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Abstract: This paper presents a tripartite version of particle swarm optimisation,
genetic algorithm, and simulated annealing (PSO-GA-SA) optimisation strategy
addressing some predominant issues such as the problem of the potential
solution being trapped in a local minima solution space, the untimely
convergence and the slow rate of arriving at optimal solutions. This strategy
is designed with an intelligence beneficiary trade-off between exploration and
exploitation of the full potential of all the capabilities of PSO, GA, and SA
functioning simultaneously. The design algorithm further incorporates a variable
velocity component that introduces random intelligence. There are substantial
performance improvements when the novel robust design is first validated with
three test functions for the initial case studies. To demonstrate the capabilities
to handle complexities and establish scalability in the implementation of the
proposed approach, the optimisation strategy is further applied to a high-integrity
protection system (HIPS) which is a real-life safety system design optimisation
problem with increased number of input variables, constraints, and limitations
on the available resources. The novel design performs better than their individual
methods using the number of fitness evaluations, as the performance metrics,
whilst operating with both a reduced number of generations and initial number
of starting potential solutions.
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1 Introduction

The 21st century has witnessed an increased amount and the quality of research output

in order to meet up with the numerous and diverse real-world challenges confronting us

today. Many of these challenges can be classified as optimisation problems (Nesmachnow,

2014; Wang, Zhao and Ren, 2007; Rutenbar, 1989) and they exist in various fields and

disciplines. A large number of these problems are prevalent in industries such as in control

fields (Yan and Wang, 2015), clinical medicine and materials science (Lan et al., 2015),

wind power energy generations (Rehman and Ali, 2015), manufacturing sectors (Liu et al.,

2015), productions (Liu et al., 2014), processes (Singh et al., 2012), engineering sectors

(Wu, 2012), and there are some other implementations which include missile evasion

systems, trajectory planning and radar applications which can be found in the ministry

of defence (MoD) (Lu, Miao and Li, 2013; Kumar and Singh, 2013). Pragmatically, such

problems often involve making an almost impossible or impractical selection that gives a

single global optimal solution which has the best fitness value to an optimisation problem.

In a nutshell, the number of possible solutions (permutations/combinations) could run into

millions or more depending on the problems; these are challenging tasks and non-trivial

in nature; they are mostly highly non-linear, non-differentiable, non-convex, discontinuous

and non-parametric systems.

As a result of this, there is a need to solve these complex and practical problems in

order to arrive at the global optimal solution. Nesmachnow (2014) provided in his work

an accurate overview of many cutting-edge approaches, elaborated on efficient available

metaheuristic optimisation methods for solving difficult practical and theoretical problems

and detailed the current and future research in the field. Methods and approaches such

as the Quasi-Newton, Newton-Raphson, Gradient descent, Gauss-Newton, Levenberg-

Marquardt and Nelder-Mead provide good solutions for solving convex optimisation

problems especially when the problems have small dimensionality and possess only

differentiable functions. However, there is the inability to effectively implement these

approaches because of the higher probability of being trapped in a local minima solution.
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The nature of these methods makes it unsuitable for solving non-differentiable functions

and problems with high dimensions.

However, with the implementation usage of these robust and stochastic optimisation

approaches, there are still some predominant issues such as the problem of the potential

solution being trapped in a local minima solution space. Having mentioned the prevailing

problems associated with the existing approaches, this research paper proposes a novel

tripartite (PSO-GA-SA) optimisation approach. The main motivations for the research

work are to propose a strategy that can conveniently search the solution space without

getting stuck in a local optima solution. In addition, there is the necessity to efficiently

solve and obtain quality optimum solutions as quickly as possible. The main contributions

of this work are in the areas of parallel and strategic combinations of the three approaches:

PSO, GA and SA; the algorithm is designed with the full potentials of both PSO and GA

functioning simultaneously to exploit, explore and exchange good and relevant solution

traits within the population and amidst themselves in real time with the solution of SA

by improving on current solution in order to obtain better results without compromising

the computational time. Moreover, there is an introduction of a high level of intelligent

behaviour, whereby a flag is activated to avoid unnecessary function evaluations in the ‘do

while’ loop of SA to reduce the computational time. Taking into account the various and

numerous research already carried out in the area of metaheuristics optimisation, literature

reveals that many approaches have been implemented using individual metaheuristics

approaches; however, only a few works exist in the area of hybrid metaheuristics

optimisation such as the PSO, GA and SA approaches. This proposed approach is designed

to operate with high intelligence in order to explore diverse solution space, exploits

good features of the individual methods in order to arrive at an optimum solution. The

remaining part of this paper is organised as follows: Section 2 briefly reviews some existing

evolutionary approaches, metaheuristic strategies and hybridisation processes. Section 3

explains the proposed PSO-GA-SA approach and its implementation. Section 4 discusses

the experimental analysis and case study 1 (application to well-known mathematical test

functions, its implementation, results and discussions). Section 5 details the case study 2; a

real-world practical scenario, its descriptions and implementation with the obtained results

while the conclusions is given in Section 6.

2 Metaheuristic strategies and hybridisation

2.1 Review of existing optimisation strategies

As mentioned in (Nesmachnow, 2014), some of these metaheuristic and evolutionary

approaches include particle swarm optimisation (PSO), genetic algorithm (GA), simulated

annealing (SA), ant colony optimisation (ACO), and artificial bee colony (ABC).

There are advantages and disadvantages associated with each of these individual

evolutionary/metaheuristic approaches. Many researchers have implemented all of these

individual approaches; the extensive work of Chandrasekar and Ramana (Chandrasekar

and Ramana, 2012) listed PSO, GA and SA as part of the best suited approaches to

metaheuristics optimisation problems. Therefore, the historical details, advantages and

disadvantages of PSO, GA and SA are discussed.

