handwriting recognit ion system, wri st keyboard and 

the on-screen keyboard system. The sign ificance lay between the speech recognition and 

other devices only. The worst input device in both movement condit ions was the on

screen keyboard, fo llowed by the wrist keyboard. 
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Another measurement of the usability of the wearable text input systems was the amount 

of errors that the user made while completing the experimental tasks. The system with the 

lowest error rate was the handwriting recognition system as we can see from the results in 

section 6.3 of the thesis. The errors produced by users inputting text with this system did 

not differ while the user was stationary and mobile. Previously we saw that the on-screen 

keyboard had the lowest time difference between the two movement conditions; but this 

was not mirrored in the errors that the users made whi le using this system. While 

stationary, the average amount of errors that the users made was 3.5, this almost doubled 

to 6.50 while the users were mobile. lt can be theorised that, because the participants 

were dual-tasking (walking and inputting) it was more difficult to input the text and 

navigate around the obstacles simultaneous ly. Users made the highest amount of errors in 

both movement conditions using the speech recognition system; whi le users using the 

wrist keyboard made 0.4 more errors than users using the on-screen keyboard whi le 

stationary and 0.8 fewer errors while mobile. This suggests that where mobile text input

based tasks need a high level of accuracy, a handwriting recognition system wou ld be the 

most appropriate system from the four evaluated. 

We should also consider the issue of hands-free use. If the task requires a user to use both 

hands and input text, speech recognition is one of the few viable input methods available; 

but there are drawbacks to using speech recognition, as we have previously seen (Chapter 

3). In an environment with a high level of background noise the recognition rate of the 

device can be affected; so specialised microphones may need to be used that cancel 

background noise or are placed on the user's throat, called a throat microphone, as seen 

below in Figure 9. In considering hands-free interaction it is important to note that 

gestura! input may also be used as a hands-free input method (see section 2.9. 1 ). In many 

systems the users gesture with their hands (Tsukada and Yasumura 2002; Bowden Et al 

2004), or invo lve arm and upper body movements (Kang, Lee and Jung 2004) which can 

be physically difficult to accomplish if the user requires their hands to be free. Wearable 

gesture-based systems such as Brewster's (El a/ 2003) have taken this into account and 

instead provide the user with a method that allows the user to interact with the computer 
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by using a head-based gesturing system. This allows the users to interact and to have 

their hands free to accomplish other tasks. One branch of research that could stem from 

this initial research is the comparison of hands-free input methods for users in mobile 

environments. 

Figure 7: Fire-fighter wearing a throat microphone. 

See - http://www.swatheadsets.com/ lCONS/Iash2.jpg 

In tasks that require accurate text input an on-screen keyboard or a handwriting 

recognition system should be used, but for conversational information to another user it 

may be more appropriate to use a speech based system, if the user is in an environment 

where they can hear sufficiently. An additional property of using a stylus is the ability to 

notate diagrams and text using systems such as Microsoft Journal ; this allows text and 

images to be notated, and handwriting to be 'translated ' into text. Although, ' it is very 

hard to handwrite while on the move.' (Brewster, Lumsden, Bell, Hall and Tasker 2003), 

it must be noted that the participants using the handwriting recognition system were us ing 

a system that heavily mimics the use of a pen/pencil and paper; tools that many users use 
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on a dail y basis. Normally this is while the user is stationary, but it is important to 

recogni se that it may have been harder to use the wrist-keyboard and on-screen keyboard 

while mobile. ln examining the workload, users had a heavier workload when using the 

wrist-keyboard, speech recognition and on-screen keyboard; this may have also been 

because of the stylus mimicking a pen and paper. 

The text input system with the highest cognitive workload was the wrist-worn keyboard. 

This may have been because the participants using this system had to input text on their 

wrist-worn keyboard and look in a separate place (the vest-mounted screen) for feedback, 

therefore making their task more complicated. Also, as earlier considered in the 

discussion section of Chapter three, it could be due to the small key sizes on the wrist

worn keyboard and the user being expected to type with one hand. As noted earlier a 

participant actually commented on this after fini shing the text input task. 

When carrying out tasks that have a high cognitive workload, it is important not to 

cognitively over burden the user so they can carry out their task in an appropriate manner. 

Handwriting recognition had the lowest cognitive workload in both movement 

conditions. This may be due to the participants already being familiar with the system as 

it mimics handwriting on paper with a pen or pencil (Feng 2003). It might even be said 

that speech recognition, on-screen keyboards and wrist-worn keyboards are not yet 

culturally 'accepted ' methods of text input for a majority of users. This could have been 

the case for the participants in this study. The on-screen keyboard had a lower cognitive 

workload than speech recognition while the participant was stationary, but higher than 

speech recognition while the user was mobi le. The di fferent cognitive workload scores 

can be seen in Graph 3.3. There was a sign ificant main effect of movement in regard to 

the errors made, the time taken to complete the task and the participants' cognitive 

workload. The devices were faster to use, the participants made fewer errors and had a 

lower cognitive workload score in the stationary movement condition. 

The scale table be low illustrates the virtues of each of the four text input systems that 

were used in the experiment. The sca le at the top of the tables shows a plus and a minus 
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sign. The nearer to the plus s ign the text input sy tern is, the better it performed in the 

experiment; the nearer it is to the minus sign (the right hand side of the screen), the worse 

it performed. 

Tab le 7. 1: Text Input - Scale Table. (Chapter 3) 

Scale + 

Time 

Standing Speech Rec 

Walking Speech Rec 

Errors 

Standing Handwriting 

Walking Handwriting 

Workload 

Standing Handwriting 

Walking Handwriting 

Key: 

+ = Faster input time 
Lower error rate 
Lower workload score 

Handwriting Wrist Keyboard 

Handwriting Wrist Keyboard 

On-Screen Wrist Keyboard 

Wrist Keyboard On-Screen 

On-Screen Speech Rec 

Speech Rec On-Screen 

- = Slower input time 
Higher error rate 
Higher workload sco re 

-

On-Screen 

On-Screen 

Speech Rec 

Speech Rec 

Wrist Keyboard 

Wrist Keyboard 

By using the scale table we can make choices that relate to the user' s and task ' s 

requirements. If we need a text input system that is fast to use, needs to be accurate and 

has a low cognitive workload, we would chose handwriting recognition. If we wanted a 

system that required the user to input text quickly whi le mobile, we may opt for the on

screen keyboard. It becomes clear that after completing this set of expe riments, the 

scientific evidence gathered can be used to support the requirement of both the use r and 

the task. These impact upon the type of input device they choose, and ultimately how 

well they perform their task. 

7.3 Wearable Pointing Devices 

Three di fferent experiments were carried out to evaluate the appropriateness of the use of 

pointing devices as part of a wearable computing system. The three pointing devices were 

assessed in terms of their appropriateness for selecting targets (as explained in chapters 
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section 2.9), for steering-based tasks and for dragging and dropping. The three devices 

were: a stylus, an off-table mouse and a track-pad. These were assessed whi le the 

participants used the input devices while stationary and while mobile. 

7.4 Target Selection 

Chapter four was the first investigation into the use of pointing as part of a wearable 

computing system; it directly followed on from the initial investigation into pointing 

devices for target selection in Appendix 5. This initial investigation was a pi lot study and 

was done in order to find any problems and issues that might negatively influence the 

experiment. By conducting this initial experiment in chapter five, we could ascertain that 

the use of speech recognition would be problematic, because the recognition rate was low 

and as a consequence some of the participants seemed to get frustrated. In Chapter four 

we extended the evaluation and replaced the speech condition with the track-pad as it had 

been used in previous wearab le computing systems. For thi s experiment it was found that 

there was significant main effect of movement on the time taken to complete the task and 

on the participants' cognitive workload, with the speed and cognitive workload score 

being lower in the stationary movement condition. Movement had no significant effect 

upon the errors made by the participants using the pointing devices. 

As discussed in Chapter three, this may have been due to: carry-over effects, the task 

being too simple or the participants walking s lowly and therefore taking more time to 

complete the task, in order to make fewer errors (Lemmens Et al. 2000). Interestingly, 

the stylus and off-table mouse both produced fewer errors while the participant was 

walking. This may have been due to the participants stopping or walking s lowly as stated 

earlier in the discussion section of Chapter fo ur. Further investigation could be done in 

this area to evaluate the participant's walking speeds and distances, and also which target 

size was easiest to select whi le mobi le. 

This experiment evaluated the three pointing devices for selecting targets in terms of 

accuracy (errors made), speed (time to complete the task) and the participants' cognitive 

workload. Target selection is important as it relates to the selection of buttons, icons, 

folders and other graphical items that can be se lected by a pointing device on wearable 
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interfaces ( WetPC 200 I; Carr Et al. 2002; Rensing Et al. 2002). Ln Table 7.2 (below) it 

can be seen that the best performing device was the stylus in terms of time and workload, 

but the off-table mouse in terms of the errors made (a fu ll discussion of this can be found 

in the di scussion section of Chapter four. Sections 4.3. I to 4.3 .3). 

