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ABSTRACT 

Recent advances in geographic information systems (GIS) and artificial 

intelligence (AI) techniques have been summarised, concentrating on the theoretical 

aspects of their construction and use. Existing projects combining AI and GIS have also 

been discussed, with attention paid to the interfacing methods used and problems 

uncovered by the approaches. AI and GIS have been combined in this research to create 

an intelligent GJS for design. This has been applied to off-shore pipeline route design. 

The system was tested using data from a real pipeline design project. 

Engineering design often involves the use of large quantities of geographic and 

spatial data. Despite this geographic information systems (GIS) have failed to become a 

worthwhile design tool. The results from conventional GIS, it appears, do not justify their 

use in a design context. This research explores the possibility of adding intelligence to a 

GIS, such that it can understand the data it holds in the context of the design problem, 

and thus make a more effective contribution to the solution being sought. 

PIRATE is an intelligent GIS for design, specifically applied to the design of off­

shore pipeline routes. By integrating a GIS with an AI too !kit, PIRATE enables 

knowledge base rules to directly access and manipulate geographic features in the GIS. 

AI/GIS integration is ensured by the use of spatial dualism, with the location based 

feature description in the GIS, and the object based description in the frame hierarchy of 

the AI toolkit. The system requirements and design rules were found as a result of 

extensive interviews with practicing pipeline engineers. PIRATE is operated from a 

graphic user interface which allows overlay mapping, GIS interrogation, interactive 

pipeline design and assessment. Logical dependency allows the system to be used as a 

geographic design spreadsheet, providing the engineer with a rapid tool for optirnising 

his design. 

PIRATE was tested using chans and data from the Sable Island Gas Pipeline 

Project, a route requirement over a bathymetrically complex ocean floor on the Nova 

Scotian continental shelf. PIRATE was loaded with the bathymetry and a subset of the 

features in the region, and proved itself effective in analysing routes crossing the region. 

Recommendations have been made for expanding the PIRATE system, and for the 

development and use of intelligent GIS for other applications. 
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1. INTRODUCTION 

"Geographic Information Systems [GIS] are the biggest step forward in 

the handling of geographic information since the invention of the map" 

(Department of the Environment, 1987) 

Engineering design relies heavily on geographic and spatial information. However, 

GIS have failed to become a worthwhile design tool. This is because to date GIS have 

been deliberately constructed as isolated, general purpose tools. They have no links to, or 

ability to understand the rules, consequences and restrictions which make up 'the design 

process'. 

For centuries geographic information has been stored and displayed in the form of 

maps and chans. These rely on human abilities to translate the symbols on the map into a 

mental model of the real situation. This interpretation will depend on the use to which 

the information is being put, and the past experiences and expertise of the user as he adds 

meaning to the symbols in terms of their explicit or expected properties. 

Computer systems are now being used to replace the conventional paper map as a 

means of storing and displaying geographic information. With advantages in 

interrogation speed, capacity and ease of update, GIS have found widespread uses in 

such diverse areas as forestry management and building society office selection. 

However, despite being able to present data graphically and in many different forms, 

GIS generally rely on the human user to interpret the results in the context of the 

problem being solved. Conventional GIS have neither the intelligence to understand the 

data they hold nor the ability to act on this understanding. 

In recent years research in artificial intelligence has yielded a new breed of 

computer program, called the expert system. This is specifically designed to emulate the 

decision making processes of a human expert. An expert system uses logic to link rules 

and facts about a particular area of expertise, or domain, to produce new information and 

solutions for any given simation. Applications have been widespread, from hazard 

monitoring in a nuclear power station, to choosing the best wines for a particular meal. 

In this thesis the potential of GIS is extended into the design domain by linking the 

capabilities of GIS with the rule handling abilities of AI systems. It will be shown that 
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the two widely dissimilar technologies of GIS and AI can be successfully combined, into 

a commercially viable intelligent G/S for design. 

The idea of combining GIS with AI is not new, but it has generally been applied to 

making existing GIS functions perform better, rather than attempting to contribute 

significantly to the eventual use of the data. The major research projects which have 

attempted the latter function are discussed in the thesis. 

Research with British Gas plc., the sponsors of this work, and J.P. Kenny & 

Partners, a leading off-shore design consultancy, indicated that existing manual 

techniques for off-shore pipeline route design were both time consuming and tedious. 

During the design process the sub-sea geographic data on which the design is 

based tends to be imprecise or expensive to collect, and becomes available at 

unpredictable stages. Producing charts showing geographic constraints and analysing 

potential routes is time consuming. Late changes to design parameters, for example pipe 

diameter, can have far reaching effects on all aspects of route assessment. Re-designing 

the pipeline in the light of such changes requires extensive manual recalculation and re­

assessment. The effort needed for manual pipeline design is such that in practice few 

alternative routes are given full consideration, giving the possibility of a more efficient 

route being missed. 

By integrating expert system technology with a geographic information system, 

this research has produced an intelligent GIS, called the Pipeline Route Analysis and 

Testing Environment (PIRATE). By incorporating the design knowledge of practicing 

pipeline engineers, PIRATE is able not only to store and manipulate geographic 

information, but to understand it in the context of the problem it is addressing, such that 

it can make a valid, intelligent contribution to the solution being sought. 

PIRATE was tested using information from a real pipeline project. This case study 

was provided by J.P. Kenny & Partners, and it represents one of the most extensive and 

complex projects that they have undertaken in recent years. Results from this study 

proved that PIRATE could significantly reduce the time taken for pipeline route design 

and assessment. It was concluded from this that the objective of creating a viable 

intelligent GIS for design had indeed been achieved. 
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The work presented in this thesis brings together the disciplines of geographic 

information systems and artificial intelligence. The thesis has been structured to acquaint 

the reader with essential aspects of each area before their integration is considered. 
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2. GEOGRAPHIC INFORMATION SYSTEMS 

2.1 INTRODUCTION 

Geographic information has been stored and accessed for centuries in the form of 

paper maps and charts. Maps are an invaluable asset for a wide range of human 

activities, from navigation to land use planning. Traditional methods of map production 

involve the skills of a cartographer manually drawing each geographic feature. Non­

spatial properties of each feature are indicated by the type of symbol the cartographer 

uses. An area of forest, for example, would perhaps be shaded in green. 

With the advent of computer technology capable of storing large volumes of 

information, computers have been applied to the handling of geographic information. 

These computer systems are known as geographic inforrruJtion systems (GIS). 

Throughout the 1980's the number of commercially available GIS has expanded 

rapidly, prompting the UK Government to commission an enquiry into the potential of 

these new systems (DoE, 1987,1988). In 1989 the Association for Geographic 

Information (AGI) was formed to provide a forum for discussion on this new technology. 

The AGI have issued a comprehensive definition of what constitutes a GIS: 

"A system for handling data which is directly or indirectly spatially referenced to 

the Earth. It may be used for capturing, storing, validating, maintaining, 

manipulating, analysing, displaying or managing such data. It is normally 

considered to involve a spatially referenced computer database and appropriate 

software. A primary function of a GIS is it's ability to integrate data from a wide 

variety of sources." (Purvis, 1989). 

Commercial GIS software is now available in a wide range of forms, from small 

systems capable of running on a personal computer, to large corporate mainframe 

installations. Lists have been published showing the extent and capabilities of competing 

GIS software (Mapping Awareness, 1989). 

Research in GIS is very active at this time. New data storage and manipulation 

concepts are being investigated, whilst the number of GIS application areas are 

increasing due to diverse research initiatives. The practical aspects of installing a GIS 
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have also been the subject of numerous research papers, as early implementors find 

unexpected pitfalls and benefits in GIS use. 

This chapter concentrates on the theoretical aspects of GIS data storage and 

handling, a thorough understanding of which is needed to appreciate the findings of this 

research. However, the chapter also discusses aspects relating to GIS implementation 

and use, the capture of geographic data and examples of GIS used in practice. 

2.2 DATA STORAGE 

Geographic data may be neatly divided into spatial and non-spatial components, 

the spatial component representing the physical presence of an object in space, and the 

non-spatial component representing the properties associated with the object. For 

example, a road has spatial information such as its centre line route and width, and non­

spatial information such as the type of surfacing and it's cost per kilometre. 

In common with many other computer applications, GIS data is usually physically 

stored in digital form on a magnetic medium, such as a disk or tape. The way in which 

this digital data is interpreted by the system, the meaning that is assigned to the content 

and order of the data elements as they are abstracted from the medium, is governed by 

the GIS data model that the system uses. 

A data model is a conceptual framework that gives meaning to data items. It acts 

on data like camera lenses or filters do on light, focussing it into an understandable 

image for the user. In a typical GIS there are three layers in the data model. At the lowest 

level, nearest to the physical data storage is the data model of the database management 

system (DBMS). This takes control of the physical positioning and physical form of the 

data on the storage medium, interfacing with the 'user' by presenting the data in a 

standard format. The relational DBMS, for example, uses rows and columns of a table as 

a way of presenting data. The DBMS data model also provides specific functions for 

manipulating the data that appears in this view. Non-spatial data can be accessed by the 

GIS user directly from the DBMS, but in the case of spatial data the DBMS 'user' is the 

next layer in the GIS data model. A number of commercial DBMS are available to fulfil 

this function, though some GIS authors elect to design their own procedures for physical 

storage control. DBMS for GIS are discussed in Section 2.4. 
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For spatial data, the layer above the DBMS is the spatial data model. This 

effectively translates the numeric values of the DBMS view into a representation of 

space. By giving a spatial framework to the data, a coordinate system, the concepts of 

lines, points, areas, distances etc., the numbers from the DBMS yield spatial entities. 

A third layer, still higher in abstraction can be said to exist. This is the user data 

model, which interprets the spatial entities as representing actual geographic objects or 

characteristics in the real world. The user data model controls how the data is displayed 

and how it can be manipulated. Spatial and non-spatial data come together in the user 

data model to provide a more complete depiction of the geographic objects being 

represented. The eventual product of this model is an understanding in the users mind of 

what characteristics the 'real world' region actually displays. 

The extent to which the user data model is actually implemented as computer 

code in a GIS varies from system to system. The result of the user data model is a state 

of understanding in the users mind, and therefore an interface must exist at some point in 

the model between the system and the user. Physically, of course, this interface is the 

computer screen, mouse and keyboard. The key issue, however, is the way in which the 

system presents the data to the user. A GIS may simply give the data as points, lines and 

areas, for example, with non-spatial information linked to these. Alternatively the GIS 

could also model the relationships between the spatial elements, and could perhaps allow 

the creation of complex objects as collections of simple ones. These facilities would 

lessen the burden on the user in both understanding the geographic information, and 

manipulating it correctly. 

Clearly, if a user could be given instant access to any information about a region 

the situation would be ideal. In practice the storage and management of the potentially 

infmite data volumes implied in this scenario is impossible with current methods. 

Collecting the data in the first place, and ensuring it was kept up to date, would be an 

impossible task. 

When an organisation decides to use a GIS it normally has a particular set of duties 

that it wishes the system to perform. The information stored in the GIS database must be 

sufficient to fulfil these functions, but should not be in excess of this. Any superfluous 

data will reduce response times, waste storage space, and misuse time in data collection 

and update. The decision as to what information to include or omit, and what operations 
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on the data are needed to achieve the desired results, are crucial to the success of the GIS 

implementation. 

When commercial GIS software is written, the authors rarely have knowledge of 

the actual applications the GIS will be used for. Hence the level of detail that will be 

required in the database cannot be stated in advance. The types of interrogation or query 

that the user will need are also unknown. Commercial GIS must therefore provide 

enough general facilities not only for storing data at any level of detail, but also for 

manipulating, interrogating and displaying the data. If any of these system features are 

limited, the potential applications of the GIS are also limited. 

In the 'real world' all geographic objects are three dimensional solids that can exist 

in isolation. Few GIS model objects as solids, however, because users rarely need this 

amount of information. For example, the boundary between two industrial plots may be a 

brick wall, which is itself a three dimensional solid. However, a GIS user is commonly 

only interested in the wall to the extent that it behaves as a boundary. A GIS would 

therefore symbolise the wall as a line, representing only its property as a boundary. 

Typically in GIS polygons represent the shape of an object, lines represent object 

boundaries or centre lines, and points indicate individual locations. 

Individual characteristics, or properties, in a region are often the focus for study. 

For example, an engineer may be interested in the variation in soil shear strength over a 

region where a dam must be sited. In these cases geographic objects themselves need not 

be modelled. The variation in a characteristic can instead be classified into discrete 

ranges, then represented graphically by polygons enclosing values in each range. An 

alternative is to use pre-defined polygons and aggregate characteristics that fall within 

them, an example would be the study of the variation in the disabled population between 

Health Authority Districts. Statistics resulting from such studies can be more easily 

compared using fixed polygon boundaries (Lane, 1990). In either case the GIS 

symbolism of points, lines and polygons can effectively deal with the data. 

The spatial relationship between one geographic feature and another is known as 

the topology. For example, if a line representing a fence boundary is moved the polygons 

on either side will change in area, perimeter and possibly non-spatial properties. 

Topology allows this dependency to be made explicit, forming a fabric of 

interconnecting access pathways which can maintain the integrity of the database. 

Topology also allows rapid retrieval of data about related items. Biljon (1987) identifies 
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three types of topological relationship, incidence, containment and exclusion. Incidence 

refers to the adjacency or connectivity of features, containment is when one polygon 

wholly encloses another feature, and exclusion is when a polygon wholly excludes 

another feature. A feature in this case may be another polygon, a line or a point. 

Topology itself is independent of spatial location, but merely depicts connective 

paths between features. The London Underground map is a typical topologic chart. The 

stations are not necessarily shown in the correct spatial location and neither are the rail 

links, but the connectivity between stations is explicit and accurate. 

The storage of topology in GIS requires more complex facilities than those for the 

storage of objects alone. Various degrees of representation have thus evolved to satisfy 

the needs of different applications, avoiding any unnecessary data or functional 

overhead. These are detailed in Section 2.3.1. 

Geographic objects are inherently complex, often made up of a collection of other 

more primitive objects. A building site, for example, is a collection of roads, open 

ground and building plots. Making enquiries about the building site may necessitate 

accessing the component objects. A GIS may allow for the creation and manipulation of 

complex objects of this type. 

GIS vary in their abilities to meet the modelling criteria stated above. Some are 

more simplistic, storing polygons, lines, points and non-spatial properties, but not 

including topology or complex object definition. Others strive to supply all facilities, at 

the expense of complexity •. a high storage overhead and increased development costs. 

The result is a range of products which, if carefully selected, can offer effective solutions 

for a wide range of applications. 

2.3 SPATIAL DATA STRUCTURES 

The spatial data model of a GIS can be implemented in a number of ways. Three 

common strains exist, each differing in the way spatial information is represented as 

numeric data. These categories are known as vector, raster and hierarchical data models. 

Within each category alternative data structures are documented. Data structures refer to 
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the more practical aspects of how numeric data is held, and how it is translated to and 

from the spatial view. 

2.3.1 Vector Data Structures 

Vector data structures represent feature polygons by explicitly storing their 

boundaries. Lines and points are held as precise geometric representations, giving 

advantages in accuracy and minimal data storage. Maguire & Raper (1990) classify 

vector structures as either topological or unstructured. 

The unstructured vector structure stores each geographic feature as a string of 

cartesian coordinates. No attempt is made to model topological relationships, and this 

lack of structure has lead to the popular yet unflattering pseudonym 'spaghetti structure' 

being used to describe the representation. 

The topological structure has two sub-classes, directional and complex. Between 

them they are, according to Maguire & Raper, the most widely used of all GIS data 

structures. The topological directional structure stores not only the end nodes of each 

line, but also the direction of input, creating a directed edge. This can yield the 

relationship between lines and adjacent polygons. The topological complex structure 

goes one stage funher by explicitly storing polygon identifiers to the left and right of the 

directed edges. By using a topological structure much of the searching and analysis 

difficulties associated with spaghetti structures are avoided. 

A typical overall vector data model is exhibited by the Kork GIS, (Keating et al, 

1987). In this the topologic level is considered the central component of a three tiered 

data structure. The cartographic tier is that closest to the user, where the definition of 

polygons is by bounding lines and points. The topologic level is automatically derived 

from this, consisting of the nodes, edges and faces of the topological complex structure. 

The physical level concerns itself with optimising the position of data on the storage 

medium so that rapid access for common queries is achieved. Parallels with the three 

tiers of the GIS data model in Section 2.2 can be seen. 
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This is attained by clustering data from geographically close features into close 

proximity on the physical storage. Paging data from the medium can reduce the number 

of accesses needed to respond to common query types. This level requires the overriding, 

or at least the careful control, of any integral DBMS. The DBMS would normally have 

exclusive control of physical data positioning. 

Reasons for the current popularity of the vector data structure are numerous. 

Display devices and hard copy methods both favour the use of vector data, and storage is 

compact and exact. However, vector systems suffer from a number of drawbacks, as 

Table 2.1 (page 13) illustrates (Burrough, 1989). 

2.3.2 Raster Data Structures 

Raster data structures do not model the boundaries of feature polygons, but instead 

use a regular grid of cells to represent areas directly. A polygon can be defined by stating 

which cells fall within it and which do not. At the simplest level a matrix of zeros and 

ones can declare the existence of a feature at any location. The choice of a zero or one is 

known as a binary digit, or bit, and is the lowest denomination in computer information 

storage. Declaring existence requires one bit per raster cell. Figure 2.1 highlights the 

difference between vector and raster representations. 

By increasing the number of bits per cell more data can be stored. A single byte (8 

bits) per cell can hold up to 255 alternative integer values. This is ideal for representing 

thematic data where in this case up to 255 categories can be supported. Location based 

queries, for example "What is at this point?", yield rapid responses. The system merely 

accesses the cell containing the point location. This is a marked contrast from vector 

structures where the enclosing polygon must first be found by geometric calculation 

using the boundary definitions. With the spaghetti structure in particular this can involve 

lengthy database searches. 
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Advantages 

- Good representation of phenomenological data structure 

- Compact data structure 

- Topology can be completely described with network linkages 

- Accurate graphics 

- Retrieval, updating and generalisation of graphics and attributes are possible. 

Disadvantages 

- Complex data structures 

- Combination of several vector polygon maps or polygon and raster maps through 
overlay creates difficulties 

- Simulation is difficult because each unit has a different topological form 

- Display and plotting can be expensive, particularly for high quality colour and 
cross hatching 

- The technology is expensive, particularly for the more sophisticated software and 
hardware 

-Spatial analysis and filtering within polygons are impossible 

TABLE 2.1 ATTRIBUTES OF VECTOR DATA STRUCTURES 
(FROM BURROUGH, 1989) 
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Point and line data are vector by nature. When they are stored in a raster grid their 

spatial representation becomes an unconnected series of cells, and the notion of an 

explicit line element is lost. Thus any application wishing to use the lines explicitly, such 

as for network analysis, cannot do so. Hybrid systems, such as the vaster structure 

suggested by Peuquet (1983), have been suggested to overcome these difficulties. Dual 

representations are an alternative approach, with point and line features stored as vectors 

and area features in the raster form. The processing requirements do increase, however, 

as operations such as scaling and rotation need algorithms for both the raster and vector 

representations. 

The size of each cell, or its resolution, governs the precision of the polygon 

depiction. Coarser resolution leads to more acute aliasing at polygon boundaries, causing 

a 'saw tooth' profile to be exhibited. In applications where a high precision is required the 

resolution must be chosen with care. Clearly the more cells used to represent a region, 

the higher the storage overhead, and the higher the precision. 

Rather than represent each cell explicitly, a number of systems incorporate 

compression techniques for their databases. Mark (1986) describes run-length encoding, 

a method where successive cells with the same value are stored as a single record. 

Facsimile compression techniques have also been employed (Mason, 1989). Researchers 

in fractal geometry have obtained compression ratios in excess of 10,000:1, though at the 

expense of extremely lengthy processing times (Barnsley & Sloan, 1988). Although 

compression is possible the data storage overhead still appears to be a major concern 

among potential raster GIS users. The main advantages and disadvantages of raster 

systems have been tabulated by Burrough (1989), and this is given in Table 2.2. 

Raster based GIS is becoming more popular. Mass storage costs are plummeting 

and new hard copy devices are often raster based. The range of skills available to 

software developers is also becoming wider, partly due to the increase in popularity of 

other raster based technologies such as facsimile communication and image processing. 

The choice of data structure for GIS applications is therefore not as clear as it once might 

have been. 
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Advantages 

- simple data structures 

-The overlay and combination of mapped data with remotely sensed data is easy 

-Various kinds of spatial analysis are easy 

- Simulation is easy because each spatial unit has the same size and shape 

- The technology is cheap and is being energetically developed 

Disadvantages 

- Volumes of graphic data 

- The use of large cells to reduce data volumes means that phenomenologically 
recognisable structures can be lost and there can be serious loss of 
information 

- Crude raster maps are considerably less beautiful than vector maps drawn with 
fine lines 

-Network linkages [ie: linked line and point features] are difficult to establish 

-Projection [and] transformation are time consuming unless special algorithms or 
hardware are used. 

TABLE 2.2 ATTRIBUTES OF RASTER DATA STRUCTURES 
(FROM BURROUGH, 1989) 
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2.3.3 Hierarchical Data Structures 

Hierarchical data structures may be considered a sub-set of raster structures in that 

they use cells to represent component regions of feature polygons. However, whereas 

most raster structures use a fixed cell size, the hierarchical cell resolution is variable. The 

approach recursively subdivides a region into smaller cells until either a cell becomes 

homogeneous (wholly 'black' or 'white'), or the minimum resolution is reached. This 

variable granularity is designed to minimise storage requirements. 

Figure 2.2(a) shows a quadtree decomposition which typifies the hierarchical 

nature of these structures. The quadtree is based on a square grid cell, other 

arrangements include triangular and hexagonal tesselations (Holroyd, 1986). Each cell is 

recursively subdivided into 4 child cells, such that a tree structure is produced. The 

lowest cells, or leaf nodes in the tree, are homogeneous and combine to form the final 

quadtree representation of the region. The position of each cell in the tree indicates not 

only its location in the geographic region, but also it's cell size (Samet et al,1984a 

Hogg,1988). 

According to Samet et al (1984b) quadtrees were traditionally implemented using 

explicit pointers to connect parent to child. A pointer is an item of data which is the 

address, or location, of another item of data. By following pointers a system can track 

from one data item to another. Later the disadvantage of the extra storage needed to store 

the pointers prompted interest in a pointer-less representation termed the linear quadtree. 

By labelling each quadrant of a decomposition with a digit (say 0 to 3) the location of 

any cell in the tree can be represented as a single reference number. Figure 2.2(b) shows 

a typical quadtree leaf and the derivation of the quadtree address. By representing the 

cell position in the tree the address holds the location and size of the cell within the 

geographic region. The number of cells required to model the polygon in Figure 2.2(a) to 

the illustrated resolution is 7 quadtree cells compared with 103 standard raster cells. The 

potential saving of storage space can clearly be seen. 

Methods for quickly deriving the quadtree address of any cartesian coordinate pair 

were first defmed by Morton (1966), although at that time the term 'quadtree' had not 

been coined. By taking the binary representation of each coordinate and interleaving the 

individual bits a new binary number is produced. Converting this to base 4 (the quadtree 

arithmetic base) produces an address which is that of the cell enclosing the original 

coordinates. 
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If the ordering of the addresses is mapped directly into physical storage it is likely 

that adjacent cells will be represented in a similar physical storage location. However, at 

high level boundaries of a region, say either side of the region centre line, the spatial 

clustering does not hold. Despite this limitation fast spatial access to information is a 

commonly stated advantage of linear quadtrees. 

The address order forms a curve which can be shown spatially, Figure 2.3. The 

spatial clustering of address allocation can be seen from the curve. Mark & Goodchild 

( 1986) call this the Morton Order curve, and discuss its properties in relation to other 

space filling curves. It can be seen that the curve is self similar, its basic pattern being 

repeated over all levels of the cell hierarchy. This property is useful in that it makes it 

simple to process the data at different scales. The recursive nature of the curve also lends 

itself to manipulation using recursive languages such as the artificial intelligence 

language Lisp. The use of Lisp as the control language in Samet's early work is 

indicative of this (Samet et al, 1984b). 

The properties of the quad tree address have become an intensive area for study. In 

particular the effects of normal arithmetic operations on the addresses has attracted a 

research following and the term tesseral arithmetic (Diaz & Bell, 1986). Applying 

multiplication to a quadtree address, for example, will lead to a change of scale and a 

rotation of the cell represented by that address. Denham et al (1986) note that "as tesseral 

multiplication takes the same time as conventional multiplication [but Cartesian 

scaling/rotation takes longer], that scaling and rotation operations could be quicker using 

tesseral arithmetic and quadtrees". 

Quadtrees model two dimensional regions, but the hierarchical structure can be 

extended to three or more dimensions. Gargantini ( 1982) and Kavoras ( 1985) both 

describe the octree, where each cell is a cube, with recursive subdivision into eight 

smaller cubes. Temporal modelling could be facilitated by an extension of this theme 

into higher dimensions. 
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Although hierarchical data structures appear to offer many advantages, they also 

have their failings. With particular reference to quadtrees Waugh (1986) notes that they 

lack topology, can be difficult to modify, take a long time to generate or update and only 

offer storage advantages when data is homogeneously clustered. A chequerboard raster 

image will gain no storage advantage from being quadtree encoded. Denham et al (1986) 

noted that "relative addressing takes equal time for both tesseral and Cartesian systems". 

As many GIS functions need to use relative addressing, they conclude from this that "a 

very large class of [GIS] algorithms have nothing to gain from tesseral addressing". The 

advantages gained using quadtrees for some spatial manipulations must be offset against 

the high generation cost and poor performance in other areas before a decision is made to 

employ them. 

Waugh also noted that, in common with other raster forms, line data is represented 

as a series of unconnected pixels. The line as a single spatial entity is lost. Samet et a! 

(1984b,l987) and Callen et al (1986) have reponed on techniques for explicit line 

storage within the quadtree, but all seem unnecessarily complex and difficult to 

implement when compared to using the vector structure. 

2.4 DATA BASE MANAGEMENT SYSTEMS 

Geographic information systems are often implemented using a proprietary 

database management system (DBMS). GIS system designers can then leave physical 

data storage, access, update, and manipulation tasks to the DBMS. 

Three data models are in common use for DBMS, these being the hierarchical, 

network and relational models. A founh data model, the object oriented representation, is 

also becoming popular. 

The hierarchical model allows items of data, or entities, to be linked. In many 

situations this is useful, for example when one wishes to store the details about different 

types of car. In this case the entities which describe a car engine would ideally be linked 

to the car type that has the engine fitted. The hierarchical model allows links between a 

parent entity and one or more child entities. Thus a car type could be a parent, and the 

individual parts that make up the car type would be children. The hierarchical model 

allows a whole 'family tree' to be built, with children of one entity being parents to other 
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entities. The overall specification of the logical structure of the database, without the 

actual data in place, is known as the database schema. 

In the hierarchical model an entity is allowed multiple child entities, but each is 

allowed only one parent. In situations where a number of entities need to be linked to the 

same child, the child data must be repeated for each parent that needs it. For example, if 

two or more different car types use the same engine unit, all data describing the engine 

unit would have to be repeated for each type of car. Similarly if 300 bolts of a particular 

type were used in each of four different engines, 1200 repetitions of the bolt description 

would be required. Aside from the obvious storage overhead, data integrity can also be a 

significant problem. For example, if the specification of the bolt changed then all copies 

of its description would have to be found and updated. 

Network, or plex, data models improve on the hierarchical model by allowing 

multiple parent and child connections. This avoids much of the data repetition problem. 

The network model uses a complex system of pointers to define data linkages. The US 

Department of Defense Conference for Data Systems Languages (CODASYL) have 

issued recommended guide-lines for the implementation of DBMS using this model 

(Olle, 1978). 

The relational data model was first defined by Codd (1970,1971). Rather than use 

collections of entities connected by pointers, as in the network or hierarchical models, 

the relational model uses a collection of flat files, called tables. A relational table is 

analogous to a table on paper, which one might place in a report. It has one or more fixed 

length fields, corresponding to the columns in a normal table. Each row is called a 

record. Codd defined more abstract names which serve little purpose and so are not used 

in this thesis. 

Relationships between items in different tables are formed when two tables have a 

common field. Those items which have the same value in that common field are said to 

be related. For example, if a car type table had a field for engine capacity, and a engine 

table also had a field for engine capacity then the potential exists for relationships to be 

made. If, for example, a Ford Sierra had an entry of 1600cc in the engine capacity field, 

and one of the engines in the other table also had an engine capacity entry of 1600cc, 

then the two data items are related. The JOIN operation will produce a new table which 

concatenates all related records in the two tables, so that a full list of related items is 

produced. 
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There are instances when more than one item in one table will relate to a single 

item in another table. This is known as a one to many relationship, for example if both a 

Ford Sierra and a Ford Granada had a 1600cc engine type entry. The JOIN function 

would create a record for each car, repeating the engine information for each car. The 

key point about the relational philosophy is that data items need never be repeated in the 

database, as the JOIN command can be used to relate, extract and repeat data where 

necessary. 

Other essential operations allowed by the relational DBMS are SELECf and 

PROJECf. SELECf returns records in a table that match criteria laid down by the user. 

For example one could SELECf all cars that have an engine capacity over 1600cc, and 

the DBMS would return a new table containing only those records that matched. 

PROJECf returns only selected fields, making a new table with less 'columns'. 

The philosophy behind the object oriented data model is that information about any 

object cannot consist of data alone, but must also include the actions that the object can 

perform (Semadas et al, 1987). The object oriented data model honours this by 

encapsulating data about the object inside a shell of software procedures which model 

object behaviour. Access to the data is only possible by using the procedures. Hence the 

object oriented data model is as much a programming tool as a data storage tool. It has 

been used extensively in artificial intelligence research, and the reader is referred to 

Section 3.3.3 for more detail. 

As was mentioned in Section 2.2, GIS data falls neatly into spatial and non-spatial 

categories. The hierarchical DBMS has found favour in neither category due to data 

repetition. Network DBMS by contrast have proved adept at the storage and 

manipulation of spatial data. Early relational DBMS could not compete in speed with the 

network model for spatial applications, but they proved much simpler for non-spatial 

information. A common approach, exemplified by the commercial GIS ARC/INFO, has 

been to combine a network spatial model with a relational non-spatial model 

(Moorehouse, 1990). 

The increasing speed and functionality of relational DBMS in recent years, 

combined with the failings of the hybrid network/relational model, lead to the 

development of a number of purely relational GIS. The CIS Medusa GIS was one of the 

first and most ambitious ventures, but was plagued by poor performance and was never 

commercially released (Bundock,l987 Durrant,l988). 
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GEOVIEW, on the other hand, was an academic research prototype designed to 

test whether a relational DBMS could provide the necessary flexibility for a GIS. Waugh 

& Healey ( 1987) considered the fundamental difficulty as being the mapping of variable 

length cartographic data into the confines of a fixed field length relational table. Schema 

were designed for vector, grid and restricted quadtree data formats, with the emphasis 

placed on minimising the number of tables required for each (Waugh & Healey,1986: 

Sinha & Waugh,1988). They concluded that a fully relational GIS was practical by using 

variable field lengths afforded by bulk storage data types, such as those provided by the 

Oracle RDBMS (Rolland, 1990). Such data types are not a standard part of the relational 

model, but are useful extensions to it. 

A number of researchers have indicated the need for extensions to the relational 

model in order to facilitate spatial data storage and manipulation (Frank,1988 

Guptil,1987 Newell & Theriault,1990). In particular the Structured Query Language 

(SQL), the 'industry standard' relational language, (IS09075, 1989) has been cited for 

extensions to suit spatial data storage (Gradwell,1990). The suggested improvements 

centre on the need for spatial data types and operators, data types of indefinite length, 

and user defined data query procedures. With these extensions it is hoped that the next 

version of SQL will be a practical relational environment for both the spatial and non­

spatial parts of a GIS. 

Examples of object oriented GIS include PROBE and TIGRIS. PROBE is a 

research tool which has been applied to network routing (Dayal & B uchmann,1987) 

whereas TIGRIS is a fully operational commercial GIS, supplied by Intergraph 

(Herring,1987 ,1990). Both claim a level of automatic data integrity which was more 

difficult to achieve using the standard relational model. 

2.5 DIGITAL TERRAIN MODELS 

Digital terrain modelling (DTM) systems were originally developed for highway 

design and civil engineering applications, but have since been incorporated into GIS to 

handle elevation data. A DTM is essentially a two dimensional surface contorted in three 

dimensions to represent the topography of a geographic region. Without DTM the uses 

of GIS would be restricted, particularly in the areas of land resources assessment and 

planning. The HORIZON GIS, for example, is designed specifically for environmental 

planning and relies heavily on DTM for visualisation and analysis (LaserScan,l990). 
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There are a number of ways in which the D1M surface can be formed and held in 

the computer database. Two of the most popular are the triangular irregular network 

(TIN) model, and the grid based model. 

The TIN model is designed to be used with elevation data collected at random, 

rather than at regularly spaced point locations. The modeller operates by joining all 

known points together with lines to form a lattice of triangles. With vertices at different 

elevations, these triangles form flat but sloping faces which collectively form the model. 

The elevation at any point can be found by using linear interpolation across the 

appropriate triangle face. The TIN model may be considered analogous to the vector data 

structure for spatial modelling in GIS. 

The grid based model consists of a matrix of elevation values, with a value's 

location in the matrix corresponding to the location in space it refers to. The elevation 

values can be found by direct sampling from the region in question, or the regularly 

spaced values can be found by interpolation from more randomly sampled values. The 

grid based model may be considered analogous to the raster data structure for spatial 

modelling in GIS. 

Other modelling methods are available, for example string models. More general 

mechanisms for holding elevation data include those that rely on storing point data that 

was originally sampled. By using a distance weighted averaging function the elevation at 

any location may be found. Such mechanisms are not common in current GIS, however. 

The advantages of the TIN and grid based D1M structures are also analogous to 

those of the vector and raster G IS structures. TIN models excel where there is sparse, 

randomly located elevation data. In such cases the storage is compact, and the elevation 

values are exactly represented at the known points. TIN models suffer on speed of access 

and speed of creation when the number of points becomes high, for example when there 

are several thousand points for microcomputer based implementations. Grid models, by 

contrast, must store the elevation at every grid point, thus incurring high data storage 

overheads. However, access to the resulting data is much faster, and does not degrade 

appreciably with an increase in the number of original data points. 

The author has performed extensive research aimed at assessing terrain modelling 

systems for applications such as GIS, highway design, land surveying and cartography 

(Finniear, 1986a, 1986b, 1986c, 1987b, 1987c, 1987d, 1988a: Mayo et al, 1986: Dickens 
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& Finniear, 1987). Durrant (1988) coined the term intelligent ground model when 

tailoring a TIN based DTM to predictive flow modelling of sediment deposits in tailings 

dams. The author has also explored the possibility of giving a DTM intelligence during 

preliminary work for this thesis (Finniear et al, 1988). 

2.6 DATA CAPTURE 

Data for GIS divides neatly into two forms, spatial and non-spatial. Capturing the 

spatial component poses particular difficulties as the technology is still developing to 

process it. Non-spatial data capture can also be expensive if it exists in large quantities, 

as the keyboard is often the only reliable method of input. 

Getting information into a GIS is an important consideration, not least because of 

the costs involved. Data may be captured using a number of techniques, detailed later. 

With spatial data capture raster and vector representations act as a division, with data 

capture methods favouring each category depending on the format of the information 

they produce. Quite naturally those techniques producing vector data are more suited to 

GIS using vector data structures, and raster data to raster structures. 

This categorisation does not preclude raster data from use as input to vector 

systems, or vice versa. This may be desirable to take advantage of the strengths of the 

alternate data structure. However, to do so requires data conversion. Vector to raster 

conversion is the most straightforward as topology is lost. Each raster cell must attain a 

value depending on its position within the geographic region, and this must be found by 

calculation from the vectors. The process is often called raster scanning due to the cell 

by cell sampling involved. 

Conversion from raster to vector is more complex as topology is effectively added. 

Individual pixels must be grouped as lines or polygons, and this requires recognition 

software or intensive manual interpretation. The field of feature recognition and 

classification has become an intensive research area as illustrated in Section 4.4.2. 

The common denominator for all GIS is the base coverage map. It is to this 

backdrop that all other features are referred, and without it the operator would be unable 

to interpret any result. Sources of digital base maps do exist for some areas of the UK. 
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The Ordnance Survey and utility companies are co-operating to achieve national 

coverage by the mid-1990s. If a base coverage is not available in digital form there are a 

number of alternative actions that can be taken. 

The first, and perhaps the most obvious, method is to manually digitise a paper 

copy of the base map. This produces a fully structured coverage in vector form, which 

can be manipulated at will. The process is expensive and tedious, however, and operators 

are prone to making errors on complex coverages. 

Petrie (1987) notes that automated line following systems, such as LaserScan 

F ASTRAK, can perform digitising at greater speed, although still requiring operator 

intervention at times. He also reviews the hardware for auto-digitising, and discusses 

raster scanning. This alternative produces base coverage maps in minutes rather than 

hours or days. However, the scanned image is raster based. The file has no topology, 

lines are considered to be unconnected pixels, and no features exist for non-spatial 

attributes to be connected to. If the coverage is purely for viewing or reference then this 

is both adequate and cost effective. 

Direct capture of data from the 'real world' is also a viable option. Remote sensing, 

either by satellite or aerial photography, is in common use for land assessment (Kennie 

& Matthews, 1985:Bullard & Dixon-Gough, 1985). Satellites, by applying filters to pick 

out different radiation frequencies, can achieve images to 10 metre resolution (SPOT, 

1988). Certain spectral bands can differentiate between vegetation types, whilst infra-red 

bands have proven valuable in such diverse operations as detecting oil spillages and 

thermal discharge monitoring (Mason & Amos, 1985). Active sensors, bombarding the 

Earth's surface with microwaves or radar and measuring reflected signals, can discern 

surface roughness and is thus particularly useful in ocean measurement (Gudmandsen, 

1983). The output from these sensors is raster, with individual cells holding a single 

sensed wavelength in each band. Integrating remotely sensed data into GIS is currently 

an area of intense research (Robinson Barker, 1988; Zhou, 1989). 

Aerial photography is most valuable when stereo pairs of photographs are used in 

the derivation of height information. Photogrammetry now offers acceptable accuracy 

for many uses at lower cost than land surveying. Stereoplotters can also produce vector 

data rather than raster, allowing increased image structure should the application merit it 

(Price & Webb, 1987). 
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Land surveys offer unsurpassed accuracy but tend to be prohibitively expensive for 

general GIS data collection (Finniear, 1987a). Some situations, such as the detection and 

mapping of underground utilities, necessitate this approach nonetheless (Finniear, 1989). 

2.7 IMPLEMENTING A GIS 

The implementation of successful GIS is far more expensive and prone to failure 

than computer aided draughting (CAD) systems of similar size, for example. The 

primary difference is that GIS require extensive data input before they can be used. CAD 

system managers may have large paper drawing archives eventually requiring entry, but 

this does not preclude their immediate use on new projects. 

Techniques of data capture are thus crucial to any implementation. The quantity 

and quality of the data needed in the GIS depend largely on the application. Utility 

companies, for example, may not need a full topologic structure in their base map if it 

only gives a backdrop to their network of pipes or cables. Conversely the Land Registry, 

with a need to store boundary detail for 12.5 million properties, must have structured 

topologic input from 700,000 property maps before its GIS becomes fully operational 

(Partridge,1990). Cost/benefit analyses for GIS implementations at this scale can be 

difficult to perform and quantify (Todd, 1989). 

Geographic information is inviolable. Different organisations working in the same 

region will inevitably be using, at least in pan, duplicated data from that region. The 

operations of one group may have a direct effect on those of another. This is particularly 

true of the utility companies and local councils. The National Joint Utilities Group 

(NJUG) are experimenting with inter-company GIS to coordinate street works and 

eliminate PUSWA Works notification documents (DoE,1987; Purvis,1989). The city of 

Cork in Eire are already realising considerable benefits from an approach involving 

utilities, the City Council and emergency services contributing to one city wide GIS 

database (Pollitt, 1989). 

GIS users may be individuals, departments within companies, or whole 

organisations in a multi-department context. Corporate GIS crosses traditional 

boundaries of discipline and job description, raising the possibility of inter-departmental 

conflict, job description and industrial relations issues (Finniear, 1989). Medyckyj-Scott 
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( 1989) imparts an enlightening though worrying view of corporate GIS, with 

constructive ideas for a smoother introduction. 

2.8 APPUCATION AREAS AND EXAMPLES 

Application areas are becoming extremely diverse. Each one has different needs, 

and the implementors adopt systems and management strategies to suit. A categorisation 

of user types appears unachievable as innovative researchers in more incongruous fields 

continue to diversify the user base. 

GIS users fall nonetheless into these broad groups according to why they store 

geographic information:-

Storage for record and retrieval purposes 

Analysis of existing data to provide new maps or statistics 

Simulation or predictive work 

Routing of vehicles 

Planning for environmental change 

The first group are typified by the utilities who need to maintain up to date records 

of their entire installed infrastructure. The maintenance schedules, age, position and 

modification data are imperative for efficient management in these companies. 

Analysis of geographic features and the production of new maps is perhaps a more 

traditional role for GIS. A common technique is to overlay different feature types to 

produce new maps of particular significance. Kapetsky et a! (1988) use GIS to get 

suitability maps for aquaculture, specifically to isolate geographic areas where catfish 

farming could be profitable. 

Simulation and predictive modelling is raising many hopes and some promising 

results.l..essard et a! (1988) demonstrate that the epidemiology of a disease called east 

coast fever can be modelled in a GIS through charting the spread of the vector tick 

Rhipicephalus appendiculatus. Pollution spread has also been predicted by this technique 

(Hession & Shanholtz, 1988). 
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The Chorley Committee report to the British Government noted that vehicle 

navigation inefficiencies cost Britain £2,400M per annum. The Autoglide system, 

proposed by the Department of Transport, plans to use a network of roadside beacons to 

transmit directions and road conditions to equipment installed in vehicles (DoE, 1987). 

The system will react in real time to accidents and hold-ups, re-routing vehicles around 

the problem. 

New developments, roads, industrial estates or housing, need meticulous planning 

to avoid excessive impact on the existing area. By using GIS the region can be 

thoroughly examined to find the best site and layout for the development. The 

Department of Surveying, Newcastle University is investigating the potential of applying 

conventional GIS technology to civil engineering applications (Hosken, 1989). 

2.9SUMMARY 

Geographic information systems have been acknowledged as the most significant 

step forward in the handling of geographic information since the invention of the map. 

They can provide a repository for storing vast amounts of geographic data, and have 

facilities for capturing, validating, maintaining, manipulating, analysing and displaying 

it. 

Between the representation of the geographic information on physical storage and 

the understanding that the GIS user eventually derives from the data, three data models 

can be said to exist. These are the DBMS data model, the spatial data model and the user 

data model. 

The DBMS data model controls the physical storage and manipulation of data. 

Network and relational DBMS are most commonly used for GIS implementations, 

though object oriented data model is now becoming more popular. 

The spatial data model governs how the numeric data is translated as a spatial 

view. Vector, raster and hierarchical data structures can be used for the spatial data 

model. Vector, using lines and points to represent boundaries, has the most compact 

storage whilst raster, using a grid of cells, allows greater analysis, faster image overlay 

and more rapid location based access. Hierarchical data structures are raster based, yet 
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attempt to reduce the data storage overhead by generalising adjacent cells containing the 

same values. Digital terrain models are extensively used to provide the third dimension 

in GIS. 

The user data model is the translation from the lines, points and other data held in 

the GIS, into the user's understanding of the geographic features that actually exist in the 

'real world' region. The extent to which the GIS software takes part in this translation 

varies between implementations. However, a key conclusion is that GIS software does 

not have the inherent ability to understand and reason with the data it holds, in the 

context of the problem the user is solving. In this respect GIS software falls short in its 

contribution to the user data model. 

The practical application of GIS within organisations has also been discussed, and 

a wide range of potential uses have been outlined. A key issue is data capture and input. 

The cost implication is substantial though the options available are wide, from using 

satellite remote sensing to digitising existing paper maps. Automated techniques for 

speeding up data capture and interpretation are now becoming available. In large 

organisations a GIS has diverse potential benefits which span conventional departmental 

boundaries. This makes cost/benefit predictions difficult, and also means that corporate 

structure may need appraising prior to GIS installation. However, judging by the rapid 

increase in installed systems, the potential for the technology when used correctly 

appears almost limitless. 
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32 



3. ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS 

3.11NTRODUCTION 

Artificial intelligence (AI), 'the science of the thinking machine', has moved from 

obscurity to increasing popularity in the 1980's with the advent of readily available 

expen system tools. These tools have allowed people in disciplines other than computing 

to gain access to certain AI techniques, particularly concerned with the representation 

and use of knowledge. The idea of being able to capture the entire expertise of, for 

example, a human engineer, barrister or physician is a thought that has captivated 

individuals and organisations alike. Being able to use expertise as a commodity, to 

distribute, buy and sell it without losing the human expert would allow knowledge to be 

disseminated far more easily and cheaply than before. 

In response to these perceived opportunities the UK Department of Industry (1982) 

launched the Alvey initiative, providing funding for collaborative research ventures in 

industry and academia. 

In practice the modelling of human expertise is, as could be expected, not 

straightforward. A wide range of tools and techniques are available, many of which have 

been used in the work presented in later chapters. This chapter concentrates on providing 

the theoretical background that will be needed to fully understand the discussions 

pursued later in this report. 