• PSO: PSO was proposed by Eberhart and Kennedy in 1995. Since then, numerous

scientific research has been carried out and the technique has been applied to many
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diverse problems (Eberhart and Kennedy, 1995; Aziz et al., 2011; Cagnina et al.,

2008; Reynolds et al., 2005). PSO results do not improve considerably when the

initial number of solution size is substantially large. PSO could be simple to design

and converges rapidly to quality solutions with the potential of attaining a global

optimal solution (Sharma and Singhal, 2015). PSO performs well when applied to

optimisation problems of large dimensions and with non-differentiable functions.

• GA: GA was first developed by John Holland in 1960s. His original intention was

not to use it for solving problems but to study about the principles of natural

adaptation (Melanie, 1996). Research has found that the GA approach does not give

good results when the initial number of solution size is too small. GA can

conveniently explore for the global solution, but the implementation could be a

challenge; the optimisation speed is rather slow and the convergence rate is very low

(Sharma and Singhal, 2015).

• SA: SA was introduced by Kirkpatrick et al. in 1982 (Kirkpatrick, Gelatt and Vecchi,

1983; Rutenbar, 1989) for solving combinatorial optimisation problems. SA derives

its utilisation from annealing in metallurgy where there is heating and manipulated

cooling of a substances in order to diminish material defects and enhance the size of

its crystals. SA is good for avoiding local minima solutions and it is very efficient for

problems with a large search solution space.

2.2 Hybridisation and related works

The GA evolutionary approach (Melanie, 1996) is a very well established method in

the literature. In addition, non-deterministic metaheuristic methods such as the PSO

(Eberhart and Kennedy, 1995) and SA (Kirkpatrick, Gelatt and Vecchi, 1983; Rutenbar,

1989) are also very popular and have been used extensively to solve many problems.

Since the numerous practical problems differ, this reality therefore leads to many

approaches for solving many practical optimisation problems (Huesken, Jin and Sendhoff,

2002; Sbalzarini, Muller and Koumoutsakos, 2000). These approaches are either used

individually or are combined with one another to provide better solutions to problems

such as the work of (Hoseini and Shayesteh, 2010). However, the use of these approaches

depends entirely on the specific problem application. There are also many recent

approaches applied by researchers to improve the performances obtained from the use of

evolutionary algorithms (EAs). For instance, the work of Zhao et al. (2014) adopted the

use of an adaptive crossover and mutation to further improve the performance of obtaining

better results in PSO-GA for solution layout problems.

In order to further make the outcomes and results of evolutionary and metaheuristic

approaches more beneficial, combinations and hybrid versions of several methods are

continuously being utilised. A recent work of Sharma and Singhal (2015) involved the

insertion of the final optimal solution of the GA process into the PSO procedure. Also, the

work of Yang et al. (2014) employed another strategy which involved the development of

an improved version of a hybrid of PSO and SA by exploring the temperature cooling rate

of SA in order to help in increasing the probability of obtaining a global optima solution.

A hybrid version of the combinations of ACO, GA and SA (Hoseini and Shayesteh, 2010)

was used for image contrast enhancement by the transformation of the input intensities.
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The work carried out by Chen and Chien in 2010 (Chen and Chien, 2010) explored the

combination of ACO, GA, SA and PSO for solving the travelling salesman problem. Just as

in the case of (Hoseini and Shayesteh, 2010), ACO was used to generate an initial solutions

for GA-SA and then the result was further utilised by the PSO algorithm. The deficiencies

of this approach are the lack of diversity using only the initial ACO solutions and the

implementation of only one level of fitness evaluation in the entire process. In all these, no

work is currently available that explores the combined simultaneous advantages of using

PSO, GA and SA for optimisation; this approach also accommodates the inadequacies

highlighted in (Hoseini and Shayesteh, 2010). This research paper designs a novel tripartite

PSO-GA-SA approach that delivers improved results by simultaneously exploring the

individual advantages of each of the approaches for more diversity; this further prevents

the approach from being stuck in a local minimum solution.

3 Overview of the proposed PSO-GA-SA optimisation approach

3.1 Elements of the PSO-GA-SA tripartite method

This improved tripartite evolutionary optimisation approach is designed to simultaneously

utilise the full advantages and good features of PSO, GA and SA approaches. Essentially,

PSO can search for a diverse solution space at a fast rate; GA has the potential to arrive

at the optimal solution but possibly at a slower rate while there is higher assurance of

obtaining the global optimal solution with SA. The slow rate of temperature cooling

in SA accounts for the additional computational time. The time involved in SA has

made its application less appealing and this approach has taken this disadvantage into

consideration. The tripartite operation in this proposed PSO-GA-SA approach has many

advantages and features which are further highlighted. The initial and subsequent solutions

are randomly generated in such a way to form solutions that span the whole range

for a constrained optimisation problem; this is also more advantageous in the case of

unconstrained optimisation. The approach is designed to use a minimal number of initial

solutions so as to reduce the computational time. Good solutions are exchanged between

and across PSO-GA-SA throughout the entire optimisation process. The traits exchanged

are intelligent in such a way that the elite solution interacts across the board and evaluate

fitness values and their suitabilities for solution; this creates room for more mating between

each operation of PSO, GA and SA. The best solution attributes are transmitted and

exchanged in such a way that each of the solution of PSO, GA and SA will present their

best candidate for further propagation; this involves the exploitation and exploration of

the populations for potential solutions. This process helps to avoid the operation being

trapped in a local minimum solution. In this way, there is an efficient and effective

use of the number of generations; this invariably leads to the drastic reduction in the

number of generations for the proposed novel approach. Furthermore, there is an improved

performance and a reduced computational time. This approach ensures a guaranteed global

optimal solution. Figure 1 shows the pictorial view of the described proposed PSO-GA-

SA approach; this is the process that occurs in a single generation where the best solution

within the population is selected and individual solution fitness is evaluated through the

objective function.
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Figure 1 A three-way tripartite version combination of PSO, GA and SA (see online version for
colours)

3.2 Methodology for the PSO-GA-SA approach

The steps, procedures and processes for the implementation of the novel PSO-GA-SA

approach are enumerated. The flowchart for the novel PSO-GA-SA approach is shown in

Figure 2 and are subsequently described in the following steps.

