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CHAPTER 1 

CURRENT PARALLEL COMPUTER ARCHITECTURES 



1.1 INTRODUCTION 

Since their introduction, the computation speed of electronic 

computers has been greatly increased mainly by the development of 

faster electronic components. The first computers used relatively 

slow components such as vacuum tubes and their central memories were 

magnetic drums. As electronic technology advanced, these components 

have been replaced by transistors and magnetic cores which in their 

turn have been replaced by integrated components. 

The present state of electronic technology is such that factors 

affecting computation speed have almost been minimised; switching for 

instance is almost instantaneous. Electronic components are so good, 

in fact, that the time taken for a logic signal to travel between two 

points is now a significant factor of instruction times. 

Clearly, with the actual physical size of components being very 

small and the high circuit density, there is little scope for improving 

computation speech significantly by such means as even denser circuitry 

or still faster electronic components. Thus, development of faster 

computers will require a new approach that depends on the imaginative 

use of existing knowledge. 

One such approach is to increase computation speed through 

parallelism. Obviously, a parallel computer with p identical processors 

is potentially p times as fast as a single computer, although this 

limit can rarely be achieved. 

Parallelism has been developed in various forms and this has led 
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to two general classes of pa~allel computers. These basic classifications 

made by Flynn [1966] are Single Instruction stream Multiple Data stream 

(SIMD) and Multiple Instruction stream Multiple Data stream (MIMD) 

computers. We shall discuss both of these types of parallel computer, 

outlining their differences and the advantages of each model. Another 
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type of computer, the pipeline computer, which is also sometimes 

classed as a parallel computer, will also be briefly described. 

1.2 SIMD Computers 

The sum parallel computer or Array processor is made up of an 

array of processors, each executing the same string of instructions on 

different data. A p processor SIMD computer is represented diagramatically 

in Figure 1.1. 

Each of the processors in an SIMD computer differ from a standard 

computer in that they are unable to generate their own instructions. 

Instead, the instructions are provided by a control unit which is 

usually a computer itself. Associated with each processor is a private 

memory which provides it with its own data stream and consequently 

each processor executes the same instruction on its own data simultaneously. 

This leads to the definition of processors being synchronous when all 

instructions executed by the processors in parallel are identical. 

DATA STREAM 1 
PROCESSOR 1 

DATA STREAM 2 
PROCESSOR 2 

CONTROL INSTRUCTION .. 
UNIT STREAM I 

I 
I 
I 

I 

PROCESSOR P 
DATA STREAM P 

SIMD COMPUTER 

Figure 1.1 
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An example of an SIMD computer is the Illiac IV (Barnes et al [1968] 

and Bouknight et al [1972]), built by Burroughs Corporation and now 

located at the NASA Ames Research Centre, California. It comprises of 

64 synchronous processors, each processor being almost a standard 

processor (by definition each processor lacks the ability to generate 

its own instructions). Obviously, expense severely limits the number 

of processors of this kind that may be combined to form an SIMD computer. 

However, SmD computers under development employ large numbers of bit 

serial processors, e.g., the ICL Distributed Array Processor or DAP 

(Reddaway [1973]) which typically consists of 4096 microprocessors. 

Unfortunately, a bit serial processor is considerably slower than a 

standard computer (Parkinson, 1976) and the actual speed-up achieved 

by an SIMD computer using such processors is therefore that much less. 

It is necessary for the processors in an SIMD computer to be able 

to communicate with one another. Unfortunately a complete inter-

connection network, where every processor is connected to every other 

processor, is expensive and unrealistic and so a reduced network of 

interconnections is necessary. 

One such network is indicated in Figure 1.2 where the 64 processors 

form an 8x 8 array, each processor being connected to its 4 immediate 

neighbours. This type of network is employed by both the Illiac IV 

and the DAP. From Figure 1.2 it is clear that this network is very 

suitable for the solution of partial differential equations in two 

dimensions which, typically,involves the application of an iterative 

formula of the form, 

x. . = x
1
· +1 ,J. + x. 1 . + x. . 1 + x. . 1 - 4x. . . 1,J 1-,J 1,J+ 1,J- 1,J 

(1.2.1) 



4 

I 

I I 

~ 
8x8 ARRAY PROCESSOR 

Figure 1.2 

An alternative network is the cyclic interconnection network, 

illustrated in Figure 1.3, where the processors form a ring and again 

are connected to their immediate neighbours. This design is clearly 

suitable for algorithms containing assignment statements of the form, 

x. = x. 1 + x. 1 - 2x. 
1 1- 1+ 1 

(1.2.2) 

Other interconnection networks do exist that are suitable 

for different types of algorithms. Unfortunately these networks 

are comparatively inflexible and when the requirements of a 

particular algorithm do not match the interconnection pattern of 

the computer, the communication delays incurred can seriously 

affect the execution time of the algorithm. 

Another important feature that affects the class of problems 

for which the SIMD computer is suitable is its difficulty in dealing 

with conditional statements. A conditional statement can create 

more than one stream of instructions and since by definition there 
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can be only one stream of instructions, it is impossible to execute 

more than one of the branches of the conditional statement simultaneously. 

Each processor does however usually possess a local on/off switch or 

mask and so it is possible to prevent any of the processors from 

executing any of the instructions when necessary. Thus by setting the 

masks appropriately a conditional statement can be dealt with by 

executing each instruction stream that is created sequentially. 

\ 

I 
I 

I 

\ 

\ 
\ , , 

... ... 

- - " 
" " 

I 

/ 

CYCLICALLY CONNECTED PROCESSORS 

Figure 1. 3 

Clearly, the basic characteristics of the SIMD computer mean that 

the type of problem that may be solved efficiently on such a computer 

must have a high degree of parallelism so that as many of the available 

processors as possible can be used simultaneously. Also, a suitable 

interconnection network must be available to avoid excessive 

communication delays. Thus the SIMD computer is not a general purpose 

computer. However, there are a sufficient number of important problems, 

--------
.---~---. 
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mostly of a numerical nature (e.g. the solution of equations arising 

from the weather forecasting problem), suitable for SIMD computers to 

justify the development of special-purpose computers of this type. 

1.3 MIMD COMPUTERS 

The MUID computer or multiprocessor is basically a minicomputer 

network. Each processor generates its own instruction stream which it 

executes on its own data stream. Such a computer \'li th P processors is 

illustrated in Figure 1.4. 

Each processor·has its own control unit and so is able to generate 

its own instruction stream. Hence it is possible to execute different 

instructions simultaneously, which is our definition of asynchronous 

processors. Clearly, the independence of each processor means that 

they need not be identical, but they must be compatible with each other. 

CONTROL INSTRUCTION PROCESSOR 1 
DATA STREAM 1 

UNIT 1 STREM1 1 

CONTROL 
INSTRUCTION PROCESSOR 2 

DATA STREAM 2 

UNIT 2 STREM1 l. 

. 

CONTROL INSTRUCTION 
PROCESSOR P .. 

DATA STREAM P 

UNIT P STREAM P 

MIMD COMPUTER 

Figure 1.4 

Each prccessor also has its own data stream which is obtained 

from two sources. A large primary memory, usually referred to 

as the common memory, is accessible by each processor. Although the 

assumption is often made that each processor can obtain any piece of 
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information from the common memory in unit time, in reality, there 

are complex problems involving such things as memory contention and 

processor interconnections. These complex problems can be reduced 

by the provision of a private memory associated with each processor 

in which important data is stored. 

Examples of MIMD computers include the C.mmp mUlti-minicomputer 

(Wulf and Bell, 1972), under development at Carnegie-Mellon University, 

which is constructed of up to 16 asynchronous processors. Of particular 

interest is the Interdata Dual Processor Computer (Barlow et aI, 1977) 

being developed at the Department of Computer Studies of Loughborough 

Univeristy which is considered in more detail in Section 1.5. 

Obviously, the number of processors involved in existing MIMD 

computers is very small and the size of future computers will be 

restricted by expense. This number of processors is further restricted 

by the present unavoidable problems already mentioned, such as memory 

contention or store clashing, \vhich grow exponentially with p, the 

increasing numl,)r of processors. 

For MIMD computers with a very small number of processors it would 

be possible to implement a complete processor interconnection network. 

OtheTlVise a reduced network must be used such as those already mentioned 

for SIMD computers. Another interesting reduced network is the Star 
, 

configuration, illustrated in Figure 1.5, where one processor is 

connected to each of the p-l other processors. 

The MIMD computer is clearly more flexible than the SIMD computer 

and so can be used to solve a greater variety of problems. The main 

difficulty that arises is the partitioning of the problem to yield an 

efficient method of solution rather than actually being able to solve 

the problem. Thus, the MIMD computer may be considered a general 

purpose computer. 
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Figure 1.5 

1.4 PIPELINE COMPUTERS 

Pipeline or Vector computers achieve an increase in computation 

speed by a novel approach to parallGli5m. This type of computer, 

although essentially sequential, achieves a form of parallelism by 

dividing arithmetic operations into subtasks and executing these 

subtasks on queues of pairs of operands simultaneously. Although 

pipeline computers are somewhat different to SIMD and MIMD computers, 

they are of interest because the form of algorithm that achieves a 

good speed up on a pipeline computer is closely linked with those 

best suited to SIMD computers. 

Floating-point arithmetic operations may be considered as a 
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sequence of subtasks such as operand fetching, exponent adjustment, 

coefficient alignment etc. A pipeline computer separates these sub-

tasks and by means of an instruction loo~ahead mechanism sets up a 

queue of operand pairs on which to execute the operation. Then, in 

assembly line fashion, the queue of operand pairs provides a continuous 

stream of data for the sequence of subtasks. Each subtask acts on a 

pair of operands and then passes them to the next subtask while 

accepting the next pair of operands. 

Examples of pipeline computers include the Control Data Corporation 

(CDC) STAR-lOO (Hintz and Tate, 1972) and the Texas Instruments Advanced 

Scientific Computer (Watson, 1972). 

In order to investigate how best to use pipeline computers we must 

examine the timings of the pipeline operations. The subtasks of an 

operation are designed so that each sub task is completed in a fixed 

amount of time. or a cycle. We further define the total time to 

complete an operation as cr. Then the time required to perform n pipe-

line operations will be (n-l).+cr, since the delay before the first 

result is produced will be cr after which further results are produced 

at the end of each cycle. Obviously, the time required to execute one 

instruction on a standard computer, say t, will be less than cr the time 

required by a pipeline computer. Thus to achieve a speedup when 

performing n operations we require 

(n-l). + cr < nt 

+ n > (cr-.) 
(t-.) 

Clearly, to take full advantage of pipeline computers, 

algorithms must be designed so that this condition is often 

satisfied i.e.,long sequences of identical operations are required 

as with the SIMD computer. 

(1.4.1) 
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1.5 THE INTERDATA DUAL PROCESSOR 

The type of parallel computer that this thesis is particularly 

concerned with is the MIMD computer and so in the final section of 

this chapter we shall examine in more detail, the Interdata Dual 

Processor wl1ich, at present, is being developed at the Department of 

Computer St4dies of Loughborough University. 

The theoretical model of a dual processor is illustrated in 

Figure 1.6. The model consists of two processors A and B and associated 

with each processor is a private memory. In addition to this there is 

a common memory accessible by both processors but obviously not 

simultaneously. This model is essentially symmetric, in particular, 

with regard to accessing the common memory by either of the processors. 

The actual configuration of the Interdata Dual Processor is 

illustrated in Figure 1.7. Although this is the present form of the 

computer, it was originally an Interdata model 55 dual communications 

processor (Interdata Inc., 1971). In the original form, processor B 

was an Interdata model 50 processor, the remainder of the system being 

the same as its present form. 

PRIVATE 
MEMORY A 

PROCESSOR A 

COMMON 
MEMORY 

PRIVATE 
MEMORY B 

PROCESSOR B 

THEORETICAL MODEL OF DUAL PROCESSOR 

Figure 1.6 
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The two processors A and B are identical Interdata model 70 

processors. The model 70 is a 16 bit processor using 16 registers 

and working on an IBM 360-like instruction set. Instructions can 

be 16 or 32 bits long and take 1 or 2 ~ seconds to load from memory. 

Floating point numbers are held as 32 bit fullwords while integers 

are held as 16 bit halfwords. 

Processor A has 32K bytes of memory, called its private memory, 

which cannot be accessed by processor B. Processor B, however, has 

64K bytes of memory, the first 32K bytes being the private memory of 

processor B which cannot be accessed by processor A. The second 32K 

bytes of processor Bls memory is the common memory and can be accessed 

by both processors. The memory cycle time is 1 ~ seconds. Processor A 

has direct access to the common memory via the memory bus interface. 

When accessing the common memory, processor A uses the actual physical 

address in the common memory and so the address translation function of 

the memory bank controller is not required. Hence, the only delay 

experienced by processor A when accessing common memory is - 1 ~ second 

at the D~~ (Direct Memory Access) port. Processor B, of course, 

ex perlences no suc h d 1 e ay. 
COMMON 
MEMORY 
(32Kb) 

PRIVATE PRIVATE 

MEMORY A MEMORY B 

(32Kb) (32Kb) 

MEMORY BANK MEMORY BUS DMA 

CONTROLLER INTERFACE PORT 

PROCESSOR A PROCESSOR B 
INTERDATA MODEL 70 INTERDATA MODEL 70 

INTERDATA DUAL PROCESSOR CONFIGURATION 

Figure 1. 7 
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Memory contention or clashing occurs when both processors attempt 

to access common memory at the same time. A consequence of the 

asymmetry of the system is that if processor B is accessing its private 

or common memory, then processor A is locked out of the common memory 

until the memory cycle of B is completed. However if A is accessing 

common memory then B is locked out of both its private and common 

memory until the memory cycle of A is completed. 

It appears that both processors are subject to a maximum delay 

of 1 V second due to memory contention. However, due to the memory 

bus interface logic, processor A reserves the common memory 0.5 V seconds 

before it requires it and so processor B is in fact subject to a 

maximum delay of 1.5 V seconds due to memory contention. This also 

causes an overlap of the two delays that processor A is subject to and 

so the maximum additional delay that it can suffer due to memory 

contention is only 0.5 V seconds. 

The combined effect of both delays appears to be the same for 

both processors (1.5 V seconds) but processor A in fact suffers more 

because it has a minimum delay of 1 V second while processor B has a 

minimum delay of 0 V seconds. 

This completes the survey of current parallel computer 

architectures, and in the next chapter some basic techniques for 

developing algorithms suitable for parallel computers are introduced. 

1\..e. Ccmputer o.t(.,\\it-edu(t~ ctiscossed so.fnC' ho..-.te bee" bo..~ed 01'\ \\1e. eorce:pt of 

'Coc\tto\ .ftow' 0(' "'~ s.tb(~d ?C'ccarQ.W\ comfuter t &orke. ) Go\d$h~e.. Q"d Ytm Ne.C)1\'lo.~(\J;Y\ 

CoMpt)\"eA' S+-t"UChJre.~ J Be.t\Q.Nl N~We.t\) t~1J) wh,~ l~~~e.S cu+~,~ s~oe."t-io.' 

r~h-it.h~s whCh fYV).'f be.. urde.Su"o.h\e, ~'" ~Q..\\e.\ COMfut«s. A" a '~e.1"f\o..'h"e. a.rr:o~ch ;s 

-h> bG-cse. ~ des!9t\ oYI.\he. Con~~ of d.o.\'~ fiow\~ wh,·(.~ "eo c:')rder ot ~e.c,d,oV\ of I 

1~\'"roc1\~1'\S \S ~id"~+eci b'f "'eo a.....,~\l().n\\;~ of dcU-Q. (bet\f\;s a,Y\d "'\'s.ut\Q.s) \<J1t\ l1"d '975
). 

Tho. s\-rudure of G\.. c\o.\'tJ...-How tof'C\~ute.r i~ tSSeI'ha..\\'f -the. 'SdW\~ ~s. \\:;.o.t ofo.\"\ 

M''''\b_ CoMfuru ~ ""0.+ it',~ COW¥\S~ cl ,,,,te..rCoI\t'\e.c..t~ ctS~('c)(\O\]~ l~~ eDk.h ~'i;1\j 

<uuss -h:,.t\-!. 0\\1" f'~are.~ 01'd.Cl \o.r5e.6ho.r~ ft\L.t\\Oi"f l~~h, '~75) .. 
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BASIC TECHNIQUES FOR PROGRAMMING A PARALLEL COMPUTER 
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2.1 INTRODUCTION 

The existing form of standard computer algorithms, in particular, 

the classical methods of numerical analysis, are often unable to fully 

exploit the potential of the parallel computers described in Chapter 1. 

This clearly meant that a fresh look had to be taken at existing 

algori thms which has led to the reform\.lla~ion of these algorithms or the 

development of new ones to give efficient parallel algorithms. 

The development of parallel algorithms depends on the simple but 

extremely important observation that independent computations may be 

executed simultaneously. What is meant by independent computations? 

Computations may be described formally as independent if each result 

variable appears in only one computation, or in simple terms, if the 

results obtained from one computation are unaffected by the results 

obtained from another, then the two computations are independent. 

As an example of independent computations, consider the addition 

of two n-vectors, i.e., 

c::a+b (2.1.1) 

where 

Obviously, 

are of the 

a :: al -
a2 

a n 

the evaluation 

form, 

c. = a. + b. 
111 

b 

of the 

:: bl and c = cl -
b2 ~2 

b c n n 

components of the result vector 

for i=1,2, .•. ,n , 

and so the calculations are independent. A romputer with n 

processors will clearly be able to calculate the result in one 

step. This example is also said to exhibit inherent parallelism; 

that is to say that it contains independent computations already, 

without the need of having to be reorganised. 

c -

(2.1. 2) 
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A parallel algorithm may be created by the recognition of the 

inherent parallelism of a standard sequential algorithm, i.e., an 

algorithm designed for a single processor or sequential computer. 

When algorithms exhibit little or no inherent parallelism it is 

obviously necessary to reconstruct them so as to increase this property. 

This is often the case with good sequential algorithms since they have 

. been designed specifically for sequential computers and what parallelism 

they do possess is usually obscured. For precisely this reason, good 

sequential algorithms do not always lead to good parallel ones. 

When designing an algorithm for a parallel computer it is obviously 

necessary to take into consideration the basic characteristics of the 

computer. Now in Chapter 1, three different classes of parallel computers 

were described and so it is important to know if an algorithm designed 

for one type of parallel computer is a good algorithm for another type. 

If we considered SHm and MIMD computers first, we see that SIMD 

computers are usually larger than the MIMD type, i.e., SIMD computers 

possess up to O(nm), m=2,3,4, processors while existing MIMD computers 

have up to 0 (n) processors only, where n is the order of the problem. 

So to fully exploit the potential of an SIMD computer requires an 

algorithm with a higher degree of parallelism (a larger number of 

independent computations) than is necessary to exploit the potential 

of an MIMD computer. This does not mean that an algorithm designed 

for an MIMD computer cannot be run on an SIMD computer but that if it 

contains a maximum of n independent computations then only n of the 

processors of the SIMD computer maybe used concurrently, the rest 

being superfluous. Conversely, an MIMD computer would have insufficient 

m 
processors to execute O(n ) independent computations simultaneously but 

instead may execute them in groups of p computations if it has p 

processors. 



In addition to this, the processors of an SIMD computer are 

synchronous and so are unable to take advantage of independent 

computations that are not identical but the processors of an MIMD 

computer are asynchronous and can take advantage of such computations. 

So clearly, non-identical computations must be executed sequentially 

on an SIMD computer which further reduces the number of its processors 

that may be used concurrently. 

15 

We further observe that, since the processors of an MIMD computer 

are asynchronous, they need not necessarily be involved on the same 

problem. Clearly then, if the addition of an extra processor has little 

or no effect on the run time of an algorithm it would be better to use 

that processor on a different problem. Thus, in the design of an 

algorithm for an MIMD computer we are interested in the efficient use 

of processors as well as the speed at which the problem can be solved. 

The processors of an SIMD computer however do not possess this 

ability and when not required must therefore lie idle. So however 

small an improvement is achieved by the addition of an extra processor 

to execute an algorithm on an SIMD computer, if that extra processor 

is available it is better to use it. In the design of algorithms for 

SIMD computers we are therefore interested only in the speed in which 

a problem can be solved. 

Clearly, the characteristics of the two classes of computers and 

the basic aims of interest when designing algorithms for them are such 

that a good MIMD algorithm is generally not a good SIMD algorithm and 

vice versa. 

If we now consider pipeline computers, we see that a speed up is 

achieved by producing a string of identical operations that may be 

queued up and treated in assembly line fashion. It is not difficult 

to see that the string of operations must also be independent. Also, 
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the longer the string the greater the speed up achieved. Obviously 

then the requirements of a good pipeline algorithm are essentially the 

same as a good SIMD algorithm and so a good SIMD algorithm is usually 

a good pipeline algorithm. 

Similar conclusions have also been reached by Stone [1973b], who 

goes as far as classifying pipeline computers as SIMD computers but 

modifies this statement by saying that results achieved by the study 

of array processors can generally but not always be applied to pipeline 

computers. 

Once a parallel algorithm has been derived, it will of course be 

necessary to be able to assess its effectiveness. How much faster is 

the algorithm than the sequential algorithm or in fact other parallel 

algorithms? How efficient is it? Can it be improved on? These 

questions can be answered by use of the quantities T , Sand E 
p P P 

defined as follows: 

if T is the computation time for an algorithm run on a 
p 

computer with p processors, in particular, Tl is the 

sequential computation time (usually of the best sequential 

algorithm rather than the parallel algorithm that is being 

assessed), then the speed-up S , achieved by p processors is, 
p 

Sp = Tl/Tp 

and the efficiency Eis, 
p 

(2.1.3) 

Ep = Sp/p (2.1.4) 

!t- CAn be. 'IeMi.ed ~Qt I\\tse.. d~",,;h~ o.{e,et>f\S;~ttrd' w;\h ~ uc\" trote:C~(" tasC2. w't\e" p= 1 • 
The majority of literature concerning parallel computers, in 

particular past surveys of parallel algorithms, including those of 

Miranker [1971], Poole and Voigt [1974] and HelIer [1976], have 

been strongly orientated ,towards SIMD computers. This is because 

the problems associated with MIMD computers tend to be more difficult 
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to solve at present than those associated with SIMD computers. 

Accordingly, section 2.2 briefly describes this previous work and 

introduces some of the basic techniques involved in designing algorithms 

for SIMD computers. Sections 2.3 and 2.4 describe in more detail, 

similar aspects concerned with MIMD computers with a small number of 

processors. 

It will be seen that there is a considerable difference between 

the design of algorithms for SIMD computers and MIMD computers. Since 

this thesis is concerned mainly with MIMD computers, in particular the 

Interdata Dual Processor, the remaining chapters investigate specific 

problems and develop parallel algorithms suitable for MIMD computers 

with a small number of processors. 

2.2 THE DESIGN OF ALGORITHMS FOR SIMD AND PIPELINE COMPUTERS 

In this section we consider the design of algorithms for both SIMD 

and pipeline computers since the approach is essentially the same. 

The previous surveys of algorithms for SIMD computers have already been 

mentioned and,in addition to these,similar work with respect to pipeline 

computers can be found in reports by Lambiotte [1975] and Lambiotte and 

Voigt [1975]. 

It has been shown that algorithms for SIMD computers require a 

high degree of parallelism, i.e., a large number of identical independent 

computations that can be executed simultaneously, and their aim is to 

reduce the number of steps to a minimum. Obviously, the addition of 

two n-vectors, described in equation (2.1.1) is ideal for an SIMD 

computer since it consists of n identical independent operations and 

may be computed in one step using n processors. If this is generalised 

to the addition of two (nxm) matrices, where an (nxm) matrix A is defined as, 



all a I2 ········alm 

a21 a22 
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A = (2.2.1) 

anI a 2········ a n . nm 

then clearly the addition may be performed in one step using n.m 

processors. 

Consider now the matrix product, 

C = A.B 

where A is an (nxp) matrix, B is a (pxm) matrix and the (nxm) 

result matrix C is defined as 

c .. = I a' k b
kJ

· 
1J k=l 1 

for i=I,2, ... ,n, 
j=1,2, •.. ,m. 

The product consists of n.m identical independent computations and 

so each element of matrix C may be calculated simultaneously using 

n.m processors. 

Obviously, vector and matrix operations are well suited to 

SI~m computers. Another powerful method for generating parallel 

algorithms is recursive doubling, so called because it divides the 

original computation into two independent smaller computations of 

equal complexity, which in turn are reduced to even smaller 

computations recursively. As an example, consider the sum of n 
n 

numbers, I a., then clearly, 
i=l 1 

S = n 

n 
I a. 

i=l 1 

m n 
= ( I a.) + ( I a.) where m=!Ji/2l 

i=l 1 i=m+l 1 

and repeated splitting leads to an algorithm that evaluates S in 
n 

l1og2i11 steps using fll/il processors, where Ixl is defined as the 

smallest integer greater than x. 

This last example leads us to an optimum class of algorithms 

(2.2.2) 

(2.2.3) 

(2.2.4) 
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(HelIer, 1976) for evaluating expressions of the form, 

An = a l 0 a2 0 a3······0 an (2.2.5) 

where 0 is any associative operator. Applying recursive doubling 

to this expression produces an algorithm that is illustrated by 

the evaluation tree of Figure 2.1. At level 1 the operator 0 

acts on adjacent pairs of operands, at level 2 it acts on adjacent 

pairs of results from level 1 and so on until the result A is 
n 

produced. At each level the operations are independent and identical 

and so may be executed simultaneously. The first level has the 

greatest number of operations being [fl/21, which means fii/21 

processors will be sufficient to evaluate the operations at each 

level simultaneously. The number of levels is [1og2TIl and so by 

using in/zl processors the result An may be evaluated in llog2TIl 

steps. HelIer named this algorithm the associative fan-in algorithm 

but it is more familiarly known as the log-sum and log-product when 

the operators are + and x respectively. 

level 

3 

2 

1 

EVALUATION TREE 

Figure 2.1 

A special case of the associative fan-in algorithm is the inner 
n 

or scalar product which has the form I x.y. or the sum of the 
i=l 1 1 

products x.y. (i=I,2, ... ,n), and is illustrated in Figure 2.2. 
1 1 

Obviously the n products may be performed simultaneously using n 



processors followed by a log sum. Thus the result is produced in 

~og2~+1 steps using n processors. The matrix product defined in 

(2.2.3) consists of n.m independent inner products and so clearly the 

matrix C may be evaluated in f"iog2il+l steps using n.m.p processors. 

INNER PRODUCT 

Figure 2.2 

These are the basic computations that are used in the design of 
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the majority of SIMD algorithms. Obviously, these forms of computations 

are also suited to pipeline computers and the algorithms based on them 

are therefore also suitable for pipeline computers. 

The design of the parallel algorithm thus involves the restructuring 

of the sequential algorithm into a form that is usually a combination of 

these basic computations, e.g. the algorithm of Ch en and Kuck [1975] 

for the solution of a triangular system of equations defined in Chapter 4 

is basically a sequence of matrix sums and products. 

In the development of a parallel algorithm it is often assumed that 

the computer has unlimited parallelism i.e. the computer has as many 

processors as are required. This often leads to an algorithm that 

requires an unrealistically large number of processors. A practical 

algorithm is then obtained by constructing a second algorithm that 

reduces the processor requirement to a realistic number without 
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significantly slowing the algorithm. 

There are two basic principles by which the second algorithm is 

constructed, namely th3 algorithm decomposition and the problem 

decomposition principles (Hyafil and Kung, 1974). In the algorithm 

decomposition principle it is assumed that q. operations are performed 
1 

during step i of the original algorithm. If there is a maximum of p 

processors available, then [q./p] steps are required to perform step i 
1 

in the second algorithm. In the problem decomposition principle, the 

original problem of order n is partitioned into smaller problems of 

order p and the parallel algorithm is then applied to each of the 

smaller problems. 

Numerous algorithms have been developed for SIMD computers using 

these basic techniques, most of which are included in the surveys by 

Miranker, Poole and Voigt and HelIer. A typical problem that has been 

investigated is the solution of a linear system of equations (Pease [1967], 

Csanky [1975] and Sameh and Kuck [1975]). Specific forms of linear 

systems have also been investigated such as triangular systems (see 

Chapter 4), tridiagonal systems (Stone [1973a,1975a] and HelIer, 

Stevenson and Traub [1974]) and block tridiagonal and banded systems 

(HelIer [1974c] and Hyafil and Kung [1975]). Systems of equations 

arising from differential equations have been considered by Gilmore [1971], 

Liu [1974], Hayes [1974], and Sameh, Chen and Kuck [1974]. Other 

parallel algorithms that have been developed include parallel forms of 

Fast-Fouriertransforms (Pease [1968], and Stone [1971]) and eigenvalue 

determination methods (Sameh [1971] and Sameh and Kuck [1971]). Various 

related problems have also been investigated in particular by Kogge, 

Stone, Kuck and HelIer. 

The algorithms are implemented on both SIMD and pipeline computers 

using vector instead of scalar operations. In the case of SIMD computers 
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special variables are defined that are dispersed throughout the 

pri vate memories rathel.' than special operators. When a special variable 

is used it refers to variables in the same position in each of the private 

memories rather than a single variable. Pipeline computers however define 

special vector operators that act on vector operands rather than single 

variables. For more specific information on programming and implementation 

on the Illiac IV we refer to Lawrie et al [1975] or Stevenson [1975] 

and for the CDC STAR-lOO to Owens [1973]. 

2.3 CREATING MULTIPLE INSTRUCTION STREAMS ON AN MIMD COMPUTER 

In order to create multiple instruction streams on an MIMD computer 

(i.e .. , implement parallel segments of an MIMD program), it is necessary 

to include additional statements in high level languages such as ALGOL 

and FORTRAN. This is because the processors of an MIMD computer function 

independently, and so must be able to let each other know when segments 

may be initialised and when they have been completed. 