Table 7.2: Target Selection - Scale Table. (Chapter 4) 

Scale 

Time 
Standing 

Walking 

Errors 
Standing 

Walking 

Workload 
Standing 

Walking 

Key: 

+ = Faster input time 
Lower error rate 
Lower workload score 

+ 1 

Stylus Track-Pad 

Stylus Track-Pad 

Off-Table Mouse Stylus 

Off-Table Mouse Stylus 

Stylus 

Stylus 

Track-Pad 

Off-Table Mouse 

- = Slower input time 
Higher error rate 
Higher workload score 

Ill 

Off-Table Mouse 

Off-Table Mouse 

Track-Pad 

Track-Pad 

Off-Table Mouse 

Track-Pad 

In cases where a stylus cannot be used, the se lection of an input device for target 

selection is dependent on the task requirements. If the task requires a high leve l of 

accuracy then the off-table mouse should be used, but if speed is a requirement then the 

track-pad should be selected. For tasks that require the user to have a low workload while 

standing, the track-pad is marginally better than the off-table mouse, yet the off-table 

mouse is more ideally suited to mobi le usage, as it produced a lower workload rating than 

the track-pad (see Table 4 .3 for further data relating to these workload results). 

7.5 Dragging and Dropping 

Chapter five was the second investigation in the series of three experiments that assessed 

the performance of the three pointing devices used as part of a wearable computing 

system. Dragging and dropping is used on many Wl MP based interfaces, but has also 
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been used in mobile computing interfaces (Rekimoto 1997; Rekimoto and Saitoh 1999). 

Again, these devices were evaluated in terms of their speed, their accuracy and the 

participants' cognitive workload. From the scale Table 7.3, it can be seen that the device 

that was the most accurate, fastest to use and had the lowest cognitive workJoad was the 

stylus. The device with the second best performance in terms of time and errors was the 

track-pad, followed by the ofT-table mouse. However, the results for the participants' 

cognitive workload scores show that the off-table mouse performs better than the track

pad while the participant is stationary, whereas the track-pad out performs the off-table 

mouse while the user is mobile. 

In Chapters three and four it was noted that the participants slowed dramatically when 

completing their task. In these chapters it was hypothesised that this was mainly due to 

the participants having to dual-task. The participants were doing two tasks 

s imultaneously, which led to trade-offs in terms of the users' performance; the 

participants walking slower than thei r normal pace was one of these trade-offs. In this 

experiment it was also noted that participants walked very slowly when completing their 

task. lt is therefore important that in any other experiments evaluating mobile drag and 

drop techniques some level of evaluation is implemented that takes into consideration the 

participants' walking rate and distance (this is further expanded upon in the discussion 

section of Chapter five) . 

It is now starting to appear that the sty lus is the most appropriate input device for both 

text input and as a pointer. This may be because, as earlier theorised, the participants 

were more fami liar with the use of stylus-based devices. In Chapter five the 

appropriateness of drag and drop interaction while mobile was discussed. Jt was 

hypothesised that this interaction style wou ld be difficult for users to use while mobile, 

especially on small screen devices when users have to wa lk constantly faster than their 

normal rate. 

The findings from Chapter five also showed that there was a significant effect of 

movement upon the user's time to complete the task and the errors made while 
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completing the task. No significant effect of movement was found in regard to the 

participants' cognitive workload. (The resu lts relating to this experiment can be found in 

sections 5.3. 1 to 5.3.3). 

Table 7.3: Dragging and Dropping - cale Table. (Chapter 5) 

Scale 

Time 
Standing 

Walking 

Errors 
Standing 

Walking 

Workload 
Standing 

Walking 

K.ey: 

+ = Faster input time 
Lower error rate 
Lower workJoad score 

+ 

Stylus 

Stylus 

Stylus 

Stylus 

Stylus 

Stylus 

7.6 Trajectory-Based Input 

Track-Pad 

Track-Pad 

Track-Pad 

Track-Pad 

Off-Table Mouse 

Track-Pad 

- = Slower input time 
Higher error rate 
Higher workload score 

t 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 

Track-Pad 

Off-Table Mouse 

Menu based interaction is found on many wearable computer based interfaces (Carr Et al. 

2002; Rensing Et al. 2002; Basko Et al. 2002; Schmidt Et al. 2000) as well as Windows 

based interfaces (which come as standard with Xybernaut systems). Chapter six was an 

experiment that further evaluated the pointing devices used in Chapters four and five, to 

assess their appropriateness as input devices for trajectory based tasks. 

The stylus had the overall best performance for the trajectory-based interaction task, but 

is trajectory-based interaction an ideal interaction style for mobile users? Performance in 

terms of input time almost doubled and when the participants came to do the walking 

sections of the experiment they moved very slowly and some, as in the other experiments, 

had to be reminded to keep walking. This is very important, as it showed that users found 

it difficu lt to dual-task while using this interaction style. Further eva luations using 
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evaluation methodologies that examine walking speed and distance could have given 

further insights into the type of dual-task interaction that was happening in these 

experiments. Further di scussion can be found in Chapter six. 

Unlike the findings from Chapters four and five, there is a clear order in terms of the 

stylus being the best performing overall dev ice for trajectory-based tasks while both 

stationary and mobile; the track pad has the second best performance in each condition 

and the off-table mouse has the worst performance. There was a sign ificant effect of 

movement on the time on task, the errors made and the participants' cognitive workload; 

these were lower in the stationary movement condition. These findings are represented in 

the sca le table below, Table 7.4. For task and user requirements that need, for example, 

the user to select menus quickly and accurately and the user to have a low workJoad, the 

stylus shou ld be selected. (The results for this experiment can be found in sections 6.3 .1 

to 6.3.3). 

Tab le 7.4: Trajectory-Based Input - Scale Table. (Chapter 6) 

s·ca/e 

Time 
Standing 

Walking 

Errors 
Standing 

Walking 

Workload 
Standing 

Walking 

Key: 

+ = Faster input time 
Lower error rate 
Lower workload score 

Alan Chamberlain 

+ 
1 

Stylus 

Stylus 

Stylus 

Stylus 

Stylus 

Stylus 

Track-Pad 

Track-Pad 

Track-Pad 

Track-Pad 

Track-Pad 

Track-Pad 

- = Slower input time 
Higher error rate 
Higher workload score 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 

Off-Table Mouse 
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7.7 Evidence to Support the Choice of Input Device 

The evidence that was used in these trials was based around the time on task, errors made 

and the cognitive workload of the participant. Each experiment was designed to avoid 

carry-over effects and different participants were used for each evaluation. Future 

evaluations aim to gather questionnaire and ethnographically based data, to further 

understand the interactions that occur between the user, their task, the input devices used 

and their movement condition. 

Initially this thesis aimed to contribute to the ' field' of research in four ways (see section 

1.1.2). This will be discussed in the final concluding chapter. Although input speeds and 

error rates were collected while the user is stationary and mobile, these had their 

limitations. After carrying out the experiments, it was found that they could have been 

expanded in regard to collecting data on the distance and speed that the participants 

moved at in the mobile conditions of the experiments. If this data had been recorded, it 

could have led to a more thorough understanding of the participants' interaction while 

using input as part of a wearable computing system in a dual-task paradigm (walking and 

inputting). For future evaluations this is highly important as it can show how useable the 

device is in a mobile environment. It may also be the case that two input systems have a 

similar error rate and input time; by comparing walking speeds and distances we are able 

to further analyse and evaluate the systems. 

7.9 Conclusion 

The experiments and literature review carried out m this thesis have identified and 

demonstrated the fo llowing: 

• Differing input speeds across identical tasks using different input devices. 

• Differing levels of accuracy across identical tasks using different input devices. 

• Differing cognitive workload scores across identical tasks using different input 

devices. 
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• Differing input speeds across different movement conditions using identical input 

devices. 

• Differing levels of accuracy across different movement conditions using identical 

input devices. 

• Differing cognitive workload scores across different movement conditions using 

identical input devices. 

The results above are supported by the experimental outcomes. This chapter has reviewed 

the results from the experiments and has discovered that overall the stylus had the best 

performance, as part of a handwriting recognition system. The findings of the three 

experiments that were used to judge the performance of the three pointing devices were 

that the most appropriate pointing device for use with a wearable computing system, 

while stationary and mobile was the stylus. 

These experiments provided a valuable insight into the behaviour of wearable users when 

wearing a computer and inputting text and using pointing devices, while stationary and 

mobile. This discussion is carried into the final conclusion of the thesis and further 

expanded. 
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Chapter 8: Thesis Conclusion 
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8.1 Introduction 

This chapter completes the thesis. Jt presents an outline of the contribution of knowledge 

that this thesis has made to the field of wearable computing. lt examines ways in which 

the research presented in the thesis could be expanded upon and also provides an insight 

into future research that could provide a better understanding of wearable computers, 

mobile use and input/output modalities for mob ile/wearable computers. This section ends 

by focusi ng upon the expansion of the evaluation methodologies used in the thesis. 

8.2 Original Contribution to Knowledge 

In section 1.1.2 the aims of the thesis were listed. These have been accomplished, but 

there is still further work that can be done, based on the experiments that have already 

been completed. Techniques for the evaluation of input systems for use with wearable 

computers were examined and used throughout the thesis and as discussed in the previous 

chapter, empirical research based on input speeds and error rates have shown that overall 

the stylus was the best text input and pointing device. There were limitations to the 

studies in regard to the recording of the distance that the participants walked and the 

speed at which they walked when carrying out the experimental tasks. This is further 

discussed in the following section. 

The literature in Chapter two suggested that there were some research areas that had yet 

to be addressed in regard to wearable computer use. This thesis identified a lack of 

empirical evaluations relating to the use of input devices for text input and pointing while 

the user was wearing a computer and mobi le. Previous studies had offered an ini tial 

insight into this area, but had failed to use wearable computer systems and focused on 

desktop evaluations (Curry, Hobbs and Toube 1996) or, had importantly, not assessed the 

user whi le mobile (Thomas Et al. 1997). 

The research within this thesis addressed these research issues to a PhD standard and by 

doing so offered new insights and perspectives on the use of input devices for wearable 

computers. Off-the-shelf devices were used in the evaluations as it was theorised that 

these were the most accessible to a wide range of users. After discussing the findings 
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from the studies in the previous chapter we are able to see where this thesis has made 

original contributions to scientific knowledge in the following key areas. 

I. It provided experimental evidence of significant differences between the use of 
input devices, as part of a wearable computing system, when used in a stationary 
and mobile manner. 

2. It provides evidence to suggest that the stylus was the most appropriate input 
device for inputting text, when used with a handwriting recognition system while 
stationary, and when used with a virtual keyboard whi le mobile. 

3. It provides evidence to suggest that the stylus was overall the most appropriate 
pointing device in terms of target selection, steering and dragging and dropping 
while used in both a stationary and mobile manner 

4. It provided a scientific foundation in terms of results to further explore the use of 
input devices with wearable computers. 

The main contribution of this thesis has been a combination of the points listed above. It 

has given an insight into the way that movement impacts upon a wearable computer 

user's abi lity to use text input devices and pointing devices. This thesis investigated and 

reported both empirically and subjectively on the way in which different input devices 

could be used with wearable computer systems. 

8.3 Further Work 

This research has focused on generic tasks that apply to many users, us ing GUI based 

interfaces and input devices with wearable computing systems, but there are other non

GU I-based systems such as audio-centric wearable devices and wearable computing 

systems that use the user's gestures for input. The eva luation methodologies applied in 

the studies carried out in this thesis could be applied to a variety of other input and output 

systems. The studies carried out in this thesis used a fold-down touch-screen. Other 

wearable computer-based systems used augmented reality displays, but we found these 

systems to cause binocular rivalry (Laramee and Ware 2002), which led to the 
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participants experiencing bouts of dizziness and feeling sick. An initial comparative 

experiment was carried out and further extended the trials in this thesis to evaluate the 

impact of different visual output systems on wearable users. These could not be further 

carried out because of the symptoms of the fore mentioned participants. Some research 

has been carried out into the use of wearable computers and three-dimensional 

augmented-reality (Piekarski and Thomas 2002). There needs to be exploratjon into the 

use of such systems and empirical studies that evolve from this work could be used in 

such a manner. 

The six studies carried out in thi s thesis related to generic task activities, while the 

participants were stationary and mobile. Further research a ims to focus on specific user 

and task domains such as the use of wearable computers in domestic pervasive 

environments. 

After examining the experiments they could have been expanded in several ways to 

gather more information. One further route of exploration would have been through the 

use of a subjective questionnaire. This would have provided open-ended responses and 

user opinions to the devices evaluated. S ince the completion of these tria ls a 

questionnaire has been designed for future evaluations. 

In these trials we used only one output system, which was a small vest-worn touch 

screen. Other wearable systems have used various augmented reality systems and have 

started to examine the impact of these various output devices upon mobi le users. Will the 

way that each output modality is presented, whether sound based or visua l, affect our use 

of input modalities? Although some work was initially started in thi s area it was a 

desktop-based evaluation and as such is difficult to apply to mobile/wearable users. 

As wearable computing is still an evolving area, there is still much research to be done to 

examine the most appropriate input and output appropriate for different users and 

environments. It would a lso be feasible to deve lop and assess adaptable systems that may 

alternate between different input and output modalities depending on the users' 
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preferences, task, other input/output modalities, their placement on the body and the ever

chang ing context of some wearable users. 

One direction this research could advance in would be the understanding of a walking

based assessment such as PPWS (Brewster 2003). ln all of the experimental di scussions it 

was noted that participants walked very slowly. It was hypothesised that this was due to 

their doing two tasks simultaneously (dual-tasking) and therefore there were 'trade-offs' 

in terms of the participants' walking speed and the distance they travelled. This was one 

ofthe limitations ofthese studies. rn future evaluations it is therefore important to record 

the distance and speed that the participants walk. A lthough studies have used this to 

assess interfaces, there still needs to be further investigation into this assessment 

methodology that originally stemmed from assessing the stress levels of visually 

impaired users. Initially, heart rate monitoring was to be used, but it was found that 

visually impaired user's heart rates were too high when they were asked to navigate 

around unknown environments. lt could easi ly be established if this method was accurate 

by correlating a user's heart rate, PPWS, error rates, time on task and the partic ipant's 

subjective workload. The diagram in Figure 8, below, shows the methodologies used in 

the studies explored within this thesis and the evaluation methods yet to be further 

explored and evaluated. 
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Evaluation Techniques Used 

Error Rates 

Time on 
Task 

Subjective 
Workload 

Figure 8: Evaluations and explorations. 

Evaluation Techniques Needing 
Further Exploration 

Walking 
Speeds 

Using the methods given within this thesis combined with the questionnaire and a 

walking-based evaluation will lead to a fuller evaluation methodology. This multi

faceted approach could provide further valuable insights into the way that wearable users 

interact with input devices and the interplay between the user, the input device they are 

using and the way they are moving. In this study, lab based conditions were used, but it is 

hoped that further experimentation will be carried out in ' real world' settings. 

8.4 Conclusion 

This thesis initially started by identifying the core characteristics of wearable computers 

as identified by (Mann 1998; Bass 1997 and Rhodes 1997). One of the common 

characteristics (seen in Chapter two) was: The user should be able to enter data and 

control the system. Based on this a review of the literature was carried out, and identified 

that little empirical research had been undertaken in relation to the input systems/devices 

used to enter data and manipulate the interface. This led into an evaluation of text input 

systems and pointing systems/devices for system control and interface manipulation 

(although, there are other means of input available, such as sensor based input). One of 
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the specific aims of this research was to report and understand the effect that movement 

(walking and standing) has on usabi lity for a wearable computer user, when inputti ng text 

and doing generic pointing tasks such as dragging and dropping, selecting targets and 

steering-based interaction . 

Drawing on this initial research, two sets of experimental trials were conducted. These 

were based around text input and pointer based input. Initially Chapter three explored text 

entry systems for wearable computers and compared four different systems, while the 

user was standing stationary and walking. The systems evaluated were: handwriting 

recognition, speech recognition, a wrist-worn keyboard and a virtual keyboard. It was 

found that the handwriting recognition was the most appropriate method of input. Full 

details of this experiment can be found in Chapter three. 

The second strand of experimentation focused upon the use of pointing devices w ith 

wearable computing systems. The devices used were a track-pad, ofT-table mouse and 

stylus used in conjunction with a touch screen. The literature found that there were three 

main interaction styles associated with pointing: target selection, dragging and dropping 

and steering. Importantly this thesis took "off the shelr' devices that are commonly 

avai lable to many wearable users and evaluated their appropriateness for inputting text 

and also for use as pointing devices. This is important as it gives both the systems 

designer and user a range of ' safe' options to use when developing interfaces for 

wearable computing-based systems. These experiments found that overa ll, out of the 

devices used, the stylus was the most appropriate device to use while standing and 

walking. For a more detailed account of the experiments turn to Chapters four, five and 

SIX. 

The experimental evidence shows that this thesis has found that there are significant 

differences between the input devices used in the experiments. This evidence found that 

the movement conditions that wearable computer users encounter, standing stationary 

and walking, have an impact upon the user s ability to input text and use pointing 
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devices. These dif ferences occurred in terms of the time taken to complete the tasks, the 

errors made while completing the task and the participant's subjective workload score. 

Interestingly, there have been developments in the ' off the shelf wearable computer 

market that are supported by the findings in this thesis. The miniaturisation of computing 

technology has made it is possible to develop a tablet computer that is small enough to be 

worn in a vest Figure 8. 1; and has therefore eliminated the cabling that connected the 

CPU (central processing unit) to the screen and to the power-pack. This has led to a 

convergence of the tablet-computer and the wearable computer and has resulted in 

products such as the Xybernaut Atigo. 
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Figure 8. 1. A Vest Worn Xybernaut Wearable Computer (MA Range). 