Figure 2 The flowchart for the novel PSO-GA-SA approach (see online version for colours)

Step 1 - Parameter initialisation: The process starts by deciding and choosing the following

parameters: crossover, mutation, number of fitness evaluations (σ), number of generations

(η), number potential member solutions in the population (ν) and minimum and maximum

constraints on the population inputs. Other parameters defined and associated with the

SA include Markov chain length, decay parameter, step factor, initial temperature and the

tolerance value.
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Step 2 - Population derivation: Initialise the swarm position population (a), swarm

velocity population (b), swarm best position population (c) and genetic initial starting

solution with all their populations confined within the upper and lower limits of their

respective constrained values. The vectors (a), (b) and (c) depict the current position

vector, attraction to the group best vector and attraction to the overall individual best,

respectively. The SA is designed with a single initial random population; the algorithm

is designed to further generate solutions in the neighbourhood of the initial starting

population of solution as it commences to search for the problem solution.

Step 3 - Fitness evaluation: Obtain the fitness values of the potential solutions within

the population generated in step 2.

Step 4 - Solution fitness exchange: The best n-dimension solution space vector/string

in each of the populations in step 3 is exchanged and transferred to/from one another;

the best position particle (from PSO) joins together in the Tournament/Roulette selection

process in GA before proceeding to the crossover/mutation mating; the best elite GA trait

also replicates itself, combines and competes with the PSO particles; finally, SA also sends

its best solution to both PSO and GA for fitness comparison and for further interactions

while retaining the best in all the propagation scenarios. For increased efficiency, the initial

random solution for the SA is replaced with the better solution from PSO and GA.

Step 5 - Diversity creation: All the processes in step 4 are to ensure enough diversities

throughout the entire process. New solutions are constantly being introduced in each

generation from the PSO operations; and these are filtered across the GA and SA

populations.

Step 6 - Intelligent behaviour: One of the admirable features of this algorithm is

in the introduction of what is called an intelligent variable velocity. This is to further

ensure an increased diversity and helps to avoid settling in a local optimal solution. The

variable velocity (ρ) shown in Eq. (2) is introduced and injected into the algorithm in a

situation where there has been no significant and successive improvement in the solution

for a certain period of time. In addition, the algorithm carries out timing decisions with

the help of the embedded intelligence throughout the entire process. For instance, the

algorithm raises a Boolean flag whenever SA propagates through the temperature cooling

procedure and produces its best candidate; this then enables the algorithm to know when it

is appropriate to proceed along any prolong or unproductive path; this is made possible by

retaining the knowledge of different performances of SA, GA and PSO. The SA algorithm

is allowed to execute at least once in the entire process with the tolerance manipulations to

enhance faster computations and time reduction; the algorithm compares the SA solution

and introduces it into the PSO and GA population for further propagation depending on

their individual fitness values. The value of the flag helps to determine the navigation

through the algorithm for faster implementation.

Step 7 - Tripartite position update: The update fragment of the entire process of PSO,

GA and SA is summarised in Eqs. (1)–(3).

V eli(k + 1) = φ(k) ∗ V eli(k) + α1 ∗ γ1i ∗ [Pbesti(k)− Posi(k)]
(1)

+ α2 ∗ γ2i ∗ [Gbest(k)− Posi(k)]

V eli(k + 1) = ρϕ ∗ V eli(k + 1) (2)

Posi(k + 1) = Posi(k) + V eli(k + 1) (3)
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where:

i = particle index of the solutions within the population,

k = discrete time index,

α1min
is the minimum cognitive learning parameter,

α1max
is the maximum cognitive learning parameter,

α2min
is the minimum social learning parameter,

α2max
is the maximum social learning parameter,

Pos is the position vector,

Vel is the velocity vector,

Pbest is the personal best vector,

Gbest is the global best solution, and

γ1i and γ2i are the random numbers in the range between 0 and 1 interval that are,

respectively, associated with the cognitive and social learning parameters.

Equation (1) is the tripartite velocity vector update equation, Eq. (2) is incorporated in

order to create a varied diversity in each generation depending on the result performance

while Eq. (3) is the tripartite position vector update equation. Equation (1) equates to the

summation of the inertia, local memory (cognitive learning), and global memory (social

learning). Equation (3) helps to constantly change and update the position vector in each

generation as it gets closer to the optimal solution. In summary, the updates of Eqs. (1)–(3)

are designed to contain all the solution traits existing and inherent in the PSO, GA and SA

solution space.

The parameters in Eq. (1) are further explained in Eq. (4). The new velocity obtained in

Eq. (1) is a linear combination of these three vectors (Pos, Vel and Pbest). The attractions

to the group best and the global best help to drive the optimisation process to achieve an

optimal solution.

φ = −(φmax − φmin) ∗
ϕ

τ
+ φmax

α1 = (α1max
− α1min

) ∗
ϕ

τ
+ α1min

(4)

α2 = (α2max
− α2min

) ∗
ϕ

τ
+ α2min

where:

the current iteration value = ϕ,

the maximum iteration specified = τ ,

the inertia weight function = φ,

the initial weight value for the inertia function = φmin,

and the final weight value for the inertia function = φmax.

These initial values were determined heuristically after a few trials.

Step 8 - Next Generation: The procedure goes back and repeats from step 3 up to step

7 by evaluating the fitness values of the new next generation populations.

Step 9 - Stopping Criterion: The algorithm stops when the specified number of epochs

or generations is reached.

A pseudo-code describing the higher level schema of proposed PSO-GA-SA is

provided.
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4 Experimental analysis

4.1 Case study 1: optimisation test functions

A total of five different approaches was designed in this work in order to test and compare

the novel approach. They are (i) PSO, (ii) GA, (iii) SA, (iv) PSO-GA and (v) PSO-GA-SA.

