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Abstract

Modern system-on-chips augment their baseline CPU with coprocessors and accelerators to

increase overall computational capacity and power efficiency, and thus have evolved into

heterogeneous systems. Several languages have been developed to enable this paradigm

shift, including CUDA and OpenCL. This thesis discusses a unified compilation environ-

ment to enable heterogeneous system design through the use of OpenCL and a customised

VLIW chip multiprocessor (CMP) architecture, known as the LE1. An LLVM compilation

framework was researched and a prototype developed to enable the execution of OpenCL

applications on the LE1 CPU. The framework fully automates the compilation flow and

supports work-item coalescing to better utilise the CPU cores and alleviate the effects of

thread divergence. This thesis discusses in detail both the software stack and target hard-

ware architecture and evaluates the scalability of the proposed framework on a highly precise

cycle-accurate simulator. This is achieved through the execution of 12 benchmarks across

240 different machine configurations, as well as further results utilising an incomplete devel-

opment branch of the compiler. It is shown that the problems generally scale well with the

LE1 architecture, up to eight cores, when the memory system becomes a serious bottleneck.

Results demonstrate superlinear performance on certain benchmarks (x9 for the bitonic sort

benchmark with 8 dual-issue cores) with further improvements from compiler optimisations

(x14 for bitonic with the same configuration).
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Problem Formulation

For several decades, since the inception of integrated circuits, transistors continued to shrink

exponentially while maintaining the same power density [1][2]. This enabled reductions in

power requirements, as the voltage and current demands both decreased with area, and

also enabled higher clock frequencies. These two characteristics of shrinking transistors

and maintained power density are respectively known as Moore’s Law and Dennard scaling.

Power in a digital circuit is composed of both its static and dynamic power. Static power

is the energy that is wasted while trying to maintain state between switching states, and is

caused by leakage current due to thermal excitations and quantum tunnelling. Where C is

capacitance, Vdd is the the supply voltage and f being operating frequency, dynamic power

(Pd) is given by [3]:

Pd = CV 2
ddf (1.1)

As transistors shrank, capacitance also diminished along with the supply voltage; al-

lowing faster operating frequencies. With higher clock frequencies and more integrated

functionality, processing capacity also increased exponentially with the reducing transistor

size. For the software engineer, performance increase for their codes came for free, as mi-

croprocessors starting executing more simultaneous operations and at an increased rate.

This type of parallelism is called instruction-level parallelism (ILP) and is utilised by having

multiple functional units and usually some complex scheduling hardware. Segmenting the

functional units into stages, called pipelining, allows for further ILP as multiple instructions

can occupy different stages of the pipeline. This also allows for higher clock frequencies.

However, shrinking transistor size also led to an increase in static power as more leakage

1



CHAPTER 1. INTRODUCTION

current was induced; as such Dennard scaling stopped around 2005 [4]. It has been suggested

that high-performance scaling for double-gate FinFET designs would cease between 12 and

15nm, and both IBM and Intel are now releasing tri-gate FinFET microprocessors at 14nm

[5].

With the possible physical properties of silicon being realised, computer architectures

have had to scale up performance in different ways, rather than relying on faster operating

frequencies and ILP exploitation of uniprocessors. The initial solution was to instantiate

multiple processing cores on the silicon and/or have the cores running multiple threads of

execution; today this is the ubiquitous paradigm of computing. The exploitation of this type

of thread-level parallelism (TLP), does however require effort from the software developer and

requires new languages, or extentions to traditional ones. As power densities have risen, new

techniques have been required to keep microprocessors cool enough to operate. This power

requirement can be maintained by using different power states, where the microprocessor

operates at different frequencies and voltages as well as powering down parts of the device

when unneeded. This allows a device to reduce operating power when less work is required,

but also to use short bursts of higher power to meet performance requirements while staying

within the power envelope, termed thermal dynamic power (TDP). Switching off parts of the

device leads to ’dark silicon’ because though the device has the silicon capacity, it doesn’t

have the capacity to dissipate the heat, which utimately limits the capabilities [6].

The latest paradigm shift to emerge is the use of coprocessors to offload computation

away from the host CPU. This type of execution has been developed because most common

programs are still dependent on single-threaded performance, and so common CPUs are

designed to support those applications. However, some computationally intensive codes are

highly parallel and these types of applications are becoming more popular; as the world gen-

erates and processes more data. So modern computers need to accelerate in both single- and

multi-threaded workloads. Coprocessors are generally comprised of many, simple, cores and

are designed as throughput devices, but this has required algorithms to be re-implemented

for the vastly different architectures. The algorithms generally use divide-and-conquer tech-

niques to split the work across those cores and explicitly identify both thread- and data-level

parallelism. A key problem with this paradigm is that data has to be transferred between

the host and the accelerator, but this is being addressed through modifications to language

standards and the inception of the Heterogeneous System Architecture (HSA) [7].

1.2 Aims and Objectives

The aims of the research conducted are:

• Enable OpenCL compilation for custom VLIW Chip-Multiprocessor (CMP).
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• Enable execution of OpenCL kernels on a FPGA platform.

• Extensively benchmark the CPU as this has not been previously performed.

Objectives:

• Implement C compiler backend for unique VLIW CMP.

• Investigate parallel computing techniques.

• Develop an OpenCL library to support parallel computing on the VLIW CMP.

• Investigate compiler performance across varying microarchitecture configurations of

the configurable VLIW CMP.

• Investigate whole system performance of the VLIW CMP.

The objectives are based around creating a toolchain to enable the execution of explicitly

parallel programs upon a unique, and configurable, VLIW CMP. The majority of parallel

languages can be accessed using the C programming language and they also generally require

some form of runtime support. This requires that not only does the high-level language need

to be compiled for the target, but an execution framework also needs to be developed to

fully enable the programs to run.

1.3 Outline of Areas of Research

This section aims to give the reader an overview of the main areas of research where work

was conducted through this thesis.

1.3.1 Parallelism

Exploiting parallelism in code is the fundamental technique for modern microprocessors to

achieve their required performance. The three types of parallelism are instruction-level,

data-level and thread-level and most modern microprocessors will address all these levels

of parallelism. In the 1960s, Flynn coarsely categorised computer architectures, which still

helps describe the type of parallelism that they exploit [8]. The three key categories are:

• SISD - single instruction stream, single data stream which are capable of extracting

instruction-level parallelism from independent instructions within a single stream.

• SIMD - single instruction stream, multiple data stream where a single instruction will

operate on multiple data elements simultaneously as the data elements are parallel.
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• MIMD - multiple instruction stream, multiple data stream computers describe the

execution of multiple programs, processes or threads that operate on independent

data.

Another important execution model that has become particularly popular recently is

single program, multiple data (SPMD) which utilises a single instruction stream but op-

erates on multiple data elements from different threads. This type of execution model is

commonly used in graphic processing units (GPUs) and will be discussed in Section 2.4.1.

The use of GPUs for general purpose programming has also resulted in the introduction

of new programming languages and application programmable interfaces (APIs); the next

subsection will discuss both traditional and more recent methods of parallel programming.

Instruction-Level Parallelism (ILP) describes that some instructions will be independent

of one another and so can execute in parallel. This can be achieved in hardware by in-

cluding multiple functional units for the instructions to occupy concurrently and by also

pipelining the microprocessor to have multiple instructions in-flight, but at different stages.

This type of parallelism is implicit, the exploitation is the task of the compiler and/or the

microprocessor, so no effort from the programmer is needed. Microprocessors that rely on

the ILP discovery at compile-time are termed Very Long Instruction Word (VLIWs), and

are discussed in Section 2.3. Dynamically scheduled ILP processors are called superscalars,

which are discussed in Section 2.2.2.

Data-Level Parallelism (DLP) arises when multiple data elements can be operated inde-

pendently on at the same time. Vector supercomputers exploit DLP, as do microprocessors

that have SIMD instructions in their ISA and these will be discussed in Section 2.2.3. This

type of parallelism often needs to be identified by the programmer and they also usually

have to design their program for the underlying architecture. DLP can be found via the

compiler, although auto-vectorisation techniques are an ongoing research topic [9].

Thread-Level Parallelism (TLP) has become particularly important in the last decade,

as uniprocessor clock rates plateaued and the limits of ILP had also been discovered. TLP

allows programs to be split into independent parts, to be operated on by multiple processors.

TLP could also describe task-level parallelism in which multiple independent programs, or

processes, can operate simultaneously on different data streams. This type of parallelism

is also explictly identified by the programmer, and a key role of an operating system is to

handle multiple processes. Multiprocessors and multithreading will be discussed in Section

2.2.4.
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1.3.2 Compilers

Computer programs can be written in three forms: machine code (binary), the architecture’s

assembly language, or a higher level language such as C or Java. Writing machine code is

only necessary in the absence of an assembler, which is very uncommon. High-performance,

target specific codes and libraries, are often still written in assembly language [10][11].

However, most programs are written in higher level languages since they are more portable,

quicker to write and easier to debug. It is the job of the compiler to translate higher level

languages, via a series of stages or phases, into object code or machine language. Any basic

compiler needs to have at least four phases [12]:

• lexical analysis which analyses the character strings presented to it and checks whether

they are valid for the language,

• syntactic parsing which produces an intermediate-level representation and a symbol

table of identifiers,

• static-semantic validity which checks that the intermediate code satisfies source lan-

guage properties,

• the code generator which transforms the intermediate code into machine language.

Another phase that is essential to any modern compiler is the optimisation phase, and so

a compiler can be logically split into three parts: the front-end, the high-level optimiser and

the back-end. The front-end is language specific and organises the human-readable form into

an intermediate representation (IR) and performs some language-specific optimisations. The

high-level optimiser is responsible for machine-independent code transformations, including

loop-level transformations, constant propagation and dead code elimination. The back-end

is machine-specific and translates the IR into machine code and can perform machine-specific

optimisations.

1.3.3 Heterogeneous Computing

Heterogeneous computing describes computer systems that comprise of two or more dif-

ferent computer architectures. These have been introduced as single-threaded performance

improvements have slowed dramatically, with the failing of Dennard scaling. As well as the

failing of Dennard scaling, another recent change in the microprocessor ecosystem is the kind

of computation commonly being performed, as well as the amount of data being processed.

In the consumer domain, the greatest growth is in smart mobile devices where graphics and

camera performance are key. The business and server segments are heavily biased towards
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Big Data [13] whereas supercomputers are used for evermore complex simulations [14][15].

These three market segments, consumer (embedded), server and supercomputing, target not

only processing system raw performance but, equally importantly, power consumption. In

that respect, HPC vendors had already moved away from bespoke vector computers to com-

modity x86 parts, as these were cheaper and more efficient [16]. With the introduction of

General-Purpose Graphics Programming Units GPGPUs and the release of the proprietary

API CUDA from NVIDIA, a trend towards the universal use of Graphic Processing Units

(GPUs) in all these market segments is emerging.

The Open Compute Language (OpenCL [17]) was proposed as an open standard API

for general-purpose computing across CPUs, GPUs and other accelerators in response to

CUDA’s performance advantage on NVIDIA-only hardware. This was standardized by the

Khronos Group and nowadays, OpenCL drivers are offered by all the major graphic processor

designers such as AMD, Intel, and Qualcomm [18]. Unlike CUDA, OpenCL is target agnostic

which has enabled the emergence of an OpenCL implementation ecosystem around not

only GPUs but also CPUs and Field-Programmable Gate Arrays (FPGAs). Heterogeneous

computing is used to create some of the most powerful and efficient supercomputers [19][20],

but is also utilised in low-power devices, such as smartphones, through the use of OpenCL,

CUDA and RenderScript [21].

1.4 Contributions of Thesis

The work presented in this thesis focuses on OpenCL compilation for a configurable VLIW.

This has been achieved through the use of fully programmable, FPGA-based, configurable

VLIW CMP as the target hardware platform. The developed toolchain implements a runtime

driver that enables the programmer to compile and execute OpenCL kernels using the VLIW

CMP as an accelerator. The main contributions made within this thesis are as follows:

Automatic Compilation Methodologies: A compiler backend for our in-house VLIW

CMP has been implemented and incorporated into an OpenCL driver which has also been

developed. This enables the programmer to select a target, from a multitude of system

configurations, to execute the OpenCL kernels upon.

SPMD Methodologies: The compiler has been developed to contain unique intrinsics,

accessed via a custom runtime library, to enable the execution of OpenCL kernels on the

target. A method of statically scheduling work across multiple cores has also been developed.

Source Transformer: To enable execution of OpenCL programs on the VLIW CMP,

it has been necessary to transform the kernel code. The source-to-source transformer has

been implemented to perform this automatically and produces code that is generic, so could

be used on other shared memory multiprocessors.
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1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 is a detailed survey into how computer architectures exploit various forms

of parallelism to increase single threaded execution speed, throughput and efficiency.

• Chapter 3 reviews the programming languages and software required to develop par-

allel applications on modern CPUs, accelerators and FPGAs.

• Chapter 4 summarises the background review and identifies the area of research that

this thesis focuses on.

• Chapter 5 provides an indepth description of the compiler for the LE1.

• Chapter 6 describes the OpenCL driver for the LE1, for which the compiler is an

essential component.

• Chapter 7 presents results and analysis from executing industry standard benchmarks,

using the researched driver, on a cycle accurate simulator.

• Chapter 8 concludes this research and proposes possible extensions to the work.

7
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Chapter 2

Parallel Computer

Architectures

2.1 Chapter Objectives

The objective of this chapter is to give an overview of existing computer architectures and

styles and how they exploit different types of parallelism to improve throughput and ef-

ficiency. The chapter also contains an in-depth history of the development of the VLIW

architecture and how they are used today, with some modern architecture examples includ-

ing the configurable VLIW CMP that the research in this thesis is based upon. The focus of

modern architectures is still to continue improving throughput and execution, but also with

a keen focus on power consumption and heat dissipation. Heterogenous computer architec-

tures and hardware/software codesign are also introduced as these modern approaches aim

to target both criteria.

2.2 Architecture Styles and Features

Modern CPUs still predominantly focus on improving single threaded performance and this

is achieved through concurrently executing multiple instructions and reducing the number

of stalls when accessing memory. Originally microprocessor designers aimed to achieve

higher performance through the use of multiple, pipelined, functional units to better utilise

the hardware to have multiple instructions in-flight. This section will introduce numerous

methods, and implementations, for exploiting the various levels of parallelism identified in

Section 1.3.1: with dynamic scheduling of multiple instructions, extensions to instruction

sets to exploit DLP and the execution of multiple concurrent tasks.

8
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2.2.1 Memory Hierachy

Main Memory

CPU

I D

L2 Cache

Flash Storage

Capacity Latency

Flash 4 - 64 GB 25 - 50us

Main Memory 1 - 3 GB 50 - 100ns

L2 Cache 100’s KB 10 - 20ns

L1 Cache 10’s KB 2ns

Registers 100’s B 500ps

Figure 2.1: Memory hierachy in a modern smartphone.

As shrinking transistor sizes improved CPU performance exponentially, through faster

clocks and more functional units, memory capacity also increased, however memory latency

did not improve at the same rate as CPU frequency. This led to a significant performance

bottleneck and so memory hierarchies were introduced into computer systems to help min-

imise the effect of slower memories. Figure 2.1 shows a typical, simplified, memory hierarchy

of a modern smartphone, the added complexities of caches in multi-core systems will be fur-

ther discussed in Section 2.2.4.1. The diagram shows that there are several levels, each

getting larger, slower and cheaper the further away it is from the processor. CPU caches are

implemented in SRAM as these are faster and require less power while DRAM is used as

main memory because it is much more dense and cheap, but at the cost of speed and power

requirements [22]. These characteristics lead to the tiered heirachy.

The purpose of the caches are to exploit spatial and temporal locality so that data that

are likely to be needed by the processor, are closer to it. The latencies of the higher levels

of memory can be hidden by keeping the required data in the nearest cache, and by keeping

the lower caches small, the faster they can operate.
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2.2.2 Superscalar Execution

In Sections 2.3 and 3.3, an in-depth introduction will be given into the methods used by

VLIW architectures, and their compilers, to statically exploit ILP at compile time. ILP can

also also be identified at runtime by the hardware and this type of processor is termed a

dynamically scheduled superscalar. They too have multiple functional units, but also include

additional hardware to resolve dependencies at runtime. Though this makes the hardware

more complex, superscalars have the advantage of being able to react, and predict, runtime

hazards such as branches and cache misses. There are two execution models for superscalars:

in-order, where instructions are issued and executed in program order, and out-of-order in

which instructions are fetched in-order but can execute and finish out of program order.

The original superscalar computer, in the 1960’s, was the in-order CDC-6600 [23]. Su-

perscalars remained exclusive to the supercomputer market until they were introduced to

workstations in the early and mid-1990’s with the IBM RS/6000 (POWER1)[24] and the

MIPS R10000 [25], which were capable of dispatching four instructions per cycle. Both archi-

tectures supported superscalar execution by using separate functional units and associated

register files, speculative instruction dispatch and register renaming. Register renaming

requires that there are more physical registers than architected so as instructions are re-

ordered, their values can be stored in other registers to maintain the correct read/write

ordering. Renaming also requires a table to map architected registers to physical ones and

a list or queue of free registers. Executing instructions out-of-order requires that all the

statuses of the in-flight instructions are maintained during their lifetime and may require

additional queue structures. Out-of-order Superscalars have remained the most popular ar-

chitecture style, with Intel’s current Haswell microarchitecture having a four wide in-order

instructon fetch engine that can dispatch up to eight instructions per clock [26]. To utilise

this width, complex branch predictors and loop detectors are required so that many instruc-

tions are available to the hardware scheduler.

However, superscalar architectures are now also implemented in low power and embedded

systems too. The ARM Cortex-A15 is a high-performance, low-power, 32-bit microprocessor

designed for smartphones. It has an out-of-order superscalar engine with pipelines that vary

between 15-24 stages [27][28]. The instruction fetch unit can feed three instructions to the

decode unit and also contains branch prediction hardware. The decode unit performs register

renaming and also contains a loop buffer to reduce power consumption in small instruction

loops. Three instructions are then dispatched to the execution cluster queues on each cycle.

The clusters are split by functionality: simple integer ALU, floating-point / vector, branch,

multiply / divide and load/store. The load/store cluster enables out-of-order loads, but

they cannot bypass stores, while stores issue in order but only require the address source
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to issue. The Cortex-A7 is functionally compatiable with A15, however it is designed to be

more power efficient than the A15; it is an 8-stage, partial dual-issue, in order superscalar

[29]. This difference results in the A15 operating at ∼6x higher dynamic power than the A7

and occupying 5x the area [30].

2.2.3 Vector Processing

Vector processors exploit data-level parallelism to speed up execution, by issuing single

instructions that operate across multiple data elements. They are characterised by high

bandwidth requirements, wide registers and a high-throughput but at the cost of a startup

delay. Multiple pipelines can be incorporated to allow multiple instructions to be issued, and

those pipelines can be split into lanes to operate on multiple data elements simultaneously

to further increase IPC. Their well defined partitioning of the register file and pipelines,

shown in Figure 2.2, reduces complexity and allows vector architectures to easily increase

throughput.

Vector processors include registers that enable clean computation of varied length arrays

and sophisticated memory accesses to increase the amount of code that can be vectorised

[31]. Designated registers are used to:

• set the length of the vector to perform the calculation on,

• perform conditional operations across elements,

• set the stride length of a memory access to aid the vectorisation of multidimensional

arrays,

• set an index vector for gather-scatter memory accesses.

Vector processors, especially from Cray and later NEC, represented the most powerful

supercomputers from the 1970s through to the 1990s [32][33]. The size and cost of vector

processors confined them to supercomputers, but as transistor sizes shrank and became

cheaper, vector processing become viable for the wider market. Multimedia applications

drove the inclusion of instruction set extensions for x86, from MMX [34] up to the current

day AVX [35], and has seen adoption for all popular general-purpose architectures too.

These instructions are generally termed as SIMD extensions.

The most basic of SIMD extensions, such as those included in the ARMv6 ISA [36] and

Intel MMX [37], simply partitioned existing register and pipelines to operate on multiple,

smaller data elements, as many graphic and audio applications operate on 8- or 16-bit data

instead of the full 32- or 64-bit native width. Later extensions, such as PowerPC Altivec

[38], Intel SSE [39] and ARMv7 NEON [40], added separate, larger, registers to support

11



CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

Vector Register File

Lane 0 Lane 1 Lane 2 Lane 3

Figure 2.2: Vector pipeline and register file with four lanes.

SIMD instructions on larger data types, as well as increasing the number of operands for

smaller element operations. Though all these extensions allow computation across multiple

data elements, they do not support the memory accesses and conditional execution of vector

processors, nor are they as flexible as the vector length usually encoded within the instruc-

tion. The latest AVX-512 from Intel does however support conditional execution across the

elements using eight opmask registers.

The Advantage of vector (SIMD) processing comes from the ability to perform many cal-

culations from a single instruction, which can help reduce power and hardware complexity

while improving execution speed. The reduction in the number of instructions can reduce

dynamic power as far less instructions need to be fetched and decoded, and can help im-

prove instruction cache misses too. Power can be further reduced while maintaining the same

throughput because the clock rate can be lowered as the number of lanes increases, this does

however increase the die size. Their pipelines can be easily expanded by introducing new

lanes and the register file can be kept simple, even with the increase in ports, by partition-

ing it for the dedicated lanes. These advantages make SIMD extensions a popular choice,

particularly in contemporary architectures which target power restricted systems where the

power requirement and silicon expense of wide, out-of-order processors is not viable. The

downside of such extensions is that to use them, generally requires the programmer to use

architecture specific libraries and/or compiler intrinsics which makes the code less portable.
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2.2.4 Multiple Threads

Single-threaded performance has been viewed as a performance limiter since the 1960s, with

machines such as the IBM System/360 which could come in a dual-socket configuration [41].

These computers were very large, and their speed was often constrained by their physical

size due to the propagation delay along the connecting wires. Introducing another CPU

into the computer saved space and power, due to most of the resources being shared, and it

was also easier to double the performance this way than to design a new CPU to be twice

as fast as the previous one. However, single threaded performance continued to increase

greatly with the introduction of microprocessors while multi-socket computers were only

used in servers and supercomputers, where many independent transactions would need to

occur concurrently and algorithms could be written specifically for the underlying hardware.

In the consumer and embedded markets, applications were generally written to use a single

thread and the OS was used to time-multiplex tasks and processes.

Figure 2.3: Power and performance ratio between doubling the cores and doubling the

frequency.

Up to the early 2000’s, the shrinking process sizes had enabled increased clock frequencies

and the inclusion of extra hardware, such as on-chip L2 caches, without affecting the power

density. This improvement, in both architecture and technology processes, allowed CPU

performance to improve rapidly. But by the mid 2000’s, the physical limitations were being

discovered once again. This time it was the amount of heat being dissipated as Dennard

scaling had stopped and the leakage current increased static power. The power dissipation

problem was compounded by the increase in the dynamic power required by aggressive su-

perscalars that continued to pursue increased clock frequencies. The diminishing returns

of single-threaded ILP processors and their increased power requirements made them par-
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ticularly unsuitable for embedded systems, which are typically limited by passive cooling.

Figure 2.3 depicts the power and performance ratio of designs that double single core fre-

quency and ones that double the number of cores and maintain the same frequency [42].

This is based on the assumption that doubling the frequency will half the execution time

while paralellising the problem will incur some overhead. The large increase in the power

required as the frequency is increased stems from the power scaling linearily with frequency.

But this increase in power would also be worse as increasing clock frequencies also generally

requires increasing the voltage, which in turns expontentially increase power dissipation.

2.2.4.1 Cache Coherence

As discussed in Section 2.2.1, modern computer architectures employ cache memories to

counteract the speed differential between a processor and main memory. A typical CMP

cache hierachy is shown in Figure 2.4, which leads to the issue of cache coherence in multi-

processor systems. This is because each processor has its own private cache, and the values

stored within it may not match what is visible to the other cores. To solve this problem,

the memory system needs to be aware of what memory locations are shared between caches

and which contain the most recent value. Two popular implementations to this solution are:

directory based and snooping [43][44][45]. With a directory protocol, the sharing status of

a block is stored in one location, often centralised with the main memory or highest level

cache. On the other hand, snooping caches each track the status of the shared memory

blocks. A snooping protocol can be implemented as write invalid or write broadcast. With

write invalid, an extra bit is used to identify whether the shared block is valid or not. On

a cache write, the cache will invalidate the other shared locations which will in-turn cause

a cache miss on those other caches if/when they try to access the data. A write broad-

cast protocol writes the data to the cache and also broadcasts the new value to the other

caches, reducing cache misses but increasing bandwidth requirements. Write-through cache

simplify the situation since the latest value is always stored in memory, but again, this

increases bandwidth requirements. To reduce bandwidth, another bit can be used on each

cache line to identify whether a cache is the owner of that line. This changes the status of

the block, from being shared, to being exclusive; allowing the owner to modify the value

without having to broadcast invalidations to the other caches.

2.2.4.2 Symmetric Multiprocessors

Symmetric multiprocessors comprise multiple homogeneous processing cores that share the

same centralised main memory; this includes chip multiprocessors (CMP) with a single chip

containing a number of cores, as well as multi-socket workstations and servers. Larger scale
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Figure 2.4: Cache Hierachy in a chip-multiprocessor.

computers may have separate memory for individual processors, yet share the same address

space, and these are called distributed shared memory (DSM) systems and are not discussed

here.

A novel SMP implementation is that of ARM’s big.LITTLE architecture. ARMs mi-

croprocessor architectures focus on the low power markets and, as consumers have wanted

more performance from such devices, have engineered higher performance designs too. This

began with the release of the Cortex-A9 which was a dual-issue, out-of-order superscalar,

and could be configured into a quad-core SoC [46]. The requirement of higher performance

within the same, small, power envelope has driven ARM to offer high-performance cores

alongside more power efficient cores [47]. The system architecture is designed to contain

two clusters of ISA compatible cores, each with a shared L2 cache, one cluster containing

the high performance cores and the other for power efficiency. The clusters, containing 1-4

cores supporting both the ARMv7 (A7, A15) and ARMv8 (A53, A57) ISAs are connected

via a cache-coherent interconnect.

Threads are dispatched to cores dependent upon their performance requirements and

this can be handled by several methods: two are migration modes that use modifications

to the dynamic voltage and frequency scaling (DVFS) mechanisms to move work between

cores or clusters, the other is called Global Task Scheduling which is performed in software

at the kernel level. In migration modes, each big core is paired with a LITTLE core and

only one core is active at any one time; this makes the OS only see half of the total number

of cores. The Global Task Scheduler however is aware of the compute capacity differences

between the cores, and they are treated as independent so clusters can contain non-equal

number of cores. The scheduler uses statistical data from previous runs along with current

load and CPU frequency data to select the core on which to run the individual thread.
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2.2.4.3 Multithreading

Multithreading enables more efficient use of hardware since it allows resources to be shared

when resources may be wasted while executing a single thread, due to cache misses or

low amounts of exploitable ILP. There are two key paradigms to multithreading: fine-

grained (also known as interleaved, or vertical) where resources are shared through time-

multiplexing and the other is simultaneous (or horizontal) where pipeline resources are

shared simultaneously amongst the threads.

Functional Units

C
yc

le
s

(a) (b)

Figure 2.5: Processor utilisation with 4-way (a) fine-grained (vertical) multithreading and

(b) simultaneous multithreading (horizontal), with the four threads in different colours.

2.2.4.3.1 Fine-Grained Mulithreading was implemented in Sun’s Niagara architec-

ture which was designed for increased throughout at a lower power envelope for data centres.

This was in response to aggressive ILP processors of the early 2000’s that focused on single-

threaded performance and consumed much more power [48]. The architecture was designed

solely to exploit thread-level parallelism (TLP) with a single single-issue, six-stage pipeline

that was fine grained multithreaded between four threads. Each chip contained eight cores

for a total of 32 threads. The thread select logic would switch between threads on each

cycle, with a 0-cycle penalty, from a list of available threads. Priority was given to the most

least recently used thread and threads could become unavailable if they were performing a

long latency operation such a multiply/divide or a branch.

The commercial server applications that the architecture targetted exhibited poor lo-

cality of reference and were difficult to predict and so the memory system was designed

accordingly. Each chip contained a large, 640 64-bit, register file supported by a private
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16KB L1 cache and a shared 3 MB 4-way banked L2 cache. The load/store unit of each

core also contained four 8-entry store buffers that could also bypass load data. The proces-

sors and L2 cache were connected via a crossbar that supported 200 GB/s bandwidth with

four independent on-chip memory controllers providing in excess of 20 GB/s main memory

bandwidth. Sun implemented a simple cache, due to the relatively high number of cores and

threads, to save area and it was designed so that the four threads could hide the latencies of

L1 and L2 misses. The L1 cache was 4-way set associative and used a random replacement

algorithm with a write-through policy. The L2 was 4-way banked between the cores and

used a write-back policy. It also held a directory that maintained a sharers list at the L1-line

granularity. The crossbar maintained memory transaction ordering between the same and

different L2 banks.

2.2.4.3.2 Simultaneous Multithreading (SMT) is an effective method for improving

throughput of out-of-order superscalars which can make them more efficient [49]. The IBM

POWER7 architecture is a wide out-of-order superscalar: with two load/store pipelines,

two fixed-point units, four double-precision floating-point pipelines, one vector and a pipe

for branch logic [50]. The core is capable of fetching up to eight instructions, decoding and

dispatching six and issuing and executing eight per cycle. It is also capable of 4-way SMT,

but threads can be disabled to allow a single thread to utilise all of the execution units.

A single chip contains eight cores and a system can comprise of 1 - 32 sockets, for a total

supported 1024 concurrent threads.

Again, like Niagara, the memory system had to be carefully designed to meet the compute

capabilities of so many threads. Each chip has two memory controllers, each supporting

four channels for a sustained bandwidth of 100 GB/s. Each core has access to both a

private L1 and L2 and shared a large, 32MB, on-chip eDRAM L3 cache. The L2 cache

was designed to be fast, using 8-way association and a 8-cycle latency, to compliment the

large L3 cache. Each core is assigned a local 4MB region of the L3 which is used as a

victim cache for the private L2, but can also be used as a target for evicted data from

other local sections. The cache coherence protocol and interconnect is designed to support

more than 20,000 concurrent operations with the off-chip SMP interfaces providing 60 GB/s

coherence bandwidth per core. Coherency operations are snooped by the L2 caches, L3 cache

regions, the memory controllers and the I/O controllers providing an on-chip coherence

bandwidth of 450 GB/s. IBM also implemented a speculative localised-scope coherence

broadcast protocol using additional cache states and a distributed directory in memory, with

prediction heuristics, to further multiply potential bandwidth by the number of localised

scopes.
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2.2.4.3.3 Both SMT and vertical TLP are implemented in AMD’s Bulldozer mi-

croarchitecture which combines two integer cores, a single floating-point unit (FPU) and

a shared L2 cache into a module; which is capable of executing two threads [51]. The

front-end is shared by the threads via vertical multithreading and is capable of fetching and

decoding four instructions per clock cycle to either one of the integer cores as well as the

FPU. The integer cores are 4-wide out-of-order superscalars and operate as single threaded

pipelines. The FPU, however, was designed to be shared due to its large size and is a 4-wide

out-of-order pipeline that supports 2-way SMT. In the latest microarchitecture iteration,

Steamroller, the instruction decoder is no longer shared between threads [52].

2.3 Very Long Instruction Word Architecture

This section introduces the Very Long Instruction Word (VLIW) processor philosophy, and

its hardware design history, before surveying modern usages and describing the configurable

VLIW microprocessor that this research has been conducted upon.

2.3.1 Philosophy

The most basic of forms of processor will finish one operation before initiating the next,

executing each instruction in the order which the compiler or programmer wrote the code.

In typical RISC (Reduced Instruction Set Computing) processors the goal was to achieve

one instruction per cycle (IPC), with the most basic model this would be impossible since

some operations will have greater latencies than one cycle and there will be branches in

the code which will also take up extra time. A technique used in almost every modern

microprocessor, to increase the IPC, is to have a pipelined organisation to allow the processor

to carry out more than one operation at a time. By pipelining the processor, multiple

instructions can occupy different pipeline stages and thus enabling multiple instructions to

be in-flight. However, it would be impossible to achieve more than one IPC if no more than

one instruction is issued each clock cycle.

VLIW processors use their long instructions and extra functional units to issue multiple

instructions simultaneously, exploiting ILP to improve execution speed. The other form

of ILP processors, the superscalar, is discussed in Section 2.2.2; suffice to say that VLIWs

identify and statically schedule for ILP at compile-time where as superscalars use complex

hardware to perform the task at runtime. This allows VLIWs to require less hardware than

superscalars, enabling more compact and power efficient designs, making them appropriate

architectures for embedded applications [53]. They can have lower design time and cost and

are easier to simulate since the hardware does not generally perform operations that have
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not been explicitly programmed by the software.

2.3.2 History and Evolution

2.3.2.1 Eli-512 and Multiflow

The term VLIW was coined by Joseph A. Fisher with the idea being developed through

the early 80’s with the Enormously Long Instructions (ELI) project [54]. Fisher proposed

a method to increase the ILP that can be found within a program by enlarging the scope

of the scheduler beyond basic blocks. He termed this method Trace Scheduling and this

is described in Section 3.3.1.3. With a belief in the possibilities of trace scheduling and

ILP, Fisher’s team at Yale started work on the ELI-512. It was never fully completed but

was designed to be a clustered architecture with eight clusters, each containing two register

banks, two integer ALUs, a floating adder, a floating multiplier and a memory port. It

was designed to be capable of issuing a total of 32 operations each cycle, and of performing

multi-way branches. The clusters were organised in a circle, each cluster connected to its

neighbours as well as to two others. The system was also designed without a data cache and

had a slow central memory controller. The target speed was 5MHz.

The compiler was called Bulldog, and the focus of John R. Ellis’s PhD thesis [55]. As the

focus of the VLIW philosophy was to reduce the hardware complexity, the complexity had to

be incorporated into the compiler. All of the execution details were explicitly communicated

via the compiler, including: instruction ordering, functional unit selection, cluster selection,

what registers to operate on and which register bank. The problems induced from these

tasks were closely interdependent:

• To minimise data transfer between the clusters, operations needed to be designated to

the clusters which had direct access to the register banks which contained the operands.

At the same time, data needed to be spread to reduce pressure on the banks and the

functional units.

• When transfers were required, the compiler needed to calculate the most effective data-

path through the system. Memory accesses via the memory controller were slow (the

memory controller only handled one access at a time), so the compiler needed to try

to access memory directly (each direct access to a different bank could be performed

in parallel). To perform direct access the compiler needed to perform memory bank

disambiguation to specify which bank to access.

The Eli-512 was designed for scientific computing in which performing calculations on

large data sets is very typical. In this case, performance can be particularly hindered if
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memory operations cannot be performed in parallel. The purpose of memory disambigua-

tion is to resolve whether memory operations are independent. Bulldog expressed the array

indices in terms of loop invariants, loop induction variables and other variable definitions

using use-def chains [56]. The derived symbolic equations could then be compared to the

memory locations that the two indices represented to identify independent memory opera-

tions. A similar approach was used to determine the specific memory bank of a value. To

make it possible for the compiler to vectorise more code, Ellis implemented assertions that

the programmer could use to guarantee that the memory locations were separate.