See- http://www.usc.edu/dept/architecture/mbslthesis/anish/2 _ mobi le .jpg 

The research in this thesis both mirrors and supports these new developments m the 

wearable computing market. It also leads us to conclude that the next generation of 

wearable computers will be pen-based computers that are reliant on the stylus for text 

input and pointing. Based on the findings of this thesis, the stylus is one of the most 

appropriate means of physically interacting with a wearable computer. Wo rn in a vest 

based configuration, this allows the user to fold down the screen, interact with the system 

and be cable-free. lt also allows the user to have one hand free to do other tasks. 
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Figure 8.2: Xybernaut Attigo Computer. 

See- http://www.xybemaut.com/images/Atigo_L_product_small.jpg 

Currently, Xybernaut computers use the Windows platform, and the WIMP interaction 

style still prevails in these systems. After completing the evaluations within this thesis, it 

is evident that there is still much work yet to be done into understanding the effect of 

movement upon a wearable computer user' s abili ty to input, and the type of input devices 

that are appropriate for wearable users. 
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Appendix 1. 

The table below shows the Time and Errors for Chapter 3, the text input experiment. The 
table shows the time and errors for the participants while both standing and walking. 

Participant Time Errors 
Speech 
Stand 

1 25.89 4 
2 42.03 2 
3 27.02 12 
4 32.54 4 
5 36.00 9 
6 41.04 5 
7 26.70 15 
8 39.53 4 
9 33.34 7 
10 26.45 12 

Speech 
Walk 
1 34.01 13 
2 43.04 5 
3 28.33 23 
4 33.21 4 
5 37.23 8 
6 42.98 9 
7 28.04 17 
8 41.54 6 
9 34.01 8 
10 28.00 13 

On-Screen 
Stand 
1 138.08 3 
2 242.68 0 
3 163.69 2 
4 263.59 3 
5 163.45 4 
6 175.88 2 
7 349.72 5 
8 289.52 6 
9 262.23 5 
10 259.63 5 

On-Screen 
Walk 

1 147.04 6 
2 277.83 4 
3 204.98 6 
4 263.12 3 
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5 188.90 4 
6 177.07 7 
7 464.21 8 
8 346.66 7 
9 203.14 8 
10 231.15 12 

Handwriting 
Stand 
1 144.41 1 
2 134.89 1 
3 143.76 2 
4 189.96 5 
5 132.94 2 
6 228.75 5 
7 154.88 3 
8 267.94 2 
9 126.27 4 
10 159.07 3 

Handwriting 
Walk 
1 167.13 2 
2 193.02 3 
3 225.21 2 
4 230.12 2 
5 164.09 2 
6 230.00 5 
7 173.01 3 
8 289.50 2 
9 181.01 3 
10 177.24 4 

Wrist Key 
Stand 
1 105.09 2 
2 172.70 5 
3 184.86 2 
4 212.90 3 
5 126.80 5 
6 232.02 4 
7 294.07 7 
8 128.56 3 
9 273.19 2 
10 193.22 6 

Wrist Key 
Walk 
1 181.39 5 
2 198.70 6 
3 207.62 8 
4 233.51 3 
5 132.95 3 
6 249.07 5 
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7 330.83 7 
8 257.41 8 
9 240.00 5 
10 209.28 7 
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The table below shows the workload score and six sub-scale scores for Chapter 3 the text 
input experiment. The table shows the time and errors for the participants while both 
standing and walking. 

Key: 
md = mental demands, pd = physical demands, td =temporal demands, ef = effort, pe = 
performance and rf = frustration. 

Participant md pd Id et oe rf WINL 
Speech 
Stand 

1 20 50 20 20 75 50 41 
2 5 10 25 70 75 50 39 
3 10 15 10 10 60 35 25 
4 20 10 15 15 60 60 38 
5 5 40 10 15 20 15 17 
6 5 5 20 15 45 5 21 
7 15 25 35 45 50 45 41 
8 15 10 20 45 40 30 29 
9 10 10 5 40 20 20 16 

10 5 5 5 50 80 25 33 

Speech 
Walk 

1 15 20 20 25 45 40 32 
2 15 15 10 25 45 70 43 
3 20 15 40 30 25 30 29 
4 25 55 35 50 35 40 38 
5 35 70 20 30 65 30 40 
6 100 20 35 55 65 35 52 
7 25 40 40 55 45 50 42 
8 20 25 15 40 55 70 37 
9 25 30 65 50 35 60 44 

10 25 35 30 20 30 20 31 

On Screen 
Stand 

1 15 30 20 10 5 40 14 
2 75 15 55 75 10 30 33 
3 10 5 25 10 5 5 9 
4 5 5 15 15 10 15 11 
5 25 45 40 35 35 40 37 
6 30 15 50 45 30 30 33 
7 10 20 25 25 40 30 27 
8 25 30 25 40 40 40 33 
9 35 50 50 55 50 50 50 

10 20 20 25 30 30 35 27 

OnScreen 
Walk 

1 20 25 40 15 10 5 19 
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2 80 55 35 90 20 25 57 
3 75 5 30 75 80 25 47 
4 70 55 35 35 45 30 44 
5 40 40 30 50 15 35 35 
6 35 60 60 65 30 65 53 
7 65 40 50 40 40 40 46 
8 55 40 55 55 25 25 42 
9 80 80 50 70 50 65 66 

10 60 35 65 30 80 15 48 

Handwriting 
Stand 

1 10 45 40 10 10 10 27 
2 5 10 10 5 5 5 7 
3 20 25 20 20 40 50 35 
4 5 55 50 75 20 90 58 
5 5 5 20 10 5 20 10 
6 10 20 25 15 5 20 17 
7 35 30 30 45 50 50 44 
8 20 5 45 25 25 25 27 
9 5 5 25 25 5 15 8 

10 5 5 25 30 5 20 12 

Handwrting 
Walk 

1 10 20 45 35 30 25 30 
2 25 25 35 35 40 25 33 
3 35 40 15 40 15 15 25 
4 20 40 50 20 15 40 32 
5 20 45 35 55 40 40 41 
6 35 45 40 15 25 10 28 
7 45 40 55 45 50 50 50 
8 60 50 35 30 25 25 40 
9 20 20 30 20 20 25 21 

10 50 40 40 40 25 15 32 

Wrist Key 
Stand 

1 70 100 20 75 35 65 75 
2 20 40 55 45 60 25 43 
3 20 30 60 45 35 25 35 
4 60 20 70 35 30 60 48 
5 40 20 60 45 35 25 35 
6 60 40 55 35 30 60 43 
7 20 90 50 55 45 60 52 
8 20 85 40 40 50 55 54 
9 15 35 75 75 85 30 63 

10 20 70 45 45 50 50 52 

Wrist Key 
Walk 

1 30 65 70 60 35 30 50 
2 15 70 55 60 35 40 46 
3 90 75 70 45 15 20 52 
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4 50 40 35 40 25 75 44 
5 75 30 75 75 35 75 61 
6 60 70 65 70 80 90 73 
7 55 75 30 20 25 30 36 
8 100 90 90 70 30 80 69 
9 45 35 50 40 40 40 41 

10 30 30 25 25 50 30 35 
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Appendix2. 

The table below shows the Time and Errors for Chapter 4, the target selection 
experiment. The table shows the time and errors for the participants while both standing 
and walking. 

Participant Time Errors 
Stylus 
Stand 

1 572.21 86 
2 523.29 49 
3 566.17 37 
4 562.11 38 
5 551.32 61 
6 544.31 70 
7 536.39 52 
8 541.09 73 
9 512.28 63 

10 543.29 66 

Stylus 
Walk 

1 679.10 78 
2 675.19 24 
3 693.16 87 
4 612.21 20 
5 615.09 33 
6 665.19 34 
7 644.03 54 
8 660.85 62 
9 592.10 41 

10 630.06 77 

Mouse 
Stand 

1 1562.17 62 
2 1487.22 28 
3 1495.25 26 
4 1413.41 29 
5 1401.50 21 
6 1509.21 40 
7 1519.22 24 
8 1524.24 21 
9 1515.26 51 

10 1208.04 51 

Mouse 
Walk 

1 1793.40 22 
2 1537.51 55 
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3 1669.40 25 
4 1602.24 36 
5 1651.26 30 
6 1694.25 19 
7 1587.97 18 
8 1598.27 21 
9 1549.02 48 

10 1514.00 39 

Track 
Stand 

1 653.15 77 
2 811.94 94 
3 713.90 67 
4 806.45 72 
5 641.17 70 
6 789.49 79 
7 765.94 80 
8 737.45 71 
9 731.33 77 

10 821.27 79 

Track 
walk 

1 843.96 79 
2 938.67 89 
3 1098.72 65 
4 1032.37 70 
5 935.15 78 
6 1142.65 86 
7 1356.34 78 
8 894.29 87 
9 1074.26 93 

10 1121.03 83 
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The table below shows the workload score and six sub-scale scores for Chapter 4, the 
target selection experiment. The table shows the scores for the participants while both 
standing and walking. 

