Loughborough University
Browse
Archer51.pdf (1.83 MB)

An introduction to inhomogeneous liquids, density functional theory, and the wetting transition

Download (1.83 MB)
journal contribution
posted on 2015-03-05, 11:47 authored by Adam P. Hughes, Andrew ArcherAndrew Archer, Uwe Thiele
Classical density functional theory (DFT) is a statistical mechanical theory for calculating the density profiles of the molecules in a liquid. It is widely used, for example, to study the density distribution of the molecules near a confining wall, the interfacial tension, wetting behavior, and many other properties of nonuniform liquids. DFT can, however, be somewhat daunting to students entering the field because of the many connections to other areas of liquid-state science that are required and used to develop the theories. Here, we give an introduction to some of the key ideas, based on a lattice-gas (Ising) model fluid. This approach builds on knowledge covered in most undergraduate statistical mechanics and thermodynamics courses, so students can quickly get to the stage of calculating density profiles, etc., for themselves. We derive a simple DFT for the lattice gas and present some typical results that can readily be calculated using the theory.

Funding

A.P.H. acknowledges support through a Loughborough University Graduate School Studentship.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

AMERICAN JOURNAL OF PHYSICS

Volume

82

Issue

12

Pages

1119 - 1129 (11)

Citation

HUGHES, A.P., ARCHER, A.J. and THIELE, U., 2014. An introduction to inhomogeneous liquids, density functional theory, and the wetting transition. American Journal of Physics, 82 (12), pp. 1119 - 1129.

Publisher

© American Association of Physics Teachers

Version

  • VoR (Version of Record)

Publication date

2014

Notes

Copyright 2014 American Institute of Physics/American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in American Journal of Physics, 82 (12), pp. 1119 - 1129 and may be found at: http://dx.doi.org/10.1119/1.4890823

ISSN

0002-9505

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC