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Abstract 

Object tracking is important in autonomous robotics, mtlitary apphcat10ns, financial 

time-series forecasting, and mobile systems. In order to correctly track through clutter, 

algonthms which predict the next value in a time senes are essential. 

The competence of standard machine learning techniques to create beanng predtction 

estimates was examined. The results show that the classification based algonthms 

produce more accurate estimates than the state-of-the-art statistical models. Artificial 

Neural Networks (ANNs) and K-Nearest Neighbour were used, demonstrating that this 

technique ts not specific to a single classtfier. 

Furthering this work, ensembles ofpredtctors were tested. The outputs of ensembles 

of ANNs were fused to give the system's output. Imtially NCL was used to train the 

ensemble. 

A faster more accurate process was then created. Learning was perfonned entirely 

through the genetic design process rather' than using the usual ANN learning algonthms 

to train each ensemble member individually. 

A multi-objecttve genetic algorithm further optimised the ensembles by maximising 

ensemble diversity and minimising ensemble error Thts proved effective gtvmg a 32% 

improvement in RMS accuracy on a very large semi-synthetic data created as part of 

thts thesis. 

The maJor novelttes are the use of classtfier ensembles as a time-series predtctor in 

target tracking, using negative correlation learnmg in target trackmg, using genetic 

algorithms to evolve whole classifier ensembles, with each genetic algorithm mdtvtdual 

representing an ensemble rather than an ensemble member, evolvmg ensemble 

connection wetghts. 

Keywords: 

Target tracking, Neural Network Ensembles, Ttme series predtcttOn, genetic algonthms 
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1 Introduction 

This thesis descnbes a novel technique for tracking sonar targets on a passive sonar 

system usmg classification algonthms. It also describes both how these classifier

predictors can be improved by forming ensembles of predictors trained with Negative 

Correlation Learning (NCL), how these ensembles may be created using a genetic 

algorithm (GA), and finally how the accuracy of the classifier-predictors can be further 

improved by using diversity as an obJective in a Multiple Objective GA 

1.1 Introduction to target tracking 

Passive sonar IS a system for detectmg boats and ships at sea, (both of which are 

referred to as sonar targets), and works by 'listening' to the noise that these targets 

make. Hydrophones whtch act as underwater microphones are used to detect changes 

m pressure in several directions, allowing the operator to determine from which 

direction the detected sound originates, resultmg in a bearing to the target. In addition 

to measurements originating from man-made sources, there IS a relatively high level of 

background notse from both btological sources such as singing whales and snappmg 

shnmps and atmosphenc sources such as rain and waves. In addition, sound does not 

travel m straight hnes m water, as the sound waves are refracted by changing density, 

temperature and salinity in the sea water. Thts combination of clutter and measurement 

uncertainty leads to very noisy data from which it is essential to extract time-series in 

order to estimate the positions of targets. 
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1.2 Sonar data processing 

Hydrophones 

Amplifiers 

Manual tracking Tracker 

Manu~ 
Figure 1 Data flow m a typical passive sonar system 

Ftgure I shows a block diagram of a typical passtve sonar system, the vanous 

components of the system are descnbed in the following few paragraphs, summarised 

from [282]. 

1.2.1 Hydro phones 

In passive sonar a hydrophone is essentially a microphone which has been designed to 

operate underwater, from the Greek hydro meaning water and phoni meamng sound or 

voice. 

The hydrophones are usually arranged m a regular pattern to permit processing to 

establish the direction of the source sound. Thts pattern may be a straight line, or a 2d 

or 3d grid. 

1.2.2 Amplifiers 

The output of each of the hydrophones is fed through an amplifier to increase the signal 

to a level sufficient for later processmg stages 
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1.2.3 Beamformer 

The beamfonner is the first level of data processing in a passive sonar system. 

Amplified data from the hydrophones is analysed, taking advantage of mterferometry to 

convert an array of ommd1rectional hydrophones mto a single, highly directional 

source. Using data processing the direction of the beam fonned may be steered in any 

direction, allowing the sound mtensity m each direction to be calculated. For each slice 

of time an array of intensity data may be obtained. 

Figures 2 to 4 shows the pattern of responsiveness ofbeamfonned data from different 

configurations ofhydrophones. Figure 2 shows the output of a smgle hydrophone, and 

demonstrated a completely umfonn responsiveness in all directions Figure 4 shows the 

output of a line array it IS capable of fonning a central beam which can be used to find 

the bearing of the target, however it can be seen that It IS incapable of discerning 

between port and starboard. Adding an extra dimensiOn can be seen to overcome this 

shortfall in Figure 3. Adding a third dimension to the hydrophone array allows 

beamforming not just in the bearing to the target, but also in the elevation, allowing a 

truly three dimensional picture to be compiled. 
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Figure 2 Omnidirectional response of a single 

hydrophone. 

Figu re 3 Unidirectional r esponse of a 

beam fo rmed 2d array of hydrophones 

1.2.4 

Figure 4 Unidirectional (though ambiguous) 

response of a beam formed ld tine a rray of 

bydrophones 

Waterfall plot 

One traditional way to display this data is in a time bearing waterfa ll plot. On this plot 

different levels of intensity are shown by changing the brightness or colour of a pixel in 

the plot. Each horizonta l line represents a s lice of time, as each new array of intensity 

data arrives from the beamformer it is displayed at the lop o f the plot, di splacing all 

other data which moves down the plot one place. T he oldest data is discarded as it 

flows off the bottom of the plo t. 

Examples o f waterfa ll plots are given in figures 30 and 3 1 (page 65). The first showing 

background noise, while the second shows a straight running target 

passing endfire. There are two endfire regions on a line array sona r, one at 0° and one 

at 180°. As a target passes e ither of these it changes from be ing on the port s ide of the 

detecting sonar to the starboard or vice-versa. As a line array sonar cannot 
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differentiate between the two directions, on the waterfall plot It looks as though the 

target has changed direction. Also note that beam width is wider at endfire than at 

broadside, or 90°. 

1.2.5 Peak detector 

For the data to be of use to later stages in the system, it IS passed through a peak 

detector. At its simplest the peak detector applies a threshold, any point above the 

threshold is stored as a measurement for use by the tracker. Some of these pomts Will 

have originated from a target, however many if not all will be background noise 

1.2.6 Tracker 

The tracker takes the collection of points, and attempts to group them together mto sets, 

where each set IS believed to ongmate from the same target. This enables the 

estimation of the position and trajectory of the target, and to help reject the clutter 

measurements. Given all prevmus measurements m a track, the tracker predicts the 

next measurement in order to aid isolating the true measurement from the nmse. The 

tracker can have no prior knowledge of the kmematics of the target, or whether any 

smgle detection IS a true target detection or clutter. 

1.2.7 Target Motion Analysis (TMA) 

Once the data has been processed by the tracker into a set of pomt measurements 

associated to a real world object, it is possible to start TMA. This is the process of 

establishing the kinematics of the ongmal object from the measurements. At its 

Simplest this may mean estimating the probable speed and calculating the best line fit 

for the original trajectory and position given the input measurements. 

1.3 Motivation 

This thesis focuses on the stage internal to the tracker which predicts the next bearing in 

the time series, as improvements here directly lead to improvements in the overall 

accuracy of the tracker. Improved accuracy in a target tracker allows more accurate 

localisation of targets through TMA, which is of crucial Importance for military usage 

where a few tenths of degrees of accuracy may make the difference between life and 

death. 

1.4 Previous work and limitations 

Many different techniques have been proposed for forecasting values in a bearing 

values time series. This thesis focuses on three baselines. The first two; the Extended 
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Kalman F1lter (EKF) and the Particle Filter (PF) are two w1dely used methods in 

pass1ve sonar tracking, wh1le the th1rd a vamlla feed-forward backpropagation trained 

ANN is a commonly used Artificial Intelligence (AI) method which has achieved some 

limited success in the area. 

Both of the first two baselines, the EKF and the PF require a model of the target motion 

in order to operate. Though in theory this model could be arbitranly complex, in 

practice many assumptions are made in their construction which limits their ach1evable 

accuracy. Although the ANN's performance does not have this limit, it has been found 

to be equivalent in terms of output accuracy with the other two baselines. 

1.5 Proposed work 

The proposed technique in th1s thes1s IS to use a multi-objective genetic algorithm to 

create an ensemble of Artificial Neural Networks (ANNs) to perform bearing 

predictions on bearing time series. Each ANN in the ensemble is a classifier, used as a 

bearing predictor in a manner also created and demonstrated withm this thesis. The a•m 

IS to create a predictor which like the vanilla ANN IS not limited by model accuracy, 

wh1le also outperforming the other baselines. 

1.5.1 Contribution 

There are many novel features of this thesis Firstly a methodology is described for 

using a classification algonthm as a bearing predictor for sonar target tracking IS new 

which allows the use of any number of classification algonthms to be used in a 

completely new way m sonar target tracking 

Further to this the work was extended to use ensembles of classifiers to enhance the 

predictions; not only have ensembles not previously been used to perform target 

trackmg, but NCL has not previously been used to train a target trackmg ensemble. 

A Genetic Algorithm (GA) was created wh1ch can both des1gn an ensemble of Artificial 

Neural Networks (ANNs) and train it in a single step. Th1s IS the first time that an 

ensemble has been constructed in such a way, and a multi-objective form of the 

algorithm is shown to be highly effective at creating optimal ensembles which, unlike 

ensembles trained with NCL, have structural as well as learned diversity. 

Most importantly however, the largest source of novelty here is the discovery that as 

long as ensembles are created as whole entities rather than component parts, all of the 

advantages prov1ded by techmques such as NCL which stimulate diversity to in turn 

increase accuracy may be obtained through use of evolution with multiple obJectives. 
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This significantly reduces computational reqmrements oftrammg and testmg the 

ensembles, and greatly simplifies the process of creating such an ensemble when 

compared to approaches that require a learning algonthm to teach the ANN. This may 

be applied to any GA creating ensemble classtfiers for any purpose, allowing a form of 

NCL to be applied not only to ANNs, but to any classtfier or predictor which may be 

describe with a chromosome. 

1.5.2 Objectives 

The atm of this thesis is to evaluate the proposed approach against established baselines 

whtch represent the state-of-the-art usmg multiple measures of prediction accuracy and 

classtfier diversity. Five data sets ofvarymg degrees of realism are used to test the 

proposed solution and the baselines. The learning algorithm based tests make use of I 0 

fold cross validation to ensure reliable results, while the statistically based baselines are 

tested on the full data set m each case 

It was hoped that the result will be a techmque which ts more accurate than the 

baselines, and not limited by the assumptions whtch must be made to construct a 

mathematical model of a system, as ts the case for the EKF and the PF. 

1.6 Structure 

The structure of the rest of the document is as follows, the current standard approaches 

to target tracking are described and evaluated in chapter 2 Chapter 3 tmproves upon 

these approaches presentmg a novel approach to bearing prediction using Arttfictal 

Neural Networks (ANNs) and K-Nearest Neighbour. Chapter 4 further improves the 

predictors by usmg ensembles of ANNs trained with Negative Correlation Learning. 

Chapter 5 attempts to both speed up and automate the process of destgning the 

ensemble usmg a GA. This is further enhanced in chapter 6 wtth a multi-objective GA 

to mimic the NCL. The mimicking ofNCL is further Improved in chapter 7 to include 

the .\ parameter whtch governs the balance between accuracy and diversity. 

Conclusions and recommendations for further work are given in chapter 8. Fmally 

chapter 9 gives the references. 
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2 State-of-the-art in target tracking 

2.1 Summary 

Although the new techniques outperformed the baselines in chapter 3, it was only by a 

very narrow margin. Thts chapter provides a literature review of the state ofthe art in 

target trackmg and data fusion, exploring what techntques have already been utilised to 

improve results It is anticipated that from this it will be possible to create a novel 

approach which wtll improve on the results obtained. 

2.2 Data fusion 

One method of improving tracker estimates ts to combine the results of multtple 

sensors. This can provtde more accurate informatiOn than using a single sensor [284), 

thts allows etther improved accuracy from extsting sensors or the same performance 

from smaller or cheaper sensors. This chapter covers all aspects of trackmg, from 

single sensor tracking to tracking and fusion across multiple platforms. This literature 

review section has been written to complement the landmark survey paper on the 

subject [108], adding some of the notable breakthroughs in target tracking of the last 

decade in fields such as sensor management and distnbuted sensing. Target tracking 

and Mul!t Sensor Data Fuston (MSDF) are used in many diverse fields, although most 

of the literature addresses the fields of military target tracking or autonomous robotics 

[188). 

Mtlitary distnbuted data fusion is used to facthtate Network Centnc Warfare (NCW) 

[48][205) or Network Enabled Capabtlity (NEC) [269). If platforms such as warships 

and aeroplanes are networked together, and their data is shared, then they will be able 

to compile a more accurate picture of their envtronment than with just data from their 

own sensors. An NEC system contains three vital components [ 11 0) 

I. A collectiOn of sensors to generate observations 

2. An automatic processing system to convert data into information and 

knowledge. 

3. A high-speed communications network to enable the process. 

Sensors may be clustered together such as on a submarine, whtch may have several 

sonars on-board, or may be carried individually by soldiers [259). Henceforth the word 

"platform" will be used to descnbe any object that carries sensors. At any fusion 
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processing node, data may therefore come from one of three sources [185] (see F1gure 

5) 

I. Data type I: Data from a platform's own sensors, known as 'organic data' 

2. Data type 2: Network connections to other platforms. 

3. Data type 3: A database of data previously received, and of local track estimates 

' ' ' 
~c;:::=::c:::,:z....:!:::=====:n.- l 

\lh..:d .. u,fa ... e : 
Data I~ r~ Sonohuo' : 
hlO : -----------------------------· 

Figure 5 Three possible data sources for a network enabled submarine 

Traditionally, military data fuswn arch1tectures have been centralised or hierarch1cal 

[63] There are however many advantages to decentralised schemes, which include· 

lighter processing load, no reqmrement for a single centralised database, lower 

communication load, reduced possibility of data flow bottlenecks, and high 

surv1vab1lity as there is no longer a single pomt of failure [176]. 

To facilitate decentralised fusion, three main issues need to be addressed: 

Architecture- The way m wh1ch nodes connect and share information For a 

detailed coverage of this aspect ofMSDF see [205], [164] and [95] for a military 

perspective, or [298] for autonomous systems. 

2 Sensor management- The way in which sensors are placed to maximise coverage 

of an area for different tactical goals [299]. 

3 Algorithms -The way m which processing should be performed. 

Although this chapter focuses on the m1litary applications ofMSDF, it 1s also readily 

applicable to robotics. Robots are required to move around autonomously in unknown 

environments. Due to factors such as cost, reliability and ease of use, the two most 

common sensors on this sort of mob1le robot are ultra-some sonars and d1gital video 

cameras [26][70]. MSDF is required to combine and process the data. This has 
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traditionally been performed by some form ofKalman [96] or Bayesian filter, 

however in recent years there has been a trend towards the use of soft techniques such 

as fuzzy logic and artificial neural networks (ANNs) [209] 

Although over thirty fusion architectures have been proposed [240], the most widely 

cited model for data fusion was created by the American Jomt Directors of Laboratones 

Data Fusion Sub-panel [274]. This divided the data fusion process into four levels, 

which make up a hierarchy of processing. Although this is by no means the only 

hierarchy for data fusiOn, and is primarily focussed on military applicatiOns, it does 

provide a useful structure with which to classifY fusion algorithms. Sections 2.3 to 2.6 

are divided into the four levels of the JDL model to enable similar algonthms to be 

compared. 

2.3 JDL Leve/1 - "Object refinement" 

Object refinement is usually partitioned into data registration, data associatiOn, position 

attribute estimatiOn and Identification [I 09]. These four categones and the algorithms 

that fit within them are outlined in sections 2 3.1 to 2.3.4. Some algonthms do not 

directly fit into a smgle category, [166][88] and [221] for example all created 

algonthms which estimated attnbutes and performed Identification complementary 

processes by fusing the informatiOn from two or more sensors Association and state 

estimation has also been performed m a single step [155] to improve performance. 

2.3.1 Data registration 

Data registration functiOns align the data into a common frame of reference. This IS 

often to change coordinate systems from self-centred Cartesian co-ordinates to latitude, 

longitude and height above sea level for example. 

2.3.2 Data association 

The association step compares measurements, and attempts to collect measurements 

originating from the same real world object into a single track. The difficulty IS in 

distinguishing from which target, if any, each measurement originates. This is 

addressed by measurement-to-track association. 

In a distributed system, association can also be the step where tracks from different 

processing nodes are compared, to combme tracks that are estimating the state of the 

same real world object. This IS track-to-track associatiOn Sections 2.3.2.1 to 2.3.2.2 

describe the various approaches for data association 
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2.3 2.1 Nearest neighbour 

Nearest neighbour is the stmplest form of association algonthm In this algorithm, the 

nearest measurement to the established track is chosen to update the track. This 

algorithm is very simple, and capable of finding a viable solutiOn with very little 

computational cost. However, in a dense environment this may lead to many pairings 

wtth a similar probability, so errors are typically large [28] "All neighbour" is another 

related technique in which all measurements withm a gated region are included in the 

track [28]. 

2 3.2 2 Artificial Neural Networks (ANNs) 

A simple introduction to ANNs IS given in appendix E. Track to track data association 

takes the tracks formed on multiple sensors and attempts to associate or group the 

tracks that correspond to the same target With more than two targets, this problem is 

NP hard, and an approximation technique is reqmred to find a solution. [295] proposed 

a way of using ANNs to solve this problem. It was shown by [295] that this neural 

network approach, based upon Hopfield neural networks always finds the optimal 

solution 17.4% of the time, and found a solution that approximates the true solutton the 

rest of the time. 

2.3.3 Position/attribute estimation 

Position and attnbute estimation is the process of takmg the associated measurements 

and calculating the target's state. An example is Target Motion Analysts (TMA) for 

passive sonar Passive sonars can only measure the beanng of the target, not the 

distance It is necessary to perform TMA to calculate the range and velocity of the 

target. In sections 2.3.3.1 to 2.3.3.3, we review the most popular methods for position/ 

attribute estimation. 

2 3.3 I Kalman Filter (KF) 

The Kalman Ftlter (KF) [!53] was first proposed in the 1960s and it is the most 

commonly used technique in target trackmg and robot navigation ever since. The basic 

KF has been shown to be a form ofBayesian filter [120], that is optimal estimator for 

linear Gaussian systems. Gtven a series of noisy measurements, the KF is capable of 

estimating the state of the system. 
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An extension to the KF is, the Extended Kalman Filter (EKF) [16]. This enables data 

such as bearings-only passive sonar data to be used in the KF. Due to the linearisatton 

step, the EKF is suboptimal. The EKF is the most popular tool in the literature for 

sensor fusion in mobile robot navigation. The procedure for applymg the EKF to target 

trackmg ts descnbed in the rest of thts section 

The measurements are input to the algorithm as a senes of scalar bearing values. The 

KF state at time i is descnbed by the 4 x 4 covariance matrix P,, and the state vector x, , 
' [ • •] T x,1, = X y X y 

where (x,y) ts the target position relative to the target in metres, and (x' ,y ') ts the 

speed of the target in the north and east directions respectively. The start posttion of 

the target is unknown, so tt ts mtttalised to a position at a preset distance along the first 

bearmg measurement received. As the input is in a different format to the state matnx a 

function to convert the state vector to an estimated measurement 

f(x)= tan· 1 -=
Y 

Where x and y are the first and second elements of the state matrix 

The state transttion matrix <P is 

0 Llt 0 

<P= 0 I 0 Llt 
0 0 I 0 
0 0 0 I 

where .1 t is the time dtfference between the most recent measurement and the 

preceding measurement. The EKF can be divided mto two parts, the update and predict 

stages, descnbed here in sectiOns 2 3.3 I I and 2.3.3.1.2. 

2.3.3.1.1 Predict 

.X,I,-I =t/>xt-~l,-1 

P,l•-1 =<I>,+ P,_ll•-1 <1>; +Q, 

Where Q, is the system notse matrix containing random numbers taken from a 

Gaussian dtstnbution along the lead diagonal The random values in Q, are 

regenerated for each update. 
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Q,= 

rand() 
0 
0 
0 

0 
rand() 

0 
0 

2.3.3.1.2 Update 

The Jacobian. 

0 
0 

rand() 
0 

H=[ xi•HI(2) 
\r,-n( I )2 + xl•t,_,,(2 )2 

Where 

0 
0 
0 

rand() 

The measurement covariance: z, = x,- f(x,1,_,) 

The residual covanance: S,=H,P,1,_, n; +a, where a, is the standard dev.ation of 

the input beanngs 

Optimal Kalman gain: K, = P.t•-1 + H,' s; I 

The updated state estimate: x* = £,
1
,_, + K,z, 

The updated covariance: P* = (I- K,H.)P,1,. 1 

Both the KF and EKF were originally used on the data from a single sensor. [294] first 

developed the idea of combinmg information from local sensors at a central fusion node 

to form a more accurate global estimate The drawback of this algorithm was that each 

local sensor reqmres the global estimate, which required two-way communication, and 

negates some of the advantages of parallelisation. 

It has also been proven [97] that when the KF is used at a central fusion node to fuse 

the results of multiple local KFs, the results may be improved by feeding the global 

estimate back to the local filters as the1r prior state for the next Iteration. As the outputs 

of the local filters are correlated in t1me, the performance of such a system can be 

further improved by only outputting every n"' measurement to the global tracker, to 

obtain near optimal performance [186]. 

An mformation theoretic view of the KF and EKF has also been suggested [115]. The 

InformatiOn Filter (IF) or inverse covariance filter is a KF that estimates the 
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information state vector, y, defined y = r' x where xis the traditional state vector, and 

Pis its covariance. The covariance of the information state vector is the inverse of the 

covariance of the state vector, also known as the Fisher Information Matrix or 

Information Matnx. In this way, the filter estimates the information matnx directly 

This form of filter is especially benefic m! when the state vector is larger than the 

measurement vector. 

In cases where the measurement model is highly non-linear, even the EKF may diverge. 

In th1s Situation, the Sigma Point Kalman Filter fam1ly of algorithms can be used [278] 

Rather than circulating only the mean through the algorithm, SPKFs circulate a 

collectiOn of precisely selected points around the mean, called s1gma points. In usmg 

several points, the non-lmearity IS more accurately modelled. The use of several points 

may make this appear s1milar to a Part1cle F1lter (see section 2 3.3 2), however SPKFs 

requ1res an order of magnitude fewer points, and are therefore far less computationally 

expensive. SPKFs include the Unscented Kalman Filter (UKF) [150] [277] observed 

however that even UKFs are still limited to Gaussian distributions. 

2.3.3 2 Particle filter (PF) 

Earlier attempts at improving upon the results of the EKF involved using an !MM By 

setting the different models to represent different Gaussian d1stnbutwns taking a 

weighted average of the Gaussian results, arbitrary distnbutlons could be modelled. 

However, this method cannot be applied automatically [83]. 

The Kalman Filter does make assumptions that the noise on the data is Gaussian, and 

that the standard deviatiOn IS known. Unfortunately, other than in simulated 

experiments, the error IS rarely either exactly known or Gaussian, so a method for 

filtering using arbitrary probability density functions (PDFs) is required. 

A direct approach to modelling the PDF is to divide the search space into a grid, and 

usmg the spaces in the grid to represent points in the PDF. Choosing the grid IS 

however a non-trivial task, and especially in multidimensional space a large number of 

grid points may become necessary. 

The particle filter also known as the Bootstrap, Condensation or Monte-Carlo filter was 

developed to counter this very problem. Rather than havmg a fixed grid to represent 

the PDF, these used movable 'particles'. Early versions of the particle filter used a 
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fixed number of particles, which led to the particles collapsing to a smgle pomt and the 

filter diverging in the same way that a KF does with a poorly descnbed Gaussian [46]. 

[lOO] developed the 'bootstrap filter' or Sequential Importance Resampling (SIR) PF. 

This introduced a resampling step required to prevent the filter diverging which 

removed the particles with the lowest we1ghts at each step, and created new particles at 

points where the weight was the highest. The bootstrap filter was shown to be more 

accurate than the EKF for trackmg in a system with non-linear measurements, such as 

bearings only trackmg. Since then several variants of this bootstrap have been 

developed, such as versions for multitarget tracking [138][280] and for manoeuvring 

targets using an !MM PF approach [30][33]. PFs have been shown to be particularly 

effective in a d1stnbuted sensing environment [178] A thorough descnption of the 

different types ofPF may be found m [12] 

However even the PF has some reliance on an mternal model; the step which calculates 

the weights of each of the particles mevitably must use some form of model to establish 

whether the particles accurately describe the input data. 

PFs are extremely difficult to set up for optimum performance as there are many 

settmgs to alter, includmg the number of particles, bearmg measurement noise u, , 

process nmse u w and the initial area in which to distnbute part1cles. Sampling 

Importance Resampling (SIR) (or alternatively Sequential Importance Resampling) is a 

commonly used form of the particle filter. 

The SIR algorithm, as with other particle filters is very processor intensive, w1th a 

5000 particle processing of250'000 time cuts taking almost 50 hours on a 2 0 GHz PC 

using Matlab, the same predictions made by an Extended Kalman Filter takes only a 

few seconds. Th1s leaves the particle filter many orders of magnitude slower than the 

EKF, though IS generally known to produce more accurate results. 

Each particle in this implementation of the filter contains a state vector which IS the 

same as the state vector in the EKF used previously x; = [x y X y]" , and an 

associated weight w; , where u~=ow;= I and pis the total number of particles. 

The area m which to distribute the particles initially was set as an ellipse along the 

bearing !me The maJor axis of the ellipse was set to the length of the known maximum 

target range, and the mmor axis was set to the w1dth reqmred to enclose the target, 

taking account of the known bearing error at the mean target range. The ellipse was 

centred at the mean target range, which IS known a priori, on the first input bearing. 
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The update step is again similar to the EKF, however for the particle filter the step must 

be applied to every individual m the population. As w1th the EKF, the state transition 

matrix cf> is 

0 Llt 0 

cf>= 
0 0 Llt 
0 0 0 
0 0 0 

where Ll t is the time difference between the most recent measurement and the 

preceding measurement. Multiplying the state vector by the trans1t10n matrix gives the 

new state vector. However unlike the EKF, some random noise is added at this step 

The random numbers added are chosen from a normal distribution, with zero mean, and 

(J' 

a standard deviation of 0' w for the position elements, and ; for the speed. 

Using this update step the particles are propagated forward to the time of the next 

bearing input. 

The weights are then calculated. In order to do th1s the bearmg from the sensor to the 

estimated target position must be calculated and compared to the measured bearing, 

beahng~ = tan·'(x~ ,ji~) where x~ and ji~ are the x and y components of X~. Weight 

w IS calculated from the difference between the bearing estimate and the measured 

bearing at a particular time, 

bea;1ng~-bearmg; 
2u! 

Once the weights have been normalised to one to create probabilities, the cumulative 

probability distnbution (CDF) is calculated which can be used to perform biased 

roulette wheel selection of the particles in much the same way that roulette wheel 

selection is performed in genetic algorithms (see appendix E). From theN original 

particles, N new particles are chosen to be used at the next time step. The process is 

then repeated, starting from the update step. 

2.3 3.3 AI approaches 

Sensor fusion with known statistics relies on well known techniques such as the 

Kalman Filter or Bayesian statistics. Where there is no spec1fic statistical model of the 
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uncertainty, other techniques such as rule based sensor fuston, fuzzy logic, and neural 

networks must be used instead. 

2 3 3 3 I Artificzal Neural Networks (ANNs) 

A back propagation (BP) ANN has been used to gtve navigatwnal abilities comparable to the 

state-of-the-art [231], however multi layer networks require a notonously long training t1me, 

and alternatives are ava1lable to optim1se network s1ze. Rad1al bas1s functmn networks (such as 

those using localised receptive fields (LRF) [204]) tram much faster than BP nets because only 

one layer of weights needs to be rnod1fied 

A problem With ANNs IS that determmmg the appropriate number of h1dden umts can be more 

of an art than sc1ence [13] proposed a system of dynamic node creation (ONC) wh1ch starts 

with a small network and mcreases the stze one node at a ttme unttl the network 1s large enough 

to handle the task in hand ONC was later apphed to data fuston by Ghosh et al [98], who 

found that given a large number of nodes, backpropagation networks were prone to overtram 

very eastly, whtle a network created using a combination of LRF and ONC d1d not suffer from 

this problem, although output encodmg networks were found to be the most effective network 

type overall. 

Target state est1matton has also been performed usmg neural networks For example the 

Neurally Insptred Contact Estimator (NICE) [75] 1s a neural network based target motton 

analysis (TMA) algonthm. The NICE algonthm has an equivalent accuracy to the Maxtmum 

L1kehhood Est1mator (MLE), but ts an order of magmtude faster 

More recently genetic algonthms (GAs) have been used to design ANNs for data fus10n [I] 

used such a techmque to develop a data fusion system for an electronic nose. 

Neural networks have been used as time series predictors [93], the output of the 

network was the value of the prediction, with one output node for each step ahead being 

predicted. 

The baselme Artificial Neural Network (ANN) used was a non-recursive, feed-forward 

ANN trained with vanilla backpropagation. The last N values in the time-series were 

given as input with one bearing input directly mapping to one mput node, and the 

output of the ANN is trained to be the next bearmg in the series. This ts the typical set

up of most of the previous attempts to use an ANN as a trackmg algorithm [104][43] 

[55][68][24 I ][270]. 
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2.3.4 Classification 

2.3.4.1 Artificial Neural Networks (ANNs) 

Section 2.3.3.3.1 introduced the concept of using ANNs for bearing prediction, 

however they may also be used for target classification. A neural network IS a massive 

system of parallel-distributed processing elements, connected m a graph topography. 

Data is not stored separately from the processmg ANN as they are intrmsically hnked. 

One of the most difficult problems in ANNs is choosing the most appropriate network 

topology for the problem. The choice will depend upon the problem characteristics, the 

characteristics of the hkely approach to solving the problem, and the charactenstics of 

the neural networks to be built. There are also several types of learning rules. These 

are biologically inspired, and govern how the network learns 

In one of the earliest examples of using ANNs to fuse multi-sensor data for 

identification, [56] used Back-propagation and Hopfield neural networks to identify 

targets. In backpropagation, the data is supphed to the network, and the difference 

between the input and output is calculated Weights are changed to improve the result. 

Once the errors have been minimised for all of the data in the training set, the system is 

ready to use for test data. Hopfield networks have feedback from output to m put, 

giving a dynam1c response. They can be unstable but stability can be ensured by 

forcmg the weight matr1x to be symmetric with zeros along 1ts mam d1agonal. A 

recurrent network forms an associative memory. Therefore, hke human memory, if a 

part of the memory IS supplied, the network will return the full memory. The 

associative nature of ANN s was utilised to identify targets g1ven a limited amount of 

information. In the simple examples given, the networks did not make a single mistake 

in identifymg the targets, showmg that it is possible to use ANNs to recogmse and 

identify targets 

Neural networks have since been shown [261] to be an extremely s1mple, easy to apply 

method and they outperform other fus10n techmques at low correlation levels 

2.4 JDL Level 2- "situation assessment" 

Situation assessment (SA) fuses the kinematic and temporal charactenstics of the data 

to create a description of the Situation in terms of indicatiOns of warnings, plans of 

action, and inferences about the distributiOn of forces and information. A SA algonthm 

will decide whether and in what way an object is or is likely to act m a hostile manner. 
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Unfortunately, most research is on the lower levels of fuswn, and therefore this area IS 

less well understood [118] 

[ 187] used a series of algorithms for Situation assessment First the uniform k

centralised mean (UKCM) algonthm clustered the detected targets into groups Once 

these clusters have been formed, It is possible to assess their intent using a fuzzy belief 

network. The simple rule-set of the fuzzy belief network, and the simple experimental 

scenario show that this kind of technique is capable of making situatwnal assessments, 

though a more complex belief network would be required to tackle any real problem. 

This is also relevant in non-military contexts, such as context aware processing m 

which the task is to develop a machine that IS able to understand and react appropnately 

to Its environment. Wu et al. [296]looked at multi-sensor data fusion from an omni

directional camera and a microphone to detect the focus of attention of attendees at a 

meetmg. In this study Dempster-Shafer logic was used to combine the processed 

outputs of the sensors, such as the location of the meeting and who was talking This 

was used to improve the estimate of each attendee's focus of attention compared to the 

output of the individual sensors 

2.5 JDL Leve/3- "threat assessment" 

The third level of refinement assesses the threat posed by the enemy being tracked. 

This may also include an assessment ofthe friendly force's ability to engage the enemy 

effectively. Fusion levels two and three are often referred to as 'm formation fusion', 

while level one is 'data fusion'. Although this distinctiOn IS vague, it is useful as the 

higher levels tend to utilise symbolic rather than numencal reasoning, and tend to be 

more subjective [283]. In human factors research this is often referred to as 'Situational 

Awareness' (SA) 

Level three ofthe JDL model has received far less attention in the literature than any of 

the other levels. Initial papers are starting to appear on the subject, though at present 

they are as much about understanding the challenges of the problem as solving it. 

Salemo et al [240] provided the starting point for a framework for mformation fusion 

for SA; it also gives an example situation in which automated situational awareness 

would be of benefit. The paper concludes with a discussiOn ofmetrics that could be 

used to validate SA techniques. 

[145]looked at tbe problem of threat assessment using cogmtive fusion techniques. 

This breaks the problem down into three areas: 
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I. Situation awareness, understandmg the meaning of multi sensor data, 

recognising complex time-dependent patterns and determining threats and other 

activities that reveal intent. 

2. Decision awareness, reasoning about situations and understandmg the 

ramifications of suggested actions. 

3. Knowledge awareness, learning and Improving skills for fusion procedures, and 

utilizing historic data to create new fusion patterns and situation classes 

The combination of real time Event Correlation (EC) and Case Based Reasoning (CBR) 

is suggested to produce a generic framework to perform threat assessment. When EC 

recognises a series of correlated events, CBR can be used to identify the events as a 

case, where a case adds further meaning to the set of events and infers a possible 

situation [145] prov1ded a bas1s for a possible system, but recommend further work 

must be done before any such system could be used m a real problem domam. 

2.6 JDL Leve/4- "process assessment" 

The process management stage is an ongoing assessment of the other fusion stages to 

ensure that the data acquisition and fusion is being performed m a way that will g1ve 

optimal results This could also improve results, by adjusting the parameters in the 

fus10n process, establishmg a target priority [284] or moving the sensors to give 

1mproved coverage of the search area [299]. The problem of optimal sensor 

deployments is closely related to both the alarm placement problem, wh1ch is known to 

be NP complete and the Knapsack problem, which is known to be NP complete [143]. 

Penny [226][227] found a strategy for locating a submarme as quickly as possible using 

passive sonobuoy sensors (buoys fitted with a sonar) which was shown to reduce the 

detection times up to a factor of four. Hernandez et a! [ 115] generalised these results 

to create a framework for the systematic management of multiple sensors m target 

tracking in the presence of clutter. 

[215] and [239] gave a method for optimally distnbuting the sensors m time; the results 

show that if the target has a high probability of detection and a medmm or high 

manoeuvnng index, then time-staggered sensors (sensors with updates arriving in turn) 

should be used. In other circumstances there is little between staggered and 

synchronised (arriving at the same time) sensor updates If two sensors have drastically 

different performance, then optimal results are obtained by keeping them synchronised. 

If they have similar or identical performance then they should be staggered umformly. 
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Multi Sensor Management (MSM) was discussed by [299], who argued that multi

sensor management affected all levels of the JDL model. They described MSM as a 

top down approach, which begins at level4, but continues down right to level one as 

follows: 

• Level4 (mission planning) 

o Which service to perform? 

o Which accuracy level? 

o What area of the environment to focus on? 

• Level3 (resource deployment) 

o What extra sensors are required? 

o Where to place the new sensors? 

• Level2 (resource planning) 

o Sensor selectiOn for multi sensor tracking 

o Sensor cueing, handing tracks from one sensor to another 

• Level I (sensor scheduling) 

o Time line of commands for each individual sensor 

2.6.1 Distributed sensing 

Process assessment has also been covered m the distributed sensing literature; here 1! IS 

a matter of dynamically selecting which sensors to use m order to gain the most 

mformation in the most efficient way. The idea of using Shannon information theory 

for this was first proposed by [I 19]; selecting sensors based on expected mformatmn 

gam was first suggested by [194]. [286] more recently showed a technique for 

dynamically selectmg the sensor to request data from in order to maximise the 

information gam. [286] used greedy selection of the next sensor; of all of the unused 

sensors, the one predicted to give the largest information gam is used. 

[206] developed a system that made the most of limited resources on distributed nodes 

by designing a mobile code daemon. This daemon allowed a node to download the 

classifiers or trackers 1t required as it found that 1t needed them, at the same time 

clearing out the ones that were no longer required. This allowed the system to 

configure itself dynamically. [94] extended [206] to create a system m which nodes 

form themselves mto clusters or coalitions. This avoids the 'curse of d1mensionality' 

problem that is troublesome in very large systems. Without this, each node would be 

forced to share information with every other, meaning that the processing and 
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communicatiOns burden mcreases with each node added to the network, while in the 

proposed scheme, nodes only share information With those in the same coalition. 

In another coalition forming technique, [256] discussed how to form dynamic coalitions 

of autonomous nodes Dynamic coalitions are teams that form to perform a task, when 

a single node would not have sufficient resources to perform the task. Nodes learn how 

to form coalitions that are more productive. Experimental results show that these 

cooperative agents can track targets far better than trackers that simply react 

individually, and are able to share computational resources, allowmg faster and more 

efficient processing. 

[136] and [300] discussed methods of creating a hierarchy in which the nodes are 

divided up geographically into coalitions, and each coalition is given a team leader. In 

[136], each track detected is allocated a track leader by the team leader, and this node 

instructs the other nodes m the coalition. The techmque IS made to work using a 

conflict resolution strategy, which is required when nodes are given two conflicting 

tasks. [300] investigated how the number of levels in an architecture may affect 

performance, and found that as the number of levels in the hierarchy mcreases, the 

number of targets it is capable of tracking decreases. However the amount of time 

required by an mdividual node to complete Its mission decreases exponentially. 

[2 I 8] proposed an auctton based technique called Dynamic Medmtion (DM) for 

formmg and allocating work to cooperating teams of nodes. In DM, the bid is not 

simply an individual value bid from a particular node, but a bid from a team of nodes, 

which can include information such as positive or negative interactions With other jobs 

allocated to the team. Expenmental results from [218] suggest that DM shows the 

largest performance improvement over a traditional auction where time is limited. 

[I 78] resolved the curse of dimensionality by separating the processes of allocatmg 

data points to targets being tracked and position estimation. Targets far away from 

each other are tracked separately m the traditional way, while targets close together are 

tracked jointly. As more than one target may be tracked at the same time, the PDF will 

not be Gaussian. This led [ 178] to use a particle filter as a position estimation 

algorithm as it can estimate arbitrary distributions. 

Akyiidiz et al have written a comprehensive survey [5] on the subject from a 

networking perspective. This gives a description of the major network topologies and 

protocols avmlable, and concludes that there remam many unsolved problems in sensor 

network research such as fault tolerance, scalabiiity, node cost, and power 
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consumption. In another survey paper [6], the same authors outlme the major 

applications for sensor networks, citing examples such as: 

o Mthtary applications, such as monitoring friendly forces and battle damage 

assessment 

o Environmental apphcations, such as bird migration monitoring, or flood 

detection 

o Health applications, such as tracking doctors within a hospttal, or remotely 

monitonng patients' physiological data 

o Home automation 
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2.7 Evaluating state-of-the-art approaches to target tracking 

2.7.1 Summary 

The rest of this chapter measures the performance of three of the commonly used 

bearing prediction algonthms already described. These three baseline techniques were 

chosen to reflect the state-of-the-art at the time ofwnting. Firstly the Particle F1lter 

was chosen as 1! is recognised as the most accurate prediction algorithm on data from 

non-linear systems [310][137][79][45] Secondly the EKF was chosen as 1! is the most 

widely used prediction algorithm [82][266][113] [249] stated that in this area most 

applications are based on e1ther the EKF or the PF. Finally the type of ANN which 

represents the state-of-the-art passive sonar target tracking was selected [I 04][43](55] 

[68][241][270], though as with many areas of ANN research httle has been written on 

this topic for a number of years. Data sets of varying degrees of complexity are 

constructed to test the algorithms in increasingly complex scenanos. Results show that 

all algonthms give roughly equivalent results on all data sets. 

Three baseline techniques are outlined here; 

The Extended Kalman Filter (EKF) as 1! IS the de facto algonthm in target 

tracking 

The Particle F1lter is a newer technique which has proven to be more effective 

than the EKF in a range of applications 

A Neural Network with a single output node to output trained to pred1ct the next 

bearing- th1s is the most Widely adopted machine learning technique but has 

been found to be comparable to the other techniques at best. 

The Extended Kalman F1lter is shown to be the most accurate in the s1mple scenarios, 

while the Particle Filter is shown to be the most accurate in the most complex 

scenarios. The performance of the ANN is not considerably worse, but is worse than at 

least one ofthe other two m almost all of the scenarios 
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2.7.2 Extended Kalman Filter (EKF) 

2 7.2 I Kalman filter tuning 

To ensure that the comparison with the baseline was fair, the Kalman Filter was 

carefully tuned to give best performance. This tuning can be divided mto two broad 

categories; mitialisation and running parameters. The methodology used to tune the 

filter is outlined in sections 2.7 2.2 and 2.7.2.3, while the results are given in Appendix 

D 

2.7.2.2 Initialisation 

When the first bearing arrives m the filter, all that it is possible to deduce about the 

target position is that It is along the bearing line. Prior knowledge about the data set, or 

the sonar performance also gives the mmimum and maximum possible ranges. For the 

data sets used here, the target position was therefore set to be along the first bearing, at 

the median start range oftargets. The speed components were both initialised to zero, 

which is the median speed in each direction for the data The covariance matrix was all 

zeroes, except for the lead diagonal. These non-zero values represent the uncertainties 

2 

in the x,y position and the x,y speed, and are set to the maximum target range and 
5

3 

respectively, where s is the standard deviation of the target speeds in the data and was 

set to I 0.0. The values reflected the information known a priori from the data. 

2.7.2.3 Running parameters 

The data was run through the Kalman Filter several times, and a number of different 

settings for the parameters were tried. 

The standard deviation is a scalar value used in the filter's model, and the known 

standard deviation of the data was used at the start of the opllmisation (in a real system 

this would generally be a known constant for the sonar) After a number of iterations, 

the optimal value for each of the filter's variables were found, as descnbed in Appendix 

D. 
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2.7.3 Particle filter 

As prevtously stated there are a number of different parameters to tune in order to 

ensure high performance m the Particle Filter. The beanng measurement noise er, 

was set to the known beanng measurement noise for each dataset. A series of 

experiments was performed to empirically calculate the other two parameters; number 

of particles and process noise er w The results of these opttmisations can be seen in 

Appendix D. 

2.7.4 Single output ANN 

The baseline Artificial Neural Network (ANN) used was a non-recursive, feed-forward 

ANN trained wtth vanilla backpropagation. The last N values in the time-series were 

given as input with one bearmg input dtrectly mapping to one input node, and the 

output of the ANN is trained to be the next bearing in the series This ts the typical set· 

up of most of the previous attempts to use an ANN as a tracking algonthm [104][43] 

[55][68][241][270] 

The ANNs were implemented with SNNS [320] m the form ofinput text files which 

store the structure and initial state of the ANN. The trainmg algorithm implementatiOn 

used was the Std _ backpropagation traimng algorithm in SNNS which Implements a 

vamlla backpropagation training algorithm. To automate the process of establishing the 

optimal structure for the ANN, a simple Java program was created with nested loops 

which could optimize a series of parameters; number of input nodes, number of hidden 

nodes and learning algorithm The number of input nodes maps I: I to the number of 

previous values to read when predtcting the next value in the series. 

Results of this optimisation can be found in appendix D. 

2.7.5 Experimental design 

Three baseline techniques were chosen to reflect the state-of-the-art at the time of 

wntmg. Firstly the Particle Filter was chosen as it is recogmsed as the most accurate 

prediction algonthm on data from non-linear systems [31 0][137][79][ 45]. Secondly the 

EKF was chosen as it is the most widely used prediction algorithm [82][266][113]. 

[249] stated that in this area most applications are based on either the EKF or the PF. 

Finally the type of ANN which represents the state-of-the-art passtve sonar target 

tracking was selected [104][43][55][68][241][270]. 
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In order to test the performance of the prediction algorithms, a procedure was 

developed outlined in the rest of this section. Firstly a number of data sets of varying 

difficulties were developed, as described m section 2. 7 .6. 

A flow chart detailing the experimental procedure can be seen as figure 6. All 

algorithms were set to a known state. For the EKF and PF th1s was achieved by setting 

parameters to known values whereas for the ANN this was by training with standard 

backpropagation. Each algorithm was fed a pre-specified number of inputs, and the 

ability of the algorithm to predict the next value m the series was measured Between 

each run of the predictors the algorithm was returned to its initial state For the EKF 

and PF th1s meant reseting the parameters, whereas the ANN carried no information 

between predictions and therefore no actwn was necessary. As each data set contamed 

several thousand examples each algorithm had to be run thousands of times, resetting m 

between each run. 

As the ANN requ1red training on part of the data and testmg on another, ten fold cross 

validation was used to ensure fa1rness of comparison. The ANN was run I 0 times, each 

time using a different non-overlapping section of the data as the test set, with the rest of 

the data being used for trainmg and validation, see table I. The mean value across each 

of the ten runs was taken as the overall result of the experiment. 

Run Testing data Training data 

I I All others 

2 2 All others 

3 3 All others 

4 4 All others 

5 5 All others 

6 6 All others 

7 7 All others 

8 8 All others 

9 9 All others 

10 10 All others 

Table I The tenth of the data set used in each run of the ANN 
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Figure 6 Flow chart of experimenta l plan 

2.7.5. 1 Accuracy measurement 

Ftnctmean of 
Alray of values 

F"md squaiB root 
oftis nl11ber 

Four accuracy measures are described in appendix E, RMS error, GMRAE, MdRAE 

and MdAPE. [I 0] recommended that the first of these should be avoided and the later 

three preferred as they are relati ve measures, while the first is abso lute. The reason for 
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relative errors being preferred is because if, to take a financial example, one share loses 

value from £3.50 to £3.00, while another loses value from £350 to £300, then the real 

loss on each can be considered to be the same. This argument does not hold with sonar 

bearmgs where a change of3.5° to 3.0° is much smaller than a change from 350° to 

300°, an equivalent change would be 350° to 349.5°. Although these relative measures 

are questionable in this context, they are provided in some sections ofthis thesis for 

completeness. 

2.7.6 Data 

The datasets created for the experiments can be split into two broad categories Firstly, 

smaller purely synthetic data sets w1th 500 points each, designed to test the abilities of 

the algonthms on sets ofvanous levels of difficulty. Secondly much longer datasets 

compnsing synthetic data overlaid on recorded background nmse intended to test the 

algonthms' abilities on more realistic data 

2.7.6.1 Fully synthetic 

Four smaller datasets were created, each of varying levels of difficulty to the tracker, 

ranging from a Simple sine wave, through to a more complex pattern with large 

amounts ofGaussian nmse added These data sets are given m sections 2.7.6 I to 

2. 7 .6.1.4. The values are first shown in their original form to show the pattern, and 

then shown wrapped to be between -180° and 180°, to prevent for example the 

equivalent predictions of 182° and -178° from being seen as 360° away from each 

other. These small data sets were created in order to thoroughly investigate the 

capabilities of each of the algonthms under test As the sets are short 1t IS possible to 

plot the results of the algonthms and visualise comparative performance. 

2. 7.6.1.1 Set one 

2.7.6.l.l.l Summary 

This is a deliberately simple set based upon a sine wave, designed to show nothmg 

more than that all algorithms can follow the true values. No noise is added to the 

measurements. 

2.7.6.1.1.2 Definition 

y=360sin( ;O) 
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Figure 7 Small data set I 
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F1gure 8 Small data set lrestncted between -180° and +180° 
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Figure 9 Output of the target tracking algorithms on simple data set 1 

A ll three trackers are shown to be effective on this extremely simple data set, 

with the exception of the large outlier on the EKF. 

580 
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1-=igure I 0 is a residual plot and shows the difTerence between the true bearing and the 

prediction made by each algorithm. 

so r-----r----.r---~----~----~----~-----r-----r-----r--~ 
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Figure 10 Bearing residuals of the target tracking algoritbm on simple data set I 

Figure I 0 displays the results more clearly than figure 9 

On average the EKF is the most accurate predictor. 

The EKF is the most accurate of the predictors with the exception of two outlier 

points, one relatively small and only a little worse than the PF, wh ile the other is 

very large. 
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At this point it is worth clarifying a point about how the algorithms are run. The EKF 

is known on occasion to diverge; it becomes overly confident, reducing the size of the 

error margins stored in the covariance to near zero. If the update is preformed in this 

state, the filter interprets even a small difference between the prediction and the 

measurement as overly significant and overcompensates for it. This sends the estimate 

wild ly wrong. From this point forward the fi lter gives wi ld ly inaccurate predictions. In 

order to counter this here the filter is run on batches, rather than being run recursively. 

In order to predict each point the filter is given the previous N points. The two outliers 

represent times at which the EKF has diverged. Had the EKF been run in the normal 

manner its performance would have degraded for the rest o f the run. 

1299 .---~----~-----r-----r----,-----~----.---~r---~-----, 
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999 

699 

400 

200 

EKf -+--< 
RHM >---*---< 

Particle filter ~ 

- ,.-........ .. 
.......................... 

0 
9 59 199 150 299 250 309 350 400 

Figure 11 Bearing residuals of the target tracking algorithms on simple data set l 

This plot most clearly shows the relative performances of the algorithms; 

The EKF gives the lowest overall error. 

The PF and ANN have similar levels of performance. 

The ANN is the least accurate overall. 

2.7.6.1.2 Settwo 

450 599 
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2.7.6.1.2.1 Summary 

The second data set was constructed which was only a little more complicated. The 

intention was to test how the algorithms coped when given data whose gradient changes 

rapidly. This represents the by product of measuring data from non-linear systems such 

as passive target tracking. 

2. 7 .6. 1.2.2 Definition 

y=360( sin ( :0) +cos( ;O)) 

Figure 12 mall data set 2 

~·r---------------------------. 

Figure 13 mall data set 2 restricted between -180° and +180° 
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Figu re 14 Output of the target tracking algorithms on simple data set 2 

Again, a ll fi lters can be seen to track the target well overa ll. 

Here there are outliers for both the EKF and PF. 

500 
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Figure IS Bearing residuals oftbe target tracking algorithms on simple data set 2 

Again the residual plot shows the relative performances more clearly: 

Here it is possible to see that the largest s ingle outl ier is the PF 

The EKF g ives more freq uent, smaller outliers 

Ignoring the outliers, the performance of the PF and EKF is nearly identical. 

The performance of the particle filter does not seem to have been reduced by 

the increase in complexity, though the performance of the EKF has reduced 

considerably. 
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Figure 16 Cumulative bearing residuals of the target tracking algorithms on simple data set 2 

Here the performance of al J of the algorithms is far closer than in figure 11 . 

For this s lightly more complicated da ta the PF is now the most accurate. 

The ANN is again the leas t accurate. 

2. 7.6.1.3 Set three 

2.7.6. L.3.1 Summary 

588 

In the third data set a small amount ofGaussian noise was added to the measurements. 

The data given here is therefore fa r closer to real sonar data than the previous data sets. 

2.7.6. 1.3.2 Definition 
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Figure 17 mall data set 3 

Figure 18 Sma ll data set 3 restricted between -180° and + 180° 
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Figure 19 Output of the target tracking algorithms on simple data set 3 

The data has started to become complex enough to make the predictors less 

accurate, this can be seen by the fact that the lines on the chart are 'fuzzier' as 

predictions are becoming less accurate, this has resulted in enough 

differentiation in performance to be able to see each line. 

The outliers on the EKF are becoming larger and more frequent. 
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From the residuals plot the EKF's frequent large outliers are clear to see. 

For the first time the PF is outperforming the KF. 
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Figure 21 Cumulative bearing residuals of tbe target tracking algorithms on simple data set 3 

The performance of the EKF and PF are virtually identical 

The ANN is yet again far less accurate than the other two algorithms. 

2. 7.6.1.4 Set four 

2.7.6.1.4.1 Summary 

588 

The fourth data set increased the level of noise to match the upper limit of the bearing 

binning function. With the parameters used here for the binning function, this noise 

level represents the limit of its performance. Higher levels of noise would cause a 

degradation in performance relative to the other predictors. 

This is designed be the hardest test for the algorithms, where the bearing changes being 

predicted are smaller than the noise. 

2. 7.6.1.4.2 Definition 

y =360 (sin (~)+ cos(~) )+ rand norm 13.3 
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Figure 22 mall data set 4 

Figure 23 mall data set 4 restricted between -180° and + 180° 
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Figure 24 Output of the target tracking algorithms on simple data set 4 

The performance of all of the predictors is shown to have deteriorated 

significantly. The performance of all ofthe predictors appears poor. 

The EKF outliers are now very large and easily noticeable even on the bearing 

plot. 
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Figure 25 Bear ing residuals of the ta rget tracking algorithms on simple data set 4 

The enormous outliers on the EKF are even clearer on the residuals plot. 

Excluding the outliers, the performance of the EKF and the PF is very similar. 
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Figure 26 Cumulative bearing residuals of the ta rget tracking algorithms on simple d ata set 4 

The c umulative plot is the c learest way to see the re lative performance of the 

different algorithms; as in figure 2 1, the performance of the EKF and the PF are 

very s imi lar, whi le the performance of the ANN is far less accurate. 

2.7.6.2 Semi-synthetic 

The second, considerably larger data set was created to be far more realistic. Ideally 

this would have consisted of real sonar recordings. However it was found to be 

difficult to obtain large enough vo lumes of data for which exact ly one ta rget was being 

detected and the true bearing to the ta rget was known. This is especia lly difficult for 

the quantity required fo r complete ly training and testing a learning algorithm. By its 

nature it is considered secret, and even references that state that this data is difficult to 

o bta in are impossible to find. 

This necessitated the construction of s imulated data. Here it was decided to make the 

time series as c lose to real data as possible by using a very low level sonar simulator, to 

generate target detections, overlaying this over recorded background noise. 

[230] found that most sonar simulators for research purposes are not c reated to be a 

realistic enough simulation to replace real recorded data and tend to specialise into one 
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of the following roles; supporting research, assisting sonar acceptance testing or 

operator training. (230] described a new simulator called Sonar Data Generator (SDG) 

so detailed it could be used for all three, and was created with the goal of augmenting 

recorded data with high quality simulation. To ensure maximum realism in the semi

synthetic data set was created using the SDG described in (230). 

This produces the closest s imulation poss ible to real record ings, and having the 

advantage over real sonar recordings that the exact truth is known for every scenario. 

These were then run through a simple example of a sonar processing system to create a 

time series. 

Beam8 Beam I 
'•, 

Beam7 

Beam6 

··. 

BeamS Beam4 

Bearing per beam 122.5 167.5 1112.5 1157.51 202.51247.51292.51337.51 

Normalised sound pressure 

Bearing weighted by pressure ,5.6 134.8 128.1 10.0 10.0 10.0 10.0 10.0 

Mean weighted bearing 67.5° 

Figure 27 A simple example of processing beam data for a sonar with eight beams for a single 

instant 

The data were constructed using a low-level passive sonar simulator which produced 

beam-level sonar data. This is a vector of sound intensities for a range of bearings, a 

simple example of which is shown in Figure 27. Here each beam represents a 

particular direction, which mapped to a bearing, and gave an energy level of the sound 



Page 64 of 289 

received from that direction . As with real passive sonars the width of the beams was 

not uniform and altered from very narrow beams at broadside (around 90°) and 

widened to create more coarse bearing estimates at end fire (0° and 180°, the lower and 

upper bearing limits of the sonar) Another common feature of passive sonar that this 

simulated data shared is the inability to distinguish between por1 and starboard. All 

data; no matter the true direction of the target, had a range of between oo and 180°. The 

abi lity to resolve the ambigu ity between port and starboard was not a required feature 

of this tracker, so the 'true' bearings have also been normalised to between oo and 180°. 

An example of this can be found in Figure 28 and Figure 29. 

This data was then overlaid on looped background noise recordings from a real sonar, 

seen in Figure 30 and Figure 31. A form ofthresholding was used to convert the beam 

data to a time-series. Each track was started on the nearest peak to the true bearing, and 

at each time step was continued with the nearest peak to the previous track bearing, this 

track can be seen as the black line in Figure 31. 

As the target being tracked was simulated, the exact true bearing was known. The 

simulator was used to create 5000 independent data sets, each with I 00 data points. 

The scenarios used consisted of a static sensor detecting a moving target with random 

start position within a pre-set range of the sensor, and random target kinematics. Only 

one target was simulated for each data set. 

The output at this stage was a vector of intensities at each point in time. A simple peak 

detector was used to find a single bearing to use at each point. At this point the data 

had been converted to 5000 independent time series, each with I 00 bearing values. A 

subset of this data is given in appendices Band C. 
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Sonar sensor 

Target with randomly chosen 
kinematics 

Figure 28 Plan view of simulated target over 

time 

Figure 30 Plot of r ecorded noise, shown with 

time over bea ring 

2. 7.6.2.1 Conversion to time-series 

.~ 
E-

0 

0 Bearing 

Figure 29 Time/bearing plot of sonar 

measu rem en ts 

Figure 31 Plot of simulated data with recorded 

noise, overlaid with threshold track, shown with 

time over bearing 

The resultant time series produced for both the small and large data sets were then 

subdivided using a sliding window into a series of pattern recognition problems, a 

simple example of which is given in Figure 32. Applying the sliding window with 

between I and 50 inputs (the input number corresponding to the number of input nodes 

in the network being tested), resulted in 250'000 data sets (of the sort given in 

Appendix B) for each number of input nodes. 
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Row I Row 3 RowS 

Row2 Row4 Row6 

Figure 32 Sliding window data conversion, black lines represent inpu t data, while the orange 

denotes the value to be predicted, converting a continuous time series into discrete samples. 

All inputs and outputs were normalised so that the last input is always zero. Unless this 

normalisation had been performed, the network would see two identical input sets for 

which one of the sets was rotated as a completely different set of inputs. This 

normalisation reduces the amount of training required for the tracker to be accurate in a 

wide range of situations. 

These examples were then collected into a s ing le data table, which was then divided 

into tenths to perform cross-validation. This is so that the parts of the data used for 

training, validation and testing could be rotated for each experiment, ensuring that the 

data is properly tested against all input data, and data favourable to the algorithm is not 

inadvertently selected for testing. 
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2. 7.6.2.2 Results 
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Figure 33 RMS bearing residuals for single output ANN, EKF and PF when run on the semi

synthetic data set with number of inputs varying from I to 45 

All algorithms are run in batches, with a set number of inputs to give one 

output. 

The PF is clearly the most accurate on this, the largest data set. 

The performance of the ANN is the poorest overall. 

The E KF is only more accurate than the ANN by a narrow margin. 

__.; 

45 

There is very little difference in performance between a ll three on this, the most 

realistic of the five data sets. 
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2. 7.6.2.3 Statistical comparison of algorithms 

Before judgements were made about which was the best algonthm it was important to 

establish a procedure for giving a confidence figure to the statement that one algorithm 

was more accurate than another. In order to achieve this the data was randomly divided 

into ten equally s1zed sets Each of these sets would allow an mdependent test of the 

perfonnance of the algorithms. For each of these probab11istic compansons the null 

hypothesis IS that the two algorithms being compared are actually equal m perfonnance, 

and the probab1Iity that they could achieve this hypothesis IS calculated Table 2 gives 

the confidence that algorithm A IS more accurate than algorithm B given the number of 

folds that algorithm A was more accurate than B out of a total number of ten 

independent runs or folds. This IS calculated by working out the number of 

combinations of results which are equal to or better than the result obtained (such as 

eight out often folds), and then d1viding th1s by the total number of combinations; 

P. 
1:~:. (I 1X (~: -1 1)) where j IS the total number of runs or folds. Inside this 

2' 

fonnula 
] I 

calculates the number of possible combinations of 1 out of; 
1 IX(] l-1 1) 

being better than the other, while 21 gives the total number of combinations for j 

runs. Table 2 shows that in order to obtain a 90% confidence that algorithm A is more 

accurate than algorithm Bit must outperfonn A m e1ght out often tests For this thesis 

a target of 90% confidence or eight out of ten tests will be used as the target value for 

provmg that an algorithm outperforms another. 
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Number of Number of Odds for Odds for 

experiments in combinations of Number of (assuming a (assuming a 

which a was exactly this combinations of and bare and bare 

better than b eventuality this or better equal) equal) 
10 I I 0.10% 99.90% 
9 10 11 1.07% 98.93% 
8 45 56 5.47% 94.53% 
7 120 176 17.19% 82.81% 
6 210 386 37.70% 62.30% 
5 252 638 62.30% 37.70% 
4 210 848 82.81% 17.19% 
3 120 968 9453% 5.47% 
2 45 1013 9893% 1.07% 
I 10 1023 9990% 0.10% 
0 I 1024 100 00% 000% 

Table 2 The confidence that algorithm a IS more accurate than algonthm b gJVen the number of 

folds that algorithm a was more accurate than h out of a total number of ten folds 

Tables 3 to 5 show the performance per fold for all algorithms, the number of folds for 

which each was better than the others and the confidence factor associated w1th this 

respectively This shows that we can have a 99.90% confidence in the ranking of the 

algorithms on this data set. 

Fold ANN EKF PF 
I 8.13 7.13 6.84 
2 7.67 7.02 6.36 
3 7.81 7.1 6.5 
4 7.64 6.93 6.41 
5 8.07 6.98 6.78 
6 7.71 7.01 6.43 
7 7 37 7.05 6.13 
8 7 81 6.99 6.66 
9 7.32 7.2 604 
10 7.72 7.53 6.43 

Table 3 The outputs (per fold) of the three algonthms ANN, EKF & PF on the semi-synthetic data 

set. 

B\A ANN EKF PF 
ANN X 10 10 
EKF X X 10 
PF X X X 

Table 4 The number of folds for which algorithm a is more accurate than algorithm b for the 

ANN,EKF&PF 
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8\A 
ANN 
EKF 
PF 

ANN 
X 

X 

X 

EKF 
99.90% 

X 

X 

PF 
99.90% 
99.90% 

X 

Table S The confidence that algontbm a is more accurate than algorithm b for the ANN, EKF & 

PF 

Tab! e 6 shows the best performance of each algorithm when averaged across all ten 

folds 

D ata set Synthetic I Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0.21 3.66 6 53 11.12 7.09 

PF I 74 3.07 5.88 10.12 6.46 

ANN 2.16 4 33 9.02 16.15 7.13 

Table 6 The best RMS bearing error for each algorithm on each data set 

Although not limtted by an internal model, the ANN is worse than both of the 

other techniques in all of the data sets. 

The EKF ts more accurate on the stmplest data set. 

The PF is more accurate on the more complicated sets 

There ts a 99.90% confidence ranking on the ordering of the three algorithms, 

so in subsequent chapters comparisons will only have to be made against the 

particle filter to prove that an algonthrn is more accurate than all three outlined 

m thts chapter. 

2.8 Conclusions 

The performance of three standard target tracking algonthms has been evaluated, and 

performance is seen to degrade raptdly with mcreasmg noise. These techmques are 

ideally suited to overly simplified data sets such as fully synthetic sets one and two 

The performance of all of the tested algonthms was poor on the largest, most realistic 

data set, the semi-synthetic one. Here the ANN gave the worst overall performance, 

however it was not significantly worse than the other statistical techniques 

The only algorithm used which is not hmited by assumptions made in an internal model 

is the ANN, however its performance was worse than the other two algorithms in 

almost all cases, with relative performance worsening as more input data was provided. 
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3 Improving upon existing predictors 

3.1 Summary 

In thts chapter two new predictors are created, both based upon learning algorithms. A 

technique is developed in which a classification algorithm may be used as a bearing 

predictor. Two classification algorithms are tested; an ANN based classifier and a K

nearest neighbour classifier. Both are shown to operate effectively as trackers, though 

the ANN outperforms both the KNN and the baselmes introduced in the previous 

chapter. 

3.2 Introduction 

The previous chapter has measured the performance of the three baseline methods. The 

first two baselines, the EKF and the PF require a model of the target motion in order to 

operate. Though in theory this model could be arbitrarily complex, in practice many 

assumptions are made in their construction which limits thetr achtevable accuracy. 

Although the ANN's performance does not have thts limtt, tt has been found to be 

worse in terms of output accuracy wtth the other two baselines. The atm of thts chapter 

therefore is to start to develop a new predtctor which, like the ANN could be immune to 

the limitations of having an overly simplified model, whtle also being capable of 

outperforming the other baselines. 

This chapter presents the results of using two such machine learning algorithms as 

bearing predictors. Learning algonthms have a number of advantages over the more 

tradttional statistical approaches. Provided that the system bemg predtcted and its 

associated errors can be accurately modelled, the statistical techniques can be shown to 

be optimal. However, for reasons of computational efficiency and practicality of 

software development, these models are usually over-stmplifications of the true system, 

leadmg to inaccuractes 

Section 3.3 descnbes the problems ofbearmg prediction in passive sensors. The work 

done in this area ts discussed in section 3.3. Our proposed solution is outlmed m 

sectton 3.4. Sections 3.5 and 3.6 explain the experiments and the results respectively 

Finally sectton 3.7 gives my conclusions based on this review. 
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3.3 Problem statement 

The notation used in this thesis IS based upon the notation used in [177]. Data IS given 

as pairs called examples where each example z, = (x,,y,) consists of an object x, E X 

and a labely, E Y = {1,2, ... ,Y}. For the purposes ofthts thests the object x, comprises 

of the previous n bearing observations The data conststs of several bearmg time series 

S0 , s 1, ••• , s m each of which must be dlVlded into sets using a slidmg window 

approach before it can be used. First a window size w is selected, then a set of n 

examples is generated, each wtth w attributes, x,=[ s,-w , . . ,s,] 

The label is the calculated from the difference between next beanng m the time series 

and the last bearmg in the inputy, = C(s,tl - s,) where C is a function that dtscretises 

the contmuous real valued bearings into a set of categories. 

The problem to be solved is therefore whether machine learning algorithms can 

compete with the baseline techniques in this context. In order to test this it will be 

necessary to select candtdate learning algorithms and to define the binning function C. 

We will also expenment wtth the number of prevtous measurements to find the optimal 

number for predicting a future bearing. 

3.4 Proposal and methodology 

Our proposalts based upon two proposals for binning function, a uniform distribution 

as has been used before m the literature, and a Gaussian distributed binning function. 

The Gauss tan was chosen as it is a common assumption that the distribution of the 

measurements is Gauss tan about the true noiseless bearing. Here we make use of this 

assumptiOn, and use the learnmg algonthms to model the dtfference between the 

Gaussian assumption and the true bearing, 1t is expected that using thts funcllon an 

approximately equal number of training sets will be classified into each ofthe bms 
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Figure 34 An illustration of uniform binning of prediction space 
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Figure 35 An illustration of Gaussian binning of prediction space 

3.4.1 Binning function 

In order to use any classification algorithm as a bearing probability predictor it is first 

necessary to specify the binning algorithm C to discretise the algorithm output space. 

Two possible functions for C are used in this thesis, the first producing uniformly 

distributed bins the second distributes the bins normally. 
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For the umform bmning function, two inputs are required, the first is the maximum 

beanng rate change expected, i.e. L1sm~= max (Is,+ 1-s,l) , the second is the 
l:51:5m-l 

number of categories Y The IYI categones are uniformly distributed between 

+ ,:1 S m~ , each bin therefore is of SIZe S '"""' 
2L1sm~ 

. As the 
y 

value for Sm~ is an estimation made with no a pnori knowledge of the data, during 

experimentation it is possible for values of s,.,- s, to be outside of the possible range 

of bins, in whtch case the value is rounded to the upper or lowermost category 

accordingly. 

Once these bin sizes and ranges have been constructed it is necessary to convert the 

bearing data into arrays of outputs to facilitate classifier traimng. This was done by 

establishing which bin the required bearing would be m, settmg the value of this bin to 

one, and the rest of the bms to zero, giving a simple probability density function (PDF) 

of the bearmg 

Imtlal experiments carried out with a umforrn bmnmg function, however, found that the 

range of training examples for each output bin was unevenly distributed The 

distnbution of training examples per bm was found to be approximately normal. In 

order to improve the classifier performance the number of trammg examples per 

classificatiOn should be approximately equal; therefore a d1stnbution of bin sizes which 

gave close to equal numbers of examples per bin was also tested. Thus the second 

function used as the d1scretising function C is denved from a Gaussian rather than a 

uniform d1stnbution for binning. The a1m was to make the bins near the mean narrow, 

to decrease the number of examples, preventing overtraining. The bins further away 

from the mean are wider, to allow more examples to be observed. For this the inputs 

required are the standard deviation of the distribution u, in addition to the number of 

categories Y. The encoding here IS achieved using the cumulative normal distribution 

for u, , with a mean of zero. 
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The cell to use is chosen by integrating between - ~ and the bearing input s to give a 

number between 0 and I, multiplying by the number ofbms, and then finding the 

nearest whole number. 

bmnum= J Y J .!.( l+erf x, ) 
-ro 2 U'l 2 

The process for both binnmg functions can also be reversed to decode the outputs of a 

classifier into a bearing, denoted as r I (X) = s 

3 4.1.1 Converting bin number to network training output 

Both ofthe binning functions outlined above would result in an array in which all but 

one of the values would be zero, and a single element correspondmg to the bearmg 

would be one. However when this is used, a network which misclasstfies the data into 

an adjacent bin to the truth ts penalised as much as one which classtfies mto a bin 

distant from the one required This is clearly incorrect as the latter would result in a far 

htgher error in the application presented in this thesis. 

To remedy thts problem a second Gaussian distnbutton was used to alter the traming 

arrays. The second Gausstan used the mean equal to the target bearing and a standard 

deviatiOn of the bearing error, whtch is a known value for real-world sonar systems 

The training value used for each bin is given in equation 6; 

r'I,J 

X,= J ±(I +eif s ) 
r'l•-1) u bearmg..f2 

6 

Where r I is the appropnate reverse formulation of either the uniform or Gauss tan 

binning function, r I (I) gives the bearing at the end of bm i. The resulting vector X is 

therefore the ideal output of the classifier network which ts used to tram the ANNs. 

When trained using this data, the array better approximates the true PDF of the data. 

An example of this type of data can be found in appendix C. 

3.4.2 Learning algorithms 

Two learning algorithms were chosen for the experiments, K-nearest neighbour (KNN) 

and artificial neural networks. KNN was originally chosen as it is very simple to 

implement, and was used to test quickly the theory that classifiers could be used as 

predictors. ANN was chosen to continue the work as it ts known to be faster than 
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KNN, and better at generalising, though harder to Implement. ANN and KNN are 

described in more detail in sections 3.4.2.1 and 3.4.2.2 respectively. Although only the 

KNN and ANN are used m this thesis, the 1deas are generic and could be applied to any 

classification algorithm. 

3.4.2.1 K-nearest neighbour (KNN) 

In order to test the theory that a classification algorithm could be used as a bearing 

predictor, it was necessary to find a classification algorithm which would be simple to 

code, without any initial requirement for computational efficiency. 

The KNN algorithm is such an algorithm that is commonly used in pattern recognttton. 

It is most similar to the Nearest Neighbour classification algorithm, in which a g1ven set 

of measurements are assigned to a particular class based on the nearest set of 

measurements in a database of known examples wh1ch IS created during a training 

phase. The KNN only d1ffers from this in that the K nearest classifications are 

considered, and the one that has previously been observed the most times is selected. 

Both NN and KNN are learning algorithms, and require a period of training before they 

can be used 

The KNN used bins the mput bearings umformly, and the output bearmgs using one of 

the binning formulae descnbed m section 3 4.1, and the database is bu1lt up by counting 

how many times each example IS seen in the training data. The database stores each 

example and the count of how many times it has been seen. During the testing phase the 

mput data is compared to values in the database, and the nearest k rows are selected, of 

those the one With the highest count is selected, and the classification associated with 1t 

is used as the prediction 

3.4.2.2 Artificial neural networks (ANN) 

The networks used m the ANN expenments were simple feed-forward, fully connected, mult1 

layered networks w1th sigmoid activation functiOns m the h1dden layers. The simplest poss1ble 

fonn of multt layer ANN was chosen m order to demonstrate as easily and quickly as poss1ble 

that ANNs could be used as class1fiers to track targets. 

The leammg algorithm used IS an altered fonn of backpropagatton U smg standard 

backpropagation the network would be adjusted based on the classification error, so a 

misclass1fication resultmg m a bearmg error of 0 5° is treated as being as wrong as a 

misclass1ficat10n resultmg m a bearmg error of 10°. An altered fonn of backpropagatton that 
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takes the resultant beanng into account while trammg the network was developed This 

effectively penalises solutiOns which are further away from the Ideal solution in terms of output 

beanng, and promotes those which are closer 

The number of beanngs to use IS determmed by the number of mput nodes m the ANN. A 

network with n inputs will use the last n bearmgs to either predict the next bearmg or estimate 

the range of the target The output also has a varying number of nodes, each one representmg a 

bearing bin. Values are assigned to the outputs accordmg to the bmnmg algonthm used. 

A form of ANN which differs from that used m this new method has been used many limes in 

the literature [93]. In this type of network the previous measurements are given as mputs to the 

network, but the ANN outputs each predictiOn as a value from a single output node, therefore 

no binnmg IS used or required. This type of ANN was used m the experiments as the third 

baseline approach 

3.5 Experimental design 

3.5.1 Experimental design 

Cross validation and interleaving with I 0 folds were used to validate the results in both 

the ANN and KNN based experiments All 500'000 data points were used m total, 

each fold using 50'000 for testmg and 450'000 for training, therefore every data point 

was used as part of the test set m one and only one of the I 0 folds. The mean value was 

taken across all I 0 folds to give the final result. 

3.6 Results and comparison 

The following results were generated with the 245000 patterns descnbed in section 

2 7 6 2, except for the KNN which proved too slow to practlcably run on such a large 

data set, so the smaller 4998 pattern set was used, also descnbed m section 2. 7 6.2. 

For reasons of clarity the results for the KNN and EKF with unifonn distribution 

binning are not shown in the following graphs. Since these are not classification 

algorithms running them through the bmning process could only worsen their results. In 

every experiment the unifonn binning function proved inferior to the Gaussian, the 

ANN with unifonn bmning function has been left in the results to demonstrate. 

Figures 36 to 47 give the results of the experiments. In each case, the chart is first 

given With all tested algorithms, followed by the same chart With only the best versiOn 

of the proposed technique, shown against the best perfonning two benchmarks. This 

allows the perfonnance increase to be seen more clearly. The Gaussian Binning ANN 
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Classifier is shown to be the optimal chmce in each case, and the best performing 

baselines are the Particle filter and the EKF The parttcle filter outperforms the EKF in 

every case. 

Figures 36 to 39 reqmre some explanatton These data sets were deliberately created so 

that it would be possible to plot every point in the set This allowed a simple visual test 

to see tfthe algonthms were working as expected. Ten fold cross vahdation was still 

used; the results ofthe first fold going directly to the first ten percent of the chart, then 

the next fold to the second ten percent etc ... until the enttre chart was filled left to right 

Thts relied on running through the dataset sequentlally from start to finish, testing each 

I 0% of the data m Isolation, using the other 90% as trainmg and validatton data This 

process would not work on any dataset, however due to the periodic property of these 

stmple sets it can be expected that for each case in the testing data the learning 

algorithm will have seen a similar case durmg tts trammg phase Figures 36 to 39 show 

cumulative bearing restduals; that is at each time step the absolute value of the 

difference between the predicted bearing and the actual bearmg is added to the total and 

the total to date ts plotted This allows the reader to see the performance of the 

algonthms over time. It ts also important to note that this is not the case for the semi

synthetic data set, the patterns used m this set were randomized before it was dtvided 

into folds firstly as it did not contam the periodtctty of the simple sets and secondly 

because this increases the reliabihty of the testing. The final result for ttme 500 on the 

far nght of the plot shows the overall performance of the algonthms. As the !me shows 

performance over time, JUmps in the line represent outliers in the performance of the 

algonthm, points at which the predicted value had an unusually htgh error value 
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3.6.1 Synthetic data 
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Figure 36 Cumulative bearing residual for Caussian Binning ANN, Uniform Binning ANN, 

Causslan Binning KNN and Uniform Binning KNN when run on synthetic data set I 

The perfonnance of the algorithms is similar, however the Gaussian binned 

AN outperfonns the others by a clear margin. 

The Gaussian binned KNN is the second best algorithm showing; 

The KNN is capable of tracking targets 

The Gaussian bin ni ng system is superior on this data set. 
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Figure 37 C um.ulative bear ing residual for Ga ussia n Binning ANN, Uniform Binning ANN, 

Gaussian Binning KNN a nd Uniform Binning KNN when rnn on synthetic da ta set 2 

On this marginally harder data set the performance of the four algorithms is 

more closely matched than on the fi rst set. 

The ANN performs best overall. by a na rrow margin. 



Page 81 of289 

c.. 
0 
c.. 
c.. 
Gl 

Q,O 

.~ 
~ 
Gl 
.Q 

Gl 
:> 
•-I .. 
111 
~ 
~ 
c 
~ 
u 

7000 .-----.-----r-----r-----~----~----~----,-----,-----,-----~ 

6000 

5000 

4000 

3000 

2000 

0 50 1 08 158 200 250 300 350 

Gaussian RHH -
Uniforn RHH -

Gaussian KHH -
Uniforn ICHH - -

480 450 500 

Figure 38 Cumulative bearing residual for Caussian Binning ANN, Uniform Binning ANN, 

Gaussian Binning KNN and Uniform Binning KNN when run on synthetic data set 3 

As the data sets become more complex, the ANN is starting to have a clear 

advantage over the KNN. 

For this data set the ANN is superior regardless of the binning algorithm, 

The performance of the KNN shows more distinction between uniform and 

Gaussian binning. 
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Figure 39 Cumulative bearing residual for Gaussian Binning ANN, Uniform Binning ANN, 

Gaussian Binning KNN and Uniform Binning KNN when run on synthetic data set 4 

Again, the performance of the two ANN based algorithms can be seen to be 

similar. 

The KNN based algorithms aga in show more distinction between the uniform 

and Gaussian binning versions than the ANN. 
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3.6.2 Semi-synthetic data 

3.6.2. 1 Binning parameters 
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Figure 40 RMS bearing residuals aga inst number of output bins (between 1 and 45) when run on 

the semi-synthetic data for the Uniform Binning KNN, Gaussian Binning KNN, Uniform Binning 

ANN, Ga ussiau Binning ANN, EKF, PF and Single Output ANN 

The Gaussian ANN performs best overall, giving the lowest error for virtually 

every outlier. 

The uniform binning KNN performs the worst overall, performing considerably 

worse than the other algorithms on almost every number of outputs. 

The Gaussian binning is only a little better, again performing worse than all of 

the non-KNN techniques. 

The performance of the ANN based classifier predictors is very similar to the 

baselines. 
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Figure 41 is a repeat of figure 40, showing only the best performing of the new 

algorithms, along with the two best baselines. 
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Figure 41 RNIS bearing res iduals aga inst number of output bins (between l and 45) when run on 

the semi-synthetic data for the Gaussian Binning ANN, EKF and PF only 

The performance of the Gaussian binning ANN algorithm is shown to be very 

similar to the performance of the PF, however the ANN is generally better. 
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All of the algorithms were then tested as classifiers to see how well they predict in 

which bin the next bearing would fall. The pred ictions of the non-binning classifiers 

were run through the binning algorithms to a llow direct comparison. 
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Figure 42 % classification error against number of output bins (between 1 and 45) when run on the 

semi-synthetic data for the Uniform Binning KNN, Ganssian Binning KNN, Uniform Binning 

ANN, Gaussiau Binning ANN, EKF, PF and Single Output ANN 

As expected, with a single output bin, all a lgorithms have an error of zero. 

The re lative performances mirror those observed o n the RMS bearing error. 
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Figure 43 is a re peat of figure 42, showing only the best performing of the new 

algorithms, along with the two best base lines. 

'-
0 
'-
'-
G) 

c 
0 .... .. 
"' () .... ... .... 
~ 
"' ~ 
() 

~ 

79 .-----.------.-----.------~-----.-----,------~-----.-----, 

69 

59 

49 

30 

20 

10 

Gaussian ANN ~ 
EICF >----*---< 

Particle Filter ~ 

-10 L-----~----~------~----~----~----~~----~-----L----~ 
9 5 w ~ ~ ~ ~ ~ ~ ~ 

Nunber of outputs 

Figure 43 %classification error against number of output bins (between I and 45) when run on the 

semi-synthetic data for the Ga ussian Binning ANN, EKF and PF only 

On this plot it is c lear that with fewer outputs the new algorithm is less accurate 

than the baselines, however with larger number of bins, and therefore finer 

discrimination on predictions, the performance of the new algorithm is almost 

identical to the basel ines. 
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3.6.2.2 Input parameters 
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Figure 44 RMS bearing residuals against n umber of input bins (between 1 and 45) when run on the 

semi-synthetic data for the Uniform Binning KNN, Gaussian Binning KNN, Uniform Binning 

ANN, Gaussiau Binning ANN, EKF, PF and Single Output ANN 

Again the K.NN is poorer than a ll of the other techniques with the un iformly 

binned KNN performing worse than the Gaussian binned KNN. 