After the ELI project was disbanded, many of the members went onto start Multiflow in

1984 (closed in 1990). During that time they had six production model machines over two

series, both series had three widths: a 7-wide, a 14-wide and a 28-wide. The wider issue

machines were constructed from the 7-wide functional units, which they called a cluster,

with each containing two integer ALUs, two floating-point units and a branch target unit

[57]. Instructions were issued every 130ns with two 65ns beats per instruction, integers could

issue in both beats whereas the floating-point and branches could only issue in the early

beat, giving a maximum issue width of 7.

2.3.2.2 Cyrdra 5

Around the same time as Multiflow, Cydrome were also designing a minicomputer; the

heterogeneous system was designed as two tightly integrated subsystems, one with a single

numerical processor and the other was a general purpose system with several processors

handling data I/O and the user interface [58]. The two systems shared the same memory

and were controlled by the same OS, a Unix implementation named Cydrix. The architecture

of the numeric processor was called ’Directed-Dataflow’ and based upon the philosophy of

dataflow architectures [59]. At the time of the Cydra 5, no dataflow architecture had been

a commercial success, due to the extremely high runtime overhead, so Cydrome decided to

move most the complexity out of the hardware and run-time and into the compiler; and so it

followed the same ideals of VLIWs. The numerical processor had seven functional units: a

floating-point adder/integer ALU, a floating-point multiplier/divider, two memory reference

ports, two address arithmetic units and a branch unit. Each FU had an associated register

file but could also acquire operands from the register files of the other FUs, as well as read

and write to a general-purpose register file.

The compiler of the Cydra 5, the Cydrix F77, used loop scheduling which is described

in detail in Section 3.3.2.2. To increase support for scheduling loops, the hardware included

important additions to provide mechanisms to deal with conditional statements and register

allocation. To solve the register allocation problem, the Cydra 5 included a hardware regis-

ter called the Iteration Control Pointer (ICP) from which the real register address could be
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calculated from the sum of the register specified in the instruction and the ICP. Conditional

operations and the code reduction was solved using several other registers. The loop counter

(LC), epilogue stage counter (ESC) and iteration control register (ICR). Almost all of the

instructions could be performed conditionally by querying the 1-bit wide ICR register file.

The compiler would control prologue and epilogue by making the instructions in the different

stages conditional on different bits in the ICR and the ICR would be changed accordingly

as iterations completed. Sections of conditional code were converted into straight line code

using if-conversion [60]; the operations on different paths were executed conditionally de-

pending on different bits in the ICR and a select instruction was used to merge alternate

values of a variable from different control paths.

2.3.2.3 HP and Intel

PlayDoh was a research project by HP to explore hardware and software methods to extract

ILP, with reduced hardware complexity, aiming to address the shortcomings of VLIWs for

general-purpose computing [61]. These shortcomings were: the rate of branch instructions

in non-scientific codes and the inability to effectively execute a binary from one microarchi-

tecture on another. To address the issue of running code compiled for one implementation

on another, the HP PlayDoh (HPL-PD) used a non-unit assigned latency (NUAL) model.

This allowed the code to describe the expected latency of an operation, which could enable

the issue of an instruction before its operands were available, while very simple hardware

was used to insert latency stalls to maintain semantics if the physical latencies varied from

the virtual ones. Predicated execution was used to reduce the negative effect of branch in-

structions; by removing the branch instructions, the delay that is caused by them is removed

and this also allows instructions to be freely moved across branch boundaries. This was an

enhanced version of what was used in the Cydra 5. Compare instructions were introduced

that wrote to predicate registers, these registers could then be referenced for any other

instruction to be conditionally executed. If-conversion was handled using the IMPACT al-

gorithm to construct hyperblocks, which is a region formation technique described later in

Section 3.3.1.3. They also used predicate promotion to move instructions out of the inner

loops and speculatively execute them. HPL-PD also inherited the architectural features of

the Cydra 5, with rotating registers and special loop control registers for modulo scheduling.

The hardware supported runtime memory disambiguation through three related families

of operations: data speculative load (LDS), data verify load (LDV) and data verify branch

(BRDV) [62]. When used, LDS operations logged their operands into a table which were then

checked against when a store was executed; the log checked whether the store potentially

wrote to the same physical address that a speculative load accessed. If this was true,

the entry in the log was invalidated by the processor. LDV operations were then used,
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which again, queried the log to see if there were any valid matching entries and if so the

processor wouldn’t need to do anything else and the data would need to be reloaded. BRDV

instructions provided a method to be able to issue instructions dependent on the speculative

loads. BRDV detected whether a store aliased a previous LDS operation and if so, branched

to a section of compensation code, otherwise the program flow was able to continue.

As the HPL-PD could execute most instructions speculatively, HP devised a system

for handling exceptions from speculative instructions. This was necessary since exceptions

that arose should not have reported until the instruction was proven to have been executed

correctly. Instruction tag bits were used to denote whether an instruction was being executed

eagerly. If an instruction caused an exception, it set the speculative tag of the destination

register instead of throwing an error. The register tag bits were read by instructions; if

a non-speculative operation read one or more source registers with their bits set, it then

triggered the exception.

The memory hierarchy had an extra level than usual called the data pre-fetch cache

which was generally designed to hold the elements of data arrays that weren’t going to be

reused, freeing up the cache for items that needed to be cached. The compiler controlled

the management of the memory hierarchy, almost all loads had two modifiers to indicate

its expected latency and also which cache the data item was likely to be in. The store

instructions also had a modifier to specify a cache target.

HP teamed with Intel to graduate the HPL-PD from just a research project into a com-

mercial architecture. The design philosophy, closely related to VLIWs, was termed Explicitly

Parallel Instruction Computing (EPIC) [63]. The only commercial EPIC architecture has

been the product line of an Intel and HP collaboration; the Itanium series. The first Itanium

was released in 2001 and quickly followed up by the Itanium 2 [64][65]. All integer and ALU

operations completed in one cycle with each of the units fully bypassed, the floating-point

units were also fully bypassed and had a fixed latency of 4 cycles. Most the silicon of the

processor was used by the 3MB of L3 cache, and many of the microarchitecture features were

designed to minimise cache delays and misses. There was an instruction-streaming buffer to

hold cache lines from the L2 and L3 caches and was used for instruction pre-fetching and

branch prediction; software engaged the instruction pre-fetching by issuing hint instructions

about future branches. The branch prediction was performed using two levels of branch

history, L1 holding the taken/not taken history while the L2 holds the history of branches

evicted from L1. It also contained an advanced-load address table (ALAT) which provided

hardware support for greater speculative loads, through dynamic memory disambiguation.
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2.3.3 Modern Implementations and Applications

The only significant mainstream, general purpose, CPU to be based upon the VLIW phi-

losophy was the Itanium series, but this was not capable of displacing Intel’s other popular

architecture. VLIWs have however found their niche in embedded systems, primarily as

digital signal processors (DSPs). The reduced complexity of VLIW leads to smaller die sizes

and lower power consumption which are the most important design concerns of embedded

systems. DSP codes also generally contain both ILP and DLP, with less control-flow than

general-purpose programs, making VLIW designs ideal.

2.3.3.1 Qualcomm Hexagon

Qualcomm design high performance mobile SoCs and offer the full stack of hardware com-

ponents, including their Hexagon DSPs [66]. The original versions were integer-based and

designed for voice and audio processing, such as echo cancellation, vocoding and music

playback. The latest version includes support for floating-point types and extends the ap-

plication target to image processing for cameras, facial recognition and sensor input. The

core is a statically scheduled, multithreaded, four-way VLIW with 32 32-bit general purpose

registers. The Hexagon V5 in the Snapdragon 800 is three-way multithreaded and runs at

speeds up to 800MHz with a 16KB I-cache , 32KB D-cache and unified 256KB of L2. It

is connected to main memory via a 64-bit bus which runs at 240MHz. Both the CPU and

DSP share main memory and coherency must be maintained through software.

The architecture has been designed for high performance with low power and the instruc-

tion set has been selected to effectively support VLIW execution of DSP applications [67].

The ISA supports a multitude of data types: 8- 16- 32- or 64-bit fixed-point, 32-bit IEEE

floating-point, 32- or 64-bit complex as well as 64-bit vector data. There are four functional

units within the core, two dedicated to arithmetic operations (including SIMD) and two

dedicated to memory operations that can also support simple ALU operations. The instruc-

tions are grouped into packets of up to four instructions and are dependent on the available

resources. To reduce branching overhead, many instructions can be executed conditionally

using one of three predicate registers, and ‘dot-new’ instructions can be used define and

use the same predicate register within the same packet. Two hardware loop instructions

are also implemented for performing nested loop branching with zero overhead. Another an

instruction extends this functionality to reduce prologue code of software pipelined loops.

The original versions of Hexagon (V1-V4) implemented round-robin interleaved multi-

threading (IMT) with three threads executing in a time sliced manner with a three-deep

pipeline. This allows a packet in the thread to complete execution before the next packet

begins and the simple implementation reduces power, but does reduce efficiency and through-
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put when threads are stalled or idle. The latest iteration introduces a dynamic multithreading

(DMT) which executes some packets faster if threads are idle or stalled. Threads have their

own separate register files and communicate via the shared memory; the instruction set

includes atomic memory operations to implement semaphores and mutexes.

2.3.3.2 Texas Instruments C6424

The Texas Instrument C6424 is a fixed-point DSP in the TMS320C64xx series designed

for telecom, audio and industrial applications; it is based on the third generation VelociTi

VLIW architecture [68][69]. The core is capable of dispatching eight instructions per clock

at rates of 400-700MHz. The instructions are issued to the two clustered data paths; each

cluster has access to 32 32-bit registers and contains a memory unit, a multiplier, an ALU

and a unit that calculates shifts, compares and branches. The functional units can execute

SIMD instructions with both the arithmetic and multiply instructions capable of operating

on quad 8x8-bit or dual 16x16-bit. The data paths are connected by two cross paths which

allow each path to read a source operand from the other on each cycle, however this does

induce a stall cycle. The ISA is fully predicated, has zero-overhead branching, and also a

loop buffer to increase the efficiency of pipelined loops.

2.3.3.3 Tilera Tile-Gx

The Tile-Gx series of processors are based on the Tilera Tile architecture and aimed at

embedded networking, multimedia and cloud datacentre markets [70]. The processors com-

prise of a 2D array of identical tiles, connected via their proprietary network-on-chip called

iMesh, and come in configurations of 9, 16, 36 and 72 tiles. Each of the tiles are designed

to operate at 1.2GHz and only consume 500mW. The tiles each contain a processor core

with TLBs, L1 and L2 cache and interfaces to the iMesh network, which connects them to

their four nearest neighbours and the L2 cache. The core has access to two 2-way set asso-

ciative 32KB L1 caches, one for instruction and one for data. The unified 256KB L2 cache

is 8-way and supports Error Correcting Code (ECC). The L2 cache controllers, along with

the iMesh network, implement a global cache coherence protocol. The processing cores are

3-wide VLIWs, with short pipelines to reduce complexity and branch penalties, and support

SIMD and MAC operations. As well as the programmable VLIW cores, the processor also

implements a number of on-chip, but off-core, hardware accelerators for packet processing,

cryptographic and compression tasks. The architecture is designed to be programmable with

ANSI C/C++ and runs SMP Linux.
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2.3.3.4 Kalray MPPA-256

The Kalray MPPA-256 is a single-chip, many-core processor designed for accelerating a

variety of algorithms, from video encoding to HPC [71]. Kalray report that the processor

is 20x more energy efficient in H264 video encoding than a quad-core, multithread, i7-3820

with all multimedia extensions enabled. The device is designed so that it can operate in

stand-alone mode or as an accelerator connected to a host via PCIe. The MPPA-256 contains

16 compute clusters and 4 quad-core I/O subsystem clusters. Each compute cluster holds 16

processing elements (PEs) and a single resource manager (RS) along with shared memory

and a DMA engine. The compute clusters have their own private address space and contain

a 2MB ECC shared memory, organised into 16 banks, with an aggregate bandwidth of 38.4

GB/s. Communication between clusters is via the network-on-chip.

The compute core is a 5-way VLIW, clocked at 400MHz, containing 2 ALUs, 1 MAC /

FP unit, 1 load/store unit and a branch unit. The functional units have access to 64 32-bit

registers and each core has two 8KB, 2-way set associative, caches; one for instruction and

one for data. The development tools allow programmers to use one of three programming

models:

• cyclostatic dataflow (CSDF) language [72], named
∑
C, which alleviates the task of

synchronisation and difficulties of shared memory for the programmer through the use

of dataflow computation.

• traditional POSIX processes are spawned to execute on compute clusters and then

POSIX threads and OpenMP can be utilised within the clusters.

• OpenCL via their (still in development) compiler.

2.3.3.5 The Configurable VLIW Chip Multiprocessor, The LE1

The LE1 VLIW CMP is a configurable system-on-chip multiprocessor system, designed to

accelerate signal and image processing algorithms on field-programmable silicon. It is an

in-house design from Loughborough University by Dr Chouliaras and the target hardware

platform for this research. The LE1 implements a partially predicated ISA, based on the Lx

architecture [73]; which itself is based upon Multiflow. So its genesis is deeply routed in the

original VLIW architectures as well as their modern evolution into DSPs. The LE1 builds

upon the capabilites of the Lx architecture through the capability of configuring a many-core

system and the use of multithreaded cores, as well as incorporating pipeline interlocks. The

configurability of the LE1 creates a large architecture exploration space for research and its

design as an accelerator makes it an ideal candidate for OpenCL research.
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Figure 2.6: Components and pipeline of a 4-wide, single-core LE1.

An LE1 system can incorporate up to 256 cores, or contexts, in a shared memory organ-

isation. Each context contains one or more architected states, or hypercontexts, which can

execute an independent thread of execution. For this research, each context only has a single

hypercontext. The processing core has an 8-stage integer pipeline and can be partitioned

into a configurable number of clusters, up to a maximum of 16. The ISA, named VT32PP,

specifies a configurable number of clusters, each cluster consisting of up to 64 static general

purpose registers, 8 single-bit predicate registers (used for computing branch conditions and

conditional selection), a PC and a Link register (LR). Implementations can define the num-

ber of contexts, hypercontexts, clusters, integer ALUs, multipliers and load/store units. A

view of a 4-wide LE1 microarchitecture configuration is depicted in Figure 2.6[74].

The CPU consists of the Instruction Fetch Engine (IFE), the execution core, the pipeline

controller (PIPE CTRL) and the Load/Store Unit (LSU). The IFE can be configured with

an instruction cache or alternatively, a closely-coupled instruction RAM (IRAM). These are

accessed every cycle and return a long instruction word (LIW) consisting of multiple RISCops

for decode and dispatch. The IFE controller handles interfacing to the external memory for

ICache refills and provides debug capability into the ICache/IRAM. The PIPE CTRL, the
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Figure 2.7: Quad-core LE1 with connecting memory system.

primary control logic, is collection of interlocked, pipelined state machines, which schedule

the execution datapaths and monitor the overall instruction flow down the processing and

memory pipelines and also maintains the decoding logic and control registers of the CPU.

The LSU is the primary path of the core to the system memory and allows for up to the

architected width of memory operations per cycle and directly communicates with the shared

data memory. The memory is a multi-banked, 2 or 3-stage pipelined cross-bar architecture

and the number of channels and banks do not have to be equal. A quad-core LE1 system

with the connecting memory system is shown in Figure 2.7. Further details of the ISA

will be discussed later in Chapter 5 in the context of compiler development. The LE1 is

designed to run as an accelerator attached to a host CPU, which runs the OS and coordinates

communication between the two systems. The host loads both the instruction (IRAM) and

data RAM (DRAM) on the LE1 system and then initiates the execution.

Long instruction words (LIWs) consist of a variable number (up to the architectural

width of the processor) of RISC-type operations known as syllables or RISCops. Instruction

accesses are byte- aligned (to allow for future implementations where variable instruction

lengths are supported) and control transfer instructions target the first syllable of the target

LIW. The architectural width of the processor is communicated to both the compiler and the

processor RTL and is used in the software and hardware compilation processes respectively.

There can be only one control transfer instruction (branch/jump/call/ret) at the end of a

LIW.

2.4 Heterogeneous Computing Architectures

Most computer systems need to perform a variety of tasks, and it is becoming increasingly

difficult for uniprocessors, or homogeneous multiprocessors to accelerate computation effec-

tively across the spectrum of tasks. Heterogeneous systems include a variety of architectures

that are more specialised to different tasks, which can make the system more efficient and

27



CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

increase both single- and multi-threaded performance. This section identifies the types of

architectures that are used for accelerating software, and the programming languages are

discussed in Section 3.4.2

2.4.1 Graphics Processing Units

Modern GPUs have been evolved from their original fixed-function pipelines into fully pro-

grammable processors. GPUs are throughput devices as their architectures are designed to

primarily calculate millions of pixels near a fixed frame rate. Because of this, GPUs have

high bandwidth requirements and concurrently execute hundreds, or thousands, of threads

to mask memory latencies. GPU shader programs often have to perform the same calcula-

tion on a large set of vertices and fragments and so high-performance devices utilise a Single

Instruction, Multiple Thread (SIMT) style of execution. This is similar to SIMD, but the

different data elements are taken from different threads, which this means that performance

is dependent on how each thread executes. GPUs achieve maximum throughput when the

executing threads maintain the same program counter (PC), allowing the single issued in-

struction to execute with different data from the various threads. These constraints have

little effect on highly-regular graphic shader programs, but throughput can dramatically

decrease in the presence of control-flow (thread-divergence) with multiple bespoke solutions

proposed to alleviate thread divergence [75] [76] [77]. Divergent threads execute serially

as only a single PC can be used resulting in substantially reduced utilization of the chip

datapaths (Processing Elements).

2.4.1.1 NVIDIA Kepler and Maxwell

NVIDIA’s GPUs consist of ‘Graphical Processing Clusters’(GPCs) which are comprised of

many ‘streaming multiprocessors’ (SMs), which contain many CUDA cores, load/store units,

special function units, a large register file and a scheduler. A CUDA core is a very simple

with just an ALU and a FPU. Each SM schedules threads in groups of 32 parallel threads

called warps. Each SM can issue an instruction from two warps per clock. The SM features

of NVIDIAs latest architecture, Maxwell, are not too different from their previous design,

Kepler, as shown in Table 2.1. The Kepler architecture is implemented in the NVIDIA K1

mobile SoC [78], but Maxwell is designed to be even more efficient: Kepler is capable of 12.7

GFLOPs/W where Maxwell can now achieve 21.76 GFLOPs/W; with both implementations

using a 28nm process [79]. The key difference is that the SMs in Maxwell are separated into

4 smaller processing blocks, distributing the functional elements and register file evenly, and

it’s the partitioning that simplifies the design scheduling logic which reduces area and power.
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Table 2.1: Architecture Comparison between NVIDIA Kepler and Maxwell.

Feature Kepler Maxwell

SMs per GPC 2 5

CUDA cores per SM 192 128

SFU per SM 32 32

LD/ST per SM 32 32

Warp schedulers per SM 4 4

2.4.1.2 Graphics Core Next

Graphics Core Next (GCN) is AMD’s latest GPU architecture that is also designed for

GPGPU programming [80]. The architecture is broken down into compute units (CUs), each

capable of executing 2560 work-items in SIMT style. Each CU contains four SIMD units

and although they are called SIMD, they are capable of issuing multiple instructions. The

vector ALU within each SIMD unit has 16 lanes, taking 4 cycles to operate on a wavefront of

64 work-items, and each unit has an instruction buffer for at least 10 wavefronts. Both the

CU front-end and SIMD unit are capable of issuing five instructions per cycle with the CU

selecting the SIMD unit in a round-robin fashion. The CU contains six execution pipelines

which handle both scalar and vector data and there are also special instructions which are

consumed within the instruction buffers in a single cycle. To maintain program order, only a

single instruction from each wavefront can be issued per cycle and only a single instruction of

each type may be issued also. The seven types of instruction choices are: vector arithmetic

logic unit, scalar ALU or scalar memory read, vector memory access, branch / message,

local data share (LDS), export or global data share (GDS), internal within the instruction

buffer.

AMD’s latest R-Series Accelerated Processing Units (APUs) are designed for embedded

applications and combine a multi-core x86 CPU with a GCN graphics core [81]. In this

APU, both the CPU and the GPU share address space which enables more fluid GPGPU

programming as less data needs to be copied and transferred. AMD has designed the de-

vice around the Heterogeneous System Architecture (HSA), which is introducted in Section

3.4.2.4.

2.4.1.3 Broadcom’s VideoCore IV

The VideoCore IV is the mobile orientated GPU found within the Raspberry Pi [82] and

is designed for some GPGPU programming as well as graphics [83]. The scalable compute

capacity is provided via multiple instances of a shader processor termed a Quad Processor

(QPU) which can be grouped into up to four slices. To the programmer, the QPU is a 16-
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way SIMD processor however it is physically 4-way and multiplexed over four cycles. The

QPU core is dual-issue and contains two floating-point ALUs, one for multiply instructions

and the other for add / logic type instructions. Both ALUs support 8-bit vectors for some

operations. To keep the pipeline simple, results written to the register file are available two

cycles later and no forwarding paths are provided. The QPU core contains two single-ported

register files which are used along with six accumulators registers, which do not suffer the

two cycle write-back penalty to provide the extra argument.

2.4.2 Many-core Accelerators

GPUs have proved as a disruptive technology, requiring a shift in programming paradigms,

that have enabled much more efficient, yet powerful, systems. But, by their own nature,

they are still designed to accelerate graphics and still consume a relatively large amount of

power. This subsection looks at the alternative many-core accelerators that are not based

around GPU architectures. Many are designed to be capable of operating as standalone

CPUs but are mainly used as accelerators alongside a host CPU. Most of them target low

power, with high performance per watt, and can be programmed with traditional languages

and APIs as well as more modern approaches.

2.4.2.1 Cell Broadband Engine

The IBM Cell Broadband Engine (CBE) was a project set up between Sony, IBM and

Toshiba to develop a new architecture to meet the demands of next generation game and

multimedia applications [84], specifically the Sony Playstation 3. The console was designed

to enable internet gaming and media streaming and so the architecture was designed for

those target applications. IBM identified these key barriers that were preventing existing

architectures from being suitable:

• Memory latency and bandwidth, as both media and streaming require high memory

bandwidth, and low memory latency is key in maintaining high performance within

the CPU.

• Power and power density, as the consumer product would have to be suitably sized

and not eject too much heat.

• Responsiveness, as the system would have to react to inputs from different players,

locally and on the network, while keeping audio and video synchronised.

IBM viewed the existing, deeply pipeplined, out-of-order, superscalars to be too de-

manding on the power budget of an embedded system. The deep pipelines would also create
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longer instruction latencies and greater mispredict penalites, both of which would decrease

the responsiveness of the system. So IBM designed the CBE processor which consisted of a

central control processor with eight, synergistic processors, coprocessors. The central Power

Processor Element (PPE) used direct memory access and synchronisation mechanisms to

communicate with the Synergistic Processor Elements (SPEs). The PPE was a 64-bit Power

architecture with a two-way SMT, dual-issue, in-order microarchitecture. It had a 23 stage

pipeline with 32 64-bit fixed-point registers and 32 64-bit floating-point / vector registers,

thus exploiting many different forms of parallelism.

Each SPE contained a processing unit (SPU), a channel unit and a DMA engine and was

connected to the rest of the system via a high speed interconnect bus capable of 96B/cycle

[85]. The SPU was capable of issuing two instructions per clock and executed 128-bit SIMD

operations. It contained a large 128 entry register file as well as a 256KB local store to

reduce the memory bandwidth requirements and to enable the compiler to exploit more

ILP. Memory accesses by the SPU accessed the local store with the system memory being

accessed via the DMA engine. The DMA engine was capable of processing 16 commands

simultaneously, each fetching up to 16KB of data, and commands included scatter-gather

operations from the system memory. To reduce the complexity of the hardware, as well

as improving bandwidth utilisation, the software was responsible for data prefetching and

branch prediction. The channel unit was a message passing interface between the SPU core

and the rest of the system. The CBE supported various programming models including:

offloading library functions from the PPE to a SPE, partitioning the work amongst SPEs

for them to execute in parallel, and streaming data through the SPEs with each applying

their own computational kernel.

2.4.2.2 Many Integrated Cores

Intel’s Many Integrated Cores (MIC) architecture is mainly a response to the introduction of

GPU accelerators into the HPC market, with Xeon Phi coprocessors being implementations

of the architecture [86][87]. The x86 cores, based on the old Pentium 5, are dual-issue, in-

order, 4-way (fine-grained) multithreaded with 64-bit support. The instruction set includes

FMA, 512-bit SIMD instruction (including scatter/gather vector memory operations), and

hardware support for single-precision transcendental instructions. The cores are arranged

in a bidirectional ring network with fully coherent 512KB L2 caches, and have a 32KB,

8-way set-associative, L1 cache. The coprocessors come in various configurations, but all

have more than 50 cores clocked at 1GHz or more, with access up to 16GB RAM. The

highest performing Phi coprocessor, the 7120x, is a 300W device with 61 cores with a

peak performance of 1.2 TFLOPS, thus operating at 4 GFLOPS/W. Software development

with the MIC architecture is designed to be very similar to that of programming for a
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modern x86 CPU with a linux-based operating system running on the coprocessor. The

Intel software development kit (SDK) supports thread-based languages, including: Intel

Threading Building Blocks (TBB), Intel Cilk Plus and OpenMP [88].

2.4.2.3 Epiphany

Adapteva’s Ephiphany is a many-core 32-bit architecture which is designed to be scalable

up to 4095 processors, sharing the same address space [89]. The Epiphany III is found in the

16-core Parallela development board [90] and Epiphany IV (E16G401) will be its successor,

with 64 cores [91]. The chip consists of many RISC cores (eCores) connected in a 2D mesh

network with each node having connections to only its nearest neighbours. The nodes in the

mesh comprise of an eCore, a DMA engine, local memory and the network interface. The

eCore is a 2-wide, in-order, superscalar with both integer and floating point ALUs and a

64-entry 32-bit register file. The E64G401 eCores can be clocked up to 800MHz and provide

a theoretical peak performance of 102 GFLOPS, when utilising the fused multiply-add and

multiply-subtract instructions, consuming 2W. The eCores share a 2MB on-chip distributed

memory with an aggregated local memory bandwidth of 1.6 TB/s, 102 GB/s NoC bisection

bandwidth and 6.4 GB/s off-chip bandwidth. The architecture is designed to excel in image

and signal processing, encryption and compression tasks, and is programmable in C and

C++ with some support for OpenCL.

2.4.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are programmable silicon devices, programmable

by the user, to create digital circuits [92]. Traditionally, FPGAs filled the use case of high-

performance custom designs, where low volume production could not justify an application

specific integrated circuit (ASIC) implementation. FPGAs make this possible due to their

low entry costs, though costs per device are higher. The key market area for FPGAs has

traditionally been in real-time systems and as digital signal processors (DSPs) where high

speed, custom logic blocks and custom data widths are necessary. They also have the key

advantage of being reconfigurable, allowing bug fixes and modification to be made in the

field or allowing the device to be configured for a completely different task.

Modern FPGA fabrics consist of many thousands of configurable logic blocks (CLBs)

which are interconnected, arranged in an array, and surrounded by configurable I/O blocks

(IOBs) [93]. The key components of the CLBs are: lookup tables (LUTs), DSP slices and

block RAMs, which are connected via multiplexers that are controlled by the configuration

program. The configuration program is stored in on-chip SRAM, which means that an

FPGA has to be reconfigured every time it powers up. On initilisation, the bitstream is
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Figure 2.8: Internal components of an FPGA.

shifted into the SRAM programming cells from off-chip memory. The CLBs are surrounded

by wiring channels, multiple bits wide, that are separated into segments by switchboxes at

the intersection of the channels; this is depicted in Figure 2.8. Switchboxes are matrices

of programmable pass transistors that are each controlled by a memory cell; the transistor

can be switched on and off by the value in the cell to either make or break the connection.

Connection boxes are implemented to select inputs to components within the CLB from the

horizontal and vertical segments.

Key metrics in FPGA fabric design are size, speed and cell utilisation. These attributes

are interlinked and so architecture parameters are determined in a trade-off. Cell utilisation

is directly affected by the connectivity between the CLBs and this is determined by how

flexible the interconnect is [94]. Flexibility is a function of the channel width and the number

of connections in the switch- and connection boxes, with flexibility rising with an increase

in connections. But the number of transistors used for the connections also affects area

and line delay as they take up physical space and induce capacitance, which contributes to

determining achievable clock frequency. Area on the FPGA is taken up by the CLB and the

interconnect. The area required by a CLB is dependent upon the amount of fixed hardware

within the block and the number of it’s inputs and as block complexity increases, less blocks

are required to implement a circuit [95]. As the number of inputs increase, however, so

does the area required for routing which can consume the majority of the available area.

Therefore, the increase in CLB complexity needs to reduce the number of required blocks

and also compensate for the increase in routing area.
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Table 2.2: Feature Set of Xilinx Virtex UltraScale Product Series
Feature UltraScale Series

Logic Cells 626,640 - 4,407,480

CLB Flip Flops 716,160 - 5,037,120

CLB LUTs 358,080 - 2,518,560

Maximum Distributed RAM 3.9 - 28.7 Mb

Total Block RAM 44.3 - 132.9 Mb

DSP Slices 600 - 2,880

DSP Performance 4,268 GMAC/s

Transceivers 36 - 120

Peak Transceiver Speed 33 Gb/s

Peak Serial Bandwidth (full duplex) 5,886 Gb/s

PCIe Interface 2 - 6

DDR3/4 Memory Interface Performance 2,400 Mb/s

I/O Pins 365 - 1,456

The feature set of Xilinx’s high-performance UltraScale FPGAs are listed in Table 2.2

[96][97]. Each CLB contains one slice and is comprised of 8 LUTs and 16 flip-flops, as well

as arithmetic carry logic and multiplexers. The LUTs can be configured as 64-bit RAMs or

as shift registers. The DSP slices contain 27x 18-bit multipliers and a 48-bit accumulator

which provide both multiply add and multiply accumulate functionality. The multipliers can

be bypassed to feed a SIMD ALU for 2-way, 24-bit, add/sub/accumulate or 4-way 12-bit

operations. The DSP slice is also pipelined and contains a programmable width 96-bit-wide

XOR function and a 48-bit-wide pattern detector.

As well as more traditional FPGAs, such as the UltraScale architecture, vendors are now

offering SoCs that combine fully programmable general purpose CPUs with an on-chip pro-

grammable FPGA. Xilinx offers the Zynq-7000 platform which combines a dual-core ARM

Cortex-A9 coupled with either a Artix-7 or Kintex-7 FPGA [98][99]. The Altera Stratix

10 is the company’s upcoming, high-performance SoC which integrates a 64-bit, quad-core,

ARM Cortex-A53 in a FPGA fabric built on Intel’s new 14nm proces s[100]. The Stratix 10

further differentiates itself from the competition by being the first FPGA to contain dedi-

cated hardware for floating-point calculations, and doubles the previous generation’s clock

rate up to over 1GHz. Altera claim that the device will be capable of 10 TFLOPs and is

capable of supporting a total off-chip bandwidth of 1.382 Tbps.
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2.5 Hardware / Software Codesign

As microprocessors use power gating to stay within the confines of their TDP limits, it

results in percentages of the silicon being unusable and thus limiting their performance.

To be capable of effectively using more dense logic, the silicon has to be more efficiently

utilised. The most efficient way to utilise silicon for a task is to create an application specific

integrated circuit (ASIC). In devices where efficiency is particularly important, such as smart

mobile devices, ASICs are included to support common tasks that would otherwise be very

CPU intensive, such as multimedia encoding. These ASICs are fabricated on the same die

as the CPU and so the resulting chip is called a system on-chip (SoC); as the multi-core

paradigm has grown, these are now called multiprocessor SoCs (MPSoCs). The decision of

this mix between hardware specific circuits and software implementations is called hardware

/ software (HW/SW) co-design and the focus is usually a balance of performance, power

and area.

2.5.1 ASICs and FPGAs

It has been suggested that cores within an MPSoC should operate at reduced voltages and

frequencies to increase throughput instead of ramping voltage and frequency for some cores

while switching off others [101]. Researchers have also suggested using 20-30% of the silicon

area for reconfigurable logic, or ASICs, to support lower power cores. The choice between

FPGAs and ASICs can be decided upon how much commonality the kernels have and how

much coverage the ASICs can provide. The low power dissipation of the reconfigurable

logic and low power cores, allows for greater utilisation of dense transistor logic, whilst

also accelerating execution [102]. It is noted however, that as processing cores and the use

of FPGAs and ASICs increases, bandwidth requirements of heterogeneous MPSoCs will

increase significantly.

The design of the hardware and modifications to the software are usually performed by

a design space exploration (DSE) tool that often operates on graph, or tree, representations

of the task [103][104]. The DSE tool is fed the source code, which is sometimes annotated to

aim hardware synthesis, as well as design constraints. These constraints are based upon area,

power and performance requirements which are tightly interconnected. The tool will explore

the nodes of the graph and use cost functions to calculate whether the operation, or group

of operations, would be better performed by hardware or software. For special hardware to

be instantiated, the ASIC needs to be capable of performing the operation(s) faster than

the host processor, and this includes the communication overhead of using an accelerator.

Cost estimation software are usually based upon the latency of operations whereas hardware

costs are based upon the necessary area and power requirements.
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2.5.2 Application-Specific Instruction-set Processors

In cases where multiple target applications share similar types of computation, incorporating

instruction extensions (IEs), instead of an ASIC for each application, can be a better use of

area and enable greater flexibility [105][106]. Calculating effective IEs is similar to designing

an ASIC, however the custom hardware block will be included within the microprocessor

pipeline and instructions need to be included in the ISA. IEs have the advantage of being

more readily reusable and do not suffer the communication overhead incurred when using

ASICs. However, they are further constrained by the, possibly fixed, microarchitecture; such

as the number of ports to the register file and clock frequency. Like ASIC integration, the

IEs need to have good coverage and resusability for the application. It is the task of the

compiler or intrinsics to utilise the additional instructions and it needs to be able to match

the complex instruction patterns that arise from merging of multiple instructions into one.

The ASAM project, of the ARTEMIS program, aims to develop a heterogeneous MP-

SoC platform, designed through HW/SW codesign, that is capable of tera-flop performance

within a mobile SoCs power budget [107]. The platform is based around the Intel SiliconHive

application specific instruction-set processor (ASIP) which is a configurable and extensible

VLIW core with both SIMD and MIMD support. The MPSoC is comprised of several

ASIPs, customised for particular parts of the application, and distributed shared memories,

connected via a bus or NoC. The DSE tool is split into four, inter-communicating, stages:

system DSE, ASIP DSE, global communication and memory DSE (GC&M) and HW/SW

synthesis and prototyping. System DSE feed the application C code and is responsible for

the entire design and defines the network of the several ASIPs and the distributed memories.

ASIP DSE consists of a simultaneous co-tuning of the ASIP architectures and their embed-

ded software, including parallelising techniques for software optimisations and high-level

synthesis. The GC&M DSE targets the exploration and optimisation of the global com-

munication and shared memory of the system. The system DSE creates a communication

graph of the application tasks and feeds this to the GC&M stage which can use simulation

and prototyping to validate designs. The HW/SW synthesis takes an abstract architecture

description and produces the RTL description and compiles the software tasks for each of

the ASIPs.