Key: 
md = mental demands, pd = physical demands, td =temporal demands, ef = effort, pe = 
performance and rf = frustration. 

participant md pd td ef ne rf wwl 

stylus stand 
1 15 20 25 10 40 5 19 
2 15 5 30 10 35 40 22 
3 5 5 5 5 30 5 9 
4 30 25 5 45 25 30 27 
5 35 40 25 10 25 5 23 
6 20 40 40 40 25 25 32 
7 20 15 5 15 15 10 13 
8 30 30 35 35 35 35 33 
9 30 20 50 45 40 45 38 

10 15 25 35 30 25 20 25 

stylus walk 

1 40 55 40 30 40 10 36 
2 65 45 55 40 40 25 45 
3 35 40 15 5 10 10 19 
4 40 55 50 40 50 50 47 
5 5 30 40 35 35 15 27 
6 30 25 20 20 20 15 22 

7 15 65 60 60 30 30 43 
8 20 15 10 10 25 25 17 
9 25 20 30 40 45 35 32 

10 50 55 45 35 45 30 43 

mouse stand 

1 40 65 60 55 20 65 51 
2 25 90 45 50 55 50 52 
3 30 80 45 55 50 65 54 
4 35 30 20 35 90 40 42 
5 55 65 35 30 30 35 42 
6 60 40 25 20 65 25 39 
7 10 60 60 60 30 60 47 
8 25 45 70 80 50 70 57 
9 25 100 65 10 30 10 40 

10 50 85 65 25 20 45 48 

mouse walk 

1 I 65 75 50 70 50 90 67 
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2 30 70 65 50 60 65 57 
3 30 50 50 70 50 90 58 
4 20 65 55 55 25 55 46 
5 30 70 50 50 25 55 47 
6 50 80 10 75 45 55 52 
7 35 80 25 65 35 55 49 
8 10 45 45 60 45 20 37 
9 35 60 40 45 35 40 42 

10 25 70 55 50 20 20 40 

track stand 

1 40 45 55 55 40 70 53 
2 25 65 40 50 45 35 43 
3 25 40 45 35 25 20 31 
4 15 100 90 85 60 75 66 
5 45 70 75 90 75 65 66 
6 35 70 65 65 55 55 60 
7 60 60 75 45 30 25 43 
8 35 30 40 35 25 30 31 
9 20 95 90 30 40 10 45 

10 15 40 65 30 10 15 30 

track walk 
1 70 80 75 70 45 90 69 
2 45 60 60 70 55 85 62 
3 15 90 80 80 45 80 53 
4 40 50 65 90 40 35 49 
5 55 70 35 45 45 25 45 
6 45 80 45 70 75 80 70 
7 55 65 85 80 40 90 75 
8 20 45 95 90 50 80 66 
9 85 85 80 95 75 85 85 

10 40 75 75 90 60 90 80 
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Appendix 3. 

The table below shows the Time and Errors for Chapter 5, the dragging and dropping 
experiment. The table shows the time and errors for the participants while both standing 
and walking. 

I sta:d 

Time Errors 

1 248.46 61 
2 253.87 07 
3 275.51 90 
4 • ?~ 69 
5 1.61 ! 46 

99 
7: 

318. 
0 594 

~~s 
1 
2 15 
3 
4 fi~ Ofi 93 
5 fi4::1 fi::l 96 
6 fi40 4::1 99 
7 fl41! ::1~ 108 
8 4R!l Rn 111 
9 372.60 81 

10 702.01 129 

Mouse 
Stand 

1 ?R~ n~ 20 
2 ::lfi4 fi4 2< 
3 321.66 35 
4 273.58 2~3 
5 401. ~7 
6 

~ ·5 
7 6 
8 0 
9 19 

10 12 

~.~~e 
263 
354 

l:l 11 321 
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4 594.19 273 
5 507.66 401 
6 702.67 357 
7 594.73 355 
8 918.45 288 
9 1080.39 425 

10 648.31 367 

Track 
Stand 

1 339.65 113 
2 244.67 167 
3 281.85 325 
4 257.51 242 
5 400.00 364 
6 310.73 212 
7 307.81 275 
8 255.43 236 
9 248.04 207 

10 370.08 378 

Track 
walk 

1 602.88 179 
2 551.63 231 
3 627.53 341 
4 594.53 271 
5 719.41 387 
6 829.11 325 
7 765.19 332 
8 733.59 297 
9 588.32 265 

10 874.20 361 
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The table below shows the workload score and six sub-scale scores for Chapter 5, the 
dragging and dropping experiment. The table shows the scores for the participants while 
both standing and walking. 

Key: 
md =mental demands, pd =physical demands, td =temporal demands, ef= effort, pe = 
performance and rf = frustration. 

Participant md Pd td ef pe rf WWL 
Stylus 
Stand 

1 100 55 50 45 90 50 73 
2 5 20 55 35 25 20 30 
3 10 5 10 5 10 5 7 
4 5 30 25 30 25 40 29 
5 25 15 10 10 10 25 15 
6 45 30 40 25 25 25 29 
7 15 30 35 30 10 25 23 
8 30 25 45 55 30 25 37 
9 10 20 15 5 5 40 15 

10 30 10 15 35 40 45 26 

Stylus 
Walk 

1 40 45 20 40 25 30 32 
2 30 45 35 45 50 45 42 
3 5 5 30 40 50 45 26 
4 5 10 5 30 55 55 21 
5 35 35 15 15 5 25 25 
6 20 15 25 25 30 45 26 
7 35 40 40 20 25 35 32 
8 55 50 50 40 35 55 46 
9 35 25 45 60 25 60 40 

10 5 40 40 45 30 40 34 

Mouse 
Stand 

1 45 60 70 95 75 45 68 
2 55 95 45 60 70 55 70 
3 55 50 50 50 45 25 48 
4 35 40 75 70 50 74 55 
5 55 40 60 70 85 90 67 
6 60 65 85 75 40 70 68 
7 85 85 60 100 95 45 82 
8 35 55 95 35 75 40 60 
9 45 65 65 55 45 55 53 

10 65 65 55 75 85 65 74 

Mouse 
Walk 

1 20 75 85 55 90 90 77 
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2 75 85 95 95 95 80 90 
3 70 65 50 45 30 100 54 
4 30 100 20 55 30 90 49 
5 60 60 65 65 60 65 62 
6 85 95 80 80 70 35 72 
7 20 50 65 60 65 60 53 
8 70 100 90 100 75 100 93 
9 80 70 55 75 45 45 62 

10 45 60 70 95 60 95 74 

Track 
Stand 

1 30 50 45 70 55 65 59 
2 35 55 70 80 80 70 73 
3 25 40 65 80 70 80 69 
4 65 70 85 60 45 35 63 
5 40 45 50 70 60 75 59 
6 70 60 65 80 75 70 69 
7 55 60 60 55 55 60 58 
8 35 65 70 90 60 90 70 
9 50 65 75 85 70 80 73 

10 55 45 65 75 60 40 54 

Track 
walk 

1 65 25 85 25 60 60 50 
2 15 35 65 75 65 90 62 
3 65 70 90 85 90 50 80 
4 70 85 60 65 55 90 77 
5 45 65 65 45 55 70 58 
6 55 10 40 35 60 50 44 
7 30 100 100 80 80 95 95 
8 70 85 90 65 85 80 80 
9 55 80 80 35 25 40 53 

10 80 70 70 80 85 85 80 
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Appendix4. 

The table below shows the Time and Errors for Chapter 6, the trajectory-based interaction 
experiment. The table shows the time and errors for the participants while both standing 
and walking. 

Time Errors 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 

7 
8 
9 

10 

Mouse 
Stand 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Walk 
1 
2 
3 

,67.21 
270.18 
~?4 56 
4R'i !l? 

291.61 
259.11 

523.19 

547.73 
45!l QQ 

431.51 
792.09 

513.67 

685.17 
1101.42 
518.47 
5l4.57 

9 
7 
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4 
5 
6 
7 
8 
9 

10 

2 
3 
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5 
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8 
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The table below shows the workload score and six sub-scale scores for Chapter 6, the 
trajectory-based interaction experiment. The table shows the scores for the participants 
while both standing and walking. 

Key: 
md = mental demands, pd = physical demands, td =temporal demands, ef = effort, pe = 
performance and rf = frustration. 

md od td ef OD fr wwl 
stvlus stand 

1 25 25 35 10 15 15 21 
2 35 35 20 40 35 35 31 
3 20 60 20 40 35 25 38 
4 5 40 25 15 25 45 27 
5 15 50 50 55 30 35 42 
6 25 35 30 60 45 60 42 
7 35 25 40 35 35 40 35 
8 30 25 25 15 10 10 17 
9 35 30 60 10 20 20 34 

10 10 35 20 20 25 15 18 

stvluswalk 
1 15 50 35 25 5 35 29 
2 30 80 45 65 20 90 56 
3 10 20 25 35 45 55 36 
4 55 55 45 50 50 45 50 
5 50 65 70 65 55 55 61 
6 5 35 30 60 35 70 40 
7 30 45 30 75 60 25 43 
8 20 25 15 15 25 45 26 
9 15 40 45 75 65 85 58 

10 60 65 35 25 35 40 47 

mouse stand 
1 85 85 80 100 80 100 87 
2 40 90 75 75 85 65 79 
3 95 75 100 100 100 100 95 
4 20 65 65 75 75 50 66 
5 75 90 70 65 35 100 70 
6 10 30 40 35 70 60 39 
7 45 65 40 65 65 80 60 
8 50 55 65 60 65 60 61 
9 70 95 95 80 60 75 66 

10 60 35 40 40 80 70 54 
2 30 75 95 85 70 90 69 

mouseil lk 50 70 90 75 65 95 80 
~ 50 so 80 BB 65 1ll!l &!3 
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5 60 95 85 70 80 90 84 

6 70 80 35 75 50 25 49 
7 45 60 70 65 65 75 84 

8 70 95 70 75 60 80 78 
9 10 95 100 95 90 85 71 

10 30 95 80 90 100 95 83 

track stand 
1 55 35 50 65 20 60 48 
2 50 75 80 85 25 85 70 
3 15 65 40 40 60 35 46 
4 100 80 65 80 50 60 67 
5 25 100 75 80 45 55 65 
6 20 60 60 65 55 70 71 
7 65 70 75 70 60 70 62 
8 30 85 75 70 55 65 69 
9 10 95 90 75 65 70 68 

10 65 55 75 85 60 80 70 

track walk 
1 60 70 90 90 75 80 76 
2 5 100 95 20 60 25 50 
3 45 25 70 70 75 30 54 
4 65 75 95 90 95 95 88 
5 90 90 85 70 55 55 72 
6 20 80 60 70 45 75 63 
7 70 60 45 65 60 65 59 
8 60 65 90 80 70 70 73 
9 25 80 30 80 65 90 66 

10 70 90 75 55 55 55 65 
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Appendix 5. 

An Initial Experiment to Evaluate Three Wearable Computing Input Devices for Target 

Selection 

An Investigation into three pointing devices for use with a wearable computing system 

examining usability, speed of use and cognitive workload. 

5.1 Introduction 

This experiment compares three input methods that can be used for target selection with a 

wearable computing system. The input methods were voice recognition, stylus and an 

off-table mouse. The experiment contained two movement conditions and used one target 

size. This is the first experiment in this chapter and is a preliminary investigation into 

pointing devices for wearable computers. This first experiment uses time as a dependent 

variable and a cognitive workload scoring system (NASA TLX). This is an initial study 

was designed with three goals in mind: 

I. To introduce the user to the style and experimental research methodology in this 

chapter. 

2. To compare the three input methods in terms of speed and workload. 

3. To detect if any of the input methods or any experimental techniques used could cause 

future problems in the next generation of experiments. 

5.2 Rationale 

This experiment is the first experiment to evaluate wearable pointing devices. In the 

second chapter of the thesis it was identified that there was a lack of empirical research 

into the use of pointing devices, when used as part of a wearable computing system. This 

experiment acts as a pilot study to examine the pointing devices' performance and also 

gives an insight into any problems that may occur during the experiment, so that these 

may be corrected in future experiments. 

5.3 Null Hypothesis 

hI. The pointer type does not affect the time taken to complete the text input tasks. 
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h2. The movement condition of the participant standing and walking has no effect on the 

time taken to complete the task. 

h3. The pointer type does not affect the subjective task load of the participant. 

5.4 METHOD 

5.4.2 Apparatus 

The apparatus used in this trial consisted of a Xybernaut MA IV wearable computer worn 

in an Agora vest based system with a fold down touch screen (figure 5), the underlying 

operating system was Win 2000. Microsoft: Explorer 5 was used as the base input 

software. The following were used in the trial to input text: a Xybernaut stylus, fi nger

worn mouse and Dragon Natura lly Speaking voice recognition software, along with a 

Labtec single ear piece-microphone headset. Two HTML files contained the target 

objects to be selected. 

Figure 5: Participant using the Xbernaut touch-screen. 

5.4.3 Design 

The experiment consisted of a 2 by 3 between-subjects design. The 2 independent 

variables (fV) were movement conditions and pointer type. The 2 levels of the movement 

condition IV were standing and walking. The levels of text input I V types were stylus, 

finger mouse and voice recognition. There were 2 dependent variables measured, the time 

to point and the cognitive workload rating (NASA TLX). 30 participants took part in the 
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trials; I 0 were assigned to each input condition at random. The movement condition 

(standing and walking) were counterbalanced us ing a 2x2 Latin-square design. 

I Standing I I Walking I 

5 Participants 5 Participants 
Objects I Objects 2 

I Walking I I Standing I 
5 Participants 

5 Participants 
Objects I 

Objects 2 

Figure 5. 1: Experimental balancing. 

5.4.4 Procedure 

I 0 participants were randoml y assigned to each of the 3 pointer conditions. Each 

participant put on the vest based wearable computing system. Depending on the 

handedness of the participant, the touch screen could be moved to either the left or ri ght 

had side of the participant. They were then asked to walk around the room to see if the 

vest was corn fortable; if not, the vest could be adjusted to fi t. Each of the 30 participants 

spent a 5 minute session, training/understanding the principles of their assigned input 

system. The participants were requested to use their pointing device whilst walking and 

whilst standing still; the order of this was done in relation to the counterbalanci ng. The 

pointing systems used were off-tab le mouse, voice and stylus. If voice was used, the 

participants did a sma ll voice-training exerc ise which was to read a set amount of' A lice 

in Wonderland' as specified by the speech recognition system. 

The objects they had to point to were displayed on the screen in MS Explorer. Each 

object was randomly positioned, the random screen positioning given by a software 

package called id Test. Each target was 25mm square. This size had been previously used 

by Toube ( 1996), and it could spatially accommodate a textuaJ number from one to ten. 

The words representing the numbers from one to ten were selected as voice activators for 
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the targets, as they are commonly used and are widely known. The numbers were 

selected 'blind' so the same order of words would not be repeated during the experiment. 

This was done for both the standing and walking conditions. The target links for voice 

selection were given a label relating to the chosen word so they would move on to the 

next target. Numbers were marked on the target. Each subject selected fifty targets and 

was timed via stopwatch. 

The walking section of the experiment was designed so the participant had to walk 

around objects placed in their path in a figure of eight motion. The objects (six cones) 

were placed at one metre intervals in a straight line. There was no background noise 

during the experiments as this might have conflicted with the voice recognition software. 

After finishing the experiment each participant completed a NASA task load assessment 

and a post-test questionnaire. 

5.5 Results 

To analyse the results a mixed factor ANOVA was used and supported by Tukey HSD 

post-hoc tests (Field 2000), with the movement on the within-subjects level and device 

(input method) on the between-subjects level. The software used to analyse these results 

was SPSS 11. 

Graph 5 gives us an idea of the performance of the three input methods. The blue line 

representing walking is very close to the red line representing standing. There is plainly 

very little difference between the times for standing and walking while using each device, 

suggesting there is no interaction between the type of device and the movement 

condition. On further visual examination of the graph we can see that it looks as though 

the voice recognition system used was almost five times slower than the stylus, while the 

off-table mouse was twice as slow. 
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Marginal Means of Measure 
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Graph 5: Wearable target selection (Device types against time). 

The descriptive statistics in Table 5 further illustrate the points made about the graph. We 

can see that the mean total speeds for standing and walking are very close, but we must 

look at the next table (Table 5) to see if there is s ignificance. In terms of speed the stylus 

was the fastest, the off-table mouse was almost twice as slow and voice recognition was 

the slowest. 
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Descriptive tatistics time (ms) 

TYPE Mean Std. Deviation N 

Total stand time as h of secs Mouse 19251.00 4301.30 I 10 

Stylus 8803.40 1026.328 10 

Voice 49471.60 9303.794 10 

Total 25842.00 18454.200 30 

otal time walk in h secs Mouse 2224 1.80 5673.953 10 

Stylus 9198.30 1365.000 10 

Voice 50866.30 9024.643 10 

Total 27435.47 18685.449 30 

Table 5: Wearable target selection. (Mean-Time) 

The table shows the mean times for the three input devices whi le standing and walk ing 

with standard deviations. 

Table 5.1 shows there is a significant main effect of 'moving' (F (I ,27)= 12.960, p<0.05). 

Standing was significantly faster than walking in relation to all the input methods, as 

illustrated in the descriptive results. There was no significant interaction displayed 

between 'moving' and 'type' with (F(2,27= 2.917, p > 0.05 (0.07 1). 