The Gauss ian binned ANN is again the best performing of a ll of the algorithms. 

As the number of inputs increases the performance of the KNN decreases. This 

may initially appear counter-intu itive; most algorithms improve with more data. 

However the KNN works by building up a database of examples with a count 

representing the relative probability of each example. As the input data is 

binned there are a fini te number of examples, the number of which varies with 

the number of input bins. As the number of bins increases the number of 

examples in the database also increases, so for the same training data there are 

fewer instances seen of each example. For the best performance it is required 

that some examples will have been seen many times, while other s imi lar 

examples have been seen far fewer times, which allows the KNN to 
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discrimmate When there were more bins the filter had actually seen only a 

single instance of many of the input patterns and non at all for many of the 

others 

It IS possible to explain this with numbers. Using the Umform Binning KNN as 

an example, if for the mput and prediction data a fixed bin size b 1 was used 

of0.1 degrees, and a maximum bearing bm of 10 degrees, for each mput 

there would be 10 I combmatwns 2bm+l 
bf 

There would also be 100 

combinations of the output (the predicted bearing). Therefore the total number 

of examples in the KNN database would be for n inputs. This 
2b (n+l) 
__ m+l 
bf 

would result in the ratios of training examples to possible combmatwns m the 

KNN database shown in table 7. This shows that the number of relevant 

examples decreases exponentlally wtth the number ofinputs. A scheme in 

which the bm s1ze was dynamically altered to keep the database size constant 

would remedy this and allow the KNN to be effective with a larger number of 

mputs, this would however still have a hmit to performance as the lowest 

possible useful number of bins is two, positive and negative. Even with this 

simple scheme with I 00 inputs and I output this represents 6.18X 1042 entnes 

in the KNN database, approximately the same number as IS the case wtth 20 

mputs in table 7, a number for which figure 44 shows that performance is 

already noticeably degraded. The same also apphes to the Gausstan binned 

version, as the number of bins per input is constant. 
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Number of inputs Entries in KNN database Examples per entry 
1 40401 6.187965644 
2 8120601 0 030785899 
3 1632240801 0 000153164 
4 3 2808E+11 7 62008E-07 
5 6 59442E+13 3 79109E-09 

10 2 1635E+25 1 15554E-20 
15 7 09802E+36 3 52211E-32 
20 2 32872E+48 1 07355E-43 
25 7 64007E+59 3 27222E-55 
30 2 50656E+71 9 97384E-67 
35 8 22353E+82 3 04006E-78 
40 2 69798E+94 9 2662E-90 
45 8 8515E+105 2 8244E-101 

Table 7 The number of entries m the KNN database and the number of examples per entry against 

number of inputs when usmg uniform bmnmg with a maxtmum bearing of 10, a bm s1ze ofO.l and 

training with the semi-synthetic data set 
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Figure 45 is a repeat of figure 44, showing only the best performing of the new 

algorithms, along with the two best baselines. 
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Figure 45 RMS bearing residua ls against number of input bios (between 1 and 45) when run on the 

semi-synthetic data for the Gaussian Binning ANN, EKF and PF only 

For fewer inputs the Gaussian ANN performs the worst. Here the PF performs 

best, and the PF g ives consistent level of error, regard less ofthe number of 

inputs. 

For more inputs the Gaussian ANN performs the best. 

The a lgorithm that gives the lowest error is the Gaussian ANN. 
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Figure 46 % classification error against number of input bins (between I and 45) when run on the 

semi-synthetic data for the Uniform Binning KNN, Gaussian Binning KNN, Uniform Binning 

ANN, Gaus ian Binning ANN, EKF, PF and ingle Output ANN 

Again the KNN performed the worst overall 

The Gaussian ANN performs the best, giving the lowest error at every point. 

Out of all of the new algorithms. only the Gaussian ANN outperforms the 

baselines. 
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Figure 47% classification error against number of input bins (between 1 and 45) when run on the 

emi- ynthetic data for the Gaus ian Binning NN, EKF and PF only 

llere the performance improvement made by the Gaussian binning AN is even 

clearer. The mean improvement on 1hc baselines is considerable. 



Page 93 of289 

Table 8 shows this broken down into the individual folds. Table 9 shows that this new 

algonthm the Gaussian Binning ANN (GANN) is more accurate than both the plain 

ANN and the EKF on all!O ofthe folds, while it is more accurate than the PF on 7 of 

the ten folds. From table I 0 it is possible to see that it can be said that the new 

Gausstan ANN is better than the ANN and the EKF with a confidence of 99.90%, 

however the confidence that the GANN is better than the PF ts only 82.81%. 

Fold 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ANN 
8.13 
7.67 
7.81 
7.64 
8.07 
7.71 
7.37 
7 81 
7.32 
7.72 

EKF 
7.13 
7.02 
7.1 
6.93 
6.98 
7.01 
7 05 
6.99 
72 
7.53 

Table 8 Results per fold for the ANN, EKF, PF & GANN 

B\A 
ANN 
EKF 
PF 

GANN 

ANN 
X 

X 

X 

X 

EKF 
10 
X 

X 

X 

PF 
6.84 
6 36 
65 
6.41 
6.78 
6.43 
6.13 
6.66 
6.04 
6.43 

PF 
10 
10 
X 

X 

GANN 
6 59 
6 46 
6 32 
6 35 
6 46 
6.43 
6.33 
6 56 
6.18 
6.42 

GANN 
10 
10 
7 
X 

Table 9 The number of folds for which algonthm A was more accurate than algonthm B for the 

ANN, EKF, PF & GANN 

B\A ANN EKF PF GANN 
ANN X 99.90% 9990% 99.90% 
EKF X X 99.90% 99.90% 
PF X X X 82.81% 

GANN X X X X 

Table 10 The percentage confidence that algonthm A was more accurate than algonthm B for the 

ANN, EKF, PF & GANN 
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Data set Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0.21 3 66 6.53 11.12 7 09 

PF I 74 3 07 5.88 10.12 6 46 

ANN 2.16 4 33 9.02 16.15 7.13 

Gaussian ANN 3.2 5 97 7.28 13.86 6.41 

Uniform ANN 5.1 628 7.53 14.09 7.15 

Gaussian KNN 4.09 6.5 12.58 16 8 7.71 

UniformKNN 4 56 6 52 9.51 15.26 7.16 

Table 11 The best RMS bearing error for each algonthm on each data set 

The new algorithms perform very poorly on the fully synthetic, very simple data 

sets 

The new algorithms, particularly the Gaussian ANN are very competitive With 

the baselines for the most realistic data set, the semi-synthetic data set. 

3. 7 Conclusions 

The results show that in terms ofRMS prediction error, as the number of m puts 

m creases, the accuracy of the proposed technique improves dramatically. With fewer 

inputs the two best baseline techniques both outperform the proposed techmque, 

however with more inputs the new techmque is considerably more accurate than all of 

the baselines Unsurprismgly, as the algorithm is classifier based, It performs better on 

the classification error metnc than any of the baselines. These results initially appear 

contradictory, however there is a non-linear relationship between bearing accuracy and 

classificatiOn accuracy 

When the number of inputs is more than fifteen, by using the Gaussian ANN algonthm 

the bearing error can be reduced by as much as 16% over the EKF, and 6% over the PF 

However there are many parameters such as the underlymg algonthm ( e g. ANN or 

KNN}, network size and structure and the learning algonthm that must be selected to 

find the most efficient and accurate network capable of outperforming the baseline 

techmques. Changing the parameters can significantly alter the performance, although 

the relationship between the parameters and the performance is clearly complex. 
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There are a number of examples in the literature of ANN ensembles outperformmg 

individual ANNs, therefore one logical next step would be to experiment to find 

whether using an ensemble improves performance in this application 

A set of parameters has been found that allows the ANN filter to outperform the EKF 

and Particle Filter. However although the average performance of the new algorithm is 

better than the state-of-the-art, this improvement was not shown to be statistically 

s1gmficant as it was an improvement in only seven out of the ten folds. Th1s results in a 

confidence that the new algorithm is an improvement over the old of only 82% which is 

lower than the 90% target set for th1s thesis As an Improvement is reqmred in at least 

eight out of the ten folds in order for the new algorithm's improvement to be considered 

statistically sigmficant, ways to improve the algonthm further must be found. 
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4 Ensembles of predictors 

4.1 Summary 

This chapter expands the ANN classifier based predictor developed in chapter 3, taking 

insptratton from the ideas of fusion described in chapter 2. The outputs of an ensemble 

of ANN classifier based predictors are fused to give a more accurate output than was 

possible wtth a smgle ANN predictor. Negative Correlation Learning (NCL) is used to 

train the ensembles. Iterations of the experiment are performed to find the optimal 

structure for the ensemble The result ts an ensemble which can outperform all of the 

predictors previously descnbed m terms of prediction accuracy. 

4.2 Introduction 

As noted in the previous section, there are many examples in the literature of ensembles 

whtch have been found to give superior performance over smgle ANNs. An ensemble 

is simply a collection of ANNs connected together with a form of fusion algorithm to 

combme the results, the first examples being proposed by [252] & [253] Many 

examples can be found in the literature of ANN ensembles [238][252] and mixtures of 

experts (292][144][148] bemg used successfully. The idea that multiple combined 

classifiers should be expected to outperform a single classifier was formally proven m 

[273] 

One simple method for creating an ensemble would be to train each internal ANN wtth 

standard backpropagation individually, and then take the mean output of the ANNs as 

the ensemble output This however is likely to result in a collection of very stmilar 

networks, giving very stmilar outputs, negating the advantages ofusmg an ensemble, as 

the mean would be virtually the same as the output of any of the components ANNs, 

while taking longer to train and test Many researchers, including [112][114][167] & 

[220], have found that accuracy and diversity between tts members are both required in 

order to create a successful ensemble. 

One way in which learning algorithms have been combined to create an algorithm more 

accurate than its components is a technique known as Boosting [92] [251]. Boostmg is 

a method for training ensembles of classifiers iteratively; all examples in the data set 

start wtth equal weight, but gain wetght tf they are misclassified by the algorithm. Thts 

weighting ts rerun every time a new classifier is added to the ensemble. In this way the 
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examples on whtch the ensemble is the worst at classifying are shown the most dunng 

training. Thts however is not in itself a traming algonthm, tt is more a way of 

organising the input data prior to exposing tt to the learning algorithm. 

What is requtred ts a technique for promoting dtverstty between the members of the 

ensemble One method which has been wtdely found to be effective in the literature is 

Negative Correlation learning, as described in section 4.4 NCL is a good choice for a 

basehne for numerous reasons [41]; 

• It has been shown to be more effecttve than other learnmg algorithms at 

selecting ensemble members, through adjustmg the balance between accuracy 

and dtversity [39] 

• One of the atms of its creators was to increase the amount of diversity in the 

networks constructed- which is also one of the objectives of the techmque 

proposed here. 

• It ts the basis of many other techniques which have been seen recently in the 

literature, and ts both wtdely used and effective (surveyed and categorised m 

[41 ]). 

4.3 Ensembles in time-series forecasting 

Recently a number of researchers have mvestigated ensembles of neural networks as 

time series predictors. In a recent survey paper on the area [312] descnbed time senes 

predtction as one of the four main areas of ensemble use, alongside multiple features, 

accuracy estimation and noisy data. 

The two most important decisions when creating a ttme series forecasting algorithm are 

how much htstoncal data must be used to make the predictiOn [154], and how far into 

the future to predict [149]. Both of these areas have been studied, and systems have 

been created to automatically tune the classifiers to the optimal values for the dataset. 

• The individuals whtch make up the ensemble may be fuzzy predictors [158], 

ANNs [62] [210], or any algorithm already used to make predictions. 

4.4 Negative Correlation Learning 

[179][180] & [181] introduced Negative Correlation Learnmg (NCL) which is a 

method of training ensembles of ANNs which encourages the ANNs in the ensemble to 

become dtverse The goal ofNCL is to negatively correlate the ANNs wtthin an 

ensemble so that their errors cancel each other out. ANNs are typically trained using 
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backpropagation, here backpropagatwn is used, however the error term is altered to 

include the correlation of the ANN to the rest of the ensemble 

The NCL error function is: 

Where i is the ANN within the ensemble, d is the ideal output, /, (xN) gives the result 

from running ANN 1 on data sample n ofN and f.ru.mbl, (x N) gives the output of the 

whole ensemble, d is the desired output, and 1-Is a parameter in the range [0,1] which 

governs how much the correlation of the networks should be used m trainmg e IS the 

error value passed to the ANN for traming using backpropagation. 

For the experiments in this section NCL was used to train an ensemble, with the NCL 

error value calculated for each bin in the output 

4.5 Experimental design 

The experiments carried out for this section were designed to be as close to the 

expenments in sections 2.7 and 3 as possible to allow direct comparison. Again, the 

algorithm was optimised on the same manner as the EKF,the PF and the ANN used in 

sectiOn 2. 7, a senes of experiments was performed to empirically calculate the 

parameters which required adjustmg in order to tune the algonthm to give its best 

performance for the data used. 

The NCL parameter J. and the number of hidden nodes were all derived this way, 

looping through possible values for each, evaluating their performance against each 

data set The learning parameter, number of input nodes and number of output nodes 

were set to the values found to be optimal in section 3. The number of ANNs in the 

ensemble was set to five, this IS not expected to be optimal, however it was planned 

that if the experiments were successful, more experiments would be planned in order to 

find the optimal number. 

As each parameter was tested, the RMS bearing error was evaluated, and the value of 

the parameter that gave the lowest RMS error was stored for use from that pomt on. 

There were two iterations of the procedure 

As the previous section identified optimal values for the number of input nodes and the 

number of output nodes, the values found in the previous section are utilised 
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4.6 Results 
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Figure 48 RM bearing residual for A between 0.0 and 1.0 and number of hidden node per 

en emble between 5 and 40 for ensembles consis ting of 5 A s trained with NCL using simple 

data set I 

There is a 'smile' shaped curve showing lambda effecting the accuracy, with 

both no diversity and lots of diversity giving poorer results than moderate 

amounts of diversity. 

Unsurprisingly the most accurate resu lt is for the largest number of hidden 

nodes, as there are five ANNs there are a total of two hundred hidden nodes in 

the ensemble. This may be as there is no noise, and it is a simple data set, there 

is no penalty for over-fitting, which a larger network may be capable of. 
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Figure 49 Rl\1 bearing residual for A. between 0.0 and 1.0 and number of hidden nodes per 

ensemble between 5 and 40 for en embles con i ling of 5 A N trained with NCL using simple 

data et 2 

The smile shape is again noticeable, though subtle 

llere the most accurate result is from having twenty hidden nodes per ANN. 

here the ensembles based on larger ANNs may be being penalised for over

fining. 



Page 101 of289 

7.8 
7.7 
7. 6 
7.5 
7.4 
7.3 
7.2 
7.1 

7 
6.9 
6 . 8 

HCL ensertble 

Figure 50 RM bearing residua l for A. between 0.0 and 1.0 and number of hidden nodes per 

ensemble between 5 and 40 for ensembles consisting of 5 A Ns trained with NCL u ing imp le 

data et 13 

Here the smile shape is more noticeable, showing a clear advantage of moderate 

amounts of diversity .. 

Again the largest networks are shown to be less accurate than both the medium 

sized and here the very small. The medium sized and smaller networks may be 

better at making generalisations about the data. 
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Figure S I RM bearing res idua l for A. between 0.0 and 1.0 and number of h idden nodes per 

ensemble between 5 and 40 for en ern bles consisting of 5 AN trained with NCL using s imple 

da ta set 4 

Here on the most complicated of the fully-synthetic data sets, the most accurate 

results come from the ensembles ' ith the fewest hidden nodes. 

The smile shaped effect of varying degrees of d iversity inclusion still more 

noticeable than on the first two sets. 
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Figure 52 RM bearing residual for )., between 0.0 and 1.0 and number of hidden nodes per 

ensemble between 5 and 40 for ensembles consisting of S AN Ns trained with NCL using semi

synthetic data set 

NCL ensembles are shown to be more accurate than single ANNs. 

Again the lowest number ofhidden nodes. and the medium number of hidden 

nodes give the best accuracy. 

The change in performance from find ing the correct number of hidden nodes is 

far larger than that obtained by varying the amount of diversity introduced. 
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Data set Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0.21 3.66 6.53 11 12 7.09 

PF 1.74 3.07 5 88 10.12 6 46 

ANN 2.16 4.33 9 02 16.15 7.13 

Gaussian ANN 3.2 5.97 728 13.86 6 41 

Uniform ANN 5.1 6 28 7.53 14 09 7.15 

Gaussian KNN 4 09 65 12.58 16 8 7.71 

UniformKNN 4 56 6 52 9.51 15 26 7.16 

NCL ensemble 2 97 4 21 7.03 13.2 6.29 

Table 12 The best RMS bearmg error for NCL tramed ensembles on each data set 

RMS Entropy Kohav1 Gen'd MdRAE MdAPE GMRAE 

Wolpert D1vemty 

NCL 6 293 0 685 0 122 0 175 5 390 I 148 32680 

Table 13 The best value for NCL trained ensembles on each metric for the sem1-synthetic data set 

Table 14 shows these RMS bearing error results broken down into the mdtvtdual folds. 

Table 15 shows ensembles trained with NCL are more accurate than both the plam 

ANN and the EKF on alllO of the folds, while they are more accurate than the PF and 

the Gaussian Binned ANN on 8 of the ten folds From table 16tt ts posstble to see that 

it can be satd that the ensembles are better than the ANN and the EKF wtth a 

confidence of99.90%, and are more accurate than the PF and GANN with a 

confidence of94.53%. Therefore the NCL trained ensembles meet this thests' cnterion 

of a confidence level of greater than 90% in it being supenor to the baselines and it ts 

therefore possible to say that the improvement in accuracy over the state-of-the-art 

provided by this new form of bearing predictor is statistically significant. 
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Fold ANN EKF PF GANN NCL 
1 8.13 7.13 6 84 6 59 6.24 
2 767 7 02 6 36 6 46 6.29 
3 7.81 7 I 6.5 6 32 6.27 
4 7.64 6 93 6.41 6 35 6.31 
5 8 07 6.98 6.78 6.46 6.25 
6 7.71 7.01 6 43 6.43 63 
7 7.37 7.05 6.13 6.33 6.33 
8 7.81 6.99 6 66 6.56 6.29 
9 7.32 72 604 6.18 6.29 
10 7.72 7 53 643 6.42 6.29 

Table 14 Results per fold for the ANN, EKF, PF, GANN & NCL 
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B\A ANN EKF PF GANN NCL 
ANN X 10 10 10 10 
EKF X X 10 10 10 
PF X X X 7 8 

GANN X X X X 8 

Table 15 The number of folds for whtch algonthm A was more accurate than algorithm B for the 

ANN, EKF, PF, GANN & NCL 

B\A ANN EKF PF GANN NCL 
ANN X 99.90% 9990% 99.90% 9990% 
EKF X X 9990% 99.90% 99.90% 
PF X X X 82.81% 94.53% 

GANN X X X X 9453% 

Table 16 The percentage confidence that algorithm A was more accurate than algorithm B for the 

ANN, EKF, PF, GANN & NCL 

4.7 Conclusion 

NCL has proven to be an effective method for training ensembles to perform target 

tracking, outperformmg both of the baseline techniques; the EKF and PF, and the 

ANNs produced in chapter 3 These new predictors have been shown to outperform 

every techmque presented so far on every data set. The gains achieved in this 

application from utilismg NCL and ensembles are statistically significant. 

This IS novel as not only have ensembles of classifiers not previously been used to 

perform target tracking, but NCL has not previOusly been used to tram a target tracking 

ensemble. 

Although successful, the training stage proved to be very slow, allowmg relatively few 

combinations of parameters to be evaluated in a reasonable time-scale. Further work IS 

required to find a method for creatmg and training ensembles which is less time 

consuming and therefore able to perform a more thorough search of the solution space. 

One of the drawbacks ofNCL is that as a training algonthm It does not have the 

capability to design the ANNs on which it is apphed. A method is required to 

somehow automatically generate the optimal structure for the network which would 

provide the maximum level of accuracy, while taking inspiration from the NCL to 

enhance the ensemble's performance. 
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5 Genetic algorithms to create ensembles 

5.1 Summary 

A genetic algorithm is described which can design a whole ensemble; structure and 

weights This automates the process of finding the optimal structure, and removes the 

requirement to train the ensemble. Although the process creates ensembles which are 

more accurate than the ongmal baselines, and the improved versions developed in 

chapter 3, it does not manage to create an ensemble capable of outperforming the one 

created w1th NCL in chapter 4. 

5.2 Introduction 

Chapter 4 showed that it was possible to improve upon the earlier results using an 

ensemble of ANNs and training them with NCL. However due to the time consuming 

nature of ANNs, especially large ANNs being trained on large data sets, it is not 

possible to exhaustively test all possible parameters for the structure of the ANNs m the 

ensemble, or for the training algorithm. A technique was reqmred to speed up this 

process and find the optimal trackmg ensemble 

Genetic algonthms (GAs) can be used to discover a population ofPareto-optimal 

md1viduals in a single run [30], solutions for which no other is better m every way. 

The goal of this section is to further show that classifiers can be used as time series 

predictors, and identifY a method for desigmng ensembles of predictors to enable them 

to outperform basehne techniques 

In this chapter a novel method is descnbed for bearing prediction in target tracking 

using GAs to create ensembles of ANN classifiers, with the goal of creating a bearing 

predictor for target tracking which outperforms the traditional techniques. 

Although the classifier chosen for these experiments is an ANN, the technique is 

genenc to all classifiers and therefore any classifier could have been chosen, ANNs 

being selected as they were the best performing classifier for the task in previous 

experiments. 

The rest of this chapter is organised as follows: section 5.3 gives a briefhterature 

review, section 5.4 outhnes the technique proposed, section 5.5 gives a description of 

the expenments, sectiOn 5.6 outhnes the results, and finally sectiOn 5.7 provides the 

conclusions. 
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5.3 Evolving ANNs in the literature 

ANNs are usually trained using example data, using supervised or unsupervised 

leammg Unsupervised techniques include backpropagation. There are a number of 

examples in the literature of ANNs which are in part constructed usmg an evolutionary 

algorithm [305] surveys the field, dividmg the current work into three broad 

categories, (evolution of weights, architecture and learning rules), outlined here in 

sections 5.3 I to 5.3 3 

5.3.1 Weights 

Evolutionary algorithms and GAs have been used to dtscover the optimal weights for 

ANNs. This is less likely to be trapped m local mmtma, and more likely to find the 

global optimal values than gradient descent techniques such as backpropagation. The 

most important deciston to be made is to establish the representation of the connection 

weights. Weights may be represented by bmary strings [291][258][71][146], or by 

strings of real numbers [232] [302] [242] [267]. In the literature there are many 

examples of problems on which the performance ofEANNs are superior to gradient 

descent trammg as they can train recurrent ANNs [293][248][297], fuzzy ANNs [297] 

[141], and on some problems train ANNs faster than backpropagation [232][233]. 

5.3.2 Architecture 

5 3.2 l Direct encoding 

In direct encoding the chromosome descnbes the resultant ANN completely, givmg an 

exact one to one mappmg from genes to ANN. An n x n matrix is used to represent an 

ANN with n nodes, a one at element (ij) represents a link from node 1 to node J, while a 

zero would mean there is none An example of a matrix and the ANN it represents is 

given in Ftgure 53. This scheme can represent feed forward or recurrent networks If It 

is known in advance that only feedforward networks are required, only the upper left 

triangle of the matrix is required. The size of the final ANN must be known m advance 

in thts scheme. Direct encoding has been used by [290][247][195]. 
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2 3 4 5 6 7 8 

I 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 I 0 0 0 0 0 0 0 
4 I I 0 0 0 0 0 0 6 7 
5 0 I 0 0 0 0 0 0 
6 0 0 I I 0 0 0 0 
7 0 0 0 0 I 0 0 0 4 5 
8 0 0 0 0 I I 0 

2 

F1gure 53 D1rect encodmg of an ANN structure 

5.3.2.2 Indirect encoding 

There are a number of different techniques which reduce the s1ze of the search space by 

shortenmg the chromosome, only specifying the ANN indirectly [304][281][228][235]. 

One approach IS to create a blueprmt for ANN construction by specifying, for example, 

the number of hidden layers, and the number of nodes in each hidden layer. The 

chromosome would not completely describe the final ANN in the genes, rules must be 

established in advance to convert the chromosome to an ANN. For example, the 

architecture could be assumed to be feed forward and fully connected between layers. 

This would therefore only search a subset of possible networks. This approach has been 

used in [69][111]. 

Another method of indirect encodmg is to use development rules [304][281]. Usmg 

development rules the resultant network would be fully described. Rather than 

evolving the network itself, a set of rules are evolved, an example of which can be 

found in Figure 54. The first three lines ofF1gure 54 show the evolved rules, while the 

rest of the figure shows how these rules would be applied to create the direct encoding 

matrix, resulting in the ANN shown in the bottom right of Figure 54. 
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a a a a 

s A B b a a a 
c D c d a a 

a a b e 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
I I 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 
I I 0 0 0 0 0 0 
0 0 0 0 I 0 0 0 
0 0 0 0 I 0 

Figure 54 Using development rules to create an ANN 

5.3.3 Architecture and weights 

One drawback wtth evolving architectures alone is that the resultant ANNs must be 

trained before they may be used. The wetghts discovered durmg training depend upon 

the imtial state before training, which is usually a set of random values, so there is a 

one-to-many mapping between chromosome and trained ANNs. As a result of this, 

each chromosome must be tested a number of times to accurately establish its fitness. 

Additionally different training algorithms may produce different results, even when the 

ANN starts with the same connection weights. This can be summarised as the genotype 

not having a one to one mapping to the phenotype. One way to alleviate this problem ts 

to eo-evolve the architecture and the weights. As this leads to a one-to-one mapping of 

genotype to phenotype, multiple evaluations of each chromosome are unnecessary to 
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establish fitness accurately. This approach has been widely used m the literature [258] 

[8] [193] [306] [182] [303] [199] [165] [195]. 

5.3.4 Evolving ensembles 

The idea of evolving ensembles is not new, there are examples m the literature of 

evolving a population of ANNs, and then once evolution IS finished, using the GA 

populatiOn as the ensemble [52][53][54][183]. In [183] the GA consists of a population 

of ANNs which are tramed usmg NCL, and an evolutionary algorithm whtch selects 

individuals from the population to propagate to the next generatiOn with Gaussian 

mutation 

The DIVerse and ACcurate Ensemble Learning Algorithm (DIVACE) [53][54] and 

DIVACE li [52] algorithms are multi-objective evolutionary approaches to creatmg 

ANN ensembles. DIVACE [53][54] uses a multi-objective algonthm in which uses the 

NCL correlation penalty in additiOn to accuracy as objectives. As wtth [183] the GA 

consists of a population of ANNs which are combined m the last generation to fonn the 

ensemble. At each generation of the GA the individual ANNs are trained wtth 

backpropagation. DIVACE II [52] differs in that It also uses a variety of other methods 

for improving the perfonnance of the algorithm including Boosting [92] [251] and 

Bootstrap Aggregating or Bagging [37]. 