Much controversy has surrounded the use of the term Artificial/ ntelligence since it 

was first coined with reference to computers in the mid 1950's. Despite it's increasing 

maturity, the term still begs a concise yet satisfactory definition. 

It is generally accepted that AI systems should exhibit properties that the human 

user would in some way regard as 'intelligent'. However, philosophers have yet to agree 

on what constitutes human intelligence. Edward A. Feigenbaum, one of the early 

pioneers in AI, takes a linguistic approach to his definition : 
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"The word intelligence derives originally from the Latin legere, meaning 

to gather (especially fruit), to collect, to assemble, and hence to choose 

and form an impression.Intellegere means to choose among, hence to 

understand, perceive, and know. If we can imagine an artifact that can 

collect, assemble, choose among, understand, perceive, and know, then 

we have an artificial intelligence ... " (Feigenbaum & McCorduck, 1984-). 

Early researchers saw the aim of AI as the creation of a machine which could 

function like the average human in any given situation. Charniak and McDermott 

consider AI in this most general sense : 

"Artificial intelligence is the study of mental faculties using 

computational models. The ultimate goal is to build a person, complete 

with vision, language recognition, a method of deduction and search 

(thinking and reacting to stimuli), speech and movement." (Charniak & 

McDermott, 1985) 

This thesis is primarily concerned with the creation of software systems that could 

be said to think. 

Conventional computer programs are designed to solve particular problems by a 

mixture of calculation, storage and repetition. If this were all that humans did whilst 

thinking then all programs could be said to display intelligence. However, human 

decision making is rarely based on pure calculation. Judgements often result from a 

combination of reference to past experiences, reasoning between likely outcomes, and 

the use of heuristics, or 'rules of thumb', to guide the search for solutions. Note that in 

this and subsequent Chapters a substantial amount of AI terminology has had to be used. 

A brief glossary is provided at the end of the thesis should the reader need to refer to it. 

Conventional programs are guaranteed to reach a solution only if all necessary 

information is available and steps for solving the problem have been specifically written 

into the code. When faced with partial information a human can still attempt to find an 

acceptable solution. An AI system can also be designed to explore possible solutions if 

only partial information is given. To do this it uses a store of knowledge of the type a 

human would use if faced with the same problem. By searching though this knowledge 

base it can propose likely answers and ask the user questions to help it narrow down the 
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number of possible solutions. In doing this an AI system can suggest solutions in areas 

where a conventional program could not operate. 

AI systems are based on the use of symbols rather than numbers. A symbol is a 

word representing a real world object or situation. Symbols can be related, for example 

the symbol DOG can be related to the symbol TAIL by the relationship HAS _A. Logical 

rules can be written into AI systems which can infer facts, for example : 

IF the DOG has_a TAIL 

THEN the DOG is not a ROTTWIELER 

These symbols and rules make up the 'knowledge' the system has about the 

application. The power of AI systems is the ability to store and manage large collections 

of symbols and logical rules, an ability not possessed by conventional computer 

programs. 

Although AI systems can depict complex relationships between facts, they tend to 

lack the capacity for storing large volumes of data without seriously degrading the 

operating speed. Many AI techniques rely on the ability to 'scan' the entire list of facts to 

isolate individual items, the longer the list, the longer each scan takes. Also it is common 

for AI systems to store all facts in the computer memory, for applications using high 

volumes of data this can become an impossibility. A number of systems now offer links 

to conventional databases to help by-pass this problem. 

3.2 EXPERT SYSTEMS AND KNOWLEDGE BASED SYSTEMS 

A subset of AI systems generally is the knowledge based system (KBS), and a 

subset of KBS is the expert system. Waterman (1986) illustrates the relationship in 

Figure 3.1. 

Unlike general AI programs knowledge based systems contain a distinct 

knowledge base, holding knowledge about the application, or domain, separate from the 

search mechanisms and user interfaces. The search strategies are collectively known as 

the inference engine. This has the task of manipulating the knowledge base in the search 

for solutions. 
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EXHIBIT INTELLIGENT 

AI PROGRAMS 

/ 
BEHAVIOUR BY SKILLFUL 

APPLICATION OF HEURISTICS 

KBS 

EXPERT 
SYSTEMS MAKE DOMAIN KNOWLEDGE 

~ EXPLICIT AND SEPERATE FROM 

I.;. THE REST OF THE SYSTEM 

~ ....___ 

~ 
APPLY EXPERT KNOWLEDGE 

TO DIFFICULT, REAL WORLD 

PROBLEMS 

Figure 3.1 AI, KNOWLEDGE BASED SYSTEMS AND 
EXPERT SYSTEMS IN CONTEXT 

(Waterman, 1986) 
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All wood (1989a) further distinguishes expert systems by noting that the form of the 

knowledge representation must be comprehensible to both man and computer, and that 

the system must be able to give the user an explanation as to how the answer was found. 

Expert systems have to provide answers to non-computer experts, and justify those 

answers in a form that the user can easily understand. 

Expert system programs can be purchased which have an empty knowledge base, 

but are complete in every other sense. These are known as expert system shells. By 

inserting the knowledge himself a user can rapidly create an expert system, avoiding all 

the extra work of writing the rest of the inference engine and interfaces. 

The isolation of the knowledge base is such that different inference engines can be 

used with the same knowledge base, just as the same inference engine can be used with 

different knowledge bases. Thus an expert system can 'think' about the same problem in 

different ways by using different inference engines. 

Expert system shells are widely available and are the subject of many reviews in 

computing literature (Naylor,1987a,b,c Williamson,1987). 

3.3 KNOWLEDGE BASES 

Knowledge bases store expert knowledge about an application, or domain. 

Acquiring this knowledge in the first place is a subject covered in Chapter 5. The 

knowledge must be stored in an easy to understand yet functional form. This section 

deals with knowledge base forms commonly used. 

The formal basis for the methods described below is first order predicate logic 

(FOPL). FOPL allows both the representation of facts about classes of objects, and a way 

of writing rules which can use existing facts to infer new facts. Lisp and PRO LOG are 

two AI languages based on the use ofFOPL (Winston & Horn, 1984; Clocksin & 

Mellish, 1987). The formal definition and terms ofFOPL are covered in detail by 

Pavelin (1988). 
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3.3.1 Production Rules 

Coding expen knowledge into rules is one of most popular forms of knowledge 

representation. It seems natural for an expen to be able to list the criteria he uses to make 

decisions in this way. For example, the rule : 

IF the client was born in the United Kingdom 

AND at least one of his parents was settled in the 

United Kingdom at that time 

TiiEN the client is a British subject 

is one rule in a legal KBS depicting the British Nationality Act (Council for 

Science and Society, 1989). The IF pan of the rule is known as the antecedent, and the 

TIIEN pan is known as the consequent. By producing a large number of these rules it 

may be possible for an expen to completely cover his decision making process. Legal 

and medical applications are typical of domains where the rules can be explicitly laid 

out. The MYCIN expen system for diagnosing bacterial infections was an early example 

of a purely rule based system which worked well (Buchanan & Shoncliffe, 1984). 

Rule based systems use individual, unconnected symbols to represent facts, relying 

on the rules or the users intuition to make the connection between them. for example, the 

symbols CLIENT and PARENT_ OF _CLIENT have no explicit relationship in the 

knowledge base, even though to the operator it is obvious that a relationship exists. This 

can become a distinct liability when a large number of facts are needed to achieve a 

solution, or where the interrelationships are more subtle. 

Rule based expen system shells are simple to write and easy to understand, and are 

justifiably popular with developers. However, the lack of structure in domain facts and 

the restriction of having to encode all knowledge as rules can make them hard to use in 

complex domains. A criticism of early systems was that the rule format was difficult to 

use and understand. Unfonunately this criticism is still valid for some systems, Appendix 

E shows this as a failing of the GoldWorksll rule format. 
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3.3.2 Frames 

In 1975, Marvin Minsky proposed a more structured representation for knowledge, 

which he called frames (Minsky, 1975). A frame represents a class of real world objects 

and contains a description of the class. For example, the animal type ELEPHANT could 

be represented using a frame. Discrete individual objects which are members of a class 

are called instances of the frame. For example the individual elephant CLYDE, would 

be represented as an instance of the frame ELEPHANT. The concept is best explained 

pictorially, Figure 3.2. 

Each frame contains slots, which are the characteristic qualities that describe the 

frame. The ELEPHANT example in Figure 3.2 has slots for colour, number of eyes etc. 

The normal description of an elephant is given in the frame. When an instance is created, 

in the absence of more specific information, the default properties of the generic elephant 

are inherited. Note that in the figure CLYDE has lost a leg. The imponance of 

inheritance is that only specific deviations from the frame description need be stored for 

the instance, the rest is inferred from the parent frame. Thus storage requirements can be 

reduced considerably. 

Inheritance is also effective between frames. Frames can be arranged in a 

hierarchy, with child frames inheriting the slots of parent frames. Figure 3.3 is an 

example of frame inheritance. Note that in the figure the inherited slots are above the 

dashed line, whereas the slots peculiar to that frame are below the line. The DOLPIDN 

frame illustrates multiple inheritance, as it is both a MAMMAL and a WATER-BASED­

CREA TURE. Instances can be created for any frame in the hierarchy, but instances can 

only belong to one frame and they cannot have child instances or frames of their own. 

Constraints may be put on the values that a slot can contain. These constraints are 

commonly known as slot facets. Typically only cenain slot values might be allowed, for 

example GOOD, BAD and INDIFFERENT, or only a specific range of numeric values 

might be permissible. Slot facets are inherited in the same manner as slot values. 
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FRAME: ELEPHANT 

SLOT SLOT VALUE 

COLOUR GREY 

EYES 2 

LEGS 4 

SKIN_ TYPE TOUGH 

FUR NO 

ALIVE_OR_DEAD 

INSTANCE: CLYDE 

SLOT SLOT VALUE 

COLOUR GREY 

EYES 2 

LEGS 3 

SKIN_TYPE TOUGH 

FUR NO 

ALIVE_OR_DEAD ALIVE 

Figure 3.2 AN EXAMPLE OF FRAMES 
AND INSTANCES 
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Frame· CREATURE 

SLOT SLOT ~~~liE 

ALIVE_OR_DEAD ALIVE 

NAME 

HABITAT 

Frame: MAMMAL / Frame: WATER BASED CREATURE 

AUVE_OR_DEAD ALIVE ALIVE_OR_DEAD AUVE 

NAME NAME 

HABITAT HABITAT 
.......................... .. . . . ..... ... . . ... ···································--------···· 
No_OF_LEGS PREFERRED_DEPTH 

GESTATlON_PERIOD No_OF_FINS 

Frame: ~ Frame: DOLPHIN 

ALIVE_OR_DEAD ALIVE ALIVE_OR_DEAD ALIVE 

NAME 
NAME 

HABITAT SAVANNAH HABITAT OCEANS_WORLDWIDE 

No_OF_LEGS 4 No_OF_LEGS 0 

GESTATJON_PERIOD 22 MONTlHS GESTATION PERIOD 8 MONTHS .......................... . . . . . ... . . -·· ..... 
TRUNK_LENGTH PREFERRED DEPTH 0 TO 30 METRES 

No_OF_FINS 3 .... --- ................ . . . . . . . . . . . . . . . ... . . . . . 
ENDANGERED SPECIES YES 

HEALTH_ STATUS 

Figure 3.3 EXAMPLE OF FRAME INHERITANCE 
AND MULTIPLE INHERITANCE 

CD\57869 
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Frames handle static knowledge about domain objects in a complete yet concise 

manner, and a number of expert system tools are now incorporating this methodology. 

Most implementations allow the use of frames with production rules. This increases the 

functionality of frames as they can then be used as the fact base for rules, adding a 

dynamic element to the previously static knowledge. Production rule systems benefit 

from using frames as the facts used for rule matching are no longer unstructured. Rules 

can now refer to a class of objects, checking each member of the class. 

The example rule below is given with reference to dolphin frame in Figure 3.3. 

Note that this rule is in GoldWorksii format. Words preceded with a question mark are 

variables, and explanatory notes are given to the right of the rule: 

IF instance ?animal is DOLPHIN 

WI1H NO_OF _FINS ?number 

( <> ?number 3) 

THEN 

instance ?animal is DOLPHIN 

WI1H HEAL1H_STA TUS DISABLE 

(EXPLANATORY NOTES) 

;For each dolphin 

;find number of fins 

;if this number <> 3 

;then 

;that dolphin 

;is disabled. 

This rule is working within the frame hierarchy to check every instance of 

DOLPHIN, no matter how many there are. Also, if the DOLPHIN frame had child 

frames then all the instances of the child frames would also be checked as they have 

DOLPHIN as an ancestor. This makes the rules extremely powerful and flexible. 

However, the penalty for this flexibility is that unless the system designer has a complete 

grasp of the scope of the rule the system may apply it to more of the knowledge base 

than was intended. 

Daemons are another powerful facility available to many frame based 

implementations. In the simplest sense daemons are procedures which can be attached to 

one or more slots of a frame, to monitor what happens to the slot values. There are two 

common types, when-modified and when-accessed. When-modified daemons sense when 

the slot value has been changed, and this triggers the execution of the daemon procedure. 

When-accessed daemons are triggered whenever the slot value is used, irrespective of 

whether it has been changed or not. 
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The presence of daemons elevates the frame description from being a passive 

collection of facts to being an active collection of 'objects which respond when touched'. 

For example, a daemon attached to the NO_OF _FINS slot of DOLPIDN could 

automatically sense if the number is changed, and could change the HEAL TH_STA TUS 

of the any dolphin instance accordingly. Parallels to the production rule example above 

can be seen, but wheres rules have to wait in a queue to frre, daemons react immediately 

and can be far more detailed than a rule consequent. Daemons are inherited through the 

hierarchy in the same way as slots. The use of daemons is also known as access oriented 

programming. 

3.3.3 Objects 

Object oriented methodologies attempt to closely depict a real world object not 

only by describing its characteristic facts, but by explicitly defining the functions it can 

perform (Pascoe,i986; Sernadas et a!, 1987). The functions encapsulate the object 

description so that raw facts about the object cannot be accessed directly, instead the 

encapsulating functions have to be used. 

Consider the frame based and object oriented descriptions of a lamp, as seen by the 

program or user : 

FRAME BASED LAMP 

LAMP 
Current State 
Cost(£) 
Power Requirement (w) 

OBJECT BASED LAMP 

LAMP 
SHOW CURRENT STATE 
SWITCH ON 
SWITCH OFF 
SHOW COST 
SHOW POWER REQUIREMENT 
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The functions of an object are called methods. A method is activated when it 

receives a message. To find out the cost of the lamp above, for example, the user must 

send a message to the method SHOW COST. Objects can only respond to messages they 

can understand. The lamp example has no methods for changing the cost or power 

requirement, therefore the user would never be able to change these facts, although he 

can access their values. 

Methods may perform other tasks in addition to changing raw facts about the 

object. They can, for example, send messages to other objects that might be affected by a 

change to this object. If the example lamp is sent a message to SWITCH ON, the method 

may also send a message to a power supply object to say that the lamp is drawing 

current. The appropriate power supply method would then activate and may send further 

messages. 

The propagation of messages through a network of objects is a key feature of the 

technique, as it means that the integrity of the representation cannot be violated. All 

effects of a single change are identified through the chains of messages and methods 

firing as a result. An analogy can be drawn with a civil engineering structure in 

equilibrium. A new external force results in a chain reaction through the structure until 

equilibrium is regained. The object structure must also regain equilibrium. 

A hierarchy of objects and object classes can be built in a similar manner to the 

frame based representation. Methods and values may be inherited in the same way as 

slots and daemons. 

The object oriented methodology has been successfully applied as a conventional 

programming technique. Most notable of these are the object oriented graphic interfaces 

of the Apple Macintosh (Simpson, 1986) and Microsoft Windows (Ewing,I989 

Sheldon,l990). A number of programming language compilers have also adopted object 

oriented extensions, for example the C++ superset of the C programming language 

(Stroustrup,1986 Zortech,l988). The object oriented technique has been seen as a 

potentially powerful representation for knowledge in AI. Those AI systems that 

incorporate it tend to be the more powerful AI too/kits such as ART, KEE and 

GoldWorks, (AIAI, 1987a,b,c) They are called AI toolkits because they provide a wide 

range of different AI techniques which can be used together in a unified environment. 
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3.3.4 Hybrid Approaches 

A number of AI toolkits offer the chance to combine the above representations 

within a single system. Frames and production rules have already been described as a 

combination that can be used to good effect Rules may also be used to send messages to 

objects, and this approach frees the rules from having to deal with integrity maintenance 

as the methods can handle this. 

Combining frames and objects is also a possibility, indeed both may co-exist with 

rules in some toolkits. However, the system designer should exercise extreme caution in 

choosing a hybrid architecture, especially one involving all three techniques. Control in 

such a system can become impossible to follow or debug at a later stage. The 

simultaneous firing of methods and daemons, with rules waiting to fire on the results, 

activating more methods and daemons, can become a debugging nightmare which should 

be avoided if at all possible. 

Having used both object and frame representations in the course of this research 

the author has noticed great similarity between objects and frames. Both allow for 

collections of facts to belong to a larger unit, and both can form hierarchies with 

inheritance. Both also have a dynamic capability, frames through daemons and objects 

through methods and messages. 

Both objects and frames are essentially entities with attached procedures and 

triggering devices. The major difference is that with objects the message passing is 

explicit, wheres with frames and daemons the message passing is implicit Accessing a 

particular instance slot effectively passes a message to the daemon for it to fire. Also 

frame based systems allow direct changes to be made to the slot values whereas object 

oriented systems do not. 

Both frames and objects are conceptual models. One can use frames and daemons 

to emulate an object oriented approach. Likewise, using appropriate methods, object 

oriented systems can be made to behave like frames. Given this, there are few situations 

where both objects and frames are essential. The author would suggest that where 

structured data is needed with little dynamic capability, frames are the ideal choice. 

Where greater dynamic behaviour is needed there is less distinction and the choice 
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should be based on the programmers preferences and the type of implementation 

software available. 

3.4 INFERENCE METHODS 

Production rules, as noted in Section 3.3.1, are the most popular form of 

knowledge representation. Making them work in the context of the problem in hand is 

the job of the inference engine. How the inference engine does this is the subject of the 

following sections. Three inferencing methods are introduced, each designed to use rules 

optimally depending on the type of problem being addressed. 

3.4.1 Forward Chaining 

Forward chaining is possibly the most obvious way to use a set of rules. If facts in 

the knowledge base match the rule antecedent, the facts in the rule consequent can then 

be said to be true. These new facts may cause other rules to match and so the process, or 

chaining, continues. Forward chaining derives its name from the way in which the 

process moves forward from the IF parts to the THEN parts of the rules. It is also termed 

data directed reasoning, as the existing data controls whether or not the rules match. 

Forward chaining involves continuous scanning of the knowledge base by the 

inference engine. Any single change in knowledge base facts may affect which of the 

rules can fire and which cannot. Simple inference engines test rules in the order they 

appear in the knowledge base, firing them if they match. These systems cannot control 

the rule firing order effectively. More comprehensive systems draw up a list, or agenda, 

of rules that could possibly fire with current knowledge, and this is updated every time 

the knowledge base changes. This agenda is ordered, either using rule priorities or some 

other criterion. The top rule is fired and this alters the knowledge in some way. As the 

knowledge base has changed the agenda cannot be considered valid and must be re­

compiled. Chaining continues until the recompiled agenda is eventually found empty, 

meaning that no more rules can be fired. 

The effect of forward chaining is illustrated in Figure 3.4. Four example rules are 

given which refer to FACTS A to G. Assuming FACT_A and FACT_B are initially true 
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the trace shows how the rules match and are fired. In this simple example no agenda is 

shown as only one rule matches at any time. 

Forward chaining uses all the rules to infer every possible new fact. This is ideal in 

situations where all conceivable solutions need to be known. For example, a farmer may 

need to know all available herbicides which will kill weeds but not his crop (Col by, 

1986). Forward chaining has the advantage that all consequences of a change are bound 

to be present in the knowledge base before it can be examined by the user. 

The scanning process with forward chaining is processor intensive. Not only are all 

possible facts found whether needed or not, but in systems which use agendas a new 

agenda must be compiled for every fact found. Forward chaining systems can thus 

become very slow if large knowledge bases are used. However, if all possible facts are 

needed in the knowledge base then forward chaining provides the optimal solution. 

3.4.2 Backward Chaining 

Backward chaining, as its name implies, does the opposite of forward chaining. 

Instead of using the rules to discover all facts that are true, backward chaining tries to 

prove whether a particular fact is true. This fact is known as the goal. To prove the goal 

the inference engine examines the consequent elements of each rule to see if the goal 

would be satisfied if that rule were fired. When such a rule is found its antecedent is 

tested against the knowledge base to see if the rule can be fired. If this is the case the rule 

fires and the goal is proven. 

If one or more of the elements in the antecedent are not in the knowledge base, 

they are issued as sub-goals. The system tries to prove these sub-goals in the same way, 

and thus the chain moves backward. 

As the system chains back, a record is kept of all rules making up the chain. When 

rules are eventually found with antecedents that are fully satisfied, the record is used to 

fire all rules in the correct order until the goal is proven, 
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RULES IN THE FORWARD CHAINING KNOWLEDGE BASE 

Rule I 

if FACf_A 

andFACf_B 

andFACf_C 

thenFACf_D 

Rule 3 

ifFACf_A 

andFACf_D 

thenFACf_F 

andFACf_G 

Rule 2 

ifFACf_B 

thenFACf_E 

Rule 4 

ifFACf_A 

andFACf_E 

thenFACf_C 

Given a knowledge base where FACT_A and FACf_B are initially true the 

following would happen : 

TRACE SHOWING THE EFFECT OF FORWARD CHAINING 

1. Rule 2 matches and fires-> FACf_E now true 

2. Rule 4 matches and fires-> FACf_C now true 

3. Rule 1 matches and fires-> FACf_D now true 

4. Rule 3 matches and fires-> FACf_F now true 

-> FACf_G now true 

Figure 3.4 AN EXAMPLE SHOWING THE EFFECT OF FORWARD 
CHAINING 
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Backward chaining is more complex than forward chaining, and is best illustrated 

with an example, Figure 3.5. In this example the same rules are used as in the forward 

chaining illustration. The goal is to prove FACf_D, given that FACf_A and FACf_B 

exist in the knowledge base. 

The trace shows rule identification, antecedent checking and the issuing of sub­

goals. Once the backward chain is complete a forward chain follows to actually fire the 

rules and assen the new facts into the knowledge base. 

Backward chaining only fires rules that are absolutely necessary in proving the 

goal. This can be seen from the example in that rule 3 was not fired (compare this with 

the forward chaining example). It may seem a trivial saving, but in a knowledge base of 

many hundreds of rules the firing of every possible rule just to prove one fact is a 

hopeless waste of processing. The limited rule firing does mean that the knowledge base 

is not always complete and consistent, but for goal proving problems this is not 

imponant 

The situation can often arise during backward chaining that a fact is not in the 

knowledge base or in the consequent of any rule. Unknown facts can be directed to the 

user by asking him a question using a pre-defined question form. Because backward 

chaining only considers relevant facts, the system appears to be asking 'intelligent' 

questions whilst it is trying to solve the problem. Expen systems derive much of their 

credibility from this type of 'intelligent' dialogue with the user. 

3.4.3 Bi-directional Reasoning 

Both forward and backward chaining have advantages for certain types of problem. 

Bi-directional reasoning uses both mechanisms within the same problem solving process, 

with the aim of taking advantage of the merits of each. Controlling such a process, and 

enabling the system to decide when it is best to change from one mechanism to the other 

is not straightforward. There appears to be no standard control strategy that is common 

to different shells or toolkits. 
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RULES IN THE BACKWARD CHAINING KNOWLEDGE BASE 

Rule 1 

if FACT_A 

andFACT_B 

andFACT_C 

thenFACT_D 

Rule 3 

ifFACT_A 

andFACT_D 

then FACT_F 

andFACT_G 

Rule2 

ifFACT_B 

thenFACT_E 

Rule4 

ifFACT_A 

andFACT_E 

thenFACT_C 

If the knowledge base starts with FACT_A and FACT_B being true, and the goal 

is to prove FACT_D, then the following process would ensue: 

TRACE SHOWING EFFECT OF BACKWARD CHAINING 

1. To prove FACT_D Rule I needs to be proven 
2. -> FACT_A exists and is true 
3. -> FACT_B exists and is true 
4. -> FACT_C is unknown 
5. ->Rule 4 needs to be proven 
6. -> FACT_A exists and is true 
7. -> FACT_E is unknown 
8. ->Rule 2 needs to be proven 
9. -> FACT_B exists and is true 
10. ->Rule 2 proven, FACT_E now known 
11. ->Rule 4 proven, FACT_C now known 
12. ->Rule 1 proven, FACT_D now known 
13. GOAL PROVEN ! 

Figure 3.5 AN EXAMPLE SHOWING THE EFFECT OF 
BACKWARD CHAINING 
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In GoldWorksii bidirectional reasoning is termed goal directed forward chaining 

(GoldHill, 1989). Forward chaining rules are enclosed within rule sets which prevent 

them from firing as soon as they match. Instead each rule set has an enabling pattern, 

similar to the consequent part of a backward chaining rule. To the inference engine the 

rule set resembles a backward chaining rule. If, during normal backward chaining, the 

mechanism identifies the rule set enabling pattern as something which may satisfy a 

goal, the rule set opens and the rules inside it forward chain. Backward chaining is 

suspended whilst this is in progress, and it is resumed afterwards. 

Goal directed forward chaining is used when forward chaining rules may help 

during backward chaining, by adding facts into the knowledge base which are relevant to 

a specific area of the domain. Alternatively it can be used when cenain operations are 

necessary if particular areas of the domain are being explored. 

An example would be where a goal depends on facts in a database. If the database 

is only relevant in a small number of cases within the domain, it need only be examined 

when these cases are a part of the current goal proving problem. Backward chaining 

rules cannot read databases (or execute any other operation) until they are fired after the 

goal proving facts have been found. Clearly if the goal depends on the facts in the 

database a 'Catch-22' situation exists, the rules cannot fire until they have the facts from 

the database, yet cannot get those facts until they are fired. If this were the only method 

available the rules would never fire and the goal would not be proven. Forward chaining 

rules within a rule set, however, can read the database before the goal is proven, making 

goal satisfaction possible. 

·If the method is used instead of pure forward chaining, the effect is to 

compartmentalize forward chaining rule base. Only those rule sets relevant to the 

problem are actually used. In effect, the rule base is split into a number of broad 

categories represented by goals. The area of the domain which is relevant to the problem 

is first found, then only appropriate rule sets are opened. A rule may belong to any 

number of rule sets, so repetition of rules in different rule sets is unnecessary. The saving 

in processing time and memory space can be substantial as irrelevant areas of the domain 

can be excluded from forward chaining. 

Readers interested in the factors affecting the choice of inference mechanism 

beyond those outlined here are referred to the work of Reichgelt & Van Harmelen 
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(1985). An example of different inference strategies being used on the same rules, 

illustrating the qualities of each, is given by Oxman & Gero (1987). 

3.5 UNCERTAINTY 

Expert knowledge is often not absolute. Uncertainty can exist which the expert 

takes into account during the normal course of his work. If the uncertainties are 

considerable, he may qualify the answers he gives by stating an approximate degree of 

confidence that he has in his judgements. 

The importance of uncertainty varies with the domain, but it is clear that in many 

areas expert systems have to take uncertainty into account. Johnson & Keravnou (1988) 

note that in the early expert systems MYCIN and PROSPECfOR, two types of 

uncertainty were handled, that associated with rules and that associated with supplied 

evidence. The distinction is important as uncertainty in rules must be estimated by the 

expert during know ledge acquisition, whereas uncertainty in the evidence must be 

estimated by the user during expert system application. Clearly if the expert and user 

calibrate uncertainty differently large errors can be introduced into the result. 

Natural language and its use in conversation illustrates the possibility of different 

individual perceptions of the meaning of words. Expert systems with no uncertainty 

handling could ask the user a question such as "Was the animal large or small?". The 

perception of an individual when considering a dog, for example, can completely alter 

how this question is answered. Hence the whole line of reasoning pursued by the system 

can be flawed by perceptive differences between the original expert and the user simply 

by the meaning of such words as "large". If an expert system is to rely on descriptive 

language, the precise bounds of word meanings, or typical examples falling into each 

category, should be provided for the user wherever possible to minimise these 

distortions. 

If a system is to use a more formal representation of uncertainty a number of 

methods have been proposed. Frost (1986) identifies and explains six theories which he 

believes to be the most useful. These are : 

- Probability Theory 
- Certainty Theory 
- Dempster/Schafer Theory of Evidence 

52 



-Possibility Theory/Fuzzy Logic 
- Incidence Calculus 
- Plausibility Theory 

The author has found not only a wealth of publication on uncertainty, but also a 

marked variance in opinion as to its usefulness in expert systems. It cannot be doubted 

that in some expert systems modelling uncenainty has been of use. However, getting the 

expert or the user to estimate uncertainty values is fraught with difficulty. Hart (1986) 

notes that much of this is due to people misunderstanding probability, especially in 

compound events. Slatter (1987) argues that people do not naturally think in terms of 

probability or statistics anyway, and that Bayes Tbeorm and other statistical techniques 

have been effectively refuted as psychological hypotheses about everyday decision 

making. 

Clearly uncertainty is a subject which cannot be ignored in expert systems. 

However, the form which uncertainty representation should take is controversial, and the 

actual reliability of expert and user alike in making uncenainty judgements is open to 

question. With this backdrop it was decided that, whilst the work done in this research 

should allow for uncertainty representation, the knowledge acquisition (Chapter 5) 

would not attempt to quantify uncertainty at this stage. 

3.6 SUMMARY 

Artificial intelligence techniques are primarily designed to manipulate symbols 

rather than numbers. The symbols can be used to represent real objects or abstract ideas, 

and relationships may be defined to connect them. These techniques have been applied 

to modelling human expertise, with such systems being called expert systems. 

A variety of methods were introduced for the creation of an expert know ledge 

base. Of these, production rules, using an IF .. THEN rule format are a perhaps the most 

straightforward. In isolation, however, they can be limiting and other representations, 

like frames and objects, can complement the use of rules by giving structure to the 

symbols that the rules manipulate. 

Rules are statements that can infer new facts given one or more existing facts. In 

order to use rules to produce additional facts one must use some form of inferencing 
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mechanism. Forward and backward chaining were discussed, the former being optimal in 

situations where all possibilities need to be known, and the latter when only a few facts 

need to be proven. Bi-directional reasoning combines the approaches in the hope of 

gaining from the advantages of each. 

Uncertainty exists in many aspects of everyday life. Many things are 'more or less' 

correct, or happen 'most of the time'. The ability to represent uncertainty within an expert 

system is important in some application areas where categoric rules and facts do not 

exist. Various techniques may be employed but all suffer from problems, in that the 

expert and user must somehow quantify their uncertainty. How certain they are about 

this quantification adds a new dimension and further difficulty to the approach. 

Whilst AI systems have advanced capabilities for structuring, understanding and 

reasoning with information, the amount they can actually store and manipulate tends to 

be limited. Some AI techniques rely on holding all facts and rules in the main memory of 

the computer, others can take a great deal of processing time when the data volume 

becomes large. In either case improved techniques of information handling would be of 

great benefit in situations when AI is used with large data volumes. 
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4. INTELLIGENT GEOGRAPHIC INFORMATION SYSTEMS 

4.1 INTRODUCTION 

In previous chapters the strengthsandweaknesses of artificial intelligence (AI) 

techniques and geographic information systems (GIS) have been discussed in isolation. 

AI provides complex reasoning and representation strategies, but lacks the ability to use 

large data volumes. GIS by contrast, store and manipulate large data volumes but lack a 

sophisticated reasoning capability. The potential of combining AI and GIS into a hybrid 

system is currently being investigated by research groups in both component disciplines. 

Such a hybrid, an intelligent GIS, has clear potential in overcoming the limitations of its 

individual parts. 

This Chapter reviews existing projects that have attempted to marry AI and GIS. 

The projects cover a wide variety of specific application areas and disciplines. The aim 

of the text is to isolate salient factors used in the creation of AI/GIS hybrids, and 

highlight any negative aspects which could be avoided in future work. 

This thesis aims to determine the potential of intelligent GIS as a tool for design 

applications. Prior to the more general review above, attention is paid to areas where AI 

has been used with spatial, as well as geographic, data for design. Spatial data may be of 

a more restricted form than that typically regarded as geographic data, the layout of 

cupboards in a kitchen, for example. The discussion leads into a more conceptual 

discourse on the philosophy behind spatial representation and reasoning, with the aim of 

finding a theoretical basis on which to build an intelligent GIS. 

4.2 AI AND SPATIAL DATA IN DESIGN 

Design using spatial data covers a multiplicity of disciplines. Of these, applications 

using geographic data are more limited. However, they include such diverse tasks as 

landscaping, site layout and positioning, the routing of pipelines, roads, cabling and other 

linear structures, and just about every design activity where a map is used. 

A number of projects have considered automating or aiding the design function 

using AI with spatial, rather than strictly geographic, data. Bowen et a! (1986) exemplify 
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the approach with the BERT brickwork design expert system. BERT allows the engineer 

to produce elevation drawings of building faces on an AutoCAD computer aided 

draughting system. BERT then converts these drawings into a text based description, and 

this is used as input to the expert system. By analysing the description BERT is able to 

give counsel on the proposed layout with respect to it's efficiency when built in brick. It 

can advise the engineer, for example, to change the position of an expansion joint or 

window to minimise brick cutting. These comments are reported as text and the engineer 

is left to update the drawing himself. 

BERT is able to function because it restricts the scope of the spatial information 

needed. Building elevations are two dimensional surfaces and BERT only allows certain 

component types to be used, for example windows, doors and joints. This restriction 

must exist to allow unambiguous translation from the drawing to the text based 

description which is needed before the expert system can work. The translator must 

explicitly recognise each component in the design before it can operate. 

Coyne & Gero (1986) use the term syntactic to semantic interpreter to describe the 

program which translates from a spatial description to a text based description. They note 

that "points and lines can be regarded as syntactic representations, the semantic 

descriptions of which are the building components themselves. The building components 

may, in turn, be considered as syntactic elements and their meanings described in terms 

of compositions and performances". Essentially Coyne & Gero are stating that a spatial 

description alone is seldom enough for design decisions to be made. It is the meaning or 

function of the objects represented by the points and lines, in the context of the design 

problem, that is of fundamental importance to any decision. BERT translates the CAD 

drawings into a specific and restricted vocabulary of objects and relationships which are 

understandable to both the rules and the engineer. Logic within the expert system can 

then be used to infer any changes needed in the design. For example, if the distance 

between a wall and a window were significant, it could be semantically written 

distance (wall, window, 150) 

A rule requiring a minimum distance of 250mm could then recognise this fact and, 

using standard logic, infer that a problem exists. 

Oxman & Gero (1987) illustrate the interpreter functioning in PREDKIT, an expert 

system for layout design in kitchens. This improves on BERTin that it can express its 
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findings in graphical form, and can generate designs as well as diagnosing faults in 

existing designs. 

These examples and others (Green, 1986) show that, whilst design expert systems 

using spatial data are possible, the spatial content of existing systems is restricted to 

items that can be readily translated into a semantic form. Thus the spatial objects 

described tend to be simple. 

Geographic information, by contrast, is far from simple. The engineer using 

geographic information cannot restrict the number, location or complexity of the features 

which exist on the ground. The spatial interrelationships, which can fundamentally affect 

the design, are complex and ill defined. The relationships 'distance' and 'direction' lose 

their meaning when the objects they relate are irregularly shaped regions. There is no 

formal definition of such terms which can be used to categorically define such 

relationships. 

It can be argued that geographic information is a superset of the spatial data 

commonly used in design. It includes but goes beyond the bounds of simple objects and 

relationships, at the same time making 'syntactic to semantic interpretation' a far from 

trivial matter. 

Projects that have used unconstrained (ie. complete) geographic information and 

AI for design are rare. Chandra & Goran (1986) report on a system for site selection, but 

although this uses unconstrained data, it is essentially just searching the database for 

areas which match the required site selection criteria. The lack of an iterative sequence 

of changes would suggest that it is not a design system but merely a selection system. 

Design problems that involve an iterative sequence of improvements leading to the 

eventual artifact, and these are more complex. Routing of linear structures and 

communications is an example where the efficiency of the design not only depends on 

route length, but on the wide ranging effects that different geographic features can have 

on a route. These would not only affect cost, but also the constructibility and operating 

efficiency. As such, routing typifies the complexity of design problems using geographic 

information. This was a major reason for its choice as an example application for the 

research in this thesis. 
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Routing has been a problem for civil engineers for centuries. The Romans took a 

rather dogmatic straight line approach, but since then engineers have assessed existing 

geography and moved the route around features where there was a clear advantage in 

doing so. In recent years computer programs have allowed highway engineers to rapidly 

assess cut and fill earthwork volumes for their proposed routes (Finniear, 1986a). 

Research is now in progress using GIS to itemise the type and extent of features crossed 

by pipelines, although AI is not being employed (Coleman, 1989). These help to provide 

the base data for design decision making, but fully automated route design is a far more 

difficult concept. Those attempts which have been made all show limitations in either the 

data they use or the quality of the results they achieve. 

Route finding and optimisation have been an area of interest in disciplines outside 

engineering, including robotics and flight planning. Dobbs et a! (1988) address the 

problem of routing a military aircraft through a hostile environment by using algorithms 

based on heuristics or 'rules of thumb'. The location of potential threats cannot be 

constrained, but the system classifies the threats themselves into basic severity categories 

and considers them to be points with an attached 'conflict cost' and a circle of influence. 

The heuristic search algorithm attempts to find routes which minimise the total conflict 

cost. By describing threats as they have Dobbs has constrained the problem to a two 

dimensional path generation and test method, where at each step the threat points near to 

the 'aircraft' can be considered in terms of the single 'conflict cost' variable. By contrast, 

designing routes for engineering works is generally a multivariate problem, which cannot 

be simplified to a single variable comparitor. Also the geographic features themselves 

cannot be simplified to points or circles. 

Oshima et a! (1986) propose using a GIS for automated routing by suggesting a 

stepwise procedure, allowing the route to 'grow' from start to end. At each step 

alternative routes (radiating at 10° intervals) are generated and tested. The most suitable 

is found by assessing its direction and a 'weighting factor'. The route then steps along to 

the next point. This is effectively a blind search, with the system having no forward 

looking capability and no understanding of the form and spatial layout of the geographic 

features in the region. Typically an initially favourable path could wind its way down a 

'canyon' to a dead end, with no appreciation of its demise in advance. Deriving a realistic 

single weighting factor on which to base the step assessment is also limiting. In some 

applications, such as the cross country movement of military vehicles, multivariate data 

can be condensed into a single variable representing the maximum traversal speed at any 

point (Loomer, 1986). However, for engineering applications with high capital value, 

such simplification is seldom realistic. 
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Vehicle location and route selection are cited as being of great potential as a GIS 

application (DoE, 1987). Karimi et a! (1987) propose a real time expert system to find 

the best route for a vehicle on a road network. The network constraint acts to make the 

number of possible solutions finite, as there are only a fixed number of choices at each 

road junction. Thus the selection of suitable routes is far easier than in the unconstrained 

case. A quoted advantage of this system is that information about the condition of the 

roads can be updated in real time, with new routes being suggested to cope with the 

changing situation. This is where the AI approach excels as it can be designed to deal 

with dynamic changes to facts in the knowledge base. Were it not for this capability the 

system would have little to distinguish it from conventional routing systems such as 

AutoGlide (DoE, 1987). 

In all the above projects the unconstrained use of geographic information has either 

not been required, or has been compromised in order to make the application practical 

for automation. BERT and PREDKIT limit spatial objects to simple components that 

form a restricted language for use with design rules. Geographic design applications, 

which must use features in unconstrained locations, have had a choice of simplifying 

objects to plain geometric shapes, condensing multivariate data to univariate data, or 

blind path generation and testing. None have successfully tackled the problem of using 

unconstrained multivariate geographic data for fully automated design. 

It is clear from BERT and PREDKIT that a language to express spatial objects and 

relationships, together with a logic to manipulate it, can make automated spatial design 

possible. Without this any automated spatial design system effectively becomes blind, 

the system probing for information in space without a global appreciation of the whole 

spatial picture. It is reasonable to assume therefore, that intelligent automated design 

using unconstrained geographic information would need a similar formal language and 

logic before it could be successful. 

The scope of the research was widened with two major aims, to see if there was 

significant progress toward a formal language for geographic space, and to discover what 

efforts had been made to practically link AI and GIS to date. 
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4.3 SPATIAL REPRESENTATION AND REASONING 

Attempts have been made to define spatial languages and logics. In the main this 

effort has come from the pure AI research community where spatial reasoning has a far 

wider application than the use of geographic information alone. Popplestone (1979), 

Davies (1986), and Fisher (1987), typify the AI approach in the areas of robotics and 

scene analysis. Data volumes used, however, tend to be small enough to hold all data in 

the working memory of the computer. This permits AI techniques to be used which 

could not be employed with large geographic databases. 

Peuquet (1987) has made significant efforts in the formal definition of geographic 

objects and relationships, with a view to creating a language to describe space. She notes 

that there are two types of query that can be put to a spatial database :-

- Given a specific object (or objects), what are its associated properties (one of 
which may be location) ? 

- Given a location, what objects exist there ? 

The paper argues that these are logical duals, and a dual structure for modelling 

spatial phenomena is suggested. The proposed structure consists of an object based 

description (with location as one of its properties) and a location based description (with 

objects existing at a location being properties). Spatial dualism forms an intrinsic part of 

a hybrid intelligent GIS called KBGIS, which is described in Section 4.4.3. 

In an attempt to define spatial relationships Peuquet (1988) adapted the work of 

Jakendoff (1983) from its use for general word meanings into a specific spatial context. 

Jakendoff proposed that three conditions were sufficient to define the meaning of any 

word:-

Necessary 
Condition 

Centrality 
Condition 

Typicality 
Condition 

things which MUST be true for a word to apply 

A central or threshold value for variables within which a 
word applies 

Features which would normally be associated with the 
application of a word 
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Figure 4.1 shows the J akendoff conditions applied to the direction relationship. 

Despite this Peuquet failed to define a spatial algebra, observing that "there are a 

bewildering number of potential spatial relationships with seemingly infinite variations". 

After reviewing such diverse conceptual tools as the relational data model, directed 

hypergraphs, if-then-else rules, uncertainty and semantic/associative networks (such as 

frames), she suggests that "the most productive approach toward specifying the 

functional relationships between spatial elements would seem to be a combination of all 

these mechanisms, using each to its best advantage". 

Other researchers have addressed the spatial language problem and trends are 

apparent. The use of first order predicate logic, the basis of the AI languages Lisp and 

PROLOG, has been recommended by several groups as a possible solution. These papers 

are reviewed in more detail in Section 4.4.3. However, it is clear that much fundamental 

work is needed before a language and logic for space can be said to exist. 

4.4 EXISTING PROJECTS 

Artificial intelligence techniques have already been applied to GIS with varying 

degrees of successs for a variety of purposes. Reviews by Robinson, Frank and others 

identify four key areas of exploitation :-

- Map Design Systems 

- Terrain Classification/Feature Extraction Systems 

- Geographic Database Management Systems 

- Geographic Decision Support Systems 

(Robinson et a!, 1986a,1986b; Robinson & Frank, 1987a,1987b; Egenhofer & Frank, 
1990) 

Ripple & Ulshoefer (1987) add a fifth category, intelligent user interfaces, and this 

is treated as an additional section in this chapter. 
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a) CENTRALITY CONDITION 

* 

The point above is unambiguously east of the square 

b) NECESSARY CONDITION 

A * B 
' 

Any object wholly on side A of the vertical line 
through the point cannot qualify as being east 
of the point. Only objects which are (at least in part) 
on side B can potentially be east of the point 

C) TYPICALITY CONDITION 

Typically there is a triangular region 
within which an object is normally accepted 
to be east of the point 

Figure 4.1 JAKENDOFF CONDITIONS APPLIED TO 
THE DIRECTION RELATIONSHIP 

(after PEUQUET, 1988) 

""''''" 
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4.4.1 Map Design Systems 

One of the most common uses of GIS is in the production of maps. An agreed 

system of scales has made manual map creation a fairly standardised process, with 

skilled cartographers knowing what level of detail is required (or possible) at any 

particular scale. However, a certain amount of 'artistic license' has always been needed to 

decide where best to put text, how to generalise, include or omit features, and how to 

design the layout effectively. Adding AI to a GIS may enable these decisions to be made 

automatically. 

Automatic generalisation of maps between scales is the aim of the OSGEN system 

(Robinson & Zaltash, 1989). Implemented in the Leonardo expert system shell, OSGEN 

attempts to model the reasoning of the cartographer. It is designed as a text based 

advisory system with no interface to a GIS. Rules were written to judge situations such 

as whether or not to include a building, whether to symbolise an object, and whether to 

combine, simplify or exaggerate features. 

However, Robinson describes the rules as "hard" and "soft", the latter being 

inconsistent yet at times overriding the former. It is apparent from this that the OSGEN 

model does not contain enough "hard" knowledge to mimic the manual process, "soft" 

rules merely cover areas where knowledge acquisition is incomplete, and other rules 

should be acquired to state when a rule is applicable and when it is not. As a text based 

advisory system OSGEN relies on the user to describe the situation surrounding map 

items, and this can be a source of inconsistency between different operators. A more 

complete system would attempt to use the map data directly. 