Obviously, it is necessary to be able to create and terminate 

parallel segments but it is also important to ensure that parallel 

computations are carried out correctly. As an example, suppose we wish 

to form the sum of the elements of the vector V[I] (I=1,2, ... ,N). To 

do this in parallel, each processor performs the statement, 

SUM+SUM+V[I] 

It is possible that the following sequence of operations may occur: 

1. processor 1 fetches the value SUM from memory, 

2. processor 2 fetches the value SUM from memory, 

3. processor 1 adds V[I 1] to its private value of SUM and 

restores the new value of SUM in memory, 

4. processor 2 adds V[I 2] to its private value of SUM and 

restores the new value of SUM in memory. 



Clearly, the incorrect result is produced since the effect of 

adding V[I l ] by processor 1 is lost. So it is necessary to safeguard 

against such an occurrence. 

Various forms of statements have been investigated including the 

commands 'F0RK' ,'J0IN' ,'TERMINATE' ,'0BTAIN' and 'RELEASE' (in ALGOL 60 

format) suggested by Anderson [1965] which are typical. The five 

statements have the following basic form: 

'F0RK' Ll,L2; 
LABEL:'J0IN' Ll,L2, •....• LN; 
LABEL: 'TERMINATE' Ll,L2, ...•. LN; 

'0BTAIN'Vl,V2, ...• VN; 
and 'RELEASEI Vl,V2, ...••.• VN; 

where LI represents a label and VI represents a variable. We shall 

consider each statement in turn, giving a description of their purposes. 

The fork statement - initialises two instruction streams, one starting 

at the statement labelled Ll and the other at the statement labelled L2. 

In Algol there are certain restrictions on the use of labels which also 

apply to this statement and so Ll and L2 must be local labels. 

The join statement - terminates the parallel paths (instruction streams) 

in which it occurs. Each parallel path ends with a 'G0 T0' statement 

to a lahelled join statement. The label list included in the 'J0IN' 

statement contains the labels of the first statements of each of the 

paths that it terminates. The statement immediately following the 

join statement is not executed until all the paths contained in the 

label list have been terminated. 

The terminate statement - is used to explicitly discontinue program 

paths. The fork statement dynamically activates program paths and the 

terminate statement is used to avoid creating a backlog of meaningless 

incomplete activations. 
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The obtain statement - provides exclusive use of the variables contained 

in the variable list. It is used to 'lock out' other parallel program 

paths from the use of those variables so as to avoid mutual interference. 

The release statement - is the logical counterpart of the obtain 

statement. It allows access to variables (contained in variable list) 

that have been previously locked out by an obtain statement. Since it 

only releases those variables in the variable list, it may be applied 

selectively. 

The actual implementation of these commands will be dependent on 

the characteristics of the parallel computer but they do have a general 

form. The execution of a fork statement creates two parallel program 

paths, one of which (usually the first one) is carried out by the 

processor that executes the fork statement. The other path is assigned 

to an available processor but in the event of no processor being 

available it is placed in a queue until one does become available. 

The join and terminate statements control counters initialised 

to the number of labels in their label lists. Each time the statement 

is executed the corresponding counter is decreased by one and compared 
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to zero. When the counter' is not zero, the path is terminated, the 

processor that executed the path is released and if there are paths 

waiting to be executed, it is assigned to the path at the head of the 

queue. If the counter is zero, the path is terminated and the processor 

proceeds to the next program segment starting at the statement immediately 

after the join statement. 

The obtain and release statements are more difficult to implement 

and depend on the hardware capabilities of the computer. It is 

interesting however to consider what happens when a processor requests 

a piece of data that has been restricted to the exclusive use of another 
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processor by an obtain statement. The path being executed by the 

processor can be suspended awaiting access and the processor reassigned 

to other work or the processor can be held in a state of idleness, 

continually trying to access the data until it is released by a release 

statement. 

These commands are typical of those used by MIMD computers and now 

as a specific example we shall consider the commands used by the Interdata 

Dual Processor. 

The programming language available on the Interdata Dual Processor 

is Fortran and the set of additional commands necessary to create 

parallel program segments include $F~RK,$J~IN,$D~PAR and $PAREND, plus 

two subroutines GETRES and PUTRES (Bar1ow et al , 1977). The four 

commands are macros that are expanded by the Fortran Macro Processor 

to Fortran code acceptable to the compiler. 

Let us first consider the two commands $F0RK and $J0IN, which 

always occur in pairs as follows: 

$F~RK LI,L2, .... LN;L 

L1 . 

G0 T~ L 

L2 

G~ T~ L 

LN 

G~ T~ L 

L $J~IN 

}program segment 1 

}progr~m segment 2 

}progr~m segment N 

The $F0RK statement creates an arbitrary number of parallel paths each 

starting at the statements whose labels appear in the label list of the 

$F~RK statement and ending with ago to L, the label of the corresponding 

$J0IN statement. The labels in the label list are separated by commas, 
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the last one being followed by a semi-colon and the label of the 

corresponding $J0IN statement. 
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The two commands $D0PAR (or $D0PARALLEL) and $PAREND (or $PARALLELEND) 

are essentially a parallel form of D0 loop and are used as follows: 

$D0PAR I I=Nl,N2,N3 

} Program segment 

I $PAREND 

where the control variable I (as in the D0 statement) set initially 

to NI, is incremented by N3 until greater than N2. The $D0PAR command 

creates one program path for each value of the control variable, but 

instead of each path being executed sequentially they are executed 

concurrently. 

The $D0PAR and $PAREND are used to replace the D0 loop when the 

computations involved in each execution of the loop are independent 

(which means they may be executed in parallel). Obviously, to use the 

$F0RK and $J0IN statements to perform each loop in parallel would mean 

that the instructions included in the loop would have to be repeated 

for each value of the control variable. This is of course unnecessary 

with $D0PAR which is essentially an extension of the $F0RK instruction 

and so should be used. 

Both pairs of commands are implemented in the same way. An entry, 

containing necessary information, is placed in a queue for each program 

path created by the $F0RK or $D0PAR instruction. The processor that 

executed the $F0RK or $D0PAR instruction then takes the first path 

from the queue and executes it, followed by the other available 

processors. The instructions $J0IN and $PAREND are counters which 

are set initially to the number of parallel program paths and 

decremerred each time a program path is completed. On completion of a 

path, the processor that executed it is reassigned to the next path in 

the queue. One peculiarity of the Interdata Dual Processor is that the 



statements following the $J~IN or $>AREND statement must be executed 

by the proc~ssor that executed the $F~RK or $)~PAR statement. 

The subroutines GETRES and PUTRES are similar to the ~BTAIN and 

RELEASE commands in that they also prevent mutual interference between 

processors. Instead of giving exclusive use of certain variables to 

one processor, they give it exclusive use of a segment of program that 

contains these variables. The subroutines are implemented by creating 

an abstract resource ring that consists of abstract resources available 

to all processors. A resource may be possessed by only one processor 

at a time, other processors requiring it having to wait until it is 

given to them by the processor that possesses it. 

A segment of program that we wish to give exclusively to one 

processor is made into resource I by placing it between two subroutines 

thus: 

CALL GETRES(I) 

} Program segment 

CALL PUTRES (l) 

The segment only becomes available to other processors when the PUTRES 

subroutine call has been made. 

The flowchart in Figure 2.3 illustrates the form that a program 

for an MIMD computer might take. 

The general rules for the order in which the program segments are 

executed are quite simple. A segment of program that appears before a 

$F~RK or $D~PAR statement must be executed before that $F~RK or $D~PAR 

is executed. The program paths created by a $F~RK or $D~PAR statement 

can be executed simultaneously but if there are insufficient processors 

to execute all of the paths, the order in which they are executed is 

not important. The program segment following a $J~IN or $PAREND 

statement can only be executed when all the paths entering that $J~IN 

27 



28 

or $PAREND statement have been completed. 

Finally we see from Figure 2.3 that nesting of $J~INs and $D~PARs 

is permitted. 

START 

1 

1 $F0RK 

1 1 

I $J~IN I LT 
1 

I $J~IN 

FINISH 

FLOWCHART STRUCTURE OF AN MIMD PROGRAM 

Figure 2.3 

$D0PAR 

TT 
$PAREND 
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2.4 THE DESIGN OF ALGORITHMS FOR MIMD COMPlITERS 

In this section we shall investigate the inherent pa!a11e1ism of 

existing algorithms, in particular, for mMD computers with two 

processors but with a view to extending the ideas to computers with 

more processors. At first we shall consider some simple expressions 

and then progress to some specific algorithms. 

Let us first consider expressions of the form of equation (2.2.5), 

Le. , 

An = a1 0 a2 0 ..•• an 

which is evaluated using the associative fan-in algorithm on an SIMD 

computer. Observation of the evaluation tree corresponding to this 

algorithm (Figure 2.1) reveals that although operations at the same 

level in the tree are independent, those at different levels are not. 

Since the processors of an MIMD computer are asynchronous it would 

be preferab+e therefore to remove as much of the dependency as possible. 

This may be achieved by partitioning the problem once thus, 

A = (a1oa2o .•. a )o(a loa 2 .•.•. a) n m m+ m+ n (2.4.1) 

where 
{ 

n h . 2 w en n 1S even 

m = (n+1)/2 when n is odd, 

which yields the evaluation tree shown in Figure 2.4. 



Clearly the evaluation of each branch is independent and so may be 

done concurrently using 2 processors. Using the fork and join 

statements this may be programmed easily as follows: 

'F0RK' Ll,L2; 

Ll :Al+A[1] ; 
'F0R' 1+2 'STEP' 1 'UNTIL' M 'D0' Al+AloA[I]; 
'G0T0' L3; 

L2:A2+A[M+l]; 
'F0R' 1+M+2 'STEP' 1 'UNTIL' N 'D0' A2+A2oA[I]; 
'G0T0' L3; 

L3:'J0IN' Ll,L2; 
AN+AloA2; 

Obviously, for this expression we have,· 

and 

T = (n-l) operations 
1 

2" operatl0ns, for n even 

{ 

n . 

(n+l)/2 operations, for n odd, 

remembering that when n is odd one branch of the evaluation tree has 

one more operation than the other. Thus, the speed-up and efficiency 

are 

and 

= {2(n-l)/n =2-2/n, for n even 
S2 

2(n-l)/(n+l) = 2-4/(n+l), for n odd, 

E = 2 {

l-l/n , for n even 

l-2/(n+l), for n odd, 

which are almost optimum results. 

If this strategy is now applied to the inner or scalar product 

we have m n 
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s.p. = I x.y. + I x.y. 
.1 11 .1 11 

(2.4.2) 
1= l=m+ 

where m is as defined for equation (2.4.1). 

The corresponding evaluation tree and program will have the 

same form as those for the expression (2.4.1). Again, it is obvious 

that for the scalar product, 



and 

Tl = nCM+A)-A 

= { nCM+A)/2, for n even 
T2 

Cn+l) (M+A)/2, for n odd, 
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where M and A are the times required to perform a multiplication and 

an addition respectively. This leads to the results, 

{ 2-2A/CM+A)n , for n even 
S2 = 

2-2/Cn+l)-2A/CM+A)Cn+l), for n odd 

l-A/CM+A)n , for n even 
and E2 = { 

l-l/Cn+l)-A/CM+A) Cn+l) , for n odd. 

Once again these results are very close to the optimum values. 

Another expression that may be evaluated in a similar fashion 

is the polynomial of the form: 

n p = aO + alx + ..... anx 

The sequential computation time of a polynomial is uniquely 
/~~UM\"9 1\0 ~re..pl'oc.essi"CJ of COdfiC:,e"ts 

minimised/by applying Horner's Rule CBorodin, 1971), which 

expresses the polynomial in the form: 

p = ( .•. ((a x+a l)x+a 2)x •.. a l )x+a
O

• n n- n-

The partitioning of Horner's rule suggested by Dorn [1962] 

expresses the polynomial in the required form thus, 

222 
PI = ( ... ((a~x +a~_2)x ... +a2)x +aO 

222 P2 = ( ... ((akx +ak_2)x .... +a3)x +a
l 

and p = PI + P2x 

where ~=n and k=(n-l) for n even and ~=(n-l) and k=n for n odd. 

The speed-up and efficiency achieved by this method of evaluation 

are also impressive. 

(2.4.3) 

(2.4.4) 

(2.4.5) 

Clearly a similar strategy may be applied to these expressions 

for evaluating them on a p-processor computer. We simply partition 

the expression into p smaller expressions of equal size. As an 
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example, consider the evaluation of expression (2.2.5) using 3 

processors, for which we partition the expression thus, 

An = (aloa2o ... at)o(at+lo ..• ak)o(ak+lo ••. an) (2.4.6) 

where t= rn/31 and k= f2n/31. The evaluation tree is given in 

Figure 2.5 and the program will be of the same form as that for a 

2 processor computer but with 3 paths created by the fork statement. 

EVALUATION TREE 

Figure 2.5 

Assuming of course that n is exactly divisible by 3, we then have, 

T3 = n/3+l operations 

S3 = 3-l2/(n+3) 

and E3 = 1-4/ (n+3) 

which again is impressive but not quite as good as the speed-up and 

efficiency achieved when using 2 processors. It is not difficult 

to see that for a p processor computer we have, 

Tp. = nip - 1 + IIog2Pl 

assuming n is divisible by p, and 

operations , 
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S 
(p+p2 ([log2P"l-1)) 

= p -p Cn+p (l1og2PJ-1») 

and E 1 -
(1+p([log2Pl -1)) 

= p Cn+p ([log2P1 -l )) 

As expected, the efficiency of the algorithm decreases as p, the number 

of processors, is increased. 

Now let us consider the simple matrix operations, addition, 

subtraction and multiplication. First, we have the addition of two 

(nXm) matrices such as, 

C = A + B (2.4.7) 

which is defined as 

c .. = a .. + b .. 
1J 1J 1J 

for i=1,2, ... ,n, 
j=1,2, ... ,m. 

When considering SIMO computers we established that the evaluation 

of C is made up of n.m independent operations and so the problem is 

simply to divide these operations equally between the two processors. 

It is obvious that there are numerous ways of dividing the 

operations into two equal parts. If either or both of n and m are 

even, we may simply evaluate the odd numbered columns (or rows) of C 

using one processor and the even numbered ones using the other processor. 

The following program evaluates C by assigning alternate columns to the 

two processors, 

'F0RK' L1,L2; 

L1:'F0R' J+1 'STEP' 2 'UNTIL' M '00' 
'F0R' 1+1 'STEP' 1 'UNTIL' N '00' C[I,J]+A[I,J]+B[I,J]; 
'G0T0' L3; 

L2:'F0R' J+2 'STEP' 2 'UNTIL' M '00' 
'F0R' 1+1 'STEP' 1 'UNTIL' N '00' C[I,J]+A[I,J]+B[I,J]; 
'G0T0' L3; 

L3:'J0IN' L1,L2; 

It is not difficult to see that if either or both of n and m 

are even then, 



S = 2 2 and 

These results appear to be perfect but unfortunately an overhead is 

incurred by the use of the fork and join statements and so in fact 

S2<2 and E2<1. 

Since matrix subtraction and multiplication also consist of the 

evaluation of the n.m elements of the result matrix, each of which are 

independent, exactly the same strategies may be applied, achieving 

identical speed-ups and efficiencies. Note however, from the matrix 

product defined in equation (2.2.3), that each element of the result 

matrix is a scalar product. So an alternative method of evaluating 
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the matrix product is to calculate the elements of the result matrix one 

at a time using the scalar product algorithm for two processors already 

defined. It is a trivial problem for these algorithms to be extended 

so as to be suitable for a p processor computer. 

At this point we shall consider an important difference between 

the SIMD and MIMD types of parallel computer. It is obvious that the 

processors of an SIMD computer are synchronized as well as synchronous 

i.e., as well as each processor executing the same instructions, the 

instructions are executed at exactly the same time. Not so obvious is 

the fact that even if the instruction streams of an MIMD computer are 
, 

identical, the processors may not execute each instruction at exactly 

the same time. It is reasonable to assume that the processors of an 

MIMD computer are identical. The delays that they are subject to due 

to memory contention are not however the same and so even if the 

processors are initially synchronized, they will not usually be so 

for long. 

Arising from this we see that although the previously described 

algorithms divide the total work into equal quantities, we can not be 
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sure that each processor finishes its work at the same time. To overcome 

this problem on a 2 processor computer, Kung [1976] suggests the use of 

a de que (double ended queue). If all the operations in anyone of the 

algorithms already presented in this section (except the polynomial 

evaluation) are placed in a queue, then we may permit each processor to 

take operations from opposite ends of the queue. Although the processors 

may not meet exactly at the middle of the queue, clearly, the important 

point is that both processors will be kept occupied. Obviously, it would 

not be ,easy to use a deque for more than 2 processors. 

In the re~ainder of this section we shall investigate algorithms 

for the solution of a system of linear equations of the form 

Ax = d 

where A is an (nxn) matrix and ~, the solution vector, and ~ are 

(nxl) vectors. There are two classes of direct methods for the 

solution of such systems of equations, namely elimination methods 

and factorisation methods. The elimination method most commonly 

used is the Gauss Elimination Algorithm (Wilkinson, 1965) which 

(2.4.8) 

transforms matrix A into an upper triangular matrix and, by a backward 

substitution process, computes the solution vector x. If the original 

system (2.4.8) is denoted as 

A(l)x = del) (2.4.9) 

then A is triangularised by the production of the sequence of 

systems, 
for r=2,3, ..• ,n (2.4.10) 

where A(n) is the required upper triangular matrix. At the rth 

step of the algorithm, A(r) has the form, 



, , 
A (r) = " 

o 
, , 

a ...•..••.• a 
rr .rn 

a •••••••••• a nr nn 

and A(r+l) is derived from A(r) by subtracting a mUltiple m. of 
lr 

h th f h' th f' 1 t e r row rom t e 1 row or l=r+ , •.•. ,n. The same operations 

(r) (r+l) are performed on the right hand side vector d to produce d . 

The multipliers mir , chosen so as to eliminate air (i=r+l, ..• ,n), are 

defined as 

36 

m. lr 
= a~r) la (r) 

lr rr for i=r+l, ..• ,n. (2.4.11) 

Obviously, the first r rows of A (r) and d(r) will be unaltered and 

~nce the zeros in the first (r-l) columns are only replaced by a 

linear combination of zeros, they too will be unaltered. The 

remaining elements of A(r+l) and d(r+l) are defined by the following 

equations: 
(r+l) 

= (r) m. (r+l) 
for j=r,r+l, ..• n a .. a .. a . 

IJ IJ lr rJ 

d~r+l) d~r) d (r+l) for i=r+l, .•. n 
and = m. 

1 1 lr r 
(2.4.12) 

The backward substitution process for the evaluation of x is then 

defined as, n 
x. = (d. - L a .. x.)/a .. , for i=n,n-l, ... 1. 

1 1.. 1 IJ J 11 J=I+ 
(2.4.13) 

If we consider one step of the triangularisation process, we 

see that it requires the evaluation of (n-r) multipliers and (n-r)(n-r+l) 

elements of A(r+l) and d(r+l). Clearly the multipliers may be 

evaluated simultaneously and so may the elements of A(r+l) and d(r+l). 

Thus the process can be implemented on an MIMD computer with p processors 

by dividing each set of calculations into p equal groups. This may 

typically be done on a two processor computer as shown in the following 



flowchart which 
th represents the r step of the algorithm. 

~ 

Let w=l/a rr 
and s=r+(n-r)/2 

I 
1 L 

m. =a. la F~RK m. =a. la 1r 1r rr 1r 1r rr 
for i=r+l, •.. s for i=s+l, •.. n 

I J~IN 

1 

I F~RK 

Evaluate a .. and d. Evaluate a .. and d. 
1J 1 1J 1 

for j =r+ 1, ••. n for j=r+l, ... n 

and i=r+l, •.. s and i=s+l, ..• n 

I J~IN 

J, 
Clearly the speed-up for the triangularisation process achieved by 

using two processors in this way is, 

S '" 2 
.=.2..!...[ 6.:..:D=-+-=2=n~( n~+-=l~) .;:...S+-=n~(,.:;2=n +_5::...:):,.;-M::...!.1___ < 2 
[12D+ (2n2+2n+3)S+ (2n

2
+Sn+6)Ml 

where D,S and M are the times required to perform a division, a 

subtraction and a multiplication respectively, and the efficiency 

is, 
E = 2 

The backward substitution process is essentially sequential, 
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(2.4.14) 

(2.4.1S) 

but methods for the parallel solution of triangular sets of equations 

are described in Chapter 4. An alternative approach is to take 

advantage of the fact that each element of x is a scalar product. 

Applying the methods already developed for scalar products, we 

obtain the following results for the execution of the backward 

substitution process on a 2 processor computer, 

and 

'" 2[2D+(n-l)S+(n-l)~ <2 
[ 4D+ (n+2) S+ (n+2)M)1 
S2 
T < 1 

} (2.4.16) 



Another elimination method is the Gauss Jordan Elimination 

Algorithm which reduces the matrix A to a diagonal matrix of the form, 

(n) 
all 

" 
A (n) = 

.... 
.... .... 

o 
" " " .... 

o 

.... 
" ... a (n) 

nn 

The diagonalisation procedure is the same as the triangularisation 

procedure of Gauss Elimination except that during the rth step, the 

(n-l) multipliers m. defined as 1r 

m. 1r 
= a~r) /a (r) 

1r rr 

th are chosen so to eliminate the r column 

for i=1,2, ... n 
i~r 

of A
(r) (r) except a . 

rr 

The speed-up and efficiency for Gauss-Jordan Elimination are thus, 

S2 '" 
2[2D+(n-l) (n+l)S+(n-l) (n+3)M] 

< 2 [4D+(n-l) (n+l)S+(n-l) (n+3)M] 
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S2 
(2.4.17) 

and E = 2 -< 2 1 

The solution vector x - is then defined by the equations 

x. = d./a .. 1 1 11 i=1,2, ..• ,n, (2.4.18) 

which may obviously be divided equally between two processors. 

Arising from these two algorithms is a method for the evaluation 

of the determinant of a matrix. If A is reduced to either of the 

forms produ~ed by the elimination algorithms, then the determinant 

of A is defined as n 
det A = 1T a .. 

i=l 11 
(2.4.19) 

which is of the same form as equation (2.4.1) and so can be evaluated 

in the same way. 

The second class of methods for the solution of (2.4.8) is 
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factorisation methods which are typified by the LU factorisation 

algorithm. This algorithm factorises A into two matrices Land U such 

that, 
A = L.U (2.4.20) 

where, 

1 un u12- - - - - -u In 

9- 21 1 u22 u2n 
" 

I 

£.31 9- 32 1 , 
" " 

L = I I " and U= , 
, 

I I , " I " , 
I " I " " 1 " 

, 
9- 9- " 1 ,I 
nl n2 - - - - - - - - u nn 

Then by introducing an auxiliary vector r such that r=U~, the 

solution vector ~ may be evaluated by performing forward and backward 

substitution processes respectively on the two triangular systems of 

equations, 

and U~ = r 
The elements of the matrices Land U may be found by forming 

the product LU and equating it to A to give the following formulae, 

u .. = a .. 
1J 1J 

for j=i,i+l, .•. n 

for i=1,2, •.. n.(2.4.2l) 
i-I 

and 9- .. = (a .. - L LkUk.)/u .. for j=i+l, ..• n 
J1 J1 k=l J 1 11 

Clearly the evaluation of the elements in the ith row of U 

and ith column of L, apart from u .. , are independent and so may be 
11 

done simultaneously. The order in which the elements can be evaluated 

on a two processor computer is illustrated in the following flowchart: 
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J, 
Evaluate u .. 1 11 

1 Loop for 
F~RK i=l (l)n 

~ ,If 

Evaluate Evaluate 

t. 1 ., t. 2 .... t . 1+,1 1+,1 n,l u .. l'u .. 2'···U' 1,1+ 1,1+ 1,n 

J~IN 

J., 

If the factorisation is performed in this manner, then the speed-up 

and efficiency achieved are, 

= [3D+(2n-l)S+(2n-l)M] < 2 
[3D+(n+l)S+(n+l)M] } (2.4.22) 

and 

The two 

and 

S2 
= - < 1 2 

substitution phases are defined as, 
i-I 

y. = d. - nI LkYk for i=1,2, ... n } 
1 1 k=l 1 

x. = (y.- I u·kxk)/u .. for i=n,n-l, •.. l 
1 1 k=i+l 1 11 

(2.4.23) 

which may be treated in the same way as the'substitution process of 

Gauss Elimination, except that the solution of L~ = d does not 

require any divisions. 

A problem associated with solution of linear systems of equations 

is matrix inversion, which involves the solution of the matrix equation 

AX = I (2.4.24) 

where the unknown matrix X is the inverse of A and I (the identity 

matrix) is a unit diagonal matrix. Clearly, if A is an (nxn) matrix, 

then the problem involves the solution of n systems of equations of 

the form of (2.4.8), each system having the same left hand side but 

different right hand sides. Thus to compute the inverse of A requires 

one application of, for example, an elimination procedure followed by 

n independent substitution processes. The substitution processes may 



he divided equally bet~een the p processors, each substitution process 

being executed sequentially. Obviously if n is exactly divisible by 

p, the speed-up and efficiency of the substitution process when 

executed on a p processor computer will be, 

S = p 
p 

and E = 1 • 
P 

When matrix A is sparse i.e., many of the elements of A are zero, 

the algorithms already described become inefficient due to redundant 

operations (e.g. the elimination of elements that are already zeros), 

Special algorithms therefore exist for the solution of the system of 

equations (2.4.8) when matrix A has specific forms. Consider as an 

example the Periodic Algorithm (Evans and Atkinson, 1970) which may 

be used when A has the form, 

b l cl al 

a2 b2 c2 0 

41 

A 
, , , 

= , , , (2.4.25) , , , , , , 'c 

0 
, , n-l , , 

c 'a'b 
n n n 

The periodic algorithm, which is essentially Gauss Elimination, may 

be described as follows: 

a) the elimination procedure 

g - c w hI = alw l , 
(2.4.26) 

1 - 1 l' 

Gl = cn ' 01 = bn ' and FI = dn 

then for i=2(1)n-l, 

w. = l/(b.-a.g. 1) 
1 1 1 1-

g. = c.w., h. = -h. la.w., f.=(d.-a.f. l)W. 
1 1 1 1 1- 1 1 1 1 1 1- 1 

G. = -g. IG. l' O. = O. I-G. lh. 1 and F. =F. I-G. If. 1 1 1- 1- 1 1- 1- 1- 1 1- 1- 1-

(2.4. 27) 

and finally, 
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g = h = G = F = 0 n n n n 

and f = F l-(G l+a)f 1 n n- n- n n-

(2.4.28) 

b) the backward substitution process, 

x = f /0 
n n n 

and for i=n-l(-l)l, (2.4. 29) 

x. = f.-g.x. l-h.x 1 1 1 1+ 1 n 

The evaluation of the six quantities g.,h.,f. ,G. ,D. and F. are 
11111 1 

independent for each value of i and so may be computed simultaneously. 

Clearly a maximum of 6 processors may be used. One method of executing 

the factorisation procedure using 2 processors is given in the following 

flowchart , 
.L 

I Evaluate wi I 
J, Loop for 

F0RK i=l (l)n 
II 

Evaluate Evaluate 
g. ,h. and f. G. ,D. and F. 1 1 1 1 1 1 

J0IN 

j, 

and the speed-up and efficiency achieved are, 

and 

= (n-l)D+(9n-13)M+(4n-3)A <2 
S2 (n-l)D+2(3n-4)M+(2n-l)A 

E = 2· 

S2 
- < 1 
2 

The substitution process exhibits little inherent parallelism 

except for the calculation of the products g.x. 1 and h.x . The 1 1+ 1 n 

(2.4.30) 

parallel overhead incurred by forming these products simultaneously 

however would greatly reduce the speed-up that might be achieved and 

so the process should be executed sequentially. 



This concludes the survey of numerical algorithms for inherent 

parallelism, The speed-ups that may be achieved by the exploitation 

of this parallelism appear to be very impressive, It must be realised 

however that the overheads incurred by the fork and join statements 

have not been taken into account, Although the effect of I fork and 

join is insignificant, the triangularisation procedure of Gaussian 

Elimination, for instance, has (n-l) steps, each requiring 2 sets of 

fork and join statements. The parallel overheads therefore will have 

a considerable effect on the speed-up achieved by these algorithms, 

In the algorithms that appear in the following chapters an attempt is 

made to minimise the parallel overheads by using as few fork and join 

statements as possible, 
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CHAPTER 3 

THE PARALLEL SOLUTION OF BANDED SYSTEMS OF 

LINEAR EQUATIONS BY TRIANGULAR FACTORISATION 
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3.1 INTRODUCTION 

A frequently occurring problem in the numerical solution of partial 

and ordinary differential equations is that of solving the banded system 

of equations 

Ax = d (3.1.1) 

where A is an (nxn) matrix of semi-bandwidth m, i.e. see (3.2.14). 

The importance of this problem in engineering applications emphasises 

the need to be able to solve it efficiently on a parallel computer. 

Standard methods for the solution of linear systems such as 

Gaussian Elimination and Triangular Factorisation are presented in 

Chapter 2 and the derivation of parallel algorithms by the algorithm 

decomposition principle [Hyafil and Kung, 1974] are also outlined. 

Although the theoretical results for these methods are encouraging, 

their implementation on a parallel computer would not be so successful, 

since the time overhead incurred by the large number of 'forks' and 

'joins' that are necessary in the program would degrade the performance 

of the algorithms. It is clear that a new strategy is required in order 

that we may solve the system (3.1.1) in parallel. 

The folding algorithm of Evans and Hatzopoulos [1976] is based on 

the technique of performing Gaussian elimination in the top left and 

bottom right hand corners of A concurrently. In the following analysis 

a similar strategy is applied to Triangular Factorisation. Instead of 

upper and lower triangular matrices, the factorisation produces two 

matrices that are upper triangular in one half and lower triangular 

in the other half and vice versa. 

Initially we consider the case where the matrix A is tridiagonal 

and present algorithms for unsymmetric and symmetric matrices. These 

algorithms are then expanded to solve the more general banded system 

(3.1.1). In these generalised algorithms, the matrices produced by 
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the factorisation process are seen to have an area of overlap at their 

centres that correspond to the interference that occurs in the folding 

algorithm. 

3.2 STANDARD FACTORISATION ALGORITHMS 

In this section standard factorisation methods are outlined so 

that they may be compared with the new parallel factorisation methods. 

First we consider the case of the tridiagonal system of equations. 

Let the matrix A be an (nxn) matrix of the form: 

a l c2 
b2 

a2 c
3 

b3 a
3 , , 

, , , , 

o 

c4 , , , , , , , 
" , , , 

o 

, , , 
b 'a 'c 
n-l n-l n 

b 
n 

a 
n 

with x and d as (nxl) vectors of the form: 

x = 

x 
n 

d = 

d 
n 

The triangular factorisation algorithm for system (3.2.1) 

involves determining triangular factors Land U such that, 

where, 

L = I , 
, 

" , , " , " 
Q,', 'I 
n,n-I 

A = L.U 

and U = " , , 
, , , , , , 
" u " n-I,n , 

u n,n 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 



This can be shown to be achieved by the following formulae: 

The system 

b. 
1 

9.0 • 1 = 
1,1- U. 1 . 1 

1- ,1-

u .. = a. -9.0 • I u. 1 . 
11 1 1,1- 1-,1 

for i=2 (l)n 

is solved by a forward substitution process as follows, 

and the system, 

Yl = dl 

y. = d.-L . l·Y' 1 1 1 1,1- 1-

u~ = .l. 

for i=2 (l)n } 

is solved by a backward substitution process defined by, 

Yn 

} x = n u nn 

x. = (y.-u .. IX. l)/u .. , for i=n-l(-l)l • 
1 1 1,1+ 1+ 11 

Adopting the standard technique of overwriting Land U on A 

to save computer storage, it is clear that the factorisation 

process (3.2.5) requires 2(n-l) multiplications and (n-l) additions 

and the forward and backward substitution processes (3.2.7) and 
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(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.S) 

(3.2.9) 

(3.2.9) require (n-l) multiplications and (n-l) additions and (2n-l) 

multiplications and (n-l) additions respectively. Thus, the complete 

algorithm requires (5n-4) multiplications and 3(n-l) additions 

giving a total of (Sn-7) arithmetic operations. 

Obviously for the factorisation (3.2.3) to exist we require 

that the matrix A is positive definite, i.e., all of its eigenvalues 

are positive. Should this not be true then it is necessary to 

introduce partial pivoting as proposed in Wilkinson [1965]. 
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The factorisation of (3.2.3), incorporating partial pivoting is 

now defined as follows. 

At the ith step of the evaluation of Land U form the quantities: 

R = a .-(t . lU' 1 +t . 2u . 2 ) t t,1 t,1- 1-,t t,1- 1-,t 

for t=i,i+l • 

When IR. 11>IR.1 (where Izl=z, if z~O otherwise -z), the rows 1+ 1 

i and i+l are interchanged including the values of Rt and dt . 

and 

and 

Then, we have 

u .. = R. 1,1 1 

t. 1 . = R. l/u .. 1+,1 1+ 1,1 

u .. 1 1,1+ = a. . l-R.,· . lU' 1 . 1 1,1+ 1,1- 1- ,1+ 

The two substitution stages are now defined thus, 

Yl = dl } 
i-I 

y. = d.- I t. kYk for i=2(1)n , 
1 1 k=l 1, 

(3.2.10) 

(3.2.11) 

(3.2.12) 

x. = (y.-(u .. IX. l+u .. 2x. 2))/u . . , for i=n-2(-1)1. 1 1 1,1+ 1+ 1,1+ 1+ 1,1 

Excluding comparisons and interchanges the algorithm requires 

(n2+l7n-28)/2 multiplications and (n 2+l3n-26)/2 additions giving 

a total of (n2+lSn-27) arithmetic operations. 

If we now consider the general banded system (3.1.1) where 

A has the form: 

all a12 -- - - aIm _ 
a

2l 
a

22
_ 

I 
I 
I 

a 1 rn, .......... 
a
n-m+l,n 

I 
, , 

.... I 
...... 1 

a----- an 
n,n-m+l n,_ 

(3.2.13) 

(3.2.14) 
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then the factorisation of equation (3.2.3) where L is lower triangular 

and U upper triangular is as follows: 

at the ith step in the evaluation of Land U, form the quantities: 
i-I 

R
t 

= a
t

.- I ~t .U .. , for t=i(l)i+(m-l) . (3.2.15) 
,1 j =a. ' ) ),1 

Select the maximum 1Rtl (let it be t'), and when t'ri, 

interchange rows t' and i of A. Then, 

and 

u .. = R. 11 1 

~. k . = R. k/ U ' ., for k=l(l)m-l. 1+,1 1+ 1,1 

i-I 
= a .. k - I to .u .. k' k=1(1)2(m-l) 1,1+ 1,) ),1+ 

j=a. 

{

I for i~2m-k-l 
where a. = 

i-2(m-l)+k for i>2m-k-l. 

The forward substitution process for the solution. of Lr=~ 

is as defined in (3.2.12) and the backward substitution process 

for the solution ofU~ = r is now 

xn = yn/un,n 
a 

x. = (y.-( I u. kXk))/u .. , i=n-l(l)l 
1 1 k=i+l 1, 1,1 

{

n, for i~n-2m+2 
where a = 

i+2(m-l), for i<n-2m+2. 

The execution of this algorithm requires (3n
2
+3n(8m

2
_8m+l)_ 

(m-I) (34m2-29m+6))/6 multiplications and (3n2+3n(8m
2
-l0m+l)-2(m-l) 

(17m2-l6m+3))/6 additions, giving a total of (n
2
+n(m-l)(8m-l)-(m-l) 

(68m2-6lm+12)/6) arithmetic operations. 

When the matrix A is symmetric and positive definite, it is 

possible to use the Choleski factorisation method where matrix A 

is factorised such that, 

(3.2.16) 

(3.2.17) 

T A = L.L (3.2.18) 

A" o.d"at'\+og~ of th,s Me.\-kd is fho.+ ,t is, o"kf "e.c.esso.f"'/ -40 evaknt-e 

",,,d store. mo.-h-,~ L. 



For the case when A is tridiagonal as in (3.2.1) we have that 

and 

L = 

R-ll 

R-2l R-22 

b. = c. 
1 1 

R-32 R-33 
... ... , 

for i=2(1)n 

o 
, , ... 

.... ... 

o .... "-, .... 
" .... 

R- .... R-
n,n-l n,n 

where the R- .. 's are defined as follows: 
1,J 

R-ll = ~ 

and 

R- .. 1 = b./R-. 1 . I} 1,1- 1 1- ,1-

I for i=2 (l)n 
R- .. = {a.-R-~ . 1 
1,1 1 1,1-

Then, the two substitution stages are defined to be, 

Lr = ~ 

Yl = d/R- ll 

y. = (d.-R-.. lY. l)/R-· . for i=2(1)n 
1 1 1,1- 1- 1,1 

and 
T 

L x = r 
1 

x. = (y. -R,. 1 . x. 1)/ R-. . for 
1 1 1+,1 1+ 1,1 

i-n-1 (1) 1. J 

The total number of arithmetic operations required by this 

algorithm is (10n-7), made up of n square roots, 2(3n-2) 

multiplications and 3(n-l) additions. 

Finally we apply Choleski factorisation to (3.1.1) where A 

has the form (3.2.M) and a .. =a ..• The factorisation can be 
1,J J,1 

defined new as follows: 
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(3.2.19) 

(3.2.20) 

(3.2.21) 

(3.2.22) 

(3.2.23) 
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u 
= I(a .. - I t~ .. ) 

11 j=l 1,1-J 
for i=l(1)n 

CL 

and L k . = (a. k . - ILk' . L . .) (L ., for k=l (l)m-l 1+,1 1+,1 j=l 1+ ,1-J 1,1-J 11 

where CL = { 
for i~(m-k) 

i-I, for i«m-k) 

m-k-l 

and the two substitution stages become, 

Lr. = i 

Yl = d/tu 

CL 

y. = (d. - I t .. kY' k)/~" for i=2(1)n, 1 1 k=l 1,1- 1- 11 

{ i-I for i<m 
where CL = 

m-I for m~i 

and 
T 
L~=l. 

x = Yitnn n 

8 
x. = (y. - I t .. kX' k)/t .. , for i=n-l(-l)l 1 1 k=l 1,1+ 1+ 11 

{ n-i for n-i+l<m 
,,,here 8 = 

m-I for n-i+l~m 

The total number of arithmetic operations required by this 

algorithm is n(m2+4m-2)-m(m-l) (4m+13)/6, made up of n square roots, 

2 n(m +5m-2)/2-m(m-l) (m+4)/3 multiplications and n(m-l) (m+4)/2-

m(m-l) (2m+5)/6 additions. 

3.3 THE PARALLEL TRIANGULAR FACTORISATION OF THE MATRIX A 

Let us now consider the tridiagonal system of linear equations 

(3.1.1) where A has the form (3.2.1). By applying the technique of 

(3.2.24) 

(3.2.25) 

(3.2.26) 
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folding, we may factorise A into two matrices P and Q such that 

A = P.Q (3.3.1) 

where P has the form:-

1 

P2 1 , o 1 
... .... .... 

"- .... 
.... .... (3.3.2) 

.... ... , 
... , 
p ... , 1 P 

s,s-l .... s,s+l 
.... ... 

o , 
..... 

, 
Pn - 1 n , 

1 

and Q the form: 

... o .... ... .... ... 
... ... 

q 'q s-l,s-l s-l,s (3.3.3) 

qs,s 
0 qs+1,s qs+1,s+1 

... .... 
.... .... 

"-... "- ... ... 
qn n-1 

.... 
qn n , , 

where 

{T 
for n is odd 

s = (3.3.4) 
for n is even . 

Since by definition we have, 

A = P.Q 

then on substitution into (3.1.1) we have the following system to 

solve, 
P.Q~ = ~ (3.3.5) 

In order to solve the given tridiagona1 system (3.1.1) we 

introduce an auxiliary vectory r such that 
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Therefore, the problem reduces to that of solving the two systems 

Pr= ~ and Q!. = r. . (3.3.6) 

To evaluate the elements p. . and q . of the matrices P and Q 
I,J r,s 

we form the product P.Q which is given by, 

q1l q12 

P21 qll (P2l q12+q22) q23 
0 ... ...... 

" ...... ..... ...... 
...... ..... 

..... ..... ..... ..... ..... 
" ...... 

..... ..... 

P .Q " [ 
..... ..... 

- y 
..... 

" 
" ...... ..... 

o qn-l ,~-2 (qn-l ,n-l +Pn- 'i ,n qn ,n-l) Pn--l, n qn, n 

L 
(3.3.7) 

where the submat~ix y is defined as 

y =[(Ps,S-1~-1,s-1)(Ps,s-lqs-l,s+qs;s+Ps,s+lq5+1,s~(Ps,s+lQs+l,s+l)]' 
(3.3.8) 

On e'lua.ting the matrices A and P.Q, we deriv<: the ::ollowing 

relationships': 

lilt :. a. 

Ql2. = c.2. 

P2,ct ll = b2 

P2L <}) z-tq2.2. co fJ 2 

••••• I' ..... It •• ~ .... 

and Cln,n 

~.n-I 

_. a 
n 

= b 
1\ 

= c n 

. .................... . 
U!ing these. ec=tIJGt.ions we can obtain the £0Ilow'''8 formulae to 

establlsh -the. \lNcf\o..,n qua.ntities p. j and 4 respeetlvely~ 
1, ~,s 

(3.3.9) 
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qn,n = a n qll = all 

c. 1 i=n(-l)s+l p. 1 . = --,for 
1- ,1 q .. 1,1 

b. 1 1+ 
Pi+l,i = q .. 1,1 

for i=l(1)s-l 

for i=l(l)s-l q .. 1 = b. ,for i=n(-l)s+l 
1,1- 1 qi,i+l c. 1 1+ 

ql' ,'1' = ~. -po . Iq· 1 ., for i=2(1)s-1 . q .. = 1 1,1- 1-,1 1,1 

for i=n-l(-l)s+l 

(3.3.10) 

and finally, 

(3.3.11) 

\ With the matrices P and Q known, the given tridiagonal system 

(3.1.1) is ~educed to solving Pr=~ for r using an inward substitution 

process i.e., a forward substi tlltion from the top left hand corner of 

P and a backward substitution from the bottom right hand corner of P 

intersecting at its centre point, followed by solving Q~=r for ~ 

using an outward substitution process i.e., a backward substitution from the 
, . 

centre point to the top left hand corner of Q and a forward substitution 

from the centre point to the bottom right hand corner of the matrix Q. 

3.4 PARALLEL TRIANGULAR FACTORISATION WITH PARTIAL PIVOTING 

As in the standard factorisation methods, for the factorisation 

of (3.3.1) to exist, matrix A must be positive definite. If this 

condition is not satisfied, we have to introduce the equivalent strategy 

of partial pivoting as proposed by Wilkinson [1965]. The new factorisation 

procedure is then defined as follows:-

at the ith step in the evaluation of P and Q where i=l(l)s-l 

form the quantities, 

Rt = at '-(Pt . Iq· 1 '+Pt . 2q· 2') for t=i,i+l • ,1 ,1- 1-,1 ,1- 1-,1 
(3.4.1) 



If IR. 11>IR. I, the rows i and i+l are interchanged including 
1+ 1 

R
t 

and dt . 

We then have 

q .. = R. 1,1 1 
R. 1 1+ 

p· l . = 1+ ,1 q .. 1,1 

and qi,i+2 = ai ,i+2 

Similarly at the ith step in the evaluation of P and Q, when 

i=n(-1)s+2 form the quantities, 

R = a -(p q +p q ) for t=i,i-1. t t,i t,i+l i+1,i t,i+2 i+2,i 

Again if 1Ri_11>IRil then the rows i and i-I are interchanged 

including Rt and dt · 

Then, 
q .. = R. 
1,1 1 

R. 1 1-
p. 1 . = 

1- ,1 q .. 1,1 

q .. 1 = ai,i~1-Pi,i+1qi+1,i-l 1,1-

and q .. 2 = a .. 2 1,1- 1,1-

Finally, at the centre, we have 

Rs+1 = as+l,s+1-(Ps+l,s+2Qs+2,s+1+Ps+l,;+3Qs+3,s+1+ 

Ps+1,s-lQs-l,s+1) 

Rs = as ,s+1-(Ps,s+2qs+2,s+1+Ps,s+3qs+3,s+1+ 

Ps ,s-lQs-1,s+1) 

If IR I>IR 11 then interchange the rows 5 and 5+1 and we 
5 5+ 

then have: 

and 

qs+1,s+1 = Rs+1 
R R 

5 5 

Ps,s+l = q 5+1,5+1 

= as+1 s-(ps+l s-2qs-2 s+Ps +1 s-lqs-1 s+Ps+1 s+2qs+2 5) , , , , ., , , 
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(3.4.2) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 
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Note that in the top half of the system, any row can be inter-

changed upwards only once yet any row can be interchanged downwards 

as far as row s+l. Similarly in the lower half of the system a row 

may be interchanged downwards only once but upwards as far as row s. 

P = 

and 

Q = 

Matrices P and Q will now have the form: 

1 

P21 1 ..... o 
I ' ..... 
I ' .......... " ..... .... .... .... ..... 

......... Ps s\ 1 
I ' 

pi, l------p' 1 1 s+~, s+ ,s-

p ------p 5,s+1 s,n 
1 "..... : 

" ..... 
..... "-.... 1 "Pn-l n , o 

.... 

o 

1 

.... .... 

qs-l~s-l qs-l,s q5-l,s+1 

Cls,s 

qs+l,s qs+l,s+l 

qs+2,; ......... ",,-
..... 

o 

"-.... ..... 

A comment on these new matrices P and Q is that, with regard 

(3.4.7) 

(3.4.8) 

to P, there are only (n-l) elements apart from the diagonal elements 

~uch that p. .#0. 
1,) 

. 
However, because the pivoting process includes 

the interchanging of the p .. 's, the non-zero p. ,'s will be 
1,) 1,) 

dispersed over the area indicated in (3.4.7). With regard to Q, 

there is a maximum of 3(n-l) elements such that q #0 and it is r ,s 

possible that of the non-zero e~ements indicated in (3.4.8) a 

proportion of the off-diagonal elements may be zeros. 
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3.5 THE SOLUTION OF THE SYSTEH (3.1.1). BY THE PARALLEL TRIANGULAR 

FACTORISATION HETHOD 

The method is characterised by the inward and outward substitution 

procC:'5es which we describe as follows:-· 

a) The inward substitution is given by the matrix system, 

In particular we have two processes; a forward substitution process 

starting from the top left hand corner, i.e., 

and 

Yl = dl 

i-I 

y. = 
1 

1 k=l ' 

{

d. - I Pi kYk with ,pivoting 

for i=2(1)s-1 
d. - p .. lYe 1 1 1,1- 1-

without pivoting, 

with a·backward substitution process from the bottom right hand 

corner, i. e. , 
Yn = d 

n 

n 

{ 
d.- I p. kYk , for i=n-l(-1)s+2 with pivoting 

1 k . 1 1, =1+ 
y. = 1 

di-Pi,i+lYi+l , for i=n-l(-l)s+l without pivoting 

and 
Ys = ds-(Ps,s-lYs-l+Ps,S+lYs+l)' without pivoting 

s-l n 
= ds +l -( I Ps+l kYk+· I Ps+l kYk)· 

k=l ' k=s+2 ' 
with pivoting 

b) The outward substitution is given by the matrix system: 

or.in point form, 
x = s 

with 
pivoting 
only 

(3.5.1) 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 

(3.5.6) 

(3.5.7) 
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I 

and the backward substitution from the centre to the top left hand 

corner is given by: 

(y.-q .. IX. l)/q· . , without pivoting 
1 1,1+ 1+ 1,1 

, for i=s-l (-1) 1, 

(3.5.8) 
l 

while the forward substitution from the centre to the bottom right 

hand corner is given by: 

X. ~ { 

(y.-q .. IX. l)/q· . , for i=s+l(l)n 
1 1,1- 1- 1,1 

without 
pivoting 

. 1 

(y.-(q .. IX' l+q· . 2x , 2))/q· ., for i=s+2(1)n 
1 1,1- 1- 1,1- 1- 1,1 

with 
pivoting 

(3.5.9) 

3.6 THE INHERENT PARALLELISM OF THE METHOD 

The Parallel Triangular Factorisation Method, lik~ the standard 

factorisation methods of section (3.2), comprises of three stages, 

i.e., the factorisation of A, the solution of P~=~ by an inward 

substitution process and the solution of ~=~ by an outward 

substitution process. Examining each stage in turn we have: 

1) The factorisation of A. 

Clearly, the factorisation processes of (3.3.10) and (3.4.1) 

to (3.4.4) can be divided into two phases that are independent of 

each other, and so they may be executed concurr~ntly. When these 

phases have been completed, the evaluation of the central elements 

[(3.3.11) and (3.4.5)-(3.4.6)] may be done. 

The following diagram shows the order of evaluation when 

pivoting is not included: 



FIGURE 3.1 

It is clear that up to 4 processors may be used concurrently. 

2) Solution of Pr=i. 
Since the derivation of r is in fact a forward substitution 

process and a backward substitution process which are independent 

of each other, they may be executed in parallel. 

Also, since the order of evaluation of the piS is the same as 

the order in which they are required for solving Pr=i, the two 

processes may be done in parallel if the solution of Pr=~ is set 

one step or evaluation out of phase. 
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c) Solution of ~=L. 

As before since the derivation of x involves two independent 

substitution processes, then they may be executed in parallel. 

The flowchart for the parallel factorisation method without pivoting 

. , 
when implemented on a two processor system is given in Figure 3.2. 

EVALUATE Q [I, I] , 
P[I ,1+1]· FOR 
1=1(1)5-1 

EVALUATE X[I] 
FOR I=s-l(-l)l 

START 

END 

EVALUATE Q[I,I], 
P[I-l,I] FOR 
I=N(-l)s+l 

I EVALUATE X [I 1 
FOR I=s+l(l)N 

. t. 

Factorisation of A 

Inward substitution 

process for solution of 

PL = ~ 

Outward substitution 

process for solution of 
., , ; 

FIGURE. 3.2 

The phases of the algorithm that permit parallel processing are 

preceded by a 'F~RK' and followed by a 'J~IN' in Figure 3.2, and 

clearly, obe processor is assigned to each branch of the phase. 
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From Figure 3.2 it is clear that the execution time for the whole 

algorithm is the sum of the execution times for the sequential and 

parallel phqses. The sequential phases of the algorithm, which may 

be executed by either processor, can be treated as a sequential 

algorithm. For parallel phases however, each path is treated as a 

sequential path, and then the execution time for the phase becomes equal 

to that of the longest path. 

Thus, by calculating the execution times in terms of mult;plitnnon Ql\d addit'i()f\ 

operations, we have the following results: . 

for parallel triangular factorisation without pivoting, 

= 
{ 

(Sn+I)/.2..M + C3nH)/Z.A 

(5n/2.--+3).M-t (3n/2.-t2.). A 

, C\ odd 

giving 

{ 
2.:,.tIO.lV\t~)\)/((5r.~\).M. H3nl-.':' A) 

2,.().o.II\+\~.A)j(t5n+b).""-r (3ni4-):A) 

when n is odd 
= 

when n is even. 

Clearly, as n increases, S2+2, and 

for parallel triangular factorisation with pivoting,o"cI M= A 

= { n:/4+11n+lS/ 4, 

n /4+2ln/2-3 , 

when n is odd 

when n is even. 

These results suggest a speed up of. approximately 4 since the 

2 sequential algorithm requires (n +lSn-27) arithmetic operations. This 

is due to the n2 factor which arises from the forward and corresponding 

inward substitution phases of· the algorithms. 

It has already been noted that matrix P is sparse, as is matrix L, 

and so the operations in these substitution stages are largely 

redundant. This may be overcome by incorporating the substitution 

stage into the factorisation stages. The immediate transference of the 

pIS, and (in the sequential algorithm) the t's, to the right hand side 

removes this large number of redundant operations. 



So we now have for the sequential algorithm: 

T = (18n-29) 
1 

arithmetic operations, 

and for the parallel algorithm, in terms of arithmetic operations: 

giving 

S2 

_ { 9n+1O 

9n+1 

when n is odd 

when n is even, 

= { 
(18n-29)/(9n+l0) = 2-49/ (9n+ 10) 

(18n-29)/(9n+1) 2-31/ (9n+1) = 

when n is odd 

when n is even. 
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Once again it is clear that as n increases the speed-up approaches 

the limit 2. 

3.7 THE SY~~ETRIC PARALLEL FACTORISATION METHOD 

When matrix A (3.2.1) is symmetric (i.e. c.=b., i=2(1)n), we 
1 1 

can perfo,rm the factorisation so that 

Q = pT 

Consequently P will be identical with (3.3.2) except that the 

leading diagonal will be 

Then Q will be identical 

p .. (i=l(l)n) instead of unity values. 
1,1 

to (3.3.3) with q .. =p ... 
1,J J,1 

a) Evaluation of the elements of P. 

The product P.Q (or ppT) is now 

2 
Pu PUP2l 

2 2 
P21P1l (P21+P22) P22P32 o 

P32P22 

.... ... 

o 

and again on equating with the elements of A we have the formulae 

for P as follows: 

(3.7.1) 

(3.7.2) 



Pi+l,i = 
b. 1 1+ 

p .. 
1,1. 

; for i=l(l)s-l, . p. 1 . 
1- ,1 
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Pn,n = 
;a-

n 

b. ' 
1 ' = ----_. for i=n(-l)s+l, 

p. . ' 
1,1 

p .. = Ia.-p~. l' for i=2(1)s-1, p .. 
1,1 1 1,1- 1,1 

= ~.-p~ . l' for i=n-1(-1)s+1, 
1 1,1+ 

and 
(3.7.3) 

The parallel evaluation of the p'S may now be computed in the 

order illustrated in Figure 3.3. 

FIGURE 3.3 

Partial pivoting may not, of course, be included in this method 

as the interchange of rows would upset the symmetry of the system. 

b) The solution of P~=~. 

The vector r is obtained as the solution of the system P~=~ in 

the following manner, 



d 
n 

Pn n , 

y. = (d.-p .. lYe l)/P .. 
1 11,1- 1- 1,1 

for i=2(1)s-1, for i=n-l(-l)s+l, 

and 

c) The solution of Q~=~. 

. To obtain the final solution x we proceed as given by (3.5.6) 

to (3.5.9) without pivoting except that instead we use q .. =p ..• 
1. ,J J ,1. 

When A is symmetric this method has the advantage of only having 

to evaluate and store matrix P in the computer memory. 

If we consider the number of arithmetic operations required by 
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(3.7.4) 

the method where.·sRdenoi-e.$ ~UQ(e roots QJ\d M"A ff\ut+"plKo.hb"Qr.daddi\';ol\-h~t~ r~~e\'1J 

we. M..\Ie.: { (n-t-i)!: .~R-T ("5n+I). M+ L5nt-I,)J.~- IlL n odd 
T2,"C·· . 

0/2.ti).~R:;-:(5n-t-4).M-+ t"5nf4)/2..A f\ 'l!>Ie..'I\ 
giving 

{

2. -(I.SR.+!o.""-t-4-A)j((I\t~/2..SR+(3nt~.lv\~3nt\)fZ. A) 

Sz'e ~':'(2..~~\Z."'\+ 7A)!(((\/2..+~.S.R+(3ntA)~:t(5Y\-t4)12(/l,) 
It is obvious that for large n, S2 is again approximately 2. 

1'\ odd 

1'\ even. 

3.8 THE GENERALISATION OF THE METHODS FOR MATRICES OF SEMI-BANDWIDTH m 

The two algorithms are now generalised to solve the same problem 

(3.1.1) but with matrix A having the form (3.2.14). 

The main difficulty with the generalisation of these algorithms 

is that, when factorising matrix A, we are no longer left with two 

matrices that are purely upper triangular in one half and lower 

triangular in the other half, but two matrices which overlap at their 

centres corresponding to the interference area which occurs in the 

folding algorithm. 
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The Parallel Triangular Factorisation of A 

Once again, matrix A is factorised into two matrices P and Q where 

P has the form: 

1 

" 
I-

1 

" " 
I "" 
I ... 

" 
... 
" " 

" 
" , 

" " 
P~,l "'''', " " ... 

" " " " " ... 
" 

" " \. 
... 
" " 

" " 

" 

" 

" " 
" " 

" \. 
" , 

o 

"" 1 P P ... Ps~l s,s+l-'~--- s,s+m-1------ Ps,n 
"... I 

" " " 

I 
I 

... 
" " " , 

... I 
I 
I 

Ps+m-2,s-1 
I 

1 

Ps+2m-3.1- - - - - - - -Ps+2m- 3,s-1 

o 

and Q has the form: 

" 
" " 

" " " 

q12- - --q1,m- -- --Q1,2m-1 
" "- ..... 

o 

" 

" 

" " 
"-

" 
" 

Q s,s "-
I "-
I 

I 
I "-

Qs+m-1,s 
I 

I "-

I 

I 

Qs~2m-2,s 
... 

" 
" 

" " 

" ... 

" 

, 

" , 
, , 

" " " " 

, 
" 

" 
" 

" , 

" " " " " " " 

"-

" 

" 

" 

1 

" " , 
" ... 

" " 
" " " ... 

" ... 

o 

"-

" , 

" " 
... 

1 

, 
Pn-m+1,n 

I 

I 

" I 
... I 

Pn-1,n 

1 

(3.8.1) 

(3.8.2) 
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where r for n is -n-m+2 even 
2 ' 

s 
= }(n+s)-m for n is odd. 

(3.8.3) 

If, during the factorisation of matrix A, partial pivoting is 

not applied or if no rows of A are interchanged, the elements of P 

and Q will all be zero except for the shaded areas of (3.8.1) and 

(3.8.2). 

As before, we have 

A = P.Q 

(N.B. when partial pivoting is applied, A will have its rows permuted) 

which on substitution into (3.1.1) gives, 

P.Q.~ = ~ 

Again, the auxiliary vector r is introduced such that 

thus reducing the problem to the solving of two systems of linear 

equations 

and 

The matrix product P.Q is now defined as follows:-

for l~i<s, 

i-I 
= qi,i+k + r Pi ~q~ i+k 

J/.=a· ' , 
, for O~k<2 (m-I) (P .Q) .. k 1,1+ 

i-I 
(P.Q). k . = p. k .q .. + r P1'+k,nqn,1°' for O<k<s+2m-i-3 1 + ,1 1 + ,1 1,1 J/.= 1 N N ,. (3.8.4) 

a = 
{

I 

i-2(m-l)+k, for i>2m-k-l 

, for i~2m-k-l 
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for n~i~s+2(m-l) 

B 
(P.Q) .. k = q .. k + r p. nqR. ·-k 

1,1- 1,1- R.=i+l 1,N ,1 
for O~k<2(m-l) 

n 
(P.Q). k . = p. k .q .. + r p. k R.q~. for O<k<i-s 

1-,1 1-,1 1,1 R.=i+l 1-, ,,1 (3.8.5) 

B = { n , for 

i+2 (m-l)-k, for 

(n-i+l)~2m-k-l 

(n-i+l»2m-k-l, 

for s+2(m-l»i~s 

B s-l 
(P.Q) .. k = q .. k + 'r p. nqn . k + r p. q . k 

1,1- 1,1- R.=i+l 1,N N,l- R.=i-2(m-l) 1,R. R.,1-

for O~k~i-s 
(3.8.6) 

B s-l 
(P • Q). k . = p. k . q . . + r p . k q . + - r p . k n q n . 

1-,1 1-,1 1,1 ~=i+l 1- ,R. R.,1 R.=i-2(m-l)-k 1- ,N N,l 

for O<k~i-s 

,."here B is as defined in (3.8.5). 

The two matrices (P.Q) and A are equated so as to establish 

the unknown quantities p. . and q 1,J r,s 

partial pivoting is presented here. 

So we have, 

for i=l(l)s-l 

we form the quantities, 
i-I 

Rt = at,i - r Pt ~qR. i 
R.=a ' , 

The full algorithm including 

for t=i(l)i+(m-l) 

a = t-2(m-1l. 
, for i~2m-l 

for i>2,m-l 

Then select the maximum I Rt I (let it be I Rt' j) and provided t' #, 

we interchange rows t' and i including the values ofRt and dt • 

(3.8.7) 



Then, 

and 

Pi+k,i = 
R. k 1+ 

q .. 
1,1 

for k=l (l)m-l 

i-I 
qi,i+k = ai,i+k - R-~(l pi,£q£,i+k ' fork=1(1)2(m-l) 

where (l is defined in (3.8.4): 

for i=n(-1)s+2(m-l) 

we form the quantities, 

f3 
at . - I Pt nqn 1" 

,1 £=i+l ,)(,)(" 
for t=i(-l)i-(m-l) = 

, for.(n-i+l)i2m-l 
f3 = { n 

i+2(m-l), for (n-i+l»2m-l 
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(3.8.8) 

(3.8.9) 

Select the maximum 1Rtl (let it be IRt' I) and again interchange 

rows t' and i including Rt and dt provided t'~i. 

Then, ",e form . 

q .. = R. 
1,1 1 

p. k . 
1- ,1 

R. k 1-
=--

q .. 
for k=l(l)m-l 

1,1 

f3 
and q .. k = ai i-k - L p. £qt . k' for k=1(1)2(m-l) 

1,1- , t=i+l 1, ,1-::-. 

where f3 is defined in (3.8.5)= 
I 

for i=s+2m-3(-1)s 

we form the quantities, 

f3 
( I p q . 
t=i+l t,£ R-,1 

where f3 is defined in (3.8.9). 

s-l 
+ r p qn .), 

t=i-2(m-l) t,R- )(',1 

for t=i(-l)s 

Again we select the maximum IRtl, interchange the rows 

(3.8.10) 

(3.8.11) 



accordingly and form, 

q .. = R. 
1.,1. 1. 

Pi-k,i = 

and finally, 

R. k 1.- . 

q .. 
1.,1. 
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, for k=l (l) i-s 

q .. k 
1.,1.-

8 s-l 
= a .. k - ( I p. nqn . k + I p. nqo'r k), 

1.,1.- JI.=i+l 1.,N N,1.- JI.=i-2(m-l)-k 1.,N ~r-

for k=l(l)i-s 

where 8 is defined in (3.8.5). 
(3.8.12) 

In order to take full advantage of the accuracy of this method, 

double-precision accumulation of inner products such as LPq should 

be used. If possible, the Rt values should only be rounded to 

single precision when the maximum 1Rtl .has been selected. 

With matrices P and Q known, once again PEd is solved for 

~ using an inward substitution process and Q~=~ for ~ using an 

outward substitution"process. 

Note that now, in the top half of the system, a row may be 

interchanged upwards, only once, a maximum of (m-I) rows yet a row 

may be interchanged downwards as far as row (s+2m-3). Whilst in the 

lower half, a row may be interchanged downwards a maximum of (m-I) 

rows and upwards as far as row s. 

3.9 THE SOLUTION OF THE GENERALISED SYSTEM BY THE PARALLEL TRIANGULAR 

FACTORISATION METHOD 

The inward and outward substitution processes are now defined as 

follows:-

a) the inward substitution for the solution of 

P~ = ~ , 

where the forward substitution from the top left hand corner is 

given by, 



for i=2(1)s-1 
i-I 

y. = d. - L p. oYn 
1 1 ~ = 1 1, N . N.:. 

and the backward substitution from the bottom right hand corner is 

for i=n-l(-1)s+2(m-l) 

fori=s+2m-3(-1)s 

y = d n n 

y. = d. 
1 1 

n 
L p. Sn' 

n • 1 1,N N 
N=l+ 

b) The outward substitution process for the solution of 

is 

) 

followed by the forward substitution process from the centre given 

by, 

for i=s+1(1)s+2m-3 

for i=s+2(m-l) (l)n 

x. = (y. 
1 1 

i-I 
L q. nxo)/q· . 

R.=s 1,N N 1,1 

i-I 
x. = (y. - L q. nXn)/q·-·;·-

1 1 ~=i-2(m-l) 1,N N 1,1 

and the backward substitution from the centre, 

for i=s-l(-l)l, 

x. = 
1 

(y. -
1 

i+2(m-l) 
2 q. nXn)jq··· 

R.=i+l 1,N N 1,1 

During the inward substitution process, steps (3.9.1) and 

(3.9.2) are performed in parallel, and on completion are followed 

by step (3.9.3). Then the outward substitution process commences 
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(3.9.1) 

(3.9.2) 

(3.9.3) 

(3.9.4) 

(3.9.5) 

(3.9.6) 

(3.9.7) 

with steps (3.9.4) and (3.9.5) which must be completed before steps 

(3.9.6) and (3.9.7) are performed in parallel. Once again, in order 

to take full advantage of the accuracy of the method, double precision 
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accumulation of inner products must be used. 

As with the tridiagonal algorithm, the number of arithmetic operations 

is dominated by the n2 term which is due to the inward substitution stage, 

so we shall combine the substitution stage with the factorisation stage. 

This gives, in terms of arithmetic operations, for the sequential algorithm: 

2 
Tl = m(8m-7)n- (m-l) (68m -55m+12)/6, 

and for the parallel algorithm: 

3 2 
T2 = { m(8m-7)n/2+ (40m -102~ +83m-18)/6, for n is odd 

m(8m-7)n/2+ (m-l) (20m -43m+9)/3, for n is even, 

giving, 

{ 

3 2 
S = 2-(148m -327m +~33m-48)/6.T2' 
22· 

2-(m-l) (148m -227m+48)/6.T2, 

for n is odd 

for n is even. 

If spee?-up is considered, it is clear that it is desirable for 
, 

n to be large with respect to rn, (i.e., n»m). 

3.10 THE GENERALISED SYMMETRIC PARALLEL FACTORISATION METHOD 

The parallel triangular factorisation method has been successfully 

generalised, and now we proceed to generalise the symmetric parallel 

factorisation method. The factorisation of A is performed such that 

T 
Q=P • 

Matrix P will be identical in form to the shaded area of (3.8.1) 

with the exception that the leading diagonal will consist of entries 

p .. (i=l(l)n) instead of unity values and 
1,1 

{ n-;+3 for (n-m) 
s = 

n-m+2 for (n-m) 2 

is odd 

is even. 

T (i. e. q .. =p .. ) and the matrix product Then Q=P 
1,J J,1 

defined as: 

(3.10.1) 

p.pT is 



for l~i<s 

T 
(PP). . k 1,1+ 

T 
= (PP ). k . 1+ ,1 

Cl 

= Pi +k iPi i+ L Pi +k i-~Pi 1'-~' , , ~=1 ' , 

. for 0~k~m-1 

where the summation limit is defined to be, 

for n~i~s+m-1 

T 
(PP ). . k 1,1-

IVhere 

for s+m-1>i~s 

T 
(PP). . k 
, 1,1-

{ 

i-I for i«m-k) 

Cl = m-k~l' for i~(m-k), 

B T 
= (PP ). k . 

1- ,1 = Pi - k iPi i+ L Pi - k i+~Pi i+~ , , ~=1 ' , 
for O~k~ (m-I) 

{ 

n-i for (n-i+1)«m-k) 

B m-k~l, for (n-i+1)~(m-k), 
B 

= (Pp
T
). k .=n k·n . + L p. k' p .. 1- ,1 1- ,11,1 ~=1 1- ,1+~ 1,1+~ 

+ 
m-I for C~k<i-s 

L Pi-k,i-f.i,i"'~ 
~=i-s+1 

and B is defined in (3.10.3). 

On equating the matrix ppT with the matrix A, we have the 
:. T 

following formulae for determining the elements of P and P . 

These are: 

for i=l(l)s-l 
Cl 2 

p .. = I(a ... - LP . . n) 
1,1 1,1 ~=1 1,1-~ 

Cl 

Pi+k,i = (ai+k,i - LP. k . n p. . n) Jp. ., 
~=1 1+ ,1-~ 1,1-~ 1,1 

for k=l (1)m-1 

where Cl is defined in (3.10.2); 

for i=n(-1)s+m-1 
B 2 

p .. = I(a .. - \' p .. n) 1,1 1,1 l 1 1+~ 
B~=l ' 

Pi-k i = (ai _k i - L Pi-k i+~Pi i+~)JPi \ , , ~= 1 ' , , . 

h B • d f' d' (3 10 3) d for k=1(1)m-1 were 15 e Ine In . . an, 
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(3.10.2) 

(3.10.3) 

(3.10.4) 

(3.10.5) 

" 

(3.10.6) 



72 

for i=s+m-2(-1)s 

B 2 m-I 2 
P1' ,1' = l(a1',i - ( r P1' i+5L+ r P1' l' 51.)) 

51.=1' 5L=i-s+1'-
B m-I 

p. k . = (a. k .-( I p. k . np· . n+ I p. k . np· . n))/P· . 1-,1 1-,1 n-1 1- ,1+~ 1,1+~ n_' 1 1- ,1-~ 1,1-~ 1,1 
~- ~-l-S+ 

for k=l(l)i-s, 

where B is defined in (3.10.3). 

The solution of Pl.=~ for l. is now given a1gorithmica11y as: 

for i=2(1)s-1 
Cl 

y. = (d. - r p. . nY. n) /p. . 
1 1 51.=1 1,1-~ 1-~ 1,1 

{

i-1 
Cl = 

m-I 

for i<m 

for m~i , 
and 

d 
n 

Pn,n 
for i=(n-1) (-1)s+m-1 

B = {
n,-i 

m-I 
whilst for the interference area, 

for i=s+m-2(-1)s 

where B is defined in (3.10.9). 

for n-i+1<m 

for n-i+1~m 

Finally, the solution of Q~=l. for ~ is now, 

Ys 
x =--s Ps,s 

for i=s+1(1)s+m-2 
i+1 

x. = (y. - r P5L • x 5L )/p. . 1 1 5L=S,1 1,1 

for i=s+m-1 (l)n 
i-I 

x. = (y. I P
5L 

.xg.)/p .. 1 1 51.-' 1,1 1,1 -l-m+ 

(3.10.7) 

(3.10.8) 

(3.10.9) 

(3.10.10) 

(3.10.11) 

(3.10.12) 



and for i=s-l(-l)l 

i+rn-l 
x. = (y. -

1. 1. 
I p~ .x~)/p .. 

~=i+l ,1. 1.,~ 

The steps in the forward and backward substitution phases will 

be completed in the same order as described previously for the 

parallel factorisation (PQ) method. 

Finally, we have that the number of arithmetic operations is: 

{ 
2 2 

for (n-m) is odd (m +4m-2)n/2+(m.l)(m +7m-6)/6, 
T2 = 2 2 (m +4m-2)n/2+m(m +9m-l)/6, for (n-m) is even 

giving 

{ 
2 for (n-m) is odd 2-(m-l)(2m +9m-4)/2.T2 

S2 = 2 
2-m(2m +9m-S)/2.T2 for (n-m) is even 

3.11 INHERENT PARALLELISM 

The parallelism in the generalised factorisation method is 

basically the same as that for the method for tridiagonal systems. 

If we consider figures (3.1) and (3.3), then the corresponding 

diagrams for the generalised methods will be essentially the same. 

The diagram for the Generalised Parallel Triangular Factorisation 

method is: 
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(3.10.13) 



P21····· Pm,1 q12···· ql,2m-l 

q 1 ..• q 1 2 3 5-,5 5- ,5+ m-

where t=5+2m-2. 
FIGURE 3.4 
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It is obvious that a maximum of 6(m-l) processors may be used 

concurrently but the most suitable number of processors would be 2, 

because a larger number may greatly increase inefficiency. This is due 

to the need for synchronization within each of the two parallel branches 

which can only be achieved by a large number of forks and joins. In 

addition to this, the larger number of processors cannot be fully utilised 

in the critical regions of the algorithm. 

Clearly the main disadvantage with these methods is the interaction 

area at the centre of the matrix ((a .. ) i=s(1)s+2m-3, j=s(1)s+2m-3 in the 
1J 

case of the parallel factorisation method). As m increases, this area 

gradually fills the whole of matrix A and the method is reduced to the 

standard LU type factorisation. It is this area that reduces the 

effectiveness of the algorithms and by examining the speed-ups we may 

conclude that it is desirable for n to be large with respect to m, i.e., 

A is a narrow banded matrix. 

3.12 ERROR ANALYSIS OF THE GENERALISED PARALLEL FACTORISATION METHOD 

The following error analysis of the parallel factorisation method 

is an extension to the work pioneered by Wilkinson [1965]. Prior to 

the introduction of the complex analysis, we first consider some basic 

results. 

For t-digit binary floating point computation and assuming that 

our computer has a double precision accumulator, then we can state the 

following definitions: 

a number x is said to be rounded to t digits x(t) if 

1£1 = Ix-x(t) I~ i· 2- t 

and for simple arithmetic operations we have 

H(x*y) = (x*y)(l+£), 1£1~2-t, 

where ft( ) indicates single precision (t-digits) and the operation 

* is +,-,x or.. Also we have, 

(3.12.1) 

(3.12.2) 



·76 

I I 3 -2t ft 2 (x*y) = (x+y)(l+£) , £ ~ 22 , (3.12.3) 

where ft 2( ) indicates double precision (2t-digits) and the operation 

* is as before. 

We are particularly interested in the error accumulation of 

double precision evaluation of inner products. 

If we let 

where xl ,x2, .•• ,xn and yl'y2' •... 'yn are single precision numbers, 

the sum is accumulated in double precision in the accumulator and 

then rounded to a single precision number. 

and 

Let us denote, 

sr = ft2(xlyl+xZyZ+····+xryr) 

t = H2 (x Y ) r r r 
} 

Then, by developing the inner product recursively we can write, 

sI = tl 
s = ft 2 (s l+t), r r- r r=Z,3, .•.. ,no } and 

Now, at each step of the recursion we have, 

xy (l+p.), Iprl 
3 -Zt t = ~ 2 Z r r r r 

(s l+t )(l+n), Inrl ~ 
3 -2t s = -2 r r- r r 2-

and hence finally 

where 

and 1+£ = (l+p )(l+n )(l+n l) .•. (l+n), r r r r+ n 

r=2,3, ... n. 

Using the result of (3.12.3) we have 

(3.12.4) 

(3.12.5) 

(3.12.6) 

(3.12.7) 

(3.12.8) 

(3.12.9) 



and 

(l-f 2-2t)n ~ 1+£1 ~ (l+f 2-2t)n 

(1-% 2-2t)n-r+2 ~ l+£r ~ (l+f 2-2t)n-r+2 . } 
Rounding to t-digits we finally have 

s = (x
1
y1(1+£1)+ ...• x y (1+£ ))(1+£) , n n n n 

where the c. are'defined in (3.12.10) and we have for (1+£), 
1 

-t -t 
1-2 ~ 1+£ ~ 1+2 

In order to simplify the bounds (3.1410), it is reasonable to 
2t 

assume that since r is normally much smaller than 2 , 

3 2-2t Zr < 0.1 

Then we have the result 

(1+~ 2-2t)r < 3 ( ) -2t 2 l+Zr 1.06 2 

and introducing tl such that, 
-2t 

(1.06)2-2t = 2 1 

i.e. , 

we can write the bounds for (3.12.11) as, 

and 
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(3.12.10) 

(3.12.11) 

(3.12.12) 

(3.12.13) 

(3.12.14) 

(3.12.15) 

(3.12.16) 

The remaining result that is required for the analysis that follows, 

concerns the division, before rounding, of an inner product 

accumulated in double precision, and is 

x1Y1(1+£1)+···xnYn(I+£n) 
z/ (1+£) 

where £ and £. are as defined in (3.12.16). 
1 

We cdmmencethe analysis of the method by considering the 

sensitivity of the solution ~ to perturbations in d and A. If 

(3.12.17) 

(x+h) is the computed solution when A and d have been perturbed then 



(A+F)(x+h) = (d+k) 

If we subtract (3.1.1) we have 

(A+F)h = k-Fx 

-1 
+ A(I+A F)h = k-Fx 

+ h = (I+A- 1F)-lA-1(k.FX) 

where I IAI I denotes the norm of matrix A and can be defined by one 

of the following expressions, 

and 

IIAII = 
00 

max 
j 

max 
i 

I I a. ·1 , 
i 1,J 

I I a. ·1 , . 1,J 
J 

IIA 112 = (maximum eigenva1ue of AHA)! 

11 All E = q ~ I ai, j 12) ~ , 
1 J 

where AB is the complex conjugate transpose A. 

Assuming that 

IIA -IF 11 < 1 , 

-1 then (I+A F) is non-singular and thus 

__ 1-:-1- ~ 11 I+A-1FII ~ __ 1---:;-_ 
l+IIA- FII 1-IIA-

1
FII 

and so 

The relative error is of more interest and so 

If only the perturbations in ~ are considered, F=O and 
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(3.12.18) 

(3.12.19) 

(3.1220) 

(3.12.21) 

(3.12.22) 

(3.12.23) 

(3.12.25) 



Alternatively, by only considering perturbations in A, k=O and 

or 

1 

In (3.12.25) we have a bound for Ilhlllllxll in terms of 

Ilkll/lldll and in (3.12.26) in terms of IIFj I/IIAII. For both 

bounds we see that the decisive quantity is I IAI I. I IA-ll I which is 

known as the condition number. 

Now let us consider the decomposition of the matrix A into the 

product P.Q. 

Excluding rounding errors we know that the augmented matrix 
I I 
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(3.12.26) 

(A:d) with its rows permuted is equal to the augmented matrix P(Q:y). 
I I 

We require a bound for 
I I 

{P(Q:y) - (A:d)} 
I 

I 

where (A:d) represents the permuted matrix. 
I 

In general, it can be expected that the maximum Iq· ·1 1,J 
rarely 

exceeds the maximum la .. 1 by any appreciable factor and, in fact, 
1,J 

when A is ill-conditioned the la .. I will usually be greater than 
1,J 

Iq· ·1· 1,J 
If we scale A we will have some control over the size of 

elements where necessary; so scale A such that a1l la. .1 <!. 1,J 

(3.12.27) 

Then, by examining the quantities Rt and qi,t as they are accumulated, 

if an inner product exceeds! in absolute value, we divide either Rt 

or q. t and the complete row t or i of A and d by two. It is expected 
1, 

however that the necessity for such a division is rare. 

Thus, assuming no divisions are necessary we have 



for l~i<s 

p. . . = 1+J(,1 
R. k 1+ 
q .. 1,1 

I I 1 -t 
+ E. k . , E. k . ~-2·2 1+,1 1+,1 

where p. k ., s. k and q .. refer to computed values. From (3.8.7) 
1+,1 1+ 1,1 

we may rewrite (3.12.28) as 

i-I 
al· +k , 1· = I p. k n··q n . + p. k .. q. . + q. .. E. k . . £=a 1+,~ ~,1 1+,1 1,1 1,1 1+,1 

Also we have for q .. k and y. 1,1+ 1 

and y. = d. -
1 1 

Similarly we have the following resu1ts:-

for n~i~s+2(m-1) 

B 
a. k . = 
1- ,1 

I p. k nqn . + p. k .q .. + q .. E. k . 
n • 1 1- ,~ ~,1 1-,1 1,1 1,1 1- ,1 
~=1+ 

I I 1 -t 
E. k . ~-2· 2 
1- ,1 

B 
q .. k =·a .. k - I p. nq . k + E .. k ' 1,1- 1,1- £=i+1 1,~ £,1- I,l-

n 
y. = d. - I p. y + E. 

1 1 £=i+1 1,£ £ 1 

and finally, 

for s+2(m-1»i~s 

I I 1 -t 
E •• k ~-2· 2 1,1-

I I 1 -t 
+ p. k . q. . + q. . E. k ., E . k . ~-2 . 2 1- ,1 1,1 1,1 1-,1 1- ,I 

B s-l 
q .. k = a .. k-( I p. nqn . k+ 1,1- 1,1- £=i+1 1,~ ~,1-

I p. nqn . k)+E. . k 
n 1,~ ~,1- 1,1-
~=a 

I I 1 -t 
E •• k ~-2·2 I,l-

I I 1 -t 
+ Ei' Ei ~2·2 . 
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(3.12.28) 

(3.12.29) 

(3.12.30) 

(3.12.31) 

(3.12.32) 



It may be shm'ln that, by taking terms in P,Q and y to one side, 

I 
P(Q:y) _ (A+F,d+k) 

where 

If. ·1 ~ 
1,) 

I I 1 -t 
and ki ~2".2 . 

s>i~j and 

s>j<i and s<j>i 
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(3.12.33) 

(3.12.34) 

However, all I I 1 -t I I f .. ~-2.2 , since we have assumed that q .. ~l. 
1,) 1,) 

Obviously, for many of the elements If .. 1, this bound is pessimistic 
1,) 

as some Iq .. I are considerably smaller than unity. 
1,1 

Finally, \'le must consider the two substitution stages defined 

by 
and 

The analysis of the solution of both sets of equations is 

similar and first we consider the solution of Q~ = ~. 

Now for i=s(1)s+2m-3 

if we assume that x,X l""'x, 1 have already been computed, then s s+ 1-

x. = fR- 2[-q· x -q. IX l···-q· . IX. l+y·]/q· . 1 1,S S 1,S+ s+ 1,1- 1- 1 1,1 

- [-q. X (l+€ )-q. IX l(l+€ l)···-q· . IX. l(l+€. 1) 1,S s s 1,S+ s+ s+ 1,1- 1- 1-

+ y.(l+€.)]x ~(l~+~€~) 
1 1 q .. 

1,1 

-2t 
l£il~f.2 ~ 1£1~2-t and by dividing 

the denominator and numerator by (l+€.), we have 
1 

(3.12.35) 

x. = [-q. x (l+n )-q. IX +l(1+n l)· .. -q· . IX. l(l+n. 1) 1 1,S s S 1,S+ S s+ 1,1- 1- 1-

+ y.]/q .. (l+n) 
1 1,1 

(3.12.36) 

where certainly, 
3 -2t l 

I nkk2"(i -k+3) 2 and 



By a rearrangement of (3.12.36), we may write, 

q. x (l+n )+q. IX 1(I+n 1)+·· .+q .. IX. 1(I+n. 1) 1,S 5 s 1,S+ s+ s+ 1,1- 1- 1-

Similarly, we have 

+q .. X. (l+n) = Y1· • 1,1 1 

for i=s+2(m-l)(I)n 

q. nXn (l+nJ+q. n lxn 1 (l+nn 1)+·· .q .. IX. 1 (l+n. 1) • 1,~ ~ ~ 1,~+ ~+ ~+ 1,1- 1- 1-

+q .. x.(I+n) = y. 1,1 1 1 
3 . -2t1 t 

where !L=i-2(m-l) and Inkl~2(1-k+3)2 , Inl<2- (1.00001) 

and for i=s-I(-I)1 

q .. IX. 1(I+n. 1)+q· . 2x. 2(I+n. 2)+·· .+q. nXn (l+nn) 1,1+ 1+ 1+ 1,1+ 1+ 1+ 1,~ ~ ~ 

+q .. x.(I+n) = y. , 1,1 1 1 

where !L=i+2(m-l) and Inkl~~(!L-k+4), Inl<2-
t

(1.00001). 

It is now obvious that x., the computed solution, will satisfy 
1 

exactly the equation, 

(Q + oQ)~ = l. 

where oQ is bounded by 

... + ... ... 

o (2m+l)lq l' I·· .41q '1' 2 31 s- ,s s- ,s+ m-
o 

41 ~s+ 1, si, 0, .... 
I .. .. 

I 

(2m+l) lqs+2m_2,sl 
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(3.12.37) 

(3.12.38) 

(3.12.39) 

(3.12.40) 

(3.12.41) 

(2m+l) Iq 2 21".~.4Iq '11"0 n,n- m+ n,n-



For the 1,2 and 00 norms we have 

-2t l 2 
1 loQI 1~2-t(1.00001)g + 3.2 (2m +3m-5)g 

where g is max 1 q. .1. Now should g~ 1 then 
1,J 

t -2t l 2 
1 loQI 1~2- (1.00001) + 3.2 (2m +3m-5) 

2 -t If m.2 «1, the second term is negligible. 

then 

Now considering the residual vector 

(l. - Q~) = o~ 

11l.- Q!.II~lloQII·II~11 

Now if x , the exact solution, when rounded to t figures 
e 

gives x, then we may have 

It is obvious that 

and hence, 

thus 

x = x + c e 

y - QX = y-Q(x +c) = -Qc , _ _ - e 

Ily-Qxll",= IIQcll",~IIQII001IcII00~(2m-l)2-tllxeII00' 

Since it would be easy to devise an example that achieves this 
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(3.12.42) 

(3.12.43) 

(3.12.44) 

(3.12.45) 

(3.12.46) 

(3.12.47) 

bound, then following Wilkinson [1965] we can say that we may expect 

the residuals corresponding to the computed solution of the triangular 

set of equations to be smaller than those corresponding to the 

correctly rounded solution. 

The analysis for the solution of Pl.=~ is very similar, but the 

diagonal elements of P are unity and so there will be no divisions 

involved in this stage. 

We have that the computed vector l. will satisfy 

(3.12.48) 



where <5 P is bounded by 

1 

1 (3.12.49) , + , 
18PI~2-t(1.00001) 

, , , , 
1 

0 l 
41p21 1 0 

SIp31 1 41p 32 1 0 
I 

.... .... 

I ........ 

(5+2) Ip 1---4Ip........ 1 .... 0 (n+2) Ip 1- - - - - - - -
I 5,1 5,5-1 5,5+1 

I .... 

- (5+3) Ip 1 
. s,n 

I 0 .... 

.... 
I I 

(s+2)lp 11··-4Ip 11 r, r,s-

.... 

(n-Zm+S) Ip 11 r,r+ 
(5+3) Ip I r,n 

.... 0 

o (n-s-2m+S) Ip 1 21 , .... r+ ,r+ 41Pr+1 n l , 
..... 

I ..... .... 
...... .... I 

..... ..... ..... 
'4Ip~_1 n I ..... 

...... 
...... , .... , 0 

where r=5+2m-3. 



The elements of P are bounded by unity and so 
t 3 -2t 1 2 

11 oP 11 <2- (1.00001) + 4. 2 (n+3) 

for the 1,2 and 00 norms. 
2 -t Again, if n 2 «1, the second term is 

negligible. 

As with the solution of Q~=l. we have, 

and for the exact solution, y e 

115! - pYlloo ~n2-tIlYell 
00 
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(3.12.50) 

(3.12.51) 

(3.12.52) 

giving that we can expect the residuals corresponding to the computed 

solution to be smaller than those of the correctly rounded solution. 

If we return to the original problem to ascertain the errors in 

the solution of 
Ax = d 

we observe that A is factorised into the matrices P and Q such that 

P.Q = A+F (3.12.53) 

where F is the same matrix as in (3.12.33). 

The solution ~ is obtained by solving the two sets of equations 

Pl.=5! and Q~=l. and the computed solutions ~ and l. satisfy exactly the 

equations, 
and (Q+oQ)~ = l. 

where the bounds for oP and oQ are given in (3.12.49) and (3.12.41). 

Hence x satisfies 

that is, 

where 

(P+oP) (Q+oQ)~ = 5! 

(A+G)~ = 5! 

G = F+oP.Q + P.oQ + oP.oQ 

Now assuming partial pivoting has been used and floating point 

computation with double precision accumulation of inner products, 

and also that la .. I~ 1 and the lu .. 1 have remained less than unity 
1,J 1,J 

then, 

(3.12.54) 

(3.12.55) 

(3.12.56) 
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11 11 
1 -t -t -t 2 -2t l 

G oo~(2m-l)22 +(2m-1)2 (1.00001)+n.2 (l.OOOOl)+O(mn 2 ) 

(3.12.57) 
-t If n2 is appreciably less than unity then wc have that 

I IGI I ~(1.ln+3.lm)2-t (approximately). 
00 

Since m<n it is clear that the majority of the upper bound 

arises from the solution of the two sets of equations. 

In terms of residuals, from (3.12.55) we have 

r = d-Ax = Gx 

and thus (3.12.58) 

This residual bound is in terms of the size of the computed solution 

and not its accuracy. 