Although not descnbed as an evolutiOnary algorithm another algonthm created to 

iteratively construct ensembles was presented in [142] [142] started with an ensemble 

of very stmple ANNS whtch was trained with NCL. If this gave errors wtthm an 

acceptable limit then the algonthm was tenninated. If not then for each ANN which is 

less accurate than a set threshold a new node is added, if none of the ANNs are below 

the threshold then a new ANN was added to the ensemble, and then the process is 

repeated. 
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5.4 Proposal 

5.4.1 Original aim 

Chapter 4 has shown that classifier ensembles can be used as predictors. In chapter 3, 

the ANN stood out as the best classifier for the purpose, therefore the ANN was chosen 

as the classifier to use in further expenmentation. In the earlier expenments the 

ensembles were designed by hand, then trained with NCL. Thts is a time consuming 

method of producing ensembles, as many structures must be designed manually, trained 

and tested before one is chosen for use, a process involvmg much trial and error. 

One problem with the evolutionary approach taken m [52][53][54][183] in which a GA 

is constructed which contains individual ANNs and the final generation of the GA IS 

used as an ensemble is that although the ANNs have evolved to perform well 

mdtvidually, the evolutionary process does not select based upon the abtlity of a 

network to improve the whole ensemble. To resolve these issues, a new technique was 

proposed. An ensemble would be evolved by representing whole ensembles in each 

chromosome. A GA would then be run to discover the optimal ensemble. This was 

intended not to select ANNs individually that might make a good ensemble, but to 

evolve the best overall ensemble The individuals were selected as parents for the next 

generation using the Non-Dominated Sorting Genetic Algonthm II (NSGA Il) 

algorithm [77] a full description of the algonthm used to rank the individual ensemble's 

distance from the Pareto Front is given m appendtx E 
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Figure 55 is a flow chart detailing the steps required to run the experiment. Software 

was written to conduct this proposed experiment, and experiments began However it 

soon became clear that the full run would take several years to complete, which was 

unfortunately far more time than was available for experimentation, and therefore the 

experiment was halted before any results were obtained. A solution was required to 

evaluate and evolve the ensembles faster. 

5.4.1.1 Attempted hardware solution to running speed problem 

Initially 1! was thought that the best way to improve the situation might be to leave the 

algorithm unchanged, and simply use more hardware. There are several distributtons of 

the Linux operating system, including Mos1x [319], OpenMosix [316], Chaos [318], 

Kerrighed [317] and OpenS SI [315], which allow the user to run distributed processing 

Without havmg to specifically write any code in order to achieve it. The operating 

system runs across a number of networked computers, automatically distnbuting 

processing across the network, while giving the user at one of the computers the 

impression that they are usmg a single system. It is th1s feature that gives them the 

generic name of Single System Image (SS!) operatmg systems. 

The only requirement on software m order to make use of these features IS that any part 

of the program which should be d1stnbuted must be run in a separate process, as it IS 

processes wh1ch migrate between the machines to balance the processing loads between 

them. 

One of the SSI distributions was chosen, and the software was rewritten to evaluate 

each ensemble in a separate process, and wnte outputs to a file The main program 

then parsed the text file to collect the results which it used in the evolutionary process. 

The experiments were then restarted With six dual processor machines sharing the 

processing, however even with twelve processors working on the problem it soon 

became clear that 1t would still require many months to finish the experiments, wh1ch 

was still longer than the time available Therefore the experiment was again halted 

before any results were obtained. 

5.4.2 Improved process 

It was clear that the process used to th1s point was not efficient enough to evolve the 

ensembles as planned, and a new, more efficient techmque was required to find the 

optimal ensemble. There was a clear inefficiency in the existing technique - the 

traimng must begin afresh when each new ensemble is tested - and this trammg is 



Page 115 of289 

discarded after the evaluation IS complete Training the ANNs in each ensemble was 

the most time consuming step of the whole process. With this in mind, the process was 

altered to eo-evolve the network structure and weights. This had three advantages; 

I Training was not repeated for each generatiOn, making the process orders of 

magnitude faster. 

2. The weights were retained between generations, so knowledge acquired by an 

individual network was less likely to be lost. 

3. As computationally expensive training was no longer required, the cost of 

evaluatmg the fitness of a chromosome was many orders of magnitude faster. 

The technique mvolves evolving a group of neural networks to predict bearings as an 

ensemble, as shown m Figure 56. The earlier figure 55 showed the strategy used 

previously, one difference between figure 55 and figure 56 is highlighted m a darker 

shade of blue in figure 55 and has been removed in figure 56, while the other difference 

is highlighted in a darker shade of blue in figure 56. A GA is used to evolve ensembles 

of neural networks mcluding the weights of the connections w1thm the ANNs, in other 

words the ANNs are created completely trained. The GA is only required for the 

trammg phase of the algorithm. In order to apply a classification algorithm to the time

senes prediction problem, the data is converted into a series of input/output sets usmg a 

shdmg wmdow approach; this was described in sectiOn 2 7 6.2.1. 

Importantly, as the ANNs are no longer trained in this approach, it is not possible to use 

NCL to decorrelate the ANN outputs. 
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Many aspects of this technique are nove l; evolving whole ensembles o f /\NNs (weights 

and structure) where each individual in the GA represents an entire ensemble, us ing 
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ensembles of classifiers as time-series predictors and using both accuracy and diversity 

to evolve ensembles (rather than populations of ANNs to use as ensembles as used in 

[53][54] & [182]). 

Section 5 4 3 outlines both the ensemble structure, and their component ANNs, while 

section 5 4 4 descnbes the Multiple-Objective Genetic Algorithm (MOGA) used to 

evolve them. 

5.4.3 Artificial neural network used 

The aim of the work IS to produce the best possible ensemble of Artificial Neural 

Networks (ANNs) for perfonning target tracking through classification. Each member 

of each ensemble tested will be a bearmg predicting neural network as in [ 41]. The 

output ofthe network is a series of binned probabilities, each representmg the 

likelihood of the next bearing being in a particular d1recl!on. These probabilities can 

then be converted into a bearing using a binning function, as descnbed m secl!on 3 4 I. 

5 4 3.1 Ensemble output fusion 

Once the required binning function has been applied to each ensemble member m turn 

to produce a bearing prediCI!on, the outputs are then combined usmg a weighted 

average, as shown in Figure 57 Although the weights w 1 , w 2 , ••• , w m are 

evolved, and can each be any value in the range [0,1], before they are used it is ensured 

that they sum to I ; 

w, 
w =--,new ~m 

.&:... ;=I 

5.4.4 Genetic algorithm 

The ensemble was constructed usmg a Genel!c Algorithm (GA) Each individual in the 

GA corresponded to a whole ensemble of predictors The aim of the experiments was 

to evolve the most accurate ensemble possible by simultaneously minimismg predictor 

errors and maximising classifier diversity 

5.4.4.1 Selection 

To ensure accurate testing of the method, I 0 fold cross-validatiOn IS used Evolution is 

perfonned I 0 limes, each time with different data. The first time, the first I 0% of the 

dataset is used as the test data. The next time the data between I 0% and 20% is used as 

test data and so on until the whole data set has been used as test data in one of the runs. 
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A further 20% of the data is used for valtdatwn. The rest is used for training, all of the 

training being carried out as a by-product of evolution. Table 17 is a table of which 

data IS used for which run. 

Run number Test Data Validation Data Training Data 

1 I 2,3 All others 

2 2 3,4 All others 

3 3 4,5 All others 

4 4 5,6 All others 

5 5 6,7 All others 

6 6 7,8 All others 

7 7 8,9 All others 

8 8 9,10 All others 

9 9 10,1 All others 

10 10 1,2 All others 

Table 17 The tenth of the data set used in each run ofthe ensemble 

The results of each ensemble on the traming, validation and testing data are stored. The 

results from using the traming data are used in the genetic algorithm to rank the 

ensembles. The GA is run until the valtdatton results show no improvements for three 

generations. The results shown in this thesis are the mean of results from the testmg 

data, in the final generation, across aii!O folds 

If this technique was used in a tracker, the GA would be used when the tracker was 

designed to select the ideal ensemble based upon a sample oftrainmg data, which 

should be large enough to represent the data on which the tracker would be used. One 

ofthe resulting ensembles would be used in the tracker and would require no further 

trammg This is an advantage with ANNs as they are slow during the training phase 

but very fast when used simply to find an output based on a given set of inputs. 
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Selection for the next generation was based upon the RMS bearing error of each of the 

ensembles. The weighting used for ensemble 1 in the following generation is 
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max( e)-e, 
w, ( ) where e IS RMS bearing error and n is the population 

J: ;=, max( e)-e1 

size, which ensures that fitness is inversely proportiOnal to bearmg error 

To create a population s1ze of n, n individuals were selected from the previous 

generation, based on their fitness value. Of these n individuals, I 0% are camed 

through to the next generation unaltered, these are the ehte individuals. The other 90% 

are divided into pairs, and crossed, as descnbed m sectiOn 5 4 4.2 

5.4.4.2 Crossing 

The most commonly used GA method of s1mulatmg sexual reproduction is to divide the 

individuals selected by the roulette wheel into pairs of parents and then combine them 

to produce the offspnng for use m the next generation as described in appendix E. 

Single point crossover IS used to combine the parents, producing two child genomes. 

Mutation is applied to both of these at a rate of 5%, in other words one m 20 of the b1ts 

in the genome is inverted. 

5.4 4.3 Genome 

Each individual in the GA corresponded to a whole ensemble of predictors The gene 

therefore con tamed a series of individual ANNs (Table 18), with each ANN section of 

the gene strmg storing not only all of the informatiOn required to create the network; its 

size, topology, binning functiOn and activation functions but also a boolean which sets 

whether or not the network will be included in the ensemble, and a value w which 

was the weight to use for the network in the weighted average combination (Table 19). 

This section was repeated M times within the gene string to allow it to represent an 

ensemble containing up to M classifiers. Using this representation it was possible 

simultaneously to evolve a whole ensemble of classifiers (without havmg to pre-set the 

ensemble size), and ensure the ensemble's diversity. 

Table 18 to Table 20 gives the detail of the chromosome of the ensemble. In the 

experiments the maximum number of ANNs m the ensemble was set to I 0, as this was 

empirically found to be a good balance between performance and time, however the 

exact number of ANNs used in the ensemble between I and the maximum was decided 

by the GA, as shown in Table 19, the ANN chromosome could turn individual ANNs 

on or off. The same is true for hidden nodes. Table 20 shows how although there is a 
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preset maximum to the number of hidden nodes, the GA chooses the number to use in 

each ANN m the ensemble, addmg to the amount of diversity possible 

Name Type 

Network 0 ANN chromosome 

Network I ANN chromosome 

... 
Network M ANN chromosome 

Table 18 The ensemble chromosome 

Name Type 

w (The weight used when fusing in ensemble) float 

Use this network boo lean 

Input node 0 bias 

Input node I bms 

.. 
Input node n1 bias 

Hidden node 0 Hidden node chromosome 

Hidden node I Hidden node chromosome 

... 
Hidden node n2 Hidden node chromosome 

Output node 0 bias 

Output node I bms 

.. 
Output node n3 bias 

Table 19 The ANN chromosome 

Name Type 

Use this node Boo lean 

Weights input Array of floats with as many values 

as there are input nodes 

Weights output Array of floats with as many values 

as there are output nodes 

Bias Float 

Table 20 The hidden node chromosome 
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5.4.4.4 Worked example of ensemble construction 

The chromosome descnbed ts a binary string which represents all of the parameters of 

the ANN. This section gives a worked example of a chromosome of the same type 

used in the experiments, but simplified considerably for clarity. 

In this example all floating point numbers are represented as 5 bits and may take values 

between 0 and I, Table 21 shows the type conversion used for numbers between bmary 

and floating point The maxtmum number of ANNs is three. The maximum number of 

hidden nodes is restncted to 2, and both the number of input nodes and output nodes are 

set to 2. Although m thts example the last three of these numbers are the same, in 

practice they can be set to different numbers 

Decimal Floating Decimal Floating 
Binary Integer point Bmary integer point 
value value equivalent value value equivalent 
00000 0 0 000 10000 16 0 516 
00001 1 0 032 10001 17 0 548 
00010 2 0 065 10010 18 0 581 
00011 3 0 097 10011 19 0 613 
00100 4 0129 10100 20 0 645 
00101 5 0 161 10101 21 0 677 
00110 6 0194 10110 22 0 710 
00111 7 0 226 10111 23 0 742 
01000 8 0 258 11000 24 0 774 
01001 9 0 290 11001 25 0 806 
01010 10 0 323 11010 26 0 839 
01011 11 0 355 11011 27 0 871 
01100 12 0 387 11100 28 0 903 
01101 13 0 419 11101 29 0 935 
01110 14 0452 11110 30 0 968 
01111 15 0484 11111 31 1 000 

Table 21 Example ofbmary to Ooatmg point conversion (minimum value 0, maximum 1, 5 bits) 

A random 204 bit binary string ts shown below, while table 22 shows how the binary 

strmg ts tokenised, parsed and converted to ensemble parameters. Finally Figure 58 

shows the ANN ensemble that would result from these values 

IOOIIOOOOOOOOOOOOOOOOIOOOIOOOIOIOOIIOOOOOOOOOOIIOOIOOOOIIlOlOOOOOOOOIO 

IOOOOOOOOOOOOOOOIOOIOIOIIOIIIIIOOOOOOOOOIOIIOOOIIOIIOOOIIOOIOOOOOOIOIO 

OIOOOOOOOOOOOOIOOIOIOIIOIIIIIOOOOOOOOOOOIIOOOIIOIIOOOIIOOIOOOOOO 

I ANN I Component Subcomponent 

Binary 

value 

Integer 1 Fully parsed I 

value I value I 
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AnnO w 10011 19 0 612903226 
Use 0 0 TRUE 
Input b1as 00000 0 0000 

00000 0 0000 
Hidden 

node 0 Use 0 0 TRUE 
We1ghts 1n 00001 1 0 032 

00010 2 0 065 
We1ghts out 00101 5 0 161 

00110 6 0194 
B1as 00000 0 0000 

Hidden 

node 1 Use 0 0 TRUE 
We1ghts 1n 00011 3 0 097 

00100 4 0129 
We1ghts out 00111 7 0226 

01000 8 0258 
B1as 00000 0 0000 

Ann 1 w 10100 20 0645 
Use 0 0 TRUE 
Input b1as 00000 0 0000 

00000 0 0 000 
Hidden 

node 0 Use 0 0 TRUE 
We1ghts 1n 01001 9 0 290 

01011 11 0 355 
Weights out 01111 15 0484 

10000 16 0 516 
B1as 00000 0 0000 

Hidden 

node 1 Use 1 1 FALSE 
We1ghts 1n 01100 12 0 387 

01101 13 0 419 
We1ghtsout 10001 17 0 548 

10010 18 0 581 
BiaS 00000 0 0 000 

Ann 2 w 10100 20 0645 
Use 1 1 FALSE 
Input b1as 00000 0 0000 

00000 0 0000 
H1dden 

node 0 Use 0 0 TRUE 
We1qhts 1n 01001 9 0 290 

01011 11 0 355 
We1ghts out 01111 15 0484 

10000 16 0 516 
BiaS 00000 0 0 000 

Hidden 

node 1 Use 0 0 FALSE 
We1ghts 1n 01100 12 0 387 

01101 13 0 419 
We1qhts out 10001 17 0.548 
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I B1as 
110010 

00000 1~ I 

Table 22 Example binary chromosome to ensemble parameters 

0.61 

In thi5 example aD node 
biases are zero 

o 581 I 
0 000 

F1gure 58 Ensemble cons1stmg of two ANNs produced by parameters m Table 22 

0.29 0.36 

In the above example each ensemble was represented by a 192 bit long binary string. 

In the experiments conducted for this thesis, each ANN m the ensemble had 20 inputs, 

10 outputs and up to 40 hidden nodes, each ensemble had up to 10 ANNs, and each 

floating point number was represented by 8 bits, representing a weight in the range [-

2,2] This resulted in a bmary string 101220 bits, approximately 98.85 Kb long. Figure 

59 shows how the chromosome size would vary with the maximum number of ANNs It 

could represent, and this can be seen to be a linear relatiOnship and directly 

proportiOnal.. 
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F1gure 59 Size of chromosome given dtfferent rnax1mum number of ANNs 

5.5 Experiments 

5.5.1 Objective 

The goal of the expenments was to produce the most accurate ensemble of predictors 

by op!Imismg the overall accuracy of the ensemble, rather than evolving accurate 

ensembles and combmmg them It was expected that this would also perform better 

than NCL which penalises classifiers which give similar output to the ensemble by 

giving them a lower weight when the outputs are combined with a weighted average. 

To mmimise computational effort required to explore the vast search space of possible 

solutions, the weights of the internal connections for the ANNs in the ensemble were 

eo-evolved With the structure of the networks, eliminating the requirement to tram 

networks or ensembles indiVIdually, resulting in traming being preserved between 

generations. 

5.5.2 Genetic algorithm 

The GA was implemented in Java as descnbed in section 5.4.4. Each generation 

contained 500 ensembles, containmg at most 5 ANNs. A fixed number of generations 

was not used, the GA was run until the GA stopped giving an increased performance 

for three successive generations. The four measures of diversity along with the four 

measures of accuracy were calculated at the end of each generation 
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5.5.3 Neural network ensembles 

The ensembles were constructed as text files in the ANN format used by the Stuttgart 

Neural Network Simulator (SNNS) [320]. The input file for SNNS was constructed to 

create an extra layer ofmput nodes before the mput nodes of the ANNs, this layer 

simply redirected the ensemble input unchanged to each ANN m the ensemble. An 

extra output layer was used to combme the ANNs using weights w1 ,w2 , ... , w. taken 

from the genome. The ensembles were evaluated using the SNNS 

5.6 Results 

RMS bearing error are given m this section for experiments using both the pure 

synthetic and semi-synthetic data sets. 

5.6.1 Pure synthetic data 

In order to compare the new technique against the baselines, a series of pure synthetic 

data sets were constructed, as descnbed in section 2.7.6.1. These were designed to 

incrementally test the performance of the algonthms agamst increasingly 'difficult' 

data. The short nature of these sets allows the full algorithm output to be displayed 

here, along with a plot of the error residuals. The baselines used in these experiments 

are the two best performing baseline techniques m section 2.7, and the NCL tramed 

ensemble developed in secllon 4; the Particle Filter and the EKF. 

5 6 1.1 Experiment 1 

The first data set used in testing is a deliberately simple set based upon a sme wave, 

described in section 2. 7 .6.1.1. 
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Figure 60 O utput bearing values for best ensemble created with GA, tbe EKF and the PF along 

with the true (expected) va lue for every data point in pure ynthetic data set I 

lt is impossible to distinguish between the ANN ensemble. the baselines and the 

truth, showing that the new ensemble tracks relatively well on this simple set, 

though it is not possible to obtain any stronger conclusions from this plot. 
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Figure 61 Output bearing residuals for best ensemble created with GA, the EKF and the PF a long 

with the true (expected) value for every da ta point in pure synthetic data set 1 

Here the performance is c learer to sec; The newly created algorithm is more 

accurate than the PF, though less accurate than the EKF on this set. 

Excluding the oull iers, the EKF can be seen to be the most accurate on this very 

s imple data set, however the outliers are s ignificant enough 



Page 129 of289 

~r-----~----~----~-----r-----r----~----~----~----~~--~ 

800 

700 

600 

500 

400 

300 

200 

100 

50 100 150 200 300 350 

ffl'l EnseMlle ~ 
EJ(f Hf--1 

Parttcle Filter 

400 450 

Figure 62 umulative bearing residuals for best ensemble created with GA, the EKF and the PF 

along with the true (expected) value for every data point in pure synthetic data et I 

• Once again the cumulative plot best demonstrates the relative performance. 

• Evolved classifier ensembles outperform the Particle filter, however the EKF is 

by far the most accurate on th is very simple data set. 
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5.6.1.2 Experiment 2 

As the first experiment showed that the new algorithm was capable of making bearing 

predictions, a second data set was constructed which was only a little more 

complicated. This data was originall y shown in section 2.7.6.1.2. 

~----~~---.-----.-----.----.-----~----.---~----------~ 

1~ 

100 

0 

-100 

-150 

True bearIng t-+--< 
Ann Ense~le ~ 

El<F 1--*H 
ticle Filter~ 

-~ L-----L---~L---~L_--~L_--~----~----~----~----~----_j 

o ~ m ~ ~ ~ ~ ~ • ~ ~ 

Figure 63 O utput bearing va lues for best ensemble created with GA, the EKF and the PF a long 

with the true (expected) value for every data point in pure synthetic da ta set 2 

This plot has been included to show the original output of the algorithms to give 

a picture of the performance, but the differences between each algorithm are too 

small to draw conclusions. 
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Figure 64 Bearing residuals for be t en emble c reated with GA, the EKF and tbe PF along with the 

true (expected) value for every data point in pure ynthetic data set 2 

llere the reliability and consistency of the new ANN ensemble is starting to 

show. 

The ANN ensemble g ives no significant outliers, while the EKF and PF both do. 

Even disregarding the outliers, the performance of the ANN ensemble can be 

seen to be superior. 
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Figure 65 Cumulative bearing residuals for best ensemble created with CA, the EKF and the PF 

along with the true (expected) value for every data point in pure synthetic data set 2 

• With only a small inc rease in complex ity the ANN ensemble has become the 

most accurate algorithm for tracking the measurements 

• The numbers of outl iers in the Kalman Filter have inc reased, meaning the 

probability of the Ka lman Filter diverging on the data set has increased . 

• The Partic le Filter's abi lity to track in highly non-linear s ituations allows it to be 

more accurate than the EKF. 
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5.6. 1.3 Experiment 3 

A third data set was then tested which added a small amount of Gaussian noise to the 

measurements, as described in section 2.7.6.1.3. 

200 r-----.-----.-----.-----.-----.-----.---~.-----.-----.-----, 
bearin~r >--+--< 
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0 

-50 

-1.00 

-1.50 

-200 

-250 ~----~----~----~----~----~----~----~----~----~--~ 
0 50 100 1:SO 200 250 900 950 400 450 500 

Figure 66 Output bearing va lues for best ensemble created with GA, the EKF and the PF along 

witb tbe true (expected) value for every data point in pure synthetic data set 3 

This plot has been included to show the original output of the algorithms to give 

a picture of the performance, but the differences between each algorithm are too 

small to draw conclusions. 
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Figure 67 Bearing re iduals for best ensemble created with CA, the EKF and the PF along with the 

true (expected) value for every data point in pure synthetic data set 3 

The high level of clutter in this chart, caused by the random noise added to the 

data set makes it hard to draw conclusions from this chart. 

I lowever, the numbers of outliers in the Kalman Filter have once again 

increased, meaning the probability of the Kalman Filter diverging on the data 

set has now considerably increased. 

The ANN is creating some small outliers, however only a similar number to the 

PF. 
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Figure 68 umulative bearing residuals for best ensemble created with GA, the EKF and the PF 

along with the true (expected) value for every data point in pure synthetic data set 3 

• Particle Filter and ANN ensemble performance is similar for a small amount of 

noise 

• The ANN ensemble is once again Lhe most accurate on this data set. 
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5.6. 1.4 Experiment 4 

The fourth data set increased the level of noise to match the upper limit of the bearing 

binning function, as described in section 2.7.6. 1.4. 
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Figure 69 Output bearing values for best ensemble created with GA, the EKF and the PF along 

with the true (expected) value for every data point in pure synthetic data set 4 

Th is plot has been included to show the original output of the a lgorithms to give 

a picture of the performance, but the differences between each algorithm are too 

small to draw conclusions. 
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Figure 70 Bearing residuals for best ensemble created with GA, tbe EKF and the PF along with tbe 

true (expected) va lue for every data point in pure ynthetic data set 4 

As before, the clutter in this chart makes it difficult to draw strong conclusions. 

However, again the EKF produces large outliers. 
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Figure 71 Cumulative bea ring residunls for best ensemble created with GA, the EKF and the PF 

along with the true (expected) value for every data point in pure synthetic data set 4 

Figure 71 shows the performance o fthe new algorithm at its limit. At this point 

its performance begins to degrade. 

The ANN ensemble is margina lly outperformed by the particle fil ter, however it 

still o utperforms the EKF. 

5.6. 1.5 Conclusions 

Only on pure synthetic set 2 d id the EKF come close matching the performance of the 

ensembles in terms of RMS error, while the new algorithm outperforms the particle 

filter on a ll of the data sets. On data sets 2 and 3 the new technique was found to be the 

most accurate predictor in terms of RMS error. 

Although these experiments have shown that on pure ly synthetic data the new 

a lgorithm is extremely effective, a more conclusive test would be to test it against a 

more realistic data set, with the difficulties, such as truly random noise, that this would 

present. 
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On this fully synthetic data the results clearly show that the new, ensemble based 

predictor is more accurate than both of the baselines for all of the data tested. Figure 72 

shows that the newly created ensemble based predictor is more accurate than any of the 

baselines tested. 

All of the data used here has uncertainties with a standard deviation of 13 degrees or 

less, which is within the maximum range set for the binning function here. This limit 

can be set to an arbitrarily large value, though this would e ither reduce precision or 

force an increase in the number of bins. Therefore data with noise of arbitrary levels of 

noise could be tracked with no tuning other than to set the maximum level of noise 

expected in the binning function. 
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5.6.2 Semi-synthetic data set 

This section details the results of the experiments for which simulated data was overlaid 

on real recorded noise, described in section 2.7.6.2. For each of the following figures 

the best individual ensemble was selected from each generation of the MOGA for the 

best line, and the mean result of all individuals in the MOGA population is shown as 

the mean line. As the ten folds are independent, the mean of the ten folds at each 

generation is shown in Figure 72 to Figure 79. A population of 500 ensembles in each 

generation was used, running for up to 50 generations. 

The single ANN used here for comparison is the Gaussian binning ANN developed in 

chapter 3. 
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Figure 72 RMS bearing residuals of the ensembles in the GA population compared to the EKF, PF, 

Gaussiau Binned ANN and NCL trained ensemble predictors tested on the semi-synthetic data set 

showing the range between the most accurate and least accurate ensembles in the GA population 

as the error bar and the mean accuracy shown as the line 

The error bars show the range of performance in the population. 

The line shows the mean performance of the GA population. 

The lowest end of the error bar is the individual ensemble in the population with 

the lowest error. 

Although the best ensemble in the GA population is more accurate than both the 

baselines and the predictors produced in chapter 3, it was no more accurate than 

the NCL trained predictor produced in chapter 4, only approaching the same 

level of performance in the last few generations. 