In the early 1990’s, the MOVE framework was conceived to utilise a Transport-Triggered

Architecture (TTA) to aid in the creation of ASIPs [108][109][110]. The TTA architecture

was designed to exploit ILP and use a compiler to find that ILP, much in the same way

as VLIWs. However, the architecture was designed to fundmentally differ from VLIWs to

make them more suitable to be used as template architectures. Multiple functional units

are connected by a number of buses, which together define the number of operations that
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can be issued per cycle. Operands are transported to the functional units and execution is

triggered the by the arrival of the complete number of operands. Register files (RFs) are

also treated as functional units and are not necessarily available to all of the FUs, this can

be implementation defined. All reads and writes between the RFs and FUs are programmer-

visible, including the registers of the bypass logic, which makes the bypass registers the first

level of memory available to the program. These modifications allow for smaller and less

complex register files as they are partitioned and both read and writes can be reduced by

the explicit use of software controlled bypass logic.

The TTA-based Codesign Environment (TCE) continues in the same manner by pro-

viding a toolchain to automatically design a processor, from C code, using a DSE tool,

or manually using a graphical tool [111]. TCE provides a template architecture that can

have its number and mix of FUs, the pipelines they contain and the register files and their

connectivity all uniquely specified. The tool is split into three main phases: (1) proces-

sor design space exploration, (2) code generation and analysis, and (3) program image and

proccesor dseign generation. During the processor design phase, the tool estimates the die

area, consumed energy and runtimes and stores the information into a database. The code

generation phase uses a compiler together with an architecture simulator to produce code

and estimate its energy consumption and cycle time. The tool could then select the most

appropriate design based upon some specified criteria. The final stage of the tool generates

an HDL file which is verified by the simulator.

2.5.3 Codesign for Supercomputers

Codesign is of interest in the supercomputing space too, even where power dissipation ca-

pability is high. DARPAs Ubiquitous High-Performance Computing (UHPC) program has

challenged researchers to achieve 50 GOPs/W with a 20MW power envelope to be capable of

reaching exascale performance. The US Department of Energy’s exascale computing initia-

tive has identified that hardware-software codesign could be essential to achieving exascale

performance [112]. Many researchers are drawing upon embedded systems and toolchains,

which already have to operate within strict and low power requirements, and are investigat-

ing the potential of using semi-custom hardware using hardware-software codesign processes.

2.5.3.0.1 Runnemede was one such project where all layers of the computing stack

were codesigned to minimise the amount of required energy, targeting low clock frequencies

at near-threshold voltages [113]. The runnemede architecture was designed to be modular,

with the CPU separated into blocks with both L3 and L4 memory; each block contained

a single scalar control engine, multiple execution engines and some L2 memory. Their

initial design used custom, single-issue, in-order RISC cores for the execution engines while
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the control engines were based on the Siskiyou Peak [114] synthesisable core. A dataflow-

inspired execution model was used to break computation into ‘codelets’ which could be

executed by the execution engines; this model allowed for software-managed caches and

reduced synchronisation overhead. Codesign was used to find suitable extensions to the ISA

to reduce the energy used on key functions as well as finding suitable memory optimisations;

in their case study their codesign optimisations reduced total energy consumption by 75%.

2.5.3.0.2 The Green Flash many-core processor was designed to accelerate climate

simulations at an necessary estimated rate of 70 PFLOPs [115]. The design team calcu-

lated that the problem could be split into 20,971,520 subdomains, and so with each core

being assigned a subdomain, a single core would need a computational rate of 3.5 GFLOPS.

The design team, from Lawrence Berkeley National Laboratory, decided to look towards

embedded systems design tools for their system to minimise power requirements. A tool

from Tensilica (now Cadence) [116] was used which allows a hardware designer to start

with a base architecture which can then have features added or removed, the instruction

set is expandable and the toolchain also creates a compiler, testbench and simulator for the

newly designed architecture. Software autotuners were used to select compiler optimisations

using domain-specific knowledge of the algorithm to produce an optimal code. The tuned

software was then used, in an iterative co-design process, as a reference to tailor the hard-

ware to achieve greater efficiency and find a suitable configuration to meet their power and

performance requirements.

2.6 Discussion

This chapter has the shown the breadth in variety of architecture styles and the types of

computation that they excel in. With the fact that many styles are in existance, plus

resurgence of accelerators and co-processors, underlines that no magic bullet has yet been

conceived for hardware. However, there are four key reoccurring themes and features that

are part of most of the implementations described: the rise of SoCs, the exploitation of

multiple forms of parallelism, higher memory bandwidth and lower power envelopes.

Almost all modern designs are SoCs: they contain ASIC blocks for media codecs, pro-

grammable VLIWs for DSP applications, integrated GPUs for graphics, and, with the very

recent acquisition of Altera by Intel, we may soon see FPGAs being embedded too. To utilise

the components of the SoC, the vendors have to develop kernel code, drivers and SDKs for

third party developers but it enables smaller chips with a greater performance/watt ratio.

The transition to SoCs will continue as more functionality is brought off the motherboards

and onto the chip as this reduces the power requirements of external buses, reduces latency

38



CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

and enables the vendor to known exactly what components the system contains, allowing

for system optimisations in both hardware and software. The inclusion of more ASICs and

application-specific instructions will also most likely continue as more demanding codecs are

developed, encryption becomes more important and as target power consumption continues

to shrink. This will be aided by the continuing development of FinFET technology which

is greatly reducing static power, which will allow the inclusion of more specialised hardware

without the detrimental affect of power drain and subsequent heat dissipation, even when

it is not being utilised.

Most of the processors described also exploit multiple forms of parallelism, with SIMD

extensions and threading the most popular evolutionary steps. SIMD instructions are cur-

rently the main way that architects can improve the single threaded performance of CPUs.

Intel’s AVX is evolving to be able to operate more like a vector machine by being more

flexible and so it would be reasonable to expect that this is the way that other vendors will

also investigate, until finally a full vector processor is a common functional unit of a CPU.

Data-level parallelism is quite abundant in many popular applications but it is certainly not

always exploited, this is often because of how code is written and/or the autovectorisation

capabilities of the compiler. Vendors currently need to ship specific libraries to fully utilise

the functionality of their designs which makes portability difficult and performance less op-

timal; which is bad for both the vendor and the user. More collaboration between hardware

and software teams will be needed so that hardware features can be developed to ease the

task of autovectorisation. Multithreading enables more effective use of superscalar pipelines

to make up for the lack of ILP but also to hide memory latencies, but it can also harm

single-threaded performance. So it can be imagined that different cores within a processor

will be instantiated with varying multithreading capabilites so to hide more memory latency

as well as maintaining the execution speed of key threads.

The growth rate of the compute capabilites of microprocessors has not be matched by

the development of DDR RAM technology. This has made it necessary for more SoC silicon

to be used on memory with larger register files and deeper an larger cache hierarchies, such

as on-chip EDRAM caches. These cache memories are mainly useful for applications with

large data sets and these types of application are growing. A focus on the memory system

is also evident in GPUs where threads are used to mask the latencies caused by accessing

memory. In the desktop market, GDDR5 has evolved to be faster and wider at the expense

of larger cards and high power requirements. The power required by GDDR5 and ever

growing bandwidth requirements has pushed AMD and NVIDIA to develop 3D stacked

memories which are now coming to market [117]. Innovation is also happening in system

interconnects to provide higher bandwidths, so to enable more cores and the greater use of

GPUs and accelerators: NVIDIA has developed NVLink [118], for which IBM is a customer,
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and Intel continue to develop their on-chip ring interconnect for their Xeon processors.

As big-data and graphics applications and many-core systems demand higher bandwidth

and lower latency, it only is logical that development in memory and interconnects will be

absolutely vital in improving system performance - more so than the interals of individual

cores.

2.7 Summary

This section has reviewed the current state of computing architectures. It has been shown

that recent trends and paradigms have been changing as silicon-based CPUs have hit the

power wall, where they can no longer clock faster without dissipating too much heat. This

has lead computer architects to utilise data- and thread-level parallelism to increase per-

formance past what is possible with ILP based uniprocessors. System designers have also

looked towards accelerators to increase through-put and efficiency. Power consumption is

one of the most important factors in modern computing, through rising running costs, the

want for longer battery lives, and the physical limitations of silicon systems. Codesign

systems have been researched to target greater throughput while also reducing the power

requirements. Accelerators have also been introduced to increase through-put because of the

huge increase in the amount of data that is commonly produced. The LE1 VLIW CMP has

been introduced which aims to exploit ILP and TLP, and its configurable architecture lends

itself to codesign systems. It was used as the hardware platform for the ENOSYS European

FP7 project, which used high-level UML and a DSE tool to produce both a program binary

and hardware configuration [119]. Current accelerators are based on many simple cores to

mainly exploit TLP, and this is further augmented with multithreading capabilities to mask

memory latencies; the ubiquitous accelerator is a GPU. The next chapter reviews the new

languages and platforms that have been developed for these arising computing paradigms.
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Chapter 3

Parallel Programming

3.1 Chapter Objectives

The aim of this chapter is to introduce both the traditional and more recently developed

programming languages and frameworks that have been designed to exploit the architectures

that were described in the previous chapter. The chapter will cover both old and new

languages and focus upon targetting OpenCL to multi-core CPUs, DSPs and FPGAs. The

chapter begins with a review of compiler technology, focusing on VLIWs, as they are the

key software tool to enable the adoption of high-level languages.

3.2 Compiler Overview

High-level languages have been introduced to make software more portable and more easily

read, which speeds development and debugging. Compilers are a key tool for software

developers as they convert, and optimise, the high-level languages to the assembly language

of the target architecture. The importance of the compiler varies between architecture

styles. VLIW and statically scheduled superscalars rely heavily on the decisions made by the

compiler, whereas dynamically scheduled superscalars can re-order instructions and rename

registers, making them less reliant. Compilers can be designed to accept multiple languages

and support multiple target architectures, but their compatibility and feature support can

vary. Compiler writers and hardware vendors can supply libraries which include intrinsic

functions that target specific hardware features of certain architectures. Likewise, languages

such as OpenMP extend C with pragmas which can be either accepted by the compiler or

ignored.
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3.2.1 Code Representation

As a program passes through the many stages of a compiler, it is represented in different

formats to be more suitable to the current task. The program is stored in various data

structures and forms, depending on the task and how far the process is into compilation.

Some structures are better for representing the details of source languages while others

resemble machine language. The program can often be represented in more than one format

at a time to combine the benefits of the different intermediate representations (IRs). IRs

generally take two forms: graphical ones, such as trees and graphs, and linear sequences of

operations [120].

Syntax Trees are often used by the frontend of a compiler as the original source code is

scanned and parsed. A parse tree is a graphical representation that corresponds to the input

program, containing a node for each grammar symbol in the derivation and communicates

both the precedence and meaning of the expressions. Some of these nodes in a parse tree

are unnecessary for the rest of the compiler, so it can be simplified into an Abstract Syntax

Tree (AST). When used at a high level, ASTs often contain source-level abstractions which

make them particularly useful for source-to-source transformations.

Directed Acyclic Graphs (DAGs) are graphs which contain no back edges. When used

in the frontend, these further contract the AST by allowing nodes to have multiple parents

and sharing identical subtrees. This can help remove redundancies so it is more efficient

to store in memory than an AST. The removal of redundancies also makes DAGs usual

throughout the compilation process, aiding in effective instruction selection and removing

duplicate code. Control-Flow Graphs (CFGs) model the flow of control between the basic

blocks of a program. The nodes of the graph are the basic blocks, connected by edges that

represent the possible runtime flow of the program execution. Data-dependence Graphs

(DDGs) encode the flow of values from their definitions to their uses. The nodes in the

DDG represent operations and the connecting edges between nodes indicate a value that is

defined in one node, being used by another node. This creates a partial ordering to nodes,

as it does not encode important control-flow information.

Single Static Assignment (SSA) form is a linear IR in which variables are uniquely named

for each assignment to them. This form explicitly represents du-chains, where a du-chain

represents all the possible uses of a definition. This representation is important for several

optimisations such as constant propagation, invariant code motion and partial redundancy

elimination. Figure 3.1 gives a code fragment with its accompanying CFG which has been

modified into SSA form. Two changes have been made to the CFG: (1) a unique name has

been given for each location where a variable has been assigned a value and (2) φ nodes

have been inserted to select between values from converging control-flow paths.
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Entry

i0 = 0

i2 = ϕ(i0, i1)

a2 = ϕ(a0, a1)

if (i2 < 10)

a1 = a2 + b0 + i2

if (a1 > c0)

i1 = i2 + 1a3 = ϕ(a1, a2)

return a3

Exit

for (int i = 0; i < 10; ++i)
{

a += b + i;
if (a > c)

break;
}
return a;

Figure 3.1: Example of Single Static Assignment (SSA) form.

3.2.2 Code Generation

Code generation is the final part of compilation where the program is transformed from an

internal representation into the assembly format of the target architecture.

3.2.2.1 Instruction Selection

Instruction selection is the process of converting a program from the IR into instructions

that the target architecture can execute. It is not only important for the execution speed

of the program, but also the code size which is often more important than speed in embed-

ded systems. Instruction selectors are very often produced automatically from a machine

description which can make the retargeting of a compiler a more simple task. The old ap-

proach was to perform syntax directed techniques by parsing tree grammars and matching

these to patterns defined in pre-computed tables, such as the Granham Glanville technique

[121]. This involves assigning target machine instruction patterns to the IR and storing the

information within a table. Depending on the abstraction level and the target architecture,

many machine instructions may be mapped to a single instruction in the IR, or it can be
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the other way. As most architectures provide many ways to perform the same operation,

the table is ordered in a ‘best instruction first’ manner and the table is iterated from the

top during the search. Selection can also be performed using DAGs, which is more complex

than tree pattern matching as nodes can be shared in the graph; some of this complexity can

be reduced by decomposing the DAG into trees to work upon but can produce suboptimal

results. DAGs can also be parsed [122] and the same dynamic programming technique as

tree patterns can be applied where nodes/non-terminal combinations are labelled with their

costs. Shared nodes are then considered during a reduction phase, and so the subgraphs are

reused.

3.2.2.2 Instruction Scheduling

Instruction scheduling is the process of trying to select an optimal order for all the instruc-

tions in the program to issue. List scheduling has been the dominant technique for scheduling

for several decades, because it is easily adaptable and produces good results [123]. It is a

technique rather than a set algorithm and so can be modified to fit different circumstances.

An implementation of a list scheduling algorithm will usually operate on renamed code to

avoid anti-dependences, it then builds a dependence graph and assigns latencies on the edges

from source values to their sinks. Each operation is then set a priority utilising a scheme;

this is where the technique can be highly adaptable and define how effective the scheduler

is [124]. The classic scheme is to base priority of the nodes on the length of the longest

latency path from a node to the root. The scheduler then uses two lists, one for instructions

that are ready to be issued and one for currently active operations. A cycle count is kept

so when enough cycles have passed, it means that an operation in the active list would

have completed and so it is removed. The scheduler can then check the removed operations

successors to determine whether they are ready to be issued, if so there are added to the

ready queue. Operations in the ready queue are issued depending on the scheme used.

3.2.2.3 Register Allocation

Register allocation is the stage where the code is mapped from a set of infinite virtual

registers into the limited register set of the target architecture. This can happen before or

after instruction scheduling. The allocator needs to try to reduce the effect of generated spill

code (the code to load and store a value to and from memory), this includes the time for

address computation with the execution frequency of the operation as well as the code space

these instructions occupy. Allocation can occur locally over individual basic blocks. However

this requires load and store operations to be used to safely pass values between basic blocks,

which can dramatically reduce the performance. Therefore most allocators work globally
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using live variable analysis to understand what variables are maintained throughout the

program; live ranges bound the definitions and uses of a value. These live ranges can be

used as nodes on a graph, with edges indicating which live ranges interact with one another.

This is called an interference graph and is used for allocation and spilling [125]. The task

is to colour the interference graph so that no adjacent nodes are coloured the same, with k

number of colours to choose from, k being the number of registers of the architecture. If the

graph cannot be k -coloured then spill code has to be inserted and a re-attempt made.

3.2.3 Types of Compilation

Compilers are not just tools used by software developers to create distributable binaries and

libraries. Some programs are distributed in portable formats which require compilation when

the application is installed, while some languages are dynamic and self-modifying which can

be sped up by compilation and optimisation during runtime.

3.2.3.1 Static Compilation

Static compilation is the traditional method of creating an executable program from source

code. The application developer feeds the source of the program into the compiler which

then outputs the machine code or object file, the format of which will be specific to the

target platform. Static compilation allows the compiler more time to perform optimisations

which can result in a faster executable. Sometimes, however, the binary can be significantly

larger than the source file; especially if it is large statically linked program. Linking is the

process of including library function and data within an executable, this can either happen

statically at compile time, or dynamically at runtime. Statically linking ensures that the

executable has (otherwise external) data contained within it which helps make the program

more portable. Dynamic linking reduces the program size by allowing programs to share

libraries, however source programs need to be compiled to target the right version of a

library; otherwise binary incompatiabilities can arise.

3.2.3.2 Just-in-Time

Just-In-Time (JIT) compilation encompasses creating machine code at program runtime

and then executing that code, also at program runtime. The primary advantages to this

model is that portable code can be distributed and it enables dynamic code creation. Some

programming languages are interpreted, where the interpreter translates the source code at

runtime and skips the output of machine code, performing the execution immediately. This

negates the, sometimes lengthy, compilation times and makes the code portable since it can

run where ever the interpreter is installed. This also keeps the code size small. However,
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interpreted languages are significantly slower because less optimisations are performed [126].

JIT compilers aim to take the advantages from both statically compiled and interpreted

languages by distributing small, portable, programs that can be modified and compiled at

runtime. JIT compilers can be implemented within interpreters to selectively compile and

optimise certain, or all, parts of the program.

The importance of JIT compilation can be highlighted in the fact that it enables the

internet experience of today. Nowadays, web pages and client side web apps are accessed

from smart mobile devices and PCs running Windows, BSD (iOS, OSX) and Linux (Android)

on both x86 and ARM architectures, all of which requires that code is portable. The language

that powers most client side applications is Javascript and so all major browsers contain a

Javascript engine: Apple’s Webkit, Mozilla’s SpiderMonkey and Google’s V8. All the engines

have the ability of performing JIT compilation, as well as interpretation, of Javascript to

increase execution speed across multiple platforms [127][128][129]. Server side applications

have also historically run on different operating systems and different architectures, such as

POWER, SPARC and x86. Both Java and C# programs are compiled and distributed in a

bytecode format which is JIT compiled within the VM, as is the case with the .NET Common

Language Runtime [130], C# Mono runtime [131] and Java’s HotSpot [132]. The portability

of the application only requires that the VM has to be ported to different platforms and

architectures.

High-level, dynamic, languages have become popular in the scientific community for

easily expressing algorithms. Two examples are: (1) SciPy [133] a collection of Python tools

and packages while Python is generally interpreted and compiled into a bytecode to run

within a VM [134] and, (2) Julia, a high-performance, concurrent, language which also uses

JIT compilation [135].

3.2.3.3 Ahead-of-Time

Ahead-of-Time(AOT) compilation aims to increase execution speed of portable applications

by compiling a target independent representation of a program to machine code at install

time. This compilation generally improves upon JIT compilers, as it has more time to

perform optimisations, but can also increases the size of the executable, compared to the

source code or bytecode, and can increase initial startup time. Most of the runtime engines

mentioned in the previous sections also have AOT compilers embedded within them and the

latest version of Android uses one when installing applications [136].
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3.3 Compiling for VLIWs

This section covers the various compiler techniques that have been developed, alongside

hardware features, to enable statically scheduled computers to exploit as much ILP as pos-

sible. The key to these analysis passes and optimisations is that they aim to provide the

instruction scheduler with as many options for instruction issue as possible; the actual

scheduling algorithm does not necessarily have to be any more complicated than that of a

superscalar. Thus, the most important part of compilation is the code formation for the

scheduler.

3.3.1 Region Formation

Programs are generally broken down into basic blocks, which are maximal straight-line

sections of code without any control-flow within them; they are bounded by control-flow

statements. For ILP processors it is advantageous to group basic blocks that are executed

most frequently together so that more instructions can be analysed. Code placement and

structure is also very important when using caches, as minimising cache misses is of the

utmost importance due to the huge difference in access speeds to memory.

3.3.1.1 Profiling

Code formation techniques for VLIWs often include enlarging the scheduling regions, which

could lead to substantial code size increases if the whole program was optimised in the same

way. Code size can affect the performance of the instruction cache as a larger instruction

stream will require a larger cache to avoid performance degradation. Complex optimisations

and transformations also lead to longer compile times, which is a particularly important

metric in JIT systems. Profiling can be used to find the suitable sections of code to optimise

to help improve compile time and to produce higher performing code with less code growth

[137]. Profiling counts the occurrences of events during the execution of the program; this can

be individual instructions, but is more often performed on basic blocks. Dynamic profiling

gathers information during the runtime of a program and is more accurate than static

profiling, which is performed by the compiler, and can be particularly useful in JIT runtime

systems [138]. Profile information is vital for many optimisations and transformations as

it enables a compiler to focus on optimising areas which are executed heavily. There are

different types of profile information that can be collected, such as basic block execution

counts and execution time [139].
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3.3.1.2 Speculation and Predication

The compiler can utilise speculation and/or predication to overcome control dependencies by

removing them or converting them to data dependencies. This allows larger basic blocks to

be constructed which gives way to greater optimisations as well as better use of the pipeline.

Software speculation is where the compiler speculatively moves code above branches that

are highly weighted in one direction, and so breaks data and control-flow dependencies [140].

This can reduce the critical path of computation, increases ILP, can help tolerate latencies

and helps issue long-latency instructions earlier. It does have some drawbacks too though;

it can increase register pressure, can increase the critical path of other parts of code and

adds complexity to the exception-handling mechanism. Control speculation is executing

an instruction before knowing that its execution is required or needed; it’s very helpful

when branches are predicted correctly, potentially increasing ILP, but can potentially waste

resources when speculated incorrectly. Data speculation is executing an instruction before

knowing it can be executed correctly.

Predication offers a more effective technique for ILP processors as it is used to collapse

short sequences of alternative operations after a branch that is nearly equally likely in each

direction. This has the effect of transforming control dependencies into data dependencies

and is called if-conversion [60]. Predicated or guarded execution refers to the conditional

execution based upon the value of a operand called a predicate. If-conversion is used to

convert condition statements to predicate defining operations and the following statements

into predicated instructions. As well as reducing the number of cycles taken from branching,

eliminating branches means there are less branches that can be predicted incorrectly, and so

less time is wasted recovering from those mistakes. There are two models; partial and full

predication [141]. If the architecture supports full predication, each instruction is provided

with an additional source operand to hold a predicate specifier, and so all instructions can

be predicated. Partial predication support requires a small number of instructions that are

conditionally executed, this helps keep the ISA simple but reduces the useful scope.

3.3.1.3 Region Enlargement

Finding parallelism in most programs requires the compiler to operate on larger areas than

basic blocks, two of the more basic techniques are by using extended basic blocks and loop

unrolling. An extended basic block (EBB) is a group of basic blocks where the only beginning

block can have multiple predecessors but each proceeding block has one predecessor, this

is shown in Figure 3.2. Global code motion can be used to then produce code that the

scheduling can work with to find more parallelism. Loop unrolling is a classic technique

which unrolls the body of a loop so that more work is done for the overhead of the loop
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branching back in on itself, as well as revealing more instructions to the scheduler to take

advantage of parallelism. Obviously this creates larger code so often there is a limit to

unrolling and/or it is reserved for particularly hot parts of code; this information can be

gained from profiling.

Entry

B3

B2B1

B0

B4

B6

Exit

B5

Figure 3.2: Extended Basic Block Formation with the EBBs shown within the dashed lines.

3.3.1.3.1 Trace scheduling provides a way to group basic blocks into much larger streams

of instructions and the decision of what blocks get grouped together is performed using pro-

file information or heuristics [142]. The selection algorithm works from the most frequently

executed blocks to the least until all blocks have been scheduled. The group of basic blocks

to be scheduled together is called a trace, it is a linear path through code which can have

multiple entrances and exits. The Bulldog compiler used Traces, and creating them requires

more than just selecting the basic blocks. Firstly, schedulers were designed to operate on

basic blocks where control entered at the top and exited at the bottom, however traces

allowed conditional statements within traces (splits) and allowed jumps in too (joins). So at

the trace boundaries (entry, splits, joins and exit), the generator had to report the locations

of all the live variables. Conditional jumps also meant that extra edges had to be added
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between certain nodes to maintain correct live ranges and ensure write-after-read(WAR)

dependences were maintained. By grouping and scheduling the most frequently executed

blocks first, it reduced the amount of compensation code added into the critical path, which

otherwise could degrade performance.

3.3.1.3.2 The Superblock is similar to a trace, but formation and scheduling is de-

signed to reduce the complexity of the compiler [143]. A superblock is a trace without side

entrances; it has one entry but can have many exits. Superblocks are formed in two steps:

First the traces are identified using profile information, as with trace scheduling, and the

second uses tail duplication [144] to eliminate any side entrances to the trace. The process

of tail duplication involves replicating basic blocks, which can be entered from outside the

trace, so that side entrances do not occur. This maintains program semantics but changes

the CFG. Superblocks are similar to extended basic blocks, their difference is mainly in their

formation because profile information is used to construct superblocks. Once a superblock

is formed, it can then be enlarged to increase ILP though it is important to note that enlarg-

ing optimisations are only performed on the most frequently executed parts of a program.

Superblocks are enlarged using three techniques:

• Branch target expansion expands a superblock when a likely control transfer ends with

another superblock. The target superblock is copied and appended onto the original.

• Loop peeling modifies a superblock loop (a superblock which ends in a likely transfer

to itself) but peeling the loop into straight line code. This is performed when the likely

number of iterations is low, this expected number can be found through profiling. The

original loop body is copied to the bottom of the code to handle extra iterations.

• Loop unrolling copies the body of a superblock which tends to iterate many times.

To increase ILP further, a number of optimisations are performed to remove data de-

pendencies, again these are performed in a controlled way as they can increase the number

of executed instructions. Five optimisations are used:

• Register renaming removes anti and output dependencies by assigning unique registers

to different definitions of the same register.

• Operation migration moves an instruction from the superblock, who’s result is not

used in the superblock, to a less frequently executed superblock.

• Induction variable expansion creates new names for variables in unrolled loops. In-

duction variables are used within loops to index data structures, anti, output and flow

dependencies can then limit ILP when the loop is unrolled.
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• Accumulator variable expansion is similar to induction variable expansion in that

variables are renamed in unrolled loops. Accumulator variables accumulate a sum or

product in each iteration of the loop.

• Operation combining eliminates flow dependences between pairs of instructions with

compile-time constant source operands, this often arises in address calculation and

memory access operations. The dependence is removed by substituting the expression

of the first instruction into the second.

3.3.1.3.3 Hyperblocks use predication to form a region that includes many control

flow paths, whereas superblocks utilise speculation [145]. As with superblocks, they have a

single point of entry but can have many exits and the basic blocks are also selected using

profile information. Hyperblocks are usually formed from basic blocks that typically make

up the body of an innermost loop. The basic blocks are selected carefully so that hyperblock

formation doesn’t have a detrimental effect of the performance. By removing infrequently

executed paths, the constraints imposed on the frequently executed paths are relaxed. Larger

blocks are given a lower priority than smaller blocks since less ILP is likely to be discovered

in the smaller blocks by themselves compared to the larger. Also, blocks with hazardous

operations such as procedure calls and memory accesses have a lower priority in selection as

these types of instructions reduce the effectiveness of the optimisations.

Blocks are selected if they have no incoming control paths other than to the entry block

and if they contain no nested inner loops. Tail duplication and loop peeling, where loop

iterations are extracted out of the loop, are used to transform the blocks to meet these

requirements [146]. Node splitting may also be performed which can completely remove

merge points by duplicating sufficient amounts of code, obviously this can dramatically

increase relative code size but it’s particularly effective on wide issue machines and control-

intensive programs. The selected blocks are then if-converted and formed in a hyperblock.

If-conversion first calculates all the control dependences between all the basic blocks in the

hyberblock, then one predicate register is assigned to the basic blocks with the same control

dependence. The predicate defining instructions are then added into the basic blocks which

contain the source of the dependences. Finally the conditional branches between blocks are

removed leaving a single hyperblock of predicated code.

3.3.1.3.4 Treegions A treegion is a region containing a tree of basic blocks which is a

subgraph of the CFG, they have a single entry and multiple exits and are formed without the

aid of profile information [147]. They can contain multiple, independent, control paths and

so they are classed as non-linear, whereas superblocks and hyperblocks are linear regions.

Treegions are grown by traversing the CFG absorbing basic blocks if they are not merge
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points. Once all edges have been explored, the basic blocks at the treegions leaves become

saplings which become the new roots of another region. This process continues until the

entire CFG has been consumed.

3.3.2 Scheduling

3.3.2.1 Acyclic Scheduling

List scheduling can be used for VLIWs and requires larger scheduling regions to utilise

the available hardware resources efficiently, such as the ones described in the previous sub-

sections. To be most effective for ILP processors, the scheduler needs to operate on a

representation that doesn’t induce false dependencies; so ideally before register allocation.

A data-dependence graph can be modified so that each node (instruction) contains the

functional unit requirements and the latency of the operation. The operations without any

predecessors can be added to a queue of ready nodes which the scheduler then has access too.

The scheduler can then use an internal clock together with some form of resource hazard

table that tracks the usage of resources by each of the instructions in flight. On each cycle

of the clock, the scheduler can select instructions from the ready queue and assign them

to available resources and increment the clock once the queue is empty or no resources are

available.

The quality of the produced code is dependent on how the scheduler selects instructions

from the queue, and a key metric is usually the height as the higher value represents a

node on a more critical path. The scheduler will also need to employ some form of decision

making function when nodes in the available queue have the same height. A useful metric is

using the latency of the operations so that longer latency operations are scheduled earlier or

by how many descendants the node has so that more nodes may be added to the available

queue. Another issue is that the scheduler needs be aware of how greedy it is being and

this is for two reasons: (1) scheduling too many instructions to be inflight may increase

register pressure and lead to spill code being inserted which will almost definitely reduce

performance of the generated code, and (2) some instructions could occupy a resource for

multiple cycles which could block more critical instructions later in the schedule.

This method of scheduling is not much different for that of a pipelined scalar architecture,

but scheduling VLIWs can be significantly different if the architecture is clustered, as such

was the case for the Eli-500 and the TI C6000 DSP; described in Sections 2.3.2 and 2.3.3.

Clustering the datapaths can greatly reduce hardware complexity and allow for wider and

faster machines, but it does increase the complexity of the compiler as it needs to decide

where the instruction executes as well as when. There are two key approaches to this:

either select the cluster before scheduling or perform cluster assignment simultaneously
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with instruction scheduling.

The bottom-up greedy (BUG) algorithm was implemented in the Bulldog compiler and

used two passes over the DAG to assign clusters before instruction scheduling. The algorithm

traversed the DAG from the exit nodes up to the entry nodes, estimating the best FU for

each node. It then worked back down to the roots making the final assignments on the

way, estimating the cycle in which the FU can compute the operation. BUG kept track of

FU usage for each cycle in a table and updated the table after each node was assigned a

location. The unified assign and schedule (UAS) algorithm was developed to address the

issue that BUG could not eliminate the oversaturation of the interconnect buses since it did

not have a complete knowledge of the interconnect availability and ignored copy instruction

scheduling delays [148]. Early clustering was also viewed as constraining for the scheduler.

The UAS algorithm integrated cluster selection into the list scheduler of the instructions by

treating the bus interconnect as a machine resource and by accounting for the inter-cluster

copy latencies of the instructions. For each instruction selected by the scheduler, a cluster

was chosen from a priority queue for it to be assigned to. The researchers found that the

best priority function was one where priority was given to clusters that would produce the

source operands late in the schedule; they also found UAS to outperform BUG.

3.3.2.2 Cyclic Scheduling

Many programs spend most of their time in loops, however acyclic schedulers do not account

for this. Acyclic schedulers handle loops by unrolling the loop body (the acyclic region) to

expose more instructions to the scheduler. However, this is more difficult when the loop

count is unknown at compile time, it also enlarges the code size and does not account for

the loop back edge. The region formation techniques of the previous can also grow the code

significantly which is particularly undesirable in embedded systems. Software pipelining is a

class of global cyclic scheduling algorithms that exploit inter-iteration ILP and so are useful

for VLIWs [149] and generally do not induce code growth of unrolling. They do this by

pipelining instructions from the body of the loop across multiple iterations in order to take

advantage of the available resources within one iteration. This trades a longer single iteration

latency for greater throughput. Successive iterations are initiated at regular intervals, called

the initiation interval (II), and the goal of the scheduler is to minimise this value [150].

Resource constraints and interiteration data dependences place a lower bound of the II,

called the resource-constraint minimum and recurrence-constraint minimum respectively.

As the scheduled loop body contains instructions from multiple iterations, some code is

required to setup the loop before the first iteration begins and this is called the prologue.

Similarily, code is also required to finish the instructions of the final iteration and these are

handled in the epilogue. Software pipelining schedulers still operate on a per cycle basis, but
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Figure 3.3: Illustrated concept of software pipelining.

more complex than acylic as they need to schedule for intra- and interiteration dependences

and resource usage.

The developers of F77 compiler, for the Cydra 5, created a software pipelining algorithm

called modulo scheduling which conceptually unrolls the loop to find a recurring set of

instructions which can be scheduled together in a single loop body [151]. This body is called

the kernel and is constructed so that neither data dependence nor resource conflicts arise;

Figure 3.3 depicts this concept. To track resources across multiple concurrent iterations,

the modulo scheduler uses a modulo reservation table (MRT) which ensures that within the

single iteration the same resource is never used more than once at the same time, modulo

the II. Once a target II has been selected, the scheduler can work can select instructions

from a ready queue, using the current cycle and the II to check for resources in the current

cycle and future iterations. Table 3.1 shows a worked example of how a loop, performing

c[i] = a[i] * b[i] on the LE1, would be modulo scheduled with II = 5; the upper part of

the table shows the original schedule, followed by the new prologue (p0-p9), kernel (k0-k3)

and epiplogue (e0-e6).