Wilkinson [1965] also demonstrates how to improve, iteratively, 

the computed solution by using iterative refinement which is defined 

as: 
x(O) = 0, 

PQ£ (k) = !. (k) 

reO) = d } _ _, (3.12.59) 

~(k+l) = ~(k) + £(k), !.(k+l)=~_A~(k+l) 

where PQ=A+F and the x(k) are a sequence of approximations to the 

true solution x. If performed without rounding errors this process 

yields 
x(k+l) = x(k) + (A+F)-l(~_A~(k)) 

= x(k) + (A+F)-lA(~_~(k)) 

which, on subtracting ~ from both sides and rearranging, becomes 

If 

( (k+1) ) x -x - -
= [I_(A+F)-lA]k(~(l)_x) 

III _(A+F)-lAII<l 

then this is a sufficient condition for the convergence of the 

exact iterative process. This is satisfied if 

however, since 

(3.12.60) 

(3.12.61) 

(3.12.62) 

(3.12.63) 



then the iterative process converges for 

IIA- l ll
oo

<2
t
/(2m-l) 

3.13 EXAMPLES 

Consider the following (loxIO) linear systems where the right 

hand side vector d has been suitably chosen to make the solution 

vector possess unit elements. 

a) if 

2 -1.5 

-0.5 3 

-0.5 

-1.5 

4 

-0.5 
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(3.12.64) 

(3.12.65) 

0.5 

1 

2 

3 
A= 

-1.5 

5 

-0.5 

-1.5 

6 
and d= 4 -1.5 

-0.5 7 -1.5 5 

-0.5 8 -1. 5 6 

-0.5 9 -1.5 7 

-0.5 10 -1.5 8 

-0.5 11 10.5 

then by the matrix factorisation process of section (3.3) without 

pivoting, we have the following results, 



................... --------------------------------------------

p = 

and 

Q = 

1 

-0.25 1 

-0.19048 1 o 
-0.13462 1 

-0.10421 1 -0.21723 

1 -0.18949 

o 

2 -1.5 

2.625 -1.5 

3.71429 -1.5 

o 

4.79808 -1.5 

5.73507 

-0.5 6.90525 

-0.5 7.91596 

-0.5 

1 -0.16808 

1 -0.15103 

1 

o 

8.92449 

-0.5 9.93182 

-0.5 11 

-0.13636 

1 

00 
00 



...................... -----------------------------------------

p = 

b) Similarly the square root factorisation method outlined in section (3.7) yields the component matrices 

p and pT, for the symmetric system Ax=~, and is given as follows: 

2 -1 

-1 3 -1 

-1 4 -1 

-1 5 -1 

-1 6 -1 
A = -1 7 

-1 

1.41421 

-0.70711 1.58114 

-0.63246 1.89737 

-0.52705 

1 

1 

2 

3 

4 

-1 
d = 5 

8 -1 6 

-1 9 -1 7 

-1 10 -1 8 

-1 11 10 

2.17307 

-0.46018 2.37515 -0.38143 

2.62168 -0.35606 

2.80846 -0.33522 

2.98313 -0.31768 

3.14781 -0.30151 

3.31662 



90 

c) The third example illustrates ~he factorisation method of (3.3) 

incorporating the pivoting strategy. If 

3 4 7 

2 ! 5 8 

3 4 2 9 

A = 6 4 3 and d = 13 

4 3 5 12 

1 4 2 7 

2 1 3 6 

2 4 6 

then the factors are: 

1 

o 1 

0.66667 -0.55556 1 

p= 0 0 0 1 -.51667 0.6 -0.25 0.75 

0 0 0.83077 0 1 0 0 0 

1 0 0 

1 0 

1 

and 

3 4 

3 4 2 

7.22222 1.11111 

-0.81026 

Q= 3.07692 3 

4 3 '5 

1 4 2 

2 4 

N.B. 1hQ. exaMples '''' \~,s sedion ho..vE. beet\ ~\IJa.td 0(\ -\he. 
!,c..L \ 904 S cort\"'-'~e.(' o.t l..o~"'boc"01.l3~ 0n\~erst,"" o.",d ~ resu(+S 

rOor'\dQd -k 5 deciMa.\ -H.9'-' re.s. 



CHAPTER 4 

THE SOLUTION OF TRIANGULAR SYSTEMS OF EQUATIONS 
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4.1 INTRODUCTION 

In Chapter 3, the solution of a banded system of equations (3.1.1) 

was investigated. Another commonly occurring problem in numerical 

mathematics is the solution of the system of equations, 

where M is an (nxn) triangular matrix of the form (4.2.1) and band 

~ are (nxl) column vectors. 

The sequential algor:! ~:hm approach to the problem is a forward 

substitution process when M is lower triangular and a backward 

substitution process when M is upper triangular. As an example, the 

forward substitution process for the solution of the system of 

equations (4.1.1) is defined as, 

i-I 
y. = (b. - r m .. y.)/m .. , for i=l(l)n • 

1 1 j=l 1,J J 1,1 

This algorithm is essentially sequential in that Y2 is dependent 

on the value of Yl'Y3 on the values of Y2 and ~'Y4 on Y3'Y2 and Yl' 

etc., and this restricts the number of processors that can be used 

and speed-up that can be obtained by implementing it as a parallel 

algorithm. However, it is possible to substitute the value of Yl 

into equations 2,3,4, •.. n simultaneously and then the value of Y2 

into equations 3,4,5, ... n simultaneously etc., and so it is not 

difficult to see that the simple idea of assigning one processor to 

each equation in system (4.1.1) yields the maximum speed-up for this 

strategy. Unfortunately, this simple algorithm is inefficient 

because the processors become idle as the algorithm progresses. 

In the following study, various strategies for employing more 

than one processor to execute the substitution process efficiently 

(4.1.1) 

(4.1.2) 

are investigated. Other algorithms, such as that of Chen and Kuck [1975], 
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which is extremely fast but inefficient, are also considered and 

compared with the new strategies presented here by means of an index 

called the performance factor (4.2.6), which is a quantity that 

attempts to find a balance between speed-up and efficiency. 

The essential difference between the two types of algorithm is 

that Chen and Kuck attempt to solve the problem in as short a time as 

possible, regardless of the number of processors that are required, 

which is frequently unrealistically large. The algorithms presented 

here, however, attempt to use a smaller number of processors efficiently. 

It is shown, in fact, that one of these methods, the Parallel Wave 

Front Method, has, in the majority of cases, the best performance. 

4.2 THE SEQUENTIAL SUBSTITUTION PROCESS 

Matrix ~1 is an (nxn) lower triangular matrix of the form: 

ml1 
m21 

m
22 0 I I' 

I 
, 

I , 
I I 

, (4.2.1) , 
M 

, 
= , , , , , , , , 

I 1 , 
m n1 m n2 

------ ----m nn 

M could also be upper triangular in form, in which case the analysis 

would be similar. 

In order to simplify the system and permit direct comparison 

with the algorithm of Chen and Kuck [1975], we shall perform the 

following transformation of the general system (4.1.1) to the form 

r=d+~ (4.2.2) 

where 



0 

a21 0 

a31 a32 0 0 
... 

I I ... 
I I ... 

A I " = I ... 
I I 

, 
I I 

... 
I " I ... 
I I 

... ... 
I I ... 
I I " 
I I " " a nl a ---------a 0 n2 n,n-l 

and d is a column vector such that 

d. = b./m .. 
1 1 1,1 

and a .. = -m . . /m .. 
1,J 1,J 1,1 

for i=l ,2, •.. n 

for j=I,2, .•• i-l, 

i=2,3, ••• n 
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(4.2.3) 

(4.2.4) 

This new system may be solved by a forward substitution process 

described as follows: 

for i=l (l)n 
i-I 

y. = d. + I a. .y. 
1 1 j=l 1,J J 

(4.2.5) 

Before we consider any parallel strategies we shall make the 

following assumptions and definitions. First of all we shall assume 
/ being 'ld~nticA\ 

that each processor/works at the same speed and secondly, that each 

arithmetic operation requires the same amount of time called a unit 

step. Finally we define an algorithm step as one multiplication 

followed by an addition which is equal to two unit steps. 

In Chapter 2 the quantities T.,S. and E. were defined. We 
1 1 1 

now introduce an additional quantity called the performance factor 

which is c.Ol'\S.;S.te.I'\T 'Ni\\.. CUr p(,"~,,"O\lS cle..f,h itiot\s. o.",cl is d4lfiM..d as 

PF. = E.x S. 
1 1 1 

By combining efficiency with speed-up we have an index that 

enables us to assess the optimum number of processors that may be 

used for the solution of the problem. 

(4.2.6) 
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It is e>bvious that a uniprocessor will solve the system (4.2.2) 

sequentially in n(n-l) unit steps by the forward substitution process 

(4.2.5). So we can say that 

Tl = n(n-l) unit steps. (4.2.7) 

Wi th a computer that has p processors, we can perform p 

operations concurrently and therefore have a minimum time requirement 

for the solution of (4.2.2) of 

min(T ) = n(n-l) unit steps . 
p p 

(4.2.8) 

It is not easy to achieve this limit as we would have to 

organise the processors so that they were not left lying idle at 

any point during the processing period. 
i 

Using the forward substitution method it is clear that to 

complete the evaluation of y we require y 1. Similady we require 
n n-

y 2 to complete the evaluation of y 1 and so on, so that any 
n- n-

algorithm based on this method requires a minimum of 2(n-l) unit 

steps. From (4.2.8) it is obvious that a minimum of ~l processors 

are necessary to solve the problem in this time. 

Suppose that there are (n-l) processors available, then we may 

assign one processor to each equation of the system (4.2.2). 

Obviously an increase in p, the number of processors, such that 

p>(n-l) is not beneficial as (n-l) is the maximum number of processors 

that may be used and the extra processors would only be redundant. 

Assuming that the y. already contain the d., then by a~signing one 
1 1 

processor to each equation we have, 

Processor 
I 

2 
I 
I 
I 
I 

(n-l) 

-+ 

-+ 

-+ 

Clock count in unit steps 

Time -+0 2 4 •. .. . . .• (2n-l) 

Yn + anlYl + an2Y2 + ••••••••• a lY 1 n,n- n-

(4.2.9) 



Only processor (n-l) will be occupied for the complete 2(n-l) 

unit steps~ the other processors becoming idle as they complete the 

evaluation of the equations to which they are assigned. 

This can be demonstrated more clearly in the following diagram: 

t 

Number of 
processors 
in use 

o ~-L~~L--L~~~-L ___ L-~L-L-~ 

o Time + 2(n-l) 

FIGURE 4.1 
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The complete area of the square represents the total capacity for 

work of the parallel computer. The shaded area is the used capacity, 

where processors are in use and the unshaded area the wasted capacity 

where processors are lying idle. Thus the system is being used 

inefficiently as half of its potential capacity for work is wasted. 

Now let us investigate some new strategies that will improve 

the efficiency of the computer. These strategies fall into three 

categories depending on the number of processors available. 

4.3 METHODS THAT REQUIRE AT MOST (n-l)/2 PROCESSORS 

The following methods are characterised by the way in which they 

partition the matrix A and are essentially a forward substitution process 

with a particular order in which the y!s are substituted into the system. 
1 



They also tend to be less efficient when (n-I) is not exactly divisible 

by p. 

Method 1 

Let the matrix A be partitioned as follows: 

A = 

+p+ +p+ +p+ 

Partitioning of Matrix A 

FIGURE 4.2 

The matrix is partitioned into (pxp) blocks where p is a 

factor of (n-l), (row 1 having been ignored since it is zero). 

If we commence with the top left hand block All' we simply 

solve for each block one at a time using p processors on each block. 

We may proceed either by columns thus 

'F0R' J=l 'STEP' 1 'UNTIL' (N-I)/P '00' 
'F0R' I=J 'STEP' 1 'UNTIL' (N-I)/P '00' S0LVE(A[I,J]) 

or by rows thus 

'F0R' 1=1 'STEP' 1 'UNTIL' (N-I)/P '00' 
'F0R' J=l 'STEP' 1 'UNTIL' I '00' S0LVE(A[I,J]) 

where the subprogram S0LVE may be defined as follows. 
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When A. . is a diagonal block we can treat it as a triangular 
1,1 

system and, as there are p processors available, we may assign one 

to each row of the block and use the forward substitution technique. 

Off-diagonal blocks A. . (i>j) are square sub-matrices where the 
1,J 

97 

associated y!s are known so that all that is required is the substitution 
1 

of these values into the equations. Again, with p processors available, 

we may assign one to each row of the block. 

The shaded areas in Figure 4.2 represent the places at which 

processors lie idle and it can be seen that they all appear along the 

diagonal. 

It is clear that each block can be solved in 2p unit steps and 

since there are} (n;!) ~n;l) + ~ blocks then, 

T 
1 (n-l) ~n;l) + ~ 2p = 2" p P 

2 
+ (n-l~ = ~n~l) unit.steps, 

giving 

S = nE 
p (n+p-l) 

E 
n = 

P (n+p-l) 

Also, 

and 2 
PF = n p 

P 2 (n+p-l) 

In the event that p is not a factor of (n-l), the final row 

(4.3.1) 

(4.3.2) 

(4.3.3) 

(4.3.4) 

of blocks will have less than p rows and so create a small additional 

inefficiency. It is better for this final row of blocks to be as 

full as possible. 

This difficulty may be overcome by slightly altering our 

approach. If A is partitioned into columns of width p thus:-
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1\ = where q<p 

Partitioning of Matrix A 

FIGURE 4.3 

Then, commencing with the left most column, the p processors are 

assigned to rows 2 to (p+l). Row 2 is completed first so that 

processor 1 may be re-assigned to row (p+2). Processor 2 is the next 

one that becomes available and is re-assigned to row (p+3) and so on 

until row n is reached. As the processors arc available, they await 

the completion of the column and then move to the next column. The 

areas of inefficiency now appear at the bottom of each column but the 

additional inefficiency now only occurs in the final column where there 

are less than prows. The T ,S ,E and PF will be as defined in 
p p p p 

(4.3.1) to (4.3.4). A similar result may be obtained by applying the 

same process without partitioning A. The area of inefficiency will 

then appear when substituting values into the final rows of A. 

Method 2 

This method has a more complicated strategy and is only suitable 

for odd values of p. Once again A is partitioned into columns of 

width p and commencing with the left most column, the processors are 

assigned to the first p rows. We then proceed, as in the second 



strategy of method 1, by reassigning processors as they become 

available until row (n-p) is reached. 

row 2 bU b12----------blp 
b2l b22 
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where 

B = b. .=a n k 
1, J J(." 

row (n-p)I"-_-I 
+ 

I 

I 
I 

I 
b - - - - - - - - - - - - - -b 

t=n-p+i 
k=cp+j 

prows B 

'" 
(a) A Column of Width p of 

Matrix A 

pI pp 

(b) Submatrix B 

FIGURE 4.4 

We have reached the point shown in Figure 4.4(a) where the shaded 

area represents the substitutions that have already been made. As 

processors now become available they pass down the columns of submatrix 

B substituting in values of y, starting with the first column. As the 

th p processor is released the processors will have come into line and 

they may then sweep across the remainder of B, thus completing the 

column without any of the processors becoming idle. 

Considering submatrix B, for one algorithm step we have one 

processor assigned to the submatrix, for the next algorithm step we 

have two processors and so on until there are (p-l) processors assigned 

to the submatrix B. In that period a total of tB where 

p-l 
E(E-l) 

tB = I i = (4.3.5) 
i=l 2 

substitutions will have been made into the submatrix B. Now, since 

there are p elements per column of B, we must have substituted the 

y's into (p-l)/2 columns. Thus, if p is odd then an integral number 

th of columns of B will have been completed. Hence as the p processor 

completes the substituting of values into row (n-p), there will be 
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(p+l)/2 complete columns remaining in submatrix B. The p processors 

are then assigned, one to a row, and sweep across the remainder of B 

substituting in values of y. 

The columns are clearly completed without any processors lying 

idle except of course the final column which is solved as a triangular 

system with sufficient processors to assign one to each row. Again in 

Figure 4.5 we can observe that the inefficiency indicated by the shaded 

area, is clearly minimal when p is small. 

A = 

Area of inefficiency 

The Partitioning of A 

FIGURE 4.5 

It is obvious that the final column requires 2p unit steps to be 

solved and since there will be no redundancy during the processing of 

the other columns we can say that 

T = [n(n-l)-p(p+l)]/p + 2p 
P 

_ [n(n-l) + 1] unit steps, (4.3.6) - P -
P 

giving 
S = 

E.n. (n-l) , (4.3.7) 
P [n(n-l)+p (p-l)] 

E = 
n (n-l) (4.3.8) 

p [n(n-l)+p(p-l)] 

2 2 
PP = 

E.n (n-l) (4.3.9) 
p 2 

[n(n-l)+p (p-l)] 
and 
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It is clear that these are merely a few of the strategies that 
jbl>Se.of fh~Mit\l~a.I Q(ULof ,'"t.{(jl.i~CJ.f 

may be used for this particular range of p, but/not many will be an 

improvement on method 2, When considering efficiency these methods 

are best suited for small values of p. When p is small there is 

little difference between the performances of methods 1 and 2 so, 

as method 1 is simpler, it would be recommended. 

4.4 THE WAVE FRONT METHODS 

In this section, two methods are introduced that require p processors 

where p lies in the range (n-l)/2<p«n-l). The methods are the Parallel 

Wavefront and Delayed Wavefront Methods. 

Method 3 - The Parallel Wavefront Method 

This method is comprised of three distinct phases. During the 

first phase, as in the previous methods, the p processors are assigned 

to rows 2 to p+l. After Yl has been substituted into row 2, processor 

one becomes available and is reassigned to row p+2 and so on, until we 

h h " h 'F' 4 6 The J' th (' 1) h reac t e posltl0n s own ln 19ure , . processor J=n-p-· as 

Processor 
1 

Processor 
2 

Processor 
(n-p-l) 

row 2 

row 
(p+l) 

row n 

column j 

The Parallel Wave front Method (end of phase 1) 

FIGURE 4.6 



been reassigned to row n and processors (j+1) to p have reached 

column j. This position represents the completion of phase 1 and the 

start of phase 2. Now when processor (j+1) becomes available it is 

reassigned to row n at column (j+1) and next, processor (j+2) is re

assigned to row n-1 at column (j+2) and so on. These new inner 

products are .stored in an auxiliary vector. As this phase progresses 

we have the situation as seen in Figure 4.7. The 'wavefront' BB is 

approaching 'wavefront' CC and eventually wavefront BB reaches CC as 

seen in Figure 4.8. 

Phase 2 of the Parallel Wave front Method 

FIGURE 4.7 

Parallel Wave front Method (end of phase 2) 

FIGURE 4.8 
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At this point the y. (i=p+2 to n) will have been accumulated in 
1 

two parts and these are now added together. 

Now, the third and final phase of the method is commenced. The 

remainder of the system is a triangular submatrix AI of less than p 

rows and may be solved as a triangular system with sufficient processors 

to assign one to each row. 

and 

Clearly we have 

T = 2(n-l) + 1 
P 

= (2n-l) unit steps , 

S = n(n-l) 
p (2n-l) 

E = n (n-l) 
p P (2n-l) 

2 2 
PF = n (n-l) 

p 2 
(2n-l) p 

Since the time T is independent of p and from (4.4.3), it is 
p 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.4) 

clear that the smaller p is, the more efficient the algorithm becomes, 

and so, to optimise its performance, the minimum number of processors 

required by the algorithm must be found,Vllh,tJ.,. ,,,-rur,, ~M;!.es,,",e. e.ff"c..'~n~. 
Let us assume that on completing phase 2 of the algorithm, X 

more values have to be substituted into the (p+2)th equation and so 

consider the following diagram:-

f r' 
p (2p-N 

IT 
Matrix A 

FIGURE 4.9 

where N = n-l 

" , , , .. .. 
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Area ~ = (N_p)2 represents the work done by (n-p) processors during 

the second phase of the algorithm and the duration of the phase r(A) p 

is given by: 2 (N-p) r(A) = 
p (N-p) = (N-p) 

Combined Areas ~ represent the work done by the remaining (2p-N) 

processors during the same period, the duration of which is, 

r(S) = [(N-p)(N-p+1)+(2p-N-1)(2p-N)-X(X-l)]/2(2p-N) , 
p 

where X is as in Figure 4.9. 

Since these times are equal we have, 

r(A) = 
p 

from which we have, 

2(N-p)(2p-N) = (N-p)(N-p+1)+(2p-N-1)(2p-N)-X(X-1) 

which reduces to 

[X-(2N-3p+l)][X+(2N-3p)] = 0 

Le. , X = (3p-2N) or (2N-3p+1) 

It has been assumed that X~O but consider the case when X<O. 

rhis implies that Yl to Yp+1 are evaluated before the completion of 

phase two of the algorithm. At the (p+l)th step of the algorithm 

Y 1 is substituted into rows 2(n-p) to n of A but not into the 
p+ 

equation for Y 2 until step (p+2). However, at step (p+2) , Y 2 p+ p+ 

should be avail ab 1 e for subs ti tution into rows 2 Q1-p) -1 to n and so 

X/O, Le., 
X ~ 0 

Combining this result with equation (4.4.9) we have either: 

(3p-2N) ~ 0 

=> 
2 

P~3N 

or (2N-3p+l) 3 0 

1 
P ~ 3(2N+l) 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 

(4.4.10) 

(4.4.11) 

(4.4.12) 



Obviou:.ly the condition (4.4.12) is meaningless and so the 

condition (4.4.11) is the required one. This gives the following 

minimum value of p 

min (p) =~N 
3 
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= ~ (n-l) 
:) 

(4.4.13) 

This condition may be verified by. the following sequences of 

diagrams. We shall consider a (lOXlO) system of the form (4.2.2) 

and indicate the progress of the processors over the array A. The 

processors a~e ~umbered 1,2, ..• p, their position indicating the 

elements of A currently being used in the substitution process, and 

the * 's indicate those elements already used. The y. whose evaluation 
1 

is currently being completed is arrowed. 

row 
-2- 1 

3 2 
4 3 
5 4 
6 5 
7 6 
8 
9 

10 

* 

(a) 

* * 

+ 

2 
3 
4 
5 
6 
7 
8 
9 

* * * 
* * * 4 
* * * 5 
* * * 6 
* * 1 
* 2 

10 3 
(d) 

* 

* * 
* * * 
* * * * 

+ 

2 
3 
4 
5 
6 
7 
8 
9 

* * * * * 

10 

* * * * * * 
* * * * * 14+ 
* * * * 2 * 5 
* * * 3 * * 6 

(g) 

* 
* 2 
* 3 
* 4 
* 5 
* 6 
1 

* 
* * 

(b) 

* * * 
* * * * 
* * * * 5 
* * * * 6 
* * * 1 
* * 2 
* 3 4 

(e) 

* 
* * 
* * * 
* * * * 
* * * * * 

+ 

* * * * * * 
* * * * * * * 
* * * * * * * 5 + 

* * * * * * * 6 

(h) 

FIGURE 4.10 

* 
* * 
* * 3 + 
* * 4 

* * 5 
* * 6 
* 1 
2 

(c) 

* 
* * 
* * * 
* * * * 
* * * * * 
* * * * * 6 + 

* * * * 1 
* * * 2 5 
* * 3 * 4 

(f) 
* 
* * 
* * * 
* * * * 
* * * * * 
* * * * * * 
* * * * * * * 
* * * * * * * * 
* * * * * * * * 6 + 

(i) 
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row 

2 * 'I: * 
3 * * "; * * * 
4 * * 3 + 'I: * * * * * 
5 * * 4 .,., * * 4 + * * * * 
6 * * 5 "Jr * * 5 * * * * 5 + 
7 * * 6 * * * 6 * * * * 6 
8 * * 7 * * * 7 * * * * 7 
9 * 1 * * 1 * * * 1 4 

10 2 * 2 3 * * 2 * 3 
(a) (b) (c) 

2 * * * 
3 * * * * * * 
4 * * * * * * * * * 
5 * * * * * * * * * * * * 
6 * * * * 5 + * * * * * * * * * * 
7 * * * 1 * * * * 1 * * * * * 1 + 
8 * * 2 * * * 2 * * * * 2 
9 * 3 * * 3 * * * 3 CD 

10 4 * 4 5 * * 4 * 5 
(d) (e) (f) 

FIGURE 4.11 

In Figure 4.10 the sequence of diagrams (a) to (i) represent the 

solution of the system of equations with the minimum number of processors 

which is 6. Diagram (d) represents the stage shown in Figure 4.6 and 

diagram (g) indicates the same stage as in Figure 4.8. It is at this 

point that the two 'wavefronts' meet and the two parts of the vector 

elements y. (i=p+2(1)n) are added together. In the accompanying diagrams 
1 

4.10 (h) and (i), the processors sweep across the remaining rows and 

columns. 

Diagrams (a), (b) and (c) of Figure 4.11 illustrate the case when 

p>i(n-l), in this example, p=7 and diagrams (d), (e) and ef) illustrate 

2 the case when p<3(n-1), here p=5. In the latter example we proceed to 

diagram 4.l1(d) which is the same stage as in diagram (d) of Figure 4.10 

and then to diagram 4.l1(e). The next stage is seen in diagram (f) of 

Figure 4.11; we observe that, as expected, an attempt is made to re-

assign processor 1 to column 7 of row 9 but it is still occupied with 

row 7. Arising from this it is clear that Y7 is still being calculated 



while an attempt is being made to substitute Y7 into rows 9 and 10, 

thus an incorrect value of Y7 will be used. 

2 In a simulation of this method when p~3(n-l) the correct results 

2 were produced but when p<3(n-l) the values of Yi for i=p+2(1)n were 

found to be incorrect. This agrees with the assumptions previously 

stated. 

Method 4 - The Delayed Wave front Method 

The delayed wavefront method is the parallel wave front method 

2 adapted for the case when p<I(n-l). If we reconstruct the parallel 

wave front problem, then during the second phase of operations we reach 

the point indicated in Figure 4.12. 

p+l 
p+2 

FIGURE 4.12 

At this stage the components y. for i=l(l)p+l have been evaluated, 
1 

and in the next algorithm step y 1 is substituted in the equations p+ 

along wavefront YY while y is substituted into the equation for y 2 
P p+ 

With the parallel wavefront method, y 2 is substituted into the p+ 

equations along YY during the following algorithmic step. At the same 

time however, yp+l is being substituted into the equation for Yp+2'yp 

into the equation for Yp+3 etc. So yp+2 is not available until the 

following algorithmic step and thus the substitutions along YY must be 
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delayed for one algorithmic step until y 2 has been calculated. p+ 

Likewise, with the substitution of y 3 along wavefront YY, the p+ 

delaying process has to be repeated. The delaying procedure has to 

be continued until the stage represented in Figure 4.13 is reached. 

p+1 

p+2 

FIGURE 4.13 

The equivalent position of the parallel wavefront method is shown 

in Figure 4.8. 

evaluated, where: 

At this stage the y. (i=l(l)n-m) will have been 
1 

for p is odd 
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m = { 
(p-1)/2 

(p-2) /2 
(4.4.14) 

for p is even 

The remaining y. components (i=n-m+1 to n) will have been 
1 

accumulated in two parts which are now added together. The algorithm 

is then completed, as in the parallel wave front method, by treating 

the remainder of the system of equations (B') as a triangular system 

with sufficient processors to assign one to each row. 

On the completion of the first phase of the algorithm (Figure 4.6) 

(n-p) algorithmic steps will have been performed. As the second phase 

begins, the wavefronts will be (n-p-1) algorithmic steps apart. After 
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a further (2p~n) algorithmic steps are performed the stage represented 

in Figure 4.12 is reached and the wavefronts will now be (2n-3p-l) 

algorithmic steps apart. Obviously to reach the stage represented in 

Figure 4.13 requires a further (2n-3p-l) algorithmic steps. During 

this delayed phase, wave front YY advances (2n-3p-l)/2 algorithmic steps 

when p is odd and (2n-3p)/2 steps when p is even. One unit step is 

required to 'add the wavefronts' together and the remainder of the 

algorithm requires (p-l)/2 algorithmic steps when p is odd and (p-2)/2 

steps when n is even. 

Thus, the time required by the algorithm in unit steps is: 

2[(n-p)+(2p-n)+(2n-3p-l)]+1+(p-l) for p is odd 

2[(n-p)+(2p-n)+(2n-3p-l)]+1+(p-2) for p is even 
(4.4.15) 

i.e., 
T = 4n-3p-t unit steps 

p 

t " {: 

furp is odd 

furp is even. 

Clearly if p~(n-l) then the algorithm becomes the parallel 

(n-l) 7 wavefront method, but what happens when p< 2 

FIGURE 4.14 

(4.4.16) 
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During the first phase, the stage shown in Figure 4.14 is reached. 

It will be another algorithmic step before the next processor is 

released but one is required immediately and so the algorithm breaks 

down because of insufficient processors being available. 

In Figure 4.15, the diagrams (a) to (d) il1ustrate the delayed 

wave front algorithm successfully solving a 10xlO system with p=5. 

Diagram (a) is identical to Figure 4.ll(e) but instead of the situation 

of Figure 4.ll(f) arising, the delaying technique is applied during the 

next step as in diagram Cb) of Figure 4.15. This occurs again in 

diagram (d). At this point the two wavefornts are 'added together' and 

the algorithm passes on to its final stage successfully. 

row 

2 * * * 
·3 * * * * * * 
4 * * * * * * * * * 
5 * * * * * * * * * * * * 
6 * * * * * * * * * * * * * * * 
7 * * * * 1 * * * * * 1 + * * * * * * 
8 * * * 2 * * * * 2 * * * * * 2 
9 * * 3 * * * 3 * * * * 3 1 

10 * 4 5 * * 4 * * * * 4 * 5 

(a) (b) (c) 

2 * * * 
3 * * * * * * 
4 * * * * * * * * * 
5 * * * * * * * * * * * * 
6 * * * * * * * * 1 * * * * 1 
7 * * * * * * * * 2 * * * 2 
8 * * * * * * 2 + * 3 * * 3 
9 * * * * * 3 * 4 * 4 

10 * * * * 4 * * CD 
(d) (e) (f) 

FIGURE 4.15 

Diagrams (e) and (f) of Figure 4.15 represent the case when 

p«n-l)/2, in this instance p=4. The stage shown in Figure 4.14 is 

illustrated in diagram (e), and it can clearly be seen in diagram (f) 
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that at the next step an attempt is made to reassign processor 1 to row 

10 when it is already assigned to row 6. 

4.5 METHODS EMPLOYING MORE THAN (n-l) PROCESSORS 

It has already been stated that the maximum number of processors 

that may be efficiently employed in executing the forward substitution 

process is (n-l) and that the algorithm requires a minimum of 2(n-l) 

unit steps. Thus, to solve the problem (4.2.2) in fewer steps and 

employ more than (n-l) processors efficiently would require restructuring 

of the algorithm completely. This has been achieved by Chen and Kuck [1975], 

HelIer [1974b],Borodin and Munro [1975] and Orcutt [1974]. The particular 

algorithm that will now be considered is that of Chen and Kuck since its 

performance is as good as, if not better than, the other algorithms 

mentioned. 

Method 5 

As with most algorithms of this kind, the 

requires O(n3
) processors but reduces the unit 

algorithm of Chen and Kuck 

2 
steps to O(log2n). This 

is achieved at the expense of increasing the total amount of work done 

in the execution of the algorithm but at the same time increasing the 

'amount of parallelism'. 

The algorithm of Chen and Kuck can be described as follows: 

1. Let B be a lower triangular matrix of order (nxn) in which the jth 

column contains a .. 1 for j~i~n, where a. O=d .• 
1,J- 1, 1 

i. e. 

B= 

d l 

n 

.... .... .... 
I " .... 

a l 
---- __ a 1 n,l n,n-

(4.5.1) 



2. Let C be an alias for B, i.e. Band C represent the same memory 

locations 
B :: C 

3. Repeat this step for i=1,2, •.• ,10g2n : 

4. 

a) 

b) 

c) 

i 
Set k=2 ; 

Partition Band C as shown in Figure 4.16; 

compute S.=S.+T.*Q., 
J J J J 

for i~j~n/k; 

simultaneously. 

The first column of B contains the solutions x. for l~i~n. 
1 

The number of unit steps is found as follows: 

(4.5.2) 

At each iteration during step 3, there is one multiplication followed 

by the summation of (k/2+l) operands which may be done in at most 

10g2(k/2+l) unit steps which is less than or equal to 10g2k unit 

steps. Since step 3 is repeated 10g2n times, we have 

10g2n 10g2n 
\' \' 1 2 3 
l. j + l. 1 = "2 10g2n + "2 10g2n 

j=l j=l 
which gives, 

2.n(n-l) 2 
S = - = O( n ) 
p 2 2 

(10g2n+3log2n) 10g2n 

and E = 2.n(n-l) 
p 2 

P (10g2n+3log2n) 

To calculate the number of processors that are required we 

refer to Figure 4.16. The maximum number of processors will be 

needed at the multiplication step of stage 3c, so we simply count 

the number of multiplications for T.*Q., l~j~n/k. Thus from Figure 
J J 

4.16 we have: 

k/2 k/2 
p(k=ei ) = [I j + k(n-k)] + ~[(n/k-l) I j + 

. 1 2 2 . 1 J= J= 

k "2(k+2k+ •.. (n-2k))] 

k 2 2 = T6[3k -(Sn+8)k + (2n +10n+4)] • 

(4.5.3) 

(4.5.4) 

(4.5.5) 

(4.5.6) 



k 
2 

k 

3k 
2 

2k 

Sk 
2 

3k 

(n-2k) 

3k (n---) 
2 

(n-k) 

k (n--) 2 

n 
1 k 

2 
k 3k 

2 
2k Sk 

-2-
3k 

Ca) Matrix B 

FIGURE 4.16 

Cn-2k) (n_3k) 
2 

k 
(n--) 

2 

113 

n 



~-l 
2 

k-1 

3k 1 
2 

2k-l 

~l 
2 

3k-l 

n-2k-

3k 
n--

2 

n-k-

~ 

~~ 
1 

1 

1 

1 

n 1 

"" 

k 
"2 

"" I~I} 
11 

k 

~. 

'" ~I 
If 

3k 2k 
2 

~ 

Sk 
2 

Cb) Matrix C 

FIGURE 4.16 

[\r",-

t# -

114 

~ 
l~]l 
\J "" ~ 

I I¥. 11 I ~ -, 
n 



115 

When n is large p(k) takes its maximum value during the iteration 

when k=n/4. This gives the number of processors as, 

15 3 2 
p(n/4) = [~ + l6n + 8n]/148 . (4.5.7) 

Now using these formulae we can produce table 4.1 which shows 

the performance of the algorithm for different values of n. It is 

clear that the time T and speed-up S are very impressive but these 
p p 

results are at the expense of the efficiency which is very disappointing. 

This also results in very poor performance factors. 

n Tl P T S E PF 
P P P P 

32 992 610 20 49.6 0.08 4.03 
64 4032 4356 27 149.33 0.034 5.12 

128 16256 32776 35 464.46 0.014 6.58 
256 65280 253968 44 1483.64 0.0058 8.67 
512 261632 1998880 54 4845.04 0.0024 11.74 

TABLE 4.1 

The high number of processors that are required certainly makes 

the algorithm unfeasible on an MIMD type parallel computer and also 

for existing SIMD type machines. It is doubtful that even future SIMD 

machines would have sufficient processing elements to cope with the 

larger systems of equations. 

Chen and Kuck [1975] continued by making two suggestions to reduce 

the number of processors that are required, namely cutting and folding 

(not to be confused with the folding technique of Chapter 3). First 

let us consider cutting. 

Cutting 

The (nxn) matrix B is partitioned or 'cut' into (n/~) columns of 

width ~ and each column is processed one at a time. The left most 

column is comprised of an (~x~) triangular system (at its top) which 

may be solved by method 5, and an [(n-~)x~] rectangular system R (at 
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the bottom). The remaining columns are of the same form but with fewer 

rows in the rectangular system. 

The triangular system T may be solved in tT unit steps as defined 

in (4.5.3) and will require PT processors as defined in (4.5.7). 

The rectangular systems may be solved by a straightforward 

substitution of the solution of the corresponding triangular system T 

into the rows of R and computing the inner products. The rectangular 

systems will require PR processors and as the system of the first (or 

left most) column is the largest we have 

PR = (n-Q.)xQ. • 

Each system will be solved in the same number of steps tR where 

tR = rlogz (Q.+ 1)1 + 1 

Obviously the number of processors required by this method 

(4.5.8) 

(4.5.9) 

will be, 
p = max[PT,PR] (4.5.10) 

Also there are (n/Q.) triangular systems and (n/Q.-l) rectangular 

systems to be solved so, 

Tp = (I).tT + (I -l)tR unit steps (4.5.11) 

Folding 

The second suggestion, folding, is based on the following 

simple idea. Assume we have a tree of height t which contains 

t " t-l (2 -1) operation nodes and whose evaluation requ1res z· processors. 

Obviously the efficiency of such a tree evaluation is, 

t 
ff " " (Z -1) e 1c1ency = 

2t - l .t 

2 - -
t 

(4.5.12) 

Now by halving the number of processors, we only require one 

extra processing step and so, 

(zt -1) 4 
efficiency = ~ 

2t -2(t+l) (t+l) 
(4.5.13) 
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When t is large this process approximately doubles the efficiency 

but has a negligible effect on the speed-up. This process is called a 

fold. 

When i folds are made on a tree of height t, the new tree height 

i+l . 2) d h .. d d 2t - l /2i is (t+2 -1- an t e processor requ1rement 1S re uce to • 

Applying this technique to method 5, we have from (4.5.6) that 

for i folds, 

2i 
k/2i+l 

j(l+~(~ 1)) 
1 [k(n-k) k 2 

P = I + 2i 2 + ("2) (k+2k+ ... (n-2k))] 
j=l 

n k 2i 
k/2i+l 

1 k k2 
= (1+--) I j + -. [-(n-k) + :r(k+2k ... +(n-2k))] (4.5.14) 2 2 j=l 21 2 

Applying this formula to the step of the algorithm that requires 

the largest number of processors, we derive a new value for p. Then at 

every other step in the algorithm for which there are insufficient 

processors we also apply the folding technique. 

It is important to remember that a tree of height t may only be 

folded (t-l) times and of course a tree of height 1 cannot be folded 

at all. 

It is of course possible to apply a combination of cutting and 

folding to the algorithm by first applying the cutting technique and 

then folding as many times as required. 

There is one final principle that may be applied to method 5 to 

improve its performance and that is the problem decomposition principle 

as suggested by Hyafil and Kung [1974]. 

The principle is similar to cutting, in that it partitions the 

matrix A; not into columns however but (kxk) blocks, thus:-



A -

t 
k 

-t-
k 

_J: 

+ 

0' -t---
I 

I : I ", I 

~ _I ~ ~ __ -''---l
AI I A ---------t-A 

ml m2 1 mm 
I 1 

+k+ +k+ I I 
where n=mxk. 

Each diagonal block A .. (i=l(l)m) may be treated as a 
1.,1. 

triangular system and so can be solved by method 5 for which the 

time t .. is defined in (4.5.3) and processor requirement p .. is 
1.,1. 1.,1. 

defined in (4.5.6). 

The off-diagonal blocks A .. (i=2(1)m, j=l(l)i-l) are solved 
1.,) 

by a straightforward substitution process"in a minimum time of 

using 

ti,j = 1 + rlog2(k+l)l unit steps, 

P . . = k2 processors 
1.,) 

Thus, we have that the number of processors required will be 

p=max (p .. ,p .. ) and the time T is 
1.,1. 1.,) P 

I T = m t. . + ~2 (m-l)t. . unit steps. 
p 1.,1. 1.,) 

4.6 RESULTS AND CONCLUSIONS 

First of all we shall consider the performance of methods 
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(4.5.15) 

(4.5.16) 

(4.5.17) 

(4.5.18) 

1,2,3 and 4. The graph 4.1 represents both the speed-up and efficiency 

of the methods plotted against different values of p for n=128. 

Graphs ~and ~ represent the speed-up and efficiency respectively 

of method 1. Both graphs are smooth because the method is able to cope 

with the occasions when (n-l) is not exactly divisible by p. 
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Graphs ~and (!0, also representing speed-up and efficiency 

respectively, may be divided into three sections. Section 1 from 
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p=1(1)63 rep,resents method 2, section 11 from p=64(1)84 represents 

method 4, the delayed wavefront method, and section III from p=85(1)126 

represents method 3, the parallel wavefront method. 

The uneveness of graphs~ and (Q) in section I is due to the 

inability of method 2 to cope with the case when (n-l) is not exactly 

divisible by p entirely satisfactorily but it is still an improvement 

on method 1. 

In section 11 the curves representing the delayed wavefront method 

again are smooth as would be expected. Finally in section III the graph 

~ becomes a horizontal line since the maximum speed-up for p«n-l) 

has been achieved. However graph CQ) continues to decrease as p 

increases since the speed-up is constant while the number of processors 

increase. 

These results are combined in graph 4.2 where the performance 

factor is plotted against the number of processors. The graphs are 

divided into sections as in graph 4.1, with ~ representing method 1 

and ~ representing methods 2,3 and 4. 

Once again we note the uneveness of the section of graph 

representing method 2 and that for small values of p, the performance 

factor of method 1 is very close to that of method 2. The graph peaks 

at p=85 which is the minimum value of p for which the parallel wavefront 

method may be used. Thus for values of p«n-l) the parallel wavefront 

method with p=~(n-l)J is the optimum algorithm. 

Now let us compare this result with the performance of method 5. 

The line drawn at PF :6.58 on graph 4.2 represents the performance 

factor of method 5 which for this order of problem requires 32,776 

processors. When the method is modified by cutting and folding etc., 



its performance is improved. There is a second line at PF =40.32 

which represents the best performance factor of the modified method 5 

which in this case requires 256 processors. Clearly, the performance 

of the parallel wavefront method is still superior to the modified 

method 5. In fact, the delayed wavefront method also has a better 

performance than method 5. 

A better comparison between method 5 and methods 1,2,3 and 4 can 

be made by considering table 4.2. In table 4.2, the first column 

contains the results of method 2 when p= r-~ (n-l)l which from graph 4.2, 

can be seen is the optimum method for p<t(n-l). The second column 

contains the best results of the delayed wavefront method and the 

third column the results for the parallel wavefront method with its 

optimum value of p. 

The right-most entry in each row represents the results of method 

5 and the remaining entries were made as follows. Results were 

generated for all the modifications that can be made to method 5. 

Then, by using the processor count upper limit shown at the head of 

each column, the results were tabulated for the examples with the best 

performance factor. Finally, for each row, the example with the best 

performance factor is indicated. 

From the table it can be seen that for problems of order n~256, 

the parallel wave front method has the best performance factor. When 

n=512 however, one entry appears on the right hand side of the table 

which has a better performance factor than the parallel wavefront 

method. Although it is an isolated case for n~5l2, it can be expected 

that as the order of the problem increases, similar examples will 

re-occur. 

All the methods presented here satisfy the more stringent 
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requirement of SIMD parallel computers in that only one type of operation 

is performed at each step. 
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In Chapter 1, SIMD and MIMD machines were discussed. It was said 

that existing SIMD computers still have a relatively small number of 

processing elements i.e., the Illiac IV has 64, but computers under 

construction have 10,000 processing elements or more. It was emphasised 

that because of the nature of the computer, speed-up is the essential 

factor when selecting algorithms. Thus the fastest algorithm should 

always be selected provided the computer has sufficient processors. 

So, from table 4.2, when p>n, method 5 and its modifications are seen 

to be the best algorithms, although it must be emphasised that the 

basic method 5 is generally unfeasible because of the large number of 

processors that are required. 

With MIMD machines we are also interested in the efficient use of 

processors and so the performance factor is more important. Obviously 

we select the method with the best performance factor which, for 

problems of order n<5l2, is invariably the parallel wave front method. 

When n=S12 however, we see that the modified method 5 has the best 

performance factor. It has already been said that this is unlikely to 

be an isolated case and, for problems of order n>S12, the modified 

method 5 is again expected to have the best performance factor. It is 

also expected that these cases will require a minimum of 2228 processors 

as is required when n=S12. 

Now MIMD computers tend to have a smaller number of processors 

than SIMD computers and even the most optimisitic plans for future 

MIMD computers do not cater for such large processor requirements. So, 

for MIMD computers, the parallel wave front method has the best performance 

factor despite the performance of the modified method 5 for larger 

triangular linear systems since it requires too many processors. 

Another desirable feature of the parallel and delayed wavefront 

methods are that they automatically adapt to any size of problem. This 



123 

means that it does not require the order of the problem to be a power 

of 2 or 10 or for en-I) to be exactly divisible by p. Method 5 requires 

n to be a power of 2 but it is not clear what happens when this is not 

true. 

One final observation is that method 1 has a performance factor 

that is almost as good as method 2 when p is small compared to n. Then 

in these cases method 1 would be preferred because of its simplicity. 

Af\ error a.1'tCl\~s hMo t\et bc2en includEd M ,,-,,'s cht'.r..~t"e.(" but ",\,- is p\o.""ed 

ct~ ~\-u(e. work. 



BLOCK DELAYED WAVE FRONT 4 8 16 32 n STRATEGY WAVE FRONT 

9.76 11.56 11.8 1.6 7.59 7.83 

32 12.1 15.26 15.75 2.53 11.02 11.53 
0.81 0.76 0.75 0.63 0.69 0.68 

15 20 21 4 16 17 

19.98 23.11 24.00 1.69 3.24 13.5 

64 24.89 30.78 31.75 2.6 7.2 20.78 
0.8 0.75 0.76 0.65 0.45 0.65 

31 41 42 4 16 32 

40.46 47.63 47.81 1. 73 3.59 

128 50.48 63.25 63.75 2.63 7.58 
0.8 0.75 0.75 0.66 0.47 

63 84 85 4 16 

81.41 95.07 96 1. 75 3.79 

256 101. 68 126.76 127.75 2.65 7.79 
0.8 0.75 0.75 0.66 0.49 

127 169 170 4 16 

163.97 191.63 191. 81 1. 76 j.~~ 

512 204.88 255.25 255.75 2.66 7.89 
0.8 0.75 0.75 0.66 0.49 

255 340 341 4 16 

TABLE 4.2 

64 128 256 

8.72 7.33 5.69 
23.62 26.11 38.15 
0.37 0.28 0.15 

64 93 256 

18.56 16.4 16 
34.46 45.82 64 
0.54 0.36 0.25 

64 128 256 

31.51 35.55 40.32 
44.91 67.45 101.6 
0.7 0.53 0.4 

64 128 256 

8.69 61.13 82.57 
23.58 88.46 145.39 
0.37 0.69 0.57 

64 128 256 

9.42 134.49 
24.55 185.55 
0.38 0.72 

64 256 

512 1024 

5.85 4.03 
43.13 49.6 
0.14 0.08 

318 610 

15.73 11.57 
70.74 84 
0.22 0.14 

318 610 

37.94 32.76 
109.84 141. 36 

0.35 0.23 
318 610 

81.28 79.73 
204 220.54 

0.4 0.36 
. 512 610 

166.16 171. 68 
291.67 419.28 

0.57 0.41 
512 1024 

2048 

8.73 
100.8 

0.09 
1164 

26.82 
176.7 

0.15 
1164 

76.33 
298.08 

0.26 
1164 

182.28 
460.62 

0.4 
1164 
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4096 8192 16384 32768 

8.11 5.12 
134.4 149.33 

0.06 0.03 
2228 4356 

24.91 15.78 13.51 11.03 
235.59 262.19 338.67 427.79 

0.11 0.06 0.04 0.03 
2228 4356 8488 16584 

76.62 52.12 44.68 35.57 
413.16 476.5 615.85 768 

0.19 0.11 0.073 0.046 
2228 4356 8488 16584 

209.44 163.52 148.85 121. 91 
683.11 843.97 1122.88 1421.91 

0.31 0.19 0.13 0.09 
2228 ~356 8488 16584 

65536 131072 262144 

{i~p} Each entry 
represents 

P 
6.58 

464.46 
0.01 

32776 

20.83 15.1 8.67 
826.33 1388.94 1483.64 

0.025 0.011 0.006 
32776 127760 253968 

73.12 49.54 31.68 
1548.12 2515.69 2843.83 

0.05 0.02 0.011 
32776 127760 255264 

TABLE 4.2 (Continued) 

524288 1048576 

30.23 21.01 
3904.96 4590.04 

0.008 0.005 
504352 1002528 

2097152 

11. 74 
4845.04 

0.002 
1998800 

..... 
N 
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CHAPTER 5 

THE PARALLEL QUICKSORT ALGORITHM 



5.1 INTRODUCTION 

In the previous chapters we have considered important numerical 

problems and how they may be solved using a parallel computer. To 

demonstrate the versatility of the MIMD type computer we shall now 

investigate the computer problem of sorting. 
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The object of a sorting algorithm is to rearrange the set S where, n 

(5.1.1) 

into some relative order. The elements a., (i=1,2, •.• n) could be 
~ 

a set of numbers that we wish to arrange in ascending or descending 

order or a list of names that we require in alphabetical order. 

However, for the purpose of this investigation we shall assume that 

the a., (i=1,2, ••. n) are positive integers that we wish to arrange 
~ 

in ascending order. 

The problem of sorting on a sequential computer has been 

investigated by Knuth [1973] who describes only a few of the many 

algorithms that exist. Unfortunately there is no known 'best' 

sorting algorithm and we may only conclude that one algorithm is 

better than others for a particular situation. We shall outline some 

of these algorithms anti then investigate the possibility of restructuring 

them to produce an efficient parallel sorting algorithm. 

A general purpose sorting algorithm is produced which is suitable 

for execution on a parallel computer. 1he algorithm which is based on 

Quicksort (see section 5.2) does not require a fixed number of processor~ 

but may theoretically use as many processors as are available. The 

analysis of the algorithm reveals that~there is a maximum number of 

processors that can be used for a particular size of set S and by use 
n 

of the Performance Factor defined in Chapter 4 we can also demonstrate 

that there is an optimum number of processors that may be used. 



5.2 SEQUENTIAL SORTING ALGORITHM~ 

We shall now outline some of the more common sequential sorting 

algori thms that are currently in use which ho."e. bQ.e.f\~o'!.e~ ~f' the.. 

~heren\'" ~m"-e.'\!.~ ~o.t \\\e.'1 ~oS'!.es.~ ato-d- frOM h"eA,(, In!.erHot'\. 
Linear Insertion 
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Linear Insertion is the simplest yet one of the most important of 

sorting techniques and may be described as follows:- assume that the 

first (i-I) elements of S have been sorted, then element a. may be 
n 1 

inserted into its correct place among these elements by comparing it 

successively with elements a. l,a. 2"'" until an element is found 
1- 1-

that is less than or equal to a., say a .. The elements a. l,···a. 1 
1 J J+ 1-

h · f d" 1 d .. d . h (. 1) th ., are s 1 te up one p ace an a. 1S 1nserte 1nto t e J+ pos1t1on. 
1 

It is not difficult to see that the average number of comparisons 

required to insert element a. is i/2, so that in order to sort n elements 
1 

we require on average 

1 n. - L 1 = 
2 . 1 

n (n+ 1) 
4 

::: 1 2 
~ comparisons (5.2.1) 

1= 

It is obvious that this is also the number of elements we would have 

to move. 

Since the amount of work on average in linear insertion is 

proprotional to n2, then it is clear that it is unsuitable for large 

values of n. However, because it is extremely easy to implement on 

a computer, it is considered one of the best sorting algorithms for 

small values of n. 

Shell Sort 

The Shell Sort or Diminishing Increment Sort (Shell [1959]) is an 

attempt to improve linear insertion by moving elements more than one 

position at a time. This is achieved by dividing the set S into subsets 
n 

which are then sorted individually by linear insertion. This process is 



then repeated for progressively larger subsets, the final subset 

being S. The subsets are chosen at each stage as fo110ws:
n 

we select a number 

and create d. subsets thus, 
J 

a.,a· d ,a· 2d ,···a· d 1 1 + . 1 +. 1 +n. . 

where ni = lnd-.ij • 
J 

J J 1 J 

for i=l, ••• d. 
J 

As the size of the subsets increases, their degree of order also 

increases and so it is possible to apply linear insertion to the 

larger subsets without sacrificing efficiency. The selection of the 

d. is an important factor in the efficiency of the method but there 
J 

is no conclusive evidence that any particular choice is best. The 

method is yet to be completely analysed but Knuth [1973] claims that 

the amount of work involved is proprotional to O(n3/ 2) for a good 

choice of d .. 
J 

Bubble Sort 

Bubble Sort is an example of sorting by exchanging as opposed 

to sorting by insertion. During the basic process, a1 is compared 

with a2 and, if they are out of order, they are exchanged with each 

other. This is repeated with a2 and a3, a3 and a4 , etc. and finally 

with a 1 and a. The whole process is repeated until no more n- n 

exchanges are necessary. 

The name Bubble Sort is derived from the fact that elements tend 
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to 'bubble up' to their correct position. -Unfortunately, although the 

fundamental idea is simple, the method compares very badly with other 

sorting techniques due to the relatively complex program that it 

involves{K"'t>~h, '~73). 
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Quicksort 

Quicksort (Hoare, 1962) or partition-exchange sort is considered 

the best general purpose method for sorting on a computer. The basic 

process of quicksort places some element of Sn' say ak , into its correct 

position in such a way that all the elements to the left of ~ are less 

than ~ and those to its right are greater than ak • Thus, the original 

problem has been reduced to two smaller problems, namely, sorting the 

left subset (containing all elements less than ~, i.e., al ,a2,···,ak_l ) 

and the right subset (containing all elements greater than ~, Le., 

~+l, ... ,an)' The same process may be applied to each subset and 

repetition of this technique eventually produces subsets containing 

only one or no elements, at which point the set S is sorted. n 

The process by which a
k 

is placed in its correct position, called 

the partitioning process, involves the use of two pointers, i and j. 

Initially setting i=l and j=n, j is repeatedly reduced by 1 until an a. 
J 

is found such that a.<a .. The two elements a. and a. are exchanged and 
J 1 1 J 

i is then repeatedly increased by 1 until an a. is found such that a.>a .• 
1 1 J 

The elements a. and a. are exchanged and we once again decrease j and so 
1 J 

on until i=j(=k). The new element ak , called the partitioning element, 

is in fact the original aI' and it has been moved to its correct position 

such that ai<~ (i=l(l)k-l) and ai>ak (i=k+l(l)n). 

The overheads involved in the partitioning process make it best 

suited for large values of n and so, in practice, the process is only 

applied to subsets above a certain size. Linear Insertion is used to 

sort the smaller subsets, Le., the subsets that are of a size such 

that it is more efficient to sort by Linear Insertion than Quicksort. 

These are just a few of the many sorting methods that exist. There 

are other methods that reduce the number of comparisons and exchanges 
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to a minimum, but they are so complex that they are impractical to use. 

The simplicity of Linear Insertion makes it difficult to find a better 

method for small sets S. When n is large, however, Quicksort is 
n 

generally regarded as the best method. 

5.3 SORTING ON A PARALLEL COMPUTER 

There is already one parallel sorting method, called Batcher's 

method (Batcher, 1968) that has been developed. This method is similar 

to Shell's method but the comparisons are arranged so that they do not 

overlap and so may be done simultaneously. To achieve a significant 

speed-up, the method requires 0(n/2) prn.cessors which means that it is 

not really suitable for MIMD type computers when n is large. 

The obvious way to sort S using p processors is to divide S into 
n n 

p subsets and sort each subset concurrently using all p processors. The 

difficulty arises in how best to divide the set S up into subsets. 
n 

If the subsets are produced by a straightforward division of S , 
n 

then once the subsets have been sorted they must be merged. Any 

advantage gained during the sorting phase would be lost in the merge 

phase since it would be difficult to involve p processors in the 

merging of p subsets. 

The inefficient merge phase can be eliminated if the chosen subsets 

are mutually sorted, i.e., if there are p subsets SubS. (i=l(l)p) such 
1 

that, 
SubS l + SubS2 + ••• 

then they are mutually sorted if 

SubS = S 
P n 

(all elements of SubSl)«all elements of SubS2)< 

(5.3.1) 

•.•.•. «all elements of SubS) (5.3.2) . P 
Unfortunately it is not easy to produce such subsets. Some 

sort of selection procedure would be necessary, which apart from 



being expensive, would not necessarily produce subsets of equal size 

since the distribution of S is not always known. It is important to n 

have subsets of approximately the same size because if one is 

considerably larger than the rest, it would dominate the running time 

of the algorithm. So an initial selection procedure can cause as much 

harm as the merge phase already mentioned. 

It has already been stated that sequential algorithms often 

conceal their potential parallelism and so we shall examine the 

sequential sorting algorithms of section 5.2 for inherent parallelism. 

First consider Linear Insertion which is essentially sequential in 

nature. It is of course possible to insert more than one element at 

the same time but this idea can create many additional problems. If, 

for instance, we attempt to insert two elements into the same position 

in S then one of these elements may be lost while the other is 
n 

duplicated. To safeguard against such a situation involves a more 

complicated program and hence makes the method less efficient. 

If we consider Shell Sort we see that the sequence d. (i=l(l)~) 
1 

produces groups of subsets. Since the subsets in each group are 

independent (i.e., each element of S is a member of one and only one 
n 

subset), then they may be sorted concurrently. It is important that 

the subsets produced by dl are all sorted before the subsets produced 

by d2 are sorted and these, in turn, are sorted before those produced 
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by d3, and so on. Obviously, a suitable choice of d. ensures sufficient 
1 

subsets to occupy all of the p processors. However, in the later stages 

of the algorithm as di decreases (in particular when d~=l), the number 

of active processors decreases. Unfortunately the subsets are becoming 

larger and so are taking longer to be sorted, thus the processors that 

become idle, will remain idle for a long period. 



The next algorithm that we considered was Bubble Sort. As with 

Linear Insertion the Bubble Sort is essentially sequential since, in 

the list ai (i=1,2, ... ,n), we compare a2 and a l before it is compared 

with a3, etc. If we alternately consider the sets of pairs (al ,a2), 

(a3,a4), ..• ,(an_l,an) and (a2,a3),(a4,as), .•• ,(an_2,an_l)' then we 

have formed two sets of independent pairs of elements. This form of 

the algorithm is similar to Batchers Parallel Sort which is unsuitable 

for MIMD type computers. 
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Finally we have the Quicksort algorithm whose partitioning process 

produces mutually independent subsets which is a very desirable feature. 

Initially only one processor may be used but, after the first partition 

has been made, independent subsets are rapdily created. This is the 

reverse of the case of Shell Sort where it is at the end of the algorithm' 

that the processors become idle. Quicksort has the advantage that, at 

any stage in the execution of the algorithm, all those subsets that have 

not been partitioned are independent. This means that, unlike Shell 

Sort, there is no necessity to sort any subset or group of subsets 

before others. Thus, on these issues, it was decided to base the parallel 

sorting method on Quicksort. 

5.4 THE PARALLEL QUICKSORT METHOD 

The concept of Quicksort is represented diagrammatically in the 

partition-tree in Figure 5.1. In this figure the first three 

partitioning stages are shown, where, in the partitioning of the 

original set Sn' the partitioning element is placed in position k1' 

the partitioning element of the left subset is placed in position k2 

and that of the right subset in position k3. 
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Partition Tree 

FIGURE 5.1 

Obviously, the worst running time is achieved when the partitioning 

procedure produces an empty subset, since it reduces the order of the 

original problem by only one. In the parallel implementation of Quicksort, 

there is the added disadvantage that the inherent parallelism of the 

method is removed, i.e., instead of producing two independent subsets, 

only one is created. So it is desirable that the choice of partitioning 

element is as close to the median of the subset beIng partitioned as 

possible. 

Although the worst running time of the algorithm can never be 

completely avoided, the possibility of it occurring can be reduced 

and this is the object of the many variations of the Quicksort algorithm 

that exist. This objective is achieved by a more careful selection of 

the partitioning element. 

Quicksort and its variations have been thoroughly analysed by 

Sedgewick [1975] and he concludes that one of the best variations of 

Quicksort is the median-of-three Quicksort method. The method, 

originally suggested by Hoare [1962] and later investigated by 

Singleton [1969], derives its name from the way in which the partitioning 



element is selected, being the median of a sample of three elements 

from the whole subset. 

The three elements from which the partitioning element is chosen, 

are usually the first, middle and last elements of the subset. After 

they have been mutually sorted the median of the three, the new 

partitioning element, is exchanged with the second element of the 

subset. The first and last elements may now be ignored in the 

partitioning process since we know that they are already in their 

correct pos~tions in relation to the partitioning element. 

A more efficient partitioning process is also adopted, which 

inserts the partitioning element into its final position at the end 

of the process rather than being continually moved as previously 

described. In this process, the pointer i is set to the third element 

of the subset and pointer j to the next to last element of the subset. 

Pointer i is increased until an element is found that is greater than 

the partitioning element and then pointer j is decreased until an 
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element is found that is less than the partitioning element. Obviously, 

if the subset is to be correctly partitioned, these two elements must 

be exchanged. The process is continued until the pointers cross, at 

which point j=i-l. Clearly a. is the right-most element of the left 
J 

subset and since the partitioning element is in this subset it is 

interchanged with element a .. Thus the partitioning process is 
J 

completed without unnecessary movement of the partitioning element. 

If the situation arises that there are no elements in the subset 

greater than the partitioning element, then it is possible that the 

process by which the pointer i is incremented will not be terminated. 

This may be overcome by creating a dummy element a 1 that is larger 
n+ 

than all the other elements. In order to avoid a similar problem 

with pointer j, another dummy element aO is created that is less than 



all the other elements. 