All the approaches were asserted with 3 standard benchmark optimisation test functions in

the literature in order to ascertain the efficiency of this evolutionary global optimisation

approach.

Equation (5) shown pictorially in Figure 3a, Eq. (6) illustrated in Figure 3b and Eq. (7)

shown in Figure 3c are the Beales’ function, Easoms’ function and Ackleys’ function,

respectively.

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 +

(2.625− x+ xy3)2 (5)

ξ = f(3.0, 0.5) = 0;

− 4.5 ≤ x, y ≤ 4.5

Figure 3 Optimisation test functions (see online version for colours)
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f(x, y) = − cos(x) cos(y) exp(−((x− π)2 + (y − π)2)) (6)

ξ = f(π, π) = −1;

− 100 ≤ x, y ≤ 100

f(x, y) = −20 exp(−0.2
√

0.5(x2 + y2)) −

exp(0.5(cos(2πx)) + (cos(2πx)) + e+ 20) (7)

ξ = f(0, 0) = 0;

− 5 ≤ x, y ≤ 5

4.2 Calibration analysis and parametrisation for case study 1

The choice of best parameterisation values is a very important issue and usually proves

to be a complex task. Performing a systematic experiment with various parameter settings

involves trying all different possible parameter values and their combinations which is

also a difficult task. However, optimising parameter settings one by one does not lead to

the optimal settings as most parameter tends to have effects on one another. The strategy

adopted is to start from known and try different variations of parameters until an acceptable

value is obtained. This section shows the results of the metaheuristics parameters used for

the tripartite algorithm. Several trials were made in order to determine the best that will

be taken forward to use. Calibration analysis and parametrisation tuning are performed.

The parameters and variables investigated are as discussed. The value of Markov chain

length was initially varied between 100 and 500. Results show that increasing the Markov

chain length improves the results, but it considerably consumes a higher amount of time.

Results also become much better by reducing the tolerance value from 1× 10−2 to 1×
10−6 but a low tolerance value makes the algorithm go through several fitness evaluations

until the tolerance value is reached. Since too many fitness evaluations is not ideal for

computation time, the best value which will give good result and that will not execute more

than necessary fitness evaluation is chosen. For the PSO, the cognitive and social scaling

parameters are very important; their choice determines whether the algorithm will be able

to produce new solution that will move the position vector closer to the optimal solution.

The number of fitness evaluations for algorithm involving SA varies depending on the

starting random values. A typical value ranges between 10 and 300. The more we increase

the starting inital solution space, generation number or the number of fitness evaluations,

the better the results but it gets to a point where there are no further improvement in the

results.

Default and standard values for crossover and mutation rate are used with little

variations. The same parameters used for the individual approaches are also applied for the

proposed tripartite approach.

The parameters and variables details are summarised as follows:

1 GA: Mutation rate = 0.2, crossover rate = 0.65, size of the initial starting solution

space = 25, generation number =25, number of fitness evaluations = 625



12 K. Owa et al.

2 SA: Markov chain length = 100, decay parameter = 0.95, initial starting temperature

= 100, tolerance value = 1× 10−2, size of the initial starting solution space = 1

3 PSO: size of the initial starting solution space = 13 each for both position and

velocity random initialisation, generation number =25, number of fitness evaluations

= 650, final weight for the inertia function =1.8, initial weight for the inertia function

=1.6, minimum cognitive scaling parameter = 5, maximum cognitive scaling

parameter = 4, minimum social scaling parameter = 1.5, maximum social scaling

parameter = 4.

4 PSO-GA-SA: size of the initial starting solution space = 52, generation number =2,

while the number of fitness evaluations is not predetermined before the

commencement of the strategy.

4.3 Implementation, results and discussions

The aim of the optimisation algorithm is to minimise f(x, y) and find the global(best)

optimal solution from the search domains with specified criteria. Equations (5)–(7) are

referred to as the objective or fitness functions. For Eq. (5): the search domain range

for (x, y) is between −4.5 and 4.5; the local minima solution is located at the position

coordinate (3, 0.5) and the target minimum point (ξ) of f(x, y) = 0. For Eq. (6): the search

domain range for (x, y) is between −100 and 100; the local minima solution is located at

the position coordinate (π, π) and the target minimum point (ξ) of f(x, y) = −1 and also

in a similar manner for Eq. (7), the search domain range for (x, y) is between −5 and 5; the

local minima solution is located at the position coordinate (0, 0) and the target minimum

point (ξ) of f(x, y) = 0 (see Eqs. (5)–(7) for more details). Since each implementation of

the EAs utilises different random solution space, the results are presented using the average

values obtained over a period of 6 different scenarios. The results of the comparison of

the various method results are given in Table 1 where µ is the average fitness deviations

of all the three test functions, σ is the number of fitness evaluations, η is the number

of generations used while ν is the number of initial starting solution used in order to

obtain the optimal solution. The fitness deviations in Table 1 is calculated using the

formula: {µ = |f(x, y)− ξ)|} which is derived by obtaining the absolute value of the error

difference between the fitness obtained (f(x,y)) and the target minimum point (ξ). The

summary of all the results when all the strategies were subjected to the same conditions

(the values of σ and η) show the efficiency of the novel approach. The important features of

this PSO-GA-SA approach are the efficient performance obtained with a reduced number

of both fitness evaluations (σ) and generations (η). The algorithm is designed to produce

optimal solutions effectively as from the second generation. Moreover, the algorithm takes

into consideration the importance of time using intelligent flag mechanisms to decide and

avoid unnecessary looping through the algorithm and as well producing an optimal solution

without compromising the time expended.