Table 23 shows these results for RMS bearing error broken down into the individual 

fo lds, alongside the results for the NCL trained ensembles, the GANN, and the baseline 

algorithms from section 2.7. Table 24 shows ensembles created with a GA are more 

accurate than both the plai n ANN and the EKF on all I 0 of the folds, they are more 
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accurate than the PF and the Gaussian Binned ANN on 6 of the ten folds and more 

accurate than the NCL trained ensembles on on ly 5 out of the I 0 folds. With the NCL 

ensembles being more accurate than the GA five times out often and the GA created 

ensembles being more accurate than the NCL the other five times, and from the fact 

that the mean performance is almost identical, it would appear that the algorithms are 

almost exactly matched in performance. From table 25 it is possible to see that it can 

be said that the ensembles are better than the ANN and the EKF with a confidence of 

99.90%, more accurate than the PF and GANN with a confidence of 62.30%. 

There is only a 37.70% confidence in the new GA designed ensembles being an 

improvement on the NCL trained ones. lt would appear that in this case the benefits 

obtained from being able to change the topology of the internal ANNs is countered 

almost equally by the reduction in performance from not using a backpropagation based 

learn ing algorithm. 

Fold ANN EKF PF GANN NCL GA 
1 8. 13 7. 13 6.84 6.59 6.25 5.98 
2 7.67 7.02 6.36 6.46 6.29 6.77 
3 7.81 7.10 6.50 6.32 6.28 6.67 
4 7.64 6.93 6.4 1 6.35 6.32 6.09 
5 8.07 6.98 6.78 6.46 6.26 6. 18 
6 7.71 7.01 6.43 6.43 6.31 6.21 
7 7.37 7.05 6. 13 6.33 6.34 6.39 
8 7.81 6.99 6.66 6.56 6.29 6.33 
9 7.32 7.20 6.04 6.18 6.29 6.38 
10 7.72 7.53 6.43 6.42 6.29 6.00 

Table 23 Results per fold for the ANN, EKF, PF, GANN, NCL & GA 

B\A ANN EKF PF GANN NCL CA 
ANN X 10 10 10 10 10 
EKF X X 10 10 10 10 
PF X X X 7 8 6 

GANN X X X X 8 6 
NCL X X X X X 5 
GA X X X X X X 

Table 24 The number of folds for which algorithm A was more accurate than algorithm 8 for the 

ANN, EKF, PF, GANN, NCL & GA 

B\ A ANN EKF PF GANN NCL GA 
ANN X 99.90% 99.90% 99.90% 99.90% 99.90% 
EKF X X 99.90% 99.90% 99.90% 99.90% 
PF X X X 82.81% 94.53% 62.30% 

GANN X X X X 94.53% 62.30% 
NCL X X X X X 37.70% 
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GA X X X X X X 

Table 25 The percentage confidence that algorithm A was more accurate than algorithm B for the 

ANN, EKF, PF, CANN, NCL & CA 
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Figure 73 Entropy of the ensembles in the CA population compared to the NC L trained ensemble 

predictor tested on the semi-synthetic data set showing the range between the most diverse and 

least diverse ensembles in the CA population as the error bar and the mean diversity shown as the 

line 

Entropy is a measure of diversity, therefore higher values are preferred 

Although at the beginning of the run the most diverse ensemble in the GA has a 

higher entropy value than the NCL produced ensembles, by the end of the run 

the most diverse individuals have less entropy than the NCL trained ensembles. 

As the GA is selecting based on RMS bearing error only, performance in terms 

of entropy is degraded throughout the run . 
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Figure 74 Kohavi-Wolpert diversity of the ensembles in the GA population compared to the L 

trained ensemble predictor tested on the semi-synthetic data et showing !be range between the 

mo I diver e and least diverse en emble in the GA population as the error bar and the mean 

diversity shown as the line 

Kohavi-Wolpert (KW) is a measure of diversity, therefore higher values arc 

preferred 

Although at the very beginning of the run the most diverse ensemble in the GA 

has a higher KW value than the NCL produced ensembles, by the end of the run 

the most diverse individuals have a lower KW value than the NCL trained 

ensembles. 

As the GA is selecting based on RM bearing error only performance in terms 

of KW is degraded throughout the run, as was the case with entropy. 
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Figure 75 Generalised diversity of the ensembles in the GA population compared to the NCL 

trained ensemble predictor tested on the semi-synthetic data set showing the range between the 

most diverse and least d iverse ensembles in the GA population as the error bar and the mean 

diversity shown as the line 

Generalised Diversity (GD)is a measure of diversity, therefore higher values are 

preferred. 

Although towards the beginning of the run the most diverse ensemble in the GA 

has a higher GO value than the NCL produced ensembles, by the end of the run 

the most diverse individuals have a lower GO value than the NCL trained 

ensembles. 

As the GA is selecting based on RMS bearing error only performance in terms 

ofGD is degraded throughout the run, as was the case with entropy and KW. 
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Figure 76 MdRAE of the ensembles in the GA population compared to the NCL trained ensemble 

predictor tested on the emi-syntlletic data set showing the range between the most accura te and 

least accurate ensembles in the GA popula tion as the error bar and the mean accu racy shown as 

the line 

According to this measure of accuracy, the performance of the algorithm 

actually degrades throughout the run . 

At the start of the run the best ensemble in the GA population outperforms the 

NCL tra ined ensemble. However, towards the end of the run thi s situation 

reverses. 



Page 147 of289 

HdAPE 

1.7 r---~~--~----~----~----~----~-----r-----r-----.----0 
Genetic algorithn ~ 

NCL ~ 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1 ~--~----~----~----~----~----~----~----~----~----~ 
o 5 w e ~ ~ ~ ~ ~ ~ ~ 

Generation 

Figure 77 MdAPE of the ensembles in the GA population compared to the NCL trained ensemble 

predictor tested on the semi-synthetic data set showing the range between the most accurate and 

least accurate ensembles in the GA population as the error bar and the mean accuracy shown as 

the line 

From the beginning of the run the best ensemble in the GA population is more 

accurate by this metric than the NCL t rained ensemble. 

Performance of the GA degrades as the GA progresses. 

As the GA performed better than the NCL on RMS bearing error (which is a the 

non-re lative metric), and worse on MdAPE which is a relative metric, it would 

suggest that the GA c reated ensembles are worse when the value to be predicted 

is small, but better when the value to be pred icted is larger. 
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Figure 78 GMRAE of the ensembles in the GA population compared to the NCL trained ensemble 

predictor tested on the semi-synthetic data set showing the range between the most accura te and 

least accurate ensembles in the GA population as the error bar and tbe mean accuracy shown as 

the line 

Here the best GA produced ensemble can be seen to outperform the NCL 

trained ensemble. 

There is little noticeable improvement in performance in terms ofGMRAE 

throughout the GA run. 
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Figure 79 Hamming distance of the ensembles in the GA population compared to the NCL trained 

ensemble predictor tested on the semi-synthetic data set showing the range between the most 

diverse and least diverse ensembles in the GA population as the error bar and the mean diversity 

shown as the line 

As Hamming Distance is calculated here from the chromosome, it is impossible 

to calculate it for the NCL to compare. 

The chart shows the mean level of genotypic diversity increasing throughout the 

run. 

At the top end, the level of diversity in the most diverse individuals does not 

change significantly. 

This wou ld suggest that even when selecting pure ly based upon accuracy, the 

most genotypically diverse ensembles perform better and are therefore selected 

for reproduction. 
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Data set Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0 21 3.66 6.53 11.12 7.09 

PF 1.74 3.07 5.88 10.12 6 46 

ANN 2.16 4.33 9.02 16.15 7.13 

Gaussian ANN 3.2 5.97 7.28 13 86 6 41 

Uniform ANN 5.1 6 28 7.53 14.09 7.15 

Gaussian KNN 4.09 6.5 12.58 16.8 7.71 

UniformKNN 4.56 6.52 9.51 15.26 7.16 

NCL ensemble 2.97 4.21 7.03 13.2 6.29 

GAensemb1e 3.15 4.8 7.23 13.5 63 

Table 26 The best RMS bearing error for GA generated ensembles on each data set 

RMS Entropy Kohavt Gen'd MdRAE MdAPE GMRAE Harnmmg 

Wolpert DiverSity dtstance 

NCL 6 293 0685 0 122 0 175 5 390 I 148 32 680 0000 

GA 7300 0768 0 123 0 160 4970 I 080 16 180 5186 000 

Table 27 The best value for GA generated ensembles on each metnc on the semi-synthetic data set 

5. 7 Conclusions 

A new form ofbeanng predtctor has been discovered which outperforms the basehne 

techmques, the Extended Kalman Filter (EKF) and the Parttcle Ftlter (PF) on the most 

realistic data set. 

Although the technique is successful in that it improves on the results from chapter 3, 

the new method of creating ensembles does not create ensembles more accurate than 

those trained with NCL as in chapter 4, although the performance is almost as good. 

Here traming the ensemble with NCL is shown to be better than the GA at both 

maxtmtsmg dtversity and minimising error. This would suggest firstly that as described 

in the literature, NCL is a very good techmque for training ensembles to be both diverse 

and accurate. However tt also shows that there is scope to improve the GA, and 

incorporating the idea of increasing diversity as used in NCL mtght be a way of 

tmproving performance of the GA. 

The most novel aspect of this techmque is that it evolves whole ensembles of ANNs 

(weights and structure) where each element m the GA population represents an entire 
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ensemble (unhke [52][53][54] & [182] where It is the whole GA population which 

forms a single ensemble) 
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6 Multi-objective GA 

6.1 Summary 

The previous section demonstrated a new method for automatically constructing and 

training an ensemble m one step through a GA. The resultant ensemble was not as 

accurate as one trained w1th NCL which uses diversity to improve the ensemble during 

traming. This chapter expands the GA presented in the previous chapter to add 

diversity as a secondary objective of the GA. The results are an improvement upon 

those previously obtained from a GA, but still under-perform when compared to the 

NCL trained ensemble. 

6.2 Introduction 

Sectton 5 has shown that GAs were able to create ensembles for target tracking, but 

overall performance was not as good as training the ensemble with NCL. A view 

widely held m the literature is that increasmg d1vers1ty m an ensemble will increase the 

ensemble's fitness. NCL does this by reducing the we1ghtmg of individual ANNs in 

the ensemble which do not increase the level of d1versity in the ensemble. This section 

attempts to increase the diversity m the GA created ensemble by usmg diversity as a 

second objective in the genetiC algonthm. As in [60], a multi-objective GA is adopted, 

using diversity and accuracy as objectives. 

To utihse the benefits to create an ensemble of classifiers it is important to keep the 

classifiers in the populatton diverse. Premature convergence IS defined as a situatton in 

wh1ch the GA has reached a suboptimal state in which most of the genetic operators are 

unable to produce offsprmg of superior fitness to their parents [91]. It has 

unfortunately been shown that using standard GAs the probabihty of premature 

convergence 1s I 00% [174]. Premature convergence is often caused by a loss of 

diversity in the population, as diversity is lost, the abihty of the GA to search the entire 

search space is restricted. 

One important addition to these experiments is that the GAs were evolved w1th multiple 

objectives (RMS bearing error for accuracy and Entropy for diversity). It was expected 

that the least accurate would be those evolved usmg only diversity as an objective, that 

those evolved with accuracy alone would be more accurate, but that the most accurate 

would be those trained with both diversity and accuracy as objectives. 
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A classifier IS a function which accepts a set of m puts and assigns it to one of a number 

of classes. The inputs to the classifier are a subset of the features of the object to be 

classified. The two main types of computer classifier are supervised and unsupervised. 

When using supervised classifiers the operator defines the classes, while with 

unsupervised classifiers the system attempts to establish the structure of the input data 

The latter IS most useful when the classes are not known to the operator. 

It would be reasonable to expect that if a group of classifiers were independently 

created then for easy data sets the classifiers would all produce the correct answer, 

while for a more dtfficult set of features the classifiers would produce different 

answers Unfortunately mdependently produced classifiers often produce comctdent 

errors. In order to ensure that the classifiers discovered produce non-coincident errors 

the diversity must be artificially increased in some way. 

It should be expected that a dtverse group of classifiers would be able to adapt to a 

wtder range of situations, allowing them to be able to correctly classify data sets which 

were not present m the training set. This idea can anecdotally be considered to be 

similar to creating a consensus opinion of experts from a range of backgrounds rather 

than trusting the opmion of a group of experts with identical skills. Unfortunately as 

intuitive as the idea of using a dtverse population of classifiers is, the benefits not yet 

been definitively proven, as many of the papers which claim to have done so do not 

measure diversity to ensure it is responsible for observed performance gains. 

6.3 Previous work on diversity in GAs 

After several generations of a GAit is inevitable that all of the individuals m a 

population will be very similar to each other [174] Ideally the result of the GA will be 

that all of the individuals are grouped around the optimal answer, however if the 

individuals have converged m this way around a suboptimal solution this is known as 

premature convergence Premature convergence is defined as a Situation in which the 

GA has reached a suboptimal state in which the algonthms cannot produce a new 

generation which is a significant improvement over Its parents [91]. In the case of 

wantmg to find dtverse mdividuals, as IS the situatiOn in this study, any form of 

convergence is premature. The rest of section 6.3 details approached that have been 

taken in the literature to promote diversity and prevent premature convergence. 
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6.3.1 

diversity 

Genotype or phenotype 

There has been some debate in the literature as to whether measuring genotypic or 

phenotypic diversity leads to the best results. In measurmg genotypic diversity the 

genes themselves are compared, while in phenotypic diversity measurement the 

decoded values from the gene are compared, in neither of the schemes are the true 

behaviour of the individual examined [301]. [76]demonstrated experimentally that that 

phenotypic fitness sharing consistently outperformed genotypic fitness sharing 

[173]concludes that genotypic measures are used most when mcreasing diversity, and 

although usmg the phenotype mstead improves overall diversity more, It does not 

mcrease the diversity between the most fit individuals 

Other measures that have been proposed include entropy [279]and chromosomal 

distance [216] 

6.3.2 Restriction of selection 

procedure 

The earliest example of changes to the GA mtroduced specifically to encourage 

diversity is the crowdmg operator [73], m which newly generated individuals replaced 

the individuals in the population most genotypically Similar to themselves This 

therefore prevented 'crowds' of similar individuals forming. 

More recently [30 !]used a similar scheme to increase diversity in a genetic 

programming context. In this scheme the population was divided into groups of 

similarly performing individuals, in each of these groups all but one was deleted, the 

one chosen to remam being picked arbitrarily. This leads to reduction of crowding at 

optima, and was found to increase diversity. 

6.3.3 Restriction of mating 

There are two opposing ways of restncting the pairs chosen to mate. The first, 

described in [203] in which gentotypically similar parents are chosen to breed to create 

'subspecies' [76]withm the population, with the intention of creating niches imphcitly. 

Associative mating algonthms described by [35] restrict crossover to phenotypically 

similar individuals. Although these techniques form subpopulations, they are unable to 

maintain them and convergence is not ultimately prevented [254]. The opposite 

approach was taken by [86], who prevented similar parents from mating in order to 
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prevent subspecies from forming, and ensure that the entire population remained 

diverse. 

Another method of restricted mating is the parallel genetic algonthm In this the 

population IS divided into distinct subpopulatlons, each then findmg a different niche 

This method has been widely investigated [66][101][229][234][289]. To prevent these 

subpopulations from converging prematurely a few individuals are allowed to migrate 

from one subpopulation to another in each generation, however even a small amount of 

migration between subpopulations may cause premature convergence [254]. 

6.3.4 Altering mutation rate and 

population size 

[257] created an Adaptive GA (AGA) which dynamically altered the probabilities of 

crossover and mutatwn to improve performance, maintam diversity and prevent 

premature convergence In this scheme fit individuals remained unaltered, while the 

less fit were subject to higher mutation and an increased probability of crossover. 

However [174] found that increasing the population size had a more beneficial effect on 

diversity than altering the mutation rate. 

6.3.5 Fitness sharing 

[99] mtroduced the idea of similar individuals sharing fitness locally. The proximity of 

solutions is defined m both the gene space and the decoded gene space. The function 

used for sharing fitness IS' 

1-( d" r 
cp ( d" )= _ _,_u_'"-'-, if d" < u '" 

(Tsh 

O,otherw1se 

where d,, is a measure of the distance, cr,h is the sharing parameter that governs the 

degree of sharing Typically a value of I is used for a Using th1s value the new fitness 

can be calculated as. 

where M is the number of individuals in the neighbourhood of the 1th individual. 

[76] expanded upon this work by calculating an ideal value for the sharing parameter 

cr,, The formula used depended upon whether genotypic or phenotypic sharing was 
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required. In genotypic sharmg the distance is defined as the Hamming distance 

between the two gene stnngs. u,. is the maximum number of bits difference that is 

allowed between strmgs m the same niche. 

For phenotypic shanng the euchdtan dtstance between the decoded parameters is used. 

where x
1 

,x,, ,x and x1 ,x, , ... ,x are the values decoded from the gene 
,I ...,, p,l ,] .t..,} p} 

string u,. can then be calculated as· 

where q is the destred number of subpopulations. 

[76] showed experimentally both that shanng was superior to crowding, and that 

phenotypic sharing consistently outperfonned genotypic sharing. However [173] 

showed that although phenotypic sharing improved diversity, the diversity of the fit 

individuals was not improved. Fitness sharing has since been widely used in the 

literature [237], [243], [4] & [244], and can therefore be accepted to have become the 

de facto standard. 

[254] introduced a method of Imphctt shanng of fitness which was later used by [I 06] 

& [107]. The technique is a kmd of multi-objective evolutionary algorithm (MOEA) 

in which each individual is a classifier capable ofrecogmsmg a particular target In 

order to recogmse all possible classification targets the population must maintain 

diversity. The individual best able to recognise a partiCular target has its fitness 

increased. This is a fonn of emergent fitness sharing. 

6.3.6 Diversity as a MOEA objective 

Another way to encourage diversity is to use diversity as an objective in the 

evolutionary algorithm. Rather than attempt to combine several objectives (such as 

fitness and diversity) mto one figure to use in a standard GA it is possible to create a 

Multi-Objective Evolutionary Algorithm (MOEA) (for a description ofMOEAs, see 

appendix E). 
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[44] defined six objectives for multi objective evolutionary algorithms mtended to 

increase diversity for GAs used m dynamic environments. For each expenment two 

objectives were used, standard fitness and one of the followmg: 

Time stamp (simple counter) 

2 Random number (prevtously used by [271) ) 

3 Inverse of fitness 

4. Distance to closest neighbour (DCN) 

5. Average distance to all mdiVIduals (AD!) 

6. Distance to best mdividual (DB!) 

The first two objectives are intended to implicitly increase diversity by assigning 

random fitness, which will allow some of the less fit individuals to survive from one 

generation to the next. The third ensures the least fit individuals will survive from one 

generation to another for the sake ofpreservmg diversity. Utilizing this extreme 

method of d1vers1ty preservation might be considered most useful m dynam1c 

environments where the least fit in the current generation m1ght contnbute towards the 

most fit in the followmg generation if the environment changes. The last three 

obJectives explicitly encourage divers1ty. [44] expenmentally demonstrated that AD! 

and DB! outperformed the other objectives m final population fitness. 

D1vers1ty has also been used directly as an obJective in several studies (255], [72] & 

[74]. [72] gave a MOEA wh1ch used as one of 1ts obJectives a weakened form of 

dominance. If standard dominance was represented as vector f dominating vector g 1f 

and only if, 

1.\f lE !, ... ,m f.~ g, 

2.31E l, .,m f.> g, 

The Pareto set is then defined as the set of vectors not dommated by any vector. 

In [271] approximate dominance is introduced, defined as 

l.\f lE I, .. , m (l+e)· f.~ g, 

where e > 0 this approximation allows the individuals near to m addition to those 

actually on the Pareto Front to surv1ve to the next generation, thereby preserving 

diversity. 
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[72] & [74] created the FOCUS algonthm which altered the calculation for finding 

non-dominated individuals, so out of a group of simtlar indtviduals occupying the same 

space on the Pareto-optimal front the first x 0 was given a domination number of zero to 

stgnil)' that tt was not dommated, the second x 1 was given a value of one etc ... The 

ordering of the indtviduals is arbttrary. It simply gives the GA a preference of one of 

the mdtvtduals m the vicinity. Individuals wtth no other local solutions are therefore 

non-dominated. 

[255] used diversity as one of just two objectives, and found that using only fitness and 

diversity, rather than a number of objectives plus diversity outperfonned all gtven 

baselme techniques. 

6.4 Multi-objective Genetic algorithm 

For this chapter, the ensemble was constructed using a Multi Objective Genetic 

Algorithm (MOGA). Each individual in the GA corresponded to a whole ensemble of 

predictors. The aim of the experiments was to evolve the most accurate ensemble 

possible by simultaneously mmtmismg predtctor errors and maximising classifier 

dtverstty. 

There are stmilarittes to the algorithm given m [52] m which a MOGA is used to select 

individual ANNs for use in an ensemble. [52] used the error function from NCL as the 

diversity objective for the ANNs The key differences to thts thesis are that in [52] the 

GA is used to evolve individual ANNs and combine them m the final generation to 

fonn an ensemble whereas m thts thests the individuals in the GA each represent an 

entire ensemble. 

[60] introduced a multi-objective scheme which used objectives ofmmimtsing error, 

mimmtsing the sum of network wetghts and most relevantly maximising the difference 

between the network output and the average output of the rest of the population. This 

does select individuals based on thetr own perfonnance and their ability to complement 

the ensemble; however it does not design the overall ensemble to maximise dtverstty or 

ensemble performance. For example the technique cannot determine the optimal 

number of ANNS, or select the best of the ANNs, each mdividual, each ANN 

effectively detennines its own inclusion in the ensemble 
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Although dtverstty and accuracy were expected to be complementary, it was expected 

that there would be a trade-off between obtaining the least error and the most diversity. 

The MOGA was here being used to discover the Pareto Front of the two. 

The goal of the experiments was to produce the most accurate ensemble of predictors 

by optimtsmg both on overall accuracy and on the diversity of the ensemble. To 

minimise computational effort required to explore the vast search space of possible 

solutions, the weights of the internal connectiOns for the ANNs m the ensemble were 

eo-evolved with the structure of the networks, elimmating the reqmrement to train 

networks individually, resultmg in training bemg preserved between generations. 

6.4.1 Evaluating fitnesses 

As in section 5 root mean squared bearmg prediction error will be used as the accuracy 

measure in the MOGA, whtle here entropy will be also be used to measure dtversity. 

From these, the goal of the MOGA is to estimate the Pareto Front, the set of solutions 

whtch offer the best possible trade-offs between one objective and the other. The 

Pareto Front is descnbed in appendix E, however in summary any solution located on 

thts hne cannot be improved for one objective without worsening it for another The 

goal the MOGA is to estimate the Pareto Front, and mcrementally improve the estimate 

over a series of generations 

At the end of each generation the whole population IS ranked on how close it is to the 

Pareto Front. All non-dommated mdtviduals in the population are ranked - ( 14
) = - I . 

These individuals are then set aside, and the PF of the rest of the population is found, 

the ensembles which make thts up are ranked - (24
) = -16. The next Pareto Front is 

ranked wtth- (3') = -81, and so on until all of the ensembles are ranked The values 

are then scaled between 0.0 and 1.0. 

Once the dommance ranking has been calculated the individuals are selected for the 

next generation. All of the non-dominated mdividuals are carried through to the next 

generation in order to preserve the detatls of the whole Pareto Front. The rest of the 

new population is selected using a roulette-wheel selection process to choose parents, 

which then through crossover and mutation become the individuals in the new 

generation. 

The first three measures of diversity, entropy, Kohavi-Wolpert and Generalised 

Diversity all measure the phenotypic performance and show that the neural networks 

wtthin the ensembles gave more diverse results as the evolution progressed The fourth 
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diversity measure, the Hamming Dtstance, measured the genotypic diversity, and shows 

that not only is genetic dtverstty mamtamed within the ensembles, but it actually 

increases through the generations This measures the genetic dtverstty between 

individuals within an ensemble, not the genetic dtversity present in the MOGA 

population. Durmg the expenments the mean hamming distance started to converge on 

the maximum hamming distance. This would suggest that whtle the genetic dtversity 

within the ensembles was increasing, the genetic diverstty withm the MOGA 

populatton was actually decreasing. 
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6.5 Results 
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Figure 80 RJ\1 bearing rcsiduals of the ensembles in the MOGA population compared to the 

SOGA (accuracy only), SOGA (diversity only), EKF, PF, Gaussian Binned ANN and NCL train ed 

ensemble predictors tested on the semi- ynthetic data set showing the range behveen the most 

accurate and least accurate ensembles in the GA population as the error bar and the mean 

accuracy shown as the line 

As the performance of the MOGA is worse than the algorithms tested in previous 

chapters a confidence factor was not calculated for this new algori thm. 
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Data set Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0.21 3.66 6.53 11.12 709 

PF 1.74 3.07 5.88 10 12 6.46 

ANN 2.16 4.33 9.02 16.15 7.13 

Gaussian ANN 32 5.97 7 28 13 86 6.41 

Uniform ANN 5.1 6.28 7.53 14 09 715 

Gaussian KNN 4.09 6.5 12.58 16.8 7.71 

Uniform KNN 4.56 6 52 9.51 15.26 7.16 

NCL ensemble 2.97 4.21 7.03 13.2 6 29 

GAensemble 3.15 4.8 7.23 13.5 6.3 

MOGA 3.25 6.01 7.4 13.96 6 58 

Table 28 The best RMS bearmg error for MOGA generated ensembles on each data set 

RMS Entropy Kohav1 Gen'd MdRAE MdAPE GMRAE Hammmg 

Wolpert D1vemty dtstance 

NCL 6293 0 685 0 122 0 175 5 390 I 148 32 680 0 000 

GA 7 300 0 768 0 123 0160 4970 I 080 16 180 5186 000 

MOGA 6 580 0 810 0 129 0 181 4 950 I 020 14 990 5168 000 

Table 29 The best value for MOGA generated ensembles on each metric on the semi-synthetic data 

compared to the SOGA and the best NCL tramed ensemble 

6.6 Conclusions 

Although the new MOGA based algorithm has demonstrated that 1t ts more accurate 

than the other algonthms presented on several ofthe metrics It did not outperform the 

NCL on the key objective ofRMS bearmg error. The MOGA however did give 

higher levels of diversity than NCL. 

This is especially disappointing as [52] found that using a MOGA improved 

performance over the NCL. However unlike the technique used in this chapter in [52] 

the ANNs which are evolved w1th the MOGA are subsequently trained, which was 

found to be impossible in this thesis in section 5.4 I. Therefore 1t would appear that the 

benefits ofthe GA/MOGA structure proposed so far which was intended to create 

structural as well as learned diversity do not outweigh the penalty of not training the 

ensembles at each generation, although as [52] used different data to those used in this 

paper no definite conclusions can be made without further mvestigation. 
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This would suggest that Just usmg random individuals along the Pareto Front is not a 

suttable way to mtroduce diversity to the ensembles. This could for example be 

because too much emphasis is being placed upon diversity, which here effectively has a 

50% weighting, in that all ensembles are selected based on their proximity to the Pareto 

Front and are chosen with uniform probability along the length of the front A more 

effective method for selectmg ensembles might be to bias selection towards a 

particular end of the Pareto Front. A known bias would allow the optimal level of 

diversity to be found. Giving diversity a lower weighting in this way might be a way to 

improve upon the results of previous chapters 
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7 Discovering accuracy/diversity balance 

which gives best overall accuracy 

7.1 Summary 

The previous section attempted to improve the GA by adding diversity as an objective. 

