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An online one class support vector machine based
person-specific fall detection system for monitoring

an elderly individual in a room environment
Miao Yu, Yuanzhang Yu+, Adel Rhuma, Syed Mohsen Naqvi, Liang Wang++ and Jonathon Chambers

Abstract— In this paper, we propose a novel computer
vision based fall detection system for monitoring an el-
derly person in a home care, assistive living application.
Initially, a single camera covering the full view of the
room environment is used for the video recording of
an elderly person’s daily activities for a certain time
period. The recorded video is then manually segmented
into short video clips containing normal postures, which
are used to compose the normal dataset. We use the
codebook background subtraction technique to extract
the human body silhouettes from the video clips in the
normal dataset and information from ellipse fitting and
shape description, together with position information, is
used to provide features to describe the extracted posture
silhouettes. The features are collected and an online one
class support vector machine (OCSVM) method is applied
to find the region in feature space to distinguish normal
daily postures and abnormal postures such as falls. The
resultant OCSVM model can also be updated by using the
online scheme to adapt to new emerging normal postures
and certain rules are added to reduce false alarm rate
and thereby improve fall detection performance. From
the comprehensive experimental evaluations on data sets
for 12 people, we confirm that our proposed person-
specific fall detection system can achieve excellent fall
detection performance with 100% fall detection rate and
only 3% false detection rate with the optimally tuned pa-
rameters. This work is a semi-unsupervised fall detection
system from a system perspective because although an
unsupervised type algorithm (OCSVM) is applied, human
intervention is needed for segmenting and selecting of video
clips containing normal postures. As such, our research
represents a step towards a complete unsupervised fall
detection system.
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I. INTRODUCTION

Aging populations are an increasing issue across the globe
particularly in developed countries. As shown in [1], the old-
age dependency ratio (the number of people 65 and over
relative to those between 15 and 64) in the European Union
(EU) is projected to double to 54% by 2050. So, the topic
of home care for elderly people is receiving more and more
attention. Among such care, one important issue is to detect
whether an elderly person has fallen or not [2]. According to
[2], falls can cause problems for an elderly person physio-
logically and psychologically; besides, although many falls do
not result in injuries, 47% of non-injured fallers can not get
up without assistance and this period of time spent immobile
also affects their health. The detection of falls is required and
is very important for elderly people’s assitive living. When
an elderly person falls, a fall detection system will detect
this fall event and an alarm signal will be sent to certain
caregivers (such as hospitals, health centers or relatives) by
some modern communication methods, and these caregivers
will then provide assistance.

Methods have been proposed for detecting falls and are
mainly divided into two categories: non-computer vision based
methods and computer vision based methods. For different
types of methods, different sensors are applied. The most
widely used sensors in non-computer vision based methods
include accelerometers, floor vibration sensors and acoustic
sensors. In [3], D. Karantonis et al. proposed a real-time
classification system for the types of human movement as-
sociated with the data acquired from a single, waist-mounted
triaxial accelerometer unit. This system was able to distinguish
between periods of activity and rest, recognize the postural
orientation of the wearer and detect events such as walking
and falling. According to their experimental results, a fall
detection rate of 95.6% was obtained. Multiple accelerometer
sensors were applied in [4] and the data collected were sent
to a personal server for processing over a wireless link.
Compared with other commercial fall detection systems, this
fall detection system applied a distributed processing paradigm
which can achieve real-time data processing for fall detection,
with minimal computational and consumption costs. The ex-
periment from a dataset of 31 persons showed a fall detection
rate of 100% and a false detection rate of 4.3% can be achieved
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by the proposed fall detection system. Floor vibration and
acoustic sensors were also used in several works such as
[5] and [6]. Y. Zigel et al. in [5] proposed a fall detection
system based on floor vibration and sound sensing; temporal
and spectral features were extracted from signals and a Bayes’
classifier was applied to classify fall and nonfall activities.
In their work, a doll which mimicked a human was used
to simulate falls and their system detected such falls with
a fall detection rate of 97.5% and a false detection rate of
1.4%. In [6], an acoustic fall detection system (FADE) that
would automatically signal a fall to the monitoring care giver
was designed. A circular microphone array was applied to
capture sounds in a room; when a sound was detected, FADE
located the source, enhanced the signal, and classified it as
‘fall’ or ‘nonfall’; and the sound source’s height information
was used to reduce the false alarm rate. The authors evaluated
the performance of FADE using simulated fall and nonfall
sounds performed by three stunt actors trained to behave like
elderly people under different environmental conditions and
good performance was obtained (100% fall detection rate and
3% false detection rate using a dataset consisting of 120 falls
and 120 nonfalls).

In the last 10 years, there have been many advances in
computer vision and camera/video and image processing tech-
niques that use real time movement of the subject, which opens
up a new branch of methods for fall detection. Compared
with non-computer vision based methods, computer vision
based methods have the following advantages: (1) they are
non-intrusive, an elderly person need not wear some special
equipment such as an accelerometer; (2) they are not easily
affected by noises in the environment (suffered by floor
vibration and acoustic sensors based methods).

In [7], calibrated cameras were used to reconstruct the three-
dimensional shape of people, and fall events were detected by
analyzing the volume distribution along the vertical axis. When
the major part of this distribution was abnormally near the
floor during a predefined period of time, an alarm indicating
a fall was triggered. A graphic processing unit (GPU) was ap-
plied for efficient computation of the three-dimensional shape
and the experimental results showed good performance of this
system using multiple cameras (achieving 99.7% detection rate
or better with four cameras or more). In [8], D. Anderson
proposed a fuzzy logic based linguistic summarization of
video for fall detection. A hierarchy of fuzzy logic was used,
where the output from each level was summarized and fed
into the next level for inference. Corresponding fuzzy rules
were designed under the supervision of nurses to ensure that
they reflect the manner in which elderly people perform their
activities. The proposed framework was extremely flexible and
rules can be modified, added, or removed to allow for per-
resident customization. This system was tested on a dataset
which contained 14 fall activities and 32 non-fall activities, all
the fall activities were correctly detected and only two non-fall
activities were mistaken as fall activities (100% fall detection
rate and 6% false detection rate), which showed an acceptable
level of performance.