Tests of Within-Subjects Contrasts 

Source 
Type ill Sum of 

df Mean Square F Si g. 
Squares 

MOVE P8087040.267 I 38087040.267 12.960 .00 1 

~OVE* 
171 43053.433 2 8571526.717 2.9 17 .07 1 

ifYPE 

Error(MOVE) ~9345168.300 27 2938709.937 

Table 5.1: Wearable target selectiOn. (Movement) 
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5.5.1 Input Method (TYPE) 

In re lation to Table 5.2, a highly significant main effect of 'device' was found (F (I ,27) = 

126.80, p<O.O I) with the stylus being faster than the off-tab le mouse and voice 

recognition. 

Tests of Between-Subjects Effects 

Source lfype lll Sum of Squares ~f Mean Square F Si g. 

Intercept 1425773268 I 6.267 I 425773268 16.267 ~00.244 .000 

TYPE 17989712339.433 ~ 8994856169.7 17 126.807 .000 

Error 19 1520 1326.300 ~7 70933382.456 

Table 5.2: Wearable target selection. (Input Type) 

5.5.2 Post-hoc Tests 

The post-hoc test further illustrates the significant main effect of 'TYPE (input 

method/device) and provided a set of pairwise comparisons. Each comparison was highly 

significant at p<O.O I. So overall the three input methods we have evaluated are 

significantly different from each other in terms of speed of use. 
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Multiple Comparisons 

Tukey HSD 

(J) TYPE ~J) TYPE 

Mouse Stylus 

Voice 

Stylus Mouse 

!Voice 

Voice !Mouse 

Stylus 

Mean Difference 

(1-J) 

11745.55 

29422.55 

I 1745.55 

H-1168.10 

~9422.55 

~ 11 68.10 

Table 5.3: Wearable target selection. (Post-hoc) 

5.5.3 NASA TLX 

Si g. 

p<O.OI 

p<O.OI 

p<O.OI 

p<O.OI 

p<O.OI 

p<O.OI 

p<O.OI 

After the task was completed the participant completed a NASA TLX assessment to give 

a cognitive workload rating known as a weighted workload or WWL. NASA TLX is a 

system for assessing the participant's subjective workload . It derives a weighted 

workload (WWL) from the way the participants rate s ix subscales: mental demands, 

physical demands, temporal demands, participant's performance, effort, and frustration. 

For the workload result it is the case that the lower the score the lower the workload. 

5.5.4 Workload Results 

The Graph 5.1 (below) gives us an intuitive insight into the results. The graph shows each 

of the six subscales along with the weighted workload. We can clearly see that the 

work load is much higher for voice, with stylus having the lowest workload and the 

mouse scores were in between. lt is interesting to note that a lower time relates to a lower 

task load in this study. 
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Graph 5.1 : Wearable target selection. (Workload) The graph below shows each of the six 

NA A TLX subscales as scored (mean) by each of the input device groups. 

60r----------------------------. 

c: 
11) 
Q) 

60 

40 

20 

~ 0 

Key: 

Mouse 

TYPE 

TLX MD = Mental 

Demands 

TLX EF = Effort 

TLX_ WWL = Weighted 

Work load 

Stylus Voice 

TLX_ PD = Physical 

Demands 

TLX OP = Performance 

TLX _TO = Temporal 

Demands 

TLX RF = Frustration 

The Tukey HSD post-hoc analysis broke down the ANOVA table further and does a 

complete set of pairwise comparisons. From this table we can ascertain that there is 

highly significant difference between voice and tylus p<O.O I, voice and mouse p<O.O I 

and mouse and stylus p<0.05. 
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Tukey HSD Pairwise Comparisons 

TYPE 1~J) TYPE Mean Difference 

Mouse !Stylus 19.7000 

Voice 35.5000 

Stylus Mouse 19.7000 

Voice 55.2000 

Voice Mouse p5.5ooo 

Stylus ~5.2000 

Based on observed means. 

* The mean difference is significant at the .05 level. 

Table 5.4: Wearable target selection. (Workload) 

5.6 Discussion 

Sig. 

.003 

.000 

.003 

.000 

.000 

.000 

After examining the results we can reject the first and third of the null hypotheses. 

The pointer type does not affect the time taken to complete the text input tasks. The 

method of input does affect the input time significantly (F (I ,27) = 126.80, p<O.O I). rt 

was clear to see from a comparison of the mean time that using voice recognition took 

s ignificantly longer to select targets than both off-table mouse and stylus. Although errors 

were not dependent variables in this assessment, they did play a key part in the reason 

that it took so long to select targets using voice. lt was noted that one person said the 

same word 22 times before they had to resort to touching the screen to move onto the 

next target. All of the users using voice for target selection had to touch the touch screen 

at least once, because the voice recognition was not recognising their command. From 

these actions, it may be suggested that voice recognition is not appropriate in a ' hands 

free environment as this experiment clearly demonstrated that the recognition rate will 

have an impact upon the user's ability to perform the task that they want to accomplish. 

This could have contributed to the high score that voice recognition also got on the 

NASA TLX assessment. When we look at the graph 5.1, at a glance we can see that the 

mental demands and physical demands are not substantially different when we compare 
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the off-tab le mouse and voice recognition, but the performance and frustration are much 

higher and overall significantly higher. Using th is system could prove extremely 

problematic in terms of time and recognition errors putting an undue amount of stress and 

pressure on the user. These trials were carried out with no background noise, so one can 

only imagine the effect of a high level of background noise on a system already having 

difficulty recognising the user's commands. 

We could not reject the null hypothesis number 2 (2. The movement condition of the 

participant standing and walking has no effect on the time took to complete the task.) as 

there was no significant effect of movement. This in part was due to the fact that it was 

noted that some participants walked around the objects very slowly so as to avoid the 

obstacles in their path and still do their task. 

We can reject the third null hypothesis number 3 (3. The pointer type does not affect the 

subjective task load of the participant.), as there is a s ignificant difference between the 

three different input methods. With the difference between voice and the stylus and off 

table mouse being highly significant at p<O.O I, while a little less significant between 

mouse and stylus at p<0.03. 

5.7 Conclusion 

ln conclusion, the slow results recorded from voice recognition have led us to decide to 

eliminate it from the next set of pointer trial s because of its poor performance and high 

cognitive workload rating. It may be one of the few viable ways of total hands-free 

interaction along with gaze control, but for further trials it would bias the resul ts too 

heavil y. It may be that after a sustained period of use that its error rate would go down, 

but these experiments used novice participants to complete the tasks. This suggests the 

need for more real world trials on voice recognition systems in the field , w ith an 

emphasis on its use whi le users are mobile. 
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We have found from this experiment that the stylus was the fastest method of selecting 

targets and had the lowest cognitive workload; the second fastest was the off table mouse 

in terms of speed and cognitive workload. Voice recognition was the worst of the three. 

After the trial s it became clear that there were three other areas that we could further 

explore and examine. The first area that we will include in the next level of 

experimentation is error rates, so we can see how many errors a user makes with a given 

pointing device and thereby examine if there is any relation between movement, device 

and error rate. The second area of development is using a NASA TLX assessment on 

both movement conditions of the next experiment instead of an overall assessment. This 

wou ld g ive us the ability to use the data in a mixed factorial ANOVA to examine whether 

movement has an effect on the workload rating. The next experiment will also be made 

longer and have a higher level of difficulty, by giving the participants more targets to 

select and also different s izes of targets. The decis ion was also made to replace the 

speech recognition system with a track-pad (sometimes known as a touchpad) as these 

had been used in previous wearable systems (Blask6 and Feiner 2002; Thomas, Grimmer, 

Zucco and Milanese 2002). 
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Appendix 5.1 

The table be low shows the Time for the initial target selection experiment in Appendix 5. 
The table shows the time for the participants while both standing and walking. 

Participant Time Time 
Speech Stand Wa lk 

1 54696 54943 
2 41968 42434 
3 51756 52074 
4 36435 36998 
5 54489 54054 
6 39296 39147 
7 46342 53809 
8 65480 65523 
9 44664 49895 

10 59590 59786 

Off-Table 
Mouse 

1 18250 22598 
2 28616 31487 
3 24000 27432 
4 15806 18208 
5 17286 20356 
6 20749 21784 
7 16965 14757 
8 13728 14062 
9 18016 27861 

10 19094 23873 

Stylus 
1 8800 8789 
2 8676 10659 
3 9586 9597 
4 6497 6171 
5 9851 10277 
6 8567 8733 
7 9112 9492 
8 10086 10857 
9 8853 9172 

10 8800 8789 
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The tab le below shows the workload score and six sub-scale scores for Appendix 5, the 
dragging and dropping experiment. 

Key: 
md = mentaJ demands, pd = physical demands, td = temporal demands, ef = effort, pe = 
performance and rf= frustration. 