Though the MRT guarantees that functional resources are not oversubscribed, it does

not guarantee that there are enough registers available for allocation. Register allocation

becomes an issue when the life time of a value is longer than the II, since the following
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Table 3.1: Modulo scheduling example

Cycle ALU 0 ALU 1 MUL LSU BR

0 sh2add r6, r2, r4 sh2add r7, r2, r3

1 sh2add r9, r2, r5 add r2, r2, 1

2 ldw r16, r6[0]

3 ldw r17, r7[0]

4 nop

5 mulhs r8, r1, r16

6 mullu r10, r17, r16

7 nop

8 add r11, r10, r8 cmplt b0, r2, 100

9 nop

10 stw r9[0], r11 br b0, loop

p0 sh2add r6, r2, r4 sh2add r7, r2, r3

p1 sh2add r9, r2, r5 add r2, r2, 1

p2 ldw r16, r6[0]

p3 sh2add r6, r2, r4 sh2add r7, r2, r3 ldw r17, r7[0]

p4 add r2, r2, 1

p5 mulhs r8, r17, r16

p6 cmplt b0, r2, 98 mullu r10, r17, r16 ldw r16, r6[0]

p7 ldw r17, r7[0]

p8 add r11, r10, r8 brf b0, e6

p9 nop

k0 sh2add r6, r2, r4 sh2add r7, r2, r3 mulhs r8, r17, r16 stw r9[0], r11

k1 sh2add r9, r2, r5 add r2, r2, 1 mullu r10, r17, r16

k2 ldw r16, r6[0]

k3 add r11, r10, r8 cmplt b0, r2, 98 ldw r17, r7[0] br b0, loop

e0 add r2, r2, 1

e1 mulhs r8, r17, r16

e2 sh2add r9, r2, r5 mullu r10, r17, r16 stw r9[0], r11

e3 nop

e4 add r11, r10, r8

e5

e6 stw r9[0], r11
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definition will overwrite the previous value. The Cydra 5 introduced hardware support

in the form of rotating registers to address this issue, but it can also be handled by the

compiler. The scheduled loop body can be unrolled by a number of times so that the new

length covers the lifetime of the value, this technique is called modulo variable expansion.

Another issue arises in the presence of control-flow within the loop body; to handle this

effectively the architecture should support a predicated ISA so that the control dependences

can be converted into data dependences.

3.4 Languages and Platforms

This section gives an overview of the currently available languages that have been designed

to enable different forms of parallel programming. The traditional methods of threading and

message passing are described, as well as the more recent developments into languages and

platforms designed for heterogeneous computing. OpenMP, described in Section 3.4.2.1, is

both old and new as it is an API that has been used for shared memory multiprocessing

for over 15 years and has also recently been updated for heterogeneous computing. The

section finishes with a survey of the different methods, reported in literature, that have been

developed to compile OpenCL programs for a variety of differing platforms and architectures.

3.4.1 Traditional Methods

Traditional implementations towards parallel programming primarily focus on utilising mul-

tiple separate processors, either in a shared or distributed memory system.

3.4.1.1 POSIX Threads

POSIX threads (Pthreads) defines an API for creating and manipulating threads by defining

a set of C programming languages types, functions and constants in the pthread.h header

file of POSIX conformant operating systems [152][153]. Pthreads exist within UNIX pro-

cesses, sharing the memory, and are much more ‘lightweight’ than processes as they only

need to maintain their own program counter, stack pointer and registers. The creation of

the threads can be 10-100x faster than creating a new process using fork() as the kernel

does not need to make a new independent copy of the process. Operating in a shared mem-

ory environment also greatly reduces the communication overhead between threads as all

global variables are visible to each thread. This does however require that the programmer

explicitly controls access to shared data.

pthread t type defines a thread handle, which is used by the pthread create() func-

tion to create a new thread along with the name of the function that will execute as the
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thread. The new thread then terminates when the function returns. The pthread join()

function is passed a thread Id and waits for that thread to end, suspending the current

thread while it waits. This functions joins two threads back into one and is necessary for

the proper cleanup after a thread terminates. The pthread mutex t type defines a mu-

tex which enables a mutually exclusive lock, accessed using the pthread mutex lock() and

pthread mutex unlock() functions. If a thread tries to lock access to a mutex, but finds

that it is already locked, the thread goes to sleep and is effectively placed in a queue waiting

for access to the data. By using mutexes, it is possible to ensure that only a single thread

operates on the data at one time.

3.4.1.2 Message Passing Interface

The Message Passing Interface (MPI) is an open specification for a library API that enables

communication between processes in a distributed memory environment [154], currently

at version 3.0. The API is designed to be cross-platform and language independent The

interface addresses the message-passing parallel programming model which involves data

being moved between different processes / cores / computers. MPI is designed to allow

efficient communication by avoiding memory-to-memory copying, by allowing the overlap of

computation and communication and to enable the use of co-processors. The standard is

designed to enable both point-to-point and collective communication.

Point-to-point communication is primarily enabled by using the MPI SEND and MPI RECV

functions to send a buffer of data and to signal that the data has been received and saved.

The MPI SEND encodes the location, size and type of the send buffer as well as an envelope,

which specifies the message destination and contains distinguishing information that can be

used by the receive operation. The envelope contains a communicator which is used to

specify a context for communication; messages from different contexts do not interfere with

one another. The communicator specifies the set of processes that share the communication

context with the MPI COMM WORLD communicator provided by MPI to enable communication

with all the processes. Both blocking and non-blocking communication is supported.

Collective communication involves a group(s) of processes, with the communicator defin-

ing them and providing the communication context. There are two types of communicators:

intra-communicators and inter-communicators which respectively identify a single group of

processes and two distict groups. MPI defines collective communication functions including:

• MPI BARRIER to provide synchronisation across all members of a group.

• MPI BCAST to broadcast a message from one member to all members of a group.

• MPI GATHER to gather data from all members of the group to one member.
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• MPI SCATTER to scatter data from one member to all the members of a group.

3.4.2 Programming for Heterogeneous Systems

3.4.2.1 OpenMP

OpenMP is an API for C/C++ and Fortran programs that defines code constructs and a

runtime library to support parallel execution. Originally, OpenMP only supported parallel

processing in shared memory systems [155] but the latest specification (4.0) also supports

offloading computation to other devices [156]. The execution model is thread based, with

a host device and zero or more target devices, but data-level directives are also available;

thus supporting both explicit TLP and DLP. OpenMP has a relaxed consistency, shared-

memory model where the programmer is responsible for data consistency and avoiding race

conditions. Each thread is allowed to have it’s own temporary view of main memory, whether

this be in registers, cache or some local store. Each thread can also have threadprivate

memory. Several directives are provided to enable the programmer to maintain consistency

between memory views and to avoid race conditions:

• The critical directive restricts execution to the associated block to a single thread.

• The ordered directive sequentialises loop iterations, which allows outer regions to still

operate in parallel.

• The barrier directive must be executed by all threads, executing within a parallel

region, before any can continue beyond the barrier.

• The flush directive forces the thread to write it’s temporary value to main memory.

• And atomic is used to specify that a storage location is accessed atomically.

Constructs are supplied with various clauses which inform the runtime on parameters

such as thread count, the target device, data share (shared and private) and can also make

their execution conditional. The parallel construct identifies a parallel region of code.

When a thread encounters a parallel construct, it creates a team of threads, of which

it becomes the master, to execute the region. The number of threads remains constant

throughout the execution of the region and so if one thread terminates, all threads terminate.

Within parallel regions, other constructs can be used to further distribute the execution

amongst the team members. Loop constructs (either omp for or omp do) enables the loop

to be split into chunks to each be executed by the threads within the team. Loops can

also be vectorised using the simd construct. The sections construct encloses multiple

section constructs which each get executed by only one of the threads. A single construct
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specifies a region that is only executed once, by a single thread. All these constructs have

an implicit barrier proceeding them which blocks execution of the master thread until all

threads executing the construct have completed. This can however be overridden using a

nowait construct.

The target data and target are used to setup data for a target device and execute

a region on a specified, or not specified, device. The following constructs are designed

for sharing a large number of threads, mainly on a target device which is likely to be a

highly multithreaded GPU. The teams construct creates a league of thread teams to execute

the region. The distribute construct can then be used within the region to distribute

iterations of a loop across the teams. Parallelism can be further enhanced by using the

distribute simd, which distributes the iterations in the same way, but also executes using

SIMD instructions. The distribute parallel loop construct distributes the iterations of

the outer loop across teams, with the resulting loop iterations being further distributed

across the threads within the team; and this too has a SIMD counterpart.

3.4.2.2 CUDA

The Compute Unified Device Architecture (CUDA) is a parallel computing platform and

programming model, developed by NVIDIA, to enable general purpose computing on their

GPUs [157]. A CUDA program is split into two components: the host and the device

code. CUDA C extends C by allowing the programmer to define functions, called kernels, to

represent a CUDA thread. The programming model assumes that the CUDA threads execute

on a physically separate device, such as a NVIDIA GPU, while the rest of the program runs

on the host CPU. CUDA threads are executed in parallel across the many parallel ALUs

(CUDA cores) of NVIDIA GPUs. The threads are organised in thread blocks, which are

parallel groups of work, with each block containing up to 1024 threads. The blocks are

organised into a grid and the device can choose any order in which to execute the blocks as

they are completely parallel to one another. Built-in variables can be used within the kernel

to identify the thread within the execution space; which can be split into three dimensions.

The threadIdx variable is used to read the thread index, the blockIdx for the block index

and the dimension of the thread block is accessed using the blockDim variable.

The CUDA memory model is partitioned so that each thread has private local memory,

each thread block has shared memory that is visible to all the threads within that block,

and global memory which is accessible to all threads. There are also two additional global

memory spaces that are read-only: constant and texture memory. The programming model

also assumes that both the host device maintain separate memory spaces in DRAM. As

some memory is shared and threads within a block can execute in any order, a method of

thread synchronisation is provided. The intrinsic syncthreads() function is used within
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the kernel to synchronise the threads as it acts as a barrier at which all threads in the block

must execute before any is allowed to proceed.

As well as CUDA C, kernels can be written in NVIDIA’s assembly form called PTX.

NVIDIA’s CUDA compiler, nvcc, is used to compile CUDA C or PTX kernels into a binary

format and can do this offline or at runtime. In offline mode, nvcc first separates the host

and device code and compiles the device code into PTX form. The host code is modified by

inserting the necessary calls to the runtime library to load and launch the compiled kernel.

The compiler can output the modified C code or continue and produce an object file. The

runtime library is also used by the programmer to transfer memory between the host and

the device and can provide low level access to the driver if the programmer requires. JIT

compilaton loads the PTX code and compiles it for the target and automatically caches a

copy of the generated binary to avoid repeating compilation in subsequent invocations of

the application.

3.4.2.3 OpenCL

Table 3.2: CUDA and OpenCL naming conventions

Programming Term CUDA Name OpenCL Name

Vectorisable Loop Grid NDRange

Body of vectorisable loop Thread Block Workgroup

Sequence of SIMD lane instructions CUDA Thread Work item

Thread of SIMD instructions Warp Wavefront

OpenCL, like CUDA, is a programming language and execution framework designed to

allow programmers to offload compute intensive codes (kernels) to accelerators [17][158].

There is close correspondence between OpenCL and its CUDA counterpart as shown in

Table 3.2. OpenCL programs are split into two parts: host and device code. The host code

can be written in a variety of languages (C, C++, with bindings for Python [159], Java [160]

amongst others) and runs on the host CPU; the purpose is to discover accelerator devices,

submit work and manage data transfers to and from them. The host program is also free to

make use of all the native parallelism, in the form of the OpenMP and MPI APIs, which are

supported in the host environment. The OpenCL programming model views the accelerator

device as consisting of compute units (CUs), each containing multiple processing elements

(PEs). OpenCL explicitly views the application parallelism in the form of an N-dimensional

index space where each point (work-item) within that space is an instance of a small function

called a kernel. Kernels represent the smallest unit of work and will be executed thousands of

times across the device with a work-item assigned to a PE. Work-items are grouped together
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in a second-tier hierarchy to form workgroups and these are assigned to CUs. Kernels can

be compiled offline and loaded onto the accelerator as a machine object, or at runtime where

better optimisations can be made with knowledge of the specific architecture. In the latter

case, a runtime compilation framework is assumed to be in place. There is also a specification

for a device independent intermediate representation for kernel code distribution called SPIR

[161].

The language, an extension of C99, explicitly supports both DLP and TLP. This is

achieved by exposing DLP through the inclusion of vector data types and by expressing the

code as a thread. This is further supported through built in functions for thread synchroni-

sation and key mathematical operations. The barrier function enables thread synchronisa-

tion between work-items within a workgroup, however synchronisation between workgroups

is not permitted. The memory model is split into four address spaces:

• Constant: A section of the global memory that stays constant during kernel execution.

• Private: PE Scope: A section of memory allocated per PE and inaccessible by any

other PE

• Local: CU Scope: A section of memory accessible by all PEs in the current CU but

inaccessible by other CUs

• Global: Device scope: A section of memory visible to all PEs, across all CUs. Poten-

tially cached.

The OpenCL 2.0 specification introduced the shared virtual memory (SVM) model which

extends the global memory region into the host memory region. This allows pointers to be

passed between the host and device which can remove the requirement of data transfers.

There are three possible types of SVM in OpenCL: coarse-grained buffer, fine-grained buffer

and fine-grained system. Coarse-grained buffers enable kernel instances to share pointer

based structures with the host program with consistency being enforced using map/unmap

commands. Fine-grained buffers offer sharing at the load/store level within buffer objects

with memory consistency being guaranteed at synchronisation points. Finally, the fine-

grained system model enables individual load/stores to access anywhere within the host

memory, and again, consistency is guaranteed at synchronisation points.

3.4.2.4 HSAIL

The Heterogeneous System Architecture (HSA) [162] is designed to support a wide variety

of data- and thread-parallel programming models, and is particularly amenable to OpenCL.

HSAIL is the intermediate language (IL) used by HSA. The purpose of HSA is to provide
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programmers with a virtual machine (VM) to make heterogeneous code more portable and

also to make it possible to tightly integrate compute elements in a system. Compute ele-

ments that participate within the HSA memory model are called agents. An HSAIL VM

consists of multiple agents, including at least one host CPU and one HSA component which

communicate via Architected Queuing Language (AQL) queues. The host CPU runs the op-

erating system as well as the HSA runtime. An HSA component is an agent which supports

the HSAIL instruction set and the AQL packet format and contains multiple compute units.

The host CPU can send commands to components using the AQL queues, and components

can also send commands to each other, and themselves, via the same method. As the format

is portable and targets a VM, the IL has to get compiled, or finalised, to execute on a target

architecture. The finaliser can be invoked at various times: statically at build time, when

the application is installed, when it is loaded or during execution.

Like OpenCL, HSAIL programs are written in kernels which each represent a work-

item and represent a point of execution within a larger, multidimensional grid. The grid is

split into smaller parts called workgroups with work-items within a workgroup being gang-

scheduled in wavefronts, in SIMT style, so the programming model and naming conventions

are the same as OpenCL. The AQL queues also offer the same functionality as command

queues do in OpenCL. The memory model is also similar to OpenCL 2.0, with a unified flat

model where all agents can use the same pointers and a pointer can address any segment of

memory. The seven segments are:

• Global that is visible to all work-groups and to all agents.

• Group that is visible to a single work-group.

• Private that is visible to a single work-item only.

• Kernarg which is read-only memory used to pass arguments into a kernel.

• Readonly remains constant during the execution of a kernel and can be treated as part

of global memory.

• Spill is used to load or store register spills and is visible to a single work-item only.

Unlike OpenCL, HSAIL defines a language that is at a much lower level and resembles

RISC assembly; more like OpenCL’s SPIR language format. The three-address format

operates on registers and the specification defines a virtual register set with four types:

• 8 1-bit control registers for comparison results and branches.

• 128 32-bit registers for signed/unsigned integers and floating-point values.
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• 64 64-bit registers for signed/unsigned long integers and double float values.

• 32 128-bit registers for holding packed data.

3.4.2.5 Renderscript

Renderscript is a framework developed by Google for running computationally intensive

tasks on Android [163]. The runtime parallelises work across all the processors available in a

device including the GPU and DSPs. It is primarily designed for data-parallel applications

such as image processing and computer vision. Like CUDA and OpenCL, the offloaded

parts of algorithms are written in an extension of C, specifically C99, and are written as

kernels. The kernels reside within a script file which can also contain global values, static

globals, invokable functions and static functions. The invokable functions are single-threaded

Renderscript functions that are callable from the Java program and are useful for inital setup;

though a dedicated init function is also provided which is invoked automatically when a

script is first instantiated. Global values are also accessible by the Java program, however

static globals and functions are not.

A kernel is a parallel function that executes across every Element with an Allocation.

Allocations are objects that hold a fixed amount of data and are used to pass arguments

to the kernel to receive the result. The result of the computation is returned by the kernel

function. Google provide an API within Android for setting up and running Renderscript

kernels. A runtime library is also supplied with contains a large collection of math functions

and data type definitions for vectors.

3.4.3 OpenCL Compilation

OpenCL has become widely adopted by industry, and though the specification is target

agnostic, GPUs are still the primary target for application developers. This is because most

compute systems with a user interface will contain a GPU. However, much research has

been conducted into enabling OpenCL execution on different platforms and architectures

and this section will summarise them.

3.4.3.1 OpenCL on Multi-core CPUs and DSPs

The MCUDA framework was developed to enable CUDA programs on multi-core CPUs[164].

As the overhead of managing and executing thousands of threads on a CPU can have a detri-

mental effect on performance, the unit of work was increased to the thread block. Loops

were introduced to run the CUDA threads serially; deep fission being used to maintain

synchronisation statement semantics within control structures. Such synchronisation points

are control statements such as gotos and labels and conditional regions that contained
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the syncthreads command were also partitioned. For variables live past synchronisa-

tion points, the authors selectively replicated the necessary thread dependent variables by

expanding them into arrays and simply removing the shared keyword from thread block

variables; since these are not private to each thread. MCUDA used POSIX threads to issue

thread blocks across the cores of the CPU.

Twin Peaks was a software system designed to better utilise the system resources by

executing kernels on CPUs as well as GPUs, taking into consideration the memory hierarchy

of the CPU [165]. The aim was to use the CPU for smaller kernels as the communication

overhead between the CPU and GPU address spaces is significant. The framework assigned

a single CPU thread to a workgroup, utilising all the cores until all the workgroups had

completed. In the absence of any barriers each work-item was completed and then another

work-item scheduled. Whereas in the presence of barriers; the setjmp function, from the C

standard library [166], was used to save the program state before executing the next work

item. Once all the work-items had reached the synchronisation point, the longjmp function

was used to restore the context of the work-item to carry execution of the kernel.

A framework was devised to enable OpenCL capability on heterogeneous multi-core sys-

tem with local memory, such as the IBM Cell BE processors [167]. The CBE contains

one general-purpose processor core (GPC) and multiple accelerator processor cores (APCs),

with the GPC generally performing system management tasks while the APCs are dedicated

to compute-intensive workloads. The APCs are connected via a bi-directional interconnect

(ring each way), each having DMA-driven local memory with software managing data co-

herency amongst the APCs. A similar technique to MCUDA was used to transform the

source code to embody the kernel body within a triple nested loop, a technique known as

work-item coalescing. Private variables live beyond the scope of the nested regions were

expanded into arrays, but the authors also used a web of variable values to reduce memory

usage. This web comprised of all the du-chains of a variable across all the threads, and so

illustrated where threads shared common values for that variable. For where they shared

the same value, it was unnecessary to create a thread private value.

The PACDSP is a five-way, dual-clustered VLIW DSP core with SIMD instructions and

a distributed register file; each cluster contains a load/store unit and an ALU, with the

fifth execution slot utilised by a shared scalar unit [168]. The PACDUO is a platform with

a dual-core PACDSP coupled to an ARM core [169]. OpenCL is enabled on this device

through three source transformations:

• kernel serialisation - create a multi-dimensional loop around the body of the kernel.

• vector translation - the compiler is for C/C++ and not OpenCL, therefore the re-

searchers had to translate OpenCL vector types to C++ classes with accompanying
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overloaded functions which used target intrinsics to operate upon them.

• kernel vectorisation - use of software thread integration [170] to merge conditional

statements of concurrent threads and use intrinsics to assign work-items to explicit

clusters.

3.4.3.2 OpenCL on FPGAs

FCUDA was built upon the work of MCUDA, but instead of using CUDA to target CPUs,

it used HLS targeting FPGA silicon [171]. The framework uses the same methods of seri-

alising kernels as MCUDA but also makes use of annotations (synthesis directives) on the

kernel source to drive HLS. AutoPilot [172] was used as the HLS tool and the flow includes

transformation of kernels into AutoPilot C; the latter is a subset of C designed for hardware

synthesis. Such annotations are FCUDA COMPUTE and FCUDA TRANSFER, with the annotated

sections extracted into their separate functions; known as task functions by AutoPilot. FCUDA

COMPUTE functions perform computation proper while FUDA TRANSFER functions contain data

communication tasks; which usually inferred DMA burst transfers between off-chip memory

and on-chip BRAM arrays. These directives were also used as synchronisation points along

with the existing statements from MCUDA. The task functions were then called from the

constructed workgroup loop with the custom pragmas AUTOPILOT REGION and AUTOPILOT

PARALLEL, which specified the multiplicity of parallel processing cores.

MARC was a many-core architecture developed by researchers at Berkeley, comprising of

a single control processor and a variable number of algorithmic processing cores [173][174].

The control processor was a simple RISC CPU while the algorithmic cores were simplified

MIPS cores with fine-grained multithreading and an extensible ISA. A barrier-like instruc-

tion was added to the ISA alongside an atomic swap instruction for inter-kernel communica-

tion via shared memory. The private memory was implemented in distributed LUT RAMs

with local and global memories residing in block RAMs. The global memory size could be

extended by using external memory and the compilation architecture was based on LLVM.

The researchers designed application-specific processing cores by transforming the LLVM

IR instructions to an optimised, predicated SSA form, directly mapping to pre-determined

hardware primitives.

POCL is a portable OpenCL implementation used within the TTA-based Codesign En-

vironment (TCE) which targets a configurable TTA processor in which both the host and

device codes are merged into a single program [175]. The target architecture is configurable

in the number and mix of functional units as well as having the capability of custom in-

structions to help accelerate the given algorithm. After the user has specified any custom

operations, the system iteratively adds in functional units and register files, to satisfy the
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computational requirements (and ILP) of the kernel. A set of closely related low-level LLVM

passes, that operate on the IR level, are used to modify the kernel to chain several instances

together, analogous to loop unrolling. These passes also maintain the parallel semantics

that OpenCL kernels explicitly provide, while code size is kept under control by setting an

upper limit on the number of chained instances; any instances above the limit were rolled

into a loop.

SOpenCL is an architectural synthesis tool that also maps OpenCL kernels to FPGA

fabrics [176][177]. The tool uses an architectural (hardware) template that can be instan-

tiated to match the target application dataflow using a network of FUs, stream units and

distributed control logic to reconfigure the datapaths between producer and consumer units.

The compilation front-end uses source-to-source transformations to convert the OpenCL ker-

nel into a C function, while also coarsening it to represent a workgroup instead of a work

item. The kernels are limited to containing one nested loop only and are coarsened by en-

capsulating the kernel within the body of a triple-nested loop to represent the three possible

grid dimensions. Loop fission is used at barrier call locations and the system conducts live

variable analysis to identify live variables beyond synchronisation points; for these, variable

privatisation is used to create copies for each thread. The coarsened kernel is optimised and

converted into a single basic block through if-conversion [60]. The code is then split into

three slices, to generate three parts of the system:

• the input stream, which loads data and calculates the required addresses,

• the output stream, which stores output data and calculates the required addresses,

• the computation kernel which is the accelerator core performing, consuming input data

and producing the output stream.

A similar approach was taken to create an OpenCL compiler for a coarse grained recon-

figurable architecture (CGRA) [178]; specifically the SRP from Samsung, which is a VLIW

architecture coupled with a CGRA. SRP has a simple memory hierarchy, using a scratchpad

memory instead of a data cache. The CGRA is used to accelerate the kernel and consists

of an array of PEs such as FUs and register files connected by dedicated connection buses.

The compilation framework serialises the work-items (Kernel code) into loops via source-to-

source transformations and in the process, it re-writes it in standard C. The loops of that C

application are then unrolled and modulo-scheduled to fully utilise the available functional

units of the VLIW engine and the CGRA.

Altera has been the first adopter of OpenCL for their FPGA silicon [179] with the aims of

reducing the very steep learning curve of high-throughput FPGA design while ensuring that

algorithms are portable across different FPGA families and computation silicon. Altera’s
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OpenCL compiler (ACL) transforms OpenCL kernels into deeply pipelined circuits to be

mapped onto the FPGA fabric. The pipelined design allows for thread data to be clocked in

sequentially so that each stage of the pipeline can be used by different instances of the work-

item. Multiple pipelines can also be instantiated in parallel to further increase throughput.

As well as the kernel computation circuit, the compiler also creates memory interfaces: global

loads and stores are performed using LSUs connected via a global interconnect to off-chip

DDR DIMMS, whereas local accesses target on-chip static RAMs. The vendor has shown

that, in some cases, FPGA implementations can be significantly faster and more efficient

than CPUs and GPUs [180]. For fractal video compression the FPGA design was 3x faster

than the GPU and 114x faster than the CPU, while consuming 12% of the GPUs power and

19% of the CPUs.

Prior to the very recent announcement for OpenCL support from Xilinx in the Vivado

design suite 2014.2 [181] research was undertaken to convert kernels into AutoESL C code

and subsequently, synthesise them to silicon [182]. The Clang AST libraries were used

alongside Graphtool to transform these kernels for processing by the synthesis tool; this

involved converting barrier calls to barrier hit and barrier done signals as well as creating

interfaces to the block RAMs for the kernel arguments. The researchers used a Convey HC-1

hybrid system consisting of an Intel Xeon CPU and four Virtex-5 (XC5VLX330) FPGAs,

the CPU acting as the host while each FPGA performed as a compute unit in the compute

device. The global memory was implemented in DDR2 modules, on-chip block RAMs were

used for the local memory and finally, registers were used for private memory. High-level and

logic synthesis were performed by Xilinx AutoESL and ISE respectively with compilation

performed offline due to excessive runtimes; in this system, work size and dimensions are

fixed at compile time.

Very recent research has been conducted on improving the speed of HLS from OpenCL

programs by using virtual coarse-grained reconfigurable contexts [183]. The authors use

intermediate fabrics (IFs [184]) which provide the virtual coarse-grained resources atop

a physical FPGA. The IFs map behavior onto application-specialised resource, such as

floating-point units, instead of thousands of LUTs. To create an IF, the OpenCL kernels are

compiled into LLVM IR and custom intrinsics are used for OpenCL builtin functions. The

IR is then used to create a control dataflow graph, mapping LLVM instructions to compat-

ible cores provided by a user-specified library. The framework analyses the requirements of

kernels and clusters the kernels into reconfiguration contexts, based on their functional sim-

ilarity. Each context can implement one kernel at a time, time-multiplexing instances of it,

with the work-items being carefully pipelined to exploit data reuse. The clustering enables

order-of-magnitude faster compilation and reconfiguration between kernels executions. For

when the current context does not support a kernel, an alternate context is loaded via an
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existing bitfile. The aim of the clustering algorithm is to maximise the number of resources

reused across the kernels in a context while minimising the area of individual contexts. The

authors report a compilation speedup of 4,211x while incurring a total of 1.8x additional

area requirement to implement a system of 20 kernels, compared to traditional synthesis

techniques.

3.5 Discussion

Currently, the primary development in programming languages is to improve built-in par-

allel semantics as well as enabling the use of multiple different architectures as accelerators.

The languages covered in this chapter have mainly focused on ones that extend or support

C/C++ development as they remain the incumbent languages for the majority of tasks. C

and C++ both now have thread support built into their standard library and the specifica-

tion, so maybe these support will phase out the use of Pthreads in C code. If the C/C++

continue to evolve fast enough, they may be able to continue being the most popular system

languages. As for the languages and platforms developed for heterogeneous, I doubt many of

them will enjoy the longevity of C or C++. As CUDA is specifically for NVIDIA it naturally

has limited reach and though it is popular in the scientific computing and NVIDIA have

a strong presence in the desktop markets, key companies such as Apple and Adobe ship

AMD hardware and support OpenCL. Renderscript lacks any formal specification and as

such mobile GPU vendors mask their OpenCL drivers with a renderscript frontend. HSAIL

seems too low level, having a restricted register file seems odd and too targeted at AMD’s

GPUs. To me, it would make more sense for HSAIL and SPIR to converge to have a

low-level representation of host/device program without the unnecessary detail that HSAIL

specifies. Low-level APIs are becoming popular in graphics so I expect this to continue to

the compute APIs too. As an extension to C, I believe OpenMP will still be widely used,

having an already well established extension for parallel computing, as the current revision

now supports overloading to accelerators.

A growing trend across the industry is the use of runtime systems and compilers to

support high-level and portable programming. This can be seen with the distribution of

OpenCL kernels, as source code or as the SPIR bytecode, and with Javascript. Ease of

use and portability are, in many cases, the most important aspects of language selection.

Patterns are emerging to suggest that more programs will be distributed in a pre-compiled

bytecode format that enables portability but also takes advantage of the performance gains

from statically compiled languages. This will require continued compiler development that

will focus on fast transforms for runtime compilation and increasingly complex static anal-

ysis, whole program analysis and vectorisation optimisations.
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3.6 Summary

New programming languages and APIs have been developed to support the accelerator

paradigm, and most of them focus on threading with explicit constructs, and data types,

for DLP as well. The burden of increased performance has been put on the programmer,

with parallel semantics, data transfer and synchronisation to consider. The explicit parallel

constructs makes the task easier to compiler engineers however, but the languages do need

complicated runtime libraries to support them. The most popular open API for accelerators,

OpenCL, is target agnostic. OpenCL has been shown to run across a variety of architectures:

from GPUs, multi-core CPUs, DSPs and FPGAs.
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Chapter 4

Identification of Research Area

4.1 Chapter Objectives

The purpose of this chapter is to discuss, relative to Chapter 2 and 3, the area of research

this thesis focuses upon.

4.2 Compiling for VLIWs

Compilation techniques that target ILP exploitation, for both VLIW and superscalars, have

been out of focus of research since the release of the EPIC architecture. Aggressive pursuit

of ILP processors has given way to thread-level parallelism, and VLIW architectures have

found their niche as DSPs where there is large amounts of parallelism within the codes.

Mainstream adoption of VLIWs, for general purpose computing, was not successful for two

reasons: (1) maintaining binary compatiability across microarchitectures is difficult and

originally required porting, and (2) the performance was sub-par. Aggressive, dynamically

scheduled, ILP processors also began to dissipate too much heat to be suitable for embedded

applications. Therefore, as the hardware platform is capable of exploiting TLP, through

multiple processors in a shared memory configuration, the research undertaken has focused

on this instead of aiming to develop more exotic compilation methods to exploit ILP.

The SPMD programming model has been selected because it explicitly expresses TLP,

which can be used to exploit DLP. The compiler will need to be capable of supporting

SPMD programs, and this will be provided by implementing unique intrinsics that will be

available through the custom runtime library for the LE1. As the multiple data elements

in SPMD programs are spread across threads, some DLP can be converted into ILP in the

compiler, by serialising the threads into loops and then using loop unrolling to enlarge the
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scheduling region. Thus the compiler must still be capable of issuing multiple instructions

simultaneously. It also needs to contain multiple microarchitecture targets to explore how

it effects the system performance so that the configurability of the LE1 architecture can

be utilised successfully. The compiler also needs to utilise the instruction set properly to

speedup address computation and remove control-flow statements. Many programs will also

require floating-point calculations which are not supported in hardware by the LE1, so a

method will need to be devised to provide emulated floating-point functions at runtime.

OpenCL has been selected as the language and platform for the following reasons:

• It is an open specification;

• The language is supported by Clang and LLVM;

• The programming model and language explicitly represents parallelism; and

• The capability of JIT compilation alleviates the barrier of binary incompatibility across

different microarchitectures.

To facilitate OpenCL execution using the LE1, a software platform will need to be de-

veloped to execute the host code and enable the execution of device code, with source

compilation along with the necessary data transfers. A cycle accurate simulator has al-

ready been developed for the LE1 [185], along with a provided API to allow control and

access to the memory, which will be used by the developed platform (driver). The LE1

compiler will need to be integrated within the driver to enable automatic compilation of

OpenCL kernels, but the software developer will need to have control over which system-

and microarchitecture to use. Therefore, the driver will need to contain many (hundreds)

of configurations available to aid in an investigation into how microarchitecture and system

architecture decisions affect the performance of specific algorithms.

4.3 FPGA OpenCL Compilation

Though the conducted research will use a simulated LE1 system, the configurability of the

LE1, along with the JIT compilation model of OpenCL, lend themselves well to execution

on FPGAs. The API for the simulator has been developed so that it can easily be extended

to control a physical FPGA target, so the driver would also be capable of using an FPGA

target. The XML file that will be generated alongside the compiler target is also sufficient to

generate VHDL for a physical platform. In general, researchers have followed two routes to

mapping OpenCL applications to FPGAs: a) ESL-based methodologies in which OpenCL

is the input language to high-level synthesis tools, and b) Using template architectures. The
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key difference is that the LE1 target architecture is not a template but a fully programmable

and highly configurable/extensible embedded VLIW CMP.

SOpenCL used a template architecture for synthesis and used a source transformation

that is similar to the one developed during this research, except this work is not limited to

kernels with a maximum of single nested loops. The source transformation of this thesis is

also similar to the one developed for the Samsung SRP, except that their transformation

output the kernel in C, while the developed transformation will output valid OpenCL C.

POCL uses the TTA templated architectures and uses multiple, tightly coupled passes on

the LLVM IR to serialise the work-items and transform it for the ILP processor. The TCE

platform, which encompassed POCL, also transformed the code so that both the host code

and device code ran on the TTA target. This will not be the case in this research as the

developed software is intended to enable heterogeneous computing using the LE1. This thesis

will also focus on a two-phase source-to-source transformation that is also target agnostic.

The MARC processor was not a template architecture, but a configurable, many-core ar-

chitecture. The host was a simple RISC CPU which was coupled with custom, multithreaded

cores as the accelerators which utilised a custom instruction to handle the OpenCL barrier

functions. The two differences between this approach and this research are that (1) the LE1

has not been configured to use multithreading and it is a VLIW microarchitecture and (2)

the barrier functions will be removed during the source transformation as the work-items

are serialised and partitioned.

4.4 Summary

This chapter presented the areas of research which will be the focus of this thesis. Initially

work will be carried out to create a compiler target for the configurable LE1 VLIW CMP,

followed by a driver to enable automatic runtime compilation. A source-to-source trans-

former will be developed to transform the OpenCL kernels into a form that is suitable for

effective execution on the VLIW CMP. A script will also be implemented to generate both

the compiler target and the hardware description for the simulator, which could further be

used to create VHDL for a real FPGA target. Finally, a test suite will be used to exten-

sively analyse the performance of the compiler, across many microarchitectures, as well as

the driver’s ability to schedule work across multiple cores. The key areas of work are:

• Develop an LLVM compiler backend for the LE1, including compiler intrinsic functions

to support OpenCL kernels.

• Develop a userland driver to encompass the compiler to enable automatic compilation

of kernels, as well as controlling data transfers.
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• Transform OpenCL kernels into another SPMD form, more suitable for the LE1 VLIW

CMP.

• Implement a runtime library to support execution of the kernels on the LE1.

• Develop a method to schedule OpenCL workgroups across the multiple cores of the

CMP.

• Investigate how the choices in microarchitecture and system architecture effect the

performance of the system.
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Chapter 5

The LE1 Compiler

5.1 Chapter Objectives

This chapter describes the compiler for the LE1, which is based on LLVM, and used within

the driver to compile OpenCL kernels to the assembly language of the LE1. An overview of

Clang and LLVM will be given before the details of code generation for the LE1. The LE1

code generator is the backend part of the LLVM framework that handles the target-specific

passes of a compiler. The scheduling and register allocation is performed using the default

passes that are part of the LLVM code generator that uses target-specific information but a

target-independent algorithm. The results presented in Chapter 6 use both the ‘stable’ code

generator, which is based on LLVM 3.2, and a development branch that is based on LLVM

3.4. The development branch was begun to help improve the performance of the compiler

but it is not as complete as the stable version. Where the methods differ within the two

code generators, both methods will be discussed.