Taking a closer look at the result of Ackleys’ function (see Eq. (7) - Figure 3c). The

two-dimensional Ackleys’ function has a hole at the centre (global optimal solution) and

the whole surface is covered with numerous local minima points and hence it poses a

real practical challenge for optimisation algorithms. For instance, algorithms that use only

gradient descent methods would be trapped in a local optima solution. This PSO-GA-SA

approach is designed to search and evaluate a wider solution space in order to be able

to manoeuvre across the various hills and valleys (local optima solutions); this algorithm

combines the exploitative and exploratory components efficiently in order to obtain a better



PSO-GA-SA optimisation strategy 13

result. The results show that the algorithm was able to arrive at a global optimal solution

(See Table 1); the smaller the fitness deviation (µ) in the result table, the better the strategy.

The PSO-GA-SA approach shows to have the smallest µ value and hence processes the

best result.

Table 1 Performance table of the optimisation strategies using test functions

Strategies performance

Strategies Beale Easom Ackley µ ν η σ

GA 0.43 0.39 0.41 0.41 25 25 625

PSO 0.33 0.35 0.34 0.34 26 25 650

SA 0.31 0.33 0.29 0.31 1 1 598

PSO-GA 0.30 0.22 0.21 0.24 51 13 663

PSO-GA-SA 0.10 0.15 0.01 0.09 52 2 665

4.4 Statistical analysis

Statistical analysis is carried out in this section. In this paper, non-parametric test is

preferred and used rather than the parametric tests; the reasons responsible for the

preference are highlighted as follows:

We have a very small sample size of 6 data sample each while parametric test requires

a sample size that is greater than 20. Another reason for using the non-parametric test

is because there are outliers available in the data which you cannot afford to discard.

Therefore, the Kruskal-Wallis test has been adopted in this work for the statistical analysis

to determine if there are significant variations in the results of each of the optimisation

approach. For the Kruskal-Wallis test, the sample size for each group should be at least 5.

If a group has less than 5 observations, the p-value can be inaccurate. The p-value is

the probability of finding the observed results when the null hypothesis (H0) of a study

question is true.

The Kruskal-Wallis test is a version of the independent test measures ‘One-Way’

analysis of variance (ANOVA) that can be performed on ordinal (ranked) data. In this

work, we have 5 groups (GA, PSO, SA, PSO-GA and PSO-GA-SA) and 6 observations

each for the result of the Beales function. Table 2 shows the Statistical analysis using the

Kruskal-Wallis non-parametric test for the Beales test function whilst the ranking of the

different 6 observations are provided in Table 3.

Table 2 Statistical analysis

Observations

Fitness deviations 1 2 3 4 5 6

GA 0.47 0.42 0.41 0.46 0.43 0.4

PSO 0.32 0.33 0.29 0.34 0.3 0.38

SA 0.3 0.27 0.28 0.28 0.37 0.35

PSO-GA 0.31 0.25 0.28 0.35 0.26 0.35

PSO-GA-SA 0.14 0.08 0.09 0.11 0.134 0.12
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Table 3 Ranking

Observations

Ranking 1 2 3 4 5 6 T T 2

GA 30 27 26 29 28 25 165 27225

PSO 17 18 13 19 14.5 24 105.5 11130.25

SA 14.5 9 11 11 23 21 89.5 8010.25

PSO-GA 16 7 11 21 8 21 84 7056

PSO-GA-SA 6 1 2 3 5 4 21 441

The task is to find if there is a difference between the 5 different optimisation strategies.

The seven steps required in order to achieve, these include the following:

Step 1 - Define the null and the alternative hypotheses:

Null hypothesis (H0); there is no difference between the different approaches.

Alternate hypothesis (H1); there is a difference between the different approaches.

Step 2 - State the alpha value:

Using an alpha level of 0.001.

Step 3 - Calculate the degrees of freedom:

Degree of freedom (dof) = k − 1 where k is the number of approaches = 5. Therefore the

dof is 4.

Step 4 - State the decision rules:

In stating the decision rules, we use the Chi-square table which contains the alpha level

and the degree of freedom. The Chi-square table gives a value of 18.467. Therefore if the

Chi-square value that will be calculated is greater than 9.48773, then we will reject the null

hypothesis (there is a difference). If the calculation is less than the Chi-square value, then

we will not reject the null hypothesis (there is no difference).

Step 5 - Calculate the test statistics:

Rank all the 30 observations from smallest to the highest. The the Chi-square calculation

is given in Eq. (8).

Step 6 - State the results:

Using the Chi-square equation gives a value of 22.8333 which is slightly greater than

18.467.

Step 7 - State the conclusion:

The null hypothesis is therefore rejected; that means that there is a difference in the

approaches and the proposed approach performed better than the rest of the individual

methods.

H =

(

12

N ∗ (N + 1)

)

∗

(

∑ Ti
2

n

)

− 3 ∗ (N + 1) (8)

5 Case study 2: real-world problem scenario

The second case study is a real-world problem scenario that deals with the design of a

safety protection system.

In order to properly demonstrate the capabilities of this novel approach for complexities

and scalability, a safety system design known as the HIPS is utilised. This particular case

study is considered a more practical optimisation design application for a real-life situation
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where there are a total number of 10 input variables in the design which render it more

complex than the previous 2-variable case study. In addition, the novel approach is scalable

to handle integer input apart from real decimal input as the initial starting solutions; the

system is represented by a failure model which has a total number of almost 300 logic

(AND, OR, Basic Events and House Events) gates in the design model which bring further

complexities in the application and implementation approach.

5.1 HIPS parameter evaluation and implementation

5.1.1 HIPS design

The main function of the HIPS is to prevent a high-pressure surge passing through it. The

HIPS is divided into two separate subsystems. Subsystem 1 (SubS1) is the emergency

shutdown (ESD) subsystem; this is the first level of protection of the HIPS. The ESD

system acts to close the Wing and Master valves together with any ESD valves that

have been fitted when pressure in the pipeline exceeds the permitted value. This value is

monitored using a Pressure Transmitter (PT). Subsystem 2 (SubS2) provides an additional

level of protection; the inclusion of the HIPS incorporates this second level of redundancy.

In terms of their operation, the latter subsystem is completely independent of the first. Its

method of protection is the same as the ESD system. Figure 4 illustrates this and represents

the main features of the HIPS.

Figure 4 Structure of high integrity protection system (HIPS) (see online version for colours)

In this work, the design optimisation scheme has been applied to a HIPS where 10 variables

are considered in the system design. These variables, their description and evaluation limits

are shown in Table 4 where MTI is the maintenance or inspection test interval. Two points

to note in the design:

1 It is assumed that whatever the valve type or the PT type are fitted, they are the same

in the entire design.

2 The number of PTs required to activate the closure of valves on subsystem 1 or 2 is a

function of the numbers installed (N1, N2) in the design (See Table 4).
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Table 4 HIPS design variables

Variables Description Range of values

θ1 MTI for SubS1 1 week - 2 years

θ2 MTI for SubS2 1 week - 2 years

V Valve type 1 or 2

P PT Type 1 or 2

N1 No of PTs fitted for SubS1 1 - 4

N2 No of PTs fitted for SubS2 0 - 4

K1 No of PTs required to activate SubS1 1−N1

K2 No of PTs required to activate SubS2 0−N2

E No of ESD valves fitted 0 - 2

H No of HIPS valves fitted 0 - 2

Given the numbers of likely design variations that could result from all the 10 design

variables described in Table 4, this amounts to almost 45 million possible safety system

design options. It is therefore not feasible to completely solve for all the potential designs.

Furthermore, it is an arduous task to understand the interactions that exist between all the

design variables and is practically unimaginable for any engineer to manually design and

test safety system for all these scenarios. The computerised optimisation strategy algorithm

can easily step into play in order to determine the ‘best or optimal’ design option in an

efficacious manner without going through the arduous task.

Each hardware component of the HIPS could either fail in a dormant mode or in a

spurious manner. A dormant failure can be described as the inability of the component to

carry out its desired task when occasion arises for it to operate as designed. In contrast,

the spurious failure results from the component carrying out its desired normal function

when its operation is not actually required; this can be termed as working inappropriately

or functioning in a wrong working mode. Table 5 shows the details of the HIPS design

variables: the failure rates (λ) and the mean time to repair - MTTR (ν) for each of the HIPS

components in both the dormant and the spurious failure modes. These data will be used

subsequently when calculating the unavailability and spurious trip probability of the HIPS.

The hardware costs in £ for each component in the system as well as times taken to service

each component at each maintenance test are also shown in Table 5. Each combination of

HIPS variables gives a new system design with its particular features such as cost and the

maintenance down-time (MDT). In this case, there are three limitations on the available

resources:

1 The total cost of the system must be less than 1, 000 units.

2 The average time each year that the system spends in the down state due to

preventative maintenance is a maximum of 130 hours per year.

3 If the number of times that a spurious system shutdown occurs is more than once per

year, then it is deemed unacceptable.
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Table 5 Component failure data

Dormant failures Spurious failures

Components
λ ν λ ν Cost Time

(/hour) (hours) (/hour) (hours) (£) (hours)

Wing valve 1.14× 10−5 36 1.00× 10−6 36 100 12

Master valve 1.14× 10−5 36 1.00× 10−6 36 100 12

HIPS valve 1 5.44× 10−6 36 5.00× 10−7 36 250 15

HIPS valve 2 1.00× 10−5 36 1.00× 10−5 36 200 10

ESDV valve 1 5.44× 10−6 36 5.00× 10−7 36 250 15

ESDV valve2 1.00× 10−5 36 1.00× 10−5 36 200 10

Solenoid valve 5.00× 10−6 36 5.00× 10−7 36 20 5

Relay contacts 0.23× 10−6 36 2.00× 10−6 36 1 2

PT 1 1.50× 10−6 36 1.50× 10−5 36 20 1

PT 2 7.00× 10−6 36 7.00× 10−5 36 10 2

Computer logic 1.00× 10−5 36 1.00× 10−5 36 20 1

5.1.2 HIPS cost evaluation

In calculating the total cost involved, explicit and implicit approaches are the two major

classes of constraints required. Explicit ones can be determined and easily evaluated from

an explicit function of the design variables. On the contrary, the implicit constraints can

only be evaluated by a full analysis of the system. Cost of the HIPS design is an explicit

constraint and is represented by the following equations:

Cost = Cost(SubS1) + Cost(SubS2) ≤ 1000 (9)

Cost(SubS1) = E(V1CV E1 + V2CV E2 + Cs) +N1(P1CP1 + P2CP2) + 261 (10)

Cost(SubS2) = H(V1CV H1 + V2CV H2 + Cs) +N2(P1CP1 + P2CP2) + 21 (11)

where:

V1 - valve type 1

V2 - valve type 2

P1 - pressure transmitter (PT) type 1

P2 - pressure transmitter (PT) type 2

CV 1 = CV E1 = CV H1 - cost of the valve type 1,

CV 2 = CV E2 = CV H2 - cost of the valve type 2,

CP1 - cost of the pressure transmitter (PT) type 1,

CP2 - cost of the pressure transmitter (PT) type 2,

Cs - cost of the solenoid valves.

E, H, N1, and N2 were described in Table 4.

The constant 261 (Eq. 10) for SubS1 is the additional cost for the wing and master valve,
their solenoid valves, the computer and control relays. SubS2 has a fixed cost of 21 units
Eq. (11) for the computer and control relays. From Eqs. (9)–(11), the cost of each system
design is:

Cost = (E +H)(V1CV 1 + V2CV 2 + Cs) + (N1 +N2)(P1CP1 + P2CP2) + 282 (12)
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5.1.3 HIPS maintenance down time evaluations

Similarly to the cost for the HIPS, average MDT (maintenance down time) is calculated

as a sum of the maintenance down time of SubS1 and SubS2 for each of the potential

designs:

MDT = MDT (SubS1) +MDT (SubS2) ≤ 130 (13)

MDT (SubS1) =
52

θ1
[E(V1MV E1 + V2MV E2 +Ms)

(14)

+N1(P1MP1 + P2MP2) + 47]

MDT (SubS2) =
52

θ2
[H(V1MV H1 + V2MV H2 +Ms)

(15)

+N2(P1MP1 + P2MP2) + 13]

where:

MV E1 = MV H1 = MV 1 - test time of the valve type 1,

MV E2 = MV H2 = MV 2 - test time of the valve type 2,

MP1 - test time of the pressure transmitter (PT) type 1,

MP2 - test time of the pressure transmitter (PT) type 2,

Ms - test time of the solenoid valve.