Let us define two integers t and u such that (t,u) represents a 

subset containing elements at,at+l, ... ,au' Then the partitioning 

processes may be described algorithmically as follows:-

Step 1 

Step 2 

Step 3 

Step 4 

Sort elements ai ,a(t+u)/2,au into mutual order. 

Interchange at +l and a(t+u)/2' 

Let i=i+1. 

Let j=j-1. 

Repeat while a.<v. 
1 

Repeat while a.>v. 
J 

Set i=t+l,j=u and v=a. .. 
1 

Step 5 If i<j then interchange a. and a. and return to step 3, 
1 J 

otherwise proceed to step 6. 

Step 6 Interchange at +l and a .. 
J 

This procedure produces the two subsets (t,j-l) and (j+l,u). 

Clearly, from Figure 5.1, the subset (l,n) is partitioned to 

produce two subsets (l,kl-l) and (kl+l,n) which, in their turn, are 

partitioned to produce four more subsets. If we have p processors, 

then we may continue to partition until there are p subsets. These p 

subsets may then be sorted concurrently using any standard sequential 

sorting algorithm. 
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To ensure efficiency, the p subsets must be sorted in approximately 

the same amount of time which means they must be approximately the 

same size and have the same degree of disorder. Unfortunately, the 

partitioning procedure does not guarantee this and so the strategy 

is not entirely satisfactory. 

An alternative strategy is to repeat the partitioning procedure 

until p subsets are produced, at which point all p processors will be 

in use. If the process is now continued the number of subsets to be 

partitioned will be greater than the number of processors, and so the 

'extra' subsets are put in a queue until processors become available to 

partition them. 



As with sequential Quicksort, when subsets are small it is more 

efficient to use Linear Insertion to sort them. The process is 

terminated when there are no subsets remaining to be sorted by Linear 

Insertion or partitioning. 

Although applying this strategy will not mean that all the 

processors complete their work simultaneously, it is expected that, 

since the last subsets to be sorted will be small, the period during 

which they do complete their work will be a minimal one. 

The procedure that executes Parallel Quicksort will have the 

following basic form:-

'PR0cEDURE' QUICKS0RT(L,U); 
'IF' U-L 'GT' M 'THEN'; 
'BEGIN' 

PARTITI0N(L,U); 
'F0RK' Ll,L2; 

Ll:QUICKSORT(L,K-l); 
'G0T0' L3; 

L2:QUICKS0RT(K+l,U); 
'G0T0' L3; 

L3:'J0IN' Ll,L2; 
'END' 
'ELSE' 'IF' U-L 'GT' 1 'THEN' LINEARINSERT(L,U); 

where M is the size of the largest subset that is sorted using Linear 

Insertion, K is the final position of the partitioning element, 

PARTITION is the partitioning process and LINEARINSERT is a procedure 

for performing linear insertion. 

In standard Quicksort, the smaller of the two subsets produced 

by the partitioning process is usually sorted first so as to minimise 

the maximum recursive depth of the algorithm. In Parallel Quicksort 

this technique minimises the maximum length of the queue of unsorted 

subsets. It will be seen later that it is preferable to sort the 

larger of the two subsets first so that the queue is kept as full as 
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possible. This is to help to avoid periods during which the number of 

subsets currently being partitioned is less than the number of processors, 

i.e., to avoid periods when processors become idle. 

The Figure 5.2, represents the allocation of processors correspofiding 

to the partition tree of Figure 5.1. In Figure 5.2, it is assumed that 

the right subset (k
1
+1,n) is the smaller subset produced by partitioning 

S. Hence, it is reasonable to expect the partitioning of this subset 
n 

to be completed before that of the left subset and so processor 2 will 

request another processor before processor 1 does. Thus processor 3 is 

assigned to one of the subsets produced by processor 2 and later, when 

processor I requests another processor, it is assigned processor 4, etc •. 

pi=processor i. 

Allocation of Processors 

FIGURE 5.2 

5.5 THE ANALYSIS OF THE RUN TIME OF THE PARALLEL QUICKSORT ALGORITHM 

In the following analysis of the Parallel Quicksort Method an 

attempt is made to estimate its run time on a parallel computer with 

p processors. 

The Parallel Quicksort Method consists of three phases that are 

illustrated in Figure 5.3. Phase I or the initial phase is the period 
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at the beginning of the algorithm when the number of processors in use 

increases from 1 to p. At first, the increase is gradual, because the 

subsets being partitioned are large, but later it becomes rapid as the 

subsets become smaller. 

Number of 
processors 

• 
-+--Phase 1 ~ E Phase 2 ~ ~Phase 3! 

p - --
( .. -

\ I 
I 
I 
I 
I 1 ___ I 

1 
1 
I 

1 '---L 
--,.. 

tl-------+~ +E--------- Time 

FIGURE 5.3 

The second phase or phase 2, is the period during which all p 

processors are in use and the final phase (phase 3) is the period at 

the end of the algorithm when the processors become idle. (Although 

possible, it is not expected that all of the processors will become 

idle simultaneously). 

If the overall run time of the algorithm is T and the duration p 

of the ith phase is t. (for i=1,2,3), then, 
1 

It is not easy to estimate T accurately because of the nature p 

of the algorithm. The most difficult time to estimate is t 3, the 

th time between the first processor becoming idle and the pone 

becoming idle. Since this phase is relatively short compared to 

the other two phases it may be ignored. 

(5.5.1) 
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If the sequential run time of the algorithm and that of phase 1 

can be estimated then the run time for phase 2 can be approximated by 

the following formula: 

(5.5.2) 

~ ~ 

where t is the sequential run time of Parallel Quicksort and tl is 

the sequential run time of phase 1. The way in which tl is estimated 

also yields a simple formula for tl but first we must estimate t. 

The run time of standard Quicksort has been successfully analysed 

by Sedgewick [1975] by estimating the number of times each statement 

in the Quicksort program is executed. If a similar technique is 

applied to the Parallel Quicksort program, it is found that the 

frequency with which each statement is executed depends on the 

following quantities: 

A the number of partition stages, 

B the number of exchanges during partitioning, 

C the number of comparisons during partitioning, 

D the number of insertions during linear insertion, 

E the number of elements moved during insertion, 

and F the number of linear insertion stages. 

These quantities, except F, are identical to those on which the 

run time of sequential Quicksort depends. 

For the purpose of this analysis we assume that the set S contains 
n 

n distinct elements, with each of the n! permutations of the elements 

being equally likely. Since the decisions made during the execution 

of the algorithm are dependent on the elements relative order and not 

their actual value we further assume that the elements are the numbers 

(1,2,3, ..• ,n). It is clear also that the subsets produced by partitioning 

are of a similar form. Also, all of the mathematical results used in this 

analysis are derived in Appendix A. 
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To evaluate each of the quantities A,B,C,D,E and F we adopt the 

same strategy, so let Y represent one of these quantities. Defining 

Y as the average value of Y, then Y is obviously equal to the average n n 

value of the contribution of the first partitioning stage plus the 

average value of that quantity required to sort the two subsets. Thus 

Y is defined by the relationship, 
n 

n 
Y = Y + [{Probability that s is partition element}(Y l+Y ), 

n n s=l s- n-s 
(5.5.2a) 

where s is the partitioning element, Y 1 is the left subset, Y s- n-s 

the right subset and y the average contribution of the first partition 
n 

stage to Yn . 

Since s is the median of a sample of three elements, the 

probability that s is the partitioning element is the proportion of 

the total number of samples of 3 elements for which s is the median. 

Clearly, the number of samples for which s is the median is (s-l)(n-s) 

and the total number of samples of 3 elements is (~), where 

1 k . 

" {:! j!Y1 (n-k+J) • 
for k~O 

for k<O 

Thus we have, 

{Probability that s is partition element} = (s-l) (n-s) 
(n) 
3 

Substituting this result into equation (5.5.2~we have the 

recurrence relation: 

n 
Y = Y + I n n . s=l 

(s-l) (n-s) (Y l+Y ), for n>m, 
(n) s- n-s 
3 

where m is the size of the subset above which Quicksort is used; 

those subsets less than or equal to m in size being sorted by 

Linear Insertion. 

(5.5.3) 

(5.5.4) 

(5.5.5) 

-- .. -.--.... ~.~==========:::;;-=.=--=--= .. =-=-============;z:c;;=====-..:; .. :;:: ...... =-;;;;;;;-;:;,,;.;;,;;.:. 



If we consider the sums involving Y 1 and Y separately, it s- n-s 

is obvious that they are the same and so equation (5.5.5) may be 

simplified to, 

Y = Y + 2 n n 

n 

I 
s=1 

(s-l) (n-s) Y 
(n) s-l 
3 

for n>m. 
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(5.5.6) 

With a view to solving this equation using generating functions, 

n n multiply it through by (3)z and sum over all n to give, 

n 
I (~)Y zn = I (~)y zn + 2 I I(s-l)(n-s)Y lzn, 

n~O n n~O n n~O s=l 5-
for n>m. 

In the second term of the right hand side we can replace s by 

s+l, n by n+l and interchange the order of summation so that, 

= I (~)Ynzn + 2z( I SYSZs)( I nzn) , for n>m. (5.5.7) 
n~O s~O n~O 

_2 
To consider the quantity z(l-z) ,expand it by using Taylor's 

Theorem to give 

-2 2 z(l-z) = z(1+2z+3z + .•. ) 

= I nzn 
n~O 

and substituting this result into equation (5.5.7) gives, 

(5.5.8) 

If we define Y(z) = I Y zn as the generating function for {Y }, n n 
n~O 

then by differentiating Y(z), with respect to z, j times we have, 

y(j) (z) = I n(n-l) ..• (n-j+l)Y zn-j , 
, n 

n~J 

or 
y(j)(z) ozj _\ n n 

" -{. C.)Y z 
J ' n~O J n 

Substituting this result into equation (5.5.8) gives, 
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3 (1) 
\ (n) n 2 z Y (z) f 
L 3 Yn z + 2 or n>m, 

n~O (I-z) 

and multiplying through by (I_z)3/ z3 we obtain, 

(5.5.9) 
The following manipulations may be simplified by changing 

the variable z to x=(l-z) and defining f(x)=Y(I-x) , then, 

or 2xf(l) (x) 
3 \ n n x L (3)y (I-x) , for n>m. (5.5.10) 

(I-x) 3 n~O n 

Introducing the operator 8, defined as 

8f(x) = xf(l) (x) , 

then we have, 
8(8-I)f(x) = 8(xf(l) (x)-f(x)) = x2f(2) (x) 

8(8-1)(8-2)f(x) = 8(8-1) (xf(l) ex)-2fex)) = x3f(3) ex). and 

Substituting these results into equation (5.5.10) gives, 

3 
28f(x) - 8(8-1)(8-2) f(x) = x 3 I (~lY (l_x)n, for n>m, 

6 (I-x) n~O'~ n 

which leads to 

6x
3 

\ n n (-8)(-8-2)(5-8)f(x) = 3 L (3)Yn(I-x) , for n>m 
(I-x) n~O 

or in the original variable z, 

(I_Z)3 \ n n 
(-8)(-8-2)(5-8)Y(z) = 6 3 L (3)Ynz ,for n>m . 

z~ n~O 

Now, by definition we have, 

f(x) = Vel-x) = I Y (l_x)n 
n 

n~O 
so considering the innermost factor (5-8) of equation (5.5.11) 

(5-8) f(x) = 5 I Y (l_x)n - 8 I Y el-x)n n n 
n~O n>,O 

= 5 I Yn(l-X)n + x I Yn(l-X)n-l 
n~O n~O 

(5.5.11) 

(5.5.12) 



--------------------------------------------------------------------

or again in the original variable z, 

(5-e)y(z) = 5 I Y zn + (l-z) I Y nzn-1 
n n n>,O n>,O 

= I ((n+1)Y 1 - (n-5)Y )zn • 
n>,o n+ n 

This means that by defining T(z) as 

T(z) = (5-8 )Y(z) 

we must have 

T = (n+1)Y 1 - (n-5)Y n n+ n 

If this process is repeated for the remaining factors (-8) and 

(-8-2) of equation (5.5.11), then by defining U(z) as 

U(z) = (-2-8)T(z) = ~ U zn 
L n ' 

n>,O 
we must have 

U = (n+1)T 1 - (n+2)T n n+ n 

Finally, defining V(z)=(-e)u(z)= I v zn we have, 
n n>,O 

v = (n+1)U 1 - nU n n+ n 

Hence, by definition, we have 

and so 

V(z) = (-8)(-8-2)(5-8)Y(Z) 

= 6 I ~3(Yn(~))zn 
n>,3 

V 
n 

3 n 
= M (y n (3)) • 

(1_z)3 ~ n 
= 6 3 L Yn z 

z n>,O 

Thus we need to solve the following three recurrences: 

(n+1)U 1 = nU + V n+ n n 

(n+1)T 1 = (n+2)T + U , for n>rn . n+ n n 

and (n+1)Y 1 = (n-5)Y + T n+ n n 

We are now ready to consider each of the quantities A,B,C,O,E 

and F in turn. If A is the average number of partitioning stages, 
n 

then obviously a =1 and A =0 for n~m and so from equation (5.5.6) 
n n 

we have, 

143 

(5.5.13) 

(5.5.14) 

(5.5.15) 

(5.5.16) 

(5.5.17) 



A 
n 

+ 2 
n I (s-l) (n- 5) 

n 
s=l (3) 

From equation (5.5.16) we have, 

V = 66
3 ((n)) = 6 

n 3 

A 
s-l 

for n>m 

for n~m. 
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(5.5.18) 

and so substituting this value into the first recurrence of (5.5.17) 

gives, 
(n+1)U 1 = n U + 6 . n+ n 

By telescoping this equation we have, 

n Un = (n-1)Un_1 + 6 

(m+2)U 2 = (m+1)U 1 + 6 m+ m+ 

which leads to, 
n 

(n+1)Un+1=(m+1)Um+1 + I 6 
k=m+1 

= (m+1)U 1 + 6(n-m) • m+ 

If we know U l' then we have an expression for U 1 and hence m+ n+ 

U. Using equation (5.5.18) it is not difficult to evaluate A l' n m+ 

Am+2 and Am+3 and, by substituting these values into equations 

(5.5.17), we may obtain U 1. In particular we have, m+ 

Tm+1 = (m+2)A 2 (m-4)A 1 m+ m+ 

T = (m+3)A 3 (m-3)A 2 m+2 m+ m+ 

and Um+1 = (m+2)T 2 (m+3)T 1 m+ m+ 

So, from equation (5.5.18) we have, 

A 1 = 1, A 2 = 1 and A = 1 + 12 
m+ m+ m+3 (m+2) (m+3) 

and substituting these values into equations (5.5.20) gives, 

T 1 = 6, m+ 
12 

Tm+2 = 6 + (m+2) and Um+1 = 6 • 

Thus, from equation (5.5.19) we have the result, 

(n+1)U 1 = 6(m+1) + 6(n-m) = 6(n+1) n+ 

which leads to 

=== .. ~ -.. -.-------.--.-~- ----

, 

(5.5.19) 

(5.5.20) 



U = 6 n 

Substituting this value into the second recurrence of (5.5.17) 

yields the equation, 

(n+l)T 1 = (n+2)T + 6 . n+ n 
1 

If we multiply this equation through by (n+l) (n+2) we have, 

Tn+l Tn 6 
'( n + 2 ) = (n + 1 ) + ~(-n+-l:-:):-(-:-n-+-::2-::-) 

and treating this equation in the same way as the first recurrence we 

obtain, T T n n+l m+1 + 6 L 1 
= (m+2) (k+l) (k+2) (n+2) k=m+l 

which leads to 

T = l2(n+l) - 6 . n (m+2) 

Finally, from the third recurrence of (5.5.17) we have, 

(n+l)A 1 = (n-S)A + l2(n+1) - 6 . 
n+ n (m+2) 
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Assuming that n>,6, we may multiply this equation by ~(n-1)(n-2)(n-3)(n-4) 

to give, 

(n+l)A (n)A 12 (n+1) _ (n) 
6 n+l = 6 n + (m+2) 6 5 

which again leads to the result, 
n 

= (m+1)A + 12 L (k+l) 
6 m+1 (m+2) k=m+l 6 

n 
L (~) 

k=m+1 

Using the results obtained in Appendix A, in particular, equation 

(15), we may simplify this 

A = l2(n+1) 
n 7 (m+2) 

equation to obtain the result, 
(m+1) 

_ 1 + ~ 6 
7 (n) 

6 

Now we shall consider C , the average number of comparisons 
n 

made during partitioning. Obviously, during the first partitioning 

(5.5.21) 

stage a comparison is made each time pointer i is incr~ased by 1 and 

each time pointer j is decreased by 1. Since we start with i=2 and 

j=n and stop when j=i-l=s, then i is increased (s-l) times and j is 



decreased (n-s) times and so C , the average number of comparisons made 
n 

during the first partitioning stage, is (n-l). 

It is obvious that C =0 when ~m and so 
n 

n (s-l) (n-s) + 2 C for n>m 
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{ ~n-l) I 5-1 
Cn = s=l (n) (5.5.22) 

3 
for n~m . 

l2m 
From this equation we have Cm+l=m, Cm+2=m+l and Cm+3= (m+2)+ (m+2) (m+3) 

which, when substituted into equations (5.5.17), 

l2m 
Tm+3=7m+9+(m+2) and Um+l =12(m+l). We also have 

3 n Vn = 6~ ((3)(n-l)) : l2(2n+l) 

give T 1=7m+2, m+ 

Using these values we solve the recurrences of (5.5.17) to obtain 

the results, 
U = l2n 

n 

T = (7m-lO) (n+l) + 12 + l2(n+l)(H l-H 2) 
n n+ m+ (m+2) 

and finally, 12 (n+l) (37m-94) 
(m+l) 

4 6 
C = -(n+ 1) (H -H ) + 2 + + -(3m-l) 

n 7 n+l m+2 49(m+2) 49 (n) 
6 

where H , the nth harmonic number, is defined as 
n 

1 1 1 
Hn = 1 + 2" + 3" + •••• n . 

If we now consider B , the average number of exchanges during 
n 

partitioning, then, as with C , B =0 for ~m. Now during the first n n 

partitioning stage, if s is the partitioning element, the number of 

exchanges will be the number of elements among a3,a4 , ..• as that are 

greater than s. Averaging over all permutations of {1,2, ... n} we 

(5.5.23) 

find that the average number of exchanges when s is the partitioning 

element is, 
s-2 (n-s-l) ( s-2 ) 

\ t s-2-t 
L t --=----::=---=---.::...-

t=O (n-3) 
s-2 

= (n-s-l) (s-2) 
(n-3) 

and averaging this over all partitioning elements s, we find that, 



Thus we have, 

B 
n 

b n 

= 

n (s-l) (n-s) = L 
s=l (n) 

3 

= (n-4) 
5 

n 

{ 

(n~4) + 2 I 
s=l 

o 

(n-s-l) (s-2) 
(n-3) 

(n-s)(s-l). B 1 ' for n>m 
(n) s-
3 

, for n~m, 

but this relationship is a linear combination of A and C and so, n n 
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(5.5.24) 

(5.5.25) 

B = l(C -3A ) n 5 n .n 
(m+l) 

_ 12 (n+l) + _2_(6m-23) 6 
7(m+2) 245 (n) 

6 
(5.5.26) 

Next we have F which is the average number of linear insertion 
n 

stages. A linear insertion stage occurs when a subset of at most m 

elements is created, and this happens during the first partitioning 

stage when s has the value 3,4, ... (m+l) or (n-m),(n-m+l), ••• (n-2). 

Thus we have, 

which 

m+ 1 (s-l) (n-s) 
f = I + 
n s=3 (n) 

3 

m+l 
(s-l) Cn-s) = 2 L 

s=3 (n) 

(m+l) 
3 
Cm+l ) 

6 2 - 4 3 
= 

(n) 
2 

(n) 
3 

gives, 

r(m;l) - Cm+l ) 
4 3 

(n) (n) 
F = 2 3 n 

0 

n-2 
I 

s=n-m 

6 --
Cn) 
2 

(s-l) (n-s) 
(n) 
3 

n 
- 1L-+2r!.S-'Hn-s). F.: 

t\ . n S .. I 

(2'. 5=r ''3) 

for n~m . 

Considering the components of F one at a time we have 
n 

{

I ¥ -=:,( s=...-_l:...::..) -=:,;( n...;..--=.s.:t-) 
F~ = 2)· 2 5=1 (~) F~_I • 

for n>m 

for n:::m , 

, .for 

(5.5.27) 

n>m 

(5.5.28) 



which proceeding as before yields the result 

and 

(m+l) 
F' = -=--=-8 -"-( n....,+:-::l~):--"o:-::- + =-~6~."... 6 
n 7m(m+l) (m+2) 7m(m+l) (n) 

6 

n 

I 
s=1 

(s-l) (n-s) Fit , for n>m 
(n) 5-1 
3 F~ = {~~) + 2 

, for n~m, 

which leads to the resElt, 

FI! = 
n 

-:o:-::_.,:.,18:....:(~n,...+-=l.:o-) .,........,.--,:-:- + =-:_::..,24:.-.-.,....---,-
7(m-l)m(m+l) (m+2) 7(m-l)m(m+l)' 

Now F is simply a linear of combination of F' and FI! and so, n n n 

1 ] F ' _ 4 (m+ 1) FI! 
n 3 n 

4 (n+l) 2 18 
m(m+l)) (m+2) + 7(1 - m(m+l)) - 12 (1 - 7 

The remaining two quantities 0 and E are the contribution n n 

made by linear insertion. First of all we must consider small subsets 

that are sorted by linear insertion. 

With each permutation a l ,a2, .•. ,an of {1,2,3 .••. n} we associate 

an inversion table 1l ,1 2,1 3, ..• 1n such that Ii is the number of 

elements to the left of a. that are greater than a .. 11 is always 0 
1 1 

and we must have 

The average number of insertions, 0 , is the number of elements with n 

at least one element to its left greater than itself which is also 
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the number of non-zero entries in the inversion table. The probability 

1 that I.~O is 1-7 for all i and thus 
1 1 

= n-H n 

The second quantity E , the number of moves made during linear 
n 

insertion is equal to the sum of the entries in the inversion table 

(5.5.29) 



since each element has to be moved past every element to its left 

which is greater than itself. Therefore we have 

this total being the number of inversions of the permutation, an 

inversion being a pair (a. ,a.) where i<j and a.>a .. The minimum value 
1 J 1 J 

of En is 0 and the maximum is clearly (~) when I i =i-1 for i=l(l)n. 

We notice that if a permutation a1,a2,a3, ... ,an has k inversions, 

then a
n

,a
n

_
1

, ..... ,a
1 

will have (~)-k inversions. So if the probability 

that a permutation of {1,2, ..•.. n} has exactly k inversions is enk and 

n 
k ' =(2)-k then, 

So the average number of inversions E is 
n 

and so we have 

2E = n 

= 

Since I enk =1, we must 
k 

2E = n 

ICk 
k 

(n) 
2 

have 

(n) 
2 

+ 

I 
k 

= 

I ((~) -k)enk I 

k 

~((~)-k)enk 

n 
(2)-k)enk 

enk . 
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E _ n(n-1) 
n - 4 (5.5.30) 

Returning to the original problem, D is the average number 
n 

of non-zero entries in the inversion table after partitioning and 

E is the average number of inversions in the permutation after 
n 

partitioning. Now the partitioning process places s into its final 

position and so I becomes zero. Furthermore, if an inversion table 
s 

entry in either subset is non-zero it must be because there is a larger 
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element to its left in that subset. Thus the number of non~zero 

entries in the inversion table for the whole set is the sum of the 

non-zero entries in the inversion tables of the subsets. Similarly 

the sum of the inversion table entries for the whole set is the sum of 

the sums of inversion table entries for the subsets. Thus we have the 

two relationships: n (n-s) (s-l) 

. { 
2 I D for n>m 
s=l (n) s-l 

D 3 ' (5.5.31) 
n 

n-H for n~m n 

n (n-s) (s-l) 

{ 25~1 E for n>m 
(n) s-l 

and E 
3 (5.5.32) = n 

n(~-l) for n~m . 

We may now proceed in exactly the same way as we did for the 

other quantities to obtain the results, 

(m+l) 
4(n+l)(3H +1) 1 5 

0 = (n+ 1) - + -(- - 2H ) 6 
7(m+2) m+l 7 3 m+ 1 (n) 

(5.5.33) 
n 

6 

(6m-17)(n+l) + 6(n+l) 2 (m+l) 

and E 
(3m +lsm-2) 6 

= n 35 7 (m+2) 140 (n) 
6 

(5.5.34) 

For large values of n we may ignore the terms with a denominator 

of (n) and so we have the six formulae:-
6 

A = l2(n+l) 
n 7 (m+2) 1, 

12 37 12 (n+l) 
Bn = 35(n+l) (Hn+l -Hm+2) + 1 + 245(n+l) - 7(m+2) , 

c = ~(n+l)(H -H ) + 2 + (n+l) (37m-94) 
n 7 n+l m+2 49(m+2) 

On = (n+l) 4(n+l)(3H +1) 
7(m+2) m+l 

E = (n+l)(6m_17) + 6(n+l) 
n 35 7 (m+2) 

and F 12 4 (n+l) 
n = 7' (1 - m(m+l)) (m+2) 
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Since the frequency with which each statement in the Parallel 

Quicksort program is executed is dependent on these quantities, then 

by estimating the time that each statement takes to be executed we 

"-
obtain a formula for t of the form, 

'" t = aA + bB + cC + dD + eE + fF + gn . n n n n n n 
(5.5.35) 

The values of the coefficients a,b,c,d,e,f and g will vary from 

computer to computer but, by applying the statement times described 

in Appendix A to program (7) (Appendix B), we obtain the following 

result, 

t = l84A + 30B + l6C + 38D + 32E + 53F + 28n n n n n n n 

= 26
7
4(n+l)H

n
+

l 
_ 150 +(n+l){16432 + 2140 _ 264H _ 456 H 

245 7(m+2) 7 m+2 7(m+2) m+l 

192 2544 } + ~ - units, 35 7m(m+l) (m+2) 

where 1 unit is approximately a machine instruction time. 
,.., 

We now wish to estimate the times tl and t l , the parallel and 

sequential run times of phase 1. Clearly the average size of the 

left subset produced by the first partitioning stage is, 
n r (s-l) (s-l) (n-s) 

n 
s=l (3) 

_ (n-l) 
- 2 

Similarly the average size of the right subset is (n-l) 
2 

(5.5.36) 

The partitioning of these two subsets produces four subsets of average 

size 
((n-1) _ 1)/2 

2 

During the initial phase, this process is repeated until at 

least p subsets have been produced. If the concurrent partitioning 

of the two subsets of size (n-l)/2 and similarly the four subsets 

produced by these partitioning steps is called a parallel partitioning 



stage, then to produce p subsets we require j parallel partitioning 

stages where, 

( . 2j ~p) I.e. _ 

Obviously, if q. is the average size of the subsets at the ith 
1 

parallel partitioning stage, then 

ql = n 

qi = (qi_l- l )/2 for i=2,3, •.. ,j, 

from which we obtain the formula, 

i-I i-I q. = (n-2 +1)/2 for i=1,2, ..• ,j. 
1 

From the previous analysis we know that the contribution of 

the first partitioning stage is dependent on the quantities, 

a = 1, b = (n-4)/5 and c = (n-l), 
n n n 

so for a subset of size q. we have 
1 

a = 1 
q. 

1 

b = (q. -4)/5 q. 1 
1 

:md c = (q.-l) q. 1 
1 

If the time required by each partitioning step is ai' then, 

treating a. in the same way as we treated t, we have 
1 
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(5.5.37) 

(5.5.38) 

a. = 2l2a + 30b + l6c (5.5.39) 
1 qi qi qi 

and substituting in the values from equations (5.5.38) we obtain, 

a. = 172 + 22q. 
1 1 

for i=l (1) j . 

Clearly the average value of tl is, 

j 
tl = I a. 

i=l 1 

and so, using equations (5.5.37) and (5.5.40), we have 

tl = l50j + 44(n+l) (1-2- j ) • 

Since, during the ith parallel partitioning stage, there are 

i-I 2 subsets being partitioned concurrently, it is clear that, 

(5.5.40) 

(5.5.41) 
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i i-I L 2 cx • 
. 1 1 1= 

which reduces to, 

tl = l50(2
j
-1) + 22(n+1)j • (5.5.42) 

Thus, since t3 is small enough to be ignored, we obtain, 

from equations (5.5.1) and (5.5.2), the formula, 

Tp = t1 + (t-t1)/p (5.5.43) 

where the quantities t, t1 and t1 may be obtained from equations 

(5.5.36), (5.5.41) and (5.5.42) respectively. 

We now wish to find the optimum value of rn, the best choice 

of subset size for which it is more efficient to sort by linear 

insertion. Obviously this is achieved by minimising T with respect 
p 

to m; in particular we must minimise the function 

16432 
gem) = -- + 245 

2140 
7 (m+2) 

264H 456 H 192 2544 

with respect to m. 

50 

40 

30 

gem) 

20 

12.13 

1 

7 m+2 7(m+2) m+l + ~ 7m(m+1) (m+2) 

(5.5.44) 

O~------~-----+--~--------~------~--------~+ rn 
o 5 8 10 15 20 25 

FIGURE 5.4 



In Figure 5.4, values of gem) are plotted against m. From the 

graph we can see that the optimum value of m is 8 but clearly the 

choice of m is not critical and so any choice of m between 5 and 12 

is viable. 

To complete the analysis of the Parallel Quicksort algorithm we 

shall investigate the effect that p, the number of processors, has on 

the performance of the algorithm. To achieve this we must refer to the 

quantities Speed-up and Efficiency defined in Chapter 2 and the 

Performance Factor defined by (4.2.6). 

o o o 
~ 

o 
M 

8 

6 

1 

O~------r-------~------~------~------~----~ o 5 10 15 20 
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FIGURE 5.5 
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FIGURE 5.6 
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FIGURE 5.7 

The series of Figures (5.5)-(5.7) plot the quantities time (Tp)' 

Speed-up (S ) and Efficiency (E ), and Performance Factor (PF) 
p p p 

against p respectively for n=500. The graphs are essentially the same 
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for m=5,6, ... 15 which demonstrates that the choice of m is not critical. 