5.2 Introduction to Clang and LLVM

LLVM is the umbrella project that encompasses a modular, library-based, framework for

program analysis, optimisation and compilation [186]. LLVM has a well defined IR, en-

abling the three main stages of compilation (‘front’, ‘middle’ and ‘back’) to be effectively

decoupled from one another [187]. This allows the compiler optimisations to be used by

multiple frontends, supporting different languages, and code generators for different target

architectures. It has also been designed from the bottom-up to be a flexible set of libraries,

so that parts of the framework can easily be incorporated into other projects as required.

The optimisation and analysis passes are compiled into archive libraries and are individually
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accessible to a program which wishes to use them. This is to say that the LLVM libraries

don’t do anything by themselves, some form of driver is required to utilise the libraries.

Clang is the official frontend for LLVM, it too is a set of libraries but also encompasses

a compiler driver to utilise LLVM [188]. Clang supports C-based languages such as C++,

Objective C and OpenCL. Clang performs the task of parsing and lexical analysis of the

source code, representing the code as an AST. Storing the code in an AST enables source-to-

source transformations to be performed and this functionality is used by the driver, which

is discussed later in Section 6.3. On the input of legal code, Clang tranforms the AST into

the LLVM IR which is then passed into the target independent optimisation phase. The

optimised IR is then used by the selected backend to perform target dependent optimisations

and code generation, as shown in Figure 5.1.

Modifications to Clang to support the LE1 have been minimal, their purpose has been

to inform the compiler driver that the LE1 exists with simple information; such as it’s

endianness, supported data types and the intrinsic functions used by the OpenCL runtime

library. All the real work is contained within the LLVM backend which is responsible for

generating assembly code from the LLVM IR.

Clang Frontend LLVM Optimiser

X86 Backend

LE1 Backend

LLVM IR LLVM IR
AMDGPU Backend

C /
C++ /
ObjC /
OpenCL

Assembly
Code

Figure 5.1: Three phase compilation with Clang and LLVM.

5.2.1 Program Representation

The LLVM code representation is available in three different forms: as a human-readable

assembly language, an in-memory compiler IR and as an on-disk bitcode file. LLVM bytecode

represents the program at a relatively low level, which is where the original name, low level

virtual machine, comes from. Though the IR is at a low level, it has to be generic enough

to be useful in a retargetable compiler. This is enabled by encoding target and platform

dependent type information into the module in a target datalayout object. It also has a

typed representation that can contain arbitary length integer types, general floating-point
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CompoundStmt

ReturnStmt

BinaryOperator

ImplicitCastExpr ImplicitCastExpr

DeclRefExpr DeclRefExpr

Figure 5.2: Graphical example of an AST produced by Clang.

types (half, float, double, fp128), pointers, vectors, arrays and structures. As the compilation

process advances, the program is represented in different forms which allow more specific

optimisations to be performed.

The human readable form looks similar to the assembly language of a RISC machine

as it is in three address form and uses load and store operations to access memory. The

key differences are that the IR has an infinite number of registers and uses SSA form.

The contents of both the assembly and bitcode file define a module, which is the top level

data structure. A module then contains a sequence of functions as well as global variables,

function prototype declarations and the target data layout. The functions within the module

contain a sequence of basic blocks, which contain sequences of instructions. In-memory

representation models the assembly and bitcode format closely. It uses a Module object

to aggregate all of the data from the translation unit. Modules contain instances of the

Function class, which contain instances of the BasicBlock class, which contain instances

of the Instruction class.

The LLVM IR is created from an AST when using Clang as the frontend. Figure 5.2

is an example of Clang’s AST for a function which accepts two integer values and returns

the result of their addition. Clang AST represent declarations (Decl), statements (Stmt)
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and types (Type) and all nodes in the tree inherit from one of these classes. CompoundStmt

objects contain other statements and expressions; in this case a ReturnStmt which uses a

BinaryOperator expression, while the ImplicitCastExpr nodes are used for every use of a

variable to cast it to its required type. As the AST represents the program close to the source

code form, the nodes contain SourceLocation objects which are used to provide detailed

debugging information back to the user and allows the source code to be rewritten. The

AST is not designed to be modified, but designed to enable clients to traverse the original

source code and rewrite it in a buffer.

5.2.2 TableGen

Much of the target architecture information is contained with ‘.td’ files, which are parsed by a

program called ‘TableGen’. TableGen is a program developed for LLVM to help develop and

maintain records of domain-specific information, including the register files, the instruction

set and the instruction selector, and other architecture features. Information described in

TableGen files are considered as ‘records’ and are split into two types: ‘classes’, which are

abstract records that are used to build and describe other records, and ‘definitions’, which

are a concrete form of a record. Classes can be used to build definitions by leaving some

of their fields as variables to be completed when a definition uses the class. Multiclasses

are groups of abstract classes that can result in multiple definitions. As the name of the

program suggests, the resulting data structures are tables that are accessed by specific

TableGen backends with instruction selection being one of the most complicated.

5.3 Instruction Selection

Instruction selection in LLVM is performed using DAGs, specifically a SelectionDAG, where

each node is a SDNode with the key attribute being the operation code (opcode). The

backends perform the task over several phases: target legalisation, target lowering and

machine instruction selection. The selection is an iterative process, consisting of several

steps:

• Build initial SelectionDAG from the LLVM input code.

• Optimise SelectionDAG.

• Legalise SelectionDAG types by transforming the nodes to eliminate any types that

are unsupported by the target.

• Optimise the SelectionDAG by removing redundancies induced through the legalisation

step.
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• Legalise Selection operations by transforming nodes to remove any operations that are

unsupported by the target.

• Optimise the DAG to remove inefficiencies introduced by the operation legalisation

step.

• Perform instruction selection to convert the DAG into one of target-specific instruc-

tions.

The legalisation and preliminary lowering occurs within LE1ISelLowering.cpp. The

legalisation converts the original DAG to use only legal types for the target architecture,

while target lowering enables the insertion of custom nodes as well as handling target spe-

cific situtations such as calls and returns. Figure 5.3 shows the graphical representation

of a SelectionDAG after target lowering and legalisation, which is the form that instruc-

tion selection is performed upon. The DAG represents a small function that multiplies

two of the integer arguments and places the result at the address of the third argument.

Opcodes, operand locations and result types are all depicted within the nodes. The blue

dashed lines represent a partial ordering to the nodes, and are called ’chain’ values, they are

used to maintain non-data dependencies such as control-flow and an order between memory

operations.

The instructions, listed in Tables 5.1, 5.2, 5.3, 5.4 and 5.5 are described within the

TableGen file, LE1InstrInfo.td, in which most instructions are matched automatically by

a TableGen backend. The LLVM system has many in-built opcodes which match almost 1-1

with the instructions in the IR. Many of LE1’s instructions have used the standard nodes,

such as arithmetic and logic operations and most of the other instructions can be described

using a combination of the LLVM opcodes. This allows patterns to be described in the

form of DAGs, effectively a tile to be matched in the SelectionDAG. For instructions which

need custom handling, custom SDNodes need to be created and the instruction selection

generally performed in LE1ISelDAGToDAG.cpp. Instruction selection between the stable and

development branch by two factors:

• conditional branches are handled by TableGen pattern matching in the stable branch,

whereas they are handled in the target lowering phase in the development branch.

• the development branch is aware that some immediates are encoded within the in-

struction word and some require an additional 32-bit immediate.
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Table 5.1: LE1 Arithmetic Operations.

Operation Description C Macro

ADD Add (s1) + (s2)

ADDCG Add with carry and generate carry t = (s1) + (s2) + ((cin) & 0x1);

cout = ((cin) & 0x1) ?

(UINT32(t) <= UINT32(s1))

: (UINT32(t) <UINT32(s1));

AND Bitwise AND (s1) & (s2)

ANDC Bitwise complement and AND ∼(s1) & (s2)

DIVS Division step with carry generate unsigned tmp = ((s1) <<1) | (cin);

cout = UINT32(s1) >>31;

t = cout ? tmp + (s2) : tmp - (s2);

MAX Maximum signed (INT32(s1) >= INT32(s2)) ? (s1) : (s2))

MAXU Maximum unsigned (UINT32(s1) >= UINT32(s2)) ? (s1) : (s2)

MIN Minimum signed (INT32(s1) <= INT32(s2)) ? (s1) : (s2)

MINU Minimum unsigned (UINT32(s1) <= UINT32(s2)) ? (s1) : (s2)

OR Bitwise OR (s1) | (s2)

ORC Bitwise complement and OR (∼(s1)) | (s2)

SH1ADD Shift left 1 and add ((s1) <<1) + (s2)

SH2ADD Shift left 2 and add ((s1) <<1) + (s2)

SH3ADD Shift left 3 and add ((s1) <<1) + (s2)

SH4ADD Shift left 4 and add ((s1) <<1) + (s2)

SHL Shift left (INT32(s1)) <<(s2)

SHR Shift right signed (INT32(s1)) >>(s2)

SHRU Shift right unsigned (UINT32(s1)) >>(s2)

SUB Subtract (s1) - (s2)

SXTB Sign extend byte UINT32((INT32((s1) <<24)) >>24)

SXTH Sign extend half UINT32((INT32((s1) <<16)) >>16)

ZXTB Zero extend byte ((s1) & 0xff)

ZXTH Zero extend half ((s1) & 0xffff)

XOR Bitwise exclusive OR (s1) ^ (s2)
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Table 5.2: LE1 Control Operations.

Operation Description

GOTO Unconditional relative jump (byte-aligned, 20-bit offset from PC)

CALL Unconditional relative call (byte-aligned, 20-bit offset from PC)

BR Conditional relative branch on true condition (byte-aligned, 16-bit offset from PC)

BRF Conditional relative branch on false condition (byte aligned, 16-bit offset from PC)

RETURN Pop stack frame and goto link register

Table 5.3: LE1 Memory Operations.

Operation Description

LDW Load word (word aligned)

LDH Load halfword signed (half-word aligned)

LDHU Load halfword unsigned (half-word aligned)

LDB Load byte signed (byte aligned)

LDBU Load byte unsigned (byte aligned)

STW Store word (word aligned)

STH Store halfword (half-word aligned)

STB Store byte (byte aligned)

Table 5.4: LE1 Multiplication Operations.

Operation C Macro

MULLL (s1) * INT16(s2)

MULH (s1) * INT16((s2) >>16)

MULHS ((s1) * INT16((s2) >>16)) <<16

MULLU (s1) * UINT16(s2)

MULHU (s1) * UINT16((s2) >>16)

MULLLL INT16(s1) * INT16(s2)

MULLH INT16(s1) * INT16((s2) >>16)

MULHH INT16((s1) >>16) * INT16((s2) >>16)

MULLLU UINT16(s1) * UINT16(s2)

MULLHU UINT16(s1) * UINT16((s2) >>16)

MULHHU UINT16((s1) >>16) * UINT16((s2) >>16)
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Figure 5.3: Example of a SelectionDAG after target lowering and legalisation.
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Table 5.5: LE1 Logical Operations.

Operation Description C Macro

CMPEQ Compare (equal) ((s1) == (s2))

CMPGE Compare (greater equal - signed) (INT32(s1) >= INT32(s2))

CMPGEU Compare (greater equal - unsigned) (UINT32(s1) >= UINT32(s2))

CMPGT Compare (greater - signed) (INT32(s1) >INT32(s2))

CMPGTU Compare (greater - unsigned) (UINT32(s1) >UINT32(s2))

CMPLE Compare (less than equal - signed) (INT32(s1) <= INT32(s2))

CMPLEU Compare (less than equal - unsigned) (UINT32(s1) <= UINT32(s2))

CMPLT Compare (less than - signed) (INT32(s1) <INT32(s2))

CMPLTU Compare (less than - unsigned) (UINT32(s1) <UINT32(s2))

CMPNE Compare (not equal) ((s1) != (s2))

ANDL Logical AND ((((s1) == 0) | ((s2) == 0)) ? 0 : 1)

NANDL Logical NAND (((s1) == 0) | ((s2) == 0)) ? 1 : 0

NORL Logical NOR (((s1) == 0) & ((s2) == 0)) ? 1 : 0

ORL Logical OR (((s1) == 0) & ((s2) == 0)) ? 0 : 1

SLCT Select on true condition UINT32(((s1) == 1) ? (s2) : (s3))

SLCTF Select on false condition UINT32(((s1) == 0) ? (s2) : (s3))
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5.3.1 Instruction Legalisation and Lowering

The task of the instruction lowering and legalisation phases is to transform a DAG of LLVM

SDNodes into a form that may contain target-specific SDNodes and only contain legal types

for the target. Three actions can be performed for the legalisation of instructions and data

types: ‘promote’, ‘expand’ and ‘custom’. The promote action enlarges the data type to the

next largest legal data type for the set operation, whereas expansion does the opposite and

breaks a data type into smaller types until a legal type is found (such as breaking vectors into

smaller vectors or scalars). For more complex handling, custom functions can be defined

to lower the IR into a form suitable for the target. This phase also handles the calling

conventions and the insertion of possible calls to runtime libraries. For the LE1 backend,

this is the phase that comprises:

• All integer types are converted into the two legal types: the boolean ’i1’ type that

is stored within predicate registers, and ’i32’ which are stored in the general purpose

registers.

• Divide operations are custom lowered to use LE1 specific SDNodes.

• Floating point operations are converted into calls which emulate the functionality with

integer operations.

• Call and return ABIs are implemented.

• Intrinsic functions are also lowered.

// 32-bit integers are stored in the GPRs, boolean values are stored in the branch registers

addRegisterClass(MVT::i32, &LE1::CPURegsRegClass);

addRegisterClass(MVT::i1, &LE1::BRegsRegClass);

// ROTL is not part of the LE1 instruction set so expand into a combination of other operations.

setOperationAction(ISD::ROTL, MVT::i32, Expand);

// Integer divison is custom lowered using LE1 specific SDNodes.

setOperationAction(ISD::SDIV, MVT::i32, Custom);

// Replace 32-bit FMUL operations with calls to float32 mul.

setLibcallName(RTLIB::MUL F32, "float32 mul");

setOperationAction(ISD::FMUL, MVT::f32, Expand);

Figure 5.4: Code that informs the legalisation process which types are supported by each

operation and in which registers the types can reside.

The legalisation of types begins with informing the process about which types are sup-

ported by the register set of the architecture, as well as which operations support those
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types. Examples of this are given in Figure 5.4. The legalisation phase defines that only

’i32’ and ’i1’ are natively supported and there are separate register classes to handle those

types. As no register classes are defined as supporting floating-point (FP) types, LLVM de-

faults to replacing nodes that operate on those types with function calls to the compiler-rt

library which contains functions to emulate FP functionality. For most of the FP operations,

the compiler has been left to make the default calls to compiler-rt; however, for multipli-

cation the function name has been replaced with the function from the SoftFloat library.

Although a type may be supported by the target’s register set, it does not necessarily mean

that instruction set will support all those types for all the operations, or support all of the

instructions of the LLVM IR. This is the case with the LE1, for example, with the ROTL

LLVM instruction which needs to be expanded into a combination of other operations that

are supported.

def RetCC LE1 : CallingConv<[

CCIfType<[i1, i8, i16], CCPromoteToType <i32 >>,

CCIfType<[i32], CCAssignToReg <[AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7] >>,

CCIfType<[i32], CCAssignToStack<4, 32>>

]>;

def CC LE1 : CallingConv <[

CCIfType <[i1, i8, i16], CCPromoteToType <i32>>,

CCIfType <[i32], CCAssignToReg <[AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7]>>,

CCIfType <[i32], CCAssignToStack <4, 32 >>

]>;

Figure 5.5: Calling convention definitions for the LE1.

The calling conventions and return ABI are defined by the VEX system, the register

use is described in detail in Section 5.5. Eight of the GPRs are allocated for arguments

and return values and values are promoted to 32-bits in size. The calling conventions are

defined with LE1CallingConv.td, shown in Figure 5.5, which TableGen uses to generate

the LE1GenCallingConv.inc header file. Functions are defined with the header file which

specify which registers are used and the order in which they are allocated, as well as defining

stack usage. To lower a call, a CCState object is used to analyse the operands, by using the

Tablegen’d header file, and sets the destination location and handling of the call operand.

The call sequence begins by using the LLVM SDNode CALLSEQ START and CopyToReg are

used to copy values from virtual registers to the designated physical registers, with any

others values being stored onto the stack. The LE1ISD::Call has been created to represent

the call which takes the link register, the callee address and a variable number of register

arguments. The call sequence DAG is finalised by using the in-built CALLSEQ END SDNode.
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def SDT LE1CarryUseGen : SDTypeProfile<2, 3, [ SDTCisSameAs<0, 2>,

SDTCisSameAs<0, 3>,

SDTCisInt<0 >, SDTCisVT<0, i32>,

SDTCisSameAs<1,4>,

SDTCisInt<1>, SDTCisVT<1, i1>]>;

def le1 addcg : SDNode<"LE1ISD::Addcg", SDT LE1CarryUseGen, []>;

def le1 divs : SDNode<"LE1ISD::Divs", SDT LE1CarryUseGen, []>;

Figure 5.6: SDNode definition for ADDCG and DIVS instructions.

For function returns, CopyToReg nodes are used once again to copy values in virtual

registers into the designated physical ones. The LE1ISD::Ret has been created to represent

the return; it takes the stack pointer register, an immediate and the link register as argu-

ments. The return instruction of the LE1 is used to unwind the stack and the link register

is used as it holds the address to which the program counter needs to return to. As the final

size of the stack is unknown until after register allocation, the Ret node is modified in the

LE1FrameLowering class which knows the final size of the stack. On the return from the

call, the results are copied out of the physical registers and back into virtual ones by using

the CopyFromReg nodes.

Some nodes of the other DAG are custom lowered where promotion or expansion do

not apply, such as the division and remainder operations. The LE1 does not have a single

instruction to perform these operations but does have specific instructions designed for the

task: ADDCG and DIVS are used together over numerous iterations, the order of which was

obtained from the output of the VEX compiler. For signed division, the polarity of two

operands are first checked to obtain the absolute value of each and then the division step

process is begun. The select node visible in the diagram is responsible for selecting the

absolute value of one of the division operands. The result is finally corrected for any polarity

changes after the stepped division calculation. Custom SDNodes had to be created for these

two instructions as they are not similar to any of the default SDNodes within LLVM, the

code is shown in Figure 5.6. The SDTypeProfile defines the number, and the restrictions

on, the inputs and outputs of a node. The ADDCG and DIVS both require three inputs, the

first two being ‘i32’ and the final as an ‘i1’, and they produce two results; an ‘i32’ and a ‘i1’.

5.3.1.1 Intrinsic Functions

Several intrinsics operations, unique to the LE1, have been implemented to enable the LE1 to

execute OpenCL kernels and these are not accessed in user generated code but in the runtime
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library. An intrinsic has been defined to differentiate the cores within the execution space

by reading the value of the CPU Id. This value actually relates to the hypercontext that

is currently executing and the architecture supports up to 256 hypercontexts per context.

For this research however, only a single hypercontext was used per context (core) and so

the value of the hypercontext Id was divided by 256. The other two types of intrinsics are

to write and read a counter value that allows the contexts to iterate through the number of

workgroups assigned to it, with the group counters stored in a reserved area of memory. On

the stable branch a byte is reserved for each core, and so each core is capable of executing

256 workgroups in each dimension. However this unnecessarily low limit was increased to a

word for each dimension of each core in the development branch.

5.3.2 Instruction Description

The instructions are described with TableGen as classes and definitions: base classes are

first used to describe the binary encoding format, then classes extend these to group types

of instructions, and finally, instructions are defined by specifing the details of the instruction

type classes. Instructions can have zero or more inputs, from registers and immediate and can

produce zero or more results. Automatic pattern matching is only possible for instructions

that produce a maximum of one computed value.

5.3.2.1 Stable Branch

Figure 5.7 shows both the class and instruction definitions for three arithmetic and logic

operations that use two general purpose registers as their operands, as well as the base

format class. The ArithLogicR class defines that the instruction has two inputs, each in a

register, and has a single output which is also contained within a general purpose register

(GPR). The assembly code string template is also defined and specified by the instruction

definition through the passing of the instruction string, such as add.0. This implementation

of instruction descriptions also enable automatic pattern matching, which is achieved by

defining the DAG pattern matcher within the square brackets in the class definition. The

differentiator of the instructions is their opcode, and these are passed from the instruction

definitions: add, sub and and are all in-built SDNodes.

Figure 5.8 shows example definitions of the compare instructions that take one input

from a GPR and the other from an immediate, but the result can either be placed in a

GPR or a branch register. The class for the condition set operations is different from the

arithmetic class because a SDNode is not passed from the definition; instead a PatFrag is

used. PatFrags are used to define reusable patterns, in these cases they define a setcc (set

condition code) node which take two values and the condition to be tested.
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class LE1Inst<dag outs, dag ins, string asmstr, list<dag> pattern, InstrItinClass itin>: Instruction

{

field bits<32> Inst;

let Namespace = "LE1";

bits<6> Opcode = 0;

let Inst31-26 = Opcode;

let OutOperandList = outs;

let InOperandList = ins;

let AsmString = asmstr;

let Pattern = pattern;

let Itinerary = itin;

}

class ArithLogicR<string instr asm, SDNode OpNode, bit isComm = 0>:

LE1Inst<(outs CPURegs:$dst), (ins CPURegs:$src1, CPURegs:$src2),

!strconcat(instr asm, "$dst, $src1, $src2"),

[(set CPURegs:$dst, (OpNode CPURegs:$src1, CPURegs:$src2))], IIAlu> {

let isCommutable = isComm;

}

def ADD : ArithLogicR<"add.0", add, 1>;

def SUB : ArithLogicR<"sub.0", sub>;

def AND : ArithLogicR<"and.0", and, 1>;

...

Figure 5.7: Base class for instruction formats with arithmetic and logic operations defini-

tions.

For instructions that do not match 1-to-1 within pre-existing SDNodes, pattern matchers

can be defined as DAGs in the TableGen language too. Just as with instruction descriptions,

classes can also be used to describe multiple similar patterns. The code that describes the

pattern matching for the branch instructions is shown in Figure 5.9; using a class enables the

pattern matching of 60 instructions in less than 30 lines of code. These patterns are required

because the LE1 has no single instruction that performs a compare and branch, and so those

nodes are matched to two instructions: one performing the comparison and then the second

performing the branch based on the result of the comparison. The PatFrags provided for

condition testing include the comparison of both signed and unsigned types, yet the LLVM

type system does not differentiate between the two; instead operations are used to handle

those types. Figure 5.10 shows that a shift left by 16 bits followed by a logical right shift by

16 bits provides a 16-bit unsigned value.
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class SetCCI<string instr asm, PatFrag cond op, RegisterClass DestRegs>:

LE1Inst<(outs DestRegs:$res), (ins CPURegs:$lhs, i32imm:$rhs),

!strconcat(instr asm, " $res, $lhs, $rhs"),

[(set DestRegs:$res, (cond op CPURegs:$lhs, imm:$rhs))], IIAlu>;

let isCompare = 1 in {

def CMPEQri : SetCCI<"cmpeq.0", seteq, CPURegs>;

def CMPGEri : SetCCI<"cmpge.0", setge, CPURegs>;

...

def CMPEQi : SetCCI<"cmpeq.0", seteq, BRegs>;

def CMPGEi : SetCCI<"cmpge.0", setge, BRegs>;

...

Figure 5.8: Instruction class and definition used for compare operations.

multiclass BranchPats<Instruction BrOp, Instruction CmpOpR, Instruction CmpOpI, PatFrag cond> {

def : Pat<(brcond (i1 (cond CPURegs:$lhs, CPURegs:$rhs)), bb:$dst),

(BrOp (CmpOpR CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;

def : Pat<(brcond (i1 (cond CPURegs:$lhs, imm:$rhs)), bb:$dst),

(BrOp (CmpOpI CPURegs:$lhs, imm:$rhs), bb:$dst)>;

def : Pat<(brcond (i1 (cond CPURegs:$lhs, 0)), bb:$dst),

(BrOp (CmpOpR CPURegs:$lhs, ZERO), bb:$dst)>;

}

defm : BranchPats<BR, CMPEQ, CMPEQi, seteq>;

...

Figure 5.9: Pattern matching of conditional branch instructions.

// MULLHU = ui16(s1) * ui16(s2 >> 16)

def : Pat<(mul (srl (shl CPURegs:$lhs, (i32 16)), (i32 16)), (srl CPURegs:$rhs, (i32 16))),

(MULLHU CPURegs:$lhs, CPURegs:$rhs)>;

Figure 5.10: Example of pattern matching for an unsigned value.
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For instructions that cannot be matched using TableGen, C++ code can also be used

to define PatFrags and ComplexPatterns; the latter is used for address selection in the

LE1 backend. Hard-coded instruction selection and ComplexPatterns are defined within

LE1ISelDAGToDAG.cpp. The only LE1 specific nodes that need to be selected with C++ is

the ADDCG and DIVS instructions as these produce two numeric values. Address selection is

performed in C++ as there are multiple legal forms for the address to be encoded. The LE1

is capable of accessing memory using a register, with a possible immediate offset, or by using

the name of the global variable; with or without an offset. For global variable accesses, r0.0

is used as the base address as it constantly provides a zero value. Hard-coded matchers for

these type of matchers take an SDValue (the potential match) and return a specified number

of values that are used by the instruction. In the case of address calculations, the function

assigns values from the input SDValue to the ‘base’ and ‘offset’ values used by the load or

store.

5.3.2.2 Development Branch

A key difference between the stable and development branch is that the development branch

is aware that different length immediates result in different instruction encodings. The in-

struction descriptions have also been setup to provide the binary encodings if such func-

tionality is required. These two factors made the instruction description more complex,

especially for pattern matching as each opcode can generally accept two types of immedi-

ates. To alleviate some of the TableGen pattern matching, some operations were lowered to

target specific nodes before the final instruction selection, primarily the compare and branch

instructions. This happened in two stages: the initial lowering and then during the DAG

combining phase, which is part of the optimising phase that is run after each legalisation

step. During these steps, SETCC nodes are lowered to LE1 specific nodes that have been used

to describe the comparison instructions. The results of the comparison can be either ‘i32’

or ‘i1’ type, but the code generator defaults to a boolean value; the DAG combiner phases

check whether the result of the comparison is extended to 32-bit, and if so, the extending

node and comparison is combined into a single compare node which produces a 32-bit result.

The BRCOND and BR CC SDNodes are then lowered to the LE1 specific BR node. The results

presented in Section 7.4.3 suggest that this approach is not as effective as using the in-built

nodes until actual instruction selection. In the benchmarks in which control-flow opera-

tions comprise of a significant number of execution cycles, the development branch compiler

performs worse than the stable branch. This can be attributed to the LLVM optimisation

passes that do not understand the semantics of the target specific nodes.

A different approach was taken for the updated description of the multiplication instruc-

tions. The LE1 SDNodes for the various multiplication operations are equilavent to between
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def simm9 : ImmLeaf<i32, [{return (isInt<9 >(Imm)); }]>;

def maskU16 : PatFrag<(ops node:$in),

(srl (shl node:$in, (i32 16)), (i32 16))>;

def srl16 : PatFrag<(ops node:$in),

(srl node:$in, (i32 16))>;

def mullh : PatFrag<(ops node:$lhs, node:$rhs),

(mul (maskU16 node:$lhs), (srl16 node:$rhs))>;

...

multiclass MULT<bits<5>opcode, string instr asm, PatFrag OpNode, bit isComm = 0>{

def NAME#r : Mult R RR<opcode, instr asm, OpNode, isComm>;

def NAME#i32 : Mult R I32R<opcode, instr asm, OpNode>;

def NAME#i9 : Mult R I9R<opcode, instr asm, OpNode>;

}

defm MULLH : MULT<0x14, "mullh.0", mullh>;

...

Figure 5.11: Multiplication instruction definitions and pattern matchers.

two and five in-built SDNodes, and there are eleven different multiplication operations, all

of which can operate on either two registers, a register and a 9-bit immediate or a register

and a 32-bit immediate. Three classes have been created for the multiplication instructions,

to handle the three different combinations of operand, and then pattern fragments combined

with a multiclass have been used to create the definitions of the instructions, as shown in

Figure 5.11. As well as the PatFrag and multiclass, the code also shows an ImmLeaf that

is defined to pattern match the size of an immediate. This pattern matcher has C++ embed-

ded within it to perform the match. This approach of breaking down the pattern matchers

into several reusable parts enables the simultaneous description and pattern matching of

the 33 multiplication instructions, equating to over 70 in-built nodes, in less than 60 lines

of code. Delaying the matching until the last phase of selection also enables the selector to

make better informed choices, especially useful for shift nodes as there are also dedicated

‘shift and add’ instructions for address computations.

Address pattern matching is more complicated in the development branch as the memory

operations can encode an 8-bit immediate or 12-bit immediate within the instruction word

as well as encodings that use an additional 32-bit immediate. Three functions have been

created, accessed through ComplexPatterns, to match the different forms of the addresses

based on the length of the offset. Memory accesses that directly use the address of the global

value require that the address is stored within a additional 32-bit immediate. The address

matching functions check the size of the offsets, much like the ImmLeaf pattern, attempting

90



CHAPTER 5. THE LE1 COMPILER

to encode the offset within the instruction where possible.

5.4 Instruction Scheduling

LLVM instruction schedulers operate upon basic blocks and representes the code as a DAG,

specifically a ScheduleDAG. The nodes in the DAG (SUnits) are connected via their de-

pendences (SDeps) upon one another. Both compilers employ the default scheduler that

operates on machine instructions before register allocation, as this helps improve ILP as the

register allocator would introduce false dependencies. The scheduling framework implements

a list scheduler and is extendible by allowing schedulers to use their own heuristics to select

from the available nodes. The default machine scheduler tries to choose the best candidate

from the ready queue by analysing register pressure and target resource consumption; it

also avoids serialising long latency dependence chains. Post register allocation schedulers

are also available. The scheduling objects for each target are generated using a script that

can be found in Appendix B, which also generates an accompanying XML model for the

simulator and can be further used to generate VHDL.

5.4.1 Stable Branch

Scheduling in the stable branch is based upon instruction and processor itineraries. InstrItinClass

classes are named to represent different types of instructions for the architecture, and then

these classes are specified for each subtarget as subtargets may have different pipelines or

mix of functional units. InstrItinClass are specified with subtarget-specific data using

InstrItinData objects, which contain detailed information about resource usage, includ-

ing the number of micro ops, latency, pipeline stages and any bypass pipes that may be

available.

For the LE1, five InstrItinClass objects are defined to describe the five different

scheduling types of instructions of the LE1: arithmetic, multiplication, memory, branch,

and pseudo operations. Each instruction is assigned one of these classes for the scheduler

to understand the resource requirements and latencies of it. The pseudo class is used for

operations that are defined in the backend, yet are not real instructions such as operations

to adjust the stack frame. An example of these classes being defined is presented in Figure

5.12; the microarchitecture used is a 2-wide device with two ALUs and a single multiplier

and load/store unit.

An object, one for each subtarget (microarchitecture), is created that inherits from

ProcessorItineraries in which the resource information is defined for each instruction

type. The ProcessorItineraries are given a list of available FuncUnits that can be
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// FuncUnits are individually named across subtargets so the bundling framework can differentiate between

them.

def ALU 0 2w2a1m1ls1b : FuncUnit;

def ALU 1 2w2a1m1ls1b : FuncUnit;

def MUL 0 2w2a1m1ls1b : FuncUnit;

def LSU 0 2w2a1m1ls1b : FuncUnit;

def BRU 0 2w2a1m1ls1b : FuncUnit;

def LE12w2a1m1ls1bItineraries : ProcessorItineraries< [ ALU 0 2w2a1m1ls1b,

ALU 1 2w2a1m1ls1b,

MUL 0 2w2a1m1ls1b,

LSU 0 2w2a1m1ls1b,

BRU 0 2w2a1m1ls1b ], [/*ByPass*/], [

// ALU operations have a 2 cycle latency, with 2 FUs to choose from

InstrItinData<IIAlu, [InstrStage<2, [ ALU 0 2w2a1m1ls1b, ALU 1 2w2a1m1ls1b ]>], [3, 1]>,

InstrItinData<IIMul, [InstrStage<2, [ MUL 0 2w2a1m1ls1b ]>], [3, 1]>,

InstrItinData<IILoadStore, [InstrStage<2, [ LSU 0 2w2a1m1ls1b ]>], [3, 1]>,

InstrItinData<IIBranch, [InstrStage<5, [ BRU 0 2w2a1m1ls1b ]>], [6, 1]> ]>;

Figure 5.12: Processor itineraries which describe pipeline usage for each type of instruction.

utilised by the instructions, and each functional unit is given a unique name for the microar-

chitecture so to be compatiable with the pass that groups instructions into bundles. Each

instruction itinerary is broken down into pipeline stages (InstrStage) which is given a list

of FUs that can be used as well as the latency information. Each instruction class is defined

as only having a single pipeline stage because no forwarding paths are used. As such, each

stage is defined as having a two cycle latency, with the instruction issued in cycle 1 and

the result produced in cycle 3. This method enables a detailed description of the pipeline

activity when an instruction is issued, and is more detail than what is actually required for

scheduling for the LE1, and so a simpler method is used on the development branch.

5.4.2 Development Branch

For the development branch, based on LLVM 3.4, the scheduling framework was ported to

the updated machine scheduling techniques. ProcResources, SchedWrites and WriteRes

were used in the place of FuncUnits, ProcessorItineraries and InstrStages. The
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ProcResource objects replaced the old FuncUnits by enabling the naming of a resource

as well as the number of said resource. As there are multiple target microarchitectures in

the backend, resources were named to reflect the number of units in the system; for instance

ALU4 would define four ALUs. This method enables multiple targets with varying number of

functional units to exist the backend. SchedWrite objects are then used to associate types

of instructions with the available resources, the definition of these and the resources are

shown Figure 5.13. The SchedWrite objects are synonymous to the InstrItineraries of the

original compiler as it is these objects that are associated to the instructions to define the

resources taken to produce a result. To do this, a WriteRes object is used that is supplied

the SchedWrite and a list of resources that can be used.

// Define all the resources across all the subtargets

def ALU1 : ProcResource<1>; def ALU2 : ProcResource<2>;

def ALU3 : ProcResource<3>; def ALU4 : ProcResource<4>;

def MULT1 : ProcResource<1>; def MULT2 : ProcResource<2>;

def LSU1 : ProcResource<1>; def LSU2 : ProcResource<2>;

def BRU : ProcResource<1>;

def PRED1 : ProcResource<1>; def PRED2 : ProcResource<2>;

def PRED3 : ProcResource<3>; def PRED4 : ProcResource<4>;

// Declare the objects that will use the resources in producing a result

def WriteA : SchedWrite; def WriteAI : SchedWrite;

def WriteM : SchedWrite; def WriteMI : SchedWrite;

def WriteLS : SchedWrite; def WriteLSI : SchedWrite;

def WriteB : SchedWrite; def WriteBI : SchedWrite

def WriteP : SchedWrite;

let SchedModel = LE1Model2w2a1m1ls in {

def : WriteRes<WriteAI, [ALU2]> {

let Latency = 2;

let NumMicroOps = 2;

}

...