Fisher & Makanness (1987) ask the question "Are cartographic expert systems 

possible?", concluding that they are provided cartographers "get in on the act" by adding 

their expertise to the projects. Robinson & Frank ( 1986a) reinforce this, noting that the 

MAPEX and AUTONAP systems were both built without consulting the appropriate 

experts in map generalisation. 

Although map design appears closest to the general concept of design using 

AI/GIS, the problem is more like that addressed by PREDKIT, Section 4.2. Map text, for 

example, is essentially a box symbol which must be placed in such a way as to satisfy 

constraints caused by surrounding symbols. It does not involve the use of the geographic 

information at a semantic level, except when prioritising the relative importance of each 

64 



symbol to the eventual use of the map. As such this subject area did not offer any 

significant pointers for this research. 

4.4.2 Terrain Classification and Feature Recognition Systems 

The data collected for a GIS does not always provide enough structure or detail for 

the intended application. This is particularly true of remotely sensed imagery where the 

data is either a photograph or a digital image of unconnected pixels, Section 2.6 . With 

the increasing availability of remotely sensed data, particularly from satellite (House of 

Lords, 1983), new methods for analysing the images using AI have been investigated. 

Conventional image processing relies on statistical and arithmetic methods to 

stretch and stratify the image, and clustering techniques for identifying regional features 

(Bagot, 1985). A skilled human is required to operate the system and classification relies 

on the expertise of the operator in understanding the significance of the resulting data. 

The process can be time consuming and expensive. 

Other methods have been tried, such as frnctal analysis of images for land use 

assessment (DeCola, 1989). However, many researchers recognise the potential of using 

the AI technique of pattern recognition in analysing both remotely sensed images and 

other geographic data. 

Palmer (1984) performed some inspiring early work on the analysis of terrain 

features. Starting with a triangular irregular network (TIN) of a terrain surface he used 

PROLOG rules to search for ridge lines, valleys, peaks etc. His hypothesis was clear: if a 

rule could be written to describe a feature in terms of its terrain representation in 

PROLOG, then the PROLOG search strategy should be able to find all occurrences of 

that feature. The TIN was defined in PROLOG as nodes, line segments connecting 

nodes, and cells corresponding to the triangles formed. A peak, for example, could then 

be found by searching for a node that had no connected node higher than itself. 

Frank et a! (1986) recognised the potential of this approach for the formal 

definition of geographical terms, such as "watershed" and "ridge line". He argued that 

this may provide a basis of a formal language for spatial description and reasoning. 
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In feature classification the expertise of the interpreter has been noted as a possible 

target for an expen system. Peace good ( 1985) used a text based expen system to achieve 

precisely this. It relies on the analyst describing the shape and properties of the data of a 

potential feature, and then employs rules to suggest possible features to match the data 

given. Hadipriono et al (1990) found text based methods adequate in a project to analyse 

drainage patterns from remotely sensed data. However, such approaches still rely on the 

operator to correctly describe the images. 

Identifying features direct from digital imagery is far more complex. Human 

operators often use other data (such as maps) to provide a contextual base which helps in 

the interpretation. Skidmore (1989) proved that a terrain model, geometrically eo­

registered with Landsat imagery, can help an expen system to classify forest cover types. 

Van Cleynenbreugel et a! (1990) reinforce this in their system to recognise road 

structures. The system uses a terrain model and SPOT imagery as base data, and 

heuristics to reliably pick out roads and paths. A typical heuristic is "in mountainous 

regions roads tend to follow contours". These projects clearly demonstrate the need to 

integrate different data types within an intelligent GIS. 

Image classification and feature recognition will continue to attract researchers as 

satellite data becomes more detailed and freely available (Estes et al, 1988). Recent work 

by Frankot & Chapella (1990) illustrate this continuing commitment with their computer 

vision approach to image analysis. The interpretation by the system of Venusian 

synthetic apenure radar images has produced maps of the surface topography of this 

shrouded planet. 

4.4.3 Geographic Data Base Management Systems 

Conventional GIS research has made a number of significant advances in data 

representation and handling, as was seen in Chapter 2. However, the definition of a 

formal spatial query language and the rapid search and manipulation of large 

heterogeneous spatial databases still need much research. AI techniques have been 

employed in several projects addressing these issues, and they give some useful ideas on 

potential structure and integration methods for intelligent GIS. 
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Traditional database query languages, such as SQL (Van der Lans,1989; 

IS09075,1989), can certainly be used to access spatial objects stored in databases, but it 

is difficult for them to express queries which involve particular spatial properties. For 

example, requesting the distance between two objects is not possible with traditional 

query languages, which lack geometric concepts to perform the operations required. 

First order predicate logic, in the form of the AI programming language PROLOG, 

was first proposed by Frank (1982) as an alternative for spatial query processing. Forbes 

(1984) reinforced this proposal, noting that PROLOG could provide a simple language 

for both data definition and query, and that "virtual relations" can be set up within the 

data that are far more powerful than conventional relations. Frank (1984) acknowledged 

that, as a purely memory based language, PRO LOG was of limited use with large 

geographic data sets. He overcame this by incorporating DBMS extensions to create a 

persistent PROLOG. By manipulating data on disk rather than in memory, persistent 

PRO LOG allows much greater data volumes to be handled. LOBSTER is a geographic 

database system written using persistent PRO LOG (Frank, 1984 ). The work of Palmer 

(1984) on feature recognition has been implemented as an example of the functionality 

of LOBSTER (Eganhofer & Frank, 1990). 

The continuing faith in the suitability of first order predicate logic as a spatial logic 

is exe~plified by Menon & Smith (1989), who use Lisp as a base language for 

experimentation. 

The most influential intelligent G IS project to date was first reported by Smith & 

Pazner (1984), Peuquet (1984) and Chen (1984). Called the Knowledge Based GIS 

(KBGIS), the stated aims for the system were to answer queries rapidly, and to learn 

about spatial objects. KBGIS is firmly geared toward providing fast access to data in 

large heterogeneous databases. Its database is conceptually split into dual location based 

and object based data structures to allow rapid access, advocated as spatial dualism by 

Peuquet (1987), Section 4.3. The location based representation is implemented as a 

quadtree, whilst objects are defined in Lisp in a frame-like tree structure. Crucial to the 

project is the ability of KBGIS to 'learn' through memorising examples of objects for 

which it has already searched, so that future searches can be answered directly. Smith et 

al (1987) describe this as "rote" learning, and also add inductive learning to the KBGIS, 

allowing the system to define new object types given a series of examples. 
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KBGIS has continued developing to the present day (Albert, 1988; Smith, 1988; 

Camp bell & Goettsche, 1989). The full structure of the system is involved, and detail can 

be found in the referred papers. Key points which have been noted for the authors 

research are :-

- The use of location based and object based structures 

- The use of hierarchical trees for objects 

- The use of Lisp as a control language 

Donna Peuquet, a principal researcher in the KBGIS group, was approached 

directly by the author in the hope that KBGIS could be obtained to act as a base system 

for the authors work. However, she stated that unfortunately KBGIS was not a coherent 

system, but a collection of individual programs that could not easily be transported or 

used (Peuquet, 1989). The implication was that whilst KBGIS is impressive in theory, 

the practical system is merely a collection of research prototype modules which do not 

form a reliable, integrated package. 

4.4.4 Geographic Decision Support Systems 

Decision support has been a principle use of GIS since their inception. It is a broad 

category, applying wherever data provided by a GIS forms the basis of some form of 

decision making. Typical applications include land use management, vehicle scheduling, 

supermarket site location and, of course, design. 

Robinson & Frank (1987a,b) review several applications where AI has been used 

to aid or replace the decision maker using geographic information. Of these ASPENEX, 

a system for advising on the management of aspen forest, is perhaps the most successful 

(Morse, 1987). ASPENEX consists of a personal computer (PC) based expert system 

containing rules about aspen stand management. The GIS is based on a mainframe 

computer. Control software on the PC initiates ASPENEX by requesting a spatial 

analysis of a particular stand from the GIS. This is returned as a text file which the expert 

system uses as a basis for its management recommendations for the stand. ASPENEX 

has a one way control structure, and the expert system itself does not have direct access 

and control over the GIS during processing. In the context of the problem, however, this 
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loose integration is adequate as the GIS data does not change after the initial 

consultation, and no iterative analysis is undertaken. 

4.4.5 Intelligent User Interfaces 

Existing GIS tend to require skilled operators, not only to drive the system, but 

also to formulate the types of query needed to produce the desired map or other 

information. AI techniques have been harnessed to reduce this complexity, with the aim 

of allowing the end user of the data to retrieve it himself. 

Kubo (1986) describes TRINITY, a GIS with an intelligent interface which learns 

the individual habits and requirements of its users. On initialisation, TRINITY asks for 

the users name, and then loads the appropriate user knowledge base for the interface. The 

user can drive the system using natural language phrases or menus, and even a kanji 

(Chinese character) interpreter is provided. A thesaurus is used so that words other than 

those in the TRINITY command language can be understood. 

For interrogating distributed geographic archives Stoms et a! (1988) have created 

BROWSE, a text based advisory system written in VP Expert, Section 6.3.1. Although 

not of great technological significance BROWSE does show that even very simple (and 

inexpensive) expert system shells can be successful in appropriate geographic 

applications. 

Other reported intelligent interfaces include an X-Windows based front end for the 

KBGIS. (Campbell & Goettsche, 1989). However, this is limited to the ability to defme 

mouse sensitive buttons and menus on the screen which protect the user from having to 

use the KBGIS spatial object language to create queries. The project falls far short of the 

intelligence of the TRINITY interface. Robinson & Frank (1987a,b) and Ripple & 

Ulshoffer (1987) adequately review other contributions to this area. 

It should be noted that engineers using an intelligent GIS for design will not 

necessarily be expert GIS users. Hence an intelligent, application oriented interface may 

be crucial to the eventual usability of a system. 
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4.5 SUMMARY 

Intelligent GIS have been created successfully to perform a variety of tasks, such 

as map generalisation, feature recognition, geographic database management :md 

decision support. Design using unconstrained geographic information is not among these 

applications. 

Automated design has been achieved using AI and spatial data. Spatial data in this 

context refers to data more simple that than the diverse, irregular objects commonly 

found in geographic data. The key factor appears to be the translation from a syntactic 
representation of points and lines, to a semantic representation. Essentially a semantic 

representation is a restricted language, by which the spatial situation is described in 

terms that are significant to the problem. Rules can then be written to recognise facts 

represented using this language, and standard logic can be used to infer new facts. Other 

systems have used geographic information for design, but have simplified the data so 

that either it can be interpreted semantically, or they have resorted to a blind 'generate 

and test' process of arriving at a solution. 

Automated design using unconstrained geographic information has not been 

achieved. Unlike the situation with simple spatial data, geographic information has no 

restriction on the number, shape or types of object that exist. Relationships such as 

'distance' and 'direction' lose formal definition with irregularly shaped objects. Efforts to 

produce a formal language for the definition of geographic objects and relationships have 

failed. Until such a language is found, fully automated design using unconstrained 

geographic information will not be viable. 

Nevertheless, any intelligent GIS for design, fully automated or not, must represent 

geographic objects in some way and reason with those objects. Conclusions from those 

who tackled formal language research were felt to provide important guide-lines for 

geographic representation and reasoning. 

Spatial dualism, the object based and location based representation of geographic 

features in a database, was shown to provide rapid data access. 

A multi-paradigm approach, using a mixture of rules, frames or objects, and the 

relational DBMS data model, was suggested as potentially the most promising for the 

creation of a truly integrated intelligent GIS. First order predicate logic has also been 
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used by several researchers who testify to it's virtues for geographic data representation 

and query processing. [The author notes that an artificial intelligence toolkit could 

provide an integrated environment for these paradigms]. 

Existing intelligent GIS, such as ASPENEX for example, generally rely on 

attachment, rather than integration, between the AI and GIS components. The KBGIS, 

by contrast, is an example where close integration has been achieved. KBGIS was built 

purely for making access and manipulation of large GIS databases more rapid. A system 

structure like KBGIS, displaying close integration, is more likely to succeed in design 

applications where an iterative sequence of events demands a close dialogue between the 

AI and GIS components. 
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5. DEFINING AN INTELLIGENT GIS FOR DESIGN 

5.1 INTRODUCTION 

Previous chapters have shown that intelligent geographic information systems are 

possible and have been built to help with a number of tasks. However, an intelligent GIS 

has yet to be constructed which effectively demonstrates the potential of the technology 

as an environment for engineering design. 

British Gas plc., the sponsors of this work, and J.P. Kenny & Partners, an off-shore 

design consultancy, share a common interest in the potential use of intelligent GIS for 

design. This common interest lies in the siting of pipelines on the ocean floor. The 

design of off-shore pipeline routes is both time consuming and tedious. The nature of the 

off-shore environment is such that data and design parameters are prone to change at late 

stages in the design. This demands a great deal of manual re-assessment, wasting weeks 

of design time and possibly disrupting construction schedules. Both companies were 

keen to see the possibilities of intelligent GIS explored as a tool for pipeline route 

design. 

Pipeline routing is an ideal example for testing the concept of intelligent GIS for 

design. The location of the route is of paramount importance, and the optimal result 

depends not only on route length but on the geographic features that the pipeline 

traverses. The assessment of the effects of such features on the pipeline requires the 

expertise of the pipeline designer. This expertise would have to be represented within an 

intelligent GIS carrying out the route design function. 

In Chapter 4 systems were discussed which attempted to perform routing fully 

automatically, but these were shown to be ineffective in complex engineering design 

situations. Initial discussions with the co-operating organisations revealed that, rather 

than a fully automated 'black box' producing routes, they saw the engineer's involvement 

in the routing process as crucial. Engineers are wary of 'black boxes', and probably 

wouldn't trust one. What was needed, it seemed, was a system which would take out all 

the time consuming, tedious work in the design, whilst still giving the engineer control 

over the routes. 
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It was decided to build an intelligent GIS for the routing of off-shore pipelines. To 

satisfy the broader aims of the research the system would be constructed such that its 

conceptual structure is independent of the specific application. However, knowledge 

about pipeline design would be included in the implementation. The system was given a 

name- PIRATE- the Pipeline Route Analysis and Testing Environment. 

This Chapter explains how the PIRATE system specification was drawn up. Two 

themes run in parallel throughout the text, each inextricably linked with the other. The 

primary, though not the dominant, theme is the PIRATE specification itself, what 

facilities the system must have and what knowledge should be incorporated. The 

secondary, but dominant, theme discusses the method by which the PIRATE system 

specification was found. Knowledge acquisition, an ill defined technique of isolating 

knowledge for expert systems, was used to uncover the PIRATE specification, mainly by 

interviewing real pipeline engineers. Conclusions from the knowledge acquisition 

process are important as an addition to the small body of work in the discipline, although 

these conclusions are secondary to the main thrust of the thesis. The two themes are 

inextricable because the result of knowledge acquisition is the PIRATE specification. 

The chronologic sequence of events is also important. The author hopes that the Chapter 

itself is slightly easier to understand than the explanation just given. 

5.2 SYSTEM DESIGN STRATEGIES 

A crucial part of conventional computer systems design is the systems analysis. 

According to Longley & Shain (1989) systems analysis is a technique involving the 

analysis of an activity or system, to determine if and how the system may be improved 

using computer systems. As a formal methodology it has been in use for many years, and 

is documented in various texts, for example Gane & Sarson (1979). 

Knowledge acquisition is an analogous function used when assembling knowledge 

for an expert system. It is less well defined and less well documented, the technique only 

coming into existence with the advent of expert system tools. This immaturity is bourne 

out by the fact that the first book exclusively dealing with the subject was only published 

in 1986. Anna Hart, the author of this work, compares knowledge acquisition to systems 

analysis (Hart, 1986). She notes that in systems analysis it is the eventual system user 
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who is the information source, and it is fairly clear what information is required before 

the analysis begins. By contrast, in knowledge acquisition it is the expert in the subject 

who is the knowledge provider, and it is not clear at the outset what information will be 

needed. Knowledge acquisition is therefore a less well defined and less straightforward 

methodology. 

In the execution of engineering designs, engineers usually perform actions in a pre­

defined sequence to achieve a result, even though they may be considering many 

alternative solutions to the design. It was made clear at the outset of the project that 

pipeline designers also follow a sequence of tasks to route a pipeline. At points along the 

sequence design judgements are made involving many alternative solutions. 

Allwood (1989a) suggests that, in identifying a suitable task for expert systems, the 

over-riding characteristic to look for is whether the problem solving method is 

essentially sequential or not. Sequential methods, he notes, are likely to be best tackled 

using conventional programming technology rather than by using expert systems. If, 

instead of a definite sequence, the problem solving method involves the simultaneous 

consideration of many alternative solutions, any one of which may be the right answer, 

he suggests that databases or expert systems are likely to be the right implementation 

choice. 

The spirit of All wood's categorisation is fully supported by the authors 

experiences. However, the mutual exclusivity of the categories causes difficulty when 

attempting to classify pipeline routing, and to some extent design functions in general. 

The design function bridges the categories and in doing so fails to belong to either. 

The question arises, then, as to whether an expert system could provide a suitable 

base for a pipeline route design system. Overall control in the manual design method 

appears procedural, yet the decisions made during the procedure can only be described as 

requiring expertise. The computer system design must reflect this. It was therefore 

envisaged at the outset of the project that a computer system for pipeline route design 

would consist of an overall procedural control structure, with access to know ledge bases 

for judgemental decision making at appropriate points in the procedure. 

With the overall structure of the system appearing to be procedural, formal 

methods of systems analysis were first looked to in order to ascertain the work flow. 

However, the procedure for pipeline routing is not well documented, apparently tending 
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to vary depending on the nature of the design. Conventional systems analysis, according 

to Hart (1986), would not offer the facilities to cope with this type of information 

extraction. Knowledge acquisition methods were therefore applied despite the analysis 

being apparently for a mainly procedural system structure. 

5.3 KNOWLEDGE ACQUISITION 

The aim of knowledge acquisition is to create a correct and complete description of 

the experts knowledge of his subject. At the start of this research the only authoritative 

work dedicated to knowledge acquisition was the book by Hart (1986), although others 

had contributed prior to this in more general works on expert systems and AI 

(Feigenbaum & McCorduck,1984; Hayes-Roth et al,1983). These works were used as 

the initial guide for the knowledge acquisition, with later techniques assessed and used if 

necessary when they became available (Anjewierden, 1987; Slatter, 1987; Greenwell, 

1988; Schreiber et al, 1988; Breuker & Wielinga, 1987; Breuker & Wielinga, 1988). 

Hart (1986) describes fact-finding by interview and machine induction as methods 

of knowledge elicitation. Machine induction is best suited to subjects, or domains, where 

large numbers of examples can be given which have different values for the same 

variables. The induction process builds rules using the examples. The pipeline routing 

domain lacks this body of examples and so machine induction would not be useful. 

Interview techniques were thus the main approach used in the project. 

It is pertinent to note that Hart (1986) fails to mention the use of documented case 

studies, industrial standards or codes of practice as part of the knowledge acquisition 

process. Other authors distinguish between knowledge acquisition and knowledge 

elicitation in that the second exclusively deals with the extraction of knowledge from an 

expert, whereas the first allows other sources such as codes of practice to fall within it's 

remit (Greenwell,1988). This thesis will uphold the latter terminology. 

Interviews can be divided into three types corresponding to levels of detail in the 

domain being discussed. These types are the unstructured, focussed and structured 

interviews. They are held between the person who is providing the knowledge, known as 

the domain expert, and the person who is trying to extract the knowledge and build it 

into an understandable structure, known as the knowledge engineer. 
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Unstructured interviews are the first to occur in knowledge elicitation, when the 

knowledge engineer has little or no understanding of the domain. The main objectives 

are to build a rapport with the expert, an overall appreciation of the domain, its main 

components and its vocabulary. This can be particularly testing for the knowledge 

engineer, who may have little experience of the domain under consideration. 

Focussed interviews, as the name implies, focus on particular aspects of the 

domain. The technique is to build on the overall domain structure elicited in the 

unstructured interviews. The knowledge engineer uses individual areas of the domain as 

subjects for further exploration. Depth in the knowledge base is thus built. 

Structured interviews are the most detailed of all, concentrating on particularly 

complex parts of the domain, reviewing knowledge elicited to date, and verifying the 

validity of the knowledge in a variety of test situations. Structured interviews can include 

demonstrations of prototype systems which the expert is invited to criticise. They may 

also include detailed or unusual case studies and the way the expert handles exceptions 

to his normal rules. Detailed knowledge on specific parts of the domain is usually 

discovered and verified in structured interviews. 

Hart (1986) identifies the qualities a knowledge engineer should possess to ease 

interview problems. These include good communication skills, intelligence, tact and 

diplomacy, empathy and patience, persistence, logicality, versatility and inventiveness, 

self confidence, domain knowledge and programming knowledge. One wonders whether 

these mythical creatures exist, but Hart's general message is clear. The knowledge 

engineer must be able to accommodate the whims of the expert whilst still achieving the 

results he needs. A manner likely to elicit the friendship of the expert is probably the 

most powerful tool a knowledge engineer can have. 

Each interview type is illustrated in the knowledge elicitation below. Within the 

interviews themselves a number of questioning techniques were used to control the 

direction, type and depth of the knowledge being given by the expert. Although used 

naturally by the author in his own use of the English language, many of these 

questioning methods have since been described by Greenwell (1988). 
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5.5 KNOWLEDGE ACQUISITION FOR THE PIRATE SYSTEM 

Knowledge acquisition for PIRATE centred on the use of elicitation interviews, 

following the layout given in Figure 5.1. The information gained from the interviews 

lead to case studies and other documentation which furthered the understanding of the 

domain. The experts in pipeline route design were provided by J.P. Kenny & Partners 

(JPK). The interview process began in July, 1988 and extended through to final 

structured interviews in January, 1990. 

5.5.1 Initial Meeting 

Once involvement with JPK had been approved, company management assigned a 

pipeline design engineer to act as the domain expert for the project The initial meeting 

was designed to 'sell' the project to the expert, acquiring his confidence and building a 

rapport between him and the author, hereafter referred to as the knowledge engineer. His 

colleagues were also curious and so were accommodated during initial explanations of 

the project aims. Although it was commented that "this artificial intelligence business" 

sounded rather far fetched, the expert seemed happy with his continued involvement. A 

provisional programme of interviews was agreed before the meeting closed. No 

elicitation was attempted during this session. 

5.5.2 Unstructured Interview Programme 

Two unstructured interviews were timetabled to take place soon after the initial 

meeting. The author had no previous experience of knowledge engineering, and so the 

difficulties of understanding the domain were expected to be compounded by the authors 

amateur status as a knowledge engineer. 
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5.5.2.1 Techniques Used 

It was decided to follow Hart's (1986) advice for the format of the first 

unstructured interviews, in the absence of any preferred method. She stated the following 

basic principles : 

Encourage specific case discussions rather than using generalities. 

Do not impose alien tools or representations onto the expert - allow him to 
express himself naturally. 

Do not interrupt - allow the expert to digress and repeat himself as he pleases. 

Record information - audio recording is recommended 

Listen to the way the expert uses knowledge - it may provide clues to the 
underlying structure of the domain. 

Each interview was split into two hour sessions, two per visit, Both the expert and 

the knowledge engineer found concentration difficult over such lengthy periods, but 

available meeting times were few and had to be used as effectively as possible. The 

interviews were recorded on audio tape. 

5.5.2.2 Findings 

Although Hart's general principles are presumably based on sound research, when 

applied in the first interview the result was little short of disastrous. With the knowledge 

engineer effectively muted by the second and third principles, and with the expert 

encouraged to use specific cases by first, the digression that occurred was extreme. 

Rather than choosing representative cases depicting typical pipeline routing projects, the 

expert chose the most obscure he could find, concentrating on small aspects of the 

domain which he found interesting or on instances that deviated from the norm. As the 

knowledge engineer knew nothing of normal pipeline routing, information on exceptions 

or microcosms of the process were extremely hard to place in perspective. 

Additionally the knowledge engineer was expected to take note of how the expert 

was using his knowledge, in the hope that this would give further clues to underlying 

domain structure. On top of all this he had to appear reasonably intelligent and 'on the 

ball' when directing the interview and making comments on the expert's discussion. The 

author found this an extremely taxing experience, leaving the interview totally 

bewildered. Appendix A gives a transcript of one of the unstructured interviews, which 

lucidly illustrates the point. 
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The approach to the second unstructured interview was modified in the light of 

experience. The expert was asked in advance to find typical pipeline routing case studies 

on which to base his explanation, and to avoid detailed subjects representing only a small 

part of the overall domain. He accepted this once he realised that he could concentrate on 

more detailed knowledge in later sessions. 

The result of the second interview was an approximate work flow that pipeline 

engineers followed in typical situations. This is shown in Figure 5.2., and provided the 

basis for focussing later interviews. 

5.5.2.3 Conclusions 

The first interview showed a total mismatch between the expectations of the 

knowledge engineer and the understanding of the domain expert. The expert simply took 

for granted much of the domain, which he considered to be common knowledge simply 

because it seemed so obvious to him. The situation was not helped by the Hart principle 

of not constraining the interview subject. 

In hindsight the author would suggest a far more structured approach. The expert 

should be asked to prepare a talk on his area of expertise. By specifying a time limit and 

an audience the scope, language and content can be constrained. A fifteen minute speech 

to a group of sixteen year olds would be a suitable example. Instead of belittling the 

domain this is actually forcing the expert to isolate the salient features of his expertise, 

expressing them in a form devoid of unnecessary jargon and irrelevances. By studying 

the form of the talk the knowledge engineer may gain an understanding of how the 

expert views the domain structure, without having to struggle to control the elicitation. 

A talk of a similar standard should also be prepared by the knowledge engineer, 

covering AI, expert systems and methods of knowledge acquisition. Chung & Kamur 

(1987) maintain that "trying to convince the expert about AI" should be avoided, but it is 

apparent that their conviction is based on experiences when they did not pre-plan the 

nature of their approach. The author believes that, if suitably structured, a talk will 

educate the expert in the basic concepts of the subject, allowing him to have his own 

mental picture of the progress being made and what is expected of him. The expert 

would then be more likely to realise the fundamental nature of the knowledge required at 

the first interview stage, avoiding the problems exhibited above. It would also help to 

negate the lack of understanding highlighted by the quote on "this artificial intelligence 

business" at the initial meeting. 
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The results that were obtained from the interviews were not encouraging simply 

because more progress had been expected. The work flow that was found at least 

provided focal points for the next programme of interviews. 

Audio tape recording of the interviews were not without drawbacks either. 

Transcription of four hours of tape took several days, and while a much more thorough 

analysis of the information was possible, there were problems. In particular, difficulties 

occurred when the expert made reference to a spatial location on a map or diagram he 

was using in his explanation. The knowledge engineer had anticipated this and verbally 

referenced the map number whenever it was used. However, when the expert used such 

phrases as "From here to the jack up rig there are ..... ", there is no way of placing the 

comment into context. Appendix A gives many other examples of such comments. 

Clearly a more reliable method had to be found. 

5.5.3 Focussed Interview Programme 

Between the unstructured and focussed interviews there was a gap of about four 

months, allowing for an assessment of the lessons to be learned from initial experiences, 

and to undertake further reading of texts related to the domain in general 

(Hydrocarbons(GB), 1986; Det Norske Veritas, 1974). A total offour focussed 

interviews were planned. 

5.5.3.1 Techniques Used 

Learning from the experiences of earlier sessions, the expert was fully briefed, in 

writing, prior to each interview. This allowed him enough time to prepare any case 

material and make comments. The four interviews each had one of the following focal 

themes: 

- Data availability, significance and preparation 

- Creating a route, major factors affecting the choice 

- Analysis of chosen routes, accuracy of estimates, cost, plant and material 
requirements. 

- Presentation of route choice and what happens afterwards. 
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Case studies were used extensively to allow the expert to express his knowledge. 

At this stage in the interviews basic case studies were more acceptable, as the knowledge 

engineer had more of an overall understanding of the domain structure. At times it also 

helped if a hypothetical route were proposed by the knowledge engineer across real sub­

sea data, allowing the expert to criticise the choice. Judicial use of this technique allowed 

particular avenues of the pipeline problem to be explored. The interviews were once 

again recorded on audio tape. 

5.5.3.2 Findings 

By focussing the interviews into four themes a more detailed assessment of each 

could be undertaken, and this successfully pulled out substantive information on the 

routing process. 

Data availability in pipeline design was found to be erratic, disturbing the 

sequential nature of data gathering then routing. The first available data tended to be the 

most unreliable, such as admiralty charts of the region. More accurate and detailed data 

is usually the result of other construction work in the area and is often privately owned. 

Access to this data may not be possible until after the initial route analysis has taken 

place. The additional information results in a route re-assessment being needed. 

Potential routes are decided upon by the engineer using the data he has available to 

him. This data is pre-prepared in the form of constraint charts and the engineer must 

thread the pipeline through the constraints to minimise costs, maximise pipeline safety 

and constructability, and ensure long term stability and maintainability. Figure 8.1 is a 

typical constraint chart that was used in the case study, Chapter 8. Placing the route 

involves a high degree of spatial cognition, something which humans excel at when 

compared to computers. However, the engineer only uses a few major constraint 

variables in the consideration of a route choice. Once the line of the route is decided a 

more complete analysis is undertaken to determine its exact implications. 

Full route analysis considers all major factors contributing to the overall route cost. 

The method used for this involves the initial charting of the route across a number of 

maps depicting different geographic features and constraints. The chainage distance over 

which the pipeline traverses each feature is used to estimate the impact of the feature on 

the route cost. These costs are built from estimates of required construction plant and 

extra materials needed to overcome the effects of a feature. Plant costs depend on the 

output rate, the mobilisation fee and the severity of the remedial actions for the feature. 
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A typical cost analysis for a route is given in Appendix D. Combining component costs 

is not straightforward, as overlapping features may need conflicting or similar remedial 

actions, and a compromise action must be reached. 

Reporting of the route analysis is extensive, with large numbers of charts 

augmented by volumes of calculation and detailed written assessment. A typical 

preliminary costing for a route may take up to two weeks. However, even at this stage 

the base variables can be subject to change. The expen quoted examples where the 

diameter of the pipeline was altered at a late stage, necessitating a complete cost re­

assessment. The case study, Chapter 8, had its routes re-assessed because of the 

discovery of a new gas field, which affected the implications of each route. During the 

focussed interviews the work flow was re-assessed in more detail using a specific case as 

an example. The results are given in Appendix B. 

In the discussions the expert highlighted the following time consuming tasks which 

hampered progress during the design :-

Initial collation, storage and comparison of maps, charts and other data 
concerning ocean floor characteristics in the proposed region. 

Preparation of overlay maps showing features which could affect a pipeline. 
Several are typically needed. 

Analysis of proposed routes, calculating the distances a route travels through 
relevant features. 

Subsequent analysis of the effect of each feature or combination of features on 
the pipeline route. 

Assessing plant and material requirements and hence the cost of crossing each 
feature, and producing an overall pipeline cost estimate. 

It is clear from the above that a suitably designed GIS could assist immensely with 

the first three tasks. the last two, however, require more expertise than would normally 

be expected of a standard GIS. It is here that PIRATE would come into its own by using 

AI in the form of an expert system to make the appropriate decisions. 

Audio tape analysis was still proving to be problematic, and it was decided to 

experiment with video recording before the next interview programme. 
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5.5.3.3 Conclusions 

The lack of sequence caused by erratic data gathering in the routing process 

indicated that a sequential structure for PIRATE would be unduly limiting. Instead it was 

decided that PIRATE must be a pipeline design environment, a place where the pipeline 

engineer can develop his design without necessarily maintaining a rigid sequence, where 

he can add data whenever it suits him, and make changes whenever necessary. 

A summary list of the features for PIRATE was compiled with the expen, and this 

was used as a basis of the implementation of the first prototype : 

Input via a CAD medium or digitiser, or the ability to use existing digital data 
in a rapid and simple manner. 

The storage and manipulation of spatial data of any kind, allowing production 
of spatial overlays of feature types, and providing facilities for associated 
non-spatial propenies of features to be held. 

A graphic user interface (GUI), to provide map, chan and other spatial data 
display, with interactive interrogation capabilities. 

Interactive pipeline route design at the GUI 

Calculation of chainages where routes cross features. 

Automated judgement of the remedial actions needed to overcome problems 
caused by the pipeline crossing features. 

Automated re-evaluation on addition of new data. 

Facilities to store and compare alternative routes. 

Ability to integrate plant and material specifications into the system, to allow 
the implications of remedial actions to be assessed and costed. 

Production of maps and re pons in an understandable form for incorporation 
into design documentation. 

Ability to allow changes to the parameters of the design, the pipe diameter for 
example, to see the effect changes have on the evaluation. 

With the above specification there was enough information to begin a prototype 

implementation of PIRATE. The result would effectively be a geographic expen system 

shell, into which design rules can be placed. These rules should result from detailed case 

study analyses and structured interviews. 

Video tape recording experiments were initiated at Loughborough to see whether 

the spatial referencing problems of audio recording could be overcome. Mock interviews 

proved that there are significant advantages to be gained. Han (1986) and All wood 

(1989a) both note that video recording can be intrusive, inhibiting the expen. However, 

the tests indicated that, after the first few minutes, the 'stand-in' expen became so 
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involved with the interview that he was unaffected by the presence of the video camera. 

Part of this may be due to the camera having been set up on a tripod above and behind 

the expert, and being unmanned throughout the interview. Apart for the level of intrusion 

being low, there was the additional advantage using this set-up that the documents 

referred to could be seen in the correct orientation. Whilst, as expected, detail on charts 

and diagrams could not be made out, a wealth of contextual information could be 

inferred from the hand movements of the expert. This, incidentally, further justifies the 

use of a GUI with a mouse, as its use emulates the designers natural descriptive 

movements. 

5.5.4 Case Study Analyses 

At the end of the focus sed interviews the expert was asked to search for a 

representative case study, a project he felt was substantial, yet typical of pipeline route 

design. It was requested for two reasons. First, it would provide confirmation of the 

design knowledge and work flows elicited to date. Secondly, the PIRATE system would 

need testing on a real pipeline project if it was to prove it's worth as a practical design 

tool, and it was hoped that the case study would provide the base data for this. 

In December, 1988, J.P. Kenny & Partners kindly allowed the release of a full set 

of design documentation and charts for the Sable Island Gas Pipeline project, a difficult 

and extensive pipeline in complex terrain off the coast of Nova Scotia, Canada. The 

project is described in substantial detail at the beginning of Chapter 8. 

In addition to it's verifying role, the case study directly contributed to the 

knowledge acquisition effort as the organisation of the documents into chapters and 

sections illustrated the detailed structure the designers felt was behind the route 

justification. This allowed the domain to be split further, yielding the major geographic 

features and other object types, such as categories of dredging vessel, to be isolated. 

These object classes are too numerous to be gathered effectively during interview, but 

once listed from the cases study analyses the expert can criticise them more easily. 

An example set of rules that act on each geographic feature type were collated 

from the case study, the intention being to provoke the expert into further rule definitions 

during later structured interviews. 
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This process has shown that case studies provide an invaluable source of 

information. However, the author would not advocate their immediate introduction into 

the acquisition process other than as a general vehicle to aid expert explanations. Until 

the domain is appreciated by the knowledge engineer at a general level he is in no 

position to judge whether the case is typical. An unrecognised bias in any case studied in 

detail can affect the structuring of the whole expen system, perhaps with irreparable 

results. It is for this reason that the Sable Island case was only studied once the focussed 

interview programme had been completed. 

5.5.5 Structured Interview Programme 

The structured interview programme began in October, 1989. This was after the 

first version of the PIRATE prototype had been completed. A total of three days were 

spent at interview, concentrating initially on a review of knowledge elicited and a 

critique of the prototype, before continuing to explore deep areas of the domain. 

5.5.5.1 Techniques Used 

The first structured interview began with a review of knowledge elicited to date. 

This provided a base from which to continue the work, as it had been many months since 

the last meeting. The prototype was then introduced to the expen. At this stage most of 

the major modules existed, including the graphic user interface (GUI) and a GIS capable 

of accepting spatial feature data and attaching associated non-spatial propenies. The pipe 

design ability was present, though only in a restricted form, and extensive interrogation 

facilities were available from the menus of the GUI. After a thorough explanation the 

expen was allowed to try the system and make comments. 

The second interview concentrated on the Sable Island case study, and the 

information extracted from it by the knowledge engineer. The domain object list was 

assessed, and the rules collated from the study were put to the expen for comment on 

their truth and scope beyond the Sable Island region. The rule and object lists effectively 

constituted a paper model of domain expenise (All wood, 1989a). The final rule list is 

given in Appendix C in abbreviated natural English. From this list the domain objects are 

also apparent. Hypothetical route analysis was found to be a useful technique during this 

interview to help judge the applicability of rules in different potential situations. 
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The final interview was used to verify information gleaned from transcripts of the 

earlier interviews, and to once again assess the object and rule lists. Each object and rule 

was formally agreed or rejected before the interview ended. Also the modified PIRATE 

prototype was shown, which had been changed to accommodate the modifications 

requested by the expen. The prototype included a small example knowledge base to 

illustrate the function of the 'intelligent' pans of the system. 

Interviews were recorded on videotape, using the same positional arrangements as 

in the trials, Section 5.5.3.3. 

5.5.5.2 Findings 

The critique of the prototype yielded a number of pointers to revisions needed in 

the software. In particular, the expen noted the following additional needs :-

A digital terrain model (DTM) for interrogation, sectional profiles and the 
analysis of sea bed slope characteristics. 

Plant and materials specifications in an easily updatable form. 

A locational grid over the map representation on the GUI. 

Rule and object list reviews eventually led to an agreed paper model. The 

consensus between the expen and the knowledge engineer was that in the time available 

the whole domain could not be elicited, but that the information in the model was a 

representative sub-set. It is reasonable to assume that funher elicitation would yield more 

detailed knowledge, but the expen agreed that no major areas of pipeline routing in 

PIRATE had been overlooked. The completed paper model is given in Appendices B and 

c. 

As expected from the trials, video recording did not significantly affect the 

performance of the expen. It was extremely useful during interview analysis, particularly 

when discussing the case study and hypothetical route locations. The video was tripod 

mounted without an operator, so a space had to be marked on the interview desk which 

was wholly within the camera's field of view. As long as this operating space was used 

the interview could proceed as normal. The resolution of the image was such that major 

features on the diagrams could be seen, and the expens hand movements gave 

indispensable information on the tape. 
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5.5.5.3 Conclusions 

The PIRATE prototype received a positive response from the domain expert. He 

said that he had imagined an interface that was less interactive, and praised the mouse 

and menu type operation as well as the geographic display and manipulation facilities. 

The changes he wished to see were built into the system before the project finished. 

The paper model of elicited knowledge was useful as a planning and referencing 

tool during the structured interviews, and enabled specific agreements to be reached on 

specific items rather than more vague generalities. The final agreement of the complete 

paper model heralded the end of knowledge elicitation for the project. 

Video recording for the structured interviews was found to be a major asset. A 

summary list of advantages are: 

Spatial referencing during elicitation is easily discernible 

The video provides a complete image of the interview from an observers 
stand-point, it is less tedious to transcribe. 

It is far easier to follow which documents being referred to at any time. 

An on-screen date/time stamp allows easy scanning and replay 

Body language, an important indicator of emphasis, is fully recorded. 

The 'shelf life' of the recording before analysis is greater as the knowledge 
engineer has to recall less about the interview from memory. Visual images 
are also a more powerful 'memory jogger' for the knowledge engineer than 
the equivalent audio recording alone. 

5.6 SUMMARY 

This chapter has documented the method by which the PIRATE system 

requirements were formulated, and the resulting points that make up the system 

specification. 

Interviews with a practicing pipeline engineer revealed a number of time 

consuming tasks in pipeline route design. These included data collection, the production 

of overlay maps, assessing proposed routes for feature crossing, and deciding the effects 

and costs relating to route position. A specification for PIRATE was produced, such that 

it would ease the burden of these tasks. This system specification is summarised in the 

bulleted lists of Sections 5.5.3.3 and 5.5.5.2. 
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In addition to the system specification, a detailed study was carried out of the 

knowledge the engineer uses when he makes pipeline design judgements. This 

knowledge is given in Appendices B and C. 

The overriding reason for carrying out the work in this Chapter was to arrive at a 

PIRA 1E system specification, the method by which it was achieved was not, at the time, 

the focus of the effort. The author was simply looking for the most effective way of 

getting the results he needed. However, the methods did yield a number of secondary 

conclusions, which are of interest in the context of knowledge acquisition as a discipline. 

These in the main refer to the methods used for controlling and recording interviews with 

a domain expert. They include the following points, which were more fully described in 

the Chapter : 

Pre-planned talks by both the expert and the knowledge engineer in their 
respective disciplines is felt to be an important precursor to the interviews 
themselves. In this way each can gain an idea of the others aims and 
function. 

Paper models of work flow and knowledge elicited make an ideal focus for 
future discussion and interview structuring. 

Video recording excels as a form of data capture during interviews where the 
expert refers to maps, charts and other documents. 

Case studies may be used by the expert to help his explanation, but should be 
treated with caution until enough of the domain structure is known to judge if 
the cases are typical or not. 

Prototype systems are valuable way to attract expert criticism and views. 
Timing of the introduction should be considered, however. The prototype 
must be advanced enough to be impressive, but still capable of being 
changed radically should the expert wish it. 

It was found that knowledge acquisition methods were suitable for discovering not 

only the judgemental knowledge that the engineer uses during pipeline design, but also 

for itemising the design work flow and PIRA 1E system requirements. 
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CHAPTER6 
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6. SOFfWARE TOOLS FOR BUILDING PIRATE 

6.1 INTRODUCTION 

Earlier Chapters have outlined the theoretical basis and system specification for 

PIRA 1E, a practical intelligent geographic information system for design. The 

implementation of such a system, using commercially available hardware and software 

tools, was expected to push those tools to the limit of their applicability. A failure in any 

of the tools used could propagate to the failure of the whole project. Naturally, suitable 

tools must be extremely carefully selected. 

The two major components of an intelligent GIS are the GIS itself and the AI or 

expert system component. Each are considered separately in the following sections. 

6.2 A GIS FOR PIRATE 

To allow an intelligent system to reason effectively with geographic information it 

must be able to access and contrOl any part of the information. Conventional AI tools and 

GIS are discrete systems, and an interface would be needed to allow one to control the 

other. Demonstrations of existing commercial GIS revealed that in general they were 

tailored to interfacing with a human operator rather than another system. 

The concept of having an expert system emulating the human operator, giving 

commands in the same way, was mooted. However, physically interfacing the systems 

would undoubtedly give problems using currently available technology. Getting the two 

systems running together in the same machine, and then attempting to get them 'talking' 

to each other appeared to offer a path fraught with difficulty. 

What such a dual system could actually achieve is also open to question. In design 

an engineer uses a map to access information at two levels, globally for an overall 

appreciation of layout, and locally to pick up specific detail. The philosophy behind 

PIRA 1E still requires the user to obtain the global appreciation, but PIRA 1E itself is 

intended to perform the reasoning which requires local detail. Rules may typically ask 
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for individual items of data from the GIS to prove their consequents. A large knowledge 

base may result in vast numbers of individual GIS database enquiries being needed. 

The external interface approach between two separate systems was not thought to 

be appropriate for three reasons. First, an external interface would probably be slow, and 

if large numbers of rules request information the system would be continually swapping 

control between the two modules, and would no longer be interactive. Second, many 

commercial GIS do not allow direct access to individual spatial data items in the 

database, a limitation on the flexibility of the implementation. Third, the designer ideally 

needs to work at the graphics screen with the map displayed at all times. Writing an 

interface to allow the designer to work with the map whilst the expert system is advising 

him in the background appeared to be virtually impossible. Commercial GIS tend to 

require the exclusive control of the screen and processor when in use. 

The problems inherent in using a commercial GIS product were compared with the 

difficulties of producing bespoke software to fulfil the GIS function for PIRA 1E. This 

latter option would give much greater flexibility during PIRA 1E system design, and 

would allow a transparent interface between the GIS and the expert system if structured 

correctly. However, the writing of a GIS is not a trivial task. A bespoke system would 

need careful design and implementation if it was to operate effectively with the vast 

quantities of data expected from practical pipeline projects. It would also open the author 

to accusations of 're-inventing the wheel'. 

It was decided that using a commercial GIS would limit the PIRA 1E system 

design to the extent that the whole project might fail. A bespoke GIS was therefore 

needed. 

To minimise the amount of unnecessary program coding, a relational database 

implementation language called Nantucket Clipper was chosen to encode the main GIS 

structure and functions (N antucket, 1988). This provided a range of functions which 

could operate directly on relational tables. Conventional programming languages would 

not support such functions unless the programmer wrote them himself. 

Another advantage of Clipper was that it's relational tables that were compatible 

with the dBase industry standard (Ash ton Tate, 1986). Many other systems can interface 

with this form of table, including the AI toolkit eventually chosen for the 

implementation, Section 6.3.5. This common interface would allow the AI toolkit to 
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access the GIS tables directly, and the GIS functions to communicate with the AI system 

by creating tables which the AI system could read. Finally, Clipper was fast In initial 

tests comparing the creation of a 500,000 record relational table, Clipper took seven 

minutes whilst the dBase interpreter took fifteen hours. This was not considered a 

comprehensive benchmark, but was an indication that Clipper did have advantages over 

it's major rival. 

6.3 AI TOOLS FOR PIRATE 

Tools for knowledge base system implementation fall into three broad categories, 

AI languages, expert system shells and AI toolkits. Systems from each category were 

considered for the implementation of the PIRA 1E prototype. 

AI languages are the least specialised and most flexible of the category types. They 

are essentially programming languages, but specialise in the manipulation of symbols 

rather than numbers. Two of the most popular languages are Lisp and PROLOG 

(Winston & Hom,l984 Clocksin & Mellish,1987). 