The way this was done however gave equal weighting to accuracy and diversity. NCL 

has a parameter ,\ which allows tuning ofthe balance between accuracy and 

diversity This parameter IS added to the GA for the same purpose; to find the balance 

between accuracy and dtverstty which minimises ensemble prediction error. The result 

is a predictor which outperforms all others presented so far. This clearly meets the 

original specification of a predictor which is not tied to an underlying (oversimplified) 

model which is capable of outperforming all of the baselines. 

7.2 Introduction 

Further to the work in section 6, in whtch an equal number of individuals were selected 

to continue to the next generation based upon their fitness, the aim of this chapter was 

to find the optimal balance between accuracy and diversity when creatmg ensembles of 

classifiers for target tracking. 

A new parameter, .\ is introduced, which has a stmtlar purpose to the .\ parameter 

in NCL. This is used to define the balance used between accuracy and diversity, wtth 

values in the range 0 ~ .\ ~ I . A value of I represents using accuracy alone, whtle a 

value of zero represents using only diversity. 
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7.3 Changes to selection procedure 

The GA is m almost all respects identical to the one used m chapters 5 and 6. The only 

change from section 6 IS outlined in this section. 

When the pool of individuals is selected for the next generatiOn, It is chosen by its 

Pareto ranking, as in sectiOn 6, however here it is over-selected, so that ten times as 

many individuals are chosen than are needed to form an mtermediate population. An 

individual's chances of being included in this population are proportional to its distance 

from the Pareto Front. The roulette wheel selection IS then run a second time, to select 

individuals based upon their accuracy, selectmg 71 n individuals from the mtermediate 

population, where n is the required final population size. The process is rerun to select 

(1-ll)n individuals from the sub-population based on their diversity 

Of the md1viduals selected, I 0% are carried forward to the next generation unaltered, 

while the rest are used as parents and crossed as in chapters 5 and 6. 
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7.4 Results 
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Figure 88 Fina • generation RMS error over percentage of individuals selected for their accuracy 

were the line r epresents the mean level of accuracy in the MOGA population in the final 

generation, while tbe error bars show the range between the most and least accurate individuals 

As can clearly be seen from figure 88, the balance of accuracy and diversity found to 

give the lowest RMS bearing prediction was 80% accuracy, 20% diversity, with both 

pools selected from an intermed iate population selected based on Pareto optimali ty. At 

this level, not only is the mean ensemble more accurate than at any level, the best 

ensemble in the population is more accurate than the best ensemble for any other 

balance. Additionally at 80%, the worst ensemble in the population is more accurate 

than the worst ensemble at the other levels of balance. This is an important measure of 

how tightly grouped the GA's population is around the optimal solution. Figures 89 to 

96 show the full results of the experiments when selecting 80% of the population for 

accuracy and 20% for diversity. 
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Figure 89 RM bearing residuals of the ensemble in th e MOGA population for the MOGA with 

A.=80% compared to the SOGA (accuracy only), SOGA (diversity only), EKF, PF, Gaussian 

Binned A N and NCL trained ensemble predictors tested on the semi-synthetic data set showing 

the range between the most accurate and least accurate ensembles in the GA population a the 

error bar and the mean accuracy shown as the line 

Though the chart is cluttered, the 80% MOGA produced ensemble may be seen 

in red at the bottom right of the chart. This is where, at the end of the run, the 

best MOGA produced ensemble di splays a c lear improvement over the NCL 

trained ensemble. 

The population se lected based pure ly on their diversity does not change 

significantly with respect to RMS bearing error throughout the run o f the 

MOGA. 

Until around generation 30 there is litt le to distinguish between the performance 

of the s ing le objective GA and the MOGA at which point the sing le objecti ve 

GA levels off, while the MOGA continues to improve .. 

Table 30 shows these results for RMS bearing error broken down into the individual 

folds, alongside the results for the GA, the NCL trained ensembles, the GANN, and the 
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baseline algorithms from section 2.7. Table 3 1 shows ensembles created with a GA 

are more accurate than both the plain ANN and the EKF on all 10 of the folds, they are 

more accurate than the PF on 9 of the ten folds and more accurate than the GANN, the 

NCL trained ensembles and the Single Objective GA created ensembles on 8 out of the 

I 0 fo lds. From table 32 it is poss ible to see that it can be said that the ensembles are 

better than the ANN and the EKF with a confidence of99.90%, more accurate than the 

PF with a confidence of98.83%. There is a lso a 94.53% confidence in the new A 

MOGA designed ensembles being an improvement on the GANN, the NCL trained 

ensembles and the Single Objective GA created ensembles. This means that there is a 

statistica lly significant improvement obta ined by using the A MOGA over all of the 

other algorithms tested. 

Fold ANN EKF PF GANN NCL GA AMOGA 
1 8. 13 7. 13 6.84 6.59 6.25 5.98 5.86 
2 7.67 7.02 6.36 6.46 6.29 6.77 5.78 
3 7.81 7.10 6.50 6.32 6.28 6.67 6.23 
4 7.64 6.93 6.4 1 6.35 6.32 6.09 5.83 
5 8.07 6.98 6.78 6.46 6.25 6. 18 6.49 
6 7.7 1 7.01 6.43 6.43 6.31 6.21 6.20 
7 7.37 7.05 6.13 6.33 6.34 6.39 6 .11 
8 7.81 6.99 6.66 6.56 6.29 6.33 6 .15 
9 7.32 7.20 6.04 6.18 6.29 6.38 6 .22 
10 7.72 7.53 6.43 6.42 6.29 6.00 6.42 

Table 30 Result per fold of the best of the new algorithms, the Gaussian binning Art ificial eura l 

Network against the per-fold results for the baseline algorithms le ted in section 2.7 

B \A ANN EKF PF GANN NCL GA AMOGA 
ANN X 10 10 10 10 10 10 
EKF X X 10 10 10 10 10 
PF X X X 7 8 6 9 

GANN X X X X 8 6 8 
NCL X X X X X 5 8 
GA X X X X X X 8 

AMOGA X X X X X X X 

Table 31 The number of folds for which algorithm A Wfl more accurate than a lgorithm B for the 

ANN, EKF, PF, GANN, NCL, GA and..\ MOGA 

B\A ANN EKF PF GANN NCL GA AMOGA 
ANN X 99.90% 99.90% 99.90% 99.90% 99.90% 99.90% 
EKF X X 99.90% 99.90% 99.90% 99.90% 99.90% 
PF X X X 82.8 1% 94.53% 62.30% 98.93% 

GANN X X X X 94.53% 62.30% 94.53% 
NCL X X X X X 37.70% 94.53% 
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Table 32 The percentage confidence that algorithm A was more accurate than algorithm B for the 

ANN, EKF, PF, GANN, NCL, GA and i\ MOGA 
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Figure 90 Entropy of the ensembles in the MOGA population for the MOGA with A=80% 

compared to the SOGA (accuracy only), SOGA (diversity on ly) and NCL trained ensemble 

predictors tested on the semi-synthetic data set showing the range between the most and least 

diverse ensembles in the GA population as the error bar and the mean diversity shown as the line 

The highest levels of entropy are obtained by the s ingle objective GA se lected 

for diversity. Both the 80% MOGA and the s ing le objective diversity GA 

outperform the NCL trained ensemble on this metric. 

The lowest level of entropy is given for the GA selected for accuracy. 

[.;; 

59 
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Figure 91 Kohavi-Wolpert diver ity or the en cmblcs in the MOGA population ror the MOGA with 

~80% compared to the SOGA (accuracy only), SOGA (diversity only) and C L trained ensemble 

pred ictors te ted on the semi-synthetic data et bowing the range between the most and least 

diverse ensembles in the GA population as the error bar and the mean diversity shown as the line 

As with entropy the highest level of di versity here is shown by the ensembles 

selected on diversity alone. 

The 80% MOGA also gives a higher level of diversity than the NCL trained 

ensembles 

The worst performance with respect to KW is from the ensembles produced by 

the GA selecting upon accuracy alone. 

59 
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Figure 92 Generalised diversity of the ensembles in the MOGA population for the MOGA with 

N=80% compared to the SOGA (accuracy only), SOGA (diversity only) and NCL trained ensemble 

predictor te ted on the emi-synthetic data set showing the range between the most and lea t 

diverse ensembles in the GA population as the error bar and the mean diversity shown as the line 

This is one of the only metrics in which the NCL trained ensembles proved the 

most diverse. 

Although during the evolutionary process ensembles were created which were 

more diverse in terms ofGD, by the end of the evolutionary run the best 

individuals were less diverse in terms of GO than the ones trained with NCL. 
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Figure 93 MdRAE of the ensembles in the MOGA population for the MOGA with A.=80% 

compared to the SOGA (accuracy only), OGA (diversity only) and C L trained en emble 

predictor tested on the semi- yntbetic da ta et bowing the range between the most and least 

accurate ensembles in the GA population as the error bar and the mean accuracy shown as the line 

At the end of the evolutionary run the best MOGA created ensembles are 

narrowly more accurate than those trained with NCL. 

The worst ensembles with respect to MdRAE are those produced by the 

diversity only GA. 
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Figure 94 MdAPE of the ensembles in the MOGA populution for the l\IOGA with N=80% 

compared to the SOGA (accuracy only), OGA (diversit on I ) and NCL trained en emble 

predictors te ted on the semi-synthetic data set showing the range between the most and least 

accurate ensembles in the GA population a the error bar and the mean accuracy hown a the line 

The results for MdAPE are almost the same as those for MdRAE, except for this 

metric the most accurate individuals are those trained by the accuracy only GA. 

All three forms of the GA produce ensembles which are more accurate with 

respect to MdAPE than the NCL trained ensembles. 

The most accurate ensemble from the diversity only GA is more accurate than 

the most accurate ensemble from the MOGA. 
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Figure 9SGMRAE of the ensembles in the MOGA population for the MOGA with A.=80% 

compared to the SOGA (accuracy only), SOGA (diversity only) and NCL trained ensemble 

predictors tested on the semi-synthetic data et showing the range between the most and least 

accurate ensembles in the GA population as the error bar and the mean accuracy shown as the line 

The performance of the three GA based a lgorithms are very s imilar with respect 

to GMRAE 

All three GA based algorithms produce ensembles which outperform the NCL 

trained ensemble on this me tric. 
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Figure 96 Hamming dis tance of the ensembles in the MOGA population for the MOGA with 

A.=80% compared to the SOGA (accuracy only), OGA (diversity only) and CL trained en emble 

predictors tested on the semi-synthetic data et howing the range between the most and least 

diverse en emble in the GA popula tion as the error ba r and the mean diversity shown a the line 

The Hamming Distance, and therefore the genotypic diversity can be seen to be 

very s imilar in the GA with divers ity only and the 80% MOGA. 

The poorest performer with respect to the Hamming Distance is the GA with 

accuracy only. 

The mean level of divers ity increases in all cases. 
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Data set Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Semi-

synthetic 

EKF 0.21 3.66 6 53 11.12 7 09 

PF 1.74 3.07 5.88 10.12 6.46 

ANN 2.16 4 33 9 02 16.15 7.13 

Gaussian ANN 3.2 5.97 7 28 13.86 6.41 

Uniform ANN 5.1 6.28 7.53 14.09 7.15 

Gaussian KNN 4.09 6.5 12 58 16.8 7.71 

UniformKNN 4.56 6.52 9.51 15.26 7.16 

NCLensemhle 2.97 4.21 7 03 13.2 6.29 

GAensemble 3.15 48 7.23 13.5 6.3 

MOGA 3.25 6.01 7.4 13 96 6 58 

MOGA(SO%) 2.93 4.1 6.93 9.87 613 

diversity 

Table 33 The best RMS bearing error for MOGA generated ensembles on each data set 

RMS Entropy Kohavi Gen'd MdRAE MdAPE GMRAE Hammmg 

Wolpert Diversity dtstance 

NCL 6 293 0685 0 122 0 175 5 390 I 148 32 680 0 000 

GA 7 300 0768 0 123 0 160 4970 I 080 16 180 5186 000 

MOGA 6 580 0 810 0129 0 181 4950 I 020 14 990 5168 000 

MOGA 6130 0780 0 120 0 170 4930 I 02 15 330 5215 000 

(80%) 

diversity 

Table 34 The best value for MOGA generated ensembles on each metric 

7.5 Conclusions 

The main conclusion of this chapter is that a small amount of diversity is beneficial to 

the population, as not only does 1t improve the performance of the best individual in the 

population, it also improves the fitness of the worst, md1cating that the GA has been 

more successful in collapsing down to surround the optimal solution 

This would suggest that when GAs are used to des1gn classifiers, a fraction of the 

population at each stage should be selected on the basis of the individual's d1vers1ty. 

This agrees w1th the theory behmd NCL, and effectively extends its use to Genetic 

Algorithms. 
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The largest source of novelty is the discovery that as long as ensembles are created as 

whole entities rather than component parts, all ofthe advantages provided by 

techniques such as NCL which stimulate diversity to in turn mcrease accuracy may be 

obtained through use of evolution with multiple objectives. This significantly reduces 

computatiOnal reqUirements, and greatly simplifies the process of creating such an 

ensemble when compared to approaches that require a learning algorithm to teach the 

ANN. This may be applied to any GA creating ensemble classifiers for any purpose, 

massively simplifying the complexity of doing so, while also dramatically mcreasmg 

performance 

7.5.1 Comparison to NCL 

The results produced by the technique in this thesis outperform NCL both m terms of 

accuracy of results and diversity of the ensembles, however as so many papers have 

been written on NCL and Its ability to encourage diversity in ensembles, It IS Important 

to outline the differences between this technique and NCL, and to highlight some of the 

advantages of the new algorithm. 

• Although the use ofNCL does not preclude it, NCL itself has no mechanism for 

encouraging structural diversity between the ANNs in an ensemble. In most 

examples in the literature, the ANNs used are structurally identical, relymg 

upon a combination of random weight initializatiOn and NCL to create diversity 

using the connection weights. 

• [183] gives an evolutionary approach to designing ANN ensembles, however 

unlike the approach used in this thesis [183] uses the GA to evolve ANNs 

where the whole GA population is simultaneously evolved using NCL at each 

generation In this thesis each member of the GA population is an entire 

ensemble in its own right, and no form of learnmg algorithm is used to tram the 

ensembles, except for the GA which eo-evolves the structure and the weights. 

• NCL is specific to ANNs, whereas the technique outlined m this paper is 

genenc to any classifier, once the chromosome has been defined. 

• When used in a GA setting, NCL learning must be repeated with each new 

generation to train the ensembles, whereas the technique outlined here does not, 

making it faster. 

• Additionally although much of the NCL literature describes how it increases 

diversity m the ensembles, none of the papers available measure diversity to see 
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If it has actually mcreased as a result of applying the technique, or make any 

comparison to the amount of diversity that would be present had NCL not been 

used This thesis provides the first quantification of the diversity generated in 

order to improve accuracy. 

• However, this technique effectively is NCL but applied to MOGAs, so the 

benefits ofNCL can be expected, without having to train the ensembles. 
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8 Conclusions and further work 

A new fonn of time senes predictor has been created, which has been shown to be far 

more accurate than any of the baseline techniques evaluated The new family of 

algorithms created are shown to be both consistently reliable, and far less likely to 

produce outliers than the baselines In add1tion to the novel way in which the ANNs 

and ensembles are applied, a GA based algonthm was created to both create the 

structure for and train the ensembles, further addmg to the novelty presented. 

Initially, m chapter 3, a group of new classification based predictors were produced. 

The results showed that in terms of RMS predictton error, as the number of mputs 

increases, the accuracy of the proposed technique improves dramatically. With fewer 

inputs the two best baseline techniques both outperform the proposed technique, 

however With more mputs the new technique is considerably more accurate than all of 

the baselines. When the number of inputs was more than fifteen, by usmg the Gauss1an 

ANN algonthm the bearmg error can be reduced by as much as 16% over the EKF, and 

6% over the PF, the two most accurate basehne techntques testes. However there are 

many parameters such as the underlymg algonthm ( e.g ANN or KNN), network s1ze 

and structure and the learning algorithm that must be selected to find the most efficient 

and accurate network capable of outperforming the baseline techniques. Changing the 

parameters can s1gntficantly alter the perfonnance, although the relationship between 

the parameters and the perfonnance IS complex. 

In chapter 4, the performance ofthe technique was further improved by changing from 

using ANNs tramed with backpropagation to using ensembles of ANNs trained with 

Negative Correlation Learning (NCL). NCL was proven to be an effective method for 

training ensembles to perfonn target tracking, outperfonnmg both of the baseline 

techniques; the EKF and PF, and the ANN based techniques already created. These 

new predictors were shown to outperform every technique presented so far on every 

data set. The gains achieved in this application from utilising NCL and ensembles are 

significant. 

One of the drawbacks ofNCL is that as a training algorithm it does not have the 

capab1hty to design the ANNs on which it is applied. Chapter 5 tried to solve this 
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problem with a Genetic Algorithm (GA), with the aim of evolvmg the network 

structure to create an ensemble capable of improving upon the results obtained with 

NCL. Although the technique was successful in that it improved on the results from 

chapter 3, the new method of creating ensembles does not create ensembles more 

accurate than those trained with NCL as in chapter 4, although the performance was 

almost as good. Here traming the ensemble wtth NCL was shown to be better than the 

GA at both maximismg dtverstty and mmtmising error. This would suggest firstly that 

as described in the literature, NCL IS a very good technique for training ensembles to be 

both diverse and accurate. However tt also shows that there is scope to improve the 

GA, and mcorporating the tdea of increasing diversity as used in NCL might be a way 

of Improving performance of the GA. 

In order to improve upon the disappointing results from the GA, a Multi Objective GA 

(MOGA) was created in chapter 6 which took diversity as a second objective during the 

selectiOn stage m the GA. Although the new MOGA based algorithm has demonstrated 

that It IS more accurate than the other algonthms presented on several of the metrics It 

did not outperform the NCL on the key obJective ofRMS bearing error. The MOGA 

however did give higher levels of diversity than NCL. This would suggest that just 

using random individuals along the Pareto Front is not a suitable way to mtroduce 

diversity to the ensembles This could for example be because too much emphasis is 

being placed upon dtverstty, which here effectively has a 50% weightmg, in that all 

ensembles are selected based on their proximity to the Pareto Front and are chosen with 

umform probability along the length of the front. 

As a result of this, in chapter 7 the MOGA was rerun several times, each time using a 

different balance between accuracy and dtverstty to select the mdividuals for the next 

generation. A balance of 80% of the individuals selected for accuracy, with 20% 

selected for their diversity is found to be the most effective mix m thts application. The 

results produced by the technique outperform all other techniques presented in this 

thesis both in terms of accuracy of results and diversity of the ensembles. The main 

conclusion of this experiment was that a small amount of diversity IS beneficial to the 

population, as not only does it improve the performance of the best individual in the 

population, it also improves the fitness of the worst, indicating that the GA has been 

more successful m collapsing down to surround the optimal solution This would 

suggest that when GAs are used to design classifiers, a fraction of the population at 
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each stage should be selected on the basis of the individual's dtversity. Thts agrees with 

the theory behind NCL, and effectively extends its use to Genetic Algonthms. 

There are many novel features of this thesis Firstly the methodology for usmg a 

classification algorithm as a time senes predtctor m target tracking is new and allows 

the use of any number of classification algorithms to be used in time series predtction 

for target tracking. 

Further to this the work was extended to use ensembles of classifiers to enhance the 

predtctlons; not only have ensembles not prevtously been used to perform target 

trackmg, but NCL has not previously been used to train a target tracking ensemble 

A GA was created which can both design an ensemble of ANNs and train it in a single 

step. Thts ts the first time that an ensemble has been constructed in such a way, and a 

multi-objective form of the algonthm is shown to be htghly effective at creatmg 

optimal ensembles which, unhke ensembles trained wtth NCL, have structural as well 

as learned diversity. 

Most importantly however, the largest source of novelty here is the discovery that as 

long as ensembles are created as whole entities rather than component parts, all of the 

advantages provtded by techniques such as NCL whtch stimulate dtversity to in turn 

increase accuracy may be obtamed through use of evolution with multiple objectives. 

Thts stgmficantly reduces computational reqUirements of training and testing the 

ensembles, and greatly simplifies the process of creating such an ensemble when 

compared to approaches that require a learnmg algonthm to teach the ANN. This may 

be applied to any GA creatmg ensemble classifiers for any purpose, allowmg a form of 

NCL to be applied not only to ANNs, but to any classifier or predictor which may be 

described with a chromosome 

8.1 Further work 

This thesis gives results for use of the algonthm on four stmple, generic data sets, and a 

very large passive sonar data set However further work is reqmred to firmly establish 

the assumed generality of the technique. Work is required to establish whether the 

results obtained on the amount of diversity required extend to other problem domains, 

and on other data sets It would be extremely beneficial to find a way to predict in 

advance the proportion of indivtduals that must be selected from each objective in order 

to maximise performance 
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Several papers are mentioned such as [52][53][54][142][183] which use a variety of 

techniques not tested in thts thesis. For example [52][53][54][142] all use GAs to 

evolve ensembles (albeit with the GA population comprising of ANNs and combining 

the end population to form an ensemble), and these train to a greater or lesser extent 

during evolution Although full traming of the ensembles was shown to be Impractical 

for thts apphcation in section 4.2, [183] & [142] for example only use partial training to 

tmprove results during the evolutionary processes, and then fully train the resultant 

ensemble. Also [52] uses Boosting and Bagging to improve results, netther of which 

were used within thts thests, mostly because they are more normally associated with 

leammg algonthms, however they could be used m future work to enhance 

performance. Boostmg could be used to increase the weightmg of parttcular input 

patterns during the evolutionary process, allowing the GA to improve the ensembles' 

weaknesses Baggmg might be used to randomly subsample the extremely large data 

set to create simpler sets each of whtch could be used in a separate part of the GA 

population to create species of ensembles whtch could be combined in later generations 

to form an ensemble capable of predicting values from the whole data set. 

Further work is also required to establish the measure of dtversity which gives the 

biggest improvement m performance Here four measures of dtverstty were tested, but 

only one was used in the evolutionary process. Experimentation is required to establish 

both the best one to use, and agam to establish how this would change across different 

problem domams and data sets. Many other measures of dtverstty exist, so there is very 

wtde scope for finding which is most smtable for this purpose. 

Most, though not all, of the experiments performed for the classifier based predictors 

were done using an ANN as a classifier. Only ANNs and KNNs were used in thts 

thests. Another posstble path for future work would be to experiment with other 

classifiers to find which ones worked in this situation Although the ANN was shown 

to be the best of the classifiers tested, as only two different classtfiers were tned tt is 

unlikely the one most fit for purpose has been discovered 

Another area which time prevented exploring was the possibility of using the newly 

created algorithms m Target Motion Analysis. If the binnmg algorithm divided the 

output space by range, or into a gnd, then the same algorithms could be used to 

estimate the distance to the target, or the target's position. 
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Appendix A- Description of the genetic code 

Name Type 

Network 0 ANN chromosome 

Network I ANN chromosome 

Network M ANN chromosome 

The ensemble chromosome 

Name Type 

w. (fhe weight used when fusmg m ensemble) float 

Use this network boo lean 

Input node 0 bias 

Input node I bias 

.. 
Input node n bias 

Hidden node 0 Hidden node chromosome 

Hidden node I Hidden node chromosome 

... 
Hidden node n Htdden node chromosome 

Output node 0 btas 

Output node I btas 

.. 
Output node n btas 

The ANN chromosome 

Name Type 

Use thts node Boo lean 

Weights input Array of floats with as many values as there are 

input nodes 

Wetghts output Array of floats with as many values as there are 

output nodes 

Bias Float 

The h1dden node chromosome 
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Appendix B- Example data after sliding window 

This is a section of the data set for a network with five inputs, and shows the format of 

the data after applying the sliding window to extract the data for each training iteration. 

Network input data (degrees) True output (degrees) 

-0 0259897 -3 6105299 -3.6326396 -0.0245261 0. -0.0150279 

- 3.5677671 -3.5940702 0.0098501 0.0301830 0. 0.0151300 

-0.0032573 3.5949016 3.609473 3.5735285 0. 3 5812125 

0.7403398 1.469366 2.1478765 - 0. 7111974 0 4 2967362 

3.5504568 3.5236094 -0.0408219 -0.0349821 0. 3 562428 

2 9008305 -I 3955204 -2.1215999 -2 8185372 0 -0 7151830 

-4.3504057 -5 0629716 -5.7463951 -2.9143443 0. -43313174 

2.1655235 0 7625777 2.8751063 5.0699282 0. - 1.4177823 

-1 4201748 0.6966611 2.8957903 - 2.1698308 0. -5.0182729 

-0 6906021 2.2103865 -2.1533749 07183154 0 -4.3339977 

-0.0311357 - 3 6618662 - 0.0571447 - 0.0424290 0. -3.6493998 

- 3.6715751 - 0 0566425 - 0.0317156 0.0209246 0 -36175592 

3 6963682 3.7009361 3.7332175 3.6919339 0. 0.0305168 

- 5 840281 -4 3467875 - 2 9268589 - 5.1575804 0. -2.2323039 

1 420717 2 85884 0.6463125 5.8220873 0. 5.0552101 

4 3246026 1.3904552 5 8446097 - 0 6990970 0. 4.3552918 

2.9959674 5.9675932 - 2.0586424 - 2.8420739 0 -0.7361527 

0.0066305 - 7.2783566 - 7.320539 - 3.7372162 0. -3 7631221 

-4.5046263 -5.2418995 -2.3536665 0.6884596 0. -45015211 

-0.7371413 2.1510587 5.193152 4.5046592 0. -0.7346394 

3.01721 6.0270505 5.3063059 0.7693939 0 -0 7736980 

- 3.0837958 -2.2811317 - 5.2946343 -4.5406189 0. -3 0501225 

- 2 2588835 - 4 5069995 - 2 987597 2.318409 0. 1.5331851 

6.8483529 6 0936379 9.1255264 4.5330005 0. 3.0105968 

-0.7973959 2.2451632 -2.3366928 - 6.8590231 0. -4.6156149 

-3.0617313 -6.1175146 -91137724 -0.7286766 0. -3 0772533 

- 0.0342346 - 3 7858796 3.8438289 3.8171184 0. -0.0373515 
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2.3586707 8.4608002 6.9065108 1.5618136 0. - 1.5600936 

-6.2673321 -4.7292562 -6.9815879 -5.4510365 0 -2.3910739 

4 6294379 1.6042653 2.3619769 7.0401726 0. 4 6232653 

3.2366092 2.4288752 5.5416255 - 3.0639923 0. - 0.8325605 

- 0 8144906 2 2999489 - 6 3039799 - 3.2382984 0. -4.9019256 

-64251671 -12.644195 -7.1936111 -1.5704111 0. -2.5434217 

3 110132 6 228425 9 5193357 8.7574568 0. 3.0852442 

- 0 0469103 4.0353007 4.064723 - 3.9014328 0. -0.0383736 

-2.3924761 -0.7443820 -7 091866 -1.5717615 0. 1.6053838 

8 1517763 0 1783720 4 072556 4 0183969 0. 3.9604015 

-8.2471333 -4.2845173 -4.2702446 -8.2202091 0. -4.1688166 

4 0905948 4.0728731 0.0909139 8.2791281 0. 4.0604353 

3.415092 - 1.4250705 5.9049406 -3 2323911 0 -0.914698 
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Appendix C- Example data with binning function 

applied 

Here the same output bearings as appendix B are repeated. Here however, the bearings 

converted by the Gausstan binnmg function are also given The bmnmg function was a 

Gausstan with a=6.7l, and the bearing error Gausstan dtstnbution had a=2 0. The first 

column gives the true output bearings while the second column gives the data in the 

format provtded to the ANN during training. 