}

Figure 5.13: Microarchitecture resource description and assignment to instruction types for

use by the scheduler, in the updated compiler based on LLVM 3.4
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Each of the different microarchitectures defines these objects separately as there are

different numbers of functional units across the devices, this is achieved by creating a

SchedMachineModel for each of the microarchitectures. This object defines the issue width,

the load latency as well as tying resources to SchedWrite objects. An example of this is

given in Figure 5.13, which defines instructions that use WriteAI as being capable of issuing

on either two of the resources defined by ALU2. The definition sets the pipeline latency

and increases the default number of micro ops from one to two. This number is used by the

scheduler and the packer to understand if instructions take up more resources once executing

in the target architecture. This is designed for architectures, such as x86, where instructions

get decoded and broken down into smaller operations by the hardware; but it is used for the

LE1 to indicate whether an additional word is used in the IRAM for a 32-bit immediate.

5.5 Register Allocation

The task of the register allocator is to replace the unlimited virtual registers in the list

of machine instructions with physical registers from a limited set. Register allocation is

performed after scheduling to avoid the induction of false dependencies, as the task of the

register allocator is to generally reduce live ranges and thus the number of registers in use. As

VLIW architectures are designed to exploit ILP, they are designed to have many variables

live at one time and so have a typically larger register file. The default allocator, called

‘greedy’, is used which prioritises values with longer live ranges and is capable of splitting

live ranges to reduce the amount of spill code. The allocator is also designed to work well

with the specified register usage of target ABIs and can also perform dead code elimination.

5.5.1 Register Files

The LE1 has several types of register that are available to the compiler, or programmer, to

use. There are 64 32-bit general purpose registers (GPRs), 8 1-bit predicate registers and a

32-bit link register for calls and returns. The register use and application binary interface

(ABI) has been taken from VEX, but with one slight modification in that one register is

reserved for copying branch registers. This is because there is no instruction defined to load

and store branch registers, and so a general purpose register is required as an intermediate

storage container for the memory operation. A VEX system can partition a processing core

into clusters, and so register numbers are prefixed with the cluster number, but this compiler

only assumes a single cluster. Thus in this case, all register numbers are prefixed with ’0’

for cluster 0. The registers and their usages are described in Table 5.6.

In describing register files in an LLVM backend, registers are grouped into classes: for
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Table 5.6: LE1 register usage.

Register Class Usage

r0.0 Constant always zero

r0.1 Special stack pointer

r0.2 Scratch struct return pointer

r0.3 - r0.10 Scratch argument / return values

r0.11 - r0.56 Scratch temporaries

r0.56 Special branch copy / load / store

r0.57 - r0.63 Preserved temporaries (callee saved)

l0.0 Special link register

b0.0 - b0.7 Scratch temporaries

the LE1 there is a CPURegs class that holds the GPRs, a BRegs class for the branch /

predicate registers and a LReg class that holds the link register. The registers are named

and added to these classes along with the value types that they can contain, which is i32

for the GPRs and the link register and i1 for the branch registers. These registers are alll

defined in LE1RegisterInfo.td using TableGen.

Tablegen is used to create the LE1GenRegisterInfo struct which is inherited by LE1RegisterInfo

and used to implement target-specific functions that provide information about the regis-

ters, such as which ones are reserved, and the lowering of FrameIndex nodes to use the

stack pointer register and an offset. Function call and return ABIs are implemented in

the TargetLowering class where CopyToReg nodes are used to inform the register allocator

which registers have to be used as function arguments and return values.

5.6 Instruction Packing

As the LE1 is a VLIW architecture, it is capable of executing multiple instructions simul-

taneously. The instruction words of the LE1 are variable length groupings of the RISC

operations described in the previous sections. Instructions within the group are executed

atomically as a single unit, so no RAW or WAW dependencies are allowed within the packet

but WAR are as all operands are read before any results are written. The maximum size of

the packet is determined by the issue width, and the mix of operations is determined by the

available parallelism within the basic block and the number and mix of functional units of

the microarchitecture.

The two tasks of the instruction packer is to (1) group instructions into packets which

can be executed simultaneously and (2) inserts no-operation instructions (NOPs) between
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the packets to adjust for the two cycle pipeline delay. The instruction packer is implemented

as a MachineFunctionPass which, as the name suggests, is a global pass that operates on

the code at the function level once it is represented in machine instructions. The packing

is performed after scheduling and register allocation, on lists of MachineBasicBlock, so

the pass has to iterate through the instructions and not change the order, or change the

semantics of the code. In LLVM, groups of instructions are referred to as bundles, so

‘bundle’ and ‘packet’ will be used interchangeably throughout the description. The internal

representation of bundled MachineInstrs is depicted in Figure 5.14.

BUNDLE

MI

MI

MI

BUNDLE

MI

MI

MI MIMI

MI MI

Figure 5.14: Internal representation of LLVM MachineInstr with Bundles.

5.6.1 Stable Branch

Instruction packing on the stable branch uses the techinque developed by Qualcomm for

their Hexagon VLIW DSP. Their solution was to create a compiler compile-time table to

implement a deterministic finite automaton (DFA) to represent the instruction packet. The

DFA has three main elements: inputs, states and transistions. The input being the in-

struction currently trying to be added to the packet, the state being the current possible

consumption of hardware resources, and, the transistions occur with the addition of another

instruction to the packet. The absense of a transistion from the current state with a certain

state indicates that there is no legal mapping for that instruction within the current packet.

The DFA is constructed at compile time, into LE1GenDFAPacketizer.inc, and required

that all the functional units had different names and also does not support understanding
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instructions with multiple InstrStages.

The LE1Packetizer is a MachineFunctionPass that contains a LE1PacketizerList

object which has access to the DFA. The pass, executed just before code emission, first

iterates through each of the basic blocks of the function and removes the pseduo instructions.

The basic blocks are then revisited and each instruction is evaluated in turn against the state

of the current packet. The LE1PacketizerList objects checks whether there are another

dependencies between the instructions and will not allow any data dependencies within the

packet. It also checks that the size of the packet is not larger than the issue width and

that the packet ends when a control-flow instruction is added. Once the instruction in a

basic block have been bundled, the latencies between the bundles are checked so that NOPs

can be inserted to maintain the two cycle pipeline delay. The instructions within adjacent

bundles are checked for data dependences and the process stops as soon as one is found,

with a NOP being inserted between the two bundles.

5.6.2 Development Branch

A different implementation was used for the development branch because the DFA method

was not necessary as the execution ports of the LE1 do not handle various types of operation.

Instructions can be dispatched as long as the required functional units are available and so

this is does not effect the issuing of different typed operations. This means that all that is

required for packing for a resource table of functional units, created at runtime, instead of a

statically compiled automaton. The packer still checks for, and prevents, data dependences

within a packet and then checks for hardware resource availability. The small resource table

is queried for a free FU depending on the type of the instruction and also the number of

micro ops (instruction word + possible long immediate) that the instruction uses compared

to the size of the current packet. The pass still inherits from MachineFunctionPass but

also from MachineSchedContext so that a data dependence graph can be built from the

incoming list of machine instructions. The insertion of NOPs is also handled differently

in the development branch because of the IRAM alignment optimisation that has been

introduced.

5.6.2.1 IRAM Alignment

As discussed by Stevens in his thesis [185] and confirmed in the testing of the compiler,

the LE1 can suffer from decreased performance due to instruction fetch (IF) stalls in the

front-end. This is due to instruction packets being split across lines in memory that cannot

be fetched in a single cycle. This happens because of the variable length encoding of the

instruction words and through the use of long immediates (32-bit) that can be encoded
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in a proceeding instruction packet. A key motivation for the development branch of the

compiler was to remove these decode stalls to improve the performance of the more narrow

configuration, which would be more suitable while using basic blocks for the scheduling

regions.

The first step to removing IF stalls was to enable the compiler to understand the re-

quirements of instructions that used additional words in the IRAM for immediates. This

was performed by encoding more information into the instruction selection and scheduling

phases described in Section 5.4.2. Any instruction that uses an extra word is assigned an

extra micro-op in its description, and during the packing pass the number of micro ops of

the instructions is queried against the current size of the packet so that the immediates are

always packed within their parent operation.

The second step was to effectively disable the use of variable length instruction words.

This was performed by padding out the instruction packets to the issue width of the machine

as the instruction fetch width is the same as the issue width. Once the packer decides that

the current packet needs to be closed and when the size of the packet does not match the

issue width, arithmetic operations are inserted to fill the packet to the issue width. These

operations have no effect on the system as they only read and write to and from R0, which

is constantly wired to 0. For most packets, the instructions are inserted after the final

’real’ instruction of the packet. But for instructions that are scheduling boundaries, such as

branches and calls, the instructions are inserted at the start of the packet due the way LLVM

represents terminators of basic blocks. The specific instruction that is chosen to be added

is dependent on the current state of the current and the available pipeline resources. If an

ALU is available, an AND operation is used, otherwise a multiply instruction is inserted. If

two words padding is required, then the inserted operation uses a 32-bit immediate. The

method requires that the total number of ALUs and MULs at least match the issue width.

The third step is to remove NOPs, because these are single operations that do not equal

the issue width, unless in a scalar configuration. Instead of NOPs, bundles were inserted

that consisted purely of the operations that are used to pad out instruction bundles. Like the

padding, these packets are created to match the issue width and have no semantic effect on

the code. The final modification was to the pre-existing assembler, that almost contradicts

the previous modification. For a program to execute on the LE1, it needs a main function

that starts at address 0x0 and so this means that all the other functions in the program are

placed in memory after this function ends. On the exit of the main function, the execution

of the program needs to end and this means that the pipeline has to be emptied. To enable

the LE1 to empty its pipeline and end the program execution, there are 11 NOPs inserted

after the call to exit which separate the call from the beginning of the next function stored

in the IRAM. However, the number of NOPs used does not align with any issue widths used,
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except for a scalar device, and so an extra NOP was inserted. This means that the rest of

the functions within the program are offset by 12 operations, of which all the tested issue

widths are factors.

5.7 Code Emission

The output of the compiler is an assembly file which is passed to the pre-exisiting assembler

to create both an instruction- and data RAM file for the simulator. Within LLVM, the ‘MC

Layer’ is used to represent and process code at the raw machine level. This layer is used

to either produce assembly- or machine code, and can also be used to produce standalone

assemblers and disassemblers. The MCStreamer class is used as an API, with a method per

directive, that is implemented differently depending on the type of file output. The LE1

uses the MCAsmStreamer class along with its target specific classes to write the assembly

file. Much of the textual information of the instruction is described in the TableGen file for

the instructions, but three classes are implemented to fill in the details (such as operand

formats) : LE1AsmPrinter, LE1MCInstLower and LE1InstPrinter.

Code emission begins with the program represented by MachineFunction, with each

MachineInstr passed to the LE1AsmPrinter. The instructions are then lowered to LE1MCInst

objects, using the LE1InstLower, and emitted through the MCAsmStreamer using a LE1InstPrinter

instance. TableGen automatically builds the LE1GenAsmWrite.inc file, in which it defines

the PrintInstruction function of LE1InstPrinter. This relationship is depicted in Figure

5.15.

LE1AsmPrinter

LE1MCInstLower

LE1InstPrinter

MachineInstr

MCInst

MachineFunction

MCInst

.s ‘MC’ Layer

LE1GenAsmWriter.inc

Figure 5.15: Class interactive for LE1 code emission.
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5.8 Contributions

The compiler described in this section targets our in-house microprocessor, the LE1. Before

this compiler was constructed, the VEX compiler was used to produce machine code for the

LE1. The VEX compiler implements a TRACE scheduling compiler and focuses strongly on

ILP exploitation but is limited to C89 code, with no C++ support, and is not designed for

a multi-core ISA. The compiler presented in this thesis enables the execution of C99, C++

and OpenCL applications on the LE1. This is achieved using the Clang frontend, which

supports these languages, coupled with a unique backend which has access to the CPU Id

instruction of the LE1 as well as target specific intrinsic instructions. This compiler is also

capable of removing the instruction fetch stalls that were induced with the VEX compiler.

5.9 Summary

This chapter has described the LLVM backend for the LE1 for both the stable and devel-

opment branches of the compiler. The register files, the instruction set and the machine

resources of the LE1 have all been described using LLVM’s Tablegen language which results

in a concise and accurate machine description. The full selection of the LE1’s instruction set

are available for the compiler to use, and target specific intrinsic operations have been added

to enable the execution of OpenCL kernels. The code generator uses the default pre-RA list

scheduler as well as the ‘greedy’ register allocator that is the default for optimised builds.

Clang, the frontend, is able to create LLVM bitcode for the LE1 as it has been modified to

accept the custom intrinsic functions and obtain data layout information of the target. The

code generator is capable of packing independent instructions together in a VLIW format

and produces assembly code ready for the pre-existing assembler. The development branch

has been optimised for the LE1 by encoding more information about the instructions to

enable better instruction selection and scheduling. There are also modifications to the in-

struction packer to work around an issue with the instruction fetch hardware, the results

which are presented later in Section 7.4.3.
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Chapter 6

The LE1 OpenCL Driver

6.1 Chapter Objectives

This chapter describes the function and implementation of the OpenCL driver for the LE1,

which contains the compiler that was described in the previous chapter. The driver connects

the user to the compiler and enables the execution of OpenCL kernels on a cycle accurate

simulator for the LE1. This chapter describes the system architecture which enables that to

happen and explains what is necessary to enable OpenCL kernels on the configurable VLIW

CMP. This includes:

• the user-facing client driver,

• the source-to-source transformer,

• the method of statically scheduling OpenCL workgroups,

• the runtime support; and

• the execution using the simulator

6.2 Client Driver

The software driver provides a layer of abstraction from the LE1 hardware for the application

developer, so its task is to allow communication between them; allowing the programmer

to control the execution of the OpenCL program but also hiding the device specific details.

For this, the OpenCL 1.1 standard API has been implemented and the fact that the kernel

is coarsened to the workgroup, statically linked and run on the cycle accurate simulator,

is hidden from the application developer. The proposed software is in the form of the
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GNU/Linux shared object, named libOpenCL.so, that can be used just as any other OpenCL

driver. The driver is built around Clang / LLVM libraries, which are statically linked into

the driver; they allow the transformation and compilation of OpenCL kernels at runtime.

The driver is composed of three main parts, depicted in Figure 6.1:

• the front-end client driver, which implements the OpenCL 1.1 API calls, allowing the

user to control the rest of the driver;

• the source transformer, which converts (coarsens) the kernel source from work-item

-based to workgroup-based, taking into account barrier synchronisation, variable life-

time etc;

• the backend compiler, which links in the developed runtime library and produces the

assembly code which executes on the LE1 CA simulator.

Source 
Transformation

Client Driver

Kernel Launcher

Compiler

Simulator

Application

API

Core

Device

Figure 6.1: Software system overview.
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static Coal::LE1Device LE1Devices[240] = {

// cores, width, alus, muls, lsus, banks

Coal::LE1Device( 1, 1, 1, 1, 1, 1), // 1

Figure 6.2: Driver target instantiation example.

6.2.1 API

The frontend is based upon Clover [189], a project which was merged into the Gallium3D

[190] graphics layer. It implements the OpenCL 1.1 API and supports the OpenCL embed-

ded profile (no 64-bit arithmetic or 16-bit floating-point). The API layer implements the

OpenCL API and so enables the programmer to create OpenCL objects, such as contexts,

programs and kernels, as well as enabling the execution of kernels. The original Clover

implementation supports Image2D and Image3D creation, but these have not been tested for

the LE1. The API layer holds the 240 statically instantiated devices that represent the LE1

targets, and the user can query and select this using the specified API functions. These

targets are automatically generated via a script, described in Section 7.3, and an example

of a target instantiation is shown in Figure 6.2. Once the user has created a context and

and a command queue, the API layer uses these to interface with the core.

6.2.2 Core

The core contains the classes for OpenCL objects such as buffers, kernels and programs

which are used as containers to carry information from the API layer to the target devices.

These objects map to their respective OpenCL types. The key component to the core

is the command queue, which is used to transport commands, as well as their respective

data structures, between the three layers of the driver. A Context object populates a list of

possible target devices (DeviceInterface objects), which the user then selects and assigns a

CommandQueue to it. The CommandQueue holds both the Context and the DeviceInterface

and also maintains a list of Events intended for the target. Events are used for the (possibly

asynchronous) tasks of memory transfer and kernel execution. BufferEvents, containing

Buffer objects, are used to perform memory transfers between the host and the device

while KernelEvents, containing Kernel objects, are used to initialise kernel execution. The

relationship between the the API, core and device layer is depicted in Figure 6.3.
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LE1 Device

Command 
Queue

Context

Program

Kernel

Buffer

API

LE1 Device

Command 
Queue

worker thread

LE1 Buffer LE1 Kernel 
Event

Compiler

LE1 Data Printer

LE1 Simulator

clEnqueueWriteBuffer
clEnqueueNDRangeKernel

clEnqueueReadBuffer

API
clGetDeviceIDs

clCreateKernel
clCreateContext

clCreateBuffer

clCreateCommandQueue

clCreateProgram

Event::WriteBuffer,
Event::ReadBuffer

pushEventsOnDevice()

getEvent()

Event::NDRangeKernel

Run()

Figure 6.3: Simplified relationship between the API and the objects in the ‘core’ and the

‘device’.
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An OpenCL Program object is capable of loading the program from either source code

or as a binary. The OpenCL Program assigns target devices to itself, creating a target-

dependent version of itself and constructing a target-dependent Compiler too. When source

is used as the input, the Compiler object is first used to check for errors and compiles the

kernel source code into a LLVM Module. With no errors in the input file, any macros in the

code are expanded, and functions are inlined in preparation for the source transformation.

The Module is then used by the Program to find the names of the kernels by using metadata

that the Clang front-end applies to OpenCL kernels. When the user instructs the driver to

create any Kernel objects, the Program then uses this metadata to verify the existence of

such a function; which is then assigned to the Kernel. A Kernel object creates an argument

list for the given function by scanning the LLVM Module, recording the address space and its

type. The argument data are stored in their own Arg objects which each contain hooks and

helper functions for access to their underlying data, such as buffers. Buffers are represented

as MemObject which use their parent Context object to know how many target buffers to

create. This base class is inherited by Buffer, SubBuffer and both Image2D and Image3D.

6.2.3 Device

The device layer takes the generic program objects, from the command queue, and spec-

ifies them for itself. Each device is instantiated in the API layer, and DeviceInterface

objects represent all the LE1 architecture and microarchitecture variations that have been

investigated. As well as the compiler target and simulator model, each LE1Device, has

a worker thread which queries its associated queue for events to act upon, such as buffer

operations and running of kernels. Once the user calls clEnqueueNDRangeKernel all the

necessary data is available for the kernel to be transformed. The LE1Buffer objects creates

a copy of the buffer created in the core layer, but does not currently check against the total

memory allocated on the device; this is delayed until the last phase of data transfer. This

is so that the memory required by stack allocations can then be taken into consideration

once the program has been compiled. This check is yet to be implemented though. The

LE1Kernel also contains little more than a copy of the generic object in the ‘core’, but sets

the device-specific maximum workgroup size of 256. The Program object is specialised into

a LE1Program object but it’s only function is to transfer the modified kernel source code to

a LE1KernelEvent.

The LE1KernelEvent class is the final one to control the execution as it holds all the

information required to finalise the kernel; it is this class that utilises the Compiler the most

as it drives the source transformation and compilation. The transformed source code is again

compiled to a LLVM module, optimised, and scanned for any floating-point operations that

will require the support of the runtime library, which is then linked to the kernel. Global
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data within the module is then extracted so that it can be written to the device in the same

manner as the user defined buffers. A runtime kernel-launching function is also created and

linked to the kernel code, and, finally the whole module is compiled into assembly language.

An LE1Simulator object is also created and controlled from the event, including writing

the data and reading the results back after the execution to update the host buffers. The

LEDataPrinter class is used to write the data and is also responsible for calculating the

addresses to be assigned to the device buffers. To write the data, it is extracted from the

host buffers and written into the assembly code file.

6.3 Source-to-Source Transformation

The unit of work is enlarged from the work-item level to the workgroup level through AST

source-to- source transformations, using Clangs libraries. Performing the transformation at

a high-level allows the coarsening to only happen once, even in the presence of different

multi-core accelerators in the heterogeneous system. The transformation takes place in

three phases: a) code expansion and function inlining, b) basic workgroup coarsening and

c) barrier call and control-flow handling. Function inlining happens at the source level as

barriers, can contained within any function, and so several passes from C-Reduce [191] have

been integrated for this. Macros also need to be expanded to be able to successfully rewrite

the coarsened source since the Clang libraries are unable to handle macros in the rewriter.

In the absence of any barrier calls, the kernel body only needs to be enclosed in one or

more for loops; one for each required dimension; any return statements are replaced with a

goto, effectively skipping the current work-item. The transformation takes place once the

programmer has requested the kernel execution, so the local size can be hard coded into the

loop declaration in the hope of aiding loop transformations. The kernel initialiser algorithm

in shown in Figure 6.4 and is an implementation of the RecursiveASTVisitor class, that is

part of Clang.

In the presence of barriers, the regions in the source in which the work-items would

execute completely independently need to be found so that the kernel can be divided between

those sections; for this loop fission is used [192]. Wherever there is a barrier, the workgroup

loop is closed before the barrier and re-opened after the barrier with the barrier call finally

removed. This guarantees that all the work-items have completed before continuing past

the original barrier call as the OpenCL specification requires. If there are barriers located

within nested regions, such as a for-loop (but not the outermost workgroup loops inserted by

the transformation engine), those regions boundaries are also used as fission points. This is

necessary since a barrier within a loop would define that all work-items have to complete up

to the barrier for the same iteration before any can pass it. Other statements, such as break
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∀ Function f ∈ Module

do if isKernel(f )

then EncloseBodyWithNestedLoop(f )

InsertExitLabel()

∀ DeclStmt ds ∈ f

do if NonSingleDeclStmt(ds )

then split(ds )

∀ CallExpr ce ∈ f

do if isOpenCLBuiltin(ce )

do if isIdCall(ce )

then replace ce

do if isLocalSize(ce )

then replace ce with immediate

do if isBarrier(ce )

then barrierList.add(ce )

∀ ReturnStmt rs ∈ f

returnList.add(rs )

do if barrierList = ∅

then ∀ ReturnStmt rs ∈ returnList

replace rs with a goto

Figure 6.4: Simple kernel coarsening algorithm.

or continue, complicate this situation further since they could skip work-items or the whole

workgroup. If these statements exist within a cyclic region that also contains a barrier, the

specification mandates that if one work-item executes the statement, all of them will for that

same iteration - otherwise some work-items would execute the barrier while others would

not, causing a livelock. As a result, continue and break statements are also used as fission

points.

Local variables are created for variables that are live past the chosen fission points, and

dependency analysis is applied to determine whether the variable is thread-dependent to

decide whether the variable needs to be expanded or not. As the kernel is explored depth-

first from the outer thread loop, statements are checked to find whether their definition

is ever dependent upon the work-item ID - if not, the variable does not ever need to be

expanded since the same value is computed for each work-item. Thread dependent variables

are ones that have a data dependency on either get local id or get global id, so any

variables that are defined using those calls are added to a list of dependent variables. The

get workgroup id is not used to identify thread dependent variables as workgroups are
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executed as a single unit upon a single core of the device. This list is then used to find further

thread-dependent variables by examining whether any variables refer to any members of the

list. As the code is explored, and the algorithm enters a region that is executed conditionally

upon a thread-dependent variable, any variables defined within that region are also added

to the list. For variables that are thread-independent, it would be possible to move them

outside of the workgroup loop but for now it is left to the LLVM loop optimisations to do this.

For scalar expanded values, all references of the original variable are visited and rewritten as

array accesses using indices of the workgroup loop(s). The algorithm is described in Figure

6.5 with an example transformation shown in Figure 6.6.
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∀ Function f ∈ Module

do if isKernel(f )

then ∀ DeclRefExpr dre ∈ f

declRefExprList.add(dre )

∀ ForStmt outer ∈ f

do if outer = outerLoop

then TraverseRegion(outer ) {

regionMap.add(outer )

∀ Stmt s ∈ outer

MapStmt(s, outer )

FindThreadDeps(s )

∀ Stmt inner ∈ outer

TraverseRegion(inner )

}

SearchThroughRegions() {

∀ Stmt region ∈ regionMap

do if isNotParallel(region )

then HandleNonParallelRegion(region )

}

FindReferencesToExpand() {

∀ Stmt region ∈ regionMap

∀ DeclStmt ds ∈ region

∀ DeclRefExpr dre ∈ declStmtMap (ds )

do if SeparatedByFissionPoint(ds, dre )

then ScalarExpand(ds )

}

Figure 6.5: Algorithm outline for the second, and final, stage of kernel coarsening.
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kernel void permute( global const uint* unsortedData,

global const uint* scanedBuckets,

uint shiftCount,

local ushort* sharedBuckets,

global uint* sortedData) {

size t localId[64], globalId[64];

unsigned esdg idx = 0;

for ( esdg idx = 0; esdg idx < 64; ++ esdg idx) {

size t groupId = get group id(0);

localId[ esdg idx] = esdg idx;

globalId[ esdg idx] = get group id(0) * 64 + esdg idx;

size t groupSize = 64;

for(int i = 0; i < ( 1 << 8 ); ++i) {

uint bucketPos = groupId * ( 1 << 8 ) * groupSize + localId[ esdg idx] * ( 1 << 8 ) + i;

sharedBuckets[localId[ esdg idx] * ( 1 << 8 ) + i] = scanedBuckets[bucketPos];

}

//barrier(1);

}

for (int i = 0; i < ( 1 << 8 ); ++i) {

for ( esdg idx = 0; esdg idx < 64; ++ esdg idx) {

uint value = unsortedData[globalId[ esdg idx] * ( 1 << 8 ) + i];

value = (value >> shiftCount) & 0xFFU;

uint index = sharedBuckets[localId[ esdg idx] * ( 1 << 8 ) + value];

sortedData[index] = unsortedData[globalId[ esdg idx] * ( 1 << 8 ) + i];

sharedBuckets[localId[ esdg idx] * ( 1 << 8 ) + value] = index + 1;

//barrier(1);

}

}

for ( esdg idx = 0; esdg idx < 64; ++ esdg idx) {

ESDG END: ;

}

}

Figure 6.6: Permute source code after complete transformation.
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6.4 Runtime Support

Once the kernel has been coarsened, it is then compiled into an LLVM module. Before the

module is compiled into machine assembly, it has to be linked with the runtime library which

supports the builtin OpenCL functions as well as the emulated floating point operations.

Any embedded data from the module also needs to be extracted for data transfer to the

device and a control function has to be created to execute the workgroups at runtime.

6.4.1 Builtin Functions

The OpenCL standard defines many library functions that need to be included in a con-

forming implementation. Libclc [193], a subproject of LLVM, is an existing library that has

been incorporated into the driver for this purpose. This library has been modified to enable

an LE1 system to operate throughout the execution space that is defined by workgroup

dimensions. This is achieved by using the intrinsics defined in the LE1 compiler backend

for accessing the CPU Id and designated areas of memory for kernel specific information.

These key functions are:

• get global size accesses builtin le1 read global size

• get num groups accesses builtin le1 read num groups

• get group id accesses builtin le1 read group id

Neither get local id or get local size need to be implemented as the local size be-

comes hard coded into the source file, and the local Id becomes the loop controlling induction

variable. The get global id function is also rewritten to multiply group Id by the local size

and add the result to the local Id. The rest of the functions have also been left untouched.

As the library is a subproject of LLVM, it uses LLVM’s runtime library ‘compiler-rt [194]’

for its optimised functions and LLVM intrinsics for key mathematical operations. This re-

liance on compiler-rt requires that these functions are also included in the OpenCL runtime

library. The library has not, however, been ported to the LE1 as there has not been suffi-

cient time; it has merely been compiled into an LLVM module with the target data layout

information of the architecture. This is currently the key flaw of the driver, which not only

means that the library has not been optimised for the LE1, but it may well also contain

code that produces erroneous on the device.

6.4.2 Softfloat

As well as the functionality defined by the OpenCL specification, the runtime library for the

LE1 also needs to support emulating floating-point calculations. For this, the softfloat library
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[195] and functions defined in compiler-rt have been compiled into the runtime module. But

unlike the functions of the OpenCL standard, calls to the floating-point functions are not

resolved until the code reaches the backend of the LE1 compiler. And as compilation is

happening just-in-time, but without LLVM’s JIT framework, the required softfloat functions

need to be included within the final module before the compilation to assembly begins. To

enable this, once the kernel source has been compiled into an LLVM module, all the IR

operations are iterated through to see whether they operate on floating-point data types.

This is possible by querying the opcode of the operation, or the Id of the intrinsic call.

When such an operation is found, the supporting function, or functions, is declared within

the module which identifies to the linker which functions are required in the module. The

compiler backend will then lower the operations to calls to those functions which are finally

resolved by the assembler. The support for floating-point is not exhaustive, the functionality

has been added ad-hoc as the tested kernels have required, but simple arithmetic (add, sub,

mul, div) and compare operations are currently supported.

6.4.3 Kernel Launching

The coarsened kernel source represents the work done by a workgroup instead of a work-

item, typically however, many workgroups will execute that code. The instantiation of

the workgroups is performed in software purely running on the LE1 system. The kernel is

linked with a small function which calls instances of the newly created workgroup. This

launcher function, as shown in Figure 6.7, uses the CPU Id and work dimension counters

to calculate which workgroup the unit should be computing. The LE1 has an instruction

which allows the user to query the CPU ID (SYSTEM:CONTEXT:HC tuple), which returns

the value of the currently executing hypercontext. This value is used at the context level

to determine the execution space; an intrinsic is used to read the CPU ID, which is then

used to offset the buffer address for each of the cores. Intrinsics are also used to keep count

of the number of workgroups completed. The launcher also checks whether the core is even

supposed to operate as some data sets will not split over the whole system evenly, meaning

that sometimes cores need to exit early and not perform the kernel operation.

Figure 6.8 depicts how workgroups are viewed, the number in the centre is the Id given

to the workgroup and the different colours represent the different cores. For a 4-core device,

the cores would execute these groups:

• Core 0 (green) executes groups 0, 4, 8, 12, 16, 20, 24 and 28,

• Core 1 (blue) executes groups 1, 5, 9, 13, 17, 21, 25 and 29,

• Core 2 (yellow) executes groups 2, 6, 10, 14, 18, 22, 26, 30,
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extern int BufferArg 0;

extern int BufferArg 1;

int main(void) {

int id = 0;

int num cores = 1;

int total workgroups = 8;

int workgroupX = 8;

int workgroupY = 0;

int x = 0;

int y = 0;

id = builtin le1 read cpuid();

while (id < total workgroups) {

x = id;

if (x >= workgroupX) {

y = x / workgroupX;

x = x % workgroupX;

}

if (y > workgroupY)

return 0;

builtin le1 set group id 1(y);

builtin le1 set group id 0(x);

binarySearch(&BufferArg 0, &BufferArg 1, 20000);

id += num cores;

}

return id;

}

Figure 6.7: Kernel launcher source code for Binary Search.

• Core 3 (pink) executes groups 3, 7, 11, 15, 19, 23, 27 and 31.

6.4.4 Data Transfer

Once the kernel source has been transformed, compiled into a module, scanned for floating-

point operations and finally linked with the runtime library, it is then scanned for any

embedded data. This is global data that has been included from either the soft-float library

or compiler-rt and is required by the functions that have been linked into the module.

Any constant data found within the module is saved into an EmbeddedData object which
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Figure 6.8: Workgroup execution model on a 4 core system, with the workgroups numbered

and the different varying colours representing the separate cores.

currently supports scalars, arrays, vectors and structs containing both floating-point and

integer data. This data needs to be sent to the device along with the buffers that the

application programmer has sent up using the API. The final code is compiled into an

assembly file and all the necessary data is appended onto the end in a format ready for

the assembler to create the corresponding DRAM file. The stack on the LE1 begins at the

highest address and is decremented towards zero, so all the kernel attributes and global data

are stored beginning at address 0x0 followed by the buffer data and memory reserved for

local buffers. All kernels begin with set attributes:

• 0x0 - number of work dimensions,

• 0x4 - global work size for all three possible dimensions,

• 0x10 - local work size for all the three possible dimensions,

• 0x1c - the number of work groups for all the dimensions,

• 0x28 - global Id offset,

• 0x34 - number of cores in the system,

• 0x38 - current group id for each core.

As the contents of the buffers are printed out into the existing assembly file, the data is

converted from the little endian format of the x86 host to big endian that is used by the LE1.
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Local buffers are reserved on a per-core basis as a core only executes a single workgroup at

any one time and all these buffers are initialised to zero. All buffers are also word aligned.

The data printer supports chars, shorts, ints, 32-bit float and also vectors of these types. It

also supports buffers of user defined struct types though this has only been tested with one

benchmark which used naturally packed elements. The LE1DataPrinter is also responsible

for assigning addresses to the OpenCL buffers, this is so that their contents can be updated

after the execution of a kernel. When this happens, data can be read out of the simulator

by requesting a read from the beginning of an address for a set number of bytes.

6.4.5 Simulation

The execution of the OpenCL kernels is performed using a cycle accurate simulator, named

Insizzle. An API is provided to gain low-level access to the simulator, which is encapsulated

within the LE1Simulator object that each LE1KernelEvent creates. The simulator requires

three files to operate: an XML file that describes the system architecture and both an IRAM

and DRAM file of the kernel. Statistics are collected from each context after the program has

finished executing, comprising of: the total number of cycles, number of NOPs, instruction

fetch stalls, branches taken, branches not taken, control-flow changes and memory access

stalls. The statically instantiated targets are destroyed as the host program ends, and in the

process they print the data to a CSV file, taking the mean average if the kernel was been

run for multiple iterations.

6.5 Contributions

The driver produced as part of this research enables the SPMD programming model on

the LE1. This is achieved by enabling OpenCL kernels to execute upon the, currently

simulated, LE1. Previous parallel applications had to be written specifically for the LE1

using a pthread derived functions. The JIT compilation of the kernels, which the driver

enables, also allows portable programs to be distributed and run upon various configurations

of the LE1 without having to worry about the underlying microarchitecture. This alleviates

the key issue of compiling and distributing programs for VLIWs, such as the LE1. The

configuration files, that are used by the driver to target the various micro- and system

architectures, can be passed via the same API as the simulator so that physical FPGA

designs can be instantiated. With this method, the driver has been designed to offload the

computation of OpenCL kernels onto an FPGA platform using a fully programmable CPU

architecture. I am unaware of any available OpenCL drivers that support the execution of

OpenCL kernels on a configurable VLIW CMP architecture.
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6.6 Summary

This chapter has described the OpenCL driver that enables the execution of OpenCL kernels

using a cycle accurate simulator for the LE1. This is achieved by embedding Clang and

LLVM libraries, including the LE1 code generator, into the driver. The workgroups are

statically issued across the multiple contexts, in SPMD fashion, by using a small control

function to launch the kernel functions and to set which workgroup should be executed.