Participant md Pd td ef pe rf WWL 
Speech 

1 40 5 85 85 75 85 81 
2 20 5 35 20 75 70 40 
3 60 50 40 70 80 85 74 
4 20 45 90 75 80 75 69 
5 60 60 90 60 85 90 79 
6 15 25 60 60 65 25 43 
7 15 30 55 80 65 60 51 
8 55 55 60 55 55 55 55 
9 20 30 45 80 55 90 70 

10 55 55 65 70 100 100 83 

Off-table 
mouse 

1 10 15 15 15 50 20 18 
2 10 15 15 15 35 35 22 
3 40 25 10 30 15 10 16 
4 20 25 25 35 40 45 35 
5 10 25 30 20 25 5 23 
6 15 25 30 35 25 20 26 
7 10 25 50 30 20 20 31 
8 40 15 55 30 15 20 36 
9 25 65 60 60 45 45 54 

10 20 40 35 25 15 15 29 

Stylus 
1 5 5 5 5 5 5 5 
2 5 5 5 5 10 5 5 
3 10 20 5 25 5 5 13 
4 5 10 5 5 15 5 6 
5 5 5 5 5 5 5 5 
6 5 5 5 5 5 5 5 
7 5 5 5 5 5 5 5 
8 25 30 10 45 15 30 24 
9 5 5 15 30 30 20 19 

10 5 5 5 5 5 10 6 
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Appendix 6. 

The subject instructions given to the part1c1pants before they complete a workJoad 
assessment (as stipulated by the software instructions). 

Subject Instructions: Ratings (Mouse Version) 

We are interested not only in assessing your performance but also the 
experiences you had during the different task conditions. Right now we are going 
to describe the technique that will be used to examine your experiences. In the 
most general sense we are examining the "workload" you experienced. Workload 
is a difficult concept to define precisely, but a simple one to understand generally. 
The factors that influence your experience of workload may come from the task 
itself, your feelings about your own performance, how much effort you put in, or 
the stress and frustration you felt. The workload contributed by different task 
elements may change as you get more familiar with a task, perform easier or 
harder versions of it, or move from one task to another. Physical components of 
workload are relatively easy to conceptuali1ze and evaluate. However, the mental 
components of workload may be more difficult to measure. 

Since workload is something is experienced individually by each person, there 
are no effective "rulers" that can be used to estimate the workload of different 
activities. One way to find out about workload is to ask people to describe the 
feelings they experienced. Because workload may be caused by many different 
factors, we would like you to evaluate several of them individually rather than 
lumping them into a single global evaluation of overall workload. This set of six 
rating scales was developed for you to use in evaluating your experiences during 
different tasks. Please read the descriptions of the scales carefully. If you have a 
question about any of the scales in the table, please ask me about it. lt is 
extremely important that they be clear to you. You may keep the descriptions 
with you for reference during the experiment. 

After performing the task, six rating scales will be displayed. You will evaluate the 
task by marking each scale at the point which matches your experience. Each 
line has two end point descriptors that describe the scale. Note that "own 
performance" goes from "good" on the left to "bad" on the right. This order has 
been confusing for some people. Move the arrow to the right or left with the 
mouse until it points at the desired location. When you are satisfied, press either 
button to enter your selection. Please consider your responses carefully in 
distinguishing among the task conditions. Consider each scale individually. Your 
ratings will play an important role in the evaluation being conducted, thus your 
active participation is essential to the success of this experiment, and is greatly 
appreciated. 
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Appendix 6.1 
The Nasa TLX rating scale definitions that were given to the participant with the subject 
instructions 

I 

RATING SCALE DEFINITIONS I I 
I 

Title 

MENTAL DEMAND 

PHYSICAL DEMAND 

TEMPORAL DEMAND 

EFFORT 

PERFORMANCE 

I 
FRUSTRATION LEVEL 

Alan Chamberlain 

I 

I 

Endpoints 

Low/High 

Low/High 

Low/High 

Low/High 

Good/Poor 

Low/High 

Descriptions 
jHow much mental and perceptual activity 
w as requ ired (e.g., thinking, deciding, 
calculating, remembering. looking, 
searching, etc.)? Was the task easy or 
demanding, simple or complex, exacting or 
forgiving? 

How much physical activity was requ ired 
(e.g., pushing, pulling, turning, controll ing. 
activating. etc.)? Was the task easy or 
demanding, slow or brisk. slack or 
strenuous, restful or laborious? 

How much time pressure did you feel due 
to the rate or pace at which the tasks or 
task elements occurred? Was the pace 
slow and leisurely or rapid and frantic? 

How hard did you have to work (mentally 
and physically) to accomplish your level of 
performance? 

How successful do you think you were in 
accomplishing the goals of the task set by 
the experimenter (or yourself)? How 
satisfied were you with your performance 
in accomplishing these goals? 

How insecure: discouraged: irritated; -1 
stressed and annoyed versus secure, 
gratified. content. relaxed and complacent 
did you feel during the task? 
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Appendix 6.2 

An example of the NASA TLX assessment completed by all of the participants. This 
shows the six scales that the user uses to rate the ir workload (High or Low). This is 
provided with the instructions of the computerised version of NASA TLX. This is 
provided to ill ustrate what the participants saw on screen when using this system. 

MENIAL DE?.IAND 

I I I I I I I I I 
Low 

PHYSICAL lEl'tiAND 

I I I I I I I I I 
Low 

TErt1PCR..q. DEMAND 

I I I I I I I I I I 
Lo\V 

EFPOKI 

I I I 

PERF~L'\NCE 

I I I I I I I I I 'I I I I I I I I I I I 
~d ~r 

FRUr,7RATION 

I I I I I I I I I I I I I I I I I I I I I 
IA.v High 
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Appendix 7. 

These are the participant instructions for Chapter 3. 
Text input 
I. Jnstructions to Participants 

Dear participant 

Thank you for your time and supporting our research. 

After a training session we will start the experiment. You will be able to ask any 

questions prior to the start of the experiment to make sure that you fully 

understand the task that you are to accomplish. 

There are two parts to this experiment. The experiment will be done while 

walking around road cones placed in your path (figure of eight style as 

demonstrated by the experimenter) and while standing stationary. You will be 

told the order in which you will do each of these prior to the experiment. 

The aim of this experiment is to copy text. In order to complete your task you 

must copy the text displayed on the screen using the device you used during 

your training . You must not correct any mistakes that you may make while 

copying the text or stop if you are walking. 

The experimenter will tell you when you can start the task, when you have 

finished the task simply say, 'stop'. You will be wearing a vest-based computer 

while completing the tasks. 

After completing each part of the experiment you will be asked to complete a 

NASA TLX assessment. 

Do you have any questions? 
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These are the participant instructions fo r Chapter 4. 

Target Selection. 
1. Instructions to Participants 

Dear participant 

Thank you for your time and supporting our research. 

After a training session we will start the experiment. You will be able to ask any 

questions prior to the start of the experiment to make sure that you fully 

understand the task that you are to accomplish . 

There are two parts to this experiment. The experiment will be done while 

walking around road cones placed in your path (figure of eight style as 

demonstrated by the experimenter) and while standing stationary. You will be 

told the order in which you will do each of these prior to the experiment. 

The aim of this experiment is to use the input device, which you earlier used in 

the training session to select the targets that appear on the vest-mounted screen. 

Select all the targets that will appear in a random order upon the screen. 

The experimenter will tell you when you can start the task, when you have 

finished the task simply say, 'stop'. You will be wearing a vest-based computer 

while completing the tasks. 

After completing each part of the experiment you will be asked to complete a 

NASA TLX assessment. 

Do you have any questions? 
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T hese are the participant instructions for Chapter 5. 

Dragging and Dropping 
1. Instructions to Participants 

Dear participant 

Thank you for your time and supporting our research. 

After a training session we will start the experiment. You will be able to ask any 

questions prior to the start of the experiment to make sure that you fully 

understand the task that you are to accomplish. 

There are two parts to this experiment. The experiment will be done while 

walking around road cones placed in your path (figure of eight style as 

demonstrated by the experimenter) and while standing stationary. You will be 

told the order in which you will do each of these prior to the experiment. 

The aim of this experiment is for you to drag and drop the items that appear upon 

the vest-mounted screen as in the training session. You will use the same input 

device that you used in the training session. 

The experimenter will tell you when you can start the task, when you have 

finished the task simply say, 'stop'. You will be wearing a vest-based computer 

while completing the tasks. 

After completing each part of the experiment you will be asked to complete a 

NASA TLX assessment. 

Do you have any questions? 
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These are the participant instructions for Chapter 6. 

Trajectory-Based Interaction. 
1. Instructions to Participants 

Dear participant 

Thank you for your time and supporting our research. 

After a training session we will start the experiment. You will be able to ask any 

questions prior to the start of the experiment to make sure that you fully 

understand the task that you are to accomplish. 

There are two parts to this experiment. The experiment will be done while 

walking around road cones placed in your path (figure of eight style as 

demonstrated by the experimenter) and while standing stationary. You will be 

told the order in which you will do each of these prior to the experiment. 

The aim of this experiment is for you to steer through the tunnels that appear 

upon the vest-mounted screen as was done in the in the training session. You 

will use the same input device that you used in the training session. 

The experimenter will tell you when you can start the task, when you have 

finished the task simply say, 'stop'. You will be wearing a vest-based computer 

while completing the tasks. 

After completing each part of the experiment you will be asked to complete a 

NASA TLX assessment. 

Do you have any questions? 
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