Expert system shells are the most easy to use yet restrictive of the categories. They 

allow the user to concentrate on entering the domain knowledge, leaving the interfaces 

and inference engine to be provided by the shell. The simplicity of expert system design 

using a shell means that prototypes can be developed rapidly by relatively inexperienced 

computer users. However, many shells have inference engines that can only perform 

certain types of inferencing, backward chaining for example. Also the domain 

knowledge must be moulded into the knowledge base format used by the shell, which 

may not be suitable for the type of information being stored. The interfaces provided 

with the shell may also prove unsuitable or restrictive for the application. 

AI toolkits attempt to provide the flexibility of the AI language and the ease of use 

of the expert system shell. Usually based on a version of an AI language, toolkits 

invariably have a library of inference strategies, knowledge representations and interface 

facilities. Rather than restricting the designer the toolkit principle allows him a choice of 

a wide variety of modules, giving the opportunity to select which are best for his 

particular application. The modules can often be combined with AI language code if 

additional functions are needed. AI toolkits are expensive and tend to require high 

95 



capacity, high performance hardware. However, in cases needing flexibility combined 

with speed of development they do provide an ideal prototyping environment. 

Which tool to choose for a project is a complex decision which will significantly 

affect the success or failure of the development. Often, however, the project cannot be 

defined clearly enough prior to prototyping to ensure that the tool chosen is the most 

appropriate. 

For PIRATE, tools from each of the three categories were tested for suitability. 

The criteria for the comparison rested largely on preliminary knowledge elicitation with 

pipeline experts, Chapter 5. Key criteria included access to interactive graphics, 

interfaces to databases and flexibility in inference strategies and knowledge 

representation. Clearly the dangers of limiting development by the choice of an over 

restrictive tool had to be avoided as at this stage the PIRATE specification was itself 

only vaguely defined. 

Initial tests at Loughborough were augmented by using the facilities of the 

Artificial Intelligence Applications Institute (AIAI) in Edinburgh. AIAI is considered to 

be the leading AI institute in the United Kingdom, and it offers a wide range of courses 

and research facilities to both industry and academia. At AIAI an introductory course 

was taken to gain an overview of the tools available (AIAI, 1987c), and this was 

followed by hands on experience with each tool. 

Five systems were chosen for further investigation based on initial findings, and 

each is given a section below. 

6.3.1 VP-Expert 

VP-Expert is a simple backward chaining expert system shell written for MS-DOS 

machines by Paperback Software (1987). It was chosen for further investigation because 

of its reasonable price (£100) and the flexible interfaces it offers to databases, 

spreadsheets and external programs. It was purchased early in the project to give the 

author a means to experiment with expert systems and their capabilities. 
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A prototype automatic routing system was built using VP-Expert to test whether 

such a simple shell could cope with choosing routes in a geographic context. A dBase 

database was used as the basis for a small quadtree encoded grid of geographic cells. 

Each cell was assigned a simple weighting factor, and the task of system was to optimise 

the route between two points. 

The prototype took three months to develop, but evenmally failed due to 

limitations in the VP-Expert shell. Although interfaces to the databases worked perfectly, 

backward chaining hit an apparently unavoidable limit when an individual chain reached 

17 rules in depth. The system could not function within this resniction and so the 

prototype was abandoned. A full report on the development is given by the author 

(Finniear, 1987d). 

There was always some doubt as to whether VP-Expert could be made suitable for 

the PIRATE implementation. However, the prototype highlighted where the shell was 

inadequate and this was invaluable experience when assessing other AI tools for 

suitability as a PIRATE host system. 

6.3.2 Inference ART 

Inference ART is a comprehensive AI toolkit introduced to the author at the AIAI 

introductory course. A further two day course on ART was taken at AIAI to look in more 

depth at the system capabilities (AIAI, 1987a). Although the toolkit provided all 

common AI paradigms, it had no interfaces to external databases. The possibility of 

creating a database within the working memory of ART or through a Lisp interface to 

physical storage was investigated. However, the effort required to achieve a working 

solution would have been too great. Also ART only works on UNIX workstations or 

specialised Lisp machines, which are expensive. 

The lack of database access and high cost of hardware and software lead to the 

rejection of ART as an environment for PIRATE. 
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6.3.3 AutoCAD and AutoLISP 

AutoCAD is the most popular CAD system in the UK (AutoDesk, 1988). It was 

investigated as a possible tool for PIRA lE development because its macro language 

AutoLISP is a derivative of Lisp (Head, 1987). As such it could perhaps offer an AI 

capability together with full AutoCAD graphics integration. This would avoid the 

problems of graphical integration common in other environments. 

AutoLisp shares with Lisp the disadvantage of not having a pre-defined inference 

engine, rule or object forms. It was felt, however, that the inherent graphic capability 

could offset the development effort needed to build the additional AI structures needed 

for PIRA lE requirements. 

Investigations into the power of AutoLisp as an AI development environment were 

undertaken. Crucial to any inference engine is the recursive capability of the 

implementation language, as this can place a depth limit on search through a knowledge 

base. The stack space, allocated by the language in computer memory, stores 

intermediate stages of recursion and is the key to recursive capability. AutoLisp 

documentation failed to give a figure for the stack space so AutoDesk, the publishers of 

AutoCAD, were contacted directly. They stated that although AutoCAD release 10 

supported the use of extended memory, it could not support full recursion as it only 

allowed a 25kByte stack space. Experience with recursive limitations in the VP-Expert 

prototype, which caused total system failure, together with the lack of in-built AI 

paradigms lead to the rejection of AutoCAD. 

It should be noted here that other expert systems have used AutoCAD successfully 

as a graphics front end. The BERT expert system for brickwork design is a notable 

example (Bowen et al,1986). However, BERT translates all the graphics in AutoCAD 

into a text based description before transferring this to the expert system for analysis. 

The MUFL expert system language used by BERT is not dependent on the AutoLisp 

stack space, and so problems of recursion limits do not arise. The BERT methodology 

relies on the graphics input by the user being composed of simple primitives which can 

be translated into text. Geographic information in PIRA lE could not be translated in this 

way, so the method could not be adopted. 
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6.3.4 lntelliCorp KEE 

KEE is an AI toolkit based on UNIX workstation platforms, offering rule based, 

frame based and object oriented paradigms (Sobel, 1988, IntelliCorp, 1987a). Based in 

Common Lisp it also allows the flexibility of incorporating user defined Lisp code into 

an application. A two day course on KEE was taken at AIAI (1987b), and this was 

followed by a three week trial using KEE as a development tool. The main aims of this 

trial were to gain an appreciation of how KEE worked in practice, and to discover 

whether the facilities provided would offer enough flexibility for the PIRA 1E 

development. It must be remembered that at this stage the structure of PIRA 1E had not 

been clarified in detail, so flexibility to alter the PIRA 1E structure within the chosen 

toolkit was important. 

As a result of these trials KEE was put forward as a possible PIRA 1E 

development environment. In short the reasons for the recommendation were that it :-

Provides all the major AI paradigms in one unified environment 

Has a Lisp language base allowing the programmer to build any additional 
functionality he needs in the system 

Has a graphic image capability for the representation of objects in the system 
(with the possibility of building an interactive graphic interface for pipeline 
design). 

Provides extensive debugging and knowledge base display facilities, 
specifically designed to allow rapid knowledge base development and 
testing. 

Can access relational databases using SQL by using the KEEConnection 
interface module (so giving the possibility of direct access to existing GIS 
written using the relational model). 

PIRA 1E naturally needs a GIS database to provide the core data on which to 

assess a pipeline design. Negotiations were entered into with Edinburgh University 

Department of Geography for the use of the Geoview GIS (Sinah & Waugh, 1988). 

Based on the Oracle relational DBMS it seemed to offer the functionality and low level 

access needed by PIRA 1E whilst maintaining compatibility with KEE through the 

KEEConnection interface (IntelliCorp, 1987b). 

Initial dialogue with Edinburgh about Geoview was positive, though further 

arrangements were cut short as the research budget was too restricted to purchase KEE. 

99 



6.3.5 GoldWorks 

At the time of the investigation (mid-1988) GoldWorks was available in its first 

version (GoldHill, 1987). GoldWorks version 1 was a text based AI toolkit, and whilst it 

provided the multi-paradigm approach characteristic of ART and KEE, it did not have 

the interactive graphics and debugging facilities which were seen as a necessity for the 

PIRATE implementation. However, it did run on personal computers under MS-DOS, 

giving it a significant financial advantage over other toolkits. 

Other researchers at Loughborough University had already gained considerable 

experience using GoldWorks on a number of projects, and they were an important source 

of practical knowledge on the strengths and limitations of the system (All wood, 1989b). 

One project had even included a graphic display facility, developed through the use of 

FORTRAN and C interfaces. This was used for displaying machine vibration analysis 

graphs. While this interface was adequate for this application, it still fell short of the 

interactive requirements envisaged for PIRATE. 

Meetings with Artificial Intelligence (AI) Limited, the UK distributors of 

GoldWorks, were undertaken to see whether any improvements to the software were 

scheduled which would make it more suited to PIRATE. AI Limited stated that 

GoldWorks version 2 was due for release, and that this version would run under the 

Microsoft Windows graphics environment on MS-DOS machines. The intention, 

according to AI Ltd., was to offer facilities of the same calibre as ART and KEE, but on 

the less expensive MS-DOS platform. They noted that interfaces to the Oracle DBMS 

were not envisaged, however, and so the use of the Geoview GIS would not be a 

possibility. 

An arrangement was negotiated with AI Ltd. in which GoldWorks version 1 would 

be provided until GoldWorksii became available, whereupon an upgrade would be 

made. 

Likely difficulties in taking on GoldWorks were apparent when negotiations were 

underway. GoldWorksii was an un-released and unproven package, likely to have many 

bugs and teething troubles which would aggravate the PIRATE development process. 

The release date was also vague. 
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Despite these difficulties PIRATE was judged to need the facilities of an AI 

toolkit. Without the financial support needed for KEE, the only plausible choice for 

specification and price was GoldWorks. 

6.4SUMMARY 

The choice of a software and hardware to host an implementation of PIRATE has 

been made. The AI and GIS components were considered separately although the links . 

between them were taken into account. 

The GIS choice hinged on the decision either to use an existing commercial GIS 

package, or to write a bespoke GIS. Commercial packages appeared to offer no realistic 

possibility of integration with an AI system at the level required. The lack of flexibility 

in commercial packages, bourne out by difficulties experienced by other researchers, 

was also thought to be a possible problem. Therefore, reluctantly because of the amount 

of extra software writing required, it was decided to write a bespoke GIS database and 

manipulating functions for PIRATE. 

The AI component was also a difficult choice. A wide range of systems were put 

on extensive trial, from simple expert system shells to advanced AI toolkits. The choice 

was eventually GoldWorksll, an AI toolkit that could run on an MS-DOS based personal 

computer with a minimum of 10 Megabytes of main memory. In addition to promising 

the required flexibility for knowledge representation, interfaces to relational tables and 

graphics facilities, it also fell within the bounds of the finances available for the research. 
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7. A TECHNICAL DESCRIPTION OF PIRATE 

7.1 INTRODUCTION 

This chapter gives a full technical description of the Pipeline Route Analysis and 

Testing Environment (PIRATE). The system combines artificial intelligence (AI) 

techniques with a geographic information system (GIS) to assess whether an intelligent 

GIS could indeed make a practical, worthwhile contribution to design. The system was 

written by the author and has been applied to off-shore pipeline route design. 

In a series of interviews with practicing pipeline engineers, Chapter 5, it was 

revealed that a computer system was needed not only to help with data collation and 

analysis, but also to automate the design process itself. Ideally the engineer should be 

able to sit at a computer screen and have immediate access to all his project data, 

geographic or otherwise. By simply sketching a route onto an on-screen map, the 

engineers wished to be presented with a full route analysis, incorporating remedial 

actions, plant and material requirements and preliminary costings. It was hoped that 

using such a system routes could be optimised in hours rather than weeks. A detailed list 

of system requirements can be found in Sections 5.5.3.3 and 5.5.5.2. 

It was decided at an early stage that PIRATE would not attempt fully automatic 

pipeline routing without the intervention of the engineer. Engineers are inherently 

suspicious of 'black boxes', and prefer to be aware and in control of the routing process. 

Also, humans are far better at assimilating spatial pattern than computers. The theoretical 

basis for fully automated design using unconstrained geographic information is still un­

clear, Section 4.3. It is therefore sensible and desirable to give the engineer all the spatial 

and related information he needs quickly and allow him to place a number of routes. The 

time consuming part of the design, according to the engineers, is not route placement but 

the initial data collation and subsequent analysis. 

In addition to the obvious advantage of speeding up the design process, PIRATE 

was expected to yield a number of other advantages. First, by encapsulating the 

knowledge of pipeline design engineers it may allow less experienced staff to perform 

pipeline design. Second, the application of the same knowledge to each route ensures 

that any route comparison is completely free of bias. Third, PIRATE can provide a 

complete and up-to-date information source, a management information system which 

can be interrogated throughout the life of the project. 
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7.2 THE PIRATE SYSTEM STRUCTURE 

The close integration of GIS and AI is the key to providing the functionality 

needed for engineering design. During the design process geographic and other project 

data can change unpredictably at any stage. To achieve its aims the AI system must be 

sensitive to those changes as they occur, updating its contribution to the design 

accordingly. 

PIRATE attains this integration by using a specially written GIS data model, part 

of which actually exists within the environment of an AI too/kit, called GoldWorksll. 

The overall structure of PIRATE is illustrated in Figure 7.1. This tangled web is actually 

rather simple. Essentially PIRATE has two major components, a GIS and GoldWorksll. 

These are delimited by the dashed boxes in the Figure. The detail within the boxes is 

explained later, but the overall information flow can be seen. 

Essentially geographic information is entered through a CAD interface, whereupon 

the GIS builds the appropriate description. Non-geographic project information, such as 

pipeline parameters, construction plant and material specifications, are entered directly 

or from spreadsheets into GoldWorksll. Output is via the graphic user interface (GUI), 

which taps straight into both the AI toolkit and the GIS. 

Pipeline design takes place at the GUI, which is written within the AI toolkit. The 

user places pipelines as a connected network over a base map, having used overlay and 

interrogation facilities to satisfy himself of the spatial layout. The user then chooses a 

pipeline for analysis, and PIRATE GIS functions assess what geographic features the 

route crosses, and the crossing distances. This data provides the basis for route 

assessment by the PIRATE AI component. 

With a pipeline route assessed for feature crossing PIRATE has access to all the 

information a human engineer would have at the same stage of the design. It knows not 

only what features the pipeline crosses and the crossing distance, but all the propenies of 

the features. Within GoldWorksll the pipeline rule base adds the final touch, giving 

PIRATE knowledge about the significance of crossing those features. 
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PIRATE is built using over 10,000 lines of program code, written by the author. 

These break down into the following components : 

Lisp Code (PIRATE in GoldWorks) 

Clipper Code (PIRATE GIS) 

Expert Series Macro Code (CAD interface) 

TOTAL 

7318 lines 

2014lines 

1004lines 

: 10,336 lines 

Note that of the Lisp code, approximately one quarter deals with the graphic user 

interface and associated functions. 

The following sections take the GIS and AI parts of PIRATE in isolation, 

describing precisely how they operate and the reasons why they have been designed the 

way they have. At all times the reader is asked to bear in mind the position of the 

components within the overall PIRATE structure, as the depth of the following 

explanation is such that the overall context can be easily lost. 

7.3 THE PIRATE GEOGRAPHIC INFORMATION SYSTEM 

To give a rapid, interactive response at the GUI with potentially vast quantities of 

sub-sea geographic data, the PIRATE GIS must be fast. The implementation hardware, 

an 80386 PC, would not make up for poor database design. 

It was noted in Section 4.3 that GIS queries break down into two basic forms: 

What objects (properties) exist at this location ? 

Which location(s) has this particular object (property)? 

Spatial dualism, having both location based and object based representations in a 

GIS database, has been shown to be a key factor in rapid access for both types of query, 

Section 4.3. PIRATE uses spatial dualism as the hub of its GIS data model. 
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In PIRATE the location based component is provided by both raster and vector 

data structures implemented as relational tables. The raster structure provides rapid 

locational indexing, thus allowing instantaneous access to information about any point in 

space. It is derived from vector information that was originally input. The vector 

database is maintained for fast graphic display. The GIS also contains a grid based 

digital terrain model (DlM) for slope and section analyses. The data structures and GIS 

functions are of the author's design and are detailed in subsequent .sections. At this stage 

of development the PIRATE GIS deals with area features only. Point and linear features 

are intended as extensions to the vector data structure. 

The object based component of the GIS data model is actually built within the AI 

toolkit. It is this which ensures close AI/GIS integration. Within the AI toolkit each 

geographic feature is considered as an individual object, and is stored as an instance of a 

frame. The object based component is discussed in Section 7.5.1 

7.3.1 Vector Tables 

The vector form of the PIRATE GIS consists of two relational tables. Geographic 

feature boundaries occupy the vector boundary table and contour vectors are placed in a 

separate contour table. Non-spatial properties of features are stored in a separate series of 

tables, one for each feature class. 

Features are input as closed areas with distinct boundaries. The boundaries 

themselves are made up of a connected chain of straight line segments. To store these the 

feature table has four fields. A TTRIB_ID stores a unique code for the feature, LINE_ID 

holds a unique code for each boundary segment, and the X and Y fields hold the end 

point coordinates of the segment. Figure 7.2 shows the representation graphically. The 

start of any segment is assumed to be the end point of the previous segment, and it is left 
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to the input software to check that each polygon boundary closes. The CAD system 

interface is written to ensure this. 

Note that during PIRATE development 'features' were commonly referred to as 

'attributes' of the geographic model, hence the ATTRIB_ID.field label in most GIS 

tables. This apparent inconsistency is merely a product of early research thinking which 

proved persistent in the program coding.ln this context it should be remembered that the 

terms 'attribute' and 'feature' are synonymous. 

Contours are stored in a similar manner to features. In this case, however, a Z field 

is also provided to store the elevation of each contour. A full schema of the tables in the 

GIS is given in Appendix F. 

At this stage features in the GIS are no more than a shape in space with a unique 

code identifier. PIRATE uses the relational architecture to relate these codes to non­

spatial data in other tables, such as the boulder field and megaripple tables shown in 

Figure 7.3. Each feature class has it's own table with fields denoting specific properties 

relevant to the feature. Each record in these tables represents an individual feature 

polygon, with the relation to the spatial description maintained through the shared 

feature code in the A TI_ID field. In the implementation all feature codes consist of two 

text characters, employing the extended ASCII character set 

7.3.2 Raster Tables 

Different forms of raster data structure were discussed in Section 2.3.2. Common 

to all is the notion of a grid of regular cells covering a region. Each cell has a value 

assigned to it depending on the value of a certain parameter at that point in the region. 

Three issues are important in raster database design; the coding of features within a cell, 

how the cells themselves are represented, and how the data is input and manipulated. A 

standard raster grid was used for PIRATE rather than a hierarchical structure, for reasons 

explained later. 
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ATT_ID DENSITY ATT_NAME 

#1 27 Boulder_field_1 

#2 36 Boulder_field_2 

#4 10 Boulder_field_3 

#9 37 Boulder_field_ 4 

" " " 

" " " 

BOULDER FIELD FEATURE PROPERTY TABLE 

ATT_ID WAVE_DIR WAVE_HT WAVE_LEN ATT_NAME 

#3 271 2.67 50 Megaripple_1 

(- 345 1.2 175 Megaripple_2 

(A 27 3.2 75 Megaripple_3 

" " " " " 

" " " " " 

MEGARIPPLE FEATURE PROPERTY TABLE 

Figure 7.3 EXAMPLES OF FEATURE 
PROPERTY TABLES 
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The main raster database in PIRATE is implemented as a relational table where 

every record represents a grid cell. The position of a record in the table indicates it's cell 

location in tlie geographic area. The content of each record is a 2 character (2 byte) text 

code. To access the code at a particular geographic location the Cartesian coordinates of 

the location are used to calculate a single value representing the position of the cell in the 

table. This value is known as the pointer, or address, of the cell. A typical raster table is 

shown in Figure 7.4. Note that in addition to the CELL_ CODE field, the table also has 

an ELEVATION field for holding height values for a grid based DTM. 

The two characters of text that are stored in each cell record have a special 

significance. The code is called a combination code, and represents the entire 

combination of feature polygons that exist at the cell. During the conversion from vector 

to raster, described in Section 7.3.3, a separate combination table is built which can be 

used to decompose a combination code into any number of individual feature codes. 

Figure 7.4 shows three overlapping feature polygons, A, B and C. It also shows a 

part of the raster table and the combination table. If the features shown were converted to 

the PIRATE GIS raster form, the feature codes A,B and C would not be stored in the 

raster table. Instead the raster table would hold combination codes, shown in the figure 

as codes X 1 to X7. One code exists for each different combination of features. 

Referring to figure 7 .4, if a query to the raster table yielded combination code X6, 

for example, the individual features could be found. First, the code X6 is matched with 

an entry in the CURR_CODE field of the combination table. This matching is rapid 

because the field is indexed. The record also gives the latest feature code to be added to 

the cell, in the A TT _CODE field, and the old combination code that existed before the 

latest feature was added, in the PREY _CODE field. For code X6, feature code C and 

previous code X2 are found. 

The previous combination code, X2, can then be matched against the 

CURR_CODE field to find the next oldest feature addition, and a still older combination 

code. The arrows on the combination code table in Figure 7.4 show how the 

decomposition continues until all features at a cell are discovered. 
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The method of using combination codes allows the variable number of features 

existing at any point to be accommodated within the fixed field lengths of relational 

tables. In this manner the technique overcomes some of the problems of variable length 

cartographic data highlighted in Section 2.4. 

The actual representation of the cells in a raster database can either follow a 

standard grid pattern with all cells the same size, or be hierarchical, with cells formed by 

the recursive subdivision of the whole region, Section 2.3.3. Quadtrees, a type of 

hierarchical data structure, were initially considered for the PIRATE GIS. They appeared 

to offer advantages in minimising database size and providing rapid access speeds. 

However, they were eventually rejected for the following reasons:-

Quadtree creation from vector data is not simple as the pointer order follows 
the convoluted Morton Order curve. This is not suited to linear 'scanning' 
methods. 

Quadtrees do not fit well into the relational data model as the fixed field 
lengths inhibit quadtree growth. 

To allow the creation of an object model in the AI toolkit, PIRATE represents 
each feature polygon separately. Quadtrees are better suited to representing 
data which is grouped by class, rather than individual polygons which would 
need a separate quadtree each. 

Pipeline clash analysis, where each straight line segment of a proposed 
pipeline is 'scanned' to find out when it enters and exits feature polygons, is 
more complicated with quadtrees because of the Morton Order curve and 
differing cell sizes. 

A DTM, needed for PIRATE, does not gain any advantage from quadtree 
encoding. To save space quadtrees amalgamate adjacent cells with the same 
property value(s). Elevation changes continuously, so little space could be 
saved. 

A standard grid was therefore chosen for the PIRATE raster data structure. 

The order of the records in the raster table has to be interpreted spatially so that the 

position of any record indicates its location in geographic space. The Row Order, Figure 

7.5(a), was chosen because it allows straightforward 'scanning' of vector data such that 

the encoding functions do not have to backtrack up the main raster database. This makes 

the encoding more efficient. Also it is simple to derive the pointer, or position, of any 

cell in the raster table from the Cartesian coordinates of a point location. The equation is 

given with a diagrammatic explanation in Figure 7.5(b). 
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7.3.3 Vector to Raster Conversion 

Raster conversion takes place by isolating each feature polygon in the vector table, 

then 'scanning' it in row order, Figure 7 .6(a). The purpose of scanning is to identify 

which raster cells lie inside a feature polygon. Each scan line is in the Cartesian Y 

direction along cell centroids, starting from the leftmost part of the feature. When the 

scan line hits the first feature boundary, subsequent cell centroids are known to be inside 

the feature and so raster cell receding is 'turned on'. The recoding generates and inserts 

new combination codes. Crossing the second boundary turns the recoding off. 

Subsequent boundaries continue the on/off switching. Closed polygons always have an 

even number of scan intersections, no matter how convoluted they become. Centroidal 

sampling is used to centre the raster 'saw tooth' boundary around the original vector 

boundary, thus minimising errors in the representation, Figure 7.6(b). 

In practice the conversion program ftrst splits the main vector polygon database 

into separate tables, one for each component polygon. For each table the boundaries are 

taken in turn and all scan line crossing points are found. The resulting table is a long list 

of coordinates of scanline/boundary intersections for the polygon. This is indexed on the 

X value fteld, and then each set with identical X values is taken as a separate table. 

These tables represent the crossing points for an individual scan line on each individual 

polygon (because a scan line has a constant X value). Each table is then re-indexed on 

the Y value, such that an ordered list of points along the scan line is produced. Row 

order pointers are calculated for each of these in turn, and the cells between the pointers 

are thus classified as inside or outside the polygon. The cells inside have their codes 

updated to reflect the existence of the new feature. 

If a cell is found to be within a new feature the following steps occur. First, the old 

combination code is checked to see if it has been found already during this polygon scan. 

If it has a new combination code will have already been generated, and this is inserted 

into the cell. If not, a new combination code is generated (two characters using ASCII 

codes 30 to 255). This new code is inserted into the cell and a new record is added to the 

combination table, giving the new code, the old code and the feature code. The links in 

the combination code illustrated in Figure 7.4 are thus automatically built in. 
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7.3.4 Terrain Model Generation 

A digital terrain model is built into the PIRATE GIS. The DTM is grid based at 

the same cell resolution as the raster database cells. Storage is an extra field on the main 

raster table which holds the height at each cell, Figure 7 .4. 

Creation of the DTM is only possible from digitised contours at present. The same 

scanning technique is used as with feature encoding, with the scan lines crossing 

contours instead of feature boundaries. Any two crossing points are noted and linear 

interpolation is used to find the heights of all cell centmids between them. 

7.35 Storing and Analysing Pipeline Routes 

Any judgement on the suitability of a pipeline route depends on the geographic 

features it encounters. This data is derived by the PIRATE GIS using routines which 

scan each pipe segment to find where it enters and exits feature polygons. These are 

called clash routines. 

Pipelines can be specified either initially at the CAD interface when entering 

contours and features, Section 7 .4, or later at the PIRATE graphic user interface (GUI), 

Section 7 .5.4. In either case the pipe is stored as straight line segments in vector form. 

Curves are not supported at this time though they could be included in later versions. 

PIRATE needs to know not only what features the pipeline traverses, but where 

they are encountered and the distance through which they are traversed. The clash 

function provides this data by scanning along each pipe segment in turn, and checking 

each cell that is crossed, Figure 7.7(a). The exact distance through each cell is calculated 

by boundary/pipe intersection and the combination code found. Successive cells with the 

same code are amalgamated as one longer distance. 

Results take the form of a list of combination codes crossed by each pipe segment, 

with the start and finish chainages of each occurrence. Figure 7. 7 (b) shows two typical 
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pipe segments and the results table from clash analysis. The first segment starts in code 

eO, then crosses c2 before returning to eO. It thus gets 3 results records. The second 

segment travels through eO throughout its length, and so gets only one result record. The 

chainages are local to the segment, i.e. they start from zero at the start of each pipe 

segment. This makes the table longer, but ensures that the figures are always referenced 

to a particular segment. In some cases the effect of a feature on a pipeline depends on the 

direction that the pipeline travels through it. Only pipe segments have constant direction, 

so local referencing must be used. Combination codes are later decomposed to feature 

codes in the AI toolkit. 

When pipeline analysis is performed pipeline segments are pre-ordered so that the 

first segment to be considered crosses cells nearest the top of the main raster table. The 

direction in which the function scans along the pipe is also chosen so that access moves 

successively down the raster table. Every effort has been made to minimise backtracking 

and database enquiries so that the minimum number of disk page accesses on the raster 

table are required. With large database systems this is often a primary factor in the 

overall operating speed. 

In the same scanning process a sectional terrain profile of the pipeline is built using 

the elevation figure for each cell rather than the combination code. This is stored in a 

separate table for section display and analysis at a later stage. 

The use of exact cell crossing distances in the clash routines ensures that 

accumulative errors are minimised in the aggregate distances. The accuracy depends on 

the precision of real number arithmetic in the computer processor and the original 

precision of the raster representation. The latter is a function of the cell resolution chosen 

by the user. The only significant inaccuracy in clash distance is at the boundary of a 

feature, where the 'saw tooth' effect of rasterising can give a+/- 1/2 cell error in the 

worst case. 

Figure 7.8 shows the true boundary and raster boundary of a feature, with the 'saw 

tooth' profile clearly visible. Pipeline A shows an example error in crossing distance. 

Pipeline B illustrates how the 'saw tooth' can cause small areas of feature to be shown as 

on a pipeline even though in truth the pipeline avoids it. In the case of pipeline routing 

these errors are tiny compared with the sweeping assumptions which have to be made 

about the character of the ocean floor. The errors obviously reduce if a higher cell 

resolution is used, and this is the users decision. PIRATE can use any cell resolution. 
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7.3.6 Implications of the PIRATE GIS 

So far the text has described the raster and vector data structures of the PIRATE 

GIS, and how they are used for pipeline analysis. The GIS data model is of the author's 

design, having some unusual qualities that are particularly relevant to PIRATE. It is 

appropriate, then, to discuss these qualities (and difficulties), before going on to the 

'intelligent' part of the system under GoldWorksll. 

The PIRATE GIS data model is shown in Figure 7 .9. Integrity maintenance 

becomes an important issue in cases where both raster and vector representations must 

agree. The PIRATE prototype by-passes many of these issues by constraining the user to 

a standard one way work flow (vector-> raster). Changes to the database can only be 

made by editing the vector representation and passing these through to the raster. A 

practical system could not limit the operator in this manner. It would have to ensure, for 

example, that when a feature is deleted from either part both representations of it are 

removed. With the PIRATE GIS this would be possible as there is a unique feature code 

which relates all images of the feature. However, no procedures have as yet been written 

to exploit this. 

The raster and combination code structure is perhaps the most interesting and 

unique part of the PIRATE GIS. The single 2 byte combination codes (with the ASCII 

characters 30-255) allow 50,256 combinations before hitting a limit. An extra character 

would increase this to 11,390,625. The fixed field length and constant number of cells 

means that the main raster data table never changes size, no matter how complex the 

· geographic area becomes. As this table is by far the largest in the GIS, its predictable 

size is useful in a storage management context 

The combination code table is the only one which changes size in the raster part of 

the GIS. It is interesting to note that the order of feature input can affect its size. Figure 

7.10 shows two situations where three concentric features are being converted into the 

PIRATE raster database. In 7 .lO(a) the smallest feature, Al, is scanned first, followed by 

successively larger ones. Figure 7.10(b) shows the opposite. To the right of each figure is 

the resulting combination table as each feature is added. In 7.10(a) the combination table 

has redundances, codes which no longer exist in the raster table but are needed to 

maintain the linkage to the component features. Figure 7.1 O(b) stores the same amount of 

useful information, but in a non-redundant form. 

121 



,if 

VECTOR 
PIPE 

TABLES 

' 
CLASH0 

GENERATOR 

I 

' 
PIPE 

PROFILE 
TABLES 

CAD INPUT MEDIUM + DIGITISER 

.......... - - - .. -- .. ---- ----- ~------ -~-------
' 
' SPATIAL DATABASE 
' 
' 
' 
' ' ' 
' VECTOR VECTOR/ 
' CONTOUR FEATURE 
' 
' TABLE TABLE 

' 
' 
' 
' 
' 
' 
' 
' 
' ,if 'if ' 
' 
' TERRAIN 

VECTOR/ 
~ 

MODELLER --- RASTER 
' CONVERTER 
' 
' 

V ' ' 
' 
' 
' 
' RASTER ' 
' DATA 
' TABLE 
' 

, NON-SPATIAL DATABASE 

' ... ' 
' ' 
' 
' FEATURE 
~ PROPERTY 

TABLES 

R 
E 
L 
A 

VECTOR T .. ,. .... - .. - I-------
0 

' -· ' 
' N RASTER 

' 
' ' 
' ... ~ 
' 
' 
' COMBINATION 

TABLE 
' 
' ~--------- .... -.. ------ .. --~-------- .. -- .... -

... , 
~ 
PIPE Arrows show information flow 

CLASH Double lines show relations 
TABLES 

Figure 7.9 A FULL SCHEMATIC OF THE PIRATE 
GIS DATA MODEL 

122 CDI5786L 



G 

@ 

A3 

Order 
of 

Input 
Stage 

1 

Stage 
2 

Stage 
3 

CURR_CODE 

Cl 
-------········· 

Cl 

C2 

C3 

-------········· 
Cl 

C2 

C3 

C4 

CS 

C6 

PREV_CODE ATT_CODE 

- Al 
····--------·--- ------········· 

" Al 

" A2 

Cl A2 

····------------ -------········ 
" Al 

" A2 

Cl A2 

" A3 

C2 A3 

C3 A3 

(a) SMALLEST ENCLOSED FEATURE 
SCANNED FIRST 

Order CURR_CODE PREV_CODE ATT_CODE 
of 

Input 

Stage 
1 

Stage 
2 

Stage 
3 

Cl 

Cl 

C2 

Cl 

C2 

C3 

Cl 

Cl 

C2 

(b) LARGEST ENCLOSING FEATURE 
SCANNED FIRST 

A3 

A3 

A2 

A3 

A2 

Al 

Figure 7.10 HOW SCAN ORDER AFFECTS 
THE COMBINATION TABLE SIZE 

123 
COI57S6J 



Potentially, the number of records in the combination table can equa12n-1, where n 

is the number of cells in the grid. If redundancy were avoided this number would simply 

be n. The f"rrst case is when the initial polygon is a single cell, the next is 2 cells 

enclosing the first, the following is three cells enclosing the first two polygons etc. The 

latter case is when the initial polygon is the entire region, the next is one cell smaller and 

enclosed by the first etc. 

In the second case any feature polygon is completely spatially represented by a 

single record addition of 6 bytes. Hence the combination table would have the same 

number of records as the number of feature areas input This is an extremely low storage 

addition. With practical projects there will be redundancy, but as redundant elements 

depend on the number of overlapping polygons at any point, normal data sets will tend to 

the lower bound rather than the upper. In complex data sets there may be some benefit in 

re-ordering polygons by size prior to rasterising, as this will reduce redundant levels. The 

saving is not predictable, however, due to the random nature of the data sets. 

One can visualise the size of the combination code table for any data set, if 

redundancies were avoided. It would equal the number of polygons created if all feature 

boundaries were overlaid as a skeleton. Also, for any individual feature, the number of 

records created (including redundancies) is equal to the number of skeletal polygons 

existing within the new feature boundary just prior to placement. 

Arguments are often put forward stating that the storage requirement of raster GIS 

is extremely high compared with a similar vector system. The raster technique developed 

for PIRATE, using combination codes, does not support this argument. Example 

situations have been examined, and the results are illustrated in the graph in Figure 7 .11. 

The test involves modelling a region with 0 to 3000 polygons present. Two cases 

are explored, with polygons having an average of 25 and 50 sides respectively. A vector 

model, such as that in PIRATE, requires 25 bytes per polygon boundary segment (2 

coordinates, a line id and a polygon id). This is a 'spaghetti' structure with no locational 

indexing or specific topology. Two lines are plotted on the graph showing the overall 

vector storage requirements with increasing numbers of polygons. 
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The PIRATE raster model, by comparison, requires 2 bytes per grid cell. 

Additionally it needs a minimum of 6 bytes per polygon in the combination table. 

Overlapping and redundancy may require additional entries at 6 bytes each. Two model 

resolutions have been assessed, 512x512 (equivalent to a 200m resolution of a 10,000 

square kilometre area), and 1024x1024 (lOOm resolution of 10,000 square kilometres). 

Four lines are plotted, showing storage when one combination entry (0 RED) and twenty 

combination entries are, on average, needed for each polygon. As stated before, the 

number of combination entries depends on the type of data being modelled. Land 

ownership coverages, for example, do not overlap and so would need only one entry 

each. Multiple coverages of that type are unlikely to build that requirement significantly. 

The graph line crossing points indicate that, especially at lower resolutions or at 

high data volumes, the PIRATE raster structure can compete with vector representations. 

Obviously these results are for a specific situation. Graph line positions would vary with 

number of boundaries per polygon and number of bytes per boundary in the vector 

structure, and the complexity of the region in terms of overlapping polygons and 

redundancy. 

Locational data access is the key strength of the PIRATE raster structure. Once 

the cell pointer is calculated from point coordinates, itself a simple operation, the number 

of database accesses needed is equal to the number of overlapping features at the point 

plus one (the initial direct access to the cell code). This is independent of any 

redundancy in the combination table. All data table accesses are either direct or on 

indexed fields. 

In a practical GIS point access and data input are only a small part of the library of 

functions available. Although not implemented in PIRATE at this stage the potential in 

the data model for other essential GIS functions must be investigated. 

Deletion of feature polygons can be accomplished simply by setting all entries of 

the feature code in the combination table to null. Leaving the records in place maintains 

the connectivity for other codes, but the record no longer indicates that that particular 

feature is present. This leads to an ever increasing combination table size and a 

lengthening of access times due to extra links. If this is becomes unacceptable a separate 

compaction process could redirect the links in the table around the null members, which 

could then be deleted. 
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Moving/editing existing polygons would be a process of deletion and re-assertion. 

The raster database can be continually added to by scanning individual polygons at any 

time. The additive nature of the scanning process means that the raster table never needs 

to be re-created from scratch. It is recognised that editing the raster representation in this 

manner is not a trivial, or computationally inexpensive process. 

Polygon overlay can be achieved by initially obtaining a list of feature classes or 

required properties from the user. The system must then find which features match the 

query, either using GIS feature property tables or the object representation in the AI 

toolkit, Section 7.5.1. The combination table can then be used to build a list of 

combination codes that contain features of interest. Scanning the raster table could give a 

display of cells with these combination codes, thus yielding regions where the required 

parameters exist. 

Burrough (1989,p169) noted that "it is probably better to acquire a number of 

specialised modules that do a limited number of tasks well and link them together so 

they can make use of common data sources, than to attempt to find a single universal 

system that can do everything". The PIRA 1E GIS is designed in the spirit of this 

statement. 

7.4 THE CAD SYSTEM INTERFACE 

Getting data into PIRA1E has been achieved by customising a CAD system. By 

using this approach the engineer can effect GIS data input as a by-product of creating 

· CAD drawings. This point is significant as an argument supporting the cost effectiveness 

of any commercial application of PIRA 1E. 

The system chosen was a pre-released version of the ProCAD Expen Series (AiC, 

!989). Reasons for the choice included that it was written under Microsoft Windows 

version 2, and it had a macro language and a dBase interface. The Windows environment 

should have allowed it to run together with GoldWorksll, thus providing a full GUI for 

all aspects of PIRATE operation. 
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Unfortunately, despite assurances to the contrary from both GoldHill and ProCAD, 

the two systems would not reside in computer memory together. Using the Expert Series 

as the PIRAlE GUI therefore proved impossible. 

Despite this the Expert Series was still customised for initial data input. This 

satisfied the aim of creating PIRA 1E data as a by-product of normal drawing. The 

system enjoyed limited success with freehand drawing of polygons and the input of 

associated feature properties. However, the macro language was somewhat limiting, with 

only 50 numeric registers to store variables, a maximum of three dBase files open at one 

time, no local variables and a very sedate operating speed. Furthering the Expert Series 

development beyond data input would have been impractical in the light of these 

limitations. 

The Expert Series not only proved that a CAD system could be used with PIRA lE, 

but also lucidly illustrated that any system choice must be based on extremely detailed 

specifications, and possibly by acceptance tests prior to purchase. 

7.5 PIRATE WITHIN GOLD WORKS 11 

The GIS described so far is essentially preparing and storing data for the main part 

of PIRA lE, which runs under the GoldWorksii AI toolkit. GoldWorksii was chosen for 

reasons given in Chapter 6. In short it provides the knowledge formalisms needed to 

implement the PIRA 1E blueprint, it has satisfactory external interfaces, and it runs under 

Microsoft Windows. 

For brevity the part of PIRA 1E in GoldWorksii will be abbreviated to PiG, with 

apologies for its rather inappropriate phonetic meaning. 

When PiG is initialised all the information it needs to make decisions must get into 

the system. Section 7.5.1 deals with the initial data input, where PiG generates within 

itself the object based representation of the GIS, and reads spreadsheets to get other 

project data. 

The passive part of the our is then described in subsequent sections, before 

pipeline design within PiG is outlined. Right up to this point the intelligence ofthe 
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system has not been mentioned. Now, at last, with all the information an engineer 

normally has to assess a pipeline available to the system, the intelligent pan of PIRA 1E 

is finally laid out. The processes and form of the PIRA 1E rule base and inference engine 

are given in Section 7.5.5. Finally the mechanism which allows PIRA1E to act as a 

geographic design spreadsheet is outlined in Section 7 .5.6. 

7.5.1 Frames for Geographic and Other Data 

PiG needs to have information about geographic features, design parameters, 

available construction plant and materials in order to assess any pipeline route. The 

frame hierarchy is used to hold all this data in a form the rules can access easily. (Frames 

were described in Section 3.3.2). 

At the core of PiG is a frame based representation of geographic feature classes. 

Plate 7.1 shows these united under a parent frame MODEL_ATTRIDUTE. Each leaf 

frame in the tree is a geographic feature class. The parent frames in the tree allow 

inheritance of common slots between similar feature types. 

In the PIRA 1E GIS each geographic feature class has an associated relational 

table. Fields in this table hold non-spatial feature properties, and individual feature 

polygons have one record each. PiG uses these tables to create instances for each 

polygon in the frame hierarchy, one instance per record, one slot entry for each field 

value. Instances are always created under the appropriate frame. Figure 7.12 illustrates 

the process of taking a record from a feature property table and converting it to an 

instance of a frame. PiG also reads the GIS vector table, storing the boundary 

coordinates of each feature in a slot of its instance. 

These frames and instances make up the object-based PIRA 1E GIS representation. 

Spatial dualism is thus created, Section 7 .4, giving PiG rapid locational and object-based 

interrogation of GIS data. The GIS description of the geographic region is now complete. 
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ATT_ID WAVE_DIR WAVE_HT ATT_NAME 

#3 271 2.67 

27 3.2 75 Megaripple _ 3 

f'@"_ 345 1.2 175 "Megaripple _ 2") 

Instance MEGARIPPLE 2 

ATTRIBUTE_ID u@_" 

DATABASE_NAME 

DB_SLOT_LIST 

REMEDIAL_ACTIONS 

DATA_1 

POLYGON_ COORD-LIST 

WAVE_ LENGTH 175 

WAVE_DIRECTION 345 

WAVE_HEIGHT 1.2 

NAME "Megaripple_2" 

• • • • 

Figure 7.12 CREATION OF FEATURE INSTANCES 
FROM GIS TABLES 
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Other information needed to assess a pipeline route includes the available plant and 

materials, their specification and their cost. General data of different available items will 

be needed to compare pipelines using alternative plant or materials specifications. This 

data is subject to rapid change and is therefore not suited to being encoded directly in 

rules or frame instances. The maintenance of these facts in the knowledge base would 

simply take too much time. Instead PiG interfaces with spreadsheets in Lotus 123 

format, from which it can draw data to produce instances that are up to date. The 

rationale behind this is that spreadsheet information can be regularly maintained by 

clerical staff, and may even be supplied by certain material vendors or plant hire 

companies. Figure 7.1, Page 105, shows the interfaces as a part of the general schematic 

of PIRATE. 

PiG creates all of the above instances when it is first initialised. Forward chaining 

rules use database access functions to carry this out. The rules are grouped under 

sponsors in a hierarchy according to their function. The sponsor hierarchy is shown in 

Plate 7 .2, page 130. When creating feature instances the rules refer to base instances of 

each feature class. Each contains the relevant database filename of the GIS feature 

property table, the number of instances created so far under this frame, and the text name 

to give to new instances. Each base instance sits below its parent feature frame, and new 

feature instances will join it as they are created. 

In addition PiG uses a series of database control frames to monitor the status of 

each database accessed. Typically a database control frame has slots for database 

filename, current status (OPEN, CLOSED, FINISHED), and record status, showing how 

the latest record is progressing on its path to becoming an instance. Each database that is 

opened acquires an instance of a control frame. Rules use these control frames as a 'cue' 

so that they know when they must fire. Plate 7.3, page 135, gives a typical rule which 

takes part in creating feature instances. 

PiG also uses control frames to govern the creation of plant and material instances 

from Lotus spreadsheets. However, as well as fllename and status, these store the 

spreadsheet range coordinates of the data block to be read. The data arrives in PiG as a 

Lisp list, which is decomposed by Lisp functions prior to the creation of instances of 

plant or materials. The frame hierarchy for plant and materials sections of the knowledge 

base are shown in Plate 7.4, page 136, and Plate 7.5, page 136. Typical plant and 

material instances are given in Plate 7.6, page 137, and 7.7, page 137. Naturally slots in 
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these frames are user definable as long as the user remembers to modify the spreadsheet 

and the control frame information accordingly. 

Data which does not fit into any of the above categories includes the design 

information for the particular pipeline being planned. This would include the chosen 

pipeline diameter, the nation claiming ownership or jurisdiction over the region, and the 

code of practice used for the design, for example. The DESIGN_PARAMETERS frame 

is set aside for this type of data. 

Many of the other frames in the overall hierarchy, Appendix G, are system frames. 