The kernel source files have been transformed so that they represent a workgroup and not a

work-item. This has been achieved by introducing loops within the kernel to iterate through

all the work-items and ensuring to maintain the semantics by splitting the loops around

barrier functions and control-flow statements. The runtime library is provided through an

amalgamation of three open-source libraries which provide functions defined by the OpenCL

specification and emulated floating point operations.
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Chapter 7

Experiments

7.1 Chapter Objectives

This chapter presents the investigations into the validation and performance analysis of the

compilation framework and the LE1. This was performed by running 12 OpenCL bench-

marks across 240 different machine configurations. The performance of the compiler was

evaluated using 20 different microarchitectures, significantly less than the number of ma-

chine configurations due to the compiler not knowing about the number of LE1 contexts or

memory banks in the system. The purpose of using such a large number of machine config-

urations was so that the collected data could also also be used in the future as a training

set for designing a hardware / software codesign system. Appendix C contain the rest of

graphs not shown is this chapter. The graphical results do not present all that was collected

during the experiments so the full tabulated sets are available online, listed in Appendix D

7.1.1 Validation

The key aspect of the experiments was to validate that the compiler was producing correct

code and that the driver was transforming code legally and correctly executing the programs.

The benchmarks chosen contain correctness testing code within them, and the results pre-

sented here are from successful completion of those benchmarks. The kernels chosen cover

a wide range of applications and requirements for handling, such as: vector data, floating

point operations, barriers as well as inter- and intra-kernel communication.
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7.1.2 ILP performance

As well as validation, the experiments needed to show the compiler’s ability to effectively

use the instruction set of the LE1. The key abilities are being capable of removing control-

flow using select instructions, using suitable registers for comparison operations and taking

advantage of the shift-and-add instructions for simplifying address computations. Region

formation techniques have not been used, so performance will be based upon the compiler’s

ability to find enough parallelism within basic blocks and performing effective scheduling

for the multiple functional units of multi-issue machines. The final section of this chapter

evaluates the effect of using loop unrolling to enlarge the scheduling regions as well as

comparing those results with the unstable branch of the compiler.

7.1.3 TLP performance

ILP performance is the responsibilty of the compiler and will be dependent upon the charac-

teristics of the kernels and the microarchitecture configurations, though the static scheduling

of the workgroups will also effect performance. TLP performance is primarily dependent of

the system architecture of the LE1, and the experiments needed to explore the capabilities of

it. This is performed by using silicon data alongside the results obtained from the simulator.

7.2 Benchmarks

The OpenCL benchmarks were taken from the AMD AMP SDK [196] as well as the Rodinia

benchmark suite [197]. It was necessary to change the host programs in some cases where the

OpenCL context is created by type, as the driver defines the LE1 as a CL DEVICE TYPE ACCELERATOR

whereas most benchmarks query for a GPU device and in its absence, default back to the

x86 host CPU. The benchmarks also contained an AMD specific memory optimisation that

was disabled during the testing. The benchmarks represent a mix of real-world applications

that should test the capabilities of both hardware and software. The selection of kernels

include complex control-flow, barriers, vector data types and are both integer- and floating-

point based. Several benchmarks are comprised of multiple kernels which are also run for

a number of iterations, requiring intra- and inter-kernel data transfer. The amount of work

performed by each kernel is described in Tables 7.1 and 7.2.
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Table 7.1: Kernel work dimensions, sizes and execution iterations from AMD AMP.

Kernel Name Global sizes Local sizes Workgroups Iterations

BinarySearch 131072, - 128, - 1024 1

BitonicSort 16384, 1 256, - 64 120

FastWalshTransform 2048, - 256, - 8 12

FloydWarshall 128, 128 16, 16 64 128

MatrixTranspose 32, 32 16, 16 4 1

NBody 1024, - 256, - 4 1

Reduction 16384, - 256, - 64 7

Radix Sort

Histogram 16384, - 256, - 256 4

ScanArraydims2 64, 256 64, 1 256 4

ScanArraydims1 256, - 256, - 1 4

Permute 64, - 64, - 1 4

FixOffset 64, 256 variable, variable variable 4

Table 7.2: Kernel work dimensions, sizes and execution iterations from Rodinia.

Kernel Name Global sizes Local sizes Workgroups Iterations

Breadth-First Search

BFS 1 4096, 1 256, 1 16 8

BFS 2 4096, 1 256, 1 16 8

Gaussian Elimination

Fan1 16, 16 variable variable 15

Fan2 16, - variable variable 15

Needleman Wunsch

nw kernel1 variable (16-256), - 16, - variable (1-16) 16

nw kernel2 variable (16-256), - 16, - variable (1-16) 15

NN 42816, - variable, - variable 1
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7.3 Machine Configurations

The machine configurations were automatically generated via a python script, shown in

Figure 7.1, which created both the LLVM backend and the input file for the simulator.

The task was to create a homogeneous system for the simulator in the form of a XML

file, which included the number of contexts and the DRAM configuration, and TableGen

files for the compiler target; which did not need to know the number of contexts, nor the

DRAM configuration. The XML file can also be used as the configuration file for generating

VHDL to synthesis the LE1 system. The script was limited to instantiating a maximum of

2 load/store units (LSUs) and 2 multipliers (MULs) per context. Each context also needed

to have a number of arithmetic logic units (ALUs) that was equal to at least half the issue

width, and the issue width had be a factor of four. As the script progressed, the number of

contexts were doubled and the number of DRAM banks was never more than the multiple

of contexts and the number of LSUs within them and was capped at eight. This resulted

in a total of 240 configurations. The LE1 CMP device is treated as an OpenCL compute

device, with each context equating to an OpenCL compute unit (CU); context and CU will

be used interchangeably throughout the analysis of the results. The full script can be found

in Appendix B.

for context in [1, 2, 4, 8] :

for width in [1, 2, 4]:

for alus in range(1, width+1):

if ((width != 1) & (alus < (width / 2))):

continue

for muls in [1, 2] :

if (muls > width) :

continue

for lsus in [1, 2] :

if (lsus > width) :

continue

for banks in [1, 2, 4, 8]:

if (banks > (lsus * context)):

continue

Figure 7.1: Loop header for target machine generator script.
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7.4 Results

7.4.1 ILP Performance

This section evaluates the single context performance of all the benchmarks to ascertain the

potential performance increases from exploiting just ILP. Thus, the results in this section

represent the capabilites of the compiler. All the kernels were compiled with Clang’s default

aggressive optimsiations which are equivalent to using ’-O3’ on the command line.

7.4.1.1 Binary Search

The performance response for Binary Search, in Figure C.1, clearly shows that no ILP is

usefully exploited. The increase in NOPs, from 3484, with the scalar device to ∼5500 in

the 2-wide configurations shows that ILP is discovered but that it is not enough to fill the

pipeline continously. With a lack of available ILP, the increase in IF stalls, shown in Figure

C.2, results in all the 2-wide devices performing slower than the scalar configuration by ∼7%.

Increasing the issue width to four yields improvements because less IF stalls are encountered,

and the 4-wide devices only perform 0.6-0.7% better than a scalar configuration. The scalar

configuration is the most efficient as it has the lowest number of wasted cycles (due to NOPs,

IF stalls and mispredict penalties) with 71.4% compared to the other configuration which

all spend ∼86-87% of the cycles not performing any calculations.

7.4.1.2 Bitonic Sort

The performance response to the microarchitecture for Bitonic Sort is shown in Figure C.3

with the IF stall cycles in Figure C.4. A small amount of ILP is exploited in the 2-wide

devices with singular FUs, with ∼2% performance increase. This is a modest increase due to

the increase in NOPs, showing that there is not enough ILP to mask the pipeline latencies.

An increase in IF stalls in the 2-wide devices with two LSUs cause these devices to perform

little over 1% faster than the scalar devices, while the two machines with two ALUs but

singular LSUs execute 10% faster. In the 4-wide configurations, the IF stalls decrease again

enabling these configurations to perform better than the 2-wide machines. The increase

in ALUs and MULs improves performance by 2-3% for each added unit but performance

is capped at three ALUs and two MULs; these devices perform 17.81% faster than the

scalar configuration. The total wasted cycles for this kernel remains high though: the scalar

machine wastes 37%, the 2-wide waste 47-62% while the 4-wide waste 58-65%.
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Figure 7.2: Total average stalls and NOP cycles for BFS 1 using 1 context across varying

microarchitecture configurations.

7.4.1.3 Breadth-First Search

Both kernels from the breadth-first search implementation (BFS 1, BFS 2), shown in Figures

C.5 and 7.3, exhibit similar behaviour to one another. The compiler is not able to exploit

much ILP for either of the kernels: the largest configurations only achieve 4.46% speedup for

BFS 1 and 7.95% for BFS 2 and this is only ∼1% more than the 2-wide configurations with

single FUs. Both kernels also suffer from increased IF stalls in some of the 2-wide machines,

for BFS 2 this occurs in the two devices with two ALUs and a single LSU whereas all the

2-wide devices incur the stalls in some degree for BFS 1. The variation in the memory also

contribute to the variation in total cycles, as shown in Figures 7.2 and 7.4, but overall the

response to the microarchitecture remains relatively constant.
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Figure 7.3: Total average cycle count for BFS 2 using 1 context across varying microarchi-

tecture configurations.

Figure 7.4: Total average stalls and NOP cycles for BFS 2 using 1 context across varying

microarchitecture configurations.
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7.4.1.4 Fast Walsh Transform

The single CU performance for the FastWalshTransform kernel is depicted in Figure C.6, it

shows that this kernel responds positively to increased issue widths and ALUs but is largely

unaffected by the other variables in the configuration. The largest configuration achieves

a 19.14% reduction in cycles. But the more simple 4-wide devices, each with one MUL,

LSU and bank but with two and three ALUs, achieve 18.33% and 17.83% improvements

respectively. The 2-wide devices, with two ALUs, all achieve ∼9% improvement over the

scalar, but these devices also incur a significant increase in IF stall; as shown in Figure

C.7. The performance gain for the 4-wide devices largely comes from the decrease in these

stalls, which suggests that any significant ILP is discovered in the 2-wide machines but their

performance is purely hindered by the IF stalls. However, IF stalls do increase again for the

larger 4-wide devices and yet performance still improves slightly.

7.4.1.5 Floyd Warshall

Figures C.8 and C.9 shows that the performance of the FloydWarshall benchmark is closely

linked to both the IF and memory stalls of the system, and that the rest of the microarchi-

tecture details have very little effect. The increase in IF stalls for the 2-wide configurations,

with a single ALU, are reflected in the total cycles which means that any ILP exploited

is not enough to counter the stalls. However the next increase, when using two ALUs, is

not reflected in the total output which means that enough ILP is discovered to counter the

detrimental affect, but still all the 2-wide devices perform worse than the scalar device by

an average of 6.1%. The decreased IF stalls throughout the 4-wide configurations enable

them to execute faster than the scalar, but only by ∼6-11% for the devices with just one

LSU.

7.4.1.6 Gaussian Elimination

The single CU results for Fan1 are shown in Figure C.10. The microarchitecture only

seems to effect the performance of Fan1 in two changes to the configuration: (1) increasing

the number of ALUs to two in the 2-wide configuration and (2) where the issue width

increases from two to four; with both enchancements to the architecture yielding the same

performance increase of ∼8%. Again, as with other kernels, the 2-wide devices with two

ALUs suffer an increase in IF stalls, shown in Figure C.11; the reduction in the stalls leads

to the improvement seen in the 4-wide devices. The best configuration is the 4-wide with

two ALUs and one MUL and LSU as it performs as well as the largest configuration.

The response of Fan2, shown in Figure C.12, is not so flat, but the same improvement

is observed when doubling the issue width from two to four and the small spikes are where
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there is a mismatch in the number of LSUs and DRAM banks. Figure C.13 shows an

increase in IF stalls for the 2-wide devices, with two ALUs, which limits the effects of any

ILP discovered in these devices. The 4-wide devices achieve ∼16% for Fan1 whereas the

same configurations vary between ∼12-16% for Fan2 as performance improves up to three

ALUs and IF stalls are more varied. The most effective configuration for this kernel is the

4-wide with three ALUs, two MULs and one LSU.

7.4.1.7 Matrix Transpose

The response of matrix transpose is very volatile and highly dependent of the memory con-

figuration, the greatest dependence of all the benchmarks used, as presented in Figure 7.6

and 7.6. Cycle times improve for each model where the number of LSUs are increased,

along with the number of DRAM banks to support them; each on the prodominant peaks

represents where the number of banks does not match the number of LSUs and these con-

figurations perform significantly worse than the scalar device by ∼9-16%. The IF stalls are

also volatile: the reduction in IF stalls for the 4-wide machines occurs in this benchmark,

but there are also general increases for the larger configurations which peak when two LSUs

are combined with two DRAM banks. The NOPs are also affected by the number of LSUs as

these only vary in the 4-wide devices as the LSUs varies between one and two. The graphs

show that there is very little to gain from increasing the complexity of microarchitecture

beyond a 4-wide device with two of each FU and two banks, this device executes 21.38%

faster than the scalar while the largest configuration achieves 22.01%.

125



CHAPTER 7. EXPERIMENTS

Figure 7.5: Total cycle count for MatrixTranspose using 1 context across varying microar-

chitecture configurations.

Figure 7.6: Total stall and NOP cycle count for MatrixTranspose using 1 context across

varying microarchitecture configurations.
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7.4.1.8 NBody Simulation

Single CU performance for NBody is shown in Figure C.14 with NOPs and IF stalls in Figure

C.15. The 2-wide devices gain meager improvements over the scalar machine with execution

cycles decreased by ∼3-5%. The 2-wide devices with two ALUs incur increases in both

NOPs and IF stalls compared to the other 2-wide configurations, yet performance remains

about the same; this suggests that enough ILP is discovered to counter both the NOPs and

IF stalls. The number of NOPs remains relatively constant for the 4-wide machines, but the

decrease in IF stalls enable these configurations to perform ∼10% better than their 2-wide

counterparts. Increasing the number of ALUs to three, while maintaining one of each other

FU is the most effective configuration as this performs 15.42% faster than the scalar device.

7.4.1.9 Nearest Neighbour

The single CU performance for nearest neighbour is shown in Figure C.17, the result is very

similar to NBody simulation which is unsurprising since they are both complex kernels for

the LE1 since they based upon floating-point calculations. The 4-wide devices do not suffer

the IF stalls induced in the 2-wide devices and so execute the fastest. Doubling the issue

width, while maintaining the minimal mix of FUs, results in performance gains of 5.33%

and 10.34% with the largest configuration achieving a 13.72% reduction in cycles. The most

effective configuration is the 4-wide device with three ALUs, one MUL and two LSUs with

matching DRAM banks; this executes 14.33% faster than the scalar.

7.4.1.10 Needleman-Wunsch

The single CU performance of both kernels for the Needleman-Wunsch benchmark are pre-

sented in Figures 7.7 and 7.8. The response of nw kernel1 is quite flat in the 2-wide devices,

but the performance of the 4-wide machines varies with differences in the IF and mem-

ory access stalls; as presented in Figure C.18. The effect of the large increase in IF stalls

in the 2-wide, two ALU, devices is noticeable in the total cycles; though the performance

degradation is less than expected which suggests ILP exploited to help negate the issues.

Differences in the performance can also be seen in nw kernel2 and these too correlate to the

differences the in the number of IF stalls observed and the memory access stalls to a lesser

extent, as shown in Figure C.19. As the variations in IF stalls appear to negate most of the

potential performance increases from ILP, only 4.64% and 8.37% improvements are achieved

in nw kernel1 and nw kernel2 respectively.
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Figure 7.7: Total average cycle count for nw kernel1 from Needleman-Wunsch using 1 con-

text across varying microarchitecture configurations.

Figure 7.8: Total average cycle count for nw kernel2 from Needleman-Wunsch using 1 con-

text across varying microarchitecture configurations.
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7.4.1.11 Radix Sort

Figure 7.9: Total average cycle count for FixOffset from Radix Sort using 1 context across

varying microarchitecture configurations.

The single context performance for the FixOffset kernel, from Radix Sort, is depicted

in Figures 7.9 and 7.10. The response to the microarchitecture is mainly dominated by the

effect of the memory stalls that occur whenever two LSUs are used. For the 2-wide devices

with a one ALU, these memory stalls also coincide with an increase in IF stalls resulting

in only two of the 2-wide machines to perform better than the scalar device. These devices

achieve a 7% speedup while the others achieve no speedup for perform 7% worse. The 4-wide

machines gain a significant decrease in the IF stalls resulting in them performing 15-23%

faster than the scalar configuration. There is no gain from increasing the complexity of the

microarchitecture past a 4-wide with two ALUs as this configuration performs as well as the

largest single context device.

The single context performance for the histogram kernel, from Radix Sort, is shown in

Figure 7.11 while the memory and IF stalls are in Figure C.20. Little ILP is found in the

kernel and it is largely invariant to the microarchitecture except for when the number of

LSUs and banks are mismatched and the large decrease in IF stalls in the 4-wide machines

with three ALUs. The fastest configuration is 4-wide with three ALUs, one MUL and one

LSU as the memory stalls from using two LSUs, as well as the increase in IF stalls when

using four ALUs, causes the largest configurations to execute slightly slower.

For the permute kernel, presented in Figures C.21 and C.22, little ILP is found once

again. However, the ∼50,000 IF stall cycle increase in the 2-wide devices is not reflected in
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Figure 7.10: Total average stalls and NOP cycle count for FixOffset from Radix Sort using

1 context across varying microarchitecture configurations.

Figure 7.11: Total average cycle count for histogram from Radix Sort using 1 context across

varying microarchitecture configurations.

the total cycle count. For the devices with one ALU this suggests that the ILP discovered

is just enough to counter the stalls, and with two ALUs the increase is overcome and the

devices perform 6% faster. The decrease in IF stalls for the 4-wide configurations enables

them to perform 12-13% faster than the scalar machine. The response of ScanArraysdim1,
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in Figure C.23, is very similar to that of histogram but more ILP is discovered; with the 2-

wide devices achieving 7-9% and the 4-wide devices achieving an 17.75% reduction in cycles.

The results for ScanArraydims2 are somewhat different as the 4-wide machines with three

and four ALUs all suffer another increase in IF stalls. This increase results in those devices

achieving ∼10% improvement over the scalar, compared to ∼13% for the devices with two

ALUs. Memory stalls, from mismatched LSUs and banks, also contribute to the smaller

performance gain in those configurations.

7.4.1.12 Reduction

The results from this benchmark show that it is largely variant to the microarchitecture

configuration; Figures 7.12 and 7.13 show that this is due to memory and IF stalls. All the

configurations that contain two LSUs suffer from significant memory stalls, even when there

is a bank to support each LSU, and the stalls are higher in the 4-wide devices than the 2-

wide. These stalls lead the performance of 4-wide devices to vary by ∼5-6%. In the 2-wide

machines, the sharp reduction in IF stalls when using two ALUs leads to a performance

increase. The best performing architecture each have two ALUs, one MUL and a LSU: the

2-wide achieves 10.19%, while the 4-wide achieves 13.58% reduction in cycles.

Figure 7.12: Total cycles for Reduction using 1 context across varying microarchitecture

configurations.
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Figure 7.13: Total average stalls and NOP cycle count for Reduction using 1 context across

varying microarchitecture configurations.

7.4.2 TLP Performance

This section presents the results of systems which contain more than one context with the

speedup calculated against the scalar, single CU, device.

7.4.2.1 Binary Search

Figure 7.14 depicts the performance of Binary Search across the maximal microarchitectures

and with multiple contexts. The graph shows that the problem scales almost perfectly for the

scalar and 4-wide devices up to 4 CUs, as long as there is a DRAM bank for every four LSUs

in the system. As the problem does not scale as well up to the full eight contexts, it suggests

that the value is found just as fast when using six or seven contexts. The effect of the IF stalls

is still apparent in the 4 CU device as the 2-wide devices still noticeably underperform both

the 4-wide and scalar configurations. The most efficient configuration for this benchmark

would be to use a scalar microarchitecture and a simple memory configuration of one bank

between four CUs.

7.4.2.2 Breadth-First Search

The performance of Breadth-First Search across all maximal microarchitectures is presented

in Figure 7.14, showing that both kernels generally scale well across the available contexts.

The performance of BFS 1 varies little with the microarchitectures and scales nearly linearly

up to 4 CUs as the memory subsystem then starts to limit the performance. With a memory
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Figure 7.14: Speedup of Breadth-First Search, Binary Search and Bitonic Sort across a

selection of multi-context, maximal microarchitecture, configurations.

bank per context, the performance approaches a 8x speedup compared to 7x with only a

single bank. The threaded performance of BFS 2 scales better than BFS 1, being less

dependent on the memory system and also gaining benefits from ILP but only up to the

2-wide machines; these achieve 8-8.5x speedup. The most effective configuration for these

two kernels would be the 8 CU, 2-wide device with 8 banks.

7.4.2.3 Bitonic Sort

The performance of Bitonic Sort across all maximal configurations is depicted in Figure

7.14. The algorithm scales perfectly across the contexts as long as there’s one DRAM bank

for every four LSUs in the system, but there is very little performance difference between

the scalar and 2-wide configurations. The performance increases from ILP in the 4-wide

configurations are multiplied as the number of contexts are increased, achieving 9.5x speedup

with eight LSUs and four banks. Though the difference in performance of the single- and

dual bank is particularly clear in these devices, and further performance is gained from using

four banks but this is continued to eight banks.

7.4.2.4 Fast Walsh Transform

The multi-context performance of the Fast Walsh Transform is presented in Figure 7.15.

The graphs shows that the memory configuration does not affect performance, even when
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Figure 7.15: Speedup of Fast Walsh Transform, Floyd Warshall and Gaussian Elimination

across a selection of multi-context, maximal microarchitecture, configurations.

there is sixteen LSUs in the system with only a single DRAM bank. It also shows the

problem scaling perfectly with the scalar devices achieving 2, 4 and 8x speedup compared

to the single CU scalar machine. The gains from ILP also scale near perfectly too: with 2.2,

4.4 and 8.7x for the 2-wide configurations, and 2.5, 4.9 and 9.8x for the 4-wide.

7.4.2.5 Floyd Warshall Pass

The results from the Floyd Warshall benchmark are also shown in Figure 7.15. The perfor-

mance degradation in the 2-wide devices, due to IF stalls, continues to be evident in all the

systems with the scalar configurations outperforming them; with the problem compounded

by a reliance on the memory configuration. The memory configuration proves to be the

bottle neck in the 8 CU systems, with all configurations achieving ∼6x speedup when only

a single bank is used. This increases to 7.7 for the scalar, 7.6 for the 2-wide and 8.8x for the

4-wide devices with eight memory banks.

7.4.2.6 Gaussian Elimination

Complete system performance for the two kernels from Gaussian Elimination are depicted in

Figure 7.15. It shows that neither Fan 1 or Fan 2 scale well across the multi-context systems

due to the variable number of workgroups that are instantiated throughout the execution

of the program. The increase in FUs and memory banks leads to marginal performance
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improvements throughout the systems for both kernels, the smaller memory configurations

only become a bottleneck in the 8 CU systems but it is not significant. The single CU

performance of Fan 1 is slightly greater than Fan 2, with 1.2x compared to 1.18x for the

4-wide, but the problem scales better over multiple contexts for Fan 2 which achieves a 4.74x

speedup in the largest system compared to 4.5x for Fan 1.

Figure 7.16: Speedup of Matrix Transpose, NBody Simulation, Nearest Neighbour and

Needleman-Wunsch across a selection of multi-context, maximal microarchitecture, config-

urations.

7.4.2.7 Matrix Transpose

The size of the dataset only required the use of four workgroups, so the results from the

8-context device are not shown, the rest are shown in Figure 7.16. The graph shows that

because the kernel is memory bound even in a single CU device, the problem is exasperated

as more CUs are used in the system and the problem does not scale very well. Though there

is a significant amount of ILP available, with the largest single CU device achieving 1.3x

speedup, the 2- and 4 CU systems only achieve 2.4 and 4.6x speedups respectively. The

performance also more than doubles in the 4-wide microarchitectures when increasing the

number of banks from one to eight.

7.4.2.8 NBody Simulation

Like MatrixTranspose, the NBody simulation was only split into four workgroups so only

single-, dual- and quad-CU devices are shown in Figure 7.16. Unlike the matrix transpose
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kernel, NBody scales very well with the memory configuration having little effect on system

performance; The IF stalls continue to reduce the effectiveness of the 2-wide configurations,

but they still achieve 2- and 4x speedup over the scalar, single CU device. While the largest

scalar system achieves a 3.85x speedup and the largest 4-wide device achieves 4.55x. This

algorithm is more parallel than these results show, if the maximum workgroup size had been

set to 128 instead of 256, eight contexts could have been instantiated and most likely very

nearly further double the performance with a single memory bank.

7.4.2.9 Nearest Neighbour

The complete set of results from the Nearest Neighbour kernel is presented in Figure 7.16.

The performance is similar to NBody because they both contain complex emulated floating-

point operations, but this scales to the full 8 CUs. Again, performance from the 2-wide

configurations is disappointing but the 4-wide machines are capable of multiplying their

ILP gains across all the cores without being hindered by simple memory configurations;

with the largest microarchitectures scaling at 1.16, 2.31, 4.62 and 9.24x speedup over the

scalar, single CU, machine. The performance of the scalar systems also scales perfectly with

2, 3.99 and 7.98x over the single CU system.

7.4.2.10 Needleman-Wunsch

The two kernels from Needleman-Wunsch are shown in Figure 7.16, which both exhibit very

similar charateristics. Neither kernel scales particuarly well due to the varying number of

workgroups that are executed during the iterations of the program. It also shows all the

2-wide configurations perform worse than their scalar counterpart for both of the kernels.

The memory configuration has a negligible effect on performance for both the single and

dual CU devices, with performance only seriously affected in the 8 CU devices where, for

both kernels, the largest configurations vary by 23.5%.

7.4.2.11 Radix Sort

The permute and ScanArraysdim1 kernels both operate upon a single workgroup so their

results are not shown in this section, the results of the other kernels are presented in Figure

7.17. The multi-context results for the FixOffset kernel is uninteresting until eight contexts

are instantiated. For the other systems, there is little difference in performance in relation to

the microarchitecture and the problem scales linearily to two contexts, but then falls short

for most of the 4 CU machines. The response for the systems with eight contexts exhibits a

completely different response with the microarchitecture varying the performance by 2.5x.

The total stalls across the systems in shown in Figure 7.18 and it helps explain the different

136



CHAPTER 7. EXPERIMENTS

Figure 7.17: Speedup of the kernels of Radix Sort and Reduction across a selection of

multi-context, maximal microarchitecture, configurations.

overall performance. The total number of NOPs and stalls encountered by the dual CU

systems is almost the same as the single CU machines, but the total work has been halved

between the contexts which results in double the performance. In the 4 CU systems, with

multi-issue microarchitectures, the number of memory stalls greatly increases but generally

is not related to the number of banks in the system. It was shown in the previous section

that memory stalls were encountered whenever there was two LSUs in the device, regardless

of the number of banks; here that continues but the issue is compounded by the number of

contexts. The memory stalls then vary throughout the various microarchitectures of the 8

CU machines, with all configurations benefitting from a higher number of banks. The scalar

devices suffer far fewer memory stalls than the multi-issue microarchitecture, by ∼6x in the

greatest extreme, keeping the stalls inline with the scalar, single CU, machines. This would

suggest that this configuration would achieve 8x the performance of the single CU system,

instead it is nearer 10x; this is because the inner loop gets unrolled and results in an 8-fold

reduction in the number of branches taken.

The performance of both the histogram and ScanArraysdim2 are very similar, with

all microarchitectures scaling perfectly from single to dual context systems. The memory

configuration begins to play a part in the performance of the 4 CU systems. For histogram,

the single- and dual- CU devices continue to scale perfectly with enough banks to support

and the 4-wide devices only fall short very slightly. ScanArraysdim2 still scales very well, but

just behind the rate of histogram. This pattern continues for the 8 CU, 8 banked, machines
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Figure 7.18: Total stalls and NOPs of FixOffset, from Radix Sort, across maximal microar-

chitecture systems.

with histogram achieving 7.86, 8.31 and 9.21x, while ScanArraysdim2 achieves 7.75, 8.25

and 8.63x.

7.4.2.12 Reduction

The speedups of maximal microarchitecture, multi-context systems for the Reduction bench-

mark are shown Figure 7.17. The problem scales well across the multiple contexts, but is

sensistive to the memory configuration; with all the 8 CU microarchitectures being bottle-

necked at 5x speedup when there is only a single DRAM bank. The wider machines benefit

from ILP gains too with the 8 CU, 8 banked, machines achieving: 7.72, 8.18 and 8.48x

speedup for the scalar, 2-wide and 4-wide respectively.

7.4.2.13 TLP Performance with Silicon Data

This subsection uses silicon data, in Table 7.3, together with the simulated results to gain

a greater understanding of how the LE1 systems operate as more contexts are instantiated.

The data was acquired using the UMC65nm process with the LE1 configured to have a

256KB data RAM and 16KB instruction RAM. The speedup presented in the following

graphs is relative to the single context device.

Figure 7.19 shows that the slight decrease in Fmax results in less than 2x speedup,

especially for the kernels of gaussian elimination as these have already been shown not

to scale well. Most of the kernels achieve ∼1.65-1.77 speedup while FixOffset achieves
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Table 7.3: LE1 silicon data.
Contexts Microarchitecture Fmax (MHz) Power (nw)

1 2W-2A-1M-1L-4B 413.1 35571698

2 2W-2A-1M-1L-4B 357 51893081

4 2W-2A-1M-1L-4B 384.9 85317717

6 2W-2A-1M-1L-4B 278.8 121000000

8 2W-2A-1M-1L-4B 377.6 146053150

10 2W-2A-1M-1L-4B 317.1 210468449

1.85x. The increase in Fmax for the 4CU machines results in better scaling for most of the

benchmarks: ten benchmarks achieve over 3.5x, five achieve 3x while Fan1 and Fan2 achieve

1.87 and 2.15 respectively; as shown in Figure 7.20.

Figure 7.19: Speedup of a 2W-2A-1M-1L-4B LE1 system with two contexts using silicon

data.

The achievable clock frequency for the 6 CU machine is significantly less than the single

context, by 1.48x, which is evident from the results in Figure 7.21 as most perform slower

than with the 4 CU machine. Neither NBody or MatrixTranspose scale beyond four con-

texts, but the results have been presented to show the detrimental affect that the system

configuration can have. As neither of these kernels benefit from the extra two contexts, the

significant decrease in clock frequency results in both performing 1.38x slower than the 4CU

device. From the simulated results, NN scales perfectly to achieve a 6x speedup with Floy-

dWarshall, Reduction, histogram and ScanArraysdim2 all achieving between ∼ 5.4 − 5.7;

these are all reduced to under 4x in real-world terms. FixOffset even super scales to achieve

9.1x speedup, which is cut to 6.1 once the clock frequencies are considered. Both Binary-

Search and FastWalshTransform see performance decreases as the kernels do not utilise the

extra two cores.
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Figure 7.20: Speedup of a 2W-2A-1M-1L-4B LE1 system with four contexts using silicon

data.

Figure 7.21: Speedup of a 2W-2A-1M-1L-4B LE1 system with six contexts using silicon

data.

The clock frequency of the 8 CU device is increased to a more competitive level; allowing

both BinarySearch and FastWalshTransform to execute over 2.5x faster than the 6 CU

configuration, and enables most benchmarks to execute over 6x faster than the single context

machine. The results are presented in Figure 7.22. The gaussian elimination kernels continue

to gain no benefit from the extra cores and Needleman-Wunsch kernels continue to scale

worse than the others. The two kernels from breadth-first search equal out to a 7x speedup

and both BitonicSort and FastWalshTransform execute over 7.2x faster. The multi-context

kernels from RadixSort also perform very well, with FixOffset performing 9x faster and

histogram 6.8x. The reduction in clock frequency for the 10 CU machine results in all

but three benchmarks executing slower than the 8 CU device; as depicted in Figure 7.23.

Reduction stays constant while NN and ScanArraysdim2 achieve 1.06 and 1.04x speedups.

These results show that the largest system is not necessarily the best, especially in the cases
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Figure 7.22: Speedup of a 2W-2A-1M-1L-4B LE1 system with eight contexts using silicon

data.

Figure 7.23: Speedup of a 2W-2A-1M-1L-4B LE1 system with ten contexts using silicon

data.

where the algorithm does not scale across all the contexts and so performs better with fewer

cores, but clocked at higher frequencies.

7.4.3 Development Branch

This subsection presents a comparison of the results from four benchmarks using between

the original baseline compiler (3.2), using loop unrolling (3.2 + unroll) and the updated

compiler (3.4) with a combination of optimisations. Loop unrolling was also forced for the

updated compiler along with utilising the custom optimisation to remove the IF stalls that

were identified in the previous section. Both the loop unrolling and alignment increase

code size: loop unrolling duplicates the loop body a number of times which has to increase

code size proportion to the number of bodies unrolled, while alignment inserts unnecessary
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instructions and will vary dependent on the width issue and ILP. Table 7.4 summarises the

average size of the IRAM across these four benchmarks and compiler optimisations, showing

that LLVM 3.4 produces smaller code than 3.2 for these benchmarks and that the alignment

optimisation, on average, roughly doubles the size required by the IRAM.

Table 7.4: Average IRAM sizes across all configurations and compilers.

Compiler BinarySearch BitonicSort FloydWarshall Reduction

3.2 508 567 679 911

3.2 + unroll 1127 1437 5607 10654

3.4 416 476 568 726

3.4 + unroll 1109 1166 6445 9430

3.4 + align 926 969 1282 1590

3.4 + unroll + align 2683 2118 15796 20982

7.4.3.1 Binary Search

Figure 7.24: Total cycles of BinarySearch, on the single CU devices, using both compilers

and optimisations.

Figure 7.24 shows the total cycle performance of BinarySearch using both the compiler

backends and the applied optimisations. Loop unrolling with LLVM 3.2 results in an average

improvement of 25.86% and this derived from the reduction in misprediction penalties as
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less branches are executed due to the unrolling. The performance remains largely unaffected

by the microarchitecture except for a small improvement in the 4-wide devices compared to

the 2-wide machines.

Figure 7.25: Total IF stall cycles of BinarySearch, on the single CU devices, using both

compilers and optimisations.

The results of LLVM 3.4 however show a much different response than with the orig-

inal backend, and only for two configurations and with maximum optimisations does the

newer compiler manage to match the original compilers performance. The variations in the

performance of the newer compiler is explained by the variations in both the memory and

IF stalls, which are presented in Figures 7.25 and 7.26. The updated compiler suffers from

memory stalls for each configuration with two LSUs with a single bank, with additional IF

stalls in the 4-wide configurations when two LSUs are used. The alignment optimisation is

however successful in removing the IF stalls when invoked, and this optimisation results in

the 4-wide configurations performing no better than the 2-wide devices. The performance of

the updated compiler is also decreased by the number of NOPs it creates, it executes ∼3000

more NOPs than the original. On average the updated compiler performs 49.69% worse

than the original, brought closer to 17.48% when all the optimisations are switched on. The

average improvement from unrolling is also lower than the orignal compiler, with 14.87%,

though the average reduction of stalls and NOPs is the same at ∼4000 cycles combined; but

this is a lower percentage of the total cycles.

The multi-context, maximal microarchitecture performance speedups are presented in
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Figure 7.26: Total memory stall cycles of BinarySearch, on the single CU devices, using

both compilers.