The expression 52

θx
in (Eqs. 14–15) gives the number of times the system is down in a

year for the SubS1 and SubS2, respectively. The constant 47 (Eq. 14) is the sum of the

test times for the wing and master valve, their solenoids, the computer and control relay for

SubS1. Similarly for SubS2, the sum of the test time for the computer and control relay

is 13 units (Eq. 15). From Eqs. (13–15), MDT for each design can be calculated using

Eq. (16):

MDT = 52 ∗ [H1 ∗H3 +H2 ∗H4 +H5] (16)

where:

H1 = V1MV 1 + V2MV 2 +MS ,

H2 = P1MP1 + P2MP2,

H3 = E
θ1

+ H
θ2
,

H4 = N1

θ1
+ N2

θ2
,

H5 = 47

θ1
+ 13

θ2
.
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5.1.4 HIPS analysis

The most important feature of each safety system is its perfect operation and swift

action when an urgent demand is required. Therefore, the objective is to minimise system

unavailability, which means to minimise the probability of system failure on demand.

Ideally, using the design alternatives, it is essential to determine which potential system

design would produce the highest functionality and the minimal unavailability.

Practically, certain factors need to be taken into consideration and it is the available

resources for this application. The limitations on resources were defined as cost,

maintenance effort and the spurious frequency. The design options should improve the

HIPS performance without violating the specified constraints. Consequently, the evaluation

of each constraint is required in order to assess the overall desirability of each design

option.

5.1.5 Fitness evaluation and penalty formulas

The system unavailability is the main optimisation criterion; However, resources are not

inexhaustible. Therefore, the following limits were considered:

• Cost ≤ 1000 units,

• Maintenance down time: MDT ≤ 130 hours per year,

• Spurious system failure: Fsys ≤ 1 per year.

If these three parameters exceed their respective limits, the following penalty equations

were implemented in this PSO-GA-SA HIPS safety design:

1 The method utilised tries to form a direct relationship between cost and performance.

HIPS PSO-GA-SA designs with excessive cost will not be adopted, so more the

constraint violation the heavier the penalty. This is implemented using an exponential

relationship of the form y = x
5

4 . The cost penalty also takes into account both the

cost violation and the system unavailability. This is achieved using a multiplying

factor which, rather than being fixed, varies according to the system unavailability of

the design. Hence, the modified cost penalty formula (Cp) for excess cost is shown

in Eq. (17).

Cp =

{

(COST − 1000)

1000

}
5

4

∗Qsys (17)

where Qsys is the system unavailability.

2 If the MDT of a particular HIPS PSO-GA-SA design exceeds 130 hours, a

contribution is made to the unavailability of the system in the form of a penalty. The

respective penalty (Mp) is shown in Eq. (18).

Mp =
(MDT − 1000)

8760
(18)

where the value of 8760 is derived by multiplying 24 h by 365 days and this gives

the number of hours per year.
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3 The third constraint, excess spurious trip occurrence, is also related to the cost. If a

spurious trip occurs, production ceases and hence a financial loss is incurred. It was

assumed that the cost per hour for loss of production is 100 units. On average, a

spurious trip requires 36 hours (refer to Table 5) to repair and only one such

occurrence is acceptable in a yearly period. Using the cost penalty formula (Eq. 17),

the spurious trip penalty (Sp) can be expressed as shown in Eq. (19):

Sp =

{

Excess Cost

1000

}
5

4

∗Qsys (19)

Each penalty is subsequently added to the system unavailability. The result is a sole

fitness value for each design referred to as its penalised system unavailability (Q
′

sys),
shown in Eq. (20).

Q
′

sys = Qsys + Cp +Mp + Sp (20)

5.2 Calibration analysis and parametrisation for case study 2

In a similar approach used for case study 1, the calibration analysis and parameterisation

tuning for parameters and variables used for case study 2 are further discussed.

Since this is a more complex problem, just as in the previous case study similar

explanations apply here as well. The value of Markov chain length was increased and

initially varied between 350 and 1000. The tolerance value range from between 1× 10−4

and 1× 10−7. A typical range value for SA is more difficult to determine in the more

complex scenario but could be any where in the range between 10 and 3000. The number of

initial starting solution space is not increased appropriately for the complex problem, since

the optimisation design strategies seek to explore many generations in order to determine

the efficiency and their ability not to get stuck in local minimal solutions.

The parameter and variable details are summarised as follows:

1 GA: Mutation rate = 0.2, crossover rate = 0.65, size of the initial starting solution

space = 20, generation number = 500, number of fitness evaluations = 10000.

2 SA: Markov chain length = 1000, decay parameter = 0.95, initial starting temperature

= 1000, tolerance value = 1× 10−6, size of the initial starting solution space = 1.

3 PSO: size of the initial starting solution space = 10 each for both position and

velocity random initialisation, generation number = 500, number of fitness

evaluations = 10000, final weight for the inertia function = 0.08, initial weight for

the inertia function = 0.06, minimum cognitive scaling parameter = 0.02, maximum

cognitive scaling parameter = 0.01, minimum social scaling parameter = 0.04,

maximum social scaling parameter = 0.03.

4 PSO-GA-SA: size of the initial starting solution space = 41, generation number

= 10, while the number of fitness evaluations is not predetermined before the

commencement of the strategy.