True output (degrees) Ideal output network training 

-0 0150279 0.002, 0.197, 0.605, 0.193, 0 002 

0.0151300 0.002, 0.193, 0.605, 0.197, 0 002 

3.5812125 0.000, 0.004, 0.169, 0.676, 0.151 

4.2967362 0.000, 0 001, 0 096, 0 653, 0.250 

3.562428 0 000, 0 004, 0.172, 0 675, 0.149 

-0.7151830 0.007, 0.304, 0 575, 0 113, 0.001 

-43313174 0.255, 0.650, 0.093, 0.001, 0 000 

-I 4177823 0.0 17, 0.427, 0.497, 0.059, 0 000 

- 5.0182729 0 377, 0.575, 0 048, 0.000, 0.000 

-4.3339977 0 256, 0.650, 0 093, 0.001, 0.000 

- 3.6493998 0.159, 0.676, 0.161, 0.004, 0.000 

- 3 6175592 0.155, 0 676, 0.165, 0.004, 0.000 

0.0305168 0.002, 0.191, 0.605, 0 199, 0.002 

-2.2323039 0.044, 0.561, 0 370, 0 025, 0 000 

5 0552101 0.000, 0.000, 0.046, 0.570, 0.384 

4 3552918 0 000, 0 001, 0 091, 0 649, 0.259 

-0.7361527 0.007, 0.308, 0.573, 0.111, 0 001 

-3.7631221 0.173, 0 676, 0.148, 0.003, 0.000 

-4.5015211 0.283, 0.636, 0.080, 0.001, 0 000 

-0.7346394 0.007, 0.308, 0.574, 0.111, 0.001 

-0.7736980 0.007, 0.314, 0 570, 0.107, 0.001 

-3 0501225 0 097, 0.653, 0.241, 0.009, 0.000 

1.5331851 0 000, 0.053, 0 480, 0 447, 0.020 
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3 0105968 0 000, 0.009, 0.247, 0.650, 0.094 

-4 6156149 0 303, 0 624, 0.072, 0.001, 0.000 

-3.0772533 0.099, 0 655, 0.237, 0 008, 0 000 

-0.0373515 0.003, 0 200, 0.605, 0 190, 0 002 

- 1.5600936 0.021, 0.452, 0 476, 0.051, 0 000 

-2.3910739 0.052, 0 583, 0.344, 0.020, 0.000 

4.6232653 0.000, 0 001, 0.071, 0.624, 0 304 

-0.8325605 0.008, 0.324, 0 565, 0.102, 0 001 

-4.9019256 0.355, 0.590, 0 054, 0 000, 0.000 

-2.5434217 0.060, 0 603, 0 320, 0.0 17, 0 000 

3 0852442 0 000, 0.008, 0 236, 0 656, 0.100 

- 0 0383736 0.003, 0.201, 0 605, 0 190, 0 002 

I 6053838 0 000, 0.049, 0 470, 0 460, 0.022 

3.9604015 0.000, 0 002, 0.127, 0.671, 0 200 

-4 1688166 0.230, 0 662, 0.107, 0 002, 0.000 

4.0604353 0.000, 0.002, 0.117, 0.667, 0214 
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Appendix D - Optimisation results 

EKF 

3. 4 
3.2 

3 
2.8 

error <dtese ::> 
2.4 
2.2 

2 
1.8 
1.6 
1.4 

+ 

+ 

EICF + 

Plant noise 

Figure 97 RM bearing error for tbe EKF with different values for parameters; s tandard 

deviation between 0 and 16 and plant noise between 0 and 15000 as tested on pure synthetic data 

set I 



Page 225 of289 

EKF + 

45 
49 
35 

error 

20 
1!5 
19 

5 

0 

Plant noise 

Figure 98 RM bearing error for the EKF with different values for parameters; standard 

deviation between 0 and 16 and plant noise between 0 and I 5000 as tested on pure synthetic data 

et 2 
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Figure 99 RM bearing error for the EKF with different va lue for parameters; tandard 

deviation between 0 and 16 and plant noi e between 0 and 15000 as tested on pure synthetic data 

et3 



Page 227 of289 

45 

40 

35 
error (de§6e s) 

25 

20 

15 

10 

10 
Rssuned standard deviation 

EKF + 
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Figure 100 RM bearing error for the EKF with different values for parameters; standard 

deviation between 0 and 16 and plant noise between 0 and 15000 as tested on pure synthetic data 

set 4 
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7 
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Figure I 01 RM bearing error for the EKF with different va lue for parameters; tandard 

deviation between 0 and 16 and plant noise between 0 and 15000 as tested on emi- ynthetic data 

et 

Particle Filter 

Various values were used as the parameters for the PF to determine the optimal set for 

use in the main experiments. Figure 102 to Figure 109 show the results ofthese 

experiments. First a variety of values were tried for the system noise parameter, in 

particle filters with 50 and I 00 particles. The optimal system noise values can be seen 

to be similar in both, however in general the filter with the most particles is most 

accurate. 
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41 
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PF 100 ~ 

0 ~--~----~----~----~--~----~----~----~--~----~ 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5901 

Systen noise 

Figure 102 RM bearing error for the PF with different values for parameter plant noise between 

0 and 5000 a te ted on pure synthetic data set I 

ystem noise Particle filter I Particle filter 

with 50 particle with 100 particle 

100 24.3 21.2 

200 14.4 8.6 

300 10 6.1 

400 9.8 7 

500 13 3.7 

600 9.5 2.4 

700 5.5 2.4 

800 7.2 2.3 

900 9.8 2.4 

100 4.0 7.4 

1100 9.5 2.5 

11200 1 113. 1 2.5 
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1300 

1400 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

7.5 4.6 

9.9 2.6 

9.7 2.4 

6.5 4.9 

10.1 4.9 

13.5 4.6 

15.7 3.8 

9.4 2.4 

15.2 6.3 

17.9 2.6 

Table 35 RMS bearing error for the PF with different values for parameter plant noise between 0 

and 5000 as tested on pure synthetic data set I 

"" 0 

"" "" " C6 

.~ 
~ 
" J:l 

(/) 
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68 r---~.----.-----.-----.----.-----.-----.---~.----.-----, 

58 

40 

30 

20 

10 

PF 50 ~ 
PF 100 ~ 

0 L---~~--~-----L-----L----~----~----L---~~--~----~ 
8 588 1888 1588 2888 2588 3888 3588 4888 4588 581H 

Systen noise 

Figure 103 RMS bearing error for the PF with different values for parameter plant noise between 

0 and 5000 as tested on pure synthetic data et 2 

System noise Particle filter Particle filter 

with 50 particles with lOO particles 
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100 

200 

300 

400 

500 

600 

700 

800 

900 

100 

1100 

1200 1 

1300 

1400 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

~000 

157.4 

40.1 

32.5 

32.0 

28.5 

24.5 

23.9 

19.9 

13.6 

15. 1 

15.2 

12.0 

16.2 

17.6 

9.8 

11.1 

14.5 

I 11.2 

15.7 

16.3 

16.0 

21.4 

51.9 

37.3 

28.8 

23.9 

20.4 

19.4 

19.0 

11.2 

12.3 

12.1 

10.9 

4.5 

4.8 

4.2 

3.9 

3.9 

4.1 

4.3 

4.3 

4.3 

~--
Table 36 RM bearing error for the PF with different va lues for parameter plant noise between 0 

and 5000 as tested on pure synthetic data set 2 



Page 232 of289 

40 

35 

a 
t 
tl 30 
01 

.~ 

l 25 

E 
20 

15 

10 

5 
0 
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PF 108 >--*-< 

500 1999 1590 2900 2500 3000 3509 4080 4500 5001 

Sys t e" noise 

Figur e 10-t RM bearing err or for the PF with 200 partic les with plant noise va lues between 0 and 

5000 as tested oo pure synthetic data set 3 

System noise Particle fil ter Particle filter 

l10o 
I with 50 particles with 100 particles 

100 47.3 

500 14.0 500 

700 13.2 700 

900 10.7 900 

11 00 9.8 11 00 

1300 9.9 1300 

1500 13.0 1500 

12000 13.0 2000 

2500 9. 1 2500 

3000 9.9 3000 

3500 9.5 3500 

~00 13.5 4000 

500 11.1 4500 

000 10.05 5000 
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Table 37 RMS bearing error for the PF with 200 particles with plant noise values between 0 and 

5000 as tested on pure synthetic data set 3 

60 
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PF 100 t----X--t 
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SOJs tel'l noise 

Figure 1 OS RMS bearing error for the PF with 200 particles with plant noise values between 0 and 

5000 as tested on pure synthetic data set 4 

System noise Particle filter Particle filter 

with SO particles with 100 particles 

100 100 LOO 

200 200 200 

300 300 300 

400 400 400 

500 500 500 

600 600 600 

700 700 700 

800 800 800 

900 900 900 

100 1000 1000 
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1100 1100 1100 

12001 1200 1200 

1300 1300 1300 

1400 1400 1400 

1500 1500 1500 

2000 2000 2000 

2500 2500 2500 

13000 3000 3000 

3500 3500 3500 

4000 4000 4000 

4500 4500 4500 

[5ooo 15ooo 15ooo 

Table 38 RM bearing error for the PF with 200 particles with plant noise values between 0 and 

5000 as tested on pure synthetic data set 4 
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Varying the number of partic les, while keeping the process noise, uw set to the 

optimal value of 4000, discovered above. It can be seen that in most cases little 

improvement is avai lable with more than 200 particles. Using I 000 particles ra ther 

than 200 gives a mean RMS e rror improvement of less than 0.5%, however it leads to 

an eight fo ld increase in run time (Figure 1 lO). 
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Figure 106 RMS bearing error for the PF with different numbers of particles between SO and 1000 

as tested on pure synthetic data set 1 

Number of particles RMS bearing error 

50 10.2 

100 3.7 

200 2.2 

300 2.25 

400 2. 1 

500 2.2 

600 2.2 

700 2.2 
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800 

900 

1000 

122 2.2 

2.2 

Table 39 RMS bearing error for the PF with different numbers of particles between SO and I 000 as 

t ested on pure synthetic data set I 
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Figure I 07 Pure synthetic data set 2 

Number of particles RMS bearing error 
~---------------------r---

50 12.8 

100 3.9 

200 3.8 

300 3.75 

400 3.8 

500 3.75 

600 3.8 

700 3.75 
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Table 40 Pure synthetic data 2 
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Figure I 08 RM bearing error for the PF with different numbers of particles between SO and I 000 

as tested on pure synthetic data set 3 

Number of particles RMS bearing error 

50 11.1 

100 87.7 

200 7.8 

300 7.7 

400 7.7 

500 7.7 

600 7.7 
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700 

800 

900 

1000 

7.7 

7.6 

7.6 

7.8 

Table 41 RMS bearing error for the PF with different numbers of particles between SO and I 000 as 

tested on pure synthetic data set 3 
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Figure J 09 RMS bearing error for the PF with different numbers of particles between 50 and I 000 

as tested on pure synthetic data set 4 

Number of particles RMS bearing error 

50 15.4 

lOO 13.9 

200 13.5 

300 12.8 

400 13.5 

500 12.9 
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1600 
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Table 42 RM bearing error for the PF with different numbers of particles between SO and 1000 as 

tested on pure synthetic data set 4 
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Figure 110 Run time in seconds on pure synthetic data over number of particles in particle filter 

between SO a nd I 000 particles 

~O b er of part_ic_les ________ +R_ un time (Seconds) rso-- 24.99 

37.05 

82.77 

129. 12 
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E 186. 17 

500 237.86 

600 297.56 

700 378. 19 

800 469.98 

900 569.28 

1000 692.49 

Table 43 Run lime in seconds on pure ynlhelic data over number of particles in pa rt icle filler 

between SO and I 000 particles 
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Single Output Neural Network 

The single output ANN is described in section 2.7.4. The result of the optimisation used 

to establish the parameters is given here. A Java program was written which could 

repeated ly run the algorithm through a series of nested loops to eva luate every 

combination of parameters. This program was run on each of the five data sets in turn. 
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Pure synthetic 1 
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.9 

,5 
4 .s • Learning Para"eter 

Figure I 11 RM bearing residual over number of hidden nodes between Sand 45 and learning 

parameter between 0.01 and 0.9 for a single output feed forward neural network with S input nodes 

trained with backpropagation on synthetic data set I 
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Figure 112 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 10 input 

node trained with backpropagation on synthetic data set l 
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Figure 113 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

pa rameter between 0.01 and 0.9 for a single output feedforward neural network with IS input 

nodes trained with backpropaga tion on synthetic d ata set 1 
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Figure I 14 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedforward neura l network with 20 input 

nodes trained with backpropagation on synthetic data set 1 
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Figure liS RMS bearing residual over number of hidden nodes between Sand 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 25 input 

nodes trained with backpropaga tion on ynthetic data set I 
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Figure 116 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedforward neural network with 30 input 

node trained with backpropagation on synthetic data set 1 
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Figure 117 RM bearing residual over number of hidden node between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a ingle output feedfonvard neural network with 35 input 

nodes trained with backpropagation on synthetic data set I 
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Figure 118 RM bearing residual over number of bidden node between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 40 input 

node trained with backpropagatioo on synthetic data set 1 
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Figure L19 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 5 input nodes 

trained with backpropagation on synthetic data set 2 
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Figure 120 RMS bearing res idual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedforward neural network with 10 input 

nodes trained with backpropagation on synthetic data set 2 
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Figure 121 RM bearing residual over number of hidden node between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a s ingle output feedfonvard neural network with IS input 

nodes trained with backpropagation on yntltetic data et 2 
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Figure 122 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feed fon vard neural network with 20 input 

nodes trained with backpropagation on synthetic data set 2 
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Figure 123 RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for n single output fcedfonvard neural network with 25 input 

nodes trnincd ''ith backpropagation on synthetic data set 2 
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Figure 124 RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output fcedfonvard neural network with 30 input 

nodes trained with backpropagation on synthetic data set 2 
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Figure 125 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 35 input 

nodes trained with backpropagation on yntbetic data et 2 
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Figure 126 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output fecdfonvard neura l network with 40 input 

nodes trained with backpropagation on ynthetic data et 2 
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Figure 127 RM ben ring residual over number of bidden node between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feed forward neural network with 5 input nodes 

trained with backpropagation on yntbetic data set 3 
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Figure 128 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a ingle output feedfonvard neural network with 10 input 

nodes trained with backpropagalion on ynthelic data et 3 
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Figure 129 RMS bearing residual over number of bidden nodes between 5 and 45 and lea rning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with IS input 

nodes trained with backpropagatioo on synthetic data set3 
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Figure 130 RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvnrd neural network with 20 input 

node trnined with backpropagatioo on synthetic data et 3 
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Figure 131 RM bearing residual over number of bidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonva rd neura l network with 25 input 

nodes trained with backpropagation on synthetic data set 3 
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Figure 132 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output reedfonvard neural network with 30 input 

node trained with backpropagation on ynthetic data set 3 
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Figure 133 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonva rd neural network with 35 input 

nodes trained with backpropagation on ynthetic data et 3 
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Figure 134 RMS bearing residual over number of hidden node between Sand 45 and learning 

parameter between 0.01 and 0.9 for 11 single output feedfonvard neural network with 40 input 

nodes trained with backpropagation on yntbetic data set 3 
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Figure 135 RM bearing residual over number of bidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 5 input node 

trained with backpropagatioo on synthetic dnta set 4 
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Figure 136 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 a nd 0.9 for a single output feedfonvard neural network with 10 input 

nodes trained with backpropagation on synthetic data set 4 
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Figure 137 RMS bearing residual over number of bidden nodes behveen 5 and 45 and learning 

parameter behvcen 0.01 and 0.9 for a single output fecdfonva rd neura l nehvork with IS input 

node tra ined with backpropagation on synthetic data et 4 
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Figure 138 RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feed fonva rd neural network with 20 input 

node trained with backpropagation on synthetic data set 4 
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Figure 139 RMS bearing re idual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output fcedfonvard neural network with 25 input 

node trained with backpropagation on ynthetic data set 4 
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Figure 140 RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output fced fonvard neura l network with 30 input 

node trained wi th backpropagation on ynthetic data et 4 
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Figure 141 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedforward neural network with 35 input 

nodes trained with backpropagation on synthetic data set 4 
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Figure 142 RMS bearing residual over number of bidden nodes between Sand 45 and learning 

parameter between 0.01 and 0.9 for a single output feedforward neural network with 40 input 

nodes trained with backpropagation on ynthctic data et 4 
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Figure 143 RM bearing residual over number of hidden nodes between Sand 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with S input nodes 

tr ained with backpropagation on semi-synthetic data set 
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Figure 144 RMS bearing residual over number or hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output reedfonvard neural network with 10 input 

node trained with backpropagation on emi- nthetic dnta et 
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Figure 145 RM bearing residua l over number of hidden nodes between Sand 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 20 input 

nodes tra ined with backpropagation on erni- yntbetic data set 
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Figure 146 RM bearing re idual over number of hidden node between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvnrd neural network with 25 input 

nodes tra ined with backpropagation on semi- yntbetic data set 
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Figure 147 RM bearing residual over number of hidden nodes between 5 and 45 and lea rning 

parameter between 0.01 and 0.9 for a sing le output feedfonvard neural network with 25 inpu t 

nodes trained with backpropagation on emi-syntbetic data set 
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Figure 148 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

1>arameter between 0.01 and 0.9 for a single output feedforward neural network with 30 input 

nodes trained with backpropagation on semi-synthetic data set 
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Figure 149 RMS bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between 0.01 and 0.9 for a single output feedfonvard neural network with 35 input 

node trained with backpropagation on semi- yntbetic data set 
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Figure ISO RM bearing residual over number of hidden nodes between 5 and 45 and learning 

parameter between O.OJ and 0.9 for a ingle output feedfonvard neural network with 40 input 

nodes trained witb backpropagation on semi-synlbetic data set 
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Appendix E - Standard definitions 

This appendix comprises of definitions of the standard techniques used within this 

thesis. These are common and well known enough to be found in most textbooks on 

the subject, or on the World Wide Web, therefore are exc luded from the body of the 

thesis, however they are described here partly for completeness, and to ensure that the 

reader understands the author's definition where there is any ambiguity. 

Artificial Neural Networks 

A standard ANN is made up of discrete processing units known as artificial neurons or 

nodes. These are highly stylised and simplified imitations of the neurons found in the 

brain. A node accepts input from one or more sources and provides a single output, 

each input and output having a separately specified weight. The output of the node is 

calculated by summing the weighted inputs to the node, passing the result through an 

activation function , and multiplying by the output weight. 

<p - -~y 
• • • 

X 
n 

Figure 151 Artificial neuron or node 

The function of the node is therefore y=cpL.;'=0 x, w, . 

When several of these nodes are connected together, complex behaviour can be 

obtained. In a typical ANN, a layer of input nodes wil l accept input. There will be one 
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or more hidden layers, and finally an output layer of nodes. However unless a non

linear activation function is used there is little point in using several hidden layers as 

for every set of multiple hidden layers with linear activation functions there is an 

equivalent single layer which would give the same result while taking less time to train 

and test. 

Input 

--~ 

--~ 

Figure 152 Artificial neural network 

A training program must be run to establish the optimal values for the various weights, 

and a set of examples, known as the training data must be provided. testing the network 

on each set of inputs provided and making small changes to the weights to make the 

result more like the set of outputs in the training data. 

Training algorithms 

There are two broad categories of ANN training; unsupervised and supervised learning. 

In unsupervised learning, a program is developed which allows the ANN to make 

generalisations about the data without being provided with any examples. This is 

useful in situations in which the truth is either unknown, or prohibitively difficult to 

calculate. Only input training data is required. 

For the second category, supervised learning, both input and output data is required. 

Here the ANN is gradually tuned to give approximations to the outputs provided. Care 

must be taken to stop the ANN from overtraining, that is learning the training set so 

well that it also learns the noise, reducing both its generality and accuracy on the testing 

data set. 
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One common supervised learning technique is backpropagation. Backpropagation is a 

gradient decent technique for incrementally improving the performance of the network. 

First a forward pass is performed to calculate the output at each node for a given input, 

fo llowed by a backward pass to calculate the ideal output at each node. The amount the 

weights between the hidden layer and the output layer must change is calcu lated, then 

the same is ca lculated for the weights between the input layer and the hidden layer. 

Finally the weights are adjusted towards the ideal values, the delta calculated for each 

node is multiplied by the learning parameter before use, to control the rate of learning. 

The learning parameter is normally set to between zero and one. At zero no change to 

the network is made, while if set to one the weights are adjusted to make the network 

perfectly tuned to the current training example. In most practical applications a low 

va lue is used, and several iterations of the training procedure are performed across as 

many examples as possible. The backpropagation training algorithm is good at finding 

local minima quickly. 

Genetic algorithms 

When searching for solutions to a problem, one technique which is capable of 

simultaneously searching for a collection of solutions is a Genetic Algorithm (GA). 

The GA in its simplest form has a predefined fitness function, which measures the 

relative performance of competing binary strings. This fitness function could, for 

example, describe the input parameters for an algorithm, in wh ich case the fitness 

function would be a measure of how well the algorithm performed with the parameters 

parsed from the string. 

A number of these binary strings are randomly generated, and then the performance of 

each is measured. Using this performance individuals are selected randomly, but with 

the probabil ity of selection being proportional to their measured fitness. This can be 

imagined as being like a casino roulette wheel in which each individual has a slot on 

the wheel, however rather than having the standard, equal width divisions, the size of 

each slot is proportional to the fitness of the individual represented. 

Solutions selected by the roulette wheel are 'mated' and a second generation of 

individuals which are combinations of their parents is created. The simplest approach 

for this is to select a random point along the string and swap the two parents over after 

that point, resulting in two children, although more complicated crossover schemes 

exist such as two point crossover. 



Page 285 of 289 

Mutation is also performed on these children in which random bits in the binary string 

are inverted at a pre-defined rate. After several generations the resultant classifier 

should be able to outperform significantly any of the initial random individuals. The 

expectation is that this will lead to the population becoming increasingly fit over time. 

Multi-objective genetic algorithms 

Many situations exist in wh ich there is not just one objective for success, but mu ltip le 

non-complimentary competing objectives. An example of this would be to design a 

car, in which top speed and fue l efficiency are competing objectives. In these situations 

a genetic algorithm can still be used and there are many different ways of utilising the 

resul ts for each objective; 

I. Separate sub-populalions 

Effectively a separate GA is run for each objective, and the population is 

recombined at the end. 

2. Combination function 

A functionf(x,y) is created which combines results for each objective into a 

single number, allowing a standard GA to be used. 

3. Pareto optimality and dominance ranking 

See next section. 

A full description of the state of the art in MOEAs is outside the scope of this thesis, 

however [4) provided a comprehensive survey. 

Pareto optimality 

Pareto optimality gives a formal way of establishing the set of individuals in a 

population which represent the best trade-off between two or more competing 

objectives. To find the Pareto set, the non-dominated individuals are found. An 

individual in the population is said to be dominated if another member of the 

population exists which is better for every one of the objectives. The non-dominated 

set of individuals forms what is known as the Pareto-Front. An example of this is 

shown in Figure 153, where the objective is to minimise the values of the two 

competing objectives, the line in green represents the Pareto Front. 
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Figure 153 An example Pareto Front 

1 

It is possible to use the idea of dominance to form a ranking system. Figure 154 g ives 

one way of calculating this (based on NSGA-Il [77]), which assigns a fitness ranking to 

all individua ls of a popu lation which is inversely proportional to the distance of the 

individua l to the Pareto Front. This is the system used in the MOGA expe riments of 

this thes is to se lect the individuals fo r use in the following generation of the GA, the 

closer the individua l is to the Pareto Front, the more like ly it is to be selected for use in 

the following generation. 



Page 287 of289 

tart 

Set the current ranking score to -I 

Find non-dominated individuals in population 

Assign the cwTent ranking score to all non-dominated individuals 

Remove non dominated individuals from population, decrement 
cWTent ranking score 

No 

Stop 

Figure 154 Calculating dominance ra nking 

Measuring diversity 

[L68] experimented with several measures of classifier diversity for classi fiers and 

found that the pattern of the relationship between ensemble accuracy and diversity was 

not substantially different between the nine measures of diversity used. As there is 

little difference between their performance, the choice of which to use was arbitrary. 

From the nine, four have been selected for use in th is thesis; 

I. Entropy 

where Lis the number of individua l classifiers, 
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N is the number of data sets 

and Y•J is the output of the i111 classi tier on the j 111 data set (where I denotes a 

correct classification and 0 an incorrect one.) 

2. Kohavi-Wolpert distance [ 163] 

Y ( z)= X~=tY •. 1 

3. Generalised diversity 

Generalised diversity is calculated by taking a subset of the test data and using it 

to calculate the probabilities of i members of the ensemble will fail on any given 

data set. 

L . 

p( l) = ~. ~ p , 

L i(i- I) 
p(2) = ~1 L(L- 1) p , 

GD = 1- p(l) 
p(2) 

where p, is the probability that exactly i classifiers in the ensemble will fail, 

calculated empirically from the test data. 

4. I lamming distance 

Pairwise comparisons are made between each binary gene string in the 

ensemble, and the hamming distance is calculated between each. The mean of 

these values is used as the va lue for the ensemble. 

Measuring accuracy 

Four metrics have been chosen; R.M error due to its widespread use, and ease of 

understanding, Geometric Mean of Relative Absolute Error (GMRAE), Median RAE 

(MdRAE) and Median Absolute Percentage Error (MdAPE), the latter three being the 

statistics recommended by [I 0] as the best measures of accuracy in this type of 

problem. RM error is too well known to outline here, however the other three are 

given in the fo llowing sections. 
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Geometric Mean of Relative Absolute Error 

(GMRAE) 

In order to calculate the Re lative Absolute Error (RA E) of each measurement, a random 

walk must be generated. The predictions are then compared to the random walk to 

produce the RAE. RAE is defined as errorRAE = 
X predicted - X obsun ·ed 

X random _ nnlk - X obst~wtl 

The values ofRAE are then Winsorized; very low and very high values are removed 

and rep laced with values on the boundaries, in order to e liminate outl iers. 

O.Ol if RAE < 0.01 

WRAE = RAE if 0.01 ~ RAES 10 

IOif RAE > 10 

Finally GMRAE is calculated as the mean of the W insorized RAEs. 

Median RAE (MdRAE) 

T he Winsorized RAE values are calculated, and then the MdRAE is defined as the 

median of the Winsorized RAEs. 

Median Absolute Percentage Error (MdAPE) 

. X predicted - X observed 
Absolute Percentage Error (APE) ts defined as error APE = 1__::....__ _ _____ 1 

X observed 

This error value is calculated for every predicted value in the time series. Md.APE is 

the median value of APE for the whole time series. 