Figure 7.27: Total NOP cycles of BinarySearch, on the single CU devices, using both com-

pilers.
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Figure 7.28: Speedup of BinarySearch, relative to a single CU ,scalar device, and LLVM 3.2,

across the maximal microarchitecture configurations.

Figure 7.28. The performance advantage of loop unrolling in the original compiler is high-

lighted as it constantly outperforms the other compilers, except for when the memory con-

figuration bounds performance. The updated compiler with unrolling and alignment is able

to compete with the baseline original compiler more as more contexts are instantiated. The

performance of the 2-wide devices match the baseline for two and four contexts, and is faster

in the eight context machine.

7.4.3.2 Bitonic Sort

The single CU performance of bitonic sort comparing the original compiler to the develop-

ment branch, with optimisations, is depicted in Figure 7.29; the stalls are in Figures 7.30 and

7.31. The updated compiler performs better in the more narrow devices compared to the

original baseline compiler. The response to the microarchitecture is similar, however where

the original suffers from IF stalls, the updated suffers a large increase in memory stalls for

devices with two LSUs. The performance of the 4-wide devices matches the original with the

memory stalls persisting, and the single LSU configuration suffers from sharp increases in

IF stalls. The overall average performance gain over the original baseline compiler is 5.23%.

Using loop unrolling with LLVM 3.2 results in less variation across the microarchitectures,

because of more uniform IF stalls, and leads to an average improvement of 17.42%. Loop
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Figure 7.29: Total average cycles of Bitonic Sort, on the single CU devices, using both

compilers and varying optimisations

unrolling is more effective on the development branch, improving upon the original baseline

by 37.66% and on it’s own baseline by 34.22%. This improvement comes from an increase

in ILP as well as the reduction in miss predict penalties and modest reductions in both IF

and memory stalls. The alignment optimisation successfully removes the IF stalls which

enables the compiler to perform as well or better than the original with unrolling except for

four configurations; these suffer from too many memory stalls. With IF stalls eradicated,

the performance gain in the 4-wide devices is purely from ILP gains, which is possible

from the enlarged basic block from the unrolling and partially predicted ISA being utilised

effectively. The alignment optimisation enables the compiler to outperform the original

by 17.56% and by it’s own baseline by 13.01%. The alignment optimisation also helps to

boost the performance of the loop unrolling, particularly in the 4-wide configurations, for

an average improvement of 41.64% over LLVM 3.2 and 38.42% over LLVM 3.4. The best

performing microarchitecture for LLVM 3.4 with unrolling is the 4-wide device with three

ALUs and one of each for the rest, this performs 61.32% faster than the scalar device with

LLVM 3.2. With unrolling and alignment, the fastest device uses four ALUs, two MULs and

a single LSU and bank; this achieves 67.34% improvement over the original scalar result.

The multi-context performance of the maximal microarchitecture and both compilers,
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Figure 7.30: IF stalls of Bitonic Sort.

Figure 7.31: Memory stalls of Bitonic Sort across maximal microarchictectures with different

compiler backends.

147



CHAPTER 7. EXPERIMENTS

Figure 7.32: Speedup of Bitonic Sort, relative to a scalar device with LLVM 3.2, across

multi-context, maximal microarchitecture, devices, using both compilers and varying opti-

misations.

with optimisations are presented in Figure 7.32. It shows that the updated compiler con-

tinues to outperform the original, and matches the unrolled version, for the 2-wide devices.

All the 4-wide machines benefit greatly from the increase in ILP gained from loop unrolling,

but the updated compiler with alignment continues to outperform the original with loop

unrolling enabled. There is a clear dependence on the memory configuration in the 8 CU

devices; this is particularly true for the machines that are exploiting more ILP where per-

formance is at least halved by limiting the system to a single bank. Also, the single context

analysis showed that the maximal microarchitecture was not the most effective, due to mem-

ory stalls, and this continues for the multi-context machines. Though it is not shown on

the graphs, the 8C-4W-3A-2M-1L-8B device achieves a 22.95x speedup against the original

compiler on the scalar device.

7.4.3.3 Floyd Warshall

Figure 7.33 shows the total average cycles of the maximal microarchitecture configurations

for the two compilers; the IF and memory stalls are depicted in Figures 7.34 and 7.35. Loop

unrolling is an effective optimisation for the original compiler, with the unrolled code being

1.29x faster on average. Further performance is gained in the machines with four ALUs as

the devices with three still encounter IF stalls. The performance of the development branch
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compiler is very similar to the original except that far more IF stalls are encountered in the

4-wide machines which makes most of these configurations perform worse. Loop unrolling

is less effective for the 3.4 compiler, being 1.21x faster than it’s baseline and 1.17x faster

than the baseline 3.2 compiler. The unrolling is unable to counteract the memory stalls in

the 2-wide devices with two ALUs and LSUs. The alignment removes the IF stalls resulting

in the aligned and unrolled code running 1.28x faster than the 3.4 baseline, but only 1.24x

faster than the 3.2 baseline.

Figure 7.33: Total average cycles for FloydWarshall using the different compilers and opti-

misations, for the single CU devices.

The multi-context comparison is presented in Figure 7.36. The baseline development

compiler comes out as the slowest performer with it’s highest gain below 8x and does not

gain any benefit from using 4-wide configurations. For the scalar microarchitectures, the

baseline 3.2 compiler and it’s unrolled version outperforms the 3.4 baseline and the aligned

version however they all perform very similarily for the multi-issue machines. The highest

performing is the original compiler with loop unrolling enabled, though the 3.4 compiler

with full optimisations comes a close second. But in the 8 CU devices, with fully optimised

development compiler, the 2-wide devices perform no better than the scalar machines as

the number of memory stalls encountered using two LSUs per CU is counterproductive;

configurations with a single LSU should be capable of gaining the 10x speedup of the largest

device.
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Figure 7.34: Total average IF stalls of FloydWarshall for the single CU devices, using both

the compiler backends.

Figure 7.35: Total average memory stalls of FloydWarshall for the single CU devices, using

both the compiler backends.
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Figure 7.36: Speedup, with respect to a scalar device and LLVM 3.2, for FloydWarshall using

different compilers and optimisations across multi-CU systems of maximal microarchitecture

configurations .

7.4.3.4 Reduction

The total cycles of the Reduction benchmark across maximal microarchictecture devices is

shown in Figure 7.37 with the stalls in Figures 7.38 and 7.39. The baseline 3.4 compiler

performs better than the baseline 3.2 for every microarchitecture, with an average speedup

of 1.18x over it which can be attributed to better scheduling. No compiler or optimisations

are capable of preventing the memory stalls when there is a mismatch between the LSUs

and banks, but the optimisations are successful in improving performance overall. Loop

unrolling with the 3.2 compiler leads to an average speedup of 1.38x which is the same

average gain from using 3.4 and the alignment optimisation and close to the 1.44x speedup

with the 3.4 compiler and unrolling. This result means that the unrolling is relatively not

as effective in the updated compiler, again this can be attributed to the higher quality of

scheduling in LLVM 3.4 as it does not need to enlarge the area to improve ILP as much.

The fully optimised development compiler achieves an average speedup of 1.64x over the

scalar device on 3.2.
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Figure 7.37: Total average cycles for Reduction using LLVM 3.2 and loop unrolling.

Figure 7.38: Total average IF stall cycles for Reduction on the single CU devices using both

compilers and optimisations.
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Figure 7.39: Total average memory stall cycles for Reduction on the single CU devices using

both compilers and optimisations.

Figure 7.40: Speedup, relative to a scalar device with LLVM 3.2, of Reduction on the single

CU devices with maximal microarchitectures using both compilers and optimisations.
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The multi-context results for Reduction are depicted in Figure 7.40 and shows that the

improvements in the single CU device are carried through, and multiplied, through the

multi-context systems. Though for multi-CU, scalar, machines, the alignment optimisation

has no benefit and so all the compilers that employ unrolling perform very similarily with the

3.2 compiler being the marginally faster. The alignment optimisation becomes very useful

in the 2-wide configurations, enabling the compiler to generally outperfom both 3.2 and

3.4 with unrolling. The graph also shows the baseline 3.4 compiler is much more effective

at utilising the wider devices than the original 3.2 compiler; performing 25% faster in the

largest system. The difference between the optimisations becomes smaller in the largest

configuration due to little more ILP being discovered past 2-wide and the memory system

bounding performance; code generated using fully optimised compiler spends over 10% of

it’s total cycles stalling for memory, compared to under 5% for just the aligned program.

7.5 Summary

This chapter has presented the results from 12 benchmarks, including a total of 19 kernels,

over 240 system configurations using the stable toolchain. The results from 4 benchmarks,

over 193 system configurations, have also been reported using 5 other compiler and optimi-

sation combinations; including the development branch of the compiler. The selected kernels

have real world applications and some require both intra- and inter-kernel communication,

and many run over multiple iterations. Some also operate in two dimensions and require

synchronisation techniques to be in place.

The results from the stable compiler show that generally it is not capable of exploiting

the VLIW capabilites of the LE1. No region enlargement techniques have been used and so

scheduling is performed upon basic blocks which do not present many chances for significant

ILP. In many of these benchmarks some ILP was discovered in the 2-wide machines, but not

enough to overcome the two cycle pipeline latencies which resulted in an increase in NOPs;

which negated the ILP gains. The 2-wide devices also suffered from significant increases in

IF stalls which hindered their performance further, often resulting in them performing slower

than the scalar device. The increased performance of the 4-wide machines over the 2-wide

were because of the reduction in the IF stalls. The general lack of ILP resulted in a general

performance invariance to the microarchitecture, with only the memory configuration being

a real differentiator. For some of the benchmarks, the memory stalls incurred from using two

LSUs resulted in slower performance than using a single LSU, though an increase in banks

did help alleviate the problem. This suggests that the memory should be further split into

more banks for the kernels which require more bandwidth and have more than one LSU.

However, the system is better at exploiting TLP by successfully scaling the problems over
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the available contexts to improve performance. Again, the differences in microarchitecture

have little affect on the overall performance, except for the memory configuration. For all of

the kernels, apart from the floating-point based nearest neighbour and n-body simulation,

the number of banks had a direct and significant influence on the achievable speedup once

four or more contexts were instantiated. This problem was exacerbated for kernels that had

already suffered from memory stalls in the single context tests. The results show a linear

scaling across contexts, where bandwidth and the number of workgroups permit, which

indicates that the static scheduling of the workgroups is sufficient in most cases. Additional

performance gains are found in the kernels which exposed some useful ILP, which enabled

speedups of 9-10x compared to a single, scalar, context. By using the silicon data, the

extrapolated simulator results suggest that these gains would be similar on a real device too

as long as it was symmetrical; as achievable clock frequencies on the 6- and 10-CU devices

were too low.

The results from the stable compiler highlighted two key areas which could help improve

the performance: (1) enlarge the scheduling regions to improve ILP and reduce branch

mispredict penalties and (2) reduce IF stalls to increase the performance of the 2-wide

machines. Loop unrolling was enabled to enlarge the scheduling regions and a custom

optimisation was introduced to remove the IF stalls. Forcing loop unrolling had a very

positive effect on all the tested kernels, with improvements of ∼15-35% which derived from

increases in ILP and reduced number of branches executed. The increase in ILP did generally

increase the dependence upon the memory configuration though.

The IF stalls are induced when the instruction words are split across memory locations

that are accessible by the instruction fetch engine, when this occurs an additional cycle is

required to fetch the whole word. The IF stalls were particularly prevalent in the 2-wide

devices with two ALUs, and results suggested that these were the devices that were capable

of the greatest ILP increases relative to the increase in hardware complexity. By padding

the instructions to the issue width, the IF stalls have been removed; which has made the

2-wide much more competitive and leads to performance increases similar to the gains of

unrolling of the original compiler. The newer compiler was generally better at scheduling,

and this combined with efficient instruction selection (use of slct instructions to remove

control-flow), loop unrolling and alignment allowed the system to perform twice as well as

the original for bitonic sort.

Performance is not always better in the development compiler though, the results of

binary search were particularly disappointing. In the two kernels that contained consider-

able control-flow (binary search and Floyd Warshall) the original compiler with unrolling

outperformed the development compiler even with all of the optimisations enabled. This

can be attributed to the different handling of compare instructions in the newer backend,
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as they were lowered early on which prevents LLVM from performing some control-flow

optimisations. Another version of the compiler would have to re-address this issue.
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Chapter 8

Conclusion

8.1 Chapter Objectives

This chapter concludes the research and development that has been conducted during the

course of this thesis. The contributions to knowledge are discussed along with possible

further research which would complement that already undertaken. The work presented in

this thesis includes an investigation into the suitability of the Single Program Multiple Data

(SPMD) programming model for a unique VLIW CMP, the LE1. OpenCL was selected

as the language, and platform, to base this research upon which required that a compiler,

driver and runtime library was implemented to support the execution on the simulated

LE1. Another aspect to this research was to investigate the configurable capabilities of the

LE1 and the effect that differing micro- and system architectures would have on system

performance.

8.2 Summary of Thesis Objectives

The aims as defined in Chapter 1 were:

• Enable OpenCL compilation for a custom VLIW CMP.

• Enable execution of OpenCL kernels on an FPGA platform.

• Extensively benchmark the CPU as this has not been previously performed.

After extensive research into parallel architectures and languages, LLVM was chosen to

provide the base of a compiler that could be encorporated into an OpenCL driver. This

system could then be used to investigate the suitability of the configurable VLIW CMP as

an OpenCL accelerator device. The objectives defined in Chapter 4 were:
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• Develop an LLVM compiler backend for the LE1, including compiler intrinsic functions

to support OpenCL kernels.

• Develop a userland driver to encompass the compiler to enable automatic compilation

of kernels, as well as controlling data transfers.

• Transform OpenCL kernels into another SPMD form, more suitable for the LE1 VLIW

CMP.

• Implement a runtime library to support execution of the kernels on the LE1.

• Develop a method to schedule OpenCL workgroups across the multiple cores of the

CMP.

• Investigate how the choices in microarchitecture and system architecture effect the

performance of the system.

8.3 Contributions

After research into parallel architecture and languages, it was decided to primarily explore

thread-level parallelism on the LE1 using OpenCL. Chapter 4 identified that to achieve

this a toolchain would need to be implemented which could automatically compile OpenCL

kernels and execute them upon the LE1. In the design and implementation of that toolchain,

the following contributions to knowledge presented are:

• LLVM compiler backend for the unqiue VLIW CMP.

• Enabling OpenCL kernel execution on an FPGA via a fully programmable VLIW

architecture.

• Detailed investigation into system and microarchitecture configurations of the VLIW

CMP and their effect on performance.

The need of a compiler for the LE1 required identifying a pre-existing open source project

to use so that development time would be greatly reduced. The two predominate open

source compilers are GCC and LLVM. LLVM was chosen for its modular architecture and

popularity within the research community, though it did limit the options of which parallel

languages could be used later. GCC also produced faster executing binaries than that

of Clang/LLVM as it is much more mature. At the beginning of the research, the only

VLIW architecture supported in mainline LLVM was the Qualcomm Hexagon and they

had introduced a framework to enable statically scheduled, multiple issue, targets. This

framework was utilised by the LE1 backend to support its VLIW architecture, the only
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issue being that the target generator script needed to create unique names for each of the

functional units within all of the created targets. The use of that framework for the LE1 was

replaced by a simpler resource table approach as the LE1’s permissive architecture design did

not require the complicated DFA approach that had been implemented for the Hexagon. The

creation of the DFA for multiple targets could also make compiler compile-time significantly

long. The resource table also enables the instruction packer to pack instructions together

with their long immediates so to stop front-end stalls.

Research into parallel computing identified a major shift away from ILP exploitation and

automatic parallelisation techniques to explicit use of DLP and TLP, the most recent ad-

vancement being heterogeneous computing with utilising the SPMD execution model. The

primary choice of language and accelerator has been CUDA on NVIDIA GPUs. However,

OpenCL was discovered to be an open specification to support heterogeneous computing and,

as well as being designed to be target agnostic, it was also supported by Clang. Clang/L-

LVM’s modular design enable the libraries to be easily incorporated into other tools, as was

the case with the Clover project which used the compiler to execute OpenCL kernels on a

x86 host. Clover was heavily modified so that it could operate as a heterogeneous compute

driver, specifically for the LE1. For this to be possible the driver needed to control the

transformation of the kernels, create a workgroup control function, transfer both instruction

and data to the simulator and read the results back.

The OpenCL kernels first needed to be transformed to run on a non-multithreaded core,

which was achieved using Clang libraries in two passes. This transformation is very similar

to the ones reported in literature except that the output is valid OpenCL code and is not

bounded by the number of nested loops within the kernel. Kernel instances are then launched

by a target-specific control function that iterates through the number of workgroups. The

code that is generated by the driver is compiled once for the target and executed by each

LE1 context in the system, each one identifying themselves in the execution space by using

their cpuid instruction. A runtime library was created, and the compiler modified, so

that the LE1 could iterate through multiple parallel workgroups until completion without

the intervention of the host. Though this research only obtained results from a simulated

target, the API used to control the simulator is extendible to a FPGA platform and the

target description file generated can be used to generate VHDL code for an LE1 system.

Finally, the extensive number of tests performed has provided a wealth of data about

both the LE1 and the researched software system, highlighting areas of improvement for

both. Initial results prompted the development of the updated compiler along with the

optimisation to work around the front-end stalls of the hardware. It is hoped that the results

can be later used as part of a training set to enable the driver to become a hardware/software

codesign system. The repository of the full source code for the project is listed in Appendix
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A.

8.4 Findings

This section introduces the findings generated from the research performed in this thesis.

Firstly, it is explained how the SPMD programming model was found to be suitable for the

LE1. This is followed by an overview of the features of the LE1 that made this research

possible. Finally, heterogeneous computing, using OpenCL as the SPMD language and the

LE1 as the target, is discussed.

8.4.1 Single Program, Multiple Data

Current high-performance programming languages and frameworks, such as OpenCL, have

moved towards SPMD programming model to exploit both DLP and TLP. Though the

OpenCL programming model has been designed around massively multi-threaded GPU ar-

chitectures, inital tests show the developed system is capable of using the LE1 as a target

device (as shown in Section 7.4). The execution on the LE1 contrasts to GPUs in two ways:

(1) workitems are serialised on the LE1, and (2) the workgroups are statically scheduled

in software, compared to the dedicated scheduling hardware of GPUs. The serialisation

of the workitems into loops enables these ‘thread’ instances to be combined, via loop un-

rolling, which enlarges the scheduling region and so becomes more suitable for the VLIW

architecture. This advantage is most notable in the bitonic sort benchmark, in which the

development compiler is 100% faster than the original.

The threads have been coarsened into larger sets of parallel work so that the explicitly

parallel nature of the SPMD model can still be exploited by the LE1 system. The coarsened

kernels have also been modified in a generic way that could be used by other multi-core

devices as well. The multi-core results show that the problems mostly scale linearly as

more cores are instantiated in the LE1 system, even though the workgroup scheduling is

performed in software. The results in Section 7.4.2 also show that the memory subsystem

quickly becomes a bottleneck, for most of the benchmarks, in the multi-core systems leading

to performance being up to halved, due to the limited number of DRAM banks.

8.4.2 Very Long Instruction Word Processor

The LE1 is designed as a shared memory multi-core accelerator, with each core executing

from the same IRAM. Its architecture lends itself well to the SPMD execution model and

is feasible due to its cpuid instruction. This single instruction enabled the core to identify

the area within the execution space in which it should operate. The completely configurable
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architecture of the LE1 was essential in the exploration of system and microarchitecture

configurations and their effect on system performance. It was shown though that the com-

piler is unable to utilise the LE1 to its full potential, in wider configurations, as it generally

uses too small scheduling regions. The results also highlighted the amount of time wasted

due to stalls and mispredict penalties. These were due to the instruction fetch engine, the

memory configuration and the disabled branch predictor. The IF stalls drove the inclusion

of padding instructions to the machines issue width which improved performance, especially

for 2-wide devices, at the expensive of code size increase.

In terms of compiler development, the decode hardware of the LE1 allowed the compiler

to be more simple as the instruction packer does not have to worry about specific execution

ports. Also, the relatively simple instruction set mapped well to the LLVM IR, which

enabled simple, but effective, instruction selection; again shown through the compilers ability

to remove all the control-flow within the bitonic sort benchmark. However the lack of

floating-point hardware complicated the execution of OpenCL kernels as the applications

are prodominately floating-point based and so required significant runtime support.

8.4.3 Towards Heterogeneous Computing

The results prove that hetergeneous computing could be supported by the developed soft-

ware as it runs on an x86 host while the OpenCL kernels are compiled for, and run, on

a simulated LE1. This means that data is successfully converted and transferred between

the two different platforms. The execution of the kernel within the simulator required two

binaries to be produced by the driver, including data and functions that were statically

compiled into the binaries from a runtime library. This shows that the runtime is at least

capable of supporting the execution of the presented kernels, including supporting the exe-

cution of emulated floating-point operations. The LE1 system is then capable of executing

to completion without the host having to coordinate the execution of separate workgroups,

so the static scheduling method works (for the two dimensions tested). To fully support

heterogeneous computing, the system needs be able to seperate the work across the host

and the LE1 device.

8.5 Limitations of Research

The primary limitation of the conducted research and presented results is that the driver

overhead and time taken for data transfers has not been accounted for, this is mainly because

the results were gained from a simulator. Although the simulator is cycle accurate, the

method of data transfer between it and the LE1 driver is cumbersome and not representative
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of a real system. Both the data and instruction binaries are read from the hard disk by the

simulator and not transferred along a system bus. The data is also written in readable

text format at the end of the assembly code, which is then assembled by the pre-existing

assembler, requiring the data to be formatted and written twice. This also requires that

the instruction binary is assembled each time that the kernel is run, and that the simulator

always needs to be fed the complete program and data each time a kernel is executed. The

proper method would have implemented JIT capabilities into the compiler which would

negate the need of the assembler as well as the requirement to write the program to disk

several times before the kernel begins executing. Data could also be fed straight to the

simulator in an asynchronous manner.

The OpenCL specification defines an extensive platform, and though the use of the

Clover project helped, the development time has limited the research to a subset of the

specification. This resulted in no DSP kernels being used though the instruction set of the

LE1 was designed for general purpose and integer DSP computing. The primary reason for

this was that there was not enough time to implement support for the OpenCL Image types,

and no time was used to enable the execution of kernels within a 3D space. The dependence

on the runtime library is also a limitation, as very little development time was given to it and

so it is not fully tested and will not be conformant with the OpenCL specification. Integer

kernels were preferred to reduce the dependency on the runtime library, and as the other

types of compute intensive kernels were floating-point based, the choice of kernels have not

reflected the VLIW capabilites of the LE1.

As well as issues with the driver and runtime, the compiler has also not been fully tested

as no testbench or coverage suite has been developed as this would have been a project in

itself. The fundamental issue is that a developer toolchain is not available which makes

debugging incredibly time consuming and difficult; even more so when trying to find errors

produced from the compiler. The stable branch of the compiler was good enough to get a

large set of valid results, but there are most likely issues still remaining within the compiler.

This is particularly true for the development branch in which it only passed four of the

tested benchmarks. Thus, research was greatly hindered as no part of the system has been

fully tested and verified which made locating errors and bugs a task that often required too

much time that would outweight the short-term benefits.

8.6 Further Research

As an extension to the previous section outlining the limitations of this research, a larger set

of data from more suitable benchmarks could be acquired by improving the driver and the

runtime library. Support could be added that would enable the execution of DSP kernels
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which would suit the LE1, as too would encryption / decryption algorithms. These types of

algorithms would better highlight the value of combining lightweight threads in multi-core

DSPs. The compiler could also be modified to take advantage of the JIT framework within

LLVM to be able to produce programs at runtime in the proper manner. This would then

enable realistic data transfer to the target, and ideally the system could be run upon a small

ARM + FPGA board, such as Zynq, to obtain real-world performance results.

The configurable and extensible nature of the LE1, combined with the runtime compi-

lation model of OpenCL, opens many possibilites to further research. FPGA designs lend

themselves perfectly to hardware / software codesign systems and the results presented in

this thesis provide half of the data set required for the foundation of such a system. The

presented results show how micro- and system architecture effects the performance reported

by the simulator. This data could be combined with silicon data to produce results that

would reflect real-world performance. This data could be then used as a training set by the

driver to automatically select a system architecture for the kernel as well as other kernels

that contain similar properties; this would require some analysis algorithms to be devel-

oped. The data collected from the silicon would not just to be limited to obtainable clock

frequencies and die usage, but also the power requirements of individual functional units

as well as the whole system. One aspect of the architecture that could also be explored

is the size of the register file as it would contribute to a significant proportion of the area

and power requirements of the core. Finer levels of customisation would also be possible

by introducing custom instruction set extensions based on the requirements of the kernel.

Again, analysis passes would need to be created that utilised profiling information as well

as the data collected from previous experiments. The most obvious extensions, from an

OpenCL perspective, would be the inclusion of floating-point hardware for both scalar and

vector calculations.
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Appendix A

Source Code Repository

Full source code of the project can be found at https://github.com/grubbymits/esdg-opencl.
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Appendix B

Compiler and Simulator Target

Generator Script

184
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path to driver = "/home/sam/src/esdg-opencl/"

path to llvm backend = path to driver + "llvm-3.2/lib/Target/LE1/"

path to simulator models = path to driver + "install-dir/machines/"

final device array = ""

driver devices = ""

total devices = 0

sim output = True;

compiler output = True;

mod driver = True;

for context in [1, 2, 4, 8] :

for width in [1, 2, 4]:

issue width = str(width)

for alus in range(1, width+1):

if ((issue width != 1) & (alus < (width / 2))):

continue

num alus = str(alus)

for muls in [1, 2] :

if (muls > width) :

continue

num muls = str(muls)

for lsus in [1, 2] :

if (lsus > width) :

continue

num lsus = str(lsus)

for banks in [1, 2, 4, 8]:

if (banks > (lsus * context)):

continue

num banks = str(banks)

# Define string simulator model

simulator target = """

<galaxy>

<systems>1</systems >

<type>homogeneous</type>

<system>

<contexts>""" + str(context) + """</contexts>
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<SCALARSYS PRESENT>1</SCALARSYS PRESENT>

<PERIPH PRESENT>0</PERIPH PRESENT>

<DARCH>DRAM SHARED</DARCH>

<DRAM BLK SIZE>16</DRAM BLK SIZE>

<DRAM SIZE>0x1000</DRAM SIZE>

<STACK SIZE>0x100</STACK SIZE>

<DRAM BANKS>""" + num banks + """</DRAM BANKS>

<context>

<ISSUE WIDTH MAX>""" + issue width + """</ISSUE WIDTH MAX>

<ISA PRSPCTV>VT32PP</ISA PRSPCTV>

<IARCH>IFE SIMPLE IRAM PRIV</IARCH>

<CLUST TEMPL>1</CLUST TEMPL>

<HYPERCONTEXTS>1</HYPERCONTEXTS>

<IFETCH WIDTH>""" + issue width + """</IFETCH WIDTH>

<IRAM SIZE>0x100</IRAM SIZE>

<clusterTemplate>

<name>Cluster0</name>

<SCORE PRESENT>1</SCORE PRESENT>

<VCORE PRESENT>0</VCORE PRESENT>

<FPCORE PRESENT>0</FPCORE PRESENT>

<CCORE PRESENT>0</CCORE PRESENT>

<INSTANTIATE>1</INSTANTIATE>

<INSTANCES>1</INSTANCES>

<ISSUE WIDTH>""" + issue width + """</ISSUE WIDTH>

<S GPR FILE SIZE>64</S GPR FILE SIZE>

<S FPR FILE SIZE<0</S FPR FILE SIZE>

<S VR FILE SIZE>0</S VR FILE SIZE>

<S PR FILE SIZE>8</S PR FILE SIZE>

<IALUS>""" + num alus + """</IALUS>

<IMULTS>""" + num muls + """</IMULTS>

<LSU CHANNELS>""" + num lsus + """</LSU CHANNELS>

<BRUS>1</BRUS>

</clusterTemplate>

<hypercontext>

<name>HyperContext0</name>

<cluster>0 0</cluster>

</hypercontext>

</context>

</system>

</galaxy>"""
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if (mod driver) :

driver devices += " Coal::LE1Device( " + str(context) + ", " + issue width + ", " + num alus

+ ", " + num muls + ", " + num lsus + ", " + num banks + ")"

total devices += 1

if ((context == 8) & (width == 4) & (alus == width) &

(muls == 2) & (lsus == 2) & (banks == 8)):

driver devices += " // " + str(total devices) + "};"

final device array = "static Coal::LE1Device LE1Devices[" + str(total devices) + "] = {"

final device array += "// cores, width, alus, muls, lsus, banks"

final device array += driver devices

output file = open("devices.h", ’w’)

output file.write(str(final device array))

output file.close()

else :

driver devices += ", // " + str(total devices)

config name = issue width + "w " + num alus + "a " + num muls + "m " + num lsus + "ls"

if (sim output) :

simulator target filename = path to simulator models + str(context) + "-core/"

simulator target filename += config name + " " + num banks + "b.xml"

output file = open(simulator target filename, ’w’)

output file.write(str(simulator target))

output file.close()

if not compiler output :

continue

if ((width == 1) | (banks != 1) | (context != 1)):

continue

compiler target = ""

for compiler alu in range(alus) :

alu = str(compiler alu)

compiler target += "def ALU " + alu + " " + config name + " : FuncUnit;"

for compiler mul in range(muls) :

mul = str(compiler mul)

compiler target += "def MUL " + mul + " " + config name + " : FuncUnit;"

for compiler lsu in range(lsus) :

lsu = str(compiler lsu)

compiler target += "def LSU " + lsu + " " + config name + " : FuncUnit;"

compiler target += "def BRU 0 " + config name + " : FuncUnit;"
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compiler target += "def LE1" + config name + "Itineraries : ProcessorItineraries<[

for compiler alu in range(alus) :

alu = str(compiler alu)

compiler target += " ALU " + alu + " " + config name + ", "

for compiler mul in range(muls) :

mul = str(compiler mul)

compiler target += " MUL " + mul + " " + config name + ", "

for compiler lsu in range(lsus) :

lsu = str(compiler lsu)

compiler target += " LSU " + lsu + " " + config name + ", "

compiler target += " BRU 0 " + config name + " ], [ ], ["

compiler target += " InstrItinData<IIAlu, [InstrStage<1, ["

for compiler alu in range(alus) :

alu = str(compiler alu)

compiler target += "ALU " + alu + " " + config name

if (compiler alu != alus-1) :

compiler target += ", "

else :

compiler target += "]>], [3, 1]>, "

compiler target += " InstrItinData<IIMul, [InstrStage<1, [ "

for compiler mul in range(muls) :

mul = str(compiler mul)

compiler target += "MUL " + mul + " " + config name

if (compiler mul != muls-1) :

compiler target += ", "

else :

compiler target += "]>], [3, 1]>, "

compiler target += " InstrItinData<IILoadStore, [InstrStage<1, [ "

for compiler lsu in range(lsus) :

lsu = str(compiler lsu)

compiler target += "LSU " + lsu + " " + config name

if (compiler lsu != lsus-1) :

compiler target += ", "

else :

compiler target += "]>], [3, 1]>, "

compiler target += " InstrItinData<IIBranch, [InstrStage<1, [BRU 0 " + config name + "]>],

[6, 1]> ]>; "
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compiler target += "def LE1Model" + config name + " : SchedMachineModel {"

compiler target += " let IssueWidth = " + issue width + ";"

compiler target += " let Itineraries = LE1" + config name + "Itineraries;}"

compiler target filename = path to llvm backend + "MachineModels/LE1" + config name + ".td"

output file = open(compiler target filename, ’w’)

output file.write(str(compiler target))

output file.close()

output file = open((path to llvm backend + "LE1.td"), ’a’)

output file.write("def : Processor<"̈ + config name + ",̈ LE1" + config name + "Itineraries,

[]>; ")

output file.close()

output file = open((path to llvm backend + "LE1Schedule.td"), ’a’)

output file.write("include M̈achineModels/LE1" + config name + ".td")

output file.close()
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Appendix C

Results

Figure C.1: Total cycles for BinarySearch using 1 context across varying microarchitecture

configurations.
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Figure C.2: Total IF stall cycles for BinarySearch using 1 context across varying microar-

chitecture configurations.

Figure C.3: Total average cycle count for BitonicSort using 1 context across varying mi-

croarchitecture configurations.
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Figure C.4: Total average IF stall cycle count for BitonicSort using 1 context across varying

microarchitecture configurations.

Figure C.5: Total average cycle count for BFS 1 using 1 context across varying microarchi-

tecture configurations.
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Figure C.6: Total cycles for FastWalshTransform using 1 context across varying microarchi-

tecture configurations.

Figure C.7: Total stalls and NOP cycles for FastWalshTransform using 1 context across

varying microarchitecture configurations.
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Figure C.8: Total cycles for FloydWarshall using 1 context across varying microarchitecture

configurations.

Figure C.9: Total stall and NOP cycles for FloydWarshall using 1 context across varying

microarchitecture configurations.
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Figure C.10: Total average cycles for Fan1 of Gaussian Elimination using 1 context across

varying microarchitecture configurations.

Figure C.11: Total average stalls and NOP cycles for Fan1 of Gaussian Elimination using 1

context across varying microarchitecture configurations.
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Figure C.12: Total average cycles for Fan2 of Gaussian Elimination using 1 context across

varying microarchitecture configurations.

Figure C.13: Total average stalls and NOP cycles for Fan2 of Gaussian Elimination using 1

context across varying microarchitecture configurations.

196



APPENDIX C. RESULTS

Figure C.14: Total cycle count for NBody using 1 context across varying microarchitecture

configurations.

Figure C.15: Total stall and NOP count for NBody using 1 context across varying microar-

chitecture configurations.
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Figure C.16: Total cycle count for Nearest Neighbour using 1 context across varying mi-

croarchitecture configurations.

Figure C.17: Total stall and NOP cycle count for Nearest Neighbour using 1 context across

varying microarchitecture configurations.
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Figure C.18: Total average stall and NOP cycle count for nw kernel1 from Needleman-

Wunsch using 1 context across varying microarchitecture configurations.

Figure C.19: Total average stall and NOP cycle count for nw kernel2 from Needleman-

Wunsch using 1 context across varying microarchitecture configurations.

199



APPENDIX C. RESULTS

Figure C.20: Total average stalls and NOP cycle count for histogram from Radix Sort using

1 context across varying microarchitecture configurations.

Figure C.21: Total average cycle count for permute from Radix Sort using 1 context across

varying microarchitecture configurations.
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Figure C.22: Total average stalls and NOP cycle count for permute from Radix Sort using

1 context across varying microarchitecture configurations.

Figure C.23: Total average cycle count for ScanArraysdim1 from Radix Sort using 1 context

across varying microarchitecture configurations.
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Figure C.24: Total average stalls and NOP cycle count for ScanArraysdim1 from Radix Sort

using 1 context across varying microarchitecture configurations.

Figure C.25: Total average cycle count for ScanArraysdim2 from Radix Sort using 1 context

across varying microarchitecture configurations.
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Figure C.26: Total average stalls and NOP cycle count for ScanArraysdim2 from Radix Sort

using 1 context across varying microarchitecture configurations.
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APPENDIX D. COMPLETE RESULTS FROM EXPERIMENTS

Appendix D

Complete Results from

Experiments

Results can be found online at https://github.com/grubbymits/thesis-results
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