Some supervised pattern recognition methods were applied
in [9], [10] and [11] for classifying different postures and

activities for fall detection. In [9], Mihailidis et al. used a
single camera to classify fall and non-fall activities. Silhouette
features, lighting features and flow features were extracted to
allow the system to be robust to lighting, environment and the
presence of multiple moving objects. Three pattern recogni-
tion methods (logistic regression, neural network and support
vector machine) were compared in [9] and the neural network
achieved the best performance with a fall detection rate of
92% and a false detection rate of 5%. In [10], four different
types of postures (stand, bend, sit and lie) were classified by
a directed acyclic graph support vector machine (DAGSVM)
classifier, the classification results, together with the floor
region detected during a floor detection phase were applied to
detect falls. The fall detection system was tested on a dataset
of 15 people, a high fall detection rate (97.08%) and very low
false detection rate (0.8%) were achieved. Instead of posture
classification, [11] proposed a method based on short video
sequence activity classification. In this work, a novel method
was proposed to extract a person’s three-dimensional orien-
tation information from multiple uncalibrated cameras. From
extracted orientation information from a short video sequence,
an improved version of HMM–layered hidden Markov model
(LHMM) was used for fall detection. Although theoretically
elegant, insufficient experimental results were provided in this
paper (it only concerned two kinds of activities – walking and
falling) to make a thorough performance assessment.

The main problem for supervised fall detection methods
is that they do not provide a person-specific solution for
individuals. A large dataset needs to be constructed initially
for training the supervised classifier (which should contain
the data collected from many people in different views) for a
supervised fall detection system, if a person does not fit the
dataset very well (such as if he/she is obese), a good perfor-
mance can definitely not be obtained for this specific person.
Moreover, supervised fall detection methods will be affected
by occlusions which happen in a real home environment. In
order to solve these problems, unsupervised algorithms can
be exploited. As described in [12], an unsupervised learning
algorithm solves the problem of finding the hidden structure
in unlabeled data or the normal model which unlabeled data
follow. So, we can collect data (such as features extracted
from postures or short video clips) from a particular elderly
person’s daily activity video stream and these data can be used
to construct the daily activity model with some unsupervised
learning algorithm, and this model can then be used to
distinguish falls and normal activities.

Representative works in applying unsupervised algorithms
for fall detection include [13] and [14]. In [13], a ceiling-
mounted, wide-angle camera was used for video recording and
the particle filter technique was applied to track the human
body with an ellipse model. From the tracking results, they
obtained the position information and for normal activities,
this was used to find the “usual activity region” by using an
expectation maximization (EM) method. A fall was detected
when a person’s position was outside the “usual activity
region” for a certain time longer than the preset time threshold.
In [14], a shape matching technique was used to track the
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person’s silhouette through the video sequence. By some shape
analysis methods, the shape deformation was then calculated
from the obtained silhouettes. The shape deformation along
with the inactivity time of an old person were used as features
to construct a Gaussian mixture model to describe a person’s
normal activity. This Gaussian mixture model was then used
to detect falls and a multiple cameras scheme was applied
to guarantee good performance. Although these works use
unsupervised algorithms and provide person-specific solutions,
either a specific camera (wide-angle) needs to be mounted at
a particular position (ceiling) as in [13] or the data extracted
to construct the normal model in both works was insufficient
to describe fully an elderly person’s normal activities. The
Gaussian mixture model is moreover rigid and sometimes, it
is not adequate to be applied to represent the normal model.
Both of these two works also do not consider the problem
of normal model updating, which is important because the
elderly person’s activities will change throughout their daily
lives. Considering these limitations, there is therefore a clear
business case for a relatively inexpensive video-based fall
detection system for an enclosed environment which can
operate with a retrofitted camera and can update the normal
activity model of a specific individual through online learning.

In this work, we propose a person-specific fall detection
system based on a novel unsupervised algorithm which is
termed as the online OCSVM classifier. Firstly, the codebook
background subtraction method [15] is applied to extract
the human body silhouette from the frames in manually
segmented video clips containing normal postures and some
post-processing is applied to improve the results. In order to
fully describe the posture, three types of features, including
ellipse features, shape structure features and position features
are extracted. After the extraction of these features, an online
OCSVM is applied to describe the normal region described
by these features for distinguishing normal and abnormal
postures, which can also be updated to adapt to new postures.
To further improve fall detection performance, we add two
rules to reduce the false alarms, one rule is to measure the
amplitude of the movement, if there is not a large movement,
a fall will not be reported even though abnormal postures are
detected by the online OCSVM. The other is the duration of
an abnormal posture, a fall is reported only if the duration
of an abnormal posture is longer than a threshold, this will
effectively avoid false alarms when the person occasionally
bends quickly and for example ties their shoes. This proposed
fall detection system can achieve good performance which will
be confirmed in the results section of the paper. A flow chart
of the proposed fall detection system is shown in Fig. 1, the
details of which will be presented in the next sections.

II. METHODS

A. Background subtraction
Background subtraction is a common approach for dis-

criminating moving objects from the background in visual
surveillance [16], [17], [18], [19] and [15]. In our fall de-
tection system, we use the codebook method [15] because
of its advantages. There is no parametric assumption on the

Fig. 1. The flow chart of the proposed fall detection system. A
normal OCSVM model is constructed and updated online with the
extracted features and the decision to determine fall or non-fall is
made by combining the OCSVM classification result and two rules
which measure the movement amplitude and duration of an abnormal
posture.

codebook model and it shows the following merits as proposed
in [15]: (1) resistance to artifacts of acquisition, digitization
and compression; (2) capability of coping with illumination
changes; (3) adaptive and compressed background models that
can capture structural background motion over a long period
of time under limited memory; (4) unconstrained training that
allows moving foreground objects in the scene during the
initial training period.

The codebook method is available for both colour and
gray-scale images, it is a pixel-based approach and initially
a codebook is constructed for each pixel during a training
phase. Assuming the training dataset I contains a number of
N images: I = {imag1, ..., imagN}, then, for a single pixel
(x,y), it has N training samples imag(x, y)1, ..., imag(x, y)N .
From these N training samples, a codebook is constructed
for this pixel, which includes a certain number of codewords.
Each codeword, denoted by c, consists of an RGB vector
v = (R,G,B) and a 6-tuple aux = (Î , Ǐ , f, λ, p, q). The
meanings of the six parameters in aux are described in TABLE
I:

The details of the training procedure are given in [15] and
the trained codebooks of pixels are then used for background
subtraction purpose. For an incoming colour frame f, its
pixel f(x, y) = (R(x, y), G(x, y), B(x, y)) (a 3-dimensional
vector) is determined as a foreground or background pixel
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TABLE I
DEFINITIONS OF THE SIX PARAMETERS IN AUX

Î Maximum intensity that has been represented by the codeword.
Ǐ Minimum intensity that has been represented by the codeword.
f Number of times that the codeword has been used.
λ Maximum negative runtime length (MNRL) in number of frames.
p The first frame in which this codeword was used.
q The last frame in which this codeword was used.

by comparing f(x, y) with codewords in the codebook of this
pixel. If f(x, y) is not matched with any codeword, then it is
a foreground pixel. For a particular codeword c, we say the
codeword c matches f(x, y) if the following two conditions
are met.

colordist(f(x, y), c) ≤ ε

brightness(I, ⟨Î , Ǐ⟩) = true (1)

where ε is a preset threshold value for comparison, I rep-
resents the L2-norm of f(x, y), Î and Ǐ are the first two
parameters of the 6-tuple aux vector of the codeword c.

The colordist(f(x, y), c) measures the chromatic difference
between two colour vectors, which can be calculated by:

colordist(f(x, y), c) =

√
∥ f(x, y) ∥2 −⟨f(x, y), v⟩

∥ v ∥2
(2)

where v represents the RGB vector v = (R,G,B) of code-
word c, and ∥ · ∥ and ⟨·⟩ denote respectively the L2-norm and
dot product operations.

The brightness(I, ⟨Î , Ǐ⟩) is defined as:

brightness(I, ⟨Î , Ǐ⟩) =
{

true if Ilow ≤∥ f(x, y) ∥≤ Ihi
false otherwise

(3)
where Ilow = αÎ and Ihi = min{βÎ, Ǐ

α}. In our experiment,
α and β are fixed to be 0.5 and 2 for background subtraction,
which have been found empirically to be suitable values.

An important problem in background subtraction is back-
ground model updating, because the background will not re-
main constant (such as with gradual light change, or movement
of furniture). The codebook background subtraction method
therefore provides a background model updating scheme. The
matched codeword according to (1) is updated as shown in
[15]. Besides, an additional cache model is introduced, if one
codeword in the cache model is matched with incoming pixel
values for a period longer than a time threshold (which means
this codeword is a new background codeword), it is added
to the original codebook. And for a codeword which is not
matched with incoming pixels longer than a time threshold
(which means this codeword is no longer a background
codeword), it is deleted from the codebook. Through the
background model updating scheme, we can cope with change
of the background in an indoor environment.

The obtained raw background subtraction results generally
contain many noise artifacts, which include small “salt and

pepper” noises [20] and large noises caused by movement
of furniture. In order to remove such noises, some post-
processing (mentioned in [10] with some associated results)
is applied to improve the background subtraction results.

B. Features extraction
1) Ellipse features: The first set of features we extract

from the human body silhouette is obtained from ellipse fitting.
As proposed in [21], a moment based method is applied to fit
the ellipse. For a binary image f(x, y), its moments are given
as:

mpq =
∑
x,y

xpyqf(x, y) with p, q = 0, 1, 2, 3........... (4)

By using the first and zero order spatial moments, we can
compute the center of the ellipse (x̄, ȳ) as: x̄ = m10/m00 and
ȳ = m01/m00.

The angle between the major axis of the person and the
horizontal axis x gives the orientation of the ellipse, and it is
computed as:

θ =
1

2
arctan(

2u11

u20 − u02
) (5)

where the central moment can be calculated as:

upq =
∑
x,y

(x−x̄)p(y−ȳ)qf(x, y) with p, q = 0, 1, 2, 3...........

(6)
The remaining parameters to determine an ellipse are the

major semi-axis a and the minor semi-axis b, these two
parameters can be obtained by calculating the greatest and
least moments of inertia, here we denote them as Imax and
Imin. They can be calculated by evaluating the eigenvalues of
the covariance matrix:

J =

(
u20 u11

u11 u02

)
(7)

Imin and Imax are the smallest and largest eigenvalues of
matrix J respectively, calculated as:

Imin =
u20 + u02 −

√
(u20 − u02)2 + 4u2

11

2
(8)

Imin =
u20 + u02 −

√
(u20 − u02)2 + 4u2

11

2
(9)

After obtaining Imax and Imin, the major semi-axis a and
minor semi-axis b can be calculated as:

a = (4/π)1/4[
I(max)3

Imin
]1/8 (10)

b = (4/π)1/4[
I(min)3

Imax
]1/8 (11)

The ellipse fitting result is shown in Fig.2, for comparison,
the simple blob-based rectangle fitting result used in [22] is
also presented, we can see that the ellipse fitting is better fitted
to the human body region for a person with a broom. After
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ellipse fitting, the orientation of the ellipse (denoted as θ) and
the ratio between a and b (denoted as ρ) are taken as features
to describe a human body posture’s general property.

(a) (b) (c) (d)

Fig. 2. The rectangle fitting and ellipse fitting results. (a) original
image for a person with a broom (b) background subtraction result
(c) rectangle fitting result and (d) ellipse fitting result.

Features obtained from the ellipse fitting can describe
postures in a general way, but definitely, two-dimensional
features alone can not fully describe postures in detail for
distinguishing different postures, as shown in Fig. 3. So, in
order for a more detailed posture description, other features
are needed.

(a) (b)

Fig. 3. The ellipse fitting results for two postures: (a) crouching,
with θ = −0.2010 and ρ = 0.7702 (b) stretching, with θ = −0.1902
and ρ = 0.7517. Although the two postures are obviously different,
the obtained ellipse features are very similar.

2) Shape-structure features: More details of a posture
can be reflected by the posture’s shape and structure in-
formation, which can be extracted from a single centroid
context method as proposed in [2]. Initially, the perimeter
contour of a human body posture is extracted by some contour
detection method [20], which is represented as contourlist =
[point1, ..., pointN ] where pointi is a particular point on the
perimeter contour. One example of an extracted perimeter
contour is shown in Fig. 4 (c). Not all the points in the down-
sampled contourlist are necessary to represent a boundary,
only the points with high curvature are the ‘key points’ which
determine a boundary shape and these points form a more
concise perimeter contour representation ( Fig. 4 (d)). For a
two-dimensional point p, its angle can be calculated by:

angle(p) = arccos
∥ p− p+ ∥2 + ∥ p− p− ∥2 − ∥ p+ − p− ∥2

2 ∥ p− p− ∥ × ∥ p− p+ ∥
(12)

where p+ and p− are selected from both sides of p along the
boundary and satisfy dmin ≤∥ p− p+ ∥≤ dmax and dmin ≤∥
p− p− ∥≤ dmax, where dmax and dmin are properly chosen
thresholds. If angle(p) is low then this point is taken as a
‘key point’. For two ‘key points’, their distance should be
larger than a proper threshold so that if several points with
low angle(p) are near to each other, only one representation
point is chosen as the ‘key point’.

(a) (b) (c) (d)

Fig. 4. The result of the perimeter contour detection, (a) original im-
age (b) background subtraction result (c) perimeter contour detection
result (d) key points detection results.

The results of extracted ‘key points’ can be further applied
to extract the skeleton structure of a posture. As shown in [2],
the constrained Delaunay triangulation technique is applied to
divide a human posture into triangular meshes according to
the ‘key points’. The centroid of the triangles are connected
to form the skeleton. The result of extracting the posture of a
human body skeleton is shown in Fig. 5.

(a) (b) (c) (d)

Fig. 5. The extraction of the posture of a human body skeleton, (a)
the original image (b) background subtraction result (c) the result of
the constrained Delaunay triangulation and (d) the extracted skeleton
by connecting the triangular centroid.

After extracting the ‘key points’ representing the perimeter
contour information and triangular centroid representing the
skeleton structure information, we apply an accurate and effi-
cient single centroid context shape descriptor to ‘describe’ the
information and thereby obtain the corresponding features (the
more complicated multiple centroid context method as in [2]
can also be applied for a more detailed description; however,
for the multiple centroid context method the computational
complexity for feature extraction and posture comparison is
much larger than in the single centroid context method and the
performances of these two methods are very similar according
to [2], so in our work the single centroid context method is
preferred). Initially, the center of gravity of the whole human
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body posture is calculated; then fixing this centroid point as
the origin, a polar coordinate system is constructed, which is
equally divided into m shells and n sectors to form m × n
bins (here m and n were chosen as 8 and 30 respectively
from empirical study), as seen in Figure 6 (d). An m × n
histogram is then constructed to obtain the spatial distribution
of points. In our work we made two modifications on the
histogram construction procedure as proposed in [2]:

(1) Not only the triangular centroid points are used for
histogram construction, the ‘key points’ are also applied so
that the constructed histogram can reflect both the skeleton
structure and perimeter contour information.

(2) Instead of simply calculating the number of points in
each bin for histogram construction, an improved strategy is
applied to get a more accurate histogram result: for a point
(either the ‘key point’ on the perimeter contour or the triangle’s
centroid), if it is in the kth bin, then histogram values are
updated as:

hnew(k) = hold(k) + 1 (13)

hnew(kneighbors) = hold(kneighbors) + 0.5 (14)

where hnew(k) and hnew(kneighbors) represent respectively
new histogram values of the kth bin and its neighbors after
updating, and hold(k) and hold(kneighbors) represent old val-
ues, initially the histogram values are set to zero.

Finally, we normalized the histogram to make sure the
summation of the values of all bins is unity and the histogram
is obtained as the shape-structure feature. Figure 6 (d) shows
the corresponding histograms for four postures of standing,
sitting, bending and lying. The resulting histograms are taken
as the shape-structure features, which give a more detailed
posture description compared with the two-dimensional ellipse
features.

3) Position features: Although the combination of the
ellipse features and shape-structure features can describe a
posture in a detailed way; however, they can not distinguish
similar postures at different positions (such as a lie posture on
the ground and on the sofa). In order to solve this problem, we
also incorporate position information into the final features.
The centroid position (x, y) of the human body posture is
recorded and concatenated with ellipse features and shape
structure features as the final feature which is then used to
train the OCSVM, all the feature components are normalized
into [0,1] to keep the same scale.

C. Online OCSVM
The concept of a one class support vector machine

(OCSVM) was first proposed in [23], which is a popular
approach for detecting anomalies, compared with the single
Gaussian model and Gaussian mixture model in [12], OCSVM
can describe the data in the feature space in a more flexible
way (it does not assume that the data needs to follow certain
types of distributions). The basic idea behind the OCSVM is
that given a data set drawn from an underlying probability
distribution P for the minority class, the OCSVM estimates a
function f that is positive in a region S, and negative in its
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(e)

Fig. 6. Histograms for four postures obtained from centroid context
descriptor. (a) the original images for four postures (stand, lie, sit
and bend) (b) the background subtraction results with postprocessing
(c) the extracted skeleton (marked as blue) and points (including the
‘key points’ on the contour and triangular centroid, marked as red)
(d) the polar coordinate system, which is composed of 8 shells and
30 sectors, total 240 bins (e) the finally obtained histograms, the
horizontal axis represents the indices of bins and the vertical axis
represents the values of the bins.

complement in a mapped high-dimensional space, where S is
the ‘most-likely region’– a subset of the input space such that
a test point drawn from P lies outside of S equals some a
priori specified value between 0 and 1. Figure 7 illustrates the
basic idea of a OCSVM, a hyperplane f(x) = 0 is found to
separate the normal samples and outliers in the mapped high
dimensional space.

As it is mentioned in [24] and [25], f is a linear operator in
a reproducing kernel Hilbert space (RKHS). At time instance
t, f can be explicitly represented as by the samples x1, ..., xt−1

as:

ft =
t−1∑
i=1

αik(xi, ·) (15)

where xi, i = 1, ..., t−1 are the incoming samples before time
t and k(x, ·) is a kernel function and the popular RBF kernel
(k(x, y) = exp(−λ∥x − y∥2)) is used in this work.

We refer to the online OCSVM algorithm as proposed in
[24] and [25] for estimating and updating f , the online algo-
rithm is adopted here for two reasons: (1) an online algorithm
achieves a much faster training time than the traditional batch
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Fig. 7. Illustration of the basic idea of OCSVM, the normal samples
are marked as red stars and the outliers are marked as blue triangles.
(a) is the sample distribution in the original space. The samples
become linearly separable in a mapped high dimensional space (b)
and a hyperplane f(x) = 0 is applied to separate them.

algorithm [23], especially for a large training dataset; (2)
the online scheme provides an efficient and straightforward
way for OCSVM model updating, which is very useful in
our application to adapt new emerging postures into the
already trained normal model. The online OCSVM algorithm
is operated in a sample-by-sample way, when a new sample
xt arrives, the online OCSVM algorithm finds a new set
of coefficients αi, i = 1, ..., t to determine a new function
ft+1 =

∑t
i=1 αik(xi, ·). This can be achieved by minimizing

a modified regularized risk for the online scheme as proposed
in [24]:

R(f) =
1

2
∥ f − ft ∥2H +η(

λ

2
∥ f ∥2H +C · (γ − f(xt))+) (16)

where ∥ · ∥2H means the reproducing kernel Hilbert space
(RKHS) distance [25] and the first term measures the RKHS
distance of f from the previous predicted function, and the
second term is the traditional regularized risk, which controls
the complexity of f and the convex loss for the sample xt.

Due to the convex property of R(f), the optimal ft+1 can
be found by setting the gradient of R(f) to zero, by some
algebraic operations as mentioned in [24], finally, we obtain
the optimal ft+1 as:

ft+1 =
1

1 + ηλ
ft −

C

1 + ηλ
βtk(xt, ·) (17)

where βt ∈ [−1, 0] and normally η is set to one. We use an
auxiliary variable τ = λ

1+λ and rewrite ft+1 as:

ft+1 = (1− τ)ft − (1− τ)Cβtk(xt, ·) (18)

Note previously, we represent ft+1 as the following form:

ft+1 =
t∑

i=1

αik(xi, ·) (19)

By comparing (18) and (19), we can see the coefficients of
ft+1 can be updated as:

αi = (1− τ)αi, i = 1, ..., t− 1

αt = −(1− τ)Cβt (20)

Moreover, as discussed in [24] and [25], for the optimal αt,
we need to make γ − ft+1(xt) = 0 to minimize the convex
loss (γ − f(xt))+ in (16), which leads to:

γ − ((1− τ)ft(xt) + αtk(xt, xt)) = 0 (21)

and the optimal αt is calculated as:

αt =
γ − (1− τ)ft(xt)

k(xt, xt)
(22)

From the above derivations, we can update the coefficients
of ft+1 for a new incoming sample xt using (22) and (20).
Note, αt must be truncated into the range of [0, (1 − τ)C]
if it lies outside this range after (22). As time increases,
we can see the number of samples determining the OCSVM
function f will become very large, which will lead to memory
overload. So in the real application, we have to delete the
previous samples whose coefficients become lower than a
small threshold as f updates.

For the obtained f at a time instance t, we can determine
whether the next incoming sample xt+1 is a normal sample or
not by:

D(xt+1) =

{
1 γ − f(xt+1) ≤ thresholdOCSVM

0 otherwise (23)

where D(·) is an indication function with ‘1’ being normal and
‘0’ being abnormal. The value of γ − f(xt+1) is calculated
and compared with a preset threshold to make a decision. As
in [24], the value of γ is fixed to be one throughout this work.

D. Rules to determine a fall
Although the normal postures model constructed by the

online OCSVM can effectively distinguish normal and ab-
normal postures; however, sometimes false alarms will still
occur because not all the abnormal postures represent falls. In
order to reduce false alarms, we introduce two rules when an
abnormal posture is detected:

1) A fall is only reported when a large movement is
detected. In [21], a measurement of the amplitude of move-
ment is proposed by using the motion history image (MHI);
however, the frame difference results used to construct the
MHI are easily affected by noise and illumination change in
the environment. In our work, we propose a new measurement
based on the motion energy image (MEI) [26]. The amplitude
of movement is measured by the area ratio (denoted as AR)
between the area of certain number of MEI frames and the
area of the current frame’s foreground region. One example
is shown in Fig. 8, from this figure, we can see as a large
movement, fall activity has a larger AR value than the other
three types of activities (walking, sitting and bending).

In a video sequence, we use a sliding window method to
estimate the AR value for each frame, which is illustrated in



8

(a) (b) (c) (d)

Fig. 8. The movement amplitude measurement for four activities.
The first line shows the original images and the second line shows the
MEI results (non-black region with the current images’ foreground
regions marked as gray). The calculated AR values are: (a) walking,
AR=1.2284 (b) standing, AR=1.1686 (c) sitting, AR=1.3344 and (d)
falling, AR=2.2360.

Fig. 9. For a particular frame Ft, the AR value is calculated
as the ratio between the area of the MEI of the frames in the
sliding window and the area of the Ft’s foreground region.
For the next time, the sliding window moves forward over one
frame and the new AR value is calculated, which is compared
with the previous one and the larger value is then retained.
The final AR value of Ft is obtained when the sliding window
passes over this frame (as shown in Fig. 9 (e)), which reflects
the largest movement around this frame. The calculated AR
value is compared with a threshold (denoted as thresholdAR)
to determine whether a large movement occurs or not.

2) Normally after an old person falls, he/she will be most
likely to lie on the ground for a certain time interval. So, a
fall is reported only if the abnormal posture lasts longer than
a time interval (denoted as thresholdabnormal interval), this
will avoid occasional abnormal postures which do not last for a
predefined threshold (such as bending to fasten the shoe ties).

These two rules, together with the constructed OCSVM
model compose a robust fall detection system. Excellent fall
detection performance can be achieved under the properly
tuned parameters set, which is shown in the results section.

III. RESULTS

A. Experimental settings

All the experiments were performed in a real-home environ-
ment where the elderly people live, as shown in Fig. 10. We
used a normal personal laptop with a configuration of Intel
Core Two 2.10GHz CPU with a 1.00GB memory for data
processing. A USB camera was connected to the laptop for
recording the video streams, which was placed on the wall
of the room close to the ceiling to cover the full view of the
home environment. VC++ 6.0 and Matlab R2010b were used
for video processing (including foreground extraction, features
extraction and normal model construction and updating). The
video sequence was recorded at a frame rate of 5 frames/sec
as in [14].

Fig. 9. Estimation of the AR value for a frame using a sliding
window (a length of five). At each time, the sliding window moves
forward over one frame and the AR value for frame Ft is calculated
as the maximum value between the new calculated AR value and the
previous one. The final AR value (AR5) is obtained when the sliding
window passes over the frame.

Fig. 10. A real-home environment for experiments.

B. Background subtraction

Three popular background subtraction methods (approxi-
mate median filter (AMF) method, Gaussian mixture model
(GMM) method and codebook (CB) method) are compared
for extracting the human foreground region in the indoor
environment. A video sequence of walking with the length
about 30 seconds is recorded and the three background sub-
traction methods with the tuned optimal parameters were
tested on this sequence (initially 50 background frames are
used for background model training). For a fair comparison,
no post-processing technique is applied. Fig. 11 shows the
qualitative comparison results on several selective frames, we
can see the codebook background subtraction achieves the best
performance, most foreground regions are detected and the
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least amount of shadow region is mistaken as the foreground.
The reason behind it is that the CB method makes use of both
the pixel’s intensity and colour information, compared with the
standard AMF and GMM methods in which only the intensity
information is used. For a comprehensive quantitative analysis,
as in [27], the precision (defined as the division between the
number of correctly detected foreground pixels and that of
totally detected foreground pixels) and recall (defined as the
division between the number of correctly detected foreground
pixels and that of total foreground pixels) are evaluated, for a
perfect background subtraction result, both values should be
unity. Precision and recall values of three background subtrac-
tion methods are calculated for every frame in the sequence,
the results are presented in Fig. 12, from which we can see
that the CB methods achieves a much better precision result
for the whole sequence; for the recall, although initially the
CB method is a bit worse than the AMF and GMM methods,
the recall value of the CB method will not drop dramatically
like the AMF and GMM methods (some foreground region is
mistaken as the background due to intensity similarity) and
after around 80 frames the recall value of the CB method
remains the best.

original images

ground truth

AMF 

GMM

CB

1st 30th 60th 90th 120th

Fig. 11. Comparison of three background subtraction methods for
the 50th, 100th, 150th, 200th and 250th frames in a video sequence.

C. Fall Detection System Evaluation

12 people (8 males and 4 females) are invited to participate
in the experiments for the fall detection system evaluation. For
each person, two datasets are simulated:

Dataset 1 consists of the normal postures captured from dif-
ferent simulated daily activities for constructing the OCSVM
model. To simulate the real scenario, we interviewed a 75 years
old, healthy old person and the frequency of representative
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Fig. 12. The quantitative comparisons of three background sub-
traction methods for a video sequence. (a) precision comparison (b)
recall comparison

activities during one week is summarized in Table II. Ac-
cording to this table, each participator simulates 38 activities
(including 16 walking activities, 6 standing activities, 8 sitting
activities and 8 lying activities). And for each activity, a video
clip of 15s is recorded to capture postures representing the
corresponding activity. Fig. 13 shows the captured postures
for some simulated sampled activities.

(a)

(b)

(c)

(d)

(e)

Fig. 13. Sample postures of simulated normal activities. (a) lying
(b) standing (c) walking (d) sitting (e) sitting (with occlusion)

Dataset 2 is a test dataset which consists of 18 simulated
falling activities in different positions of the room and 18
simulated normal activities for testing the performance of the
fall detection system using the constructed OCSVM model
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TABLE II
SUMMARY OF THE FREQUENCY OF REPRESENTATIVE ACTIVITIES OF AN ELDERLY PERSON DURING ONE WEEK

Activities Descriptions Frequency
Walking The elderly person walks to move between different places of the room or do some cleaning activities. 16
Standing The elderly person stands almost still to watch television. 6
Sitting The elderly person sits to have a rest (either watching TV or eating fruits) 8
Lying The elderly person lies on the sofa for a nap or watching TV. 8

by the obtained posture features in dataset 1 and two rules
proposed in Section II.D.

To evaluate the performance, two evaluation metrics are
introduced, which include the true positive rate (TPR) and
false negative rate (FNR), which are defined as:

TPR =
No. of correctly detected falls

No. of falls
(24)

FNR =
No. of non− falls which are mistaken as falls

No. of non− falls
(25)

For a good fall detection method, TPR should be 1 and
FNR should be 0.

The 12 people are divided into two groups of six people
(each group contains 4 males and 2 females). The datasets
(including the normal posture dataset and test dataset for every
person) in the first group are used for tuning key parameters of
the proposed OCSVM based fall detection system within cer-
tain ranges (the parameters and their corresponding ranges are
presented in Table III). To save the computational cost for pa-
rameters searching, genetic algorithm is applied for searching
the optimal parameters to maximize

√
TPR ∗ (1− FNR)

instead of the time-consuming grid search method (the genetic
algorithm implemented in the Matlab global optimization
toolbox is used in this work). The obtained optimal parameter
set is: λ = 15, C = 1, τ = 10−5, thresholdOCSVM = 0.7,
thresholdAR = 1.75 and thresholdabnormal interval = 45,
which achieves a TPR of 1 and FNR of 0 for the six test
datasets (including 108 falls and 108 non-falls) of the first
group.

The second group of six people is used to test the gen-
eralization performance of the fall detection system. With
the tuned optimal parameter set, the corresponding OCSVM
model for every person is constructed by the normal posture
dataset and the performance is evaluated by the corresponding
test dataset. The fall detection performance on the six test
datasets in this group (including 108 falls and 108 non-falls)
is presented in Table IV. For comparison, we also implement
and give the performance of the state-of-art unsupervised
method in [14] which uses the shape deformation features
(including the mean-cost and full procrustes distance between
two sets of matched silhouette points in consecutive frames)
to construct Gaussian mixture model for fall detection (Note,
for a fair comparison, the key parameters of the methods in
[14], including the number of the Gaussian components, the
threshold for distinguishing falls and non-falls, the inactivity
interval, etc. are also tuned to be optimal by genetic algorithm

using the datasets in the first group). From this table, we can
see that the proposed OCSVM based fall detection method
not only has a better fall detection performance than the
method in [14], but also achieves a high efficiency (because the
proposed method avoids the time-consuming points matching
procedure).

D. New Postures Adaptation
We have to remark that an old person’s behavior will not

be unchanged over time. Sometimes, his behavior changes and
new postures emerge, so a good fall detection system needs
to be capable of adapting to the changes. In the following, we
give an example of adapting to new postures with the online
OCSVM. Fig. 14 shows that a chair is put at a new position
and a new sitting posture is introduced.

(a) (b)

Fig. 14. The introduced new sitting posture. (a) a chair is put at a
new position (b) the person sits at the new position to introduce a
new sitting posture

To adapt this new posture to the normal model, the online
OCSVM scheme described in Section II.C is applied to update
the trained OCSVM model using the features of this new
posture extracted from a video sequence. For the updating
procedure, we chose different C (penalty parameter) values
and other parameters were kept the same as the tuned optimal
ones, the evolutions of the OCSVM results for this sequence
during the updating procedure are shown in Fig. 15. From this
figure, we can see that by model updating, the OCSVM value
for this new sitting posture increases with time, initially the
OCSVM value for this new posture is below the threshold but
this value will increase over time and exceed the threshold with
the aid of the online OCSVM scheme for updating; besides,
the parameter C controls the time for the new posture to be
adapted to the normal model while a larger C means a faster
adaptation time.

In order to illustrate the advantage of OCSVM model
updating, we present an example that a person who sits at
the new position bends quickly to pick something (selective
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TABLE III
THE KEY PARAMETERS OF THE OCSVM BASED FALL DETECTION METHOD AND CORRESPONDING TUNING RANGE

Parameters Descriptions Range for tuning
λ kernel parameter for OCSVM [0.2,20]
C penalty parameter for OCSVM [0.1,10]
τ decay rate for OCSVM [10−6,10−1]

thresholdOCSVM Threshold parameter for OCSVM model for abnormal detection. [0,2]
thresholdAR Threshold parameter for AR value for large amplitude activity detection. [1,2]

thresholdabnormal interval Threshold parameter of the abnormal posture interval for fall confirmation. [30,60] (in frames)

TABLE IV
THE COMPARISON OF THE PROPOSED FALL DETECTION METHOD AND THE METHOD PROPOSED IN THE WORK OF C. ROUGIER ET AL

Proposed method Methods in C. Rougier et.al’s work
GMM+meancost GMM+full procrustes distance

True Positive Rate 100% 81% 89%
False Negative Rate 3% 7% 11%

Approximate execution time(ms) 1 50 200 200
1 The execution time includes background subtraction time, feature extraction time and classifier (OCSVM or GMM)

execution time.
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Fig. 15. The evolutions of OCSVM values using the online updating
scheme with different penalty parameters C.

frame samples are shown in Fig. 16). And in Fig. 17, the
AR values and OCSVM results are calculated for this fast
bending sequence example. From the AR results shown in (a),
we can see that large movement (bending) is detected during
the initial frames; (b) shows the results of the OCSVM models
with and without the updating procedure, we can see that
results of the two models all fall below the threshold during the
initial frames when bending occurs. However, for the updated
OCSVM model, the value returns to be above the threshold
when the person recovers to sit after a very short interval, so
according to Rule 2 no falls are reported. Additionally, for
the OCSVM model without updating, the value is always less
than the threshold and a fall is wrongly reported when the
abnormal state lasts for longer than 45 frames.

IV. DISCUSSIONS

The fall detection method proposed in this paper is based
on the online OCSVM scheme for normal posture model

Fig. 16. Selective frame samples of fast bending to pick something
at a new position.

construction, with two rules being introduced to reduce false
alarms. Compared with the supervised methods for fall detec-
tion as proposed in [9], [10] and [11], the proposed method
need not have a training dataset which is obtained from differ-
ent people captured in different views. The collected normal
posture samples from the particular monitored elderly person
can be used to construct a normal model to distinguish fall
and non-fall activities with proper parameters, which provides
a person-specific solution. Furthermore, unlike the supervised
methods, the proposed method is not affected by occlusions
because both the occluded and non-occluded normal postures
(samples are shown in Fig. 13) are used to construct the normal
model to distinguish normal and abnormal postures.

Compared with traditional unsupervised methods in [13]
and [14], our proposed fall detection system has advantages
in both practicality and performance. There is no need for a
wide-angle camera, only an ordinary USB camera is needed
in our fall detection system and the camera needs not to be
installed on the ceiling as in [13], which is more practical in
the real application. And compared with the method in [14],
our fall detection system performs better both in fall detection
rate and computational time as analyzed in the experimental
evaluations. Besides, in [13] and [14] they did not consider the
problem of updating (a batch algorithm was applied in both
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Fig. 17. The variations of AR values (a) and OCSVM values (b)
for a video sequence of fast bending while sitting at new position.
For comparison, both the values of the OCSVM models with and
without updating are presented.

works for training and the initially constructed normal GMM
model was regarded as permanent), which is not plausible in
the real application because the normal postures will always
change. In our work, we show that the new postures can be
adapted to the normal model by the online OCSVM scheme.

However, in the proposed fall detection method, only fea-
tures extracted from a single posture are extracted to construct
the normal model. So two activities of “lying on the bed” and
“falling on the bed” can not be distinguished (both end up with
a very similar “lie” posture at similar positions); in order to
distinguish these two activities, we need to extract features not
only from just a frame, but from a short video sequence which
contain more information of a particular activity. Besides, it is
generally not enough to use only one camera in a large area
room environment (sometimes the elderly person will be out
of the range of the camera), in this case, multiple cameras are
needed to cover all the area of the room and the results of
different cameras are combined to make a final decision.

The proposed fall detection method is currently designed
for monitoring a single elderly person staying alone at home.
For multiple people case (such as some visitors), there is no
need for the fall detection system to operate (if the elderly
person falls, other people can be asked for help). Either the fall
detection system will be turned off manually or automatically
with the aid of some people counting technique as shown in
[28] and [29] (if more than one person is detected by the
people counting algorithm, the fall detection system is turned

off automatically in the code). Sometimes an elderly person
may have a large size pet, in this case only the extracted
foreground region representing the human body silhouette is
used for fall detection, some object classification technique
such as [30] and [31], can determine whether the extracted
foreground region is a human body silhouette or pet silhouette.

We remark that at the algorithm level, OCSVM is an
unsupervised type algorithm estimating the normal model from
unlabeled data; however, at the system level, there is an act
of supervision during the initial setup and during run time
(the recorded video sequence is manually segmented into
short video clips and the ones containing normal activities are
selected for training and new postures adaptation as described
early in the paper). In this sense, this proposed system is not
a fully unsupervised fall detection system but rather a semi-
unsupervised one which exploits an unsupervised algorithm
but needs human intervention to a certain extent as in [13] and
[14]. In order to achieve a fully unsupervised fall detection sys-
tem, advanced video segmentation algorithms as mentioned in
[32] should be incorporated which can automatically segment
the recorded video sequence into short video clips containing
particular activities and corresponding features from these
segmented short video clips can then be extracted and applied
for the OCSVM model construction or adaptation. In this
way, the human intervention can be avoided and a fully
unsupervised fall detection system could then be constructed.

V. CONCLUSION

In this paper, we have used a novel online OCSVM learning
algorithm to detect falls for assisting an elderly person living
alone at home. A single USB camera was placed properly to
cover the full view of the home environment for recording.
Codebook background subtraction was used for extracting
the human body postures, a combination of three types of
features, including ellipse features, shape-structure features
and position features were extracted from the initially selected
video clips containing normal postures to build the normal
model by an online OCSVM scheme, which is flexible and
can be updated to adapt to new emerging postures. Two rules
were also introduced to reduce the FNR of the proposed
fall detection system. The experimental results showed that
our proposed system can achieve a good performance with a
very economical configuration (only a normal USB camera
and a personal laptop are needed). Currently, this system
remains as a semi-unsupervised fall detection system because
although an unsupervised learning algorithm is applied, there
is still need for human intervention for the segmentation and
selection of video clips. It can potentially be extended to a
fully unsupervised fall detection system by incorporating novel
automatic video segmentation algorithms. Besides, further
improvements of the proposed system can also be obtained
by using more elegant features from short video sequences
which distinguish different activities more effectively, and
multiple cameras which cover all the area in a large area
room environment for better monitoring. Such extensions and
improvements of this proposed system validated on larger
datasets are our next research steps.
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