These control the creation of graphics, dialog boxes, and interfaces to databases and 

spreadsheets. The reader can find out more about these from the appropriate manuals 

(Gold Hill, 1989) 

Finally, no mention has been made ofthe definition of pipeline routes themselves. 

These are a special case and as such wilJ be dealt with in later sections. 

7.5.2 The Graphic User Interface 

Geographic features are passive elements in PiG. The system assumes that the 

PIRATE GIS has been used to ensure the data is complete and correct. Thus the PIRATE 

GUI provides no facilities for the editing or manipulation of feature data. 'Read only' 

operations are the only ones permitted, such as display and interrogation. 

GUI development was prompted by the failure of the ProCAD Expert Series to 

reside with GoldWorksii. Built by the author using Golden Common Lisp and the Gold 

Hill Windows function library, the GUI is fully integrated into the PiG environment. The 

interface takes the form of a window, having the facilities of expanding, iconising and 

scrolling one would normally expect from Microsoft Windows. 

Any GUI must provide an easy to use and comprehensive interface for the 

operator. When using PIRATE the operator should not require access to the 

GoldWorksii frame interface, which can be unnecessarily complex. This puts the onus 
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on the GUI to provide all the functionality the user needs. The PIRATE GUI aims to 

provide the following : 

- A map display of all features in the GIS. 

- The ability to overlay and highlight features in a composite image 

- Interrogation of points and polygons for properties 

- Utilities for zooming, panning, grid overlays etc. 

- Control of all aspects of PIRATE operation 

- Interactive pipeline design 

- Provision of depth information and long section profiles of pipeline routes. 

- Full reporting of pipeline analyses. 

The first four aims concern the manipulation of passive geographic feature data 

and are achieved in two ways. Firstly the vector boundary data stored in the instance of 

each feature is used for drawing on-screen maps. A menu allows the user to pick which 

feature classes he wishes to display or highlight from a list of those known to exist in the 

frame hierarchy. Object-based overlay mapping is thus achieved, as illustrated in Plate 

7 .8, page 138. 

Location-based queries are catered for by converting the co-ordinates of the 

queried point into a raster database pointer. PiG then directly accesses the GIS database 

to ascertain the combination code of the enclosing cell. Using the combination table this 

is un-nested into component feature codes. These are matched with the codes in feature 

instances in the frame hierarchy. Once feature instance identities are known more 

detailed reporting is a simple matter. Elevation values can also be obtained using this 

direct access approach. 

Map grid overlay, full zooming and panning facilities are provided as menu 

choices in the GUI. The zoom scale can be set to the users preference, and fast zooming 

using a rubber band window is also offered. All these facilities were written in Lisp by 

the author. 
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Plate 7.8 OBJECT BASED OVERLAY MAPPING AT THE PIRATE GRAPHIC 

USER INTERFACE 

Plate 7.9 AN ENLARGED 'ZOOM' IMAGE SHOWING THE RASTER BASIS 

FOR THE PffiA TE GUI 
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There are two constraints caused by the use of Gold Hill Windows in the feature 

display part of the GUI. Firstly, the zoom facility is raster based, as illustrated in Plate 

7.9, page 138. This causes lines to thicken when zoomed in. Secondly, coordinates used 

for display have to be integer. This causes slight errors in feature display positions, 

though all PIRA 1E calculations are safely carried out using original data in the GIS. 

GUI images are created directly from values in slots, and these are accessed when 

any screen refresh is needed. This ensures that when any change is made to the 

information in the frame hierarchy the update of the graphic images is fully automatic. 

Changing a coordinate in a slot will automatically move the appropriate image, for 

example. This simplifies integrity maintenance between the graphics of the GUI and the 

knowledge base. 

Other GUI functions, concerned with pipeline placement, interrogation and 

analysis, will be dealt with after the pipelines themselves have been discussed. 

7 .5.3 Modelling Pipelines 

In the PIRA 1E GIS pipelines are stored and assessed by the G IS in terms of the 

individual straight line segments which approximate the true curved line, Section 7.3.5. 

This artificial division is decided by the user during pipeline input. Within PiG all 

pipelines are held in the frame hierarchy. Each pipe segment becomes an instance, whilst 

the pipeline as a whole gets a separate instance. The relationship of pipelines to segments 

is not simply one to many. More than one pipeline route can share segments, as Figure 

7.13 explains. 

Pipelines can either be created within the PIRA 1E GIS, or from the GUI. In the 

former case the pipeline is entered freehand or by digitising via the CAD input medium. 

The route is stored in a pipe database table, with fields for PIPE_ID, SEGMENT_ID, X 

and Y coordinates. On initialisation PiG reads this table by the same technique as the 

other data bases are read, and instances of the PIPE_SEGMENT frame are created. If the 

route has already been assessed by the GIS clash routines this data is also read. 

Alternatively, pipelines can be designed interactively using the GUI, and this is 

recommended as the most productive method. 
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PIPELINES DEFINED BY CHOOSING MEMBER SEGMENTS: 

PIPELINE A: (1 8 9) 

PIPELINE B: (1 2 7 5 6 9) 

PIPELINE C: (1 2 3 4 5 6 9) 

NOTE HOW MORE THAN ONE PIPELINE CAN SHARE 
SEGMENT INSTANCES 

Figure 7.13 DEFINING PIPELINES THROUGH PIPE 
SEGMENT NETWORKS 
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The PIPELINE_SEGMENT frame description is given in Figure 7.14, page 142. 

Essential data in the description are the start and finish coordinates. The frame, however, 

carries far more information than this. Many of the slots are for the benefit of the GUI, 

and these will be described later. Others store the results of analysis from the GIS clash 

routines, or from the reasoning mechanism of the expen system. Reasons for their 

existence should become clear in the following text. 

7.5.4 Interactive Pipeline Design and Analysis 

The PIRATE GUI considers geographic features to be passive, incapable of spatial 

change within PiG. Pipelines, conversely, are active and facilities are provided for their 

creation, editing, movement, and deletion. Without this PIRATE would be impotent 

This active status caused many problems during GUI design. The most severe 

concerned the need for pipe segment images to be 'mouse sensitive', allowing them to be 

pointed to and moved graphically. Gold Hill Windows cannot furnish mouse sensitivity 

except in the form of hotspots. These are user defined areas of the window which can 

detect the presence of a mouse pointer. They are normally used for creating mouse 

sensitive 'buttons' in user-friendly graphic interfaces. Pipe segments have been made 

sensitive by positioning small hotspots at each end point. Connected segments have to 

share a hotspot, otherwise shadowing occurs with one hotspot overlaying another. 

Hots pot references are stored in the GRAPHIC_HOTSPOT slots of pipe segment 

instances, Figure 7 .14, Page 142. When a hotspot is 'probed' using the mouse, lisp 

functions create a list of all segment instances which have the hotspot in their hotspot 

slot. If a panicular segment is required it's two end point hotspots are probed. The two 

resulting segment lists can then be tested for joint membership, yielding the chosen 

segment. 

Hotspots allow the user to create a connected pipe network over the map backdrop. 

Plate 7.10, page 144, shows a pipe network placed around some feature polygons. Both 

the black lines and the blue dotted lines are pipes, the blue dotted ones illustrating the 

effect of 'probing' a hotspot. Adding segments to this network is simple for the user 

through the GUI. Pipe creation functions ensure the hotspots of joined end points 

(network nodes) are found and shared, whilst new nodes have hotspots created for them. 
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(DEFINE-FRAME PIPELINE-SEGMENT 
() 
(PIPE-ID :DEFAULT-VALUES (1)) 
(SEGMENT-NUMBER-WITHIN-PIPELINE) 
(START-COORD :DEFAULT-VALUES (NIL)) 
(FINISH-COORD :DEFAULT-VALUES (NIL)) 
( START-CHAINAGE) 
(FINISH-CHAINAGE) 
(START-CHAINAGE-OF-ATTRIB-HIT 

:CONSTRAINTS (:LISP-TYPE LIST)) 
(FINISH-CHAINAGE-OF-ATTRIB-HIT 

:CONSTRAINTS (:LISP-TYPE LIST)) 
(DISTANCE-OF-ATTRIB-HIT :CONSTRAINTS (:LISP-TYPE LIST)) 
(ATTRIB-HIT :EXPLANATION-STRING "This slot gives a list 

of attributes in the order they are hit along the pipeline. 
The other slots of start/finish chainages etc relate to 
this list" 

:CONSTRAINTS (:LISP-TYPE LIST)) 
(SEGMENT-ID) 
(GRAPHIC-HOTSPOT-1) 
(GRAPHIC-HOTSPOT-2) 
(GRAPHIC-WINDOW) 
(ORIGIN 

:CONSTRAINTS 
(:ONE-OF (CAD-DATABASE GW-INTERACTIVE BOTH))) 

(ORIGINAL-START-COORD) 
(ORIGINAL-FINISH-COORD) 
(ATTRIB-VALIDITY 

:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (VALID NOT-VALID NOT-GENERATED)) 
:when-modified (segment-dependency-daemon)) 

(PIPELINE-MEMBERS 
:DEFAULT-VALUES (NIL) 
:CONSTRAINTS (:LISP-TYPE LIST)) 

(A-LIST) 
(A-START) 
(A-FINISH) 
(A-DIST) 
(ATTRIB-MULTI-INST 

:CONSTRAINTS (:INSTANCE-OF MODEL-ATTRIBUTE) 
:MULTIVALUED T) 

(CONSOLIDATED-REMEDIAL-ACTIONS) 
(LONG-SECTION-LIST)) 

Figure 7.14 THE PIPE SEGMENT FRAME 
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Any node may be picked up and moved during the design, the shared hotspot 

ensuring that all associated segments are moved with it. 

Once the network is drawn individual pipeline routes may be created by grouping 

segments together. The user traces the path of his chosen routes through the network by 

'probing' successive network nodes. Each pipeline is given its own instance under the 

PROPOSED_PIPELINE frame, typified in Plate 7.11, Page 144. Slots in this frame 

detail the segments that the pipeline uses and their orientation, among other things. 

Once a proposed pipeline route has been identified it can be assessed for feature 

clashes by the PIRATE GIS. On submission for GIS analysis, PiG creates a new pipe 

database table, using coordinates of the component pipeline segments. It then 'pushes 

out' to the DOS environment, first initialising new results tables, then running GIS clash 

procedures using the new pipe table. Results are posted to two database tables, one 

containing the feature clash data and the other holding a long section profile derived 

from the terrain model. 

Returning to GoldWorksii on completion, PiG reads each combination code clash, 

together with its start and finish chainages. These are placed into the appropriate pipe 

segment instances as three lists. A-LIST stores combination codes, whilst A-START and 

A-FINISH store the chainages. The long section profile is read into each segment 

instance as a single list in the LONG-SECTION-LIST slot (see Figure 7 .14, Page 142). 

Combination codes have little purpose in pipe analysis if most of the rules refer to 

individual features. Lisp functions are applied to decompose the combination codes and 

chainages into their corresponding feature code lists. This is far from straightforward, as 

each combination code has an unknown number of features, and each feature can belong 

to an unknown number of combinations. Compiling chainages for features in this 

situation proved one of the most testing single Lisp programming problems of PiG. The 

solution incorporates a triple branching recursive function (a function which calls itself 

three times within itself). The function is given with its supponing functions and notes in 

Appendix H. The resulting feature code and chainage lists replace the combination code 

lists in their slots. 
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Plate 7.10 A TYPICAL CONNECTED PIPE SEGMENT NETWORK OVER A 

MAP BACKDROP AT THE PIRATE GUI 
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Plate 7.11 A TYPICAL INSTANCE FOR A PROPOSED PIPELINE 
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7.5.5 Knowledge Based Route Judgements 

The text to this point has described a system which is still preparing information. 

In its fmal form, all necessary information needed to judge a pipeline has been found and 

is accessible throughout GoldWorksii. The GoldWorksll inference mechanism naturally 

has access to all this data, and can use these facts as a basis for matching rules. 

This state is THE crucial raison d' etre of PIRATE. The inference 

engine at last has FULL access to ALL data relevant the pipeline 

design, including all relevant geographic data. 

The inference engine is also free to request additional geographic information from 

the GIS should it so wish. It can do this without curtailing inferencing. 

In short, the inference engine has complete control over and direct 
access to the GIS, the GUI and all information pertaining to the 

proposed routes. 

This sets PIRATE apart from many other intelligent systems using 

spatial information for design, which generally have only limited 

control over and access to any GIS they may use. 

To judge the effects of geographic features on a pipeline PIRATE uses backward 

chaining rules. These rules were found during interviews with practicing pipeline 

engineers, described in Chapter 5. An example knowledge base was encoded in the 

prototype, and these rules are given in Appendix E. Other rules are still in natural 

English, and are detailed in Appendix C. 

Some of the rules relate to individual geographic feature types. These tell the 

system what effect crossing a feature will have, for example crossing a megaripple field 

means that the pipe must be trenched. However, in this example the depth of trenching 

will depend not only on the wave height of the megaripples and the pipe diameter, but 

also the minimum cover requirement of the code of practice being used. Other rules take 

part in the backward chaining to provide such values. 
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Backward chaining was chosen for pipeline analysis because very few facts have 

to be found compared with the number of possible facts that could be inferred. If forward 

chaining were used the rules would assess the effect of every geographic feature, 

irrespective of whether or not it was on the pipeline. This is hopeless waste in processing 

irrelevant data. Backward chaining, by contrast, can only be invoked by issuing a query 

about a specific fact that needs to be found. A typical query might be : 

"What are the remedial actions that would be needed if a pipe crosses 

MEGARIPPLE-8 ?" 

The queries are generated by the system as Lisp statements when required. 

A typical backward chaining rule which relates to remedial actions associated with 

features is given in Figure 7.15, Page 149. This rule deals with trenching through 

megaripple fields, and results not only in trenching being recommended, but also 

calculates the depth of trench needed and the number of passes the 

GENERIC_TRENCHER would have to make to dig a trench that deep. The matching 

pattern, which the query is looking for, comes just after the TiffiN of the IF .... TiffiN 

structure. If the matching pattern satisfies the query, the rule is used for backward 

chaining. The explanation strings and comments in the rules help the user to understand 

what the rules are used for, as the Lisp itself can be hard to read. 

The examination of pipeline routes is triggered by the user from GUI menus. The 

user activates a route by probing all its segment end points. Provided the segments of the 

route have already been sent for clash analysis he can request one of a series of reports 

from the menu. There are four types of report, giving clash chainages, technical analyses, 

plant and material recommendations and cost estimates. Each can be requested for a 

single segment or a whole pipeline. 

The clash report is the most straightforward, merely listing feature instances that 

the pipe crosses and the chainages of those crossings. 

The technical report builds on this by judging the implications of the clashes in 

terms of the design, constructability and safety of the route. Remedial actions are 

suggested which would render the route safe to build. 
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The plant and materials report suggests equipment and materials which would be 

best suited to the construction of the pipe, whilst the cost report compiles a preliminary 

cost analysis based on results from the other reports. Part of a typical technical report is 

given in Plate 7.12, page 148. Currently only the segment clash and technical reports are 

fully implemented in the PIRATE prototype. 

Control of the reporting process is not trivial. When a report is requested, the GUI 

sends the instance names of the chosen pipeline or segment to the REPORT­

CONTROLLER. This frame has a slot for each report type, and a daemon that overlooks 

the value in each slot. A report is requested by setting the appropriate slot value to 

REQUIRED. The daemon, sensing this, initiates a number of relevant actions, including 

the generation of backward chaining queries if needed. 

The technical report daemon is a suitable example of this process in operation. 

Each feature instance has a multi valued slot available to store remedial actions. The 

daemon asks each feature on the pipeline to provide the remedial actions needed for the 

pipe to overcome it. The demand is made by invoking a query. Thus, if no values are 

present in the REMEDIAL-ACTION slot of the feature, PIRATE automatically begins 

backward chaining to discover if any values can be inferred from the knowledge base. 

Once required remedial actions are known for each feature clash, the daemon can go on 

produce its report. 

Engineers are inherently curious people, their position makes them legally liable 

for negligent errors in their design. It is often the case then, that a PIRATE user would 

want to know why a decision has been made by the system, or how PIRATE achieved a 

result. A quoted advantage of expert systems is that they can explain their reasoning, and 

PIRATE is no exception. Using the GoldWorksll explanation facilities the user can 

obtain a report on how any fact was discovered. Plate 7.13, Page 148, shows a typical 

explanation. Unfortunately the photograph is static, whereas the screen can be scrolled to 

see the rest of the text. Nevertheless it should give a clear enough indication of what to 

expect from the system. GoldWorksll uses the explanation text attached to each rule to 

try to make the trace more readable, with moderate success. 

147 



fotluwfnt} t dfJi t• tllvt ... tltt• tt t• utltiHIJ ,,~ fful rt• ...-• nt•, l Ot 1111 ., pdrticul 
.wnt I hP 4a l tH t tUH1 t t n l •. h f h ot i ... .,,, ... tU •• IH f)V I (IPd. ' OIJr f .... , with 'hf' 
.._.. dt•pl h of t t t•ttt fl i IHI t Pllll t t NI d f 1 u•.•. I h 1•, t h.t 1 n,.q,. I tiP nulllbPr of 

, 1, ., •• •• f' '• t t•ttttltt•ll t u nht.nn ttd •. df't•th 1• • .._tt •.o tjlvt•n , dfid I s 
tIll' t ur r t•nt 1 y •. t• 1 •·• t t•d t' t•m ltt•t 

1119 . .. 18 
1 .... . 3 .. 9 
113 . 63/ 
19 . .. '> 1 

••• 

I IHI \ 11 

I I 
191 . 1olt? 
llt9 . 1o18 
11t~t . 3 1tY 

19 . lt', I 

HI\ X 01 I' I 11 tlJHlll H 01 PASSI S 

I 
? . 11 ? 
1 ? I 
O. / ODIUII1t8 

1.6 ') 
0 . / IJ6000111t8 

Plate 7.12 A TYPICAL TECHNICAL R EPORT GIVING T HE R ESULTS OF 

PIPELINE SEGMENT ANALYSIS 

ul (MI .. OIAI AI IIIIH tel, t,AK II' I' II I IHIHCHIH& ) 

l'rlu41lun ul MI .. OIAI AIII OH 11 1 .. I.I;AKIPPII 1 h IRit«;HI 
lltl' d~llon nro•dPd t o t.Jy ,, llif!r•llru• 1111 ouojh llu• fP ,tiUII' . 
Rul l' .. t;~;A 1111 ... 11 HUll 1 

If d • ••J.tr 1 f'll l t• f 1 •• ltl 1 ' • tJtt•,•. t•O t fu ourJh t ht•n lhP nor 
8PCtiU'•f' 

CH0\ 1 H Pll' l OIA .. 11 H o l 01 \ I(;H I' AHA 1 ;.. 1... AXIOM 
IIIIUI HI I[;Ht Il l .. tCARII' I'I I 1 t•. 1 3 AXIOM 
HAX CUII IHC 011' 111 of CI .. RI C IRIHCIIIR l '• 1.'> AXIOM 
HIH COUIK o f 01 \ ICH I' AHA I I •, 11 3 RUII 

rriuatlon ur HIH CIIUIR o f DI ~ I CH PAHA 1 1 ~ 1 . 3 RUII : 
lhp COUPI Of ~Oi l I P QUI II' II .thOU!' ol pfpr l frW tl ll i \ lO 
Rull' HIH COUI H HI QU I HI .. HI 01111 1\ lt 1 

All pltrrtlnr•. wlllt , , tl l.uoriN o l 11 ~·, .- tll l r ~~ nrPd 
BI'C~u·, l' 

CHOSIH PIPI DIA .. IIR o f OI ~ ILH rnHA 1 1 ~ ft .- AXIOM 
HAII OHAI COOl U\ 1 0 ul 01\IGH rnNn I 1\ llNIII SH NUll 

HAIIUHIII CIIOI 11 \ 10 o l 01 \ I CH I' AHA 1 l 'o OHII 
r-ounlr • ~ "• u -. t• fh •• 1-.h . 11 .\ • Hu t Wlf'rJi tln tH Cttnddi.u l 

t 

CUUHIHII S 11 \ 1 llRI II \ 11 LODI 1 • 

• 

Plate 7.13 THE GOLDWORKSll EXPLANATION FACILITY 

148 



(define-rule megga-trench-rule-2 
( 

:explanation-string "If a megaripple field is passed 
through then the normal remedial action is trenching. The 
trench depth is the sum of the pipe diameter, the minimum 
cover required above the pipeline, and the wave height of 
the megaripples in the field. The pipe has to be trenched 
to avoid spanning, vortex shedding and possible collision 
damage with anchors, trawl boards etc. In this case the 
trench requires more than one pass of the trencher, 
according to the maximum cutting depth of GENERIC-TRENCHER. 
The number. of passes is given in the third element of the 
data-l list" 

:direction :backward 
:dependency t) 

(instance ?attrib is meggaripples 
with wave-height ?ht) 

(instance generic-trencher is trenchers 
with max-cutting-depth ?cut-d) 

(instance design-para-1 is design-parameters 
with chosen-pipe-diameter ?dia) 

(instance design-para-1 is design-parameters 
with min-cover ?cover) 

(bind ?reqd-cut 
(+?cover ?dia ?ht)) 

(> ?reqd-cut ?cut-d) 
(bind ?no-of-cuts 

(+ .999 (/ ?reqd-cut ?cut-d))) 
(bind ?int-no-of-cuts 

(truncate ?no-of-cuts)) 
(bind ?data-list (list 'trenching ?reqd-cut ?int-no-of­

cuts)) 
then 

(instance ?attrib is meggaripples 
with remedial-action trenching) 

and-then 
(instance ?attrib is meggaripples 

with data-l ?data-list) 
(comment. 

"In the case of trenching, data-l elem 2 =depth of reqd 
cut, data-l elem 3 is number of passes required with the 
generic trencher")) 

Figure 7.15 A TYPICAL BACKWARD CHAINING RULE FOR 
FINDING REMEDIAL ACTIONS 
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7.5.6 Logical Dependency 

If a pipeline is moved during the design the clash data associated with it becomes 

invalid. Every fact inferred from this data also loses justification. 

GoldWorksll provides a system of logical dependency by which it can sense when 

supporting evidence for any fact is changed or becomes invalid. It is able to trace from 

the invalidated evidence through the knowledge base, retracting every dependent fact as 

it proceeds, until integrity is restored. 

PIRATE uses the GoldWorksll logical dependency structure, but has to add 

significantly to it. GoldWorksll can only trace dependency when the facts were inferred 

through rules. PIRATE, however, uses many lisp functions during chaining. Any 

assertions made directly from these functions are lost to the dependency mechanism. 

PIRATE overcomes this by mounting daemons on slots containing supporting 

evidence used by lisp functions. The daemons sense when slot retraction occurs and 

'bridge the gap' in the dependency structure by retracting the result of the lisp function 

directly. GoldWorkslllogical dependency may then continue the retraction through to 

conclusion. A single daemon function may be named to guard over any number of slots, 

and thus only one deamon function is normally required for every lisp function needing 

a 'dependency bridge'. 

Once logical dependency has retracted information, backward chaining is not 

automatically invoked to replace the values. Rather, they are left uninstantiated until the 

user requests a report requiring them again. This 'request driven' approach minimises 

inferencing and adds to the overall speed of the system. 

The logical dependency mechanism allows PIRATE to act as a geographic design 

spreadsheet. The user is free to change any data and thus observe the effects that such a 

change would have on the design. 
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7.5.7 Multiple Remedial Actions 

For the technical report backward chaining produces a list of one or more remedial 

actions for each feature crossed. However, in cases where more than one feature occurs 

on a single length of the pipeline, an interaction between suggested remedial actions is 

inevitable. This is no problem if the remedial actions do not interfere with each other, 

diver support and trenching for example. In other situations, such as where two trenches 

of different depths are recommended for different features on the same pipe length, the 

system must find an overall plan which will ensure the safe installation and operation of 

the pipeline. 

PIRATE has functions and rules which attempt to manage remedial actions where 

they do interfere. Two non-specific heuristics are used. In repetitive cases, such as when 

intensive diver support has been recommended twice, only one of the recommendations 

passes forward to be available for costing and reporting. 

The other heuristic is applied in severity difference cases. In this situation the most 

severe of the ope~ations is recommended. For example with trenches of different depths, 

the single deepest trench is put forward as the recommended action. These heuristics 

could not be implemented using GoldWorksii rules as they are cumbersome at 

manipulating lists recursively. Lisp functions similar to those used for decomposing 

combination codes, Appendix H, were applied instead. 

7.6 SUMMARY 

This Chapter has outlined a conceptual structure for an intelligent GIS for design. 

Further, it has described in detail the implementation of PIRATE, an intelligent GIS for 

off-shore pipeline route design. 

PIRATE consists of two major modules, a GIS and an AI toolkit. The crucial 

integration of the two has been achieved by using spatial dualism for representing 

geographic features. The location based representation is stored in the relational tables of 

the GIS, whilst the object based representation is held in the frame hierarchy of 

GoldWorksii, the AI toolkit. Seamless access from GoldWorksll directly into the GIS 

relational tables has enhanced the integration. 
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Control for PIRATE is through a Microsoft Windows based graphic user interface 

(GUI). This is built in Lisp and has direct access to both the GIS and AI components of 

PIRATE. In addition to displaying maps and interrogating the GIS, the user can design 

pipeline routes and receive 'intelligent' design assessments directly from the GUI. 

The PIRATE GIS uses both raster and vector data structures to optimise locational 

access speeds and graphic display response. A unique raster structure ensures rapid 

access and compact data storage with large numbers of geographic features. The GIS has 

been designed not to limit the volume of geographic data that can be stored. 

The PIRATE implementation under GoldWorksii deals with object based feature 

representation, the GUI, pipeline design and rule based route assessment. Within the 

GUI, the pipeline design functions have been created with simple operation in mind, and 

an extensive range of editing and display facilities are provided. 

The key pan of PIRATE which makes it different from conventional GIS is it's 

ability to use rules to understand the significance of the geographic information it holds. 

Where PIRATE further distinguishes itself from other 'intelligent GIS' is that the 

inference engine has complete and continuous control over and direct access to the GIS, 

the GUI and all information pertaining to the proposed routes. In short, the PIRATE 

inference engine, and therefore the rules, can completely take control of all parts of the 

system should this be desired. Rules can access and use any geographic or other 

information at any time during inferencing. 

The rules governing pipeline route assessment are modular, in that they have been 

designed to be added to or replaced without affecting the rest of the system. The entire 

rule base could be changed, for example, if a user wished to route electricity cables 

rather than pipelines. 

PIRATE has been designed to support it's use as a geographic design spreadsheet. 

The 1.1ser may change any fact in the frame hierarchy, or move any pipeline route, and 

PIRATE will incorporate the changes automatically into subsequent reports that it gives. 

The overall architecture of PIRATE has been formulated such that it is 

independent of the eventual application. The same AI/GIS integration could be used in 

any area where intelligent geographic information systems need to be explored. The 
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routing functions and rules, however, are naturally more specific to the pipeline design 

application. 

PIRATE has been implemented successfully as a prototype to prove the concepts 

of intelligent GIS for design. This is reinforced by the findings of the case study, Chapter 

8. 

The N antucket Clipper implementation language for the PIRATE GIS was 

efficient and provided all of the facilities needed for the GIS design. 

The Expen Series CAD front end, not to be confused with the Graphic User 

Interface, proved the concept of a CAD interface. However, the implementation was less 

than adequate due to limitations in the CAD software and macro language. 

The GoldWorksll AI toolkit excelled during the PIRATE implementation. The 

functionality provided by the system was crucial to the success of the project, and 

although extremely difficult to get to grips with at the outset, GoldWorksll was an 

excellent environment to work with. However, because it had just been released the 

software was 'buggy' to say the least. AI Limited provided a useful though at times 

unreliable hotline service, and update software often took several weeks to appear. 

Problems with the dBase interface were especially severe, with GoldWorksll unable to 

read database tables in excess of 5,000 records. This delayed the project, though the 

toolkit developers eventually produced a solution. 

The Microsoft Windows graphic environment provides an easy to use interface for 

both PIRATE development and use. Windows version 2 had to be used as GoldWorksll 

had not been implemented with version 3. Memory management, especially within the 

DOS partition, was poor with PIRATE loaded. However, it is anticipated that future 

versions of GoldWorks would cure this. 

PIRATE functions well in practice, and this is illustrated in the next chapter, which 

tests the system using data from a practical pipdine project. 

153 



CHAPTERS 

154 



8. CASE STUDY - THE SABLE ISLAND PIPELINE PROJECT 

8.1 INTRODUCTION 

In 1983 a Canadian company, Sable Gas Systems Limited (SGSL), proposed a new 

off-shore pipeline to connect the Venture gas field with the coast of Nova Scotia. The 

Venture field is situated just East of Sable Island, which is itself 170 kilometres East of 

Nova Scotia. Figure 8.1, at the back of this thesis, is a chart showing the location of the 

field with respect to Sable Island and the Canadian coastline. 

Between Sable Island and the Nova Scotian coast is an area of ocean floor which is 

extremely complex, rugged and fraught with difficulties for pipeline installation. Figure 

8.1 gives the bathymetry of the region, the contours representing a 10 metre depth 

interval. Initially SGSL attempted the pipeline design, before commissioning J.P. Kenny 

& Partners (JPK) to conduct a full investigation into the options for the route and the 

design in general. JPK kindly supplied the author with the full library of documentation 

and drawings on the design, and it is from this that the case study information has been 

taken. 

Sable Island sits on the edge of the Canadian continental shelf. To the East the sea 

bed falls away to depths of 5000 metres. To the West, the region in which the pipeline 

must be situated, depths vary between 20 metres and 300 metres, Figure 8.1. 

Immediately West of Sable Island a shallow sandy shelf precedes a steep fall into a 

complex region of deep gorges and basins. This trends North East to South West, 

blocking a straight line route option. Further West another shallow (90 metre) sandy 

plain precedes the Inner Shelf, a continuous rocky barrier extending out from the Nova 

Scotia coastline. 
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8.2 MANUAL PIPELINE DESIGN METHODS 

8.2.1 Identifying End Points 

JPK engineers initially set about identifying potential landfall sites for the pipeline, 

and the manner in which the approach to the Venture field should be accomplished (JP 

Kenny, 1984a,b). Key factors in the choice oflandfall included its distance from the 

Venture field and fmding an acceptable route through the Inner Shelf barrier. Of the six 

sites assessed, Country Harbour was chosen as it allowed entry into an ancient 

submerged river channel which cut through the Inner Shelf. By routing the pipeline 

along this channel many of the problems of the Inner Shelf could be avoided. 

Clearly, in a route following the course of a river channel there is little scope for 

alternatives or optimisation. On leaving the channel, however, potential routes are no 

longer as constrained. SGSL had already identified and assessed a 'Base Case Route' 

from Country Harbour, and JPK were asked to come up with alternatives. Figure 8.1 

shows the Base Case Route as a solid line, and the JPK alternatives as dashed lines. 

8.2.2 Producing Constraint Charts 

As with any route assessment the primary considerations are the constraints 

imposed on the path of the pipeline balanced by the need to minimise route length and 

hence material costs. The word constraints in this context does not necessarily mean 

absolute constraints but in the majority of cases relates to conditions, such as rough sea 

bed, which would impose some cost penalty on the construction of the pipeline. 

The approach taken by JPK engineers was concerned initially with the defmition of 

constraints in the region, collated as a series of charts. The main constraint categories 

were considered to be :-

- Bathymetry, where possible depth constraints were identified 

- Sediment transport and bedform activity, where potentially adverse effects of 
bedform activity were appraised, and potentially hazardous areas for the pipeline 
were identified 
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- Surficial and underlying geology, where sea bed soil conditions, slopes, 
boulders and local topography were appraised with respect to their effect on the 
pipeline 

- Environment, where the effects of wave and current loading were evaluated 
primarily with regard to pipeline stability and the requirement for trenching 

- Man made and natural hazards, where hazards such as wrecks, cables, well­
heads, fishing areas, etc, were identified as constraints for a pipeline route 

Constraints were considered with respect to their potential effect on the planning, 

installation or operation of the pipeline. A more exhaustive description of the effects of 

each constraint type, derived from the knowledge acquisition for PIRATE, is given in 

Appendix C. 

Figure 8.1 is a typical constraint chart as drawn up by JPK engineers. It shows man 

made hazards in the form of wrecks and communication cables, assumed boulder fields, 

areas of bedform activity and the paths of vessels that have performed geophysical 

surveys. This is just one of sixteen constraint charts included in the study documentation 

(JP Kenny, 1985b ). 

8.2.3 Assessing Alternative Routes 

Using the constraint charts JPK engineers designed alternative routes through the 

region, each route attempting to minimise contact with the constraints whilst also 

minimising route length, as shown in Figure 8.1. 

Having identified the alternative routes, each was then assessed for 'clashing' with 

constraints. A series of tables was drawn up for ease of comparison, one table for each of 

the constraint categories listed in the previous section. Each route was given a short 

descriptive entry in each table, giving the main problems on the route due to that 

constraint category. Key aspects were then summarised quantitatively as a table of 

chainages, with columns giving distances through major constraints, such as boulder 

fields. Long section profiles were also drawn for each route so that bathymetry and slope 

could be examined more carefully. 
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On the basis of this brief descriptive and quantitative comparison two of the nine 

alternative routes were chosen for further study, involving more detailed design and a 

comparative cost analysis with the Base Case Route. 

8.2.4 Costing 

Comparative costs were built up using the following reduced list of key cost 

parameters:-

Material costs : 

line pipe 

corrosion and concrete coating 

sacrificial anodes 

field joints 

buckle arrestors 

Construction cost : 

trenching 

pipe laying 

Line pipe, corrosion coating, sacrificial anodes, field joints and buckle arrestors all 

have contributions directly proportional to the route length. The thickness, and hence 

cost, of concrete coating is also dependent on environmental loading, as its weight is 

used to provide stability. This is in turn dependent on route depth and current intensity. 

Trenching may be needed for a variety of reasons, due to mobile bedforms or areas of 

high environmental loading, for example. 

Once environmental loading, concrete coat thickness and trenching requirements 

had been calculated the engineers used typical material costs, plant output rates, 

mobilisation costs and daily operational costs to produce a comparative cost for each 

route. Additional costs, such as crossing sub-sea cables or pipelines were also added to 

appropriate route totals. 

The comparative costs were used to decide on the best route to continue with for 

detailed design and route surveys. Detailed design involves a complete structural 

analysis of the pipeline. For example, the existence of mobile bedforms and their precise 

configuration can result in overstressing of the pipe, free spans above the sea bed, and 
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even possible exposure of a buried pipeline if the bedforms move (JP Kenny, 1985a). 

These problems obviously have to be resolved. A fuii cost analysis was carried out 

during detailed design. An example costing for the Base Case Route is given in 

Appendix D. This iJlustrates how the cost of a pipeline breaks down into individual 

elements. 

8.2.5 Late Changes to Design Parameters 

In the year foiiowing the completion of the JPK pipeline route design, but before 

the installation began, a new gas field called Thebaud was discovered to the South of 

Sable Island. SGSL decided that they needed the pipeline from the Venture field to 

coiiect gas from the Thebaud field as well. This represented a complete change in the 

initial design parameters of the pipeline, as it now effectively had two destinations rather 

than one. In an attempt to satisfy the requirements whilst minimising overall pipeline 

length JPK was asked to assess possible routes South of Sable Island. This would make 

the length of extra pipe to The baud shorter, though the length of the main pipeline would 

increase. 

Changing the basic design criteria forced JPK engineers to go through the entire 

design process once again (JP Kenny, I 986). The resulting documentation was of similar 

length and complexity, and JPK engineers stated that a similar volume of work was 

involved for the re-assessment as for the initial assessment. Also, due to all routes South 

of Sable Island crossing a large area prone to bedform activity, a far more detailed 

assessment of the potential problems of overstressing, spanning, re-exposure and vortex 

shedding had to be performed. 

8.2.6 Discussion 

From the size and detail of the documentation for the Sable Island Pipeline Project 

it is clear that JPK engineers spent a great deal of time assessing route alternatives in the 

region. It is also clear that significant expertise was needed to perform the assessment. 
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The manual design method is labour intensive, taking up the time of engineers for 

long periods as they prepare constraint charts, propose routes and perform manual 

analyses. This is one of the major reasons why seven of the nine routes were eliminated 

after only brief evaluation. In some cases route elimination was clearly justified, but in 

others the reasons were far less apparent. It can be the case, according to JPK engineers, 

that on initial investigation two routes appear to have similar cost implications, so only 

one is fully assessed. Clearly there is a potential for some optimisation here, but using 

manual techniques the effort of performing detailed analyses in all cases is too time 

consuming. 

The re-design of the pipeline due to the discovery of the Thebaud field clearly 

demonstrates the shortcomings of the manual design process. The repetition of such a 

vast quantity of work will be shown by this thesis not to be necessary, if a system such as 

PIRATE is used for the design. 

8.3 PIRATE TESTS USING SABLE ISLAND PROJECT DATA 

The Sable Island Pipeline Project has been shown to be a complex feat of design 

requiring the consideration of many diverse parameters and areas of expertise. The 

PIRATE system is at this time in a prototype form, and because of this cannot be 

expected to deal with the entire design. This is simply because the knowledge acquired 

in the form of rules for pipeline routing has not to date been sufficient, Chapter 5. Rather 

than attempt a full emulation of the manual design process and results, this case study 

intends to prove that the PIRATE conceptual design is capable of performing such a 

task, and that the prototype can already achieve a considerable proportion of this. 

In measuring the level to which the prototype has achieved the aims set out in 

Chapter 5, the following requirements were judged to be needed from PIRATE : 

- Ability to handle practical volumes of geographic and other project data 

- Provision of rapid, interactive methods to access and manipulate this data. 

- Straightforward pipeline route placement and analysis procedures. 

- Sufficient output to show that full reporting and cost assessment is merely a 
matter of extending the PIRATE program using procedures of a type which have 
already been shown to work. The output must also show that PIRATE is 
producing correct results 
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- Ability to change design data at any stage, with full implications being reflected 
in subsequent output without user intervention. 

With the above points in mind it was decided to use one constraint chart, Figure 

8.1, to provide representative geographic base data for the study. Existing boulder fields 

and megaripple fields were used as example constraint features, and these were 

augmented with extra polygons to make the tests more severe for PIRA 1E. The 

bathymetry was also used, contours being converted to a terrain model within PIRA1E. 

The Base Case Route was employed to provide proof that PIRA 1E could handle the 

analysis of a full pipeline route. 

The following sections document the progress of the data through the system, and 

the way PIRA 1E performs as a pipeline design tool. 

8.3.1 Geographic Data Preparation 

The geographic information for the case study is entirely represented in Figure 8.1. 

To get this information into the vector form needed by PIRA 1E, the lines on the chart 

first had to be digitised. This was accomplished using the ProDIGIT package from AiC 

(1990). 

The constraint chart in Figure 8.1 was initially prepared by deciding on boundaries 

for the region to be digitised. The area chosen stretches from the exit of the Inner Shelf 

river channel in the West, to the Venture Field in the East. Local control coordinates 

were set to orientate and scale the region for digitising. The chart scale is 1:250,000 and 

the total area covered by the chosen region is 10,350 square kilometres. 

The constraint feature boundaries, contours and proposed pipeline routes were 

digitised into three separate ASCII files, which were then convened into dBase tables. 

Every effon was made to ensure the accuracy of the digitising, though where contours 

merged this was difficult. In these cases the upper and lower contours were digitised, and 

the terrain model generator was relied upon to perform linear interpolation to fill in the 
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slope between them. Tables for non-spatial feature properties were also built to link with 

the spatial tables. 

Before the vector representation can be convened into the raster format that 

PIRATE needs, a decision has to be made on the resolution of the raster grid of cells. 

The accuracy of any results from PIRATE depend on this resolution, as any feature clash 

distance has a potential error proportional to the cell side length (Section 7.3.5). Two 

resolutions were considered, with cell side lengths of 100 metres and 200 metres. For the 

100 metre resolution 1,035,000 cells, and hence records, would be needed in the main 

raster database. For the 200 metre resolution 258,750 cells would be required. PIRATE 

is designed to handle either database size, but it was noted that a 200 metre cell is only 

0.8 millimetres square when convened to the chan scale. Any precision greater than this 

would be ineffective as manual digitising is rarely in excess of millimetre accuracy, and 

many of the lines on the chan have a width greater than 0.8mm anyway. 

The chosen 200 metre resolution was entered, along with global coordinates for the 

local origin and the extent of the grid, into a parameters database table. 

The vector to raster conversion proceeds in two stages. First the feature polygons 

themselves are rasterised. The PIRATE procedure for this is fully automatic, perfonning 

the conversion as soon as it is invoked (Section 7.3.3). The second stage is the creation 

of the digital terrain model (DTM) from the digitised contour table. This procedure is 

also fully automatic (Section 7.3.4). The two procedures complete the preparation of the 

PIRATE GIS location based description. 

If a pipeline has already been digitised from existing chans, as it has been in this 

example with the Base Case Route, the pipeline clash procedure may be run before entry 

into GoldWorksii. This procedure analyses the pipeline route to discover the extent to 

which it has traversed constraint features (Section 7.3.5). Once again execution is fully 

automatic. 

GoldWorksii is now entered and the PIRATE lisp files loaded. PIRATE 

automatically forward chains to read the appropriate dBase tables and set itself up for 

interactive pipeline routing. 
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8.3.2 Knowledge Base Rule Preparation 

The knowledge base of rules derived from pipeline engineers is essential to the 

operation of PIRATE. As a result of the knowledge acquisition, detailed in Chapter 5, a 

large number of rules and general criteria on pipeline routing were discovered. However, 

as the case study uses just two feature classes in the geographic data, only rules relating 

to those particular feature types were included in the knowledge base. Primarily, the 

rules considered the different remedial actions that might be required in order to allow 

the pipeline to successfully traverse the feature. 

Megaripplefield features require the pipeline to be trenched, boulder field features 

can demand the use of divers to clear the boulders from the pipeline route and can also 

require the pipeline to be trenched. The trench depth depends on the diameter of the 

pipeline, the minimum cover required, and the maximum wave height of the megaripples 

in the field. Minimum cover requirements depend on the Code of Practice being used 

and the pipeline diameter. The Code can in turn depend on the country which has 

jurisdiction over the region though which the pipe is to pass. 

Rules were tailored to model the above scenario, with the key aim of proving that 

the knowledge representation is both powerful and flexible, and that the inference engine 

works effectively and on cue within the interactive design process. Appendix E gives a 

full list of the rules in their original GoldWorksii format. 

Rules can be entered into GoldWorksii in two ways. The most efficient for non­

programmers is to use the rule editor provided within GoldWorksii. This can be menu 

driven to insen appropriate commands without having to remember the exact forms 

needed. Other tools, such as the Partial Matcher, allow a rule to be checked to see its 

effect without actually running the system or changing any facts. The other entry method 

is to write the rules directly into a Lisp file, which is quicker but the user then needs a 

thorough knowledge of the rule format in Lisp. 

During rule preparation it was noted that to encode all the knowledge gained from 

the interviews into rules, should it be needed, would take considerable time. Also, even 

after extensive knowledge elicitation, it was still unclear in some areas as to precisely 

how the knowledge should be encoded. This suggests that to obtain a fully developed 
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PIRA 1E system additional interviews would be needed, and perhaps more sophisticated 

methods of knowledge representation. 

8.3.3 Processing Times and Efficiency 

The processing times needed for each stage of PIRA 1E data preparation provide a 

useful indication of the system efficiency and practical usability :-

Manual Data Entry 
Digitising Chart and Creating Tables 

Creating Databases 
Creating Empty 260,000 Cell Raster Database 
Vector/Raster Feature Polygon Conversion 
DTMCreation 

Initialising PIRATE in GoldWorksll 
Loading GoldWorksll 
Loading PIRA 1E into GoldWorksll 
Initialising PIRA 1E (Base Case Route Data) 

System Interaction 
Analysing Base Case Route (44 Segments) 
Point Interrogation at the GUI 
Technical Report Generation 

: 2days 

: 4minutes 
: 26 minutes 
:35 minutes 

:5 minutes 
: 2minutes 
: 16 minutes 

:45 seconds 
:2 seconds 
: 10 seconds 

Times are based on the use of an mM Model 70 80386 personal computer, with a 

20MHz clock speed, 80387 math coprocessor, 14Mb main memory and a 120Mb, 28ms 

hard disk. 

Digitising the constraint chart took a considerable amount of time due to the sheer 

volume of information present. The chart itself was produced manually from Canadian 

Hydro graphic Charts, presumably by tracing. If a CAD system had been used for 

constraint chart creation, however, digitising would have been needed anyway. In this 

case much of the effort in preparing PIRA 1E data could be offset as being needed for 

drawing creation. PIRA1E data input would then effectively be 'free', a by-product of 

drawing creation. 

Creating the complete raster database ready for PIRA 1E to use takes just over an 

hour. This is respectable when one considers that over one quarter million interpolations 

must be performed for DTM creation alone. The contour data for the interpolation 

consists of approximately 17,000 line elements. Care during GIS function design has 
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contributed significantly to the final operating statistics. Full analysis of the Base Case 

Route in 45 seconds, producing not only feature clash data but also full long section 

coordinate data, is also a more than adequate response given the processing involved. 

The time taken to load PIRATE into GoldWorksii is comparable with many of the 

demonstration systems written for GoldWorksii. However, the PIRATE initialisation 

procedure is fairly lengthy, and this is mainly due to the system having to read pipeline 

analysis information in addition to creating the object based GIS representation. 

However, once initialisation is complete the actual interactive operation of PIRATE is 

not prone to such delays. 

8.4 USING PIRATE FOR PIPELINE DESIGN 

Once PIRATE is loaded and initialised within GoldWorksii, pipeline design can 

begin. The following sections deal with aspects of system operation in the order that the 

engineer would commonly use them. Naturally, as would be expected of an interactive 

design environment, the functions illustrated may be used in any order as long as the 

necessary information is present in the system. 

The reader should note that all facilities described as part of the PIRATE GUI have 

been written by the author, using approximately 2,000 lines of Lisp code. None of the 

facilities for such a graphic interface were available from the GoldWorksii system. The 

development of the PIRATE GUI took several months, with the express intention of 

proving that a truly interactive and intelligent interface could be achieved. 

8.4.1 Using The GUI For Interrogation 

Plate 7.8, page 138, shows a part of the Sable Island case study region as it can be 

represented at the GUI. This plate shows boulder field and megaripple feature areas, and 

the SGSL Base Case Route. The engineer has a variety of facilities for creating, 

manipulating and interrogating the map, all of which are accessed through the menus at 

the top of the window. The menu hierarchy is given in Figure 8.2, Page 167. 
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Views are generated by the engineer picking the items he wishes to see from a sub­

menu under the 'View' menu option. The menu is updated dynamically whenever the 

feature types in the region change, so that the user always has a correct list to choose 

from at the menu. A grid display option is also provided. In Plate 7.8, Page 138, all 

megaripple fields have been highlighted by choosing the appropriate item under the 

'Highlight' menu. Using these facilities the engineer can built constraint charts quickly 

and easily. 

Contours are not currently displayed by the GUI. The number of line segments 

involved in the display was expected to cause problems with insufficient memory for 

storage. The engineer is' still free to make use of pointwise depth interrogation or request 

long sections. 

A comprehensive series of image manipulation facilities is provided under the 

'Zoom' menu option. Zooming in and out is straightforward, and the zoom scale can be 

changed, A 'Fast Zoom' option allows the user to 'window in' on an area of interest, 

whilst 'Redraw' and 'Full Window' options allow rapid recovery. Microsoft Windows, the 

implementation environment used by the developers of GoldWorksii, restricts the 

graphics to a raster form, as is illustrated by the thickening of lines in Plate 7 .9, page 

138. The image maintains its functionality, however, and this attribute does not appear to 

cause any problems during operation. 

The designer can interrogate the on-screen map in a number of ways. By choosing 

'Attrib at Point' under the 'Report' option, for example, he can find out the existing 

features at any point. This requires direct access to the PIRATE GIS database from the 

GUI. 'Attrib at Point' gives the names of the feature instances at a point, but any other 

information about the features could be accessed by the same mechanism. 

Information about any pipelines in the system can be accessed using items under 

the 'Pipe Enquiry' option. Individual pipeline segments may be identified for enquiry by 

using the mouse pointer to 'probe' on the hotspots at the segment end points. The 

hotspots are clearly shown in Plate 7.9, Page 138. Reports are printed in 'popup 

windows', which can be closed by the user when no longer needed. 
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The GUI has been designed to show how PIRATE can give the engineer freedom 

of access to his data. It also illustrates how the user can be shielded from the main 

GoldWorksll interface, which is of little relevance to the engineer and can over­

complicate using PIRATE. if necessary the GUI could be extended so that the PIRATE 

user need never know that he was using an expert system at all. 

8.4.2 Pipeline Placement 

Having familiarised himself with the data using the GUI interrogation facilities, the 

user will wish to begin interactive pipeline design. Pipelines are placed on to the map as 

a connected sequence of straight line segments, by using 'Edit Pipe' menu options. 

Segments may be placed in isolation, or joined to other segments by probing an existing 

end point The order of pipe segment placement is not important. Typically a series of 

alternative routes may be designed, as illustrated in Plate 8.1, Page 170. Each segment, 

as it is placed, will gain an instance in the frame hierarchy containing all the information 

known about it. PIRATE maintains this record throughout the life of the segment 

The PIRATE GUI has comprehensive pipeline editing facilities. For example, 

Plate 8.1, page 170, and Plate 7 .10, page 144, show how a node in the pipeline network 

can be selected using the mouse and moved to another location. Note that the moved 

segments change from black lines to blue dotted lines on the Plates. 

As noted in Section 7 .5.4, any changes made to the graphic images are 

automatically reflected in the frame hierarchy. In the case of moving a node each 

segment that has moved will have its coordinate slot values updated, and all other 

information relating to its previous location will be altered. Segments may also be 

deleted, in which case they lose their instances in the frame hierarchy. 

If changes are made to the frame hierarchy directly, the deletion of a feature or 

segment instance for example, it will cause the graphic image to be updated 

automatically. All graphic images are generated directly from information contained 

within the frame hierarchy. There is no duplication of coordinates, for example, and the 

GUI refers directly to instance slot values to get the coordinates it needs. 
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This integral link between instances and images not only maintains integrity at all 

times, but gives the knowledge base implicit control over the GUI image by its explicit 

control over the data in the frame hierarchy. 

8.4.3 Pipeline Activation and Analysis 

Pipeline routes are a connected series of pipeline segments. Each route is chosen 

from the network of pipe segments by using the 'Activate Pipe' menu and choosing the 

'Whole Route' option. The route may then be activated by probing the end points of each 

member segment in turn. The end of the pipeline is indicated by probing the final end 

point twice. 

When a pipeline is activated it gets an instance of its own which holds information 

about member segments (Section 7 .5.4). The user is then given the option to send the 

pipeline for assessment. If this is done the pipeline coordinates are passed to the PIRATE 

GIS for clash analysis and long section profile generation. 

To provide a thorough test for PIRATE using the case study data, a hypothetical 

pipeline route was designed to cross the most complex part of the study region. Plate 8.2, 

page 170, shows a segment of this route as it crosses an area with up to three overlapping 

features. The route was activated and sent for analysis by using appropriate GUI 

commands. 

8.4.4 Long Section Profiles 

One of the segments in the test route was placed to traverse the complex 

bathymetric trench that cuts the study region to the West of Sable Island, as shown in 

Plate 8.3, page 172. The reader is encouraged to compare its position with the contours 

of the original chart, Figure 8.1. 
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Plate 8.1 PIPE SEGMENT NETWORK D ESIGNED AROUND CONSTRAINTS 

Plate 8.2 THE TEST CASE SEGMENT FOR FEATURE ANALYSIS 
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A long section of any pipeline, or any part of a pipeline, may be requested from the 

GUI by first activating the pipe, then asking for the long section. PIRATE opens a 

separate 'Long Section Window' to display the image. The long section for the segment 

in Plate 8.3 is given in Plate 8.4, page 172. At present the long section scales are derived 

automatically by PIRATE, but the system could easily be modified to give the user more 

control. 

More important than the display itself is the fact that long section information is 

actually stored within the frame hierarchy, and is therefore available for further analysis 

by the knowledge base. Although not currently implemented, applications would include 

slope stability, stress and span analyses, and judgements on the effects of each on the 

feasibility or cost of the route. Dredging in shallow regions is an example of an operation 

which can be expensive and difficult to optimise. With long section information PIRATE 

could be upgraded to advise on dredging requirements and costs. 

8.4.5 Clash Analysis and Reporting 

PIRATE is able to give the user reports on the features that any pipeline segment 

traverses, and the exact chainages and distances of each crossing. To obtain this report 

the user picks the 'Report' menu option and chooses the 'Segment Clash Report' item 

from it The end points of the chosen segment must then be probed using the mouse 

pointer. Figure 8.3 shows the segment used for testing the clash and technical reports. It 

is the most fitting of the test segments as it passes through the most complex 

arrangement of features in the study region. It will be referred to as SEGMENT-I. 

Requesting clash analysis produces a report with chainages summarised in Table 8.1, 

page 175. 

The figures in Table 8.1 are in kilometres. Note that the diagram, Figure 8.2. is not 

to scale, but clearly correlates with the ordering and overlaps of the features indicated by 

the table. 
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Plate 8.3 CHART SHOWING THE TEST SEGMENT FOR LONG SECTION 

ANALYSIS 

\ 
\ 

Plate 8.4 LONG SECTION OF BATHYMETRY ALONG THE PIPE SEGMENT 

SHOWN IN PLATE 8.3 
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MEGARIPP~E-1 

Figure 8.3 A CHART SHOWING THE LOCATION OF SEGMENT-I WITH 

RESPECT TO CONSTRAINT FEATURES 
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8.4.6 Technical Analysis and Reporting 

Producing clash chainages is essentially a geometric calculation process requiring 

no expertise. Judging the effects each feature will have on the pipeline, however, does 

require expertise. The technical report provided by PIRATE uses the expert rules in the 

knowledge base to find the type and severity of remedial actions needed to safely install 

the pipe. When more than one feature is present along any part of the pipe the resulting 

remedial actions may conflict, for example if one feature needs a 0.6 metre deep trench 

and another needs a I.2 metre deep trench. PIRATE uses heuristics, or 'rules of thumb' to 

take the most severe recommendation in these cases. The system also ensures that 

duplicate recommendations are not made. 

The rules used for the case study are given in Appendix E, and are briefly 

described in Section 8.3.2. 

SEGMENT-I was used to test PIRATE's technical reporting capability. The results 

naturally depend on the properties of the features crossed and the initial design 

parameters chosen, so these are given in Tables 8.2, 8.3 and 8.4. 

Two types of remedial action, trenching and diver support, can be recommended 

by the example rule base. The part of the technical report related to trenching is the best 

to illustrate the know ledge base in use. 

Table 8.5, page 177, gives the trenching recommendations for SEGMENT-I. Plate 

7.I2, page I48, shows how this information is given to the user at the GUI. The 

following paragraph explains how the results were derived. Chainages along the pipeline 

are given in brackets, these being taken from Table 8.I. The diagram in Figure 8.3, page 

I73, will also help the reader understand the explanation. 

As one proceeds from West to East along SEGMENT-I, the pipe is first crossing 

BOULDER-I alone (from 0.0 km). This requires trenching to the minimum cover depth. 

The trench depth is thus the minimum cover depth (0.3m) plus the pipe diameter · 

(0.33m), totalling 0.63 metres. Farther along MEGARIPPLE-0 is also entered (at 1.9 

km). This requires additional trench depth to allow for a wave height of 0.9m, giving a 

total depth of 1.53 metres. Both the 0.63 metre and the 1.53 metre trench are conflicting 

over this region, and the severity heuristic therefore only reports the most severe. 
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FEATURE START. (km) FINISH (km) DISTANCE. (km) 

:MEGARIPPLE-2 14.4 18.3 3.9 
BOULDER-1 0.0 16.7 16.7 
:MEGARIPPLE-1 14.9 19.1 4.2 
:MEGARIPPLE-0 1.9 11.4 9.5 

Table S.I THE RESULTS OF CLASH ANALYSIS ON SEGMENT-I 

FEATURE WAVE DIRECTION WAVE HEIGHT WAVELENGTH 
(Degrees) (metres) (metres) 

:MEGARIPPLE-0 300 0.9 15.0 
MEGARIPPLE-1 300 1.3 25.0 
:MEGARIPPLE-2 270 0.5 15.0 

Table 8.2 MEGARIPPLE FIELD PROPERTIES FOR FEATURES OCCURRING 

ON SEGMENT-I 

175 



FEATURE DENSITY OF BOULDERS 
(No PER 100m2) 

BOULDER-I 0.9 

Table 8.3 BOULDER FIELD PROPERTIES FOR FEATURES OCCURRING ON 

SEGMENT-I 

PARAMETER 

PIPE DIAMETER 
NATIONAL JURISDICfiON 
CODE OF PRACTICE 
MINIMUM COVER 

VALUE 

0.33m 
UNITED KINGDOM 
BRITISH 
0.3m 

Table 8.4 DESIGN PARAMETERS CHOSEN FOR THE TEST ROUTE 
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START FINISH MAX.DEPTII NO. OF PASSES 
(km) (km) (metres) 

0.0 1.9 0.63 1 
1.9 11.4 1.53 2 

11.4 14.4 0.63 1 
14.4 14.9 1.13 1 
14.9 19.1 1.93 2 

TABLE 8.5 RESULTS OF THE TECHNICAL ANALYSIS FOR TRENCHING 

(PIPE DIAMETER= 0.33 M) 

START FINISH MAX.DEPTH NO. OF PASSES 
(km) (km) (metres) 

0.0 1.9 1.3 1 
1.9 11.4 2.2 2 

11.4 14.4 1.3 1 
14.4 14.9 1.8 2 
14.9 19.1 2.6 2 

Table 8.6 RESULTS OF THE TECHNICAL ANALYSIS FOR TRENCHING 

(PIPE DIAMETER = 0.9 M) 
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The pipe then reverts to just BOULDER-I (at 11.4 km), before entering 

MEGARIPPLE-2 (at 14.4 km). MEGARIPPLE-1 is also entered soon after (at 14.9 km). 

At this point three features co-exist, MEGARIPPLE-1 requiring the most severe trench 

depth, at 1.93 metres. 

Although as one continues to the end of the pipe the features change, with first 

BOULDER-I (at 16.7 km), then MEGARIPPLE-2 (at 18.3 km) disappearing from the 

pipe clash report, the trenching recommendation remains at 1.93m. This is because 

throughout the region MEGARIPPLE-1 continues to dominate the trenching depth. 

The "number of passes" column in Table 8.5, page 177, refers to the number of 

times the trenching vessel needs to follow the line of the pipe to achieve the required 

trench depth. Trenching vessel information is contained in the frame hierarchy having 

been pulled in from Lotus spreadsheets. Trenching rules refer to the instance of the 

chosen trenching vessel to discover the maximum trench depth per pass. The number of 

passes needed is then calculated. 

The technical report example illustrates how PIRATE can produce an overall plan 

of action for any segment, given multiple, possibly conflicting features and remedial 

actions. Extending this for entire pipeline routes would involve the amalgamation of 

segment results. The example also shows how other data, such as construction plant 

specifications, can be included in the judgements. A more comprehensive knowledge 

base could use the length of the required trench and the number of passes needed, 

together with the overall plant output rate and day cost, to produce an overall price for 

the trenching in each section. By amalgamating these with the costs of other remedial 

actions, such as diver support, blasting, dredging etc., and material, start up and other 

costs, PIRATE could generate an overall preliminary cost for the entire pipeline. 

8.4.7 The Base Case Route in PIRATE 

The SEGMENT-I example in the previous sections proved that PIRATE works in 

areas where there are multiple overlapping features. It did not prove that the system 

could cope with the number of pipeline segments required to adequately depict a real 

pipeline. 
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The Base Case Route, a 263 kilometre route originally designed by SGSL, was 

digitised from the constraint chart, Figure 8.1. This pipeline route is typical of those on 

the chart. The intention was to use the Base Case Route to test whether the system could 

cope with the volume of data, resulting instances and analysis for a real pipeline, yet still 

maintain an acceptable response time. The Base Case Route was not used for the earlier 

tests because it does not pass through a complex area of interacting features. 

The digitised Base Case Route data consisted of 44 straight line segments, 

adequate to approximate the curves on the route. The data was read by PIRA1E GIS 

functions, and clash analysis performed. The analysis took 45 seconds, producing a clash 

result table with 50 records and a long section table with 1323 records. GoldWorksii was 

then entered, with PIRA 1E initalisation taking a total of 16 minutes to load all the 

pipeline and results data. 

Once within GoldWorksii the GUI response times were not significantly different 

to those found in other tests. It was noticed, however, that the Lisp environment stopped 

more often to 'garbage collect' (where it frees memory that is no longer useful). This is 

assumed to be because of increase in the volume of data in the frame hierarchy. Should 

this become a significant problem two options could be taken. First, the computer 

memory could be increased in size. Alternatively the long section coordinate data, 

currently stored in each pipe segment instance as a huge list, could be allocated a 

relational table where it could be read when a long section request is made at the GUI. 

This would reduce the memory requirement substantially. 

Conclusions from the Base Case test were, apart from the increased 'garbage 

collecting', favourable. The system handled a real pipeline route in a competent manner. 

8.5 DATA MODIFICATION AND EXPLANATION FACILITIES 

8.5.1 A Geographic Design Spreadsheet 

The Sable Island Pipeline Project is convincing proof that changes in design 

parameters are made at a very late stage in design. The new design to cater for the 

collection of gas from the The baud field is an extreme example of the amount of extra 

179 



work such changes can mean when using manual methods. Less dramatic modifications, 

changing the pipe diameter for example, can also have a marked effect on the design. 

Section 7.5.6 explained how PIRA1E uses logical dependency to ensure that the 

facts in the system are always valid. This is of great benefit when the user decides to 

change any design parameters, or indeed any fact in the system. The user can use the 

system to ask "What if ..... ?" questions by changing information in any part of the system 

and observing the results. 

When a fact in the system is changed all facts that are dependent on the modified 

fact are deleted. When the user asks for a new report the updated facts are found using 

rules. Changing the pipe diameter, for example, becomes a simple matter. All that the 

user needs to do is to display the DESIGN_PARAME1ERS instance where the pipeline 

diameter is stored, then using the mouse and keyboard change the value in the diameter 

slot. Everything dependent on the pipe diameter is deleted, and requesting a report 

ensures that backward chaining finds new results using the modified diameter. This is, of 

course, greatly different to any similar assessment in the case of manual design. 

The dependency structure has been verified using the SEGMENT -1 test segment. 

The original trenching results given in Table 8.5, page 177, were for a 0.33 metre 

diameter pipeline. This was changed to 0.9 metres to test the effect. PIRA 1E 

automatically retracted the technical report and all facts that depended on the pipe 

diameter, leaving the slots empty. 

When a new technical report was requested the system backward chained to 

produce a new report, the results of which are given in Table 8.6, page 177. Note that the 

trench depths have not only increased by the difference in diameter, but the Code of 

Practice rules have sensed the diameter moving above a threshold value to a position 

where an increased minimum cover (O.lm extra) is also needed. This has therefore been 

incorporated into the results. The number of passes needed by the trenching vessel has 

also been recalculated for each entry. 

Other examples of "What if.. .. ?" questioning that have been tested include 

changing the Code of Practice used for the pipeline design, and changing the type of 

trenching vessel used during pipeline construction. Rules from four different Codes of 

Practice are in the PIRA 1E rule base. Changing the Code from British to Norwegian, for 

example, has an immediate effect on all results as the initial design parameters are 
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changed by the system. Similarly, changing the trenching vessel specification alters the 

maximum depth that can be excavated in a single pass of the trencher. PIRATE 

automatically alters the results in line with this change. 

The dependency structure in PIRATE clearly shows how the system can be used 

as a geographic design spreadsheet, with the engineer able to experiment with design 

parameters to achieve an optimum solution. If the knowledge base were more extensive 

the logical dependency mechanism would extend right through to the cost analyses, 

giving instant updates as initial parameters are varied. Such flexibility is a key attraction 

of PIRATE as a design environment. 

8.5.2 Moving and Re-Assessing Routes 

The logical dependency structure of PIRATE extends to the spatial positioning of 

routes. Section 8.4.2 details how pipeline segments can be added, moved or deleted in 

the pipe segment network. Any change in pipeline segment position obviously affects the 

feature crossings that the pipeline experiences. PIRATE ensures that if a pipe segment is 

moved or deleted, all facts associated with the pipe segment are retracted. Also, if the 

pipe segment is deleted all PROPOSED_PIPELINE instances that contain it are also 

deleted. PIRATE automatically takes care of all integrity maintenance. The user is free 

to experiment with his design as he wishes. PIRATE naturally warns the user should his 

proposed action cause the deletion of any major pans of the pipeline design. 

When routes are moved, added or deleted, they have to be re-assessed by the 

PIRATE GIS clash functions before work can proceed. Having changed the pipe 

network the user must re-activate his chosen route(s), which are sent for analysis from 

the GUI. The user may then request reports as usual, with PIRATE ensuring that the new 

assessment results are used. 

Tests employing re-routing and pipeline deletion proved that the system was 

functioning satisfactorily in this respect. 
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8.5.3 Explanation Facilities 

As the complexity of the knowledge base increases the logic and rules PIRATE 

uses to achieve results may not always be clear. One of the quoted advantages of expert 

systems is that they can explain their reasoning. PIRATE is no exception. The user can 

ask the system to explain any fact that it holds, PIRATE responding with the line of 

reasoning that lead to this fact. 

Plate 7.13, page 148, gives an example of PIRATE explanation using the in-built 

GoldWorksii explanation facility. PIRATE was asked to explain why it had 

recommended trenching as a remedial action for SEGMENT -1 traversing 

MEGARIPPLE-1 in the test case. The response details the rules and justifying facts 

which lead to the trenching recommendation. The explanation is not very readable, a 

fault of the GoldWorksii toolkit, but by including explanatory comments in each rule 

definition the text becomes easier to understand. Plate 7.13 does not give the 

explanations clearly as the window scroll bars need to be used to scroll the rest of the 

text into view. Full comments can be seen incorporated into the rules listed in Appendix 

E. 

8.6 EXTENDING PIRATE CAPABILITIES 

As a prototype PIRATE has a large enough knowledge base and enough 

functionality to prove that the concepts proposed by this thesis are valid. Extending 

PIRATE beyond this must also be discussed. PIRATE has been designed from first 

principles to cater for problems involving large numbers of facts, rules and different 

types of geographic feature. The case study has shown the system working with two 

types of feature, a relatively small knowledge base and two major types of report. A 

practical application of PIRATE would require more than this. 

8.6.1 Adding More Rules 

Rules are divided into two types in the knowledge base, forward and backward 

chaining. The forward chaining rules perform the control functions of the system, such 
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as reading databases and creating instances on initialisation. Backward chaining rules are 

used for judgements about pipeline routes. Forward chaining rules are an intrinsic part of 

PIRATE and should not be altered. Backward chaining rules can be added to and 

changed at will by the user as they contain purely knowledge about pipeline design. 

Future users can continue to develop the knowledge base by using backward chaining 

rules. 

It has been noted by previous users of GoldWorks, that the system response time 

slows considerably as the number of rules in the knowledge base builds up (All wood, 

1989b). Currently there are relatively few rules in the PIRATE knowledge base, but 

substantial rule additions are expected to slow the production of technical and other 

reports. However, the GUI has been kept independent of the rule mechanism, and so the 

normal interactive dialogue with the user should not suffer because of an increasing 

knowledge base size. 

One fault in the GoldWorksll inference engine has been in its failure to ask users 

for values which it cannot find or infer. This can be an important aspect of the behaviour 

of an 'intelligent' system, as it should be able to recognise when it needs more 

information and respond to this by asking the user for it. If no Code of Practice was 

chosen in PIRATE, for example, the system should ask for it to be specified. 

GoldWorksll was supposed to provide this facility using a 'query form facet'. However, 

the author found that it would not work, and this has since been confirmed as a 

GoldWorksll system bug which has yet to be fixed (AI Ltd, 1989). Future developers of 

PIRATE will have to work around this problem until a software solution is found. 

8.6.2 Adding More Feature Types 

A variety of feature classes are provided in the frame hierarchy, Plate 7.1, page 

130. To use them each must have a property table in the PIRATE GIS. Fields represent 

individual feature properties, records represent individual feature occurrences, (Section 

7.3.1). Each table must also have a feature code field. 

In GoldWorksll each new feature class must be given a frame and a base instance 

to indicate that it is active, (Section 7.5.1). The frame must have the GIS feature property 

table fiiename in its DA TABASE_NAME slot. PIRATE uses forward chaining rules to 
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match on every base instance during initialisation, opening the associated GIS property 

databases and creating instances from the records under the appropriate frames. 

It is expected in future versions of PIRA lE that software procedures would be 

written in Lisp to automatically perform all the steps in new feature class creation. The 

user would then be free to develop a library of feature classes for use as and when they 

become appropriate. 

8.6.3 Adding More Report Types 

Reports are requested from menus at the GUI, and operate via an instance of the 

REPORT-CONTROLLER frame (Section 7 .5.5 ). Slots exist in this for a number of 

different reports, with daemons overlooking each to sense if the a value changes to 

REQUIRED. 

Daemons are currently written for pipe segment clash and technical reports. To 

create more reports new daemons need to be written following the format of the existing 

ones. The report daemons are Lisp functions which create output windows, generate 

backward chaining queries, and control the report output format. 

To write the new daemons a working knowledge of Lisp and the PIRA lE structure 

are needed. In future versions the author would recommend the creation of a 'report 

toolkit' in Lisp, giving the user a library of high level function which can be 'bolted 

together' to create reports on the subjects he needs, in the style he desires. Using the 

windows functions employed for the GUI, the toolkit could be made suitable for a non­

Lisp programmer to use. 

8.7SUMMARY 

To assess the practicalities of intelligent GIS for design, PIRATE was tested using 

data from a real pipeline project. The Sable Island Pipeline Project was used as the basis 

for the tests. Full documentation and sixteen constraint charts were provided by J.P. 
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Kenny & Partners (JPK). The manual design approach taken by JPK for this project was 

frrst studied in detail. 

The PIRATE tests were based on the use of one of the sixteen constraint charts. All 

occurrences of two geographic feature types were digitised, together with the 

bathymetric contours for the region. It is acknowledged that this is a relatively small 

subset of all the information available for pipeline design. However, a full emulation of 

the manual design results was not an aim of the tests. PIRATE is in a prototype form and 

does not have sufficient rules in it's knowledge base to cope with a greater diversity of 

feature types. In terms of testing the structure and concept of PIRATE, the data volumes 

used were more than adequate. 

PIRATE facilities were examined as the digitised data was input and processed 

into the GIS raster form. Then PIRATE within GoldWorksii was initialised. General 

GUI functions of map display, overlay, GIS interrogation, pipeline placement and editing 

all functioned correctly. Pipeline assessment by the GIS was rapid considering the 

amount of database access involved, and the production of long section profiles from the 

PIRATE DTM was also shown to function satisfactorily. 

The results of pipeline analysis were studied in some depth to ensure that PIRATE 

was producing correct results. This examination was achieved by assessing a single 

pipeline segment traversing the most complex area of overlapping features in the case 

study region. The numeric results were shown to be correct, and the technical 

assessments made by the PIRATE knowledge base were also shown to be valid. The 

validity of the case study results may be legitimately extrapolated to cover much more 

complex pipelines and feature interactions. The reason for this is the nature of the Lisp 

implementation and the recursive functions used in the assessment. In proving that a 

recursive function works in a small but representative problem the proof can be extended 

to larger problems of the same type. 

To test the capacity of PIRATE in handling real pipelines, a real 263 kilometre 

route from the Sable Island Project was digitised and assessed. The GIS feature clash 

assessment took 45 seconds, and thereafter there appeared to be little degradation in 

response time at the GUI. However, it was noted that there was a significant increase in 

the frequency of 'garbage collection' by the Lisp environment. This usually indicates that 

the computer memory is becoming more replete. Clearly, if the amount of data held 

within GoldWorksii became too great the system would fail. However, this is a function 
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of the capacity of the hardware rather than the design of the software. It was noted, 

however, that if the long section profiles were stored in relational database tables rather 

than in the frame hierarchy, a significant proponion of the memory loading would be 

avoided. It is also expected that, due to the operating characteristics of GoldWorksll, as 

the number of rules increases the time taken to assess pipelines using the knowledge base 

will also increase. 

PIRATE was funher tested in it's role as a geographic design spreadsheet. The pipe 

diameter was changed for a previously assessed pipeline. New repons were requested 

which, when compared with the old, showed that the correct changes had indeed been 

made to the results of the analyses. The explanation facilities, where PIRATE informs 

the user of the reasoning behind any decision it makes, was also tested and shown to be 

working correctly. However, the vocabulary and prose of the repon produced is currently 

rather poor. 

The PIRATE system was specifically designed to allow for further expansion when 

necessary. The final pan of the Chapter discussed briefly how such an expansion could 

be achieved. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

9.1 CONCLUSIONS 

Engineering design relies heavily on the use of geographic and spatial information. 

However, GIS have almost universally failed to make an impact on the discipline, or to 

become a worthwhile design tool. This is because conventional GIS cannot understand 

the information they hold in the context of the design problem, and cannot make an 

intelligent contribution to the solution being sought. 

The Pipeline Route Analysis and Testing Environment (PIRATE) is a system 

developed during course of this research which has proven that it is possible to create an 

intelligent GIS for design. PIRATE has been applied to the specific problem of off-shore 

pipeline route design. Unlike conventional GIS the system can understand the 

information it holds, and can make a positive, intelligent contribution to the design. 

Moreover, by creating a practical, working system during the course of the research, the 

concept has not only been proven possible, but has also been proven practically viable 
using current software and hardware tools. 

The PIRATE architecture shows how the widely dissimilar technologies of 

artificial intelligence (AI) and GIS can be brought together into a harmonious structure, 

where the advantages of both are optimised. The key concept lies in integrating the two 

components so closely that they begin to merge. The crux of this integration lies in the 

use of spatial dualism, where the location based (spatial) description of geographic 

features is stored in the GIS, and the object based (non-spatial) description is stored in 

the frame hierarchy of an AI tool kit. As a result of this integration it is now possible to 

write a knowledge base of rules which has full access to, and complete control over, all 

geographic information in the GIS database. This is believed to be the first time such an 

integrated structure has been used with a formal AI toolkit. 

During the design and implementation of PIRATE, practicing pipeline engineers 

were consulted extensively to ensure that the system would be applicable and effective. 

The engineers stated that they did not want a computer system that was a 'black box', but 

preferred to retain control of the routing itself. They also required a simple user interface 

and needed to avoid direct contact with the complexities of an AI system. The PIRATE 

graphic user interface has been successful in masking the AI component of the system 

188 



during pipeline route design. It also has the 'look and feel' of a conventional CAD 

system, which is more familiar to the engineer than an AI toolkit interface. The AI 

system operates in the background, assessing routes and providing reports. This 

minimises the exposure of the engineer to system complexities. 

PIRATE was tested using data from a real pipeline design project. Pipeline routes 

were proposed and the system was asked to provide design assessments for them. Whilst 

not a full emulation of the manual design, the tests proved that PIRATE could handle a 

substantial amount of geographic information, allow the interactive design of pipeline 

routes, and automatically produce correct assessments of those routes. Rules in the 

PIRATE knowledge base were a sub-set of those gained from interviews with practicing 

pipeline engineers, and referred to the remedial actions that would be needed as a result 

of the pipeline crossing certain geographic features. 

Aside from making rapid route assessment possible, the most formidable impact 

PIRATE makes on the working practices of engineers is, perhaps, in it's ability to act as 

a geographic design spreadsheet. The engineer can change any design parameter at any 

time, the system will immediately incorporate those changes into the design to show the 

engineer the effect of his modifications on the final result. In this way engineers can 

rapidly experiment with their designs in the same way as accountants experiment with 

figures using conventional spreadsheets. 

On a more general note, fully automated design using unconstrained geographic 

information was shown not to be possible until a formal language for the representation 

of spatial objects and relationships was defined. In the event fully automated spatial 

reasoning was not required for pipeline design, but in other applications this potential 

stumbling block should be boume in mind. 

Intelligent GIS for design, such as PIRATE, have only become possible with the 

advent of sophisticated AI toolkits, which have a wide range of AI paradigms, seamless 

interaction with relational databases and tools for building graphic interfaces. The 

increasing speed and functionality of AI toolkits as the technology develops should have 

a positive effect on future intelligent GIS. 

There is a common belief prevailing that AI has been the "great white elephant" of 

computing technology in recent years. The rather modest successes of the Alvey 

initiative and of high failure rate of commercial applications of expert systems have 
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fuelled this scepticism. However, this project has shown how AI, acting as background 

support to more conventional technology, can make a substantial and effective 

contribution in practical working environment. 

In the rapidly advancing field of GIS, commercial developers are solving many of 

the current difficulties in the capture, storage and analysis of geographic information. 

Once these problems are successfully addressed, the future lies in making the best use of 

geographic information, in making it work as effectively as possible. This research has 

shown one way in which such effectiveness might be achieved. 

9.2 RECOMMENDATIONS FOR FURTHER WORK 

The PIRATE architecture, with it's close integration of AI and GIS, has 

implications beyond applications in design. The concepts illustrated could be used in any 

area where automated reasoning with geographic information needs to be explored. 

Indeed PIRATE itself, stripped of the rules and functions relating to pipeline route 

design, could be a vehicle for such an exploration. A less radical change, altering the 

design rules alone, would allow PIRATE to assist in the design of other types of route, 

electricity power cables for instance. In either case PIRATE has the potential to provide 

the basis for a geographic expert system shell. Using such a system the user could create 

his own knowledge base of rules relating to geographic features. The AI toolkit, which is 

an intrinsic part of the system, provides a wide range of AI paradigms which a user could 

employ in his knowledge base, in addition to the close AI/GIS integration. PIRATE has 

not been used in this way to date, but the basis for it is clear as a result of this work. 

An area which is causing considerable difficulty is the formal definition of terms to 

describe spatial relationships between irregular geographic features. Terms such as 

'direction' and 'distance' Jose formal meaning when used with irregularly shaped objects, 

yet are critical for geographic data to be interpreted semantically. These terms would 

form the basis of a formal language for spatial representation. Such a language is the 

first step to fully automated spatial cognition, where an AI system could take a holistic 

view of geographic data and reason with it in a manner more akin to our own mental 

processes. In Section 4.3 the existing theories in the area were discussed. PIRATE itself 

provides an environment which could be used for further experimentation. This issue is 

crucial to future development, and it is hoped that someone will address it in the near 

future. 
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One fmal issue which merits continued attention is that of knowledge acquisition 

and the subsequent conversion of the acquired knowledge into a software representation. 

This research highlighted a some of the practical difficulties in the area, and solved a few 

of them. However, more formal research is needed as many of the projects that have 

contributed to the discipline so far have taken a 'trial and error' approach, rather than one 

based on a sound theoretical hypothesis which was subsequently proven true or false. For 

example, the author knows of no published material which deals with the problems of 

knowledge acquisition in domains with a high spatial or geographic data content. This 

will become an increasingly acute problem as more AI systems are applied in disciplines 

such as GIS and engineering design. 
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GLOSSARY 

Access Oriented Programming- a programming technique which uses daemons 
attached to frames to create a dynamic program which responds when the data 
in the frame hierarchy changes. 

Agenda- in forward chaining only - a list of rules that could possibly fire given the 
current state of the facts base. The list is usually ordered according to some 
priority, and when complete the top rule is fired. If this causes changes to the 
facts in the facts base the rest of the agenda will become invalid and must be re­
compiled 

AI Toolkit - A programming and a user environment where a variety of different AI 
techniques are available. Usually based on a core AI language like Lisp, and 
having a variety of interfaces and programming and debugging aids. 

Assert -verb: assert- to state that a fact is true, to place a fact in the facts base.- noun: 
assertion - a fact that has been placed in the facts base 

Backward Chaining - the opposite to forward chaining - where an individual fact, or 
goal, needs to be proven. The THEN parts of rules are checked to see if they 
could possibly prove the goal, if so the IF parts are checked and any items 
issued as sub-goals if not found in the facts base. the system propagates until 
either a goal is proven, or is unproven. This method uses minimal processing to 
find individual facts as they are needed. cf forward chaining. 

Bi-directional Reasoning - a method by which both forward and backward chaining are 
used, with the intention of gaining from the advantages of each 

Daemon - a procedural function which is attached to the slot of a frame, and is executed 
when the value in the slot is modified or accessed. 

Expert -in knowledge engineering- also domain expert- some person who has 
expertise in the subject that an expert system is intended to help with. 

Expert System- a knowledge based system which has been built specifically to model 
the expertise of a real expert in a 'real world' problem - a practical application of 
a knowledge based system 

Expert System Shell - An expert system with nothing in the knowledge base. Often sold 
as a software package for the user to fill the knowledge base with his own rules 
- a quick way to write an expert system. 

Facts Base - an occasionally used term- refers to the categoric facts that are known to 
an AI system, as opposed to the rule base which is primarily using the facts in 
the facts base to infer new information. 

Forward Chaining - where rules in a knowledge base are used in a way that checks the 
IF parts of the rules. If any are satisfied it fires the rule to infer new facts. The 
method ensures that all possible facts are discovered given a set of known facts 
and rules 

Frame - A collection of attributes or properties which describe a type or class of objects. 
Frames can build up into a hierarchy, like a family tree, with child frames 
inheriting the attributes of parents. Frames do not represent individual objects­
see instance 
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GoldWorks - A commercial AI toolkit built around a Lisp language core. The second 
version, GoldWorksll, is built within the Microsoft Windows environment and 
provides a full graphic user interface and facilities for the user to create his own 
GUI 

Graphic User Interface (GUI)- An interface to the user that has a graphic capability, 
using a 'mouse' and menu operation. In some cases the GUI will also display 
detailed graphic data, such as maps and drawings. 

Inference - verb : inferencing - to use a rule to infer, or state the existence of, a fact 
because of the existence of other facts. - noun: inference - a fact resulting from 
inferencing. 

Inference Engine - The program which uses rules to infer facts. It is classed according 
to the inference mechanism it uses, such as forward or backward chaining. 

Instance -The representation of an individual object which is a child of a frame. 
Instances hold slot values describing the object. 

Knowledge - information which is generally used to yield new facts given existing facts. 

Knowledge Base- a collection of pieces of knowledge, usually in software form as part 
of a knowledge based or expert system. 

Knowledge Based System (KBS) -an AI system where the knowledge element of the 
program has been explicitly separated from the rest of the system, such that it 
can be updated without making changes to the rest of the program. KBS are 
also said to have an inference engine, though this is not necessarily discrete 

Lisp - A language for LISt Processing. The core of the GoldWorks AI Toolkit and a 
popular AI language. 

Lisp List- a sequence, or array, of elements which can be numbers or symbols, and 
which are enclosed in brackets. The length of the list is not previously defmed 
and cannot be defined in advance. For example, (CAT DOG TROUSERS 3) is a 
list of elements - The basis of the Lisp language, in which all program code 
consists of lists, and lisp functions operate on data contained in lists. Lisp can 
thus operate on its own program code because of the identical structure. 

Message - in object oriented programming - a call which is received by an object telling 
a method to execute, or fire. 

Method - in object oriented programming - a method is a piece of procedural program, a 
function, which is attached to an object and executes when it receives a message 
to do so. 

Object- A term to describe an individual real world entity, or an abstract idea which can 
be described by its attributes. - in object oriented programming - a collection of 
property values describing a real world entity or abstract entity, together with 
methods which describe its behaviour. Objects can be arranged into an 
inheritance hierarchy like frames. 

Object Oriented Programming- a programming technique by which collections of 
objects and methods are defined, control being effected by the passing of 
messages between objects - many graphic user interfaces are written using 
object oriented techniques 

Procedure- a sequence of steps in a program which always occur one after another. 
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Recursion - a programming method where a function calls itself within itself. Used for 
dealing with data of unknown length and trees of data with unknown depth. A 
recursive function must contain a cut off condition, otherwise it will continue 
nesting into itself forever. An analogy is the visual effect of looking into a 
mirror whilst holding another mirror, aligned so that you see yourself in the 
mirror you are holding. The resulting 'tunnel' of mirror images is the function of 
the mirror recursing, and is theoretically infinite. 

Retract - verb: retract - to negate an assertion, to state that a fact is no longer true, to 
remove a fact from the facts base. - noun: retraction - the completed act of 
retracting, the fact that has been retracted. 

Rule Set- a collection of rules which are grouped together. - GoldWorks specific- a set 
of rules which can be excluded from chaining until needed, and can be used to 
implement bidirectional reasoning. 

Slot- A part of a frame. Slots are spaces for propenies which describe the object class 
represented by the frame. 

Slot Value- The value held within a slot, the actual propeny value of an object in an 
instance or frame 

Sponsor- GoldWorks specific - A way of grouping forward chaining rules. Each 
receives its own agenda. Sponsors exist in a parent/child hierarchy, though there 
is no inheritance, and can be turned on or off, which includes or excludes the 
rules within it in the chaining process. 

Symbol - A word which within a computer program refers to a real world object or 
abstract idea, for example DOG or BRIGHTNESS. The user, when he sees the 
symbol, equates it with the real world object that it represents. 

Window - in graphic user interfaces - an area of the screen dedicated to the display of a 
particular item or process. It can usually be moved and re-shaped by the user, 
and more than one window can exist on a computer screen at any one time. 
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A. TYPICAL TRANSCRIPT OF AN ELICIT ATION INTERVIEW 

The following transcript is from one of the unstructured interviews with Chas 

Willis, a pipeline design engineer with JP Kenny & Partners. The transcript illustrates 

many of the frustrations of the early interviews, including severe digression by the 

engineer, inappropriate case studies, spatial referencing with only audio recording, and a 

general lack of structure to the whole thing. The author was thoroughly bewildered 

during this interview, and struggled to maintain intelligent comments whilst trying to 

grasp the concepts involved. The transcript has been left in its un-edited form, complete 

with abbreviations and mis-spellings. The extract given here is approximately one tenth 

of the total transcription, but it gives a flavour of the work involved. 

INTERVIEWS WITII CHAS WILLIS 

JP KENNY &PTNRS. TAPE 2 SIDE 1, 

Missed 5 mins on sand waves, before putting tape on 

CHAS : Mech. on sand wave movements not well understood, but have been meas. 
and 30m pa meas. in some places. But edge of field doesn't move like this, 
the boundaries do not move a great deal, so if you can avoid a field 
completely & WHOLE JOB can avoid sand wave fields than you would 
seriously consider putting an extra pipelength in. 

LEE: but if you cannot avoid all, then you wouldn't worry? 

CHAS : that's right, you could look at the detailed survey and weave between the 
sand waves, but by the time they come to install it the sand waves have all 
changed anyway. Survey data year old. New survey done just before pipe 
inst., just before pre sweeping, but too late then. So sand wave field, go 
through. Rock ridges, make more effort to avoid. 

LEE : So you make more effort to avoid features that mean you req. extra eqpt. on 
site that you would not normally have needed? 

CHAS: Yes, specialist vessels cost lots to mobilise, say day cost is £10 000, but say 
£70 000 mobilization add on. 

LEE : So if you need it for a bit, you might as well use it for longer + go for a 
straighter route perhaps? 

CHAS: Yes, 

LEE : Rock ridges, are there any other problems, barriers, 

CHAS :not a lot of rock inS. North sea. LOts of chalk inshore with sand on top, not 
impossible to trench, but may need diff. machine. & poss diff. contractor, 
price blackmail. Monopoly, 

All pipelines to Bacton through chalk, cant really avoid it. 
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Not a real problem. 

Another project, sole pit pipeline runs from Bacton right up North to coal pit and sole 
pit. The water here down to about 70m. Deep compared with surrounding N 
sea. Pipes avoided deep bit but in otherwise sim. to last. Followed existing 
pipe lOOm away, up. Could then have diverged, but had better survey info 
close to existing pipe. so kept going, then to platform. Straight across up to 
12.5m deep, limit for barge, so followed exist pipeline a bit further around 
the bend, then in 18m water. Could have gone right around the sand bank, 
but that's a fair detour, and the sand bank at this point not shallow enough to 
be a problem so we cut through here. 

LEE : Ok, but you have to cross a telephone cable, + 2 gas lines. 

CHAS :phone cable dead so OK, except that chew up trenchers, so must cut cable 
using divers and pull away. Pipelines, cross older one by coming up out of 
the sea bed and spanning. the newer one (only in the season before) 
negotiations. in advance, so first pipe put in a lot deeper at that point. Our 
pipe crossing then a lot cheaper. On std. crossing the spanning structure is 
normally either bitumen mattresses or flexible concrete mats( blocks of cone. 
linked together with ropes. ). You can have other things, concrete plinths, 
steel structures etc, but not talking very high here. If existing pipeline on the 
sea bed, not below, height of structure bout .25m high so proper structure not 
reqd. You wouldn't have anything resting on top of the existing pipe. Thin 
mattress perhaps in case but not used for support. Normally must cover the 
whole lot with rock dump, as susceptible to vortex shedding and hooking 
trawl boards. One crossing maybe use extra mats, to avoid mobilising rock 
dump vessel, but say 3 +need scour protection for the platform then rock 
dump cheaper. All Thames pipeline rock dumped. 

The routing for the bet two platforms, sole I and .... The bed deepish, and slope steep, 
like holes in the sea bed, slope can be a problem, 5 d. OK, I 0 degrees say 
you need more tension to lay. Coast of Norway have very steep shore 
approaches, rocky, pre blasting, embankments to provide a smooth profile, 
doesn't affect the routing, because no matter where you go you still have to 
do the same. You can optimise to get a better profile, but you have to go 
across somewhere. Detail routing only. Even used a concrete tunnel once in 
20m sections, spanning from rock bit to rock bit, +pull pipe up tunnel. 
Support+ protection. Many solos. Blasting still gives bumpy bits, so divers 
have to rock dump, pour concrete etc. 

Main problems then : 1. existing pipelines 

2. sand banks 
3. sand waves 

Anchors pan of the positioning. 

LEE : how do you work out the anchor lengths ? 

CHAS : Get hold of one of the sketches that the contractors produced on the last job, 
and say "well it looked like this before so it will look like this again 
!"ANchor drawings were actually produced by the contractors, its their 
vessel so they know where they want to put their anchors. 

Back to wellandjob 

Consultants sometimes don't think. They put umbilicals in between the existing lines 
and a future pipeline in between 2 existing pipelines. Had only 25m spacing 
bet lines. trying to thread 2 new pipelines into a 75m gap bet 2 existing. 
STUPID!. Got all sand waves here re establishing, so need to sweep again, 
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but will damage existing pipelines. If you HAD to, it could be got around, 
but no need if another route could be found. Here you can. 

Welland: split pipelines and Umbs. as separate contracts, also pre sweeping ofUmbs 
is less as they bend more, so cheaper. Also aesthetics(?!). 