The results of the number of fitness evaluations (σ) for all the strategies are provided in

Table 6. The number of fitness evaluations for proposed PSO-GA-SA approach is the size

of the initial starting solution space multiplied by the number of generations and added to

the number of fitness evaluations in SA approach since this is executed only once.



PSO-GA-SA optimisation strategy 21

Table 6 Characteristics and comparisons of the best design structure

The subsystems GA PSO SA PSO-GA PSO-GA-SAa

S
u
b

S
y
s

1 No. of ESD valves (E) 1 1 1 1 1

No. of PTs (N1) 3 3 2 2 2

No. of PTs to trip system (K1) 1 2 2 1 1

MTI (θ1) 87 63 47 93 39

S
u
b

S
y
s

2 No. of HIPS valves (H) 1 1 1 1 1

No. of PTs (N2) 3 2 3 2 1

No. of PTs to trip system (K2) 2 2 2 1 0

MTI (θ2) 110 75 34 86 47

Valve type (V) 1 1 1 1 1

PT type (P) 1 1 1 1 1

Maintenance down time (MDT) (hours) 128.53 127.90 129.53 129.11 129.62

Cost 644 632 622 599 575

Spurious trip (Fsys) 0.4334 0.4382 0.4276 0.4076 0.15085

System unavailability (Qsys) ×10−7 4.162 4.117 4.115 4.110 4.023

Number of fitness evaluations (σ) 10000 10000 8156 10000 8252

Source: a Proposed PSO-GA-SA approach

5.3 HIPS results and discussions

This section discusses the results of the implementation of the 5 optimisation strategies in

the research for the optimisation of design of HIPS. However, this approach clearly further

demonstrates the ability to use PSO-GA-SA for the HIPS design to find and explore for

an optimal HIPS design to protect the equipment and the infrastructures. Table 6 gives the

concise details of the result comparison for the 5 strategies. The included variable velocity

in the algorithm also assisted not only to avoid being trapped in a local minima solution but

to enhance obtaining a near optimal solution. The results discussion is further enumerated

as follows:

• One of the aims of this approach is the effort introduced in order to reduce the

number of generations since the PSO-GA-SA algorithm goes through a lengthier

fitness evaluation as compared with the individual approaches: PSO, GA and SA. In

one of the preliminary results, an interesting finding from the PSO approach is that it

used a total of fitness evaluations (σ = 4400) where (η = 220) to produce the

optimal result. In addition, it is even more exciting that this PSO-GA-SA approach

rightly produced the exact same result with just fitness evaluations (σ = 1710) where

(η = 25). This is as a result of the increased diversity in the proposed approach.

• Subsequent to the preliminary results and in order to further demonstrate the

efficiency of this PSO-GA-SA approach, an improved results is later obtained in

terms of the system unavailability (Qsys) which is the actual parameter to be

minimised. The reduced (Qsys) value of 4.023× 10−7 is better than the results

obtained for all other approaches as shown in Table 6.
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• In all of the optimisation approaches, only 1 quantity of valve of type 1 and pressure

transmitter of type 1 were obtained for the PSO-GA-SA approach for subsystem 2.

This is a cheaper design since it requires just one HIPS valve and only one pressure

transmitter to be installed unlike the other approaches; a similar explanation can be

articulated for the subsystem 1.

• Another key point to remember is the task to obtain the design that produces the best

reduced overall cost. The cost implication of the design using PSO-GA-SA approach

incurred a cost of £575 which is the cheapest cost obtained when compared with the

rest of the results in Table 6.

• On the positive side, all the approaches produced similar results in terms of the

maintenance down time (MDT) measured in hours. They are all within the range of

between 127 hours and the maximum allowable of value of 130 hours.

• One of the main strength inferred from this approach is the ability to explore many

diversified solution using best features of the three individual approaches.

These design comparison distinctions are clearly detailed in Table 6.

6 Conclusion

This paper presents the successful implementation of a novel tripartite optimisation

approach. This novel approach uses the best features of the combination of PSO, GA

and SA. PSO brings more varieties, diversity and faster convergence in obtaining the

optimal solution; GA can search a wider space by exploring the mating capabilities of

the probabilities of the crossover and mutation operators; and SA is known to guarantee

the global optimal solution.

As can be seen the approach was first tested and validated using three 2-variable

optimisation test functions: the Beales, Easoms and Ackleys’ function; this proves the

working principle of the approach. This GA-PSO-SA method was further extended,

verified and applied to a more complex, real-life practical, 10-variable optimisation design

of a HIPS. The HIPS is a safety system that can be installed in an industrial environment

and on hazardous processes in order to mitigate occurrence such as overpressure,

explosions, fires, explosions, releases of flammable or toxic materials, and vessel or a gas

blowout. A fault tree analysis (FTA) was carried out for the HIPS design for offshore

platforms in order to calculate the design unavailability to initiate a shutdown in the case

of an emergency. The HIPS processes numerous design options and the optimisation tool

is required in order to find the optimal system design within certain constraints.

The main metric for comparison in the entire strategies is the number of fitness

evaluations. Altogether, the GA-PSO-SA approach was proved and tested to find better

solutions with fewer fitness evaluations. Further testing also shows that the proposed

approach does not stagnate or get stuck in a local solution after it is subjected to

further fitness evaluations unlike the other approaches. This approach has been properly

demonstrated to perform well with a reduced number of generations; it has also been

conveniently shown to be suited for massive processes with large models such as HIPS

that require faster optimisation and efficiency in materials, resource, power and energy

utilisation. The design simplicity and the fast execution speed will likewise enhance its

utilisation in varied industrial applications with simulations model designs.
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Ultimately, the approach has the potential to be used further in more complex safety

critical systems, where scalability is not deemed to be an issue. Further work will explore

the multi-objective technique for the design of systems with more than one objective to be

simultaneously satisfied and a non-dominated multi-objective pareto optimisation task in

order to tackle prominent practical problems.
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