Because inst. costs are so high, you could sacrifice a lot of mat!. costs (route length ) 
to save a couple of days on the installation. Many vessels could be out there, 
and could be delayed by other operations, so must keep them busy. 
Separating small and large dia. lines could allow 2 diff. vessels to work 
simultaneously etc. 20 miles of 8" pipe on a reel, lay direction can be quite 
important as it takes a long time to get a barge from one end to the other. 
Speed 17km takes 2 days at tow speed (not lay speed!). 2 days at 100 000 
per day!. 

But, if you have a start up and a lay down at one platform you have to have 2 sets of 
procs. So harder. 

This job (welland) simplified as all lines laid before any of the tie ins are done. 
Otherwise anchors a problem, and may need to lay away rather than towards. 

LEE : How long to design a typical small pipeline ? 

CHAS : Not allowed to build a platform in a deep water shipping lane. Prelim design 
by John Brown in 2 3 months 6 months. Detailed design by us, could be just 
checking and expanding on the calcs, or proposing a completely diff. design 
and starting from scratch. Welland to be installed next year. 3-4 months for 
detailed design. Things like buying pipe takes a long time, so need to leave 
time for this. work out exactly how much pipe we need (verticals, wiggles, 
late obstructions not ace. for, weld qualifications, buckle repair). Need to 
order extra pipe for these eventualities. 

LEE : Wrecks? 

CHAS : cant lay over top, but can go close, and also lay close to avoid anchor 
handling snags. 

END OF TAPE 2 SIDE ONE ..... 

INTERVIEWS WITH CHAS WILLIS 

JPKENNY, 1ST AUGUST 1988, TAPE 2 SIDE 2 

LEE : When do you get your info ? 

CHAS : there are 3 stages to the design , conceptual, prelim. and detail, sometimes 
they overlap, or one may get missed out completely, Welland is detailed. We 
do the fiddly bits. 

Conceptual is were you say "we've got a field here and here and we want to join them 
. the prelim. might come up with diff. routes. You prob. wouldn't have 
enough envir. data for stability so make a wild stab. Cant incorporate detailed 
stuff into the prelim choice of the route. Ob. in shallow water there is more 
of a stability problem, so needs more concrete. 

Getting env. data is often a prob. for prelim design. More data at an existing platform, 
or even at a proposed platform, but along a route may be years out of date 
and sketchy. TOpographic is perhaps reasonably reliable but not accurate 
enough. SOle Pit job : comparison of alternatives. gave detailed survey data 
of the route following existing pipeline +copies of prev. surveys for diff. 
pipelines which had followed this alternative route. But not detailed enough 
to directly compared. Little wiggles in surface stated as meggaripples, no 
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size indication. But in first survey showed more detail. So could work out pre 
sweeping etc immed. Other route needed new survey. (additional cost just to 
compare the two routes, no ind. that any was better, so didn't bother with 
other survey). Stayed with well surveyed route. 

Admiralty charts not good enough. 

Survey provided by client for route design. Look like pipeline alignment sheets, 
should provide contours , bathymetric detail, existing pipelines , and a prelim 
route profile, chosen in prelim route design. 

LEE : Do you do prelim designs ? 

CHAS: Yes. 

LEE : What info did you have for that ? 

CHAS : Only prev surveys done for prev jobs. plus admiralty charts which are not 
detailed enough to make any detailed decisions. Ok, you can see the sand 
banks but not much more than that. extrapolate from old pipeline surveys in 
area. Cant survey whole lot so must decide on a restrictive corridor before 
surveying. 

LEE : How wide corridor ? 

CHAS: As wide as you like but it just costs more money! Usually, lOOm ish wide 
and to do this maybe 5 runs of the route by survey ship reqd. 

LEE : But how do you decide on the corridor route ? 

CHAS :In this area (Welland) do what the other pipelines did! (as 1st stab). In wide 
open spaces you prob go for the straight line approach ! until you hit a 
problem. 

Other restrictions, up north in the sole pit devpt a block was owned by Ranger Oil, 
and they said "you cant put a pipeline here cos we want to drill here ! ! ". We 
had to divert during detailed design and re survey. 

LEE : Do you get your sand bank info from the Admiralty Charts (ACs) ? 

CHAS : Unless someone else has surveyed, the AC is all we have. BUt see AC 
caution "depths derived from lead line surveys between 1886 to 1931, the 
charted depths cannot be relied upon" (!!!)So you know roughly, but cannot 
take the actual readings literally. 

So after rough route do a single line survey, if flat all along, suppose that small devs. 
in route will be Ok. You will eventually req a detailed survey, but don't need 
for prelim design. But if general terrain characteristics show many features 
of significance then you couldn't realign by 5km without a re survey. 
Normally the detail design doesn't change the route. SO stay within the detail 
survey corridor and can wiggle as much s you want. straying outside gives 
problems because you only have very sketchy information outside the 
corridor. 

We had the problem with the Thames flowline that, we started running parallel to an · 
existing pipeline, 1 OOm apart, nice, no anchor problems; then dev towards 
the well. That was when we were doing the startup from the platform leg. 
Because they eventually turned around and said we had to start from a 
normal anchor in the opposite direction. We couldn't get parallel this way 
without being farther away (250m), +outside the detailed corridor. So more 
survey work had to be carried out. 

This whole area is sand waves. size 3m, not severe but enough to analyse prior to 
deciding whether to pre sweep. These (x sections?) have a 20: I vt. to hz. 
distortion, enough so that things that look alright are not, and vice versa. But 
not very detailed. At 40: I you see the shape of the sea bed a little bit more, 
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but even more confusing. A pipe span that would be acceptable would look 
like that. It looks silly. the curvature of the sea bed looks different depending 
on the slope. What looks like a big lump at the top of a sand wave, if it was 
half way down the side it would disappear in the plotting. 

LEE : I notice you have some info. about soils here. is that normal 

CHAS : All provided by the client as a result of the surveys for conceptual routing, or 
taken from surveys for prev. jobs. Much is guesswork. They show horizons 
etc but sometimes they draw conclusions which really are not justified, even 
though it is clearly marked on the plan! Other times they give you data which 
is so vague and woolly, that you can't use it. 

On Sole Pit job we knew that the chalk was outcropping in places in the first few 
kilometres, until at 20km it was about 4m down and so no longer of 
consequence. But it was only after nearly fmishing the job that we found that 
within the 1st km the chalk didn't actually outcrop, but it was only 200mm 
below, so trenching was tricky, but closer still it was deeper again. So we 
changed the length of the shore approach to minimise the crossing of the 
chalk layer. The shore approach was (pre )dug in the thick sand, and the 
pipeline was laid on top of the chalk in the thin sand, and then trenched to its 
abs min reqmt afterwards. But this info was only found when they did an 
extra detailed survey AFTER we had done the detailed design. 

LEE : * so is it all basically guesswork until you get the reqd info to back you up ? 

CHAS : Guesswork is perhaps not a good word to use .... but its not far wrong. The 
topo and env data is usually lagging behind interms of time. I suppose 
because it takes time to get the surveys done etc. but also the investment. It 
cheaper to have a guy at a desk doing calcs. than it is to have a boat out so 
you don't do a survey until you need it. .. 

LEE: and have gone as far as you can with the other info. 

CHAS :A lot of interpolation+ extrapolation is better than "guesswork". 

LEE: Hmmmmmm 

CHAS : * Another of the factors we were talking about: platform approaches. 
Welland pipeline heading 

LEE: We are looking at a plan of the Welland field facilities 

CHAS : (explaining how old design crossed unnecessarily other pipelines Not 
relevant) min IOOOm rad for a large pipeline. We've been using 1500m. Its 
not until you know how heavy the line is, by doing the detailed design, that 
you know the min radii for the pipe. Depends on the lateral friction. If you 
lay it on too tight a curve it will simply straighten itself out before it gets 
trenched, an elastic effect, friction depends on the weight. 

In the routing you stick to nice round numbers ( eg 1500m)for radius as the 
contractors don't like doing it and they wouldn't guarantee the accuracy of 
the curvature. 

Telephone repeater station. BT Couldn't guarantee the position of it within 200m. 
Also not allowed to be within 500m. When crossing an existing pipeline its 
very hard to do in a curve. The curvature relies on bottom friction, so when 
the pipeline is lifted onto suppons, you haven't got the same friction and the 
pipeline will straighten. V. Large curves might be OK. 

Tie in spools must be kept short. lOOm is very excessive. 

LEE: Back on the air!!! We are looking at detailed design. 
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CHAS :Must consider future plans for platforms etc. in the routing of the pipeline. 

LEE : at the time you design the line you have this information ? 

CHAS : We were effectively given this drawing showing that platform, that platform 
and that platform. Saying you have to avoid these. They may tell you later 
that they have moved the platform and you have to move the line. 

LEE : But you wouldn't be guessing that a platform might be there, say 

CHAS : No, they would be definite or none at all. Here we have an alternative jack 
up site because one of the companies they may use has this enormous great 
rig. (The jack up rig cantilevers over the platform and drills through the 
platform.) 

[Looking at another job with Pis coming into a platform. I am not sure which platform ... ] 

LEE : So I think the problems are concentrated around these rigs are they not ? 

CHAS : they've ben shown (the pipelines ) as coming in only 5m apart. and at the lay 
down pts that is about as close as you can get. a target zone (shallow water 
35m) would be 4m wide. You could say tat the pipeline will definitely be 
within this zone and an axial tolerance of 5m. But if one PI is at one side of 
its zone and the other at the other then they are only lm apart. Not good, as 
you have no access for eqpt. The only way you could get a 5m to!. is to lay 
the 1st pipeline and re survey precise posn., relocate the 2nd plan then lay it. 

But the client dwg is wrong cos they showed the top od the platform not the bottom, 
so we had more space. and we can get a lOm gap. They diverge to 50m then 
run parallel to the wells. 

LEE : where is the export line? 

CHAS : that's this one. It goes straight. 

One reason they stay together is for the ease of anchor handling, another is that it si 
easier in the future for other people to say " there are Pis in this CORRIDOR 
here", Pis all over would cause AH probs in the future so it helps everyone 
else to keep a corridor. But wouldn't go out of the way to do this just for 
other peoples convenience. It has to be better and cost less etc too. 

This deep water shipping channel (DC) is guaranteed 25m deep. We couldn't put a 
platform in it but we can put well heads in as long as they are not too tall. In 
prelim design they thought that instead of going at an angle across the deep 
water shipping lane they would go straight across, minimising the time in the 
channel. This does not affect the pipeline once installed but any vessel 
movements in the deep water shipping lane have to be coordinated with 
shipping movements. you couldn't have 3 vessels wandering in the deep 
water shipping lane cos there might be a bloody great tanker coming along. 

LEE : so they might snag your anchor lines or something ? 

CHAS :Well no, they would be sure to stay far enough away to avoid that, its far too 
expensive. So if you had as few ops as possible within the deep water 
shipping lane it would be better, but as they are putting in well heads 
anyway, and each will req a jack up rig in the middle of the deep water 
shipping lane. So you cant avoid, or even minimise it, so just ignore it ! To 
avoid you would have to move the wells somewhere else. 

LEE : so then you would have to slant drill ? 

CHAS :Well no, you cant drill that far. You can drill a km or so I think, dep on the 
depth. The coords are in trans mere proj, but ACs in geographical coords. 

LEE : Do you do much work for BGC ? 
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CHAS : No, Did an assessment for Rough for reuse of pipelines. Also did 
Morecambe for HGB. Flat, straight, shallow. platform inst cons were much 
more important in this case. 

end of tape 2 side 2 AT LAST ................. ! 
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B. PAPER MODEL OF TFIE PIPELINE ROUTING PROCEDURE 

Two aspects of pipeline route design had to be considered prior to the 

development of an PIRA 1E, these being the work flow associated with the design 

process, and the rules used to make judgements during the design. The following text 

is derived from knowledge elicitation interviews with a pipeline engineer from JP 

Kenny & Partners. It gives the pipeline design work flow as he perceives it, illustrated 

through a particular example pipeline project called the Pickerill Field Pipeline in the 

UK section of the North Sea. After the process was written down, it was returned to 

the engineer for verification, and changes suggested by him have been incorporated in 

the text below. 

1. Engineers receive contract, start and finish points, details of the material to be 
transported (oil or gas), provisional pipe diameter and Codes of Practice 
to be followed. Admiralty Charts (ACs) and Telecom Cable route charts 
are also available for the North Sea region. 

2. Identify end points of the pipeline on AC. Consider a straight line route with 
respect to: 

Bathymetry 
Existing Installations/pipelines 

In particular identify areas where : 

Dredging- required for lay barge access 
Steep Slopes- may cause overstressing etc. 
Other Known Uses are made of the sea bed (Eg. anchor zone) 
Existing Pipelines and other man made obstacles 
Areas Of Known Geologic Difficulty 

3. Consider routes which avoid the obstacles hit by the straight line route. 

4. Assess these alternatives with respect to : 

Reduced cost due to avoiding obstacle 
Increased costs due to extra pipeline length 
Any other problems hit by the diverted pipeline 

5. Possibly amend any alternative routes to avoid the obstacles encountered. 

6. Discard non-feasible or non-economic alternative routes and select those for 
further study. 
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7. Produce preliminary comparative castings between selected routes and assess 
these prior to requesting surveys. 

[Time taken for points 1 to 5 approx. 2 weeks, further time for points 6 
and 7 approx. 2 weeks per alternative line. this includes drawing 
production] 

In this preliminary costing the basic comparison includes:­

Material Costs 
Dredging Costs 
Lay Barge Costs 
Pipeline/cable Crossings 
Trenching Costs (Preliminary as sea bed sediments not known) 
Blasting Costs 
Diver Costs (other than basic diver support) 

8. The specification for the required detailed surveys are decided upon and the 
survey is requested. 

9. Survey results obtained- Results of the survey are generally over a 600m wide 
corridor unless otherwise requested. For the Pickerill pipeline the 
following types of data were obtained:-

- A contour map showing : 

- Surface Conditions 
-Wrecks 
- Other Unidentified/identified Obstructions 
-Line Of The Pipeline 
• Ship Tracks 

- A contour map of the depth of the first sub-surface change in soil type. 

- A sectional profile along the route showing : 

• Sub Bottom Profiler Results 
- Soil Conditions At Various Depths 

- Borehole results were also given at an average of 500 metre intervals along the 
pipeline route. 

10. Once the survey results have been obtained an off-shore survey review is 
produced by JPKenny, which is essentially a summary of the survey and 
the way it affects the pipeline routes proposed. Particular attention is paid 
to the more accurate bathymetry now available. In the Pickerill case the 
passage of construction vessels and related dredging requirements could 
only at this stage be accurately estimated. 

Also the knowledge of sediment occurrences now makes a detailed analysis of 
trenching possible. Obstacles which are positively identified along the 
pipeline route may involve moving the route slightly to avoid the 
problem, though usually the route remains within the surveyed corridor. 

The presence of bedforrn activity can also be more accurately identified and 
pre-sweeping requirements assessed. 
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11. Some route optimisation may be attempted at this stage (for example on the 
Pickerillline in areas where dredging is complex and significant). In 
practice, however, the assessment of large numbers of alternatives is not 
attempted as it is too tedious and time consuming. Only clearly 
advantageous lines are addressed in isolation. 

12. A full cost analysis of the chosen alternative(s) is then produced. The client, 
who receives this, usually decides finally on which route alternative to 
use. Once again, depending on client requirement, these costings may be 
comparitive rather than absolutely accurate, using last years prices and 
other simplifications. 

13. A full report and all necessary drawings are produced, and areas of unusual 
bedforms may be analysed for pipe stress and spanning problems. 
Environmental conditions, though not normally critical in the North Sea 
except in shallow water, will also be considered in the report. 
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C. PAPER MODEL OF THE PIPELINE ROUTING RULES 

This appendix gives a summary of the rules found during knowledge acquisition 

for the PIRATE system design, Chapter 5. The rules relate to pipeline routing, and 

essentially give a paper model of the knowledge needed for pipeline design. The rules 

are given in natural English, and specific values in brackets refer to the particular 

limits used for the Sable Island Gas Pipeline project, which is described in Chapter 8. 

Overall route optimisation is based on minimising cost whilst achieving an 

acceptable standard of safety. Each feature or constraint on a particular route is 

considered with respect to the planning, installation and operation of the pipeline. 

Essentially it must be discovered whether it is safe for a pipeline to traverse a feature, 

and this being so how much it will cost. Costs are both capital and revenue, applying 

to the installation and future operation of the pipeline. 

Routes are compared under the following categories : 

Bathymetry 
Sediment Transport 
Underlying and Surficial Geology 
Environment 
Fishing and Man Made Obstructions 
Platform Approach 
Future Tie-ins to Other Lines 

The following sections deal with the specific rules which are relevant under 

each of the above categories. The format of the rules under each category is a bulleted 

list. In this list a dash . (-) stands for factors affecting the category or limiting 

values, whilst a double dash · :(=)gives the resulting effects that the existence of 

a category will have. Values mentioned in brackets are specific values taken from the 

Sable Island Pipeline Project, and are considered typical. 

1. BATHYMETRY 

DEPTH !• 

Maximum Depth 

- 200 metres 
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=Beyond this special pipe lay vessels are needed and pipe laying becomes 
difficult 

Minimum Depth 

- Draught oflay vessel (10 metres) 
=Beyond this dredging will be required to allow the lay vessel to pass. 

Alternatively other methods of pipe laying could be considered, for example 
pulling the pipe from the shore 

Wave Affected Depth 

- Max affected depth= 1/2 Wavelength of surface waves (60 metres) 
=Less than this depth means that the sea bed will be affected by wave activity. 

This has implications for both the occurrence of active bedforrn features, 
megaripples for example, and the stability of an un-trenched pipeline. Stresses 
caused by wave currents would need to be analysed 

SLOPES 

Steep Slopes 1 

- General (no specific classification figure found) 
- Within 2.5 kilometres of the route 
=Anchor handling difficulties. Steep slopes can cause snagging of anchor 

cables. More prevalent in shallow water where undulations and slopes can 
cause cables to snag as the lay vessel moves forward. 

Steep Slopes 2 

- Greater than 3° in fine sediments 
- Greater than 6° in coarse sediments 
- On the pipe route itself 
=If the pipe crosses a steep slope, it should be directed to do so perpendicular 

to the line of the slope so as to minimise the risk of movement due to slope 
slippage. Steep slopes can cause overstressing in the pipeline which would 
require analysis. Also there is the possibility of free spans occurring due to 
rapid slope changes along the pipe, which will present difficulties with vortex 
shedding due to currents and may snag fishing gear. Steep slopes also 
necessitate an increased lay tension from the pipelay vessel, possibly leading 
to a larger pipelay vessel being needed. 

2. SEDIMENT TRANSPORT AND BED FORM ACTIVITY 

SEDIMENT TRANSPORT:-

Sediment Overspill Areas 

- Slope steepness 
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- Sediment type 
- Current and wave effects 
- Occurrence near enough to affect the route 
= If sediments are moving onto the pipe route it can cause movement, 

overstressing and excessive burial. If sediments are moving away from the 
pipe route it can cause exposure of the buried line, localised spanning, vortex 
and scour problems. 

BEDFORM ACfiVITY 

Sand Ridges and Sand Waves 

-Wave height (3 - 7 metres) 
-Wave length (300- 3000 metres) 
- very low curvatures 
- longitudinal, the crest runs in the same direction as the current 
=Generally sand ridges have little effect. The crest profile may need pre­

sweeping to avoid overstressing or spanning. Also if they are very mobile they 
could cause re-exposure problems. 

Sand Ribbons 

- Wave Height (minimal) 
- Longitudinal 
= Sand ribbons have no effect on the route, but can indicate areas of high 

current activity. 

Megaripples 

-Wave Height (0.5 - 1.5 metres) 
-Wave length (15- 29 metres) 
- Transverse to currents 
- Curvatures relatively high 
= Megaripples can cause overstressing, spanning and re-exposure of the 

pipeline. The pipeline is generally trenched to below the level of the 
megaripple troughs to avoid re-exposure. 

3. SURFICIAL AND UNDERLYING GEOLOGY 

SURF1CIAL GEOLOGY 

Surficial Sediment 

- Sediment type 
- Sediment thickness 
- Sediment properties 
= Affects ease and cost of dredging and trenching. It may also affect pipeline 

stability. Affects classification of steep slopes, formation of mobile bedforms, 
anchor stability and holding force. 
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Surficial Boulder Fields 

-Rock type 
- Density of boulders (number per 100 square metres of sea bed) 
- Average boulder size 
= Affects laying of pipe. All surficial boulders in the way of the pipeline must 

be removed by lifting or blasting. Boulders can also cause anchor cable 
snagging, and if mobile can be a continual threat to the pipeline, which in this 
case should be trenched where possible. 

Surficial Rock Outcrops 

-Rock Type 
- Protrusion height 
-Roughness 
=Basically they need to be avoided as the pipe will require support over the 

outcrop or a trench must be blasted through it. Depending on the protrusion 
height and the extent of the outcrop, anchor handling becomes very difficult. 

. Spanning, overstressing and pipe stability will all be problems. 

UNDERLYING GEOLOGY 

Underlying Sediment 

- Depth of interface with surficial sediment 
- Sediment type 
- Sediment thickness 
- Sediment Properties 
=Depending on the interface depth the underlying sediment can affect 

trenching, dredging, formation of mobile bedforms and anchor holding 
strength. 

Underlying Solid Rock 

- Depth of interface with surficial sediment 
-Rock type 
-Rock contiguity 
-Roughness 
= Depending on the interface depth this can affect trenching, dredging, 

formation of mobile bedforms and anchor holding strength. 

Underlying Boulder Fields 

- Minimum depth below surface 
- Mean depth below surface 
-Rock Type 
-Density of boulders (number per lOO square metres of sea bed) 
- Mean Boulder size 
= Depending on depth below surface, boulders can affect trenching and 

dredging activities. 

224 



4. ENVIRONMENT 

No specific rules were elicited for environmental effects, but the following 

factors need to be considered: 

Currents caused by 

-Wind shear 
-Waves 
-Tides 
- Residual currents (for example the Gulf Stream) 

Routes must avoid shoaling caused by breaking waves. Environmental stability 

for the pipeline most be provided, by trenching or concrete coating for example. The 

wave induced component does not affect depths in excess of 1/2 the wavelength. Tops 

of banks and other sharp relief features can cause increased current loading. 

5. MAN MADE AND NATURAL HAZARDS 

FISHING 

Bottom Feeder Fishing 

-Fish type 
- size/type of trawler gear 
- Sensitivity of the fish habitat 
= Trenching may be required in these areas to prevent snagging of trawler 

boards and other fishing gear. 

Shellfish Beds 

- Harvesting Methods 
- Sensitivity of the environment 
= Effect of pipeline on the environment and in particular the habitat of the 

shellfish. Collection methods may also interfere with or be obstructed by the 
pipeline 

MAN MADE OBSTRUCTIONS 

Wrecks 

-Size 
-Location 
- Ownership/value/ protection status 
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- Protrusion above the sea floor 
= Must avoid wrecks as they are a direct obstacle to the pipeline which are 

difficult to destroy. They can also cause anchor cable snagging, such that if 
wrecks are to be avoided the modified route will usually pass close (50 - 100 
metres) rather than fanher away where the anchor cables from the pipelay 
vessel would be more likely to snag. Pipelay vessel anchors can have a spread 
of over two kilometres. 

Wellheads 

-Location 
- Protrusion above the sea floor 
-Ownership/operating Status 
- Access clearance requirements 
- Exclusion zone radius 
=Wellheads need to be avoided. 

Cables and Existing Pipelines 

- Surface/buried 
-Ownership 
- Used/decommissioned/permanently disused 
- Ease of crossing 
- Permission to cut through 
= Crossing existing cables and pipelines is expensive and should be avoided 

wherever possible. Permanently disused cables may be cut. 
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D. A TYPICAL PIPELINE COST BREAKDOWN 

The following cost breakdown is for the Base Case Route of the Sable Island 

Pipeline Project, used as the case study to test the PIRATE system. The actual values 

of the component costs are based on historical data used by JP Kenny engineers, 

rather than current commercial costs and rates. This section is intended not only to 

give the reader an appreciation of the magnitude of financial investment needed to 

install a pipeline, but also to show the proportion of the cost conferred by each part of 

the project 

EXAMPLE COSTS FoR THE 263 KILOMETRE BASE CASE ROUTE 

Materials 

Line Pipe 
Corrosion Coat 
Concrete Coat 
Other Items 
Total Material Costs 

Construction Costs 

Lay Vessel 
Mob/Demob 

Number of Days Needed 
263km/1.95km per day= 135 

Add extras, contingency and weather downtime 
135 days +53 days = 188 days 

Day Rate = $460,000 
Operating Cost 
TOTAL 

Dive Support Vessel 
Mob/Demob 

Operating Time= 51 days+ 35% downtime 
Day Rate= $120,000 
Operating Cost 
TOTAL 

Trenching Spread 
Mob/Demob 

Output Quantity= 3.5km/day (single pass) 
Day Rate = $200,000 
No. of days needed= 89 + 25% downtime 
Operating Cost = Ill x $200,000 = 
TOTAL 

Sea Bed Preparation (Blasting) 
Mob/Demob 
Time needed= 60 days + 30% downtime 

227 

$72,135,000 
$21,418,000 
$17,698,000 
$20,349,000 

$131.600.000 

$6,900,000 

$86,480,000 
$93.380.000 

$2,400,000 

$8,280,000 
$10.680.QQ() 

$3,000,000 

$22,200,000 
$25.200.000 

$2,400,000 



Day rate = $200,000 
Operating Cost 
TOTAL 

Shore Approach- TOTAL 

Surveys 
Pre-lay 
As laid 
As built 
TOTAL 

Testing Finished Line 

SUMMARY COSTS : 

Total Material Costs 
Taxes and Duties 
TOTAL 

Total Installation 

Total Materials and Installation 

Insurance@ 4% 

Contingency@ 13% 

Project Management/Engineering@ 8% 

TQTAL MARINE PIPELINE CQST 
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$ 
$ 
$ 

$ 

$ 

$ 

$ 

$ 

$ 

$15,600,000 
$18.()()().()()() 

$5 .()()().()()() 

$1,490,000 
$3,300,000 
$1,650,000 
$6.440.()()() 

$5 .061.()()() 

121,500,000 
10,100,000 

131,600,000 

164,740,000 

296,340,000 

11,850,000 

40,060,000 

27,860,000 

316, llQ,OOO 



E. GOLDWORKSII RULES USED IN THE SABLE ISLAND CASE 
STUDY 

(define-rule megga-trench-rule-1 
( 

:explanation-string "If a megaripple field is passed through then the normal remedial 
action is trenching. The trench depth is the sum of the pipe diameter, the minimum 
cover required above the pipeline, and the wave height of the megaripples in the field. 
The pipe has to be trenched to avoid spanning, vortex shedding and possible collision 
damage with anchors, trawl boards etc. In this case the trench requires only one pass 
of the trencher, according to the maximum cutting depth of GENERIC-TRENCHER." 

:direction :backward 
:dependency t) 
(instance ?attrib is meggaripples 

with wave-height ?ht) 
(instance generic-trencher is trenchers 

with max-cutting-depth ?cut·d) 
; (instance generic-pipe is pipe 

with diameter ?dia) 
;CHANGED ABOVE TO BELOW 24TH NOV. 1990 

(instance design-para-! is design-parameters 
with chosen-pipe-diameter ?dia) 

(instance design-para-! is design-parameters 
with min-cover ?cover) 

(bind ?reqd-cut 
(+?cover ?dia ?ht)) 

( <= ?reqd-cut ?cut-d) 
(bind ?data-list (list 'trenching ?reqd-cut 1)) 
then 
(instance ?attrib is meggaripples 

with remedial-action trenching) 
and-then 
(instance ?attrib is meggaripples 

with data-l ?data-list) 
(comment 

"In the case of trenching, data-l stores the depth of required cut as the second 
element and the third element is the number of passes required with the generic · 
trencher")) 
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(define-rule megga-trench-rule-2 
( 

:explanation-string "If a megaripple field is passed through then the normal 
remedail action is trenching. The trench depth is the sum of the pipe diameter, the 
minimum cover required above the pipeline, and the wave height of the megaripples 
in the field. The pipe has to be trenched to avoid spanning, vortex shedding and 
possible collision damage with anchors, trawl boards etc. In this case the trench 
requires more than one pass of the trencher, according to the maximum cutting depth 
of GENERIC-TRENCHER. The number of passes is given in the third element of the 
data-l list" 

:direction :backward 
:dependency t) 

(instance ?attrib is meggaripples 
with wave-height ?ht) 

(instance generic-trencher is trenchers 
with max-cutting-depth ?cut-d) 

; (instance generic-pipe is pipe 
; with diameter ?dia) 
; CHANGED ABOVE TO BELOW 24TH NOV. 1990 

(instance design-para-! is design-parameters 
with chosen-pipe-diameter ?dia) 

(instance design-para-1 is design-parameters 
with min-cover ?cover) 

(bind ?reqd-cut 
( + ?cover ?dia ?ht)) 

(> ?reqd-cut ?cut-d) 
(bind ?no-of-cuts 

( + .999 (I ?reqd-cut ?cut-d))) 
(bind ?int-no-of-cuts 

(truncate ?no-of-cuts)) 
(bind ?data-list (list 'trenching ?reqd-cut ?int-no-of-cuts)) 

;;;NB changed last arg above from ?no-of-cuts 21/11/90 
then 
(instance ?attrib is meggaripples 

with remedial-action trenching) 
and-then 
(instance ?attrib is meggaripples 

with data-l ?data-list) 
(comment 

"In the case of trenching, data-l elem 2 =depth of reqd cut, data-l elem 3 is number 
of passes required with the generic trench er")) 
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(define-rule boulder-trench-rule-1 
( 

:explanation-string "If a boulder field is passed through then the normal remedail 
action is trenching. The trench depth is the sum of the pipe diameter and the minimum 
cover required above the pipeline. The pipe has to be trenched to avoid possible 
collision damage with other boulders migrating. In this case the trench requires only 
one pass of the trencher, according to the maximum cutting depth of GENERIC­
TRENCHER." 

:direction :backward 
:dependency t) 
(instance ?attrib is boulder-field 

with density-of-boulders ?density) 
(instance generic-trencher is trenchers 

with max-cutting-depth ?cut-d) 
; (instance generic-pipe is pipe 
; with diameter ?dia) 
;CHANGED ABOVE TO BELOW ON 2411! NOV. 1990 

(instance design-para-! is design-parameters 
with chosen-pipe-diameter ?dia) 

(instance ?design is design-parameters 
with rnin-cover ?cover) 

(bind ?reqd-cut 
( + ?cover ?dia)) 

( <= ?reqd-cut ?cut-d) 
(bind ?data-list (list 'trenching ?reqd-cut 1)) 
then 
(instance ?attrib is boulder-field 

with remedial-action trenching) 
and-then 
(instance ?attrib is boulder-field 

with data-l ?data-list) 
(comment 

"In the case of trenching, data-l elem 2=depth of reqd cut, data-l elem 3 is number 
of passes required with the generic trencher")) 
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(define-rule boulder-trench-rule-2 
( 

:explanation-string "If a boulder field is passed through then the normal remedail 
action is trenching. The trench depth is the sum of the pipe diameter and the minimum 
cover required above the pipeline. The pipe has to be trenched to avoid possible 
collision damage with other boulders migrating. In this case the trench requires 
multiple passes of the trencher, according to the maximum cutting depth of 
GENERIC-TRENCHER." 

:direction :backward 
:dependency t) 

(instance ?attrib is boulder-field 
with density-of-boulders ?density) 

(instance generic-trencher is trenchers 
with max-cutting-depth ?cut-d) 

; (instance generic-pipe is pipe 
; with diameter ?dia) 
;CHANGED ABOVE TO BELOW ON 24TH NOV. 1990 

(instance design-para-1 is design-parameters 
with chosen-pipe-diameter ?dia) 

(instance ?design is design-parameters 
with rnin-cover ?cover) 

(bind ?reqd-cut 
(+?cover ?dia)) 

(> ?reqd-cut ?cut-d) 
(bind ?no-of-cuts 

(+ .999 (/ ?reqd-cut ?cut-d))) 
(bind ?int-no-of-cuts 

(truncate ?no-of-cuts)) 
(bind ?data-list (list 'trenching ?reqd-cut ?int-no-of-cuts)) 
then 
(instance ?attrib is boulder-field 

with remedial-action trenching) 
and-then 
(instance ?attrib is boulder-field 

with data-l ?data-list) 
(comment 

"In the case of trenching, data-l elem 2=depth of reqd cut, data-l elem 3 is number 
of passes required with the generic trench er")) 
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(define-rule diver-support-for-boulders-1 
( 

:explanation-string "When boulder fields have a boulder density greater than 40 
boulders per 100 square metres, intensive diver support is required to clear the 
pipeline route." 

:dependency t 
:direction :backward) 
(instance ?bou is boulder-field 

with density-of-boulders ?den) 
(> ?den40) 
(bind ?att (list 'diver-support 'intensive)) 
then 
(instance ?bou is boulder-field 

with remedial-action diver-support) 
and-then 
(instance ?bou is boulder-field 

with data-l ?att)) 

RULES FOR DEFINING DESIGN PARAMETERS 

(define-rule min-cover-requirement-british-1 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter of 0.45m or less need a minimum 

cover of 0.3 metres" ) 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used british) 

( <= ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min·cover 0.3)) 
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(define-rule min-cover-requirement-british-2 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter greater than 0.45m need a cover of 

.4 metres") 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used british) 

(> ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.4)) 

(define-rule min-cover-requirement-canadian-1 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter of 0.45m or less need a minimum 

cover of 0.4 metres in the Canadian code (example- verify figures)" ) 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used canadian) 

( <= ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.4)) 
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(define-rule min-cover-requirement-canadian-2 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter greater than 0.45m need a cover of 

.5 metres in the Canadian code (example- verify figures)") 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used canadian) 

(> ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.5)) 

(define-rule min-cover-requirement-united-states-1 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter of 0.6m or less need a minimum 

cover of0.25 metres in the United States code (example- verify figures)") 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used united-states) 

(<= ?dia .6) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.25)) 
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(define-rule min-cover-requirement-United-States-2 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter greater than 0.6m need a cover of 

.35 metres in the United States code (example- verify figures)") 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used united-states) 

(> ?dia .6) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.35)) 

(define-rule min-cover-requirement-Norwegian-! 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter of 0.45m or less need a minimum 

cover of 0.3 metres in the usual Norwegian code as complied by Det Norske Veritas 
(example- verify figures)") 
(instance ?des-par is design-parameters 

with chosen-pipe-diameter ?dia 
with national-code-used norwegian) 

( <= ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.3)) 
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(define-rule min-cover-requirement-Norwegian-2 
( 

:direction :backward 
:dependency t 
:explanation-string "All pipelines with a diameter of greater than 0.45m need a 

minimum cover of 0.4 metres in the usual Norwegian code as complied by Det 
Norske Veritas (example- verify figures)") 

(instance ?des-par is design-parameters 
with chosen-pipe-diameter ?dia 
with national-code-used norwegian) 

(> ?dia .45) 
then 
(instance ?des-para is design-parameters 

with min-cover 0.4)) 

(define-rule total-trenching-british-1 
( 

:direction :backward 
:dependency t 
:explanation-string "Pipelines less than .45 metres in diameter have to be trenched 

throughout according to British codes of practice") 
(instance ?des-par is design-parameters 

with national-code-used british) 
then 
(instance ?des-par is design-parameters 

with total-trenching-limit-diameter 0.45)) 
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(define-rule total-trenching-canadian-1 
( 

:direction :backward 
:dependency t 
:explanation-string "Pipelines less than 0.3 metres in diameter have to be trenched 

throughout according to Canadian codes of practice (example -verify figures)") 
(instance ?des-par is design-parameters 

with national-code-used Canadian) 
then 
(instance ?des-par is design-parameters 

with total-trenching-Iimit-diameter 0.3)) 

(define-rule total-trenching-united-states-1 
( 

:direction :backward 
:dependency t 
:explanation-string "United States codes of practice do not place a figure on the 

minimum diameter at which trenching is required. It is left to the designers descretion 
(example- subject to verification)") 

(instance ?des-par is design-parameters 
with national-code-used united-states) 

then 
(instance ?des-par is design-parameters 

with total-trenching-limit-diameter 0)) 
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(define-rule total-trenching-norwegian-1 
( 

:direction :backward 
:dependency t 
:explanation-string "Pipelines less than 0.45 metres in diameter have to be trenched 

throughout according to Det Norske Veritas (subject to confirmation)") 
(instance ?des-par is design-parameters 

with national-code-used norwegian) 
then 
(instance ?des-par is design-parameters 

with total-trenching-limit-diameter 0.45)) 

(define-rule countries-use-british-code-1 
( 

:direction :backward 
:dependency t 
:explanation-string "The country uses the British code of practice for the design and 

routing of pipelines. (verification required)") 
(or (instance ?des-par is design-parameters 

with national-juristiction united-kingdom) 
(instance ?des-par is design-parameters 

with national-juristiction netherlands) 
(instance ?des-par is design-parameters 

with national-juristiction greece) 
(instance ?des-par is design-parameters 

with national-juristiction morocco) 
(instance ?des-par is design-parameters 

with national-juristiction tunisia) 
(instance ?des-par is design-parameters 

with national-juristiction india)) 
then 
(instance ?des-par is design-parameters 

with national-code-used british)) 
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(define-rule countries-use-canadian-code-1 
( 

:direction :backward 
:dependency t 
:explanation-string "The country uses the Canadian code of practice for the design 

and routing of pipelines. (verification required)") 
(instance ?des-par is design-parameters 

with national-juristiction canada) 
then 
(instance ?des-par is design-parameters 

with national-code-used canadian)) 

(define-rule countries-use-united-states-code-! 
( 

:direction :backward 
:dependency t 
:explanation-string "The country uses the United-states code of practice for the 

design and routing of pipelines. (verification required)") 
(or (instance ?des-par is design-parameters 

with national-juristiction united-states) 
(instance ?des-par is design-parameters 

with national-juristiction mexico) 
(instance ?des-par is design-parameters 

with national-juristiction brazil) 
(instance ?des-par is design-parameters 

with national-juristiction panama) 
(instance ?des-par is design-parameters 

with national-juristiction saudi-arabia) 
(instance ?des-par is design-parameters 

with national-juristiction united-arab-emerates)) 
then 

(instance ?des-par is design-parameters 
with national-code-used united-states)) 
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(define-rule countries-use-norwegian-code-1 
( 

:direction :backward 
:dependency t 
:explanation-string "The country uses the Norwegian code of practice for the design 

and routing of pipelines. (verification required)") 
(or (instance ?des-par is design-parameters 

with national-juristiction norway) 
(instance ?des-par is design-parameters 

with national-juristiction lybia) 
(instance ?des-par is design-parameters 

with national-juristiction tunisia) 
(instance ?des-par is design-parameters 

with national-juristiction iran) 
(instance ?des-par is design-parameters 

with national-juristiction iraq)) 
then 
(instance ?des-par is design-parameters 

with national-code-used norwegian)) 
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F. THE PIRATE GIS DATA TABLE SCHEMA 

This appendix gives the detailed structure of the relational tables within the 

PIRA 1E GIS. The dBase format is used, which means that all fields, whether 

chatacter or numeric, are stored as ASCII text. Hence a real number will take up one 

character for every digit it has, plus the decimal point and any sign. Field numbers, 

names, type, width and number of decimal places are given. 

The Main Raster Data Table· BIGCELL.DBF 

FIELD FIELDNAME 

1 
2 

CELL_ CODE 
ELEVATION 

TYPE WIDTH DECIMAL PLACES 

CHARAC1ER 2 
NUMERIC 7 2 

The Combination Table • COMBCODE.DBF 

1 
2 
3 

FIELD FIELD NAME 

CURR_CODE 
PREV_CODE 
A TT_ CODE 

TYPE WIDTH DECIMAL PLACES 

CHARAC1ER 2 
CHARAC1ER 2 
CHARAC1ER 2 

The Feature Polygon Vector Table- ALINE.DBF 

1 
2 
3 
4 

FIELD FIELD NAME 

X 
y 
LINE_ID 
ATTRID_ID 

TYPE 

NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 

WIDTH 

10 
10 
5 
4 
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The Contour Vector Table· CONTLINE.DBF 

FIELD FIELD NAME TYPE 

NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 

WIDTII DECIMAL PLACES 

1 
2 
3 
4 
5 

X 
y 
z 
LINE_ID 
CONT_ID 

10 
10 
7 
5 
4 

3 
3 
2 

The Boulder Field Non-Spatial Property Table· BOULDER.DBF 

FIELD FIELD NAME TYPE WIDTII DECIMAL PLACES 

1 
2 
3 

ATT_ID 
DENSITY 
ATT_NAME 

CHARACTER 2 
NUMERIC 10 
CHARACTER 30 

3 

The Megaripple Field Non-Spatial Property Table. MRIP.DBF 

FIELD FIELD NAME TYPE WIDTII DECIMAL PLACES 

1 
2 
3 
4 
5 

1 
2 
3 

ATT_ID 
WAVE_DIR 
WAVE_HEIGHT 
WAVE_LEN 
ATT_NAME 

CHARACTER 2 
NUMERIC 10 
NUMERIC 10 
NUMERIC 10 
CHARACTER 30 

3 
3 
3 

The Pipe Route Table· PIPE.DBF 

FIELD FIELD NAME 

PIPE_ ID 
X 
y 

TYPE 

NUMERIC 
NUMERIC 
NUMERIC 

WIDTII DECIMAL PLACES 
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The Parameters Table· PARAMS.DBF 

FIELD FIELD NAME TYPE 

NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 

WIDTif DECIMAL PLACES 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

FIELD 

X_ CELL 
Y_CELL 
CELL_SIZE 
X_ ORIGIN 
Y_ORIGIN 

6 
6 
10 
10 
10 

3 
3 
3 

The Pipeline Feature Clash Result Table. SEGMENT.DBF 

FIELD NAME TYPE WIDTif DECIMAL PLACES 

PIPE_ID NUMERIC 3 
SEG_ID NUMERIC 4 
ATTRIB_ID CHARACTER 2 
START_CH NUMERIC 10 3 
FINISH_ CH NUMERIC 10 3 

The Long Section Results Table. DTMOUT.DBF 

FIELD FIELD NAME TYPE 

NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 

WIDTif DECIMAL PLACES 

1 
2 
3 
4 
5 

PIPE_ID 
SEG_ID 
ELEVATION 
START_ CH 
FINISH_ CH 
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G. THE FULL PIRATE FRAME HIERARCHY 

The following is the full PIRATE frame hierarchy in it's Lisp form. Instances 

that are necessary for the working of PIRATE have also been included. GoldWorksii 

only provides the Lisp format for hard copy output of the frame hierarchy. The Plates 

in Chapter 7 indicate the structural relationship of the more important frames in tree 

form, which is more simple to follow than the Lisp given here. This appendix, then, is 

only intended for the reader with a sound grasp of GoldWorksii and Lisp. 

(DEFINE-FRAME MODEL-ATTRIBUTE 
() 

(ATTRIBUTE-ID :EXPLANATION-STRING "the value for the attribute-id 
is read in from the feature database and corresponds to the attribute 
representation in the spatial database") 

(NAME :EXPLANATION-STRING "the name is used by the base instances 
to construct the instance names. It is a system slot") 

(MIN-X-Y :EXPLANATION-STRING "This slot is not in current use") 
(MAX-X-Y :EXPLANATION-STRING "this slot is not in current use") 
(POLYGON-COORD-LIST :DEFAULT-VALUES ((NIL NIL)) 

:CONSTRAINTS (:LISP-TYPE LIST) 
:EXPLANATION-STRING "The polygon coordinates are obtained from 

the ALINE.DBF database during initialisation") 
(DATA-SOURCE-AND-ACCURACY :CONSTRAINTS (:LISP-TYPE STRING) 

:EXPLANATION-STRING "this value is user derived") 
(DATABASE-NAME :CONSTRAINTS (:LISP-TYPE STRING) 

:EXPLANATION-STRING "the database name is set at the time of 
database construction and should not be changed 11

) 

(BASE-INSTANCE :DEFAULT-VALUES (NO) 
:CONSTRAINTS (:ONE-OF (YES NO NEW)) 
:EXPLANATION-STRING "For each model attribute frame there is a 

single base instance which holds the control for all subsequent 
instance creation") 

(DB-SLOT-LIST :CONSTRAINTS (:LISP-TYPE LIST) 
:EXPLANATION-STRING "The values here give the slots corresponding 

to the database field structure. Change if the database fields are 
changed") 

(TEXT-NAME :EXPLANATION-STRING "A pretty name that can be set by 
the user") 

(REMEDIAL-ACTION :MULTIVALUED T 
:EXPLANATION-STRING "The action needed to lay a pipeline through 

the feature. Found by the rules") 
(DATA-l :MULTIVALUED T 

:EXPLANATION-STRING "A data field to augment the remedial action 
description" 

:when-modified (remedial-action-dependency-daemon)) 
(DATA-2 :MULTIVALUED T 

:EXPLANATION-STRING "A data field to augment the remedial action 
description 11

) 

(DATA-3 :MULTIVALUED T 
:EXPLANATION-STRING "A data field to augment the remedial action 

description") 

245 



(DEFINE-FRAME MAN-MADE-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(TYPE :CONSTRAINTS (:ONE-OF (NOT-IN-CURRENT-USE ABANDONED IN-

CURRENT-USE) ) ) 
(OWNER) 
(SURFACE-BURIED :CONSTRAINTS (:ONE-OF (SURFACE BURIED))) 
(BURIAL-DEPTH) 
(PERMISSION-TO-CUT :CONSTRAINTS (:ONE-OF (YES NO CONDITIONAL))) 
(PERMISSION-TO-CROSS :CONSTRAINTS (:ONE-OF (YES NO CONDITIONAL))) 
(USE :CONSTRAINTS (:ONE-OF (OIL GAS TELECOM OTHER))) 
(COST-TO-CUT) 
(COST-TO-CROSS) ) 

(DEFINE-FRAME LINEAR-FEATURE 
(:IS MODEL-ATTRIBUTE)) 

(DEFINE-FRAME PIPELINES 
(:IS (MAN-MADE-FEATURE LINEAR-FEATURE))) 

(DEFINE-FRAME CABLES 
(:IS (MAN-MADE-FEATURE LINEAR-FEATURE))) 

(DEFINE-FRAME POINT-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(HEIGHT-ABOVE-BED) 
(MIN-RADIUS-FOR-AVOIDANCE)) 

(DEFINE-FRAME WELLHEADS 
(:IS (MAN-MADE-FEATURE POINT-FEATURE))) 

(DEFINE-FRAME WRECKS 
(:IS (MAN-MADE-FEATURE POINT-FEATURE)) 
(CARGO-CARRIED :CONSTRAINTS (:ONE-OF (SAFE UNSAFE UNKNOWN))) 
(SIZE-IN-TONNES)) 

(DEFINE-FRAME WAVE-BASED-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(WAVELENGTH :EXPLANATION-STRING "The wavelength of the waveform in 

metres. Set by the user at the CAD interface when specifying the 
polygon it relates to") 

(FREQUENCY :EXPLANATION-STRING "Frequency in waves per unit 
time/distance may be used instead of the wavelength. User specified") 

(WAVE-HEIGHT :EXPLANATION-STRING "The trough to crest height in 
metres. User specified at CAD interface") 

(WAVE-DIRECTION :EXPLANATION-STRING "Bearing in degrees of wave 
travel direction with respect to grid North. User specified at CAD 
interface.") ) 
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(DEFINE-FRAME BEDFORM-FEATURE 
(:IS WAVE-BASED-FEATURE)) 

(DEFINE-FRAME SAND-RIDGES 
(:IS BEDFORM-FEATURE)) 

(DEFINE-FRAME SAND-WAVES 
(:IS BEDFORM-FEATURE)) 

(DEFINE-FRAME SAND-RIBBONS 
(:IS BEDFORM-FEATURE)) 

(DEFINE-FRAME MEGGARIPPLES 
(:IS BEDFORM-FEATURE) 
(TEXT-NAME :DEFAULT-VALUES ("Megaripples")) 
(DB-SLOT-LIST :DEFAULT-VALUES ((ATTRIBUTE-ID FREQUENCY WAVE­

DIRECTION WAVE-HEIGHT WAVELENGTH NAME))) 
(DATABASE-NAME :DEFAULT-VALUES ("c:\\windows\\db\\mrip.dbc")) 
(TRENCH-DEPTH :EXPLANATION-STRING "Depth of the trench required to 

overcome obstacle. Set by rules") ) 

(DEFINE-FRAME ENVIRONMENTAL-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(FREQUENCY-OF-OCCURRANCE)) 

(DEFINE-FRAME FLOW-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(DIRECTION) 
(VELOCITY) ) 

(DEFINE-FRAME CURRENT 
(:IS (ENVIRONMENTAL-FEATURE FLOW-FEATURE))) 

(DEFINE-FRAME WIND 
(:IS (ENVIRONMENTAL-FEATURE FLOW-FEATURE)) 
(POLYGON-COORD-LIST :CONSTRAINTS (:LISP-TYPE LIST))) 

(DEFINE-FRAME TIDES 
(:IS (ENVIRONMENTAL-FEATURE FLOW-FEATURE)) 
(TIDAL-RANGE) 
(HIGH-LOW-WATER-TIME-INTERVAL)) 

(DEFINE-FRAME WAVES 
(:IS (ENVIRONMENTAL-FEATURE WAVE-BASED-FEATURE))) 

(DEFINE-FRAME SLOPE-FEATURE 
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(:IS MODEL-ATTRIBUTE) 
(SLOPE-DIRECTION) 
(SLOPE-VALUE) 
(SLOPE-LENGTH)) 

(DEFINE-FRAME SLOPE-GREATER-THAN-3 
(:IS SLOPE-FEATURE)) 

(DEFINE-FRAME SLOPE-GREATER-THAN-6 
(:IS SLOPE-FEATURE)) 

(DEFINE-FRAME SOIL-TYPE-FEATURE 
(:IS MODEL-ATTRIBUTE) 
(TOP-BOUNDARY-DEPTH) 
(BOTTOM-BOUNDARY-DEPTH) 
(SOIL-TYPE :CONSTRAINTS (:INSTANCE-OF SOIL))) 

(DEFINE-FRAME SURFICIAL-SOIL-TYPE 
(:IS SOIL-TYPE-FEATURE)) 

(DEFINE-FRAME UNDERLYING-SOIL-TYPE 
(:IS SOIL-TYPE-FEATURE)) 

(DEFINE-FRAME FISHING-GROUND 
(:IS MODEL-ATTRIBUTE)) 

(DEFINE-FRAME BOULDER-FIELD 
(:IS MODEL-ATTRIBUTE) 
(TEXT-NAME :DEFAULT-VALUES ("Boulder Fields")) 
(DB-SLOT-LIST :DEFAULT-VALUES ((ATTRIBUTE-ID DENSITY-OF-BOULDERS 

NAME))) 
(DATABASE-NAME :DEFAULT-VALUES ("c:\\windows\\db\\boulder.dbc")) 
(DENSITY-OF-BOULDERS :EXPLANATION-STRING "The density of boulders 

per 100 sq. metres. Set by user at CAD interface") 
(AV-SIZE-OF-BOULDERS :EXPLANATION-STRING "The average size of the 

boulders (tonnes). NOT CURRENTLY SET AT CAD INTERFACE!") 
(ROCK-TYPE :EXPLANATION-STRING "The rock type of the boulders. NOT 

CURRENTLY SET AT CAD INTERFACE!")) 

(DEFINE-FRAME DEPTH-LIMIT 
(:IS MODEL-ATTRIBUTE) 
(DEPTH-LIMIT-MIN) 
(DEPTH-LIMIT-MAX) 
(WORST-DEPTH)) 

(DEFINE-FRAME DEPTH-MAXIMUM 
(:IS DEPTH-LIMIT) 
(LIMITING-DEPTH)) 
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(DEFINE-FRAME DEPTH-MINIMUM 
(:IS DEPTH-LIMIT)) 

(DEFINE-FRAME PROPOSED-PIPELINE 
() 

(PIPE-ID) 
(PIPE-NAME) 
(ORDERED-SEGMENT-LIST) 
(SEGMENT-DIR-LIST) 
(VALIDITY) 
(ASSESSMENT-STATUS :DEFAULT-VALUES (:NOT-VALID) 

:CONSTRAINTS (:ONE-OF (:NOT-ASSESSED :ASSESSED :NOT-VALID))) 
(VALIDITY-LIST) 
(global-chain-list)) 

(DEFINE-FRAME PIPELINE-SEGMENT 
() 

(PIPE-ID :DEFAULT-VALUES (1)) 
(SEGMENT-NUMBER-WITHIN-PIPELINE) 
(START-COORD :DEFAULT-VALUES (NIL)) 
(FINISH-COORD :DEFAULT-VALUES (NIL)) 
(START-CHAINAGE) 
(FINISH-CHAINAGE) 
(START-CHAINAGE-OF-ATTRIB-HIT :CONSTRAINTS (:LISP-TYPE LIST)) 
(FINISH-CHAINAGE-OF-ATTRIB-HIT :CONSTRAINTS (:LISP-TYPE LIST)) 
(DISTANCE-OF-ATTRIB-HIT :CONSTRAINTS (:LISP-TYPE LIST)) 
(ATTRIB-HIT :EXPLANATION-STRING "This slot gives a list of 

attributes in the order they are hit along the pipeline. The other 
slots of start/finish chainages etc relate to this list" 

:CONSTRAINTS (:LISP-TYPE LIST)) 
(M) 
(C). 
(SEGMENT-ID) 
(GRAPHIC-HOTSPOT-1) 
(GRAPHIC-HOTSPOT-2) 
(GRAPHIC-WINDOW) 
(ORIGIN :CONSTRAINTS (:ONE-OF (CAD-DATABASE GW-INTERACTIVE BOTH))) 
(ORIGINAL-START-COORD) 
(ORIGINAL-FINISH-COORD) 
(ATTRIB-VALIDITY :DEFAULT-VALUES (NOT-GENERATED) 

:CONSTRAINTS (:ONE-OF (VALID NOT-VALID NOT-GENERATED)) 
:when-modified (segment-dependency-daemon)) 

(PIPELINE-MEMBERS :DEFAULT-VALUES (NIL) 
:CONSTRAINTS (:LISP-TYPE LIST)) 

(A-LIST) 
(A-START) 
(A-FINISH) 
(A-DIST) 
(ATTRIB-MULTI-INST :CONSTRAINTS (:INSTANCE-OF MODEL-ATTRIBUTE) 

:MULTIVALUED T) 
(consolidated-remedial-actions) 
(long-section-list)) 

(DEFINE-FRAME SOILS 
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() 

(SOIL-NAME) 
(SHEAR-STRENGTH) 
(SUBMERGED-DENSITY) 
(LIQUIFACTION-POSSIBLE)) 

(DEFINE-FRAME DATABASE-STATUS 
() 

(SEGMENT-NUMBER :DEFAULT-VALUES (0)) 
(RECORD-STATUS :DEFAULT-VALUES (FIRST) 

:CONSTRAINTS (:ONE-OF (NOT-READ-YET READ FIRST))) 
(DB-STATUS :DEFAULT-VALUES (CLOSED) 

:CONSTRAINTS (:ONE-OF (OPEN CLOSED FINISHED))) 
(DATABASE-NAME :CONSTRAINTS (:LISP-TYPE STRING)) 
(PARENT-FRAME-NAME :CONSTRAINTS NIL)) 

(DEFINE-FRAME PIPE-DBF-STATUS 
(:IS DATABASE-STATUS) 
(DATABASE-NAME :DEFAULT-VALUES ("c:\\windows\\db\\pipe.dbf")) 
(TOP/TAIL-STATUS :DEFAULT-VALUES (NOT-READY) 

:CONSTRAINTS (:ONE-OF (NOT-READY READY DONE)))) 

(DEFINE-FRAME POLYGON-DBF-STATUS 
(:IS DATABASE-STATUS)) 

(DEFINE-FRAME CLASH-DBF-STATUS 
(:IS DATABASE-STATUS)) 

(DEFINE-FRAME long-section-DBF-STATUS 
(:IS DATABASE-STATUS)) 

(DEFINE-FRAME GRID-PARAMETERS 
() 

(X-ORIGIN :DEFAULT-VALUES (0)) 
(Y-ORIGIN :DEFAULT-VALUES (0)) 
(CELL-SIZE :DEFAULT-VALUES (0)) 
(X-EXTENT :DEFAULT-VALUES (0)) 
(Y-EXTENT :DEFAULT-VALUES (0))) 

(DEFINE-FRAME GRAPHIC-INTERFACE-CONTROL 
() 

(ZOOM-SCALE) 
(SCROLL-SPEED) 
(HIGHLIGHT-COLOR-CHOSEN) 
(HIGHLIGHT-COLOR-OPTIONS :MULTIVALUED T) 
(HIGHLIGHT-COLORS :MULTIVALUED T) 
(GRAPHIC-WINDOW) 
(GRID-STATUS :DEFAULT-VALUES (OFF) 

:CONSTRAINTS (:ONE-OF (ON OFF)))) 

(DEFINE-FRAME PIPELINE-SEGMENT-CONTROL 
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() 

(LATEST-SEGMENT-ID) 
(NAME) 
(TEXT-NAME) 
(CURRENT-SEGMENT-NUMBER) 
(SELECTED-SEGMENT-LIST :DEFAULT-VALUES (NIL)) 
(CURRENT-PIPE-NUMBER :DEFAULT-VALUES (1))) 

(DEFINE-FRAME PIPELINE-CONTROL 
() 

(TEXT-NAME :DEFAULT-VALUES ("pipeline")) 
(CURRENT-SEGMENT-NUMBER :DEFAULT-VALUES (1))) 

(DEFINE-FRAME PLANT 
() 

(EQPT-NAME) 
(MOBILISATION-COST) 
(DAY-COST) 
(%-DOWNTIME) 
(DAY-OUTPUT-RATE) 
(DAY-OUTPUT-UNIT :CONSTRAINTS NIL)) 

(DEFINE-FRAME SEA-GOING-VESSELS 
(:IS PLANT) 
(DEPTH-MAX) 
(DEPTH-MIN) 
(SEASON-START) 
(SEASON-FINISH) 
(AVAILABILITY-EARLIEST) 
(AVALIABILITY-DURATION) 
(VESSEL-TYPE)) 

(DEFINE-FRAME LAY-VESSELS 
(:IS SEA-GOING-VESSELS) 
(DAY-OUTPUT-UNIT :DEFAULT-VALUES (LINEAR-METRES))) 

(DEFINE-FRAME TRENCHERS 
(:IS SEA-GOING-VESSELS) 
(DAY-OUTPUT-UNIT :DEFAULT-VALUES (CUBIC-METRES)) 
(max-cutting-depth)) 

(DEFINE-FRAME DREDGERS 
(:IS SEA-GOING-VESSELS) 
(DAY-OUTPUT-UNIT :DEFAULT-VALUES (CUBIC-METRES))) 

(DEFINE-FRAME DIVE-SUPPORT-VESSELS 
(:IS SEA-GOING-VESSELS) 
(DAY-OUTPUT-UNIT)) 

(DEFINE-FRAME ROCK-DUMP-VESSELS 
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(:IS SEA-GOING-VESSELS) 
(DAY-OUTPUT-UNIT :DEFAULT-VALUES (TONNES))) 

(DEFINE-FRAME SURVEY-VESSELS 
(:IS SEA-GOING-VESSELS) 
(SURVEY-SPEED)) 

(DEFINE-FRAME OTHER-EQPT 
(:IS PLANT)) 

(DEFINE-FRAME UNMANNED-SUBMERSIBLES 
(:IS OTHER-EQPT)) 

(DEFINE-FRAME MANNED-SUBMERSIBLES 
(:IS OTHER-EQPT)) 

(DEFINE-FRAME TRENCHING-PLOUGHS 
(:IS OTHER-EQPT)) 

(DEFINE-FRAME MATERIALS 
() 

(UNIT-MEASURE :CONSTRAINTS (:ONE-OF (UNIT-ITEM LINEAR-METRE 
SQUARE-METRE CUBIC-METRE METRIC-TONNE))) 

(COST-PER-UNIT) 
(NAME) 
(WEIGHT-PER-UNIT) 
(SUPPLIERS :MULTIVALUED T) 
(MATERIAL-NAME)) 

(DEFINE-FRAME PIPE 
(:IS MATERIALS) 
(DIAMETER :explanation-string "Although commonly referred to in 

inches, the diameter MUST be input in metres 11
) 

(WALL-THICKNESS) 
(MATERIAL-TYPE) 
(SPOOL-LENGTH)) 

(DEFINE-FRAME CONCRETE-COAT 
(:IS MATERIALS) ) 

(DEFINE-FRAME ROCK-DUMP 
( : IS MATERIALS) ) 

(DEFINE-FRAME SACRIFICIAL-ANODE 
( :IS MATERIALS) ) 

(DEFINE-FRAME VALVE 
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( : IS MATERIALS) ) 

(DEFINE-FRAME PIPELINE-TALLY 
()) 

(DEFINE-FRAME PIPE-SEGMENT-TALLY 
()) 

(DEFINE-FRAME LOGISTIC-CONTROL 
() 

(LOTUS-ROW) 
(LOTUS-COL) 
(LOTUS-END-ROW) 
(LOTUS-END-COL) 
(SPREAD SHEET) 
(ORDERED-SLOT-LIST) 
(STATUS :DEFAULT-VALUES (READ) 

:CONSTRAINTS (:ONE-OF (READ NOT-READ)))) 

(DEFINE-FRAME PLANT-CONTROL 
(:IS LOGISTIC-CONTROL) 
(SPREADSHEET :DEFAULT-VALUES ("c:/gw2/lee/plant.wrl")) 
(NAME)) 

(DEFINE-FRAME MATERIAL-CONTROL 
(:IS LOGISTIC-CONTROL) 
(LOTUS-ROW :DEFAULT-VALUES (NIL)) 
(LOTUS-END-ROW :DEFAULT-VALUES (NIL)) 
(LOTUS-END-COL :DEFAULT-VALUES (NIL)) 
(LOTUS-COL :DEFAULT-VALUES (NIL)) 
(SPREADSHEET :DEFAULT-VALUES ("c:/gw2/lee/material.wrl")) 
(NAME)) 

(DEFINE-FRAME REPORT-CONTROLLER 
(:DOC-STRING "The report controller is the fundamental part of the 

analysis of the pipeline. The daemons attached to these slots react 
to a REQUIRED entry, creating, firing and retracting attempts to 
produce the respective reports") 

(SEGMENT-CLASH-REPORT :WHEN-MODIFIED (SEGMENT-CLASH-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (COMPLETE REQUIRED NOT-GENERATED)) 
:EXPLANATION-STRING "This slot controls the generation of a 

feature clash report for the selected segment. Setting the slot to 
REQUIRED activates the daemon.") 

(SEGMENT-TECH-REPORT :WHEN-MODIFIED (SEGMENT-TECH-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (COMPLETE REQUIRED NOT-GENERATED)) 
:EXPLANATION-STRING "This slot controls the generation of the 

technical report for the clashes of the chosen segment. Setting the 
value to REQUIRED activates the daemon.") 

(SEGMENT-PLANT-REPORT :WHEN-MODIFIED (SEGMENT-PLANT-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
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:CONSTRAINTS (:ONE-OF (COMPLETE REQUIRED NOT-GENERATED)) 
:EXPLANATION-STRING "This slot controls the generation of hte 

plant and materials report for the chosen segment. Setting the value 
to REQUIRED activates the daemon/") 

(SEGMENT-COST-REPORT :WHEN-MODIFIED (SEGMENT-COST-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (COMPLETE REQUIRED NOT-GENERATED)) 
:EXPLANATION-STRING "this slot controls the generation of a cost 

report for the chosen segment. Setting the value to REQUIRED 
activates the daemon.") 

(PIPELINE-CLASH-REPORT :DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (REQUIRED COMPLETE NOT-GENERATED)) 
:WHEN-MODIFIED (PIPELINE-CLASH-REPORT-DAEMON) 
:EXPLANATION-STRING "The control slot for pipeline/attribute 

clash reports. Can be set to REQUIRED from anywhere in the system, to 
initiate the report.") 

(PIPELINE-TECH-REPORT :WHEN-MODIFIED (PIPELINE-TECH-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (REQUIRED COMPLETE NOT-GENERATED)) 
:EXPLANATION-STRING "This is the slot that controls the 

generation of the pipeline technical report (ie. the remedial works 
required etc.). Setting the report to REQUIRED activates the 
daemon.") 

(PIPELINE-PLANT-REPORT :WHEN-MODIFIED (PIPELINE-PLANT-REPORT-
DAEMON) 

:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (REQUIRED COMPLETE NOT-GENERATED)) 
:EXPLANATION-STRING "this slot controls the generation of a 

plant/materials report for the selected pipeline. Setting the value 
to REQUIRED activates the daemon.") 

(PIPELINE-COST-REPORT :WHEN-MODIFIED (PIPELINE-COST-REPORT-DAEMON) 
:DEFAULT-VALUES (NOT-GENERATED) 
:CONSTRAINTS (:ONE-OF (REQUIRED COMPLETE NOT-GENERATED)) 
:EXPLANATION-STRING "This slot controls the generation of a cost 

report for the selected pipeline. Setting the value to REQUIRED will 
initiate the daemon.") 

(CURRENT-PIPELINE :CONSTRAINTS (:INSTANCE-OF proposed-pipeline) 
:EXPLANATION-STRING "This is the instance name of the pipeline 

currently being evaluated by the system. It is instantiated when the 
current pipeline is highlighted in the graphics interface") 

(CURRENT-SEGMENT :CONSTRAINTS (:INSTANCE-OF PIPELINE-SEGMENT) 
:EXPLANATION-STRING "This is the instance name of the pipeline 

segment under consideration. It's value comes either from pipeline 
analysis rules, or directly by highlighting the appropriate segment 
at the graphics interface.")) 

(DEFINE-FRAME SEGMENT-TECHNICAL-REPORT 
() 

(TRENCH-DEPTH-MAX :EXPLANATION-STRING "The maximum depth of trench 
needed so far on the segment, which does not exceed the max. single 
pass depth.") 

(TRENCH-DEPTH-ALLOWABLE :EXPLANATION-STRING "This is the maximum 
depth that the trencher can dig to in a single pass. The value can 
either be set by the user or gained from the plant tables.") 

(SEGMENT-LENGTH :EXPLANATION-STRING "The length of the segment in 
metres. Calculated from the original coordinates of the endpoints of 
the pipe segment.") 
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(SEGMENT :EXPLANATION-STRING "The name of the pipeline-segment to 
which this report refers. Used for identification purposes." 

:CONSTRAINTS (:INSTANCE-OF PIPELINE-SEGMENT)) 
(DREDGE-LENGTH :EXPLANATION-STRING "the length of the segment over 

which dredging work is required.") 
(DREDGE-DEPTH :EXPLANATION-STRING "The depth below the sea bed 

which the final dredged surface needs to be. ") 
(DREDGE-VOLUME :EXPLANATION-STRING "An estimate of the volume of 

dredged material that needs to be shifted for this segment. Found 
either using the segment-profile, or by using the dredge length and 
average dredge depth.") 

(LAY-BARGE-TYPE :EXPLANATION-STRING "States whether the lay barge 
required is a reel vessel or a standard lay vessel. This slot could 
be moved to a global parameter frame, but the type can be set by the 
user or inferred from the pipe size.") 

(DIVER-SUPPORT-LENGTH :EXPLANATION-STRING "The length of pipeline 
which requires diver interaction, either for placing mats for 
crossings, clearance of obstacles etc. Note that the time needed 
depends on the problem and so time may have to be assessed 
separately.") 

(BLASTING-LENGTH :EXPLANATION-STRING "The pipe length through 
which blasting is required.") 

(BOULDER-CLEARING-LENGTH :EXPLANATION-STRING "The pipe length 
through which boulder clearance has to take place (by blasting or 
brute force).") 

(BOULDER-NUMBER-PER-lOOM :EXPLANATION-STRING "An estimate of the 
number of boulders which need clearing per 100 metre run on this 
section of pipeline. Found using the boulder density, length etc.") 

(PRE-SWEEP-LENGTH :EXPLANATION-STRING "The length of the pipeline 
over which pre-sweeping is required. ") 

(TRENCH-DEEP-LENGTH :EXPLANATION-STRING "This is the length of the 
pipeline segment over which deep trenching is needed. Deep trenching 
is such that the trenching vessel has to make more than one pass to 
achieve the depth required.") 

(TRENCH-DEEP-DEPTH :EXPLANATION-STRING "This slot gives the 
maximum depth needed for deep trenching. Deep trenching is trenching 
in excess of the allowable depth for trenching with a single pass of 
the trenching vessel (given in the TRENCH-DEPTH-ALLOWABLE slot).") 

(STABILITY-PROBLEM-LENGTH :EXPLANATION-STRING "Gives the length of 
the segment over which there may be problems with pipeline stability 
using the standard configuration. This may indicate that a heavier 
concrete coat is required, or that the pipeline may need to be 
secured or trenched. ") 

(BED-PROFILE-VECTOR-LIST :EXPLANATION-STRING "This slot stores the 
bed profile along the pipeline in terms of a nested list of x,z 
coordinates. Obtained from the GIS DTM.") 

(TRENCH-LENGTH :EXPLANATION-STRING "The length of the pipeline 
which requires trenching at a single pass. Multiple pass trenching 
lengths are held in the DEEP slots.") 

(CURR-ACTION :EXPLANATION-STRING "This is the remedial action 
currently under consideration for inclusion in the segment technical 
report. The data fields and length over which the action is required 
is included in the other CURR- slots. Set from the matching on the 
rnultivalued slot in the pipeline-segment instance.") 

(CURR-DATA-1 :EXPLANATION-STRING "The first data field for the 
current remedial action") 

(CURR-DATA-2 :EXPLANATION-STRING "The second data field for the 
current remedial action") 
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(CURR-DATA-3 :EXPLANATION-STRING "The third data field for the 
current remedial action") 

(CURR-LENGTH :EXPLANATION-STRING "The length of pipeline segment 
over which the current remedial action acts.")) 

(DEFINE-INSTANCE GENERAL-REPORT 
(:IS OUTPUT-WINDOW) 

(MESSAGE-LINE "GENERAL REPORT") 
(Y 50) 
(X 50) 
(WIDTH 500) 
(HEIGHT 300)) 

(DEFINE-INSTANCE NODE-DESCRIPTION-1 
(:IS OUTPUT-WINDOW) 

(TITLE "Node Description") 
(Y 40) 
(X 13) 
(WIDTH 535) 
(HEIGHT 246)) 

(DEFINE-INSTANCE SCROLLING-REPORT 
(:IS OUTPUT-WINDOW) 

(CLEAR-BEFORE-NEW-DISPLAY :NO) 
(MESSAGE-LINE "DETAILED REPORT") 
(Y -11) 

(X -11) 

(WIDTH 654) 
(HEIGHT 158)) 

(DEFINE-INSTANCE SEGMENT-DESCRIPTION-1 
(:IS OUTPUT-WINDOW) 

(TITLE "Segment Description") 
(Y 80) 
(X 150) 
(WIDTH 499) 
(HEIGHT 299)) 

(DEFINE-INSTANCE GRAPHIC-ERROR-WINDOW-1 
(:IS POPUP-CONFIRM) 

(ANSWER :YES) 
(INSTRUCTIONS) 
(TEXT-ATTRIBUTES 

( :COLOR :RED)) 
(TRIGGER-INFERENCING :NO) 
(CANCEL-BUTTON :NO)) 

(DEFINE-INSTANCE GRAPHIC-MESSAGE-WINDOW-1 
(:IS POPUP-CONFIRM) 

(ANSWER :YES) 
(INSTRUCTIONS) 

(TEXT-ATTRIBUTES 
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( :COLOR :RED)) 
(TRIGGER-INFERENCING :NO)) 

(DEFINE-INSTANCE CHOOSE-HIGHLIGHT-COLOR 
(:IS POPUP-CHOOSE) 

(ELEMENTS 
((BLUE *BLUE-BRUSH*) 

(RED *RED-BRUSH*) 
(GREEN *GREEN-BRUSH*) 
(YELLOW *YELLOW-BRUSH*))) 

(ANSWER *YELLOW-BRUSH*) 
(INSTRUCTIONS "Choose highlight color") 
(USER-BUTTONS 

((:BUTTON-TEXT "KILL DISK" :EVALUATE 
(PRINl "No I won't ! ! ") ) ) ) ) 

(DEFINE-INSTANCE JOIN-SEGMENT-CHOICE-1 
(:IS POPUP-CHOOSE) 

(ELEMENTS 
(("Start Point Only" 1) 

("Both Start And Endpoint" 2) ) ) 
(ANSWER 1) 
(INSTRUCTIONS 

"One or both endpoints EXISTING? Probe EXISTING first") 
(TRIGGER-INFERENCING :NO)) 

(DEFINE-INSTANCE POPUP-ASK-FOR-ZOOM-SCALE 
(:IS POPUP-ASK-USER) 

(REMEMBER-LAST-ANSWER :YES) 
(DEFAULT-ANSWER 1oB) 
(LAST-ANSWER 4o2) 
(ANSWER 4 o 2) 
(TARGET-INSTANCE INTERFACE-CONTROL-1) 
(TARGET-SLOT ZOOM-SCALE) 
(INSTRUCTIONS "Please input new zoom scale (1.0 to SoO) ") 
(TEXT-ATTRIBUTES 

( :COLOR :BLUE)) 
(TRIGGER-INFERENCING :NO) 
(CANCEL-BUTTON :NO) 
(BACKGROUND-COLOR :YELLOW)) 

(DEFINE-INSTANCE BIGCELL-DBF 
(:IS DBASE-ACTION) 

(FILE-NAME "c: \\windows\ \db2\ \bigcell. dbf")) 

(DEFINE-INSTANCE COMBCODE-ATT-DBF 
(:IS DBASE-ACTION) 

(FILE-NAME "c:\\windows\\db\\combcodeodbf") 
(INDEX-FILE-NAME "c: \\windows\ \db\ \cc_att o ndx") 
(KEY-FIELD-NAMES "att_code")) 

(DEFINE-INSTANCE COMBCODE-CURR-DBF 
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(:IS DBASE-ACTION) 
(FILE-NAME "c: \\windows\ \db\ \combcode. dbf") 
(INDEX-FILE-NAME "c:\\windows\\db\\cc_curr.ndx") 
(KEY-FIELD-NAMES "curr_code")) 

(DEFINE-INSTANCE COMBCODE-PREV-DBF 
(:IS DBASE-ACTION) 

(FILE-NAME "c: \\windows\ \db\ \combcode.dbf") 
(INDEX-FILE-NAME "c:\\windows\\db\\cc_prev.ndx") 
(KEY-FIELD-NAMES "prev_code")) 

(DEFINE-INSTANCE PARAMS-DBF 
(:IS DBASE-ACTION) 

(ACTION :OPEN-FILE) 
(FILE-NAME "c: \\windows\ \db\ \params .dbf") 
(ERROR-CODE NIL)) 

(DEFINE-INSTANCE PIPE-DBF 
(:IS DBASE-ACTION) 

(ACTION :CLOSE-FILE) 
(FILE-NAME "c: \\windows\ \db\ \pipe. dbf") 
(ERROR-CODE NIL)) 

(DEFINE-INSTANCE SEGMENT-DBF 
(:IS DBASE-ACTION) 

(ACTION :CLOSE-FILE) 
(FILE-NAME "c: \\windows\ \db\ \segment. dbf") 
(ERROR-CODE NIL)) 

(DEFINE-INSTANCE DTMOUT-DBF 
(:IS DBASE-ACTION) 

(ACTION :CLOSE-FILE) 
(FILE-NAME "c:\\windows\\db\\dtmout.dbf") 
(ERROR-CODE NIL)) 

(DEFINE-INSTANCE 123-MATERIAL 
(:IS 123-ACTION) 

(SPREADSHEET-NAME "c: /gw2/ lee/material. wrl ")) 

(DEFINE-INSTANCE 123-PLANT 
(:IS 123-ACTION) 

(ACTION :READ-VALUE) 
(VALUE) 
(COLUMN B) 
(ROW 5) 
(END-COLUMN NIL) 
(END-ROW NIL) 
(SPREADSHEET-NAME "c: /gw2/ lee/plant. wrl ") 
(ERROR-CODE NIL)) 

(DEFINE-INSTANCE MRl 
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(:IS MEGGARIPPLES) 
(ATTRIBUTE-ID 0) 
(NAME MEGGARIPPLE) 
(BASE-INSTANCE YES)) 

(DEFINE-INSTANCE BF1 
(:IS BOULDER-FIELD) 

(ATTRIBUTE-ID 0) 
(NAME BOULDER) 
(BASE-INSTANCE YES)) 

(DEFINE-INSTANCE PIPE-STATUS-1 
(:IS PIPE-DBF-STATUS)) 

(DEFINE-INSTANCE POLYGON-STATUS-1 
(:IS POLYGON-DBF-STATUS) 

(DATABASE-NAME "c: \\windows\ \db\ \aline.dbc")) 

(DEFINE-INSTANCE CLASH-STATUS-1 
(:IS CLASH-DBF-STATUS) 

(DATABASE-NAME "c:\\windows\\db\\segment.dbf")) 

(DEFINE-INSTANCE LONG-SECTION-STATUS-1 
(:IS LONG-SECTION-DBF-STATUS) 

(DATABASE-NAME "c:\\windows\\db\\dtmout.dbf")) 

(DEFINE-INSTANCE INTERFACE-CONTROL-1 
(:IS GRAPHIC-INTERFACE-CONTROL) 

(ZOOM-SCALE 4.2) 
(SCROLL-SPEED 5) 
(HIGHLIGHT-COLOR-OPTIONS RED YELLOW BLUE GREEN)) 

(DEFINE-INSTANCE PIPELINE-SEGMENT-CONTROL-1 
(:IS PIPELINE-SEGMENT-CONTROL) 

(TEXT-NAME "pipeline-segment") 
(CURRENT-SEGMENT-NUMBER 1)) 

(DEFINE-INSTANCE PIPELINE-CONTROL-1 
(:IS PIPELINE-CONTROL)) 

(DEFINE-INSTANCE EX-CARMEN 
(:IS LAY-VESSELS) 

(DEPTH -MAX 2 0 0) 
(DEPTH-MIN 10) 
(SEASON-START 9) 
(SEASON-FINISH 3) 
(AVAILABILITY-EARLIEST 

( 6 90)) 
(AVALIABILITY-DURATION 4) 
(EQPT-NAME "SS-CARMEN, TOTAL OIL") 
(MOBILISATION-COST 2000000) 
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(DAY-COST 200000) 
(%-DOWNTIME 20) 
(DAY-OUTPUT-RATE 2500)) 

(DEFINE-INSTANCE GENERIC-TRENCHER 
(:IS TRENCHERS) 

(MAX-CUTTING-DEPTH 1.5) 
(DEPTH-MAX 100) 
(DEPTH-MIN 7) 
(SEASON-START 10) 
(SEASON-FINISH 3) 
(AVAILABILITY-EARLIEST 

(4 90)) 

(AVALIABILITY-DURATION 36) 
(EQPT-NAME "generic-trencher") 
(MOBILISATION-COST 100000) 
(DAY-COST 25000) 
(%-DOWNTIME 30) 
(DAY-OUTPUT-RATE 2000)) 

(DEFINE-INSTANCE GENERIC-PIPE 
(:IS PIPE) 

(DIAMETER . 33) 
(WALL-THICKNESS 20) 
(SPOOL-LENGTH 12) 
(UNIT-MEASURE LINEAR-METRE) 
(COST-PER-UNIT 1200) 
(NAME "12 inch steel pipe") 
(WEIGHT-PER-UNIT 2000) 
(MATERIAL-NAME STEEL)) 
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H. RECURSIVE LISP FUNCTIONS FOR PIPELINE CLASH 
CONVERSION 

The following functions are an example of the type of Lisp coding used to 

decompose the combination code chainages, received as a result of pipeline clash 

analysis, to feature code chainages. In particular, the RESOLVE-A TIRIBS function 

is of note, using three branches of recursion to break down the combination code lists 

and re-build them as feature codes. The other functions support this activity by pre- or 

post-processing the lists. The notes within the program listing should be sufficient to 

explain the way in which each function works. 

THE FOLLOWING FUNCTION[S] READ THE COMBINATION CODES IN THE LISTS OF 
AN INDIVIDUAL PIPELINE SEGMENT, AND CONVERT THEM INTO LISTS OF 
FEATURE [ATTRIBUTE] CODES AND CHAINAGES. I THINK THIS WILL BE QUITE 
COMPLEX, SO I HAVE MY FINGERS CROSSED!!!!! l.j.finniear 30th January, 
1990. 

What we have is three lists which are co-ordinated by order. They 
hold an indeter.minate number of combination codes, the start chainage 
of the code, and the finish chainage of the code. We need to change 
this into three lists comprising the ATTRIBUTE CODE and the 
associated chainages. 
The three lists may not be in ascending order of chainage, but may be 
backwards. I suggest that in this case the lists be reversed during 
processing. Three new slots will be required for all pipeline 
segments. 

eg ATTRIB-ID ("eO" "6j" "6q" 
START-CO .. (0 21 26 
FINISH-C,, (21 26 35 

"6t ") 
35 ) 
43 ) 

Note that the finish code is (almost) superfluous. To find out the 
extent of each attribute we have to first split up the comb-codes 
into component attribute codes. Thus, for each entry we will have a 
list of attributes which we know exist between the start and finish 
coordinates. 
We then need two compare successive pairs of lists to see which of 
the attributes are common. We can infer that these attributes extend 
over the concatenated range of the two combination codes. Those that 
do not can be marked as completed for the segment. Note that multiple 
separate occurrances of any attribute will be listed as such, so any 
future enquiry about the extent of a feature may have to sum all 
occurances. 

;;THE TEST T2 SI THE FORM. IT WORKS ! ! !! ! L.J. Finniear, 31st Jan, 
1990 

Typical input list below: 
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;(setq t2 '((
11 a1 11 0 10) 

("a2" 0 10) 
("a3" 0 10) 
("a2'' 10 20) 
("a3" 10 20) 
("a4n 10 20) 
("aS" 10 20) 
("a2" 20 30) 
("al" 30 40) 
("al" 40 50) 
("a2" 40 50) 
("al" 50 60))) 

The main recursive function for changing combination code chainages 
in a list of the above format into individual feature code chainages 
is gien below. The function calls itself three times, decomposing 
sections of the original list until adjacent parts can be amalgamated 
or the root of the list is found : 

(defun resolve-attribs (overall-list) 
(res-a overall-list (first overall-list) 0 1)) 

(defun res-a (a-list mll count-1 count-2) 
(let* ( (ml2 (nth count-2 a-list))) 

(cond( (eq mll nil) 
nil) 

( (eq ml2 nil) 
(cons ml1 (res-a a-list 

(nth (+ count-1 1) a-list) 
(+ count-1 1) 
(+ count-1 2)))) 

( (eq (second mll) (second ml2)) 
(res-a o-list mll count-1 (+ count-2 1))) 

((and (equal (first roll) (first ml2)) 
(eq (third roll) (second ml2))) 

(setq a-list (remove ml2 o-list)) 
(res-a a-list (list (first roll) 

(second roll) 
(third ml2) ) 

count-1 
(+ count-2 1))) 

(t 
(res-a a-list mll count-1 (+ 1 count-2)))))) 

;;;NOW WE HAVE A FUNCTION TO GET THE RESOLVED ATTRIBUTES OUT, WE NEED 
SOMETHING TO PUT IT INTO THAT FORM IN THE FIRST PLACE. WE START WITH 
A COMBINATION CODE LIST WITH MATCHING START AND FINISH COORDS.THE 
LISTS ARE REVERSED IF REQUIRED HERE. the function returns the total 
attribute/start/finish lists needed for input to the resolve-attribs 
function. l.j. finniear. 1st February, 1990. 

; (defun test-list () 
(setq comb-list '("6j" "6t" "6r" "6m")) 
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(setq start-list '(0 10 20 30)) 
(setq fin-list '(10 20 30 40))) 

(defun comb-to-conversion-form (comb-list start-list finish-list) 
(let*((total-attrib-list '())) 

(cond((eq (length comb-list) 1) 
nil) 

( (> (second start-list) (first start-list)) 
(setq comb-list (reverse comb-list)) 
(setq start-list (reverse start-list)) 
(setq finish-list (reverse finish-list))) 

(t nil)) 
(let*((list-len (length comb-list))) 

(dotimes (count list-len) 
(let*((code (nth count comb-list)) 

(start (nth count start-list)) 
(finish (nth count finish-list)) 
(attrib-element '()) 
(attrib-list (combcode-to-att-list code))) 

(cond((eq attrib-list nil) 
nil) 

(t 
(dolist (element attrib-list) 

(setq att-sub-list (list element 
start 
finish)) 

(setq total-attrib-list 
(cons att-sub-list 

total-attrib-list)))))))) 
total-attrib-list)) 

;;;THIS FUNCTION RULES THEM ALL, THIS FUNCTION FINDS THEM, THIS 
FUNCTION BRINGS THEM ALL AND IN THE DARKNESS BINDS THEM ....... . 

(setf *comb-to-att-chainage-call-number* 0) 

(defun comb-to-att-chainage (segment) 
(setf *comb-to-att-chainage-call-number* 

(+ *comb-to-att-chainage-call-number* 1)) 
(print "Comb-to-att-chainage function called 

necessary'?") 
is this 

(print "The following global variable value indicates the number 
of times comb-to-att-chainage has been called in this session :") 

(print *comb-to-att-chainage-call-number*) 
(let*((comb-list (slot-value segment 'attrib-hit)) 

(start-list (slot-value segment 
'start-chainage-of-attrib-hit)) 

(finish-list 
(slot-value segment 

'finish-chainage-of-attrib-hit)) 
(conv-list (comb-to-conversion-form comb-list 

start-list 
finish-list)) 

(resolved-list (resolve-attribs conv-list))) 
(dolist (element resolved-list) 
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(setf (slot-value segment 'a-list) 
(cons (first element) 

(slot-value segment 'a-list))) 
(setf (slot-value segment 'a-start) 

(cons (second element) 
(slot-value segment 'a-start))) 

(setf (slot-value segment 'a-finish) 
(cons (third element) 

(slot-value segment 'a-finish)))) 
(setf (slot-value segment 'a-list) 

(reverse (slot-value segment 'a-list))) 
(setf (slot-value segment 'a-start) 

(reverse (slot-value segment 'a-start))) 
(setf (slot-value segment 'a-finish) 

(reverse (slot-value segment 'a-finish))) 

(consolidate-attrib-lists segment)) 

;(comb-to-att-chainage 'pipeline-segmentl55) 

;### The following function consolidates the lists of attributes, 
start and finish chainages produced by the above function. Basically 
if there are two entries with the same attrib-id, and they have 
either a common start/finish or finish/start chainage value, the 
entries are amalgamated into a single entry with non-common chainage 
values retained. 

(defun consolidate-attrib-lists (segment) 
(let*((a-list (slot-value segment 'a-list)) 

(a-start (slot-value segment 'a-start)) 
(a-finish (slot-value segment 'a-finish)) 
(out-list ' ()) 
(out-start ' ()) 
(sorting-list '()) 
(sorted-list ' ()) 
(out-finish ' ()) 
(cnt 0) 
(sort-len 0) 
(att-len (length a-list))) 

(print " ") 
(print a-list) 
(print a-start) 
(print a-finish) 
(print " ") 

(dotimes (cnt att-len) 
(let*((al-1 (nth cnt a-list)) 

(as-1 (nth cnt a-start)) 
(af-1 (nth cnt a-finish))) 

(setq sorting-list (cons (list al-l as-1 af-1) 
sorting-list)))) 

(print sorting-list) 
(setf sorted-list (sort sorting-list 

t'string-lessp :key #'car)) 
(print sorted-list) 
(print "above was the sorted list") 

(setq sort-len (length sorted-list)) 
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(dotimes (cnt2 sort-len) 
(print sorted-list) 
(print "above is the new sorted list") 

(let*((key-att (first (first sorted-list))) 
(key-list ' ())) 

(dolist (element sorted-list) 
(cond((equal key-att (first element)) 

(setq key-list (cons element key-list))))) 
(print key-list) 
(print "above is the key list") 
(setq cons-key-list (produce-cons-key-list 

key-list)) 
(print cons-key-list) 
(print "above is the produce-cons-key-list result") 
(dolist (element cons-key-list) 

(setq out-list (cons (first element) out-list)) 
(setq out-start (cons (second element) out-start)) 
(setq out-finish (cons (third element) 

out- finish) ) ) 
(dolist (element key-list) 

(setq sorted-list (remove element sorted-list))) 
(print "end of function: looping with sawn off 

sorted list") 
) ) 

(print out-list) 
; (print out-start) 
; (print out-finish) 

(setf (slot-value segment 'a-list) out-list) 
(setf (slot-value segment 'a-start) out-start) 
(setf (slot-value segment 'a-finish) out-finish)) 

(forward-chain) ) 

;(consolidate-attrib-lists '!pipeline-segment-51) 
; (setq sorted-list '()) 
;(sort '(("a" 2 3) ("c" 4 5) ("b" 4 5)) t'string-lessp :key t'car) 
; (produce-cons-key-list ' ( (" &" 234.45 334.345) 
; (" &" 123 234.45) 

(" &" 334.345 500) 
(" &" 600 700) 
(" &" 700 800) 
(" &" 900 1000))) 

;this function produces a consolidated attribute list given a list of 
the attribute occurances. It should not be referenced directly, 
except by the above function. 1.j. finniear 14th March 1990. 

(defun produce-cons-key-list (key-list) 
(cond( (= (length key-list) 1) 

key-list) 
(t 

(setf key-list (sort key-list f'< :key #'second)) 
(print "BANG!") 
(print key-list) 
(let* ( (al " ") 
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(sl 0) 
(fl 0) 

(a2 " ") 
(s2 0) 

(f2 0) 
(match-list ' ()) 
(match-list-2 '()) 
(cons-list ' ())) 

(cond 
((> (length key-list) 1) 
(setq match-list (first key-list)) 
(setq al (first match-list)) 
(setq sl (second match-list)) 
(setq fl (third match-list)) 
(setq key-list (remove match-list key-list)) 
(loop 

(t 

(setq match-list-2 (first key-list)) 
(setq a2 (first match-list-2)) 
(setq s2 (second match-list-2)) 
(setq f2 (third match-list-2)) 
(cond 
((=fls2) 

(setq fl f2) 
(setq key-list 

(remove match-list-2 key-list))) 
(t 
(setq cons-list 

(cons (list al sl fl) cons-list)) 
(setq al a2) 
(setq sl s2) 
(setq f1 f2) 
(setq key-list 

(remove match-list-2 key-list)))) 
(cond((= (length key-list) 0) 

(setq cons-list 
(cons (list al sl fl) cons-list)) 

(setq cons-list 
(remove-duplicates cons-list)) 

(return cons-list))))) 

key-list)) 
(print cons-list) 
)))) 
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