Closer examination of these graphs reveals that little improvement 

is achieved by increasing p above 15. We can also see that for p>15 the 

Speed-up settles at approximately 5 while the Efficiency steadily 

decreases. Considering the Performance Factor in Figure 5.7, we see 

that the optimum value of p is 5. However, it is also clear that when 

P is 4,5 or 6 the performance of Parallel Quicksort is very good. 

Thus we conclude this analysis by observing that for n=500 the 

best choice of m lies between 5 and l2whilethe optimum number of 

processors is 5. As n increases we would expect the optimum value of 



P to increase very slowly. However the best choice of m remains 

constant for all values of n. 

It must be stressed that a more accurate assessment of the best 

values of p and m for a particular computer may be obtained by using 

the actual values of a,b,c,d,e,f and g in equation (5.5.35) for that 

particular computer. It is also useful to remember that the time 

overhead incurred by memory contention (excluded from this analysis) 

has a less damaging effect for smaller values of p and so it is better 

to underestimate the optimum value of p. 

5.6 SIMULATION OF THE PARALLEL QUICKSORT r.ffiTHOD 

In the absence of a suitable parallel computer to test the Parallel 

Quicksort Method, the method was simulated and the results compared with 

those of section 5.5. 

For the purposes of this event-orientated simulation we define the 

following variables:-

an array R[a,b], containing the information which is obtained 

during the sorting process, 

where a = the subset number 

and b = an integer in the range 1 to s. 

R[a,l] and R[a,2] are pointers to the left and right subsets 

respectively, produced by the partitioning of subset a. 

R[a,3] and R[a,4] indicate the lower and upper limits respectively 

of subset a. 

R[a,S] is an estimate of the time required to partition or perform 

linear insertion on subset a. 

The time R[a,S] may be obtained for subset a by adding the time 

it takes to execute a statement to a running total each time that 
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statement is used. When a subset is created, it is given a number and 

its limits may be recorded in the array R in the appropriate positions. 

At the same time, a pointer to that subset may be placed in R[a,l] or 

R[a,2] accordingly, where subset a is the subset from which the new 

subset has been created. 

The simulated model of the parallel computer is represented by the 

following variables:-

and 

p = the number of processors, 

T = a clock, 

U[i] (i=I,2, ... ,p) = stack of processors in use, 

A[i] (i=I,2, ... ,p) = stack of processors available, 

S[a,b] = processor b, 

Q[j] 

LU = 

LA = 

LQ = 

where S[l,b] = the length of time before which 

processor b becomes available, 

and S[2,b] = the number of the subset currently 

being processed by processor b, 

= a queue of subsets that are waiting to be processed, 

number of processors in use, 

number of processors available, 

number of subsets in queue. 
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'~en a subset of size 0 or I is created, the corresponding pointer 

is set to zero, and when a subset is ~m in size (i.e., when it is sorted 

by linear insertion), both pointers are set to zero. 

As soon as all of the information concerned with the application 

of the algorithm has been recorded in array R, we proceed in the 

following manner. Initially the queue Q is empty and all p processors 

are available. The partitioning of the complete set is assigned to 

processor I by removing processor I from the processors available stack, 



placing it on the processors in use stack and then setting S[1,1]=R[1,5] 

and S[2,1]=1. 

Since an event occurs when a processor 'in use' becomes 'available' 

the simulation proceeds by searching the processors in use to find the 

next processor to become available i.e., the processor in use with the 

smallest value S[l,b]. The clock is then advanced by this amount of 

time and all the S[l,b]'s of the processors in use decreased by the same 

amount. Then, for each processor in use with S[l,b]=O, the appropriate 

event is performed and the procedure is repeated. The simulation is 

terminated when all processors are available and the queue Q is empty. 

There are five different situations that may occur which lead to 

different events which are described as follows:-

Event 1 

A small subset has been sorted by linear insertion, so no new 
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subsets have been created and the queue Q of unprocessed subsets is 

empty. The processor that has sorted that subset is therefore removed 

from the stack of processors in use to the stack of processors available. 

Event 2 

Again a small subset has been sorted by linear insertion but now 

the queue Q is not empty. The subset at the head of the queue is 

immediately assigned to the processor that has just become available. 

Event 3 

A subset has been partitioned to create only one new subset (i.e., 

the other new subset is of size 0 or 1). The new subset is immediately 

assigned to the processor that has become available. 

Event 4 

A subset has been partitioned creating two new subsets and the 

processors available stack is not empty. One of the subsets is assigned 
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to the processor that has become available and the other to the processor 

at the top of the processors available stack. That processor is removed 

from the processors available stack to the processors in use stack. 

Event 5 

A subset has been partitioned to create two new subsets and no 

processors are available. One of the subsets is assigned to the processor 

that has become available and the other is placed in the queue Q. 

The current state of the simulated parallel computer may be 

represented by the following diagram. 

b 

1 

2 

p 

time 

Processors 

S[l,b] subset 

tl 

t2 

t 
P 

Processor stacks 

S[2,b] In use available 

sI 

~+LU 
ULA 

s2 

s 
P 

Queue of 
subsets 

~+LQ 
Since all of the processors are in use, the processors available 

stack is empty. If this representation of a parallel computer is used, 

we can illustrate each of the five events. In each of the examples, 

processor j has become available. 

Event I 

b 

1 

2 

j 

p 

Processors 

t.=O 
J 

t 
P 

S[2,b] 

s p 

Processor stacks 

In use available 

j +LA 
+;.K 

The stack of available processors may initially be empty. 

Queue 

+LQ 



Event 2 

b 

I 

2 

j 

p 

Processors 

• :t 

t. =,if (l 
J 

t 
P 

Processor stacks 

S[2,b] In use available 

+LU=p 

. S.=(l 
J 

i: \ ________________________ -J 
+LA=O 

Since the queue is not empty, all processors must be in use. 

Event 3 

b 

1 

2 

j 

p 

Processors 

S[l,b] 

tl 

t2 

t 
t .=y5 

J 

t 
P 

S[2,b] 

sI 

s2 
Remains unchanged 

(l 
1j 

(l 

s 
P 

Queue 

Only one new subset is created, call it subset (l, and, since it 
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is assigned to processor j, the processor stacks and queue are unchanged. 

Event 4 

Processors Processor stacks Queue 

b S[I,b] S[2,b] In use available 

1 tl sI 
2 t2 s2 

. t s.=8 t (l +LU 

j t . =$J" 8 >1. J +W 

J t .J s =y 
t =Z Y 

. (l 
(l ~(l ~ (l 

~ 
+LA 

P t s +LQ=O 
P P 



162 

Two new subsets are created numbered 8 and y. Since some processors 

are available the queue must be empty. 

Event 5 

Processors Processor stacks Queue 

b 

1 

2 

j 

p 

S[l,b] 

tl 

t2 

t 
t.=f{ Cl 

J 

t 
P 

S[2,b] 

sI 

s2 

s.=s 
Y; J 

J 

5 
P 

In use 

+ LU=p 

Cl 

available 

LA=O 

8 +LQ 
+)4' 

Two new subsets Cl and 8 have been created, Cl being assigned to 

processor j and 8 being placed in the queue. Since the queue is not 

empty, all of the processors must be in use. 

5.7 RESULTS AND CONCLUSIONS 

In order to test the Parallel Quicksort method using the simulation 

described in section 5.6, sets of pseudo-random numbers were obtained 

using the NAG library random number generator routines (NAG, 1976). 

The routines involved include G05AAA, GOSABA and G05BAA. 

The routine G05AAA returns pseudo-random numbers from a uniform 

distribution on the range (0,1) by generating two multiplicative 

congruential sequences 

and 

x l,r+l 

x 2,r+l 

= (blxl,r) 

= (b2x2 ,r) 

mod m 

mod m } 
where (z) mod m is the remainder left when z is divided by m. A 

sequence of pseudo-random numbers xr+ l' is' then formed using, 

x = (x + x ) mod m , r+l l,r+l 2,r+l 

(5.7.1) 

(5.7.2) 
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which are then scaled to produce the required sequence. The values of 

the constants are machine orientated, being related to the word size of 

ICL 1900, and 46 b =315 9 
and xl 0=x2 0=1234567. the are m=2 , b2=5 , 1 ' , , 

In order to obtain pseudo-random numbers from a uniform distribution 

on the range (a,b), the sequence xr+l generated by routine G05AAA was 

scaled by routine G05ABA using the transformation, 

Yr+l = (b-a)xr +l + a (5.7.3) 

Finally, to generate different sets of pseudo-random numbers, 

routine G05BAA was used to initialise the routine G05AAA by setting 

the parameter x2 0 to a value derived from a parameter x of routine , 
G05BAA. 

The sets of random numbers used to test the Parallel Quicksort 

method were integers lying in the range (0,100',000)' and were obtained 

by setting parameters a and b of routine G05ABA to 0 and 100,000 

respectively, each number y 1 being rounded down to the greatest r+ 

integer less than Yr+l. 

In standard Quicksort, the maximum recursive depth of the algorithm 

is minimised by sorting the smaller of the two subsets produced by 

partitioning first. To see if this is a desirable feature for Parallel 

Quicksort, the initial tests were performed, also sorting the smaller 

subset first. 

Initially the sorting of 10 different sets of 500 random numbers 

by Parallel Quicksort on a p processor computer was simulated. The 

number of processors p was varied from 2 up to 16 and m, the size of 

the largest subset for which linear insertion is used, was 'given the 

values 5,10 and 15. The results, including the average run-time, 

Speed-up, Efficiency and Performance Factor of the method when m=lO 

are recorded in Table 5.1 in the columns headed by the letter A. 



I 

p 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Average T Speed-up Efficiency 
Performance 

p Factor 

A B A B A B A B 

71635 71367 1.842 1.849 0.921 0.925 1.697 1. 710 

53487 53098 2.467 2.485 0.822 0.828 2.029 2.059 

45743 44867 2.885 2.941 0.721 0.735 2.081 2.163 

42066 40920 3.137 3.225 0.627 0.645 1.968 2.080 

39851 39038 3.312 3.381 0.552 0.563 1.828 1.905 

38662 38202 3.413 3.454 0.488 0.494 1.664 1.705 

38041 37671 3.469 3.503 0.434 0.438 1.504 1.534 

37736 37453 3.497 3.524 0.389 0.392 1.359 1.380 

37518 37306 3.517 3.537 0.352 0.354 1.237 1.251 

37422 37194 3.526 3.548 0.321 0.323 1.131 1.144 

37274 37125 3.540 3.555 0.295 0.296 1.045 1.053 

37243 37088 3.543 3.558 0.273 0.274 0.966 0.974 

37216 37088 3.546 3.558 0.253 0.254 0.898 0.904 

37157 37088 3.552 3.558 0.237 0.237 0.841 0.844 

37151 37088 3.552 3.558 0.222 0.222 0.789 0.791 

Results of the simulation of Parallel Quicksort on a p processor 
computer with m=10 

TABLE 5.1 

These tests were then repeated, using the same sets of random 

numbers but sorting the larger of the two subsets produced, by 

partitioning first. The results of these tests Nhen m=lO are also 

recorded in Table 5.1 under the columns headed by the letter B. 

Similar results were also obtained for m=5 and 15. 

From Table 5.1 we observe that the method is faster when the 

larger subset produced by partitioning is sorted first and a closer 

examination of the simu1ations reveals that this is because the 
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period- during the second phase of the method, when not all p processors 

are in use, has been reduced. 



It can also be seen, especially from the second series of tests, 

that when p>12 the Speed-up remains constant. Again, from a closer 

examination of the simulations, we see that this is because all p 

processors are never in use concurrently at any point during the 

execution of the algorithm. 

Finally we observe from the performance factor that the optimum 

value of p lies in the range 3 to 6. 

So the first series of tests has revealed that it is better to 

sort the larger subset produced by partitioning first and that the 

optimum value of p lies in the range 3 to 6. In the next series of 

tests we attempt to optimise the values of p and m. 

Accordingly, in the next series of tests, the average run time of 

the method is found from a sample of 20 different sets of 500 random 

numbers. The simulation of Parallel Quicksort is carried out with m 

varying from 5 to 15 and p varying from 3 to 6. The results from 

these tests for m=5,6,7 •.... l0 are recorded in Table 5.2. 

It is clear that for all values of m the optimum number of 

processors is 4 but 5 is also a very good choice. However since the 

effects of store clashing is less for smaller values of p, it is 

better to underestimate the value of p. 

From the results we see that the optimum value of m is 6, but 

again the choice of m is not critical and any choice of m in the 

range 5 to 10 is equally as good. 

Also included in Table 5.2 are the theoretical run times of the 

algorithm so that they may be compared with the results obtained from 

the simulation. Obviously there is reasonable agreement between the 

two sets of results. 
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p 

m=5 

3 
4 
5 
6 

m=6 

3 
4 
5 
6 

m=7 

3 
4 
5 
6 

m=8 

3 
4 
5 
6 

m=9 

3 
4 
5 
6 

m=10 

3 
4 
5 
6 

Average T Theoretical T Speed-up Efficiency Performance 
p p Factor 

52100 54728 2.496 0.832 2.076 
43892 45254 2.962 0.741 2.194 
39704 40151 3.275 0.655 2.145 
37627 36749 3.456 0.576 1.990 

51894 54335 2.493 0.831 2.071 
43741 44960 2.957 0.739 2.186 
39618 39916 3.265 0.653 2.132 
37579 36553 3.442 0.574 1.975 

51901 54143 2.491 0.830 2.068 
43798 44816 2.952 0.738 2.178 
39702 39800 3.256 0.651 2.121 
37579 36457 3.440 0.573 1.972 

52085 54106 2.493 0.831 2.071 
43951 44788 2.954 0.739 2.182 
39808 39778 3.262 0.652 2.128 
37684 36438 3.445 0.574 1.978 

52328 54190 2.493 0.831 2.071 
44104 44850 2.957 0.739 2.186 
39928 39828 3.267 0.653 2.134 
37841 36480 3.447 0.574 1.980 

52725 54368 2.492 0.831 2.070 
44351 44985 2.963 0.741 2.194 
40138 39935 3.274 0.655 2.143 
37990 36569 3.459 0.576 1.994 

Results of the simulation of Parallel Quicksort for different 
values of m 

TABLE 5.2 

If we now compare the optimum values of p and m obtained by 

simulation and by the analysis in section 5.5, we see that the actual 
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optimum values are not exactly in agreement. 

From the simulation results the optimum value of p is 4 but 

from the analysis it is 5. However, since it is better to under-

estimate p we conclude that the optimum number of processors is 4 

(when n=500) •. 

Regarding the optimum value of m, we see that although the optimum 

values from the simulation results and the analysis are not the same, 

the ranges for m are. Since the actual value of m is not· critical it 

can therefore be concluded that m should lie in the range 5 to 10. 

Finally, we repeat the observation that the best value of m will 

be constant for all values of n but it can be expected that as n 

increases, the optimum value of p will increase very slowly. This 

fact can be confirmed by the observation that, when n is doubled, the 

optimum value of p is only increased by 1. from the-se. '.eSl)\ts it- see~s 

~+ ~ -h.,rd-"Ioral re.\o.-tiof\Shtp be:\weet'\ ~ Q\'\d. t\ of \-he.. forM 

1'1: Q.1~V\ +b ca.1'\ be. esi"o.b\'s'n.ed. 

TiMe. ra.l\\e,r ~o.l'\ spo.c..~ Qn0"ts;s hos beeY\ It\clud4.d \n thiS 

~~f-er (U;. .\~ is ""tended -to assess ",e -por~t\tio.l-hWte. 'M~(CN-e.m-e~t 

o-f the. a.\9ol'\hM W'-"\C~ \5 ih-e.. bQ.s.'s of porQ.\\e,'\c:o~~"V\~)whe.(eo..s 

srace.. sa.\l'Y'\.3 is. f'\o-r of 'T"l'rnar'1 ';'Y\~rro.",ce. 



CHAPTER 6 

SUCCESSIVE OVER-RELAXATION - A PARALLEL APPROACH 
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6.1 INTRODUCTION 

Many problems occurring in science that involve the rates of 

change with respect to two or more variables produce one or a set of 

partial differential equations when formulated mathematically. A case 

that occurs more frequently than any other is the two dimensional 

second order equation 

a2<jl a2<jl 
a --- + b ---- + 

ax2 axay 
(6.1.1) 

where a,b,c,d,e,f and g may be functions of the independent variables 

x and y and of the dependent variable <jl. This equation is said to 

be elliptic when (b 2-4ac)<O, parabolic when (b 2-4ac)=O or hyperbolic 

2 when (b -4ac»O. 

In this chapter we shall investigate the solution of elliptic 

partial differential equations which, in general, are associated with 

steady state situations such as the steady flow of heat or electricity 

in homogeneous conductors. In particular, we shall consider the 

solution of Laplace's equation, defined as, 

a2<jl a2<jl_ 
ax2 + al - ° , 

over a closed region with the Dirichlet boundary conditions, 

<jl(x,O) = <jl(O,y) = <jl(l,y) = ° } and <jl(x,l) = 1 

(6.1.2) 

(6.1.3) 

At present, only a limited number of elliptic partial differential 

equations have been solved analytically and even for those, the 

analytical solution is often extremely laborious to evaluate. Elliptic 

equations are therefore usually solved by numerical approximation 

methods such as finite-difference methods. 

In finite-difference methods, a system of rectangular meshes is 

formed over the region of integration of the elliptic equation by two 
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sets of equally spaced lines, one set parallel to the x axis and the 

other parallel to the y axis. This is illustrated for Lap1ace ' s 

equation with Djrichlet boundary conditions in Figure 6.1 where each 

set of parallel lines are at a distance h apart. At each mesh point, 

i.e., the points of intersection of the parallel lines, the partial 

differential equation is approximated by replacing it by a finite-

difference equation. The finite-difference equation defines each mesh 

point in terms of the neighbouring mesh points and, when applied to 

all of the mesh points, produces a large system of algebraic equations. 

y 

~=O 

1 
] 

~=O 
~ o/~O 

h 
0 h 1 1 

x 

o ~-o 

FIGURE 6.1 

There are two distinct methods for the solution of systems of 

linear equations of this type: direct methods and iterative methods. 

Direct methods such as Gauss Elimination and Triangular Factorisation 

(see Chapter 2) yield, by a relatively complicated procedure, the 

exact solution to the system of equations in a finite number of steps 

if no rounding errors are present. Iterative methods, however, 

involve the repeated application of a simple formula that eventually 

yields the exact answer as the limit to a sequence. 



170 

The system of equations that is produced by the finite-difference 

method is generally large and sparse and so it is preferable to use an 

iterative method for its solution since they are able to take advantage 

of the large number of zeros in the coefficient matrix. Iterative 

methods are characterised by the arbitrary selection of an initial 

approximation ~(O) to the exact solution ~, and the subsequent 

(1) (2) . 
calculation of a sequence of approximations ~ ,~ , ... converging 

to ~. 

When applying certain iterative methods, e.g. successive over-

relaxation (see section 6.3), the order in which the mesh points are 

updated is important and so in this chapter we shall consider various 

mesh point orderings that permit the parallel execution of the algorithm. 

6.2 THE DERIVATION OF THE FINITE-DIFFERENCE EQUATION 

Let us consider the small segment of mesh illustrated in Figure 6.2 

which has a constant mesh size h. The values of ~ at the neighbouring 

mesh points (x,y+h) and (x,y~h) may be expanded in terms of ~(x,y) and 

its derivatives by the use of Tay10r's Theorem thus, 
a~ h2 a2~ h3 a3~ h4 a4~ 

~(x,y+h) = ~(x,y) + h ay(x,y) + 2T ay2(X,y) + 3T ay3(X,y) + 4T ay4(X,y) 

+ •••••• (6.2.1) 
and 

Hx,y-h) 

+ •••••• (6.2.2) 

The addition of these two equations gives, 

~(x,y+h) + ~(x,y-h) = 2~(x,y) 
2 a2~ 4 

+ h -2(x,y) + O(h ) (6.2.3) 
ay 

higher and rearranging leads to which by discarding terms in h4 and 

a2
,j, 

~(x,y) = 
ay 

~(x,y+h)-2~(x,y)+~(x,y-h) 

h
2 

(6.2.4) 



<j>(x,y+h) 

I <j>(x-h,y) <j>(x,y) !j(x+h ,y) 

1 
h--l <p(x,y-h) 

FIGURE 6.2 

Similarly, by the expansion of <p at mesh points (x+h,y) and 

(x-h,y), we have, 

t l(x,h) = 
dX 

<P(x+h,y)-2<P(x,y)+<P(x-h,y) 
"2 

h 

Substitution of the expressions (6.2.4) and (6.2.5) into 

Laplace's equation (6.1.2) yields the five point difference scheme, 

or 

<p(x+h,y)+p(x-h,y) +<p(x,y+h)+<P(x,y-h)-4<P(x,y) = 0 

h2 

<p. 1 . + <p. 1 . + <p. • 1 + <P. . 1 - 4 <P. . = 0 , 1+,J 1- ,) 1,)+ 1,)- 1,) 
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(6.2.5) 

(6.2.6) 

where <p. . = <P(ih,j h), and is represented conveniently by the 'molecule' 
1,) 

of Figure 6.3. 

Five-point Difference Scheme Molecule 

FIGURE 6.3 
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Now consider the following numbering of the internal mesh points 

of a (6 X6) mesh with Dirichlet boundary conditions (6.1.3):-

/ 
</>=1 

4 8 12 16 

~ 7 11 15 </>=0 (6.2.7) --., 
~ </>=0 

2 6 10 14 

1 5 9 13 

'\ 
</>=0 

Then, by applying equation (6.2.6) to each of the internal mesh 

points, we produce the following system of linear equations, 

-4 -1 -1 
-1 4 -1 -1 

-1 4 -1 -1 
-1 4 -1 

-1 4 -1 
-1 -1 4 -1 

-1 -1 4 -1 
-1 -1 4 

-1 
-1 

-1 
-1 

'--

1-1 
-1 

-1 
-] 

4 -1 -1 
1 4 -1 

-1 4 -] 

-1 L 

1-1 4 
-1 -1 

-1 
-] 

-1 
-1 

-1 
4 -1 

-1 4 
-1 

-

-1 

-1 
1 

= 

o 
o 
o 
1 
o 
o 
o 
1 
o 
o 
o 
1 
o 
o 
o 
1 

(6.2.8) 

Thus a system of linear equations has been created by replacing 

the partial differential equation by a finite-difference equation at 

each of the internal mesh points. 
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6.3 THE SOLUTION OF A LARGE SPARSE SYSTEM OF LINEAR EQUATIONS 

In this section we shall define some basic iterative formulae 

(Smith, 1965) that may be used to solve the system of equations (6.2.8). 

(a) The Point Jacobi Method 

Since, at each internal mesh point we have, 

</>0 0 = (</>o 1 0 + </>0 1 0 + </>0 0 1 + </>0 0 1)/4 , 1,J 1+,J 1-,J 1,J+ 1,J-
(6.3.1) 

then a simple iterative formula would be, 

</>~n~l) = (n) en) (n) (n) 
1,J (</>i+l,j + </>i-l,j + </>i,j+l + </>i,j_1)/4 , (6.3.2) 

where </>~n~ represents the n th iterate or approximation to </> at 
1,J 

point (ih,jh). This is called the Point Jacobi method. Clearly the 

(n+l)th iterates are expressed 1 0 1 0 f th. exc US1ve y 1n terms 0 n 1terates 

and so the order in which they are evaluated with respect to the mesh 

points does not effect their values or the rate of convergence to the 

solution. Hence this method is called the Simultaneous Displacement 

~fethod. Unfortunately ~ the rate of convergence of this method is 

slow and hence it is rarely used. 

(b) The Gauss-Seidel Method 

The Point Jacobi formula (6.3.2) may be improved by using the 

latest values of </>0 0 as soon as they are available. If we assume 
1,J 

th that the (n+l) iterative values have been calculated along columns 

1,2, •.• ,(j-1) and as far as point (i-l,j) along column j, and that 

th the (n+l) value at point (i,j) is the next to be calculated, then 

the Gauss-Seidel formula gives 

</>~n~l) = (</>~n) 0 + </>(n+l) + (n) + </>~n~1)1)/4 . 
1,J 1+l,J i-l,j </>i,j+l 1,J-

With this method, we have the added advantage of only needing 

(6.3.3) 

to store the latest value of each </>0 o. This method is a Successive 1,J 

Displacement Method. 
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(c) The Successive Over-Relaxation Method (S.O.R.) 

If ~~n~ is added and subtracted to the right hand side of equation 
1,) 

(6.3.3) we have, 

= ~~n~ + ( (n) ~(n+l) (n) ~(n+1) _ 4~~n~)/4 
~1,) ~i+1,j + i-1,j + ~i,j+1 + i,j-l 1,) 

= ~~n~ 
1,) 

+ r .. 
1,) 

Obviously, r .. is the change in value of~ .. for one Gauss-
1,) 1,) 

Seide1 iteration. The rate of convergence of the Gauss-Seide1 

method can be 'accelerated' by making a larger change to ~ .. thus, 
1,) 

(n) 
= cp .. + wr .. 

1,) 1,J 

(6.3.4) 

(6.3.5) 

where w is positive constant called the acceleration factor which in 

practice lies between land 2. This equation is called the Successive 

Over-Relaxation formula and may be rewri tten in the form, 

= (l_w)~~n~ + w(~~n) . + ~(n+1) + ~(n). + 
1,) 1+1,) i-1,j i,j+l 

~~n~1)1)/4, 
1,) -

(6.3.6) 

from which it is clear that it is a linear combinati6n of the Gauss-

Seidel iterate (6.3.3) and the nth iterate. (Note that when w=l, 

the S.O.R. method becomes the Gauss-Seidel method). In this method 

it is also only necessary to store the latest values of~. . and it 
1, J 

is a Successive Displacement Method. 

In order to find the conditions necessary for convergence of 

these methods, consider their matrix form. Assume that we wish to 

solve the system of equations 

Ai = ~ (6.3.7) 

where A is an (mxm) matrix and 1 and ~ are (mxl) vectors. Then 

(6.3.7) can be expressed in the form, 

(I-L-U)i = ~ (6.3.8) 

where I is the (nxn) unit matrix and -L and -U are strictly lower 



and upper triangular matrices respectively of the form, 

-L = 

0 

a2l 
a31 

0 

a32 ~ , , , , , 
I , 

o 

1 ' 
1 " 

a 1 __ 1 ____ a '0 
m,l m,m-l 

and -u = 
o 

a13- - - - - -al,m 

a23 : 
o : 
" " " " " " '0 a I 

m-I,m 
o 

Hence, the matrix form of the Point Jacobi method is 

t(n+l) = (L+U)t(n) + b 

of the Gauss-Seidel method it is, 

which on rearrangement gives, 

and of the S.O.R. method it is, 

which leads to, 

Now if the error at any stage is the difference between the 

true and approximate solutions, i.e., 
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(6.3.9) 

(6.3.10) 

(6.3.11) 

~(n) = .t - .t(n) (6.3.12) 

then by subtracting (6.3.9) from (6.3.8), we have the error vector 

by the Point Jacobi method as, 

~(n+l) = (L+U)~(n) = (L+U)(L+U)~(n-l)= .•• =(L+U)n+l~(O) ,(6.3.13) 

and similarly, for the Gauss.Seidel method we have, 

~(n+l) = [(I_L)-lU]n+l~(O) 

In the case of S .0. R., the true solution satisfies 

(I-wL).t = (wU-(w-l)I)1 + w~ 

and so the error vector for S.O.R. is 

e(n+l) =[(I_wL)-l(wU_(w_l)I)]n+l~(O) • 

(6.3.14) 

(6.3.15) 
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Thus, for each of these methods, the relationship between 

successive error vectors is 

(n+l) (n) 
e = He (6.3.16) 

where H, the iteration matrix is defined as, 

(L+U), for the Point Jacobi method 

H = (I_L)-lU, for the Gauss-Seidel method 

-1 [(I-ooL) (ooU-(oo-l)I)], for the S.O.R. method. 

Assuming that the m eigenvalues A (s=1,2, ••. ,m) of H are all s 

different, then the corresponding m eigenvectors v form a linearly 
~ 

independent set of vectors, where by the definition of an eigenvalue, 

H~ = A v s-s 
(6.3.17) 

So ~(O) may be expressed as a linear combination of the eigenvectors 

of H thus, 

e(O) = 

therefore, 

and hence, for e(n) we have, 

e(n) = 

m 
L c v 

s=l s~ 

m 

J 

m 
L c Hv 

s=l s ~ 

L c AnV 
s=l s s-s 

= 
m 
L c A v 

s=l s s~ 

Clearly, for convergence of the iterative formula, we require 

e(n) to tend to zero, which means that the eigenvalue A of H with s 

largest absolute value, called the spectral radius of H, must be 

less than unity. 

6.4 THE ESTIMATION OF THE OPTIMUM VALUE OF 00 FOR S.O.R. 

The rate at which the S.O.R. method converges is dependent on 

the value of the acceleration factor 00 and so to maximise the 

(6.3.18) 

(6.3.19) 

convergence rate, the best value of 00, say oob ' must be estimated. 

The basis for the theoretical estimation of oob rests on work done by 
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Young [1954], who developed the theory of matrices possessing the 

following property, which he termed 'property A'. 

For the system of equations (6.3.7), matrix A is said to possess 

property A if there exists two disjoint subsets 5 and T of W (the first 

n integers) such that 5+T=\,/ and if a. . ~O, then either i=j or ie:5 and 
1,] 

je:T or ie:T and je:5. 

In addition to property A, it is necessary that the order in which 

the (n+1)th iterative values are evaluated satisfies a certain condition 

called consistent ordering, which is defined thus. 

If matrix A has property A then it is always possible to reorder 

the equations and unknowns so that the new coefficient matrix has either 

the tridiagona1 form, 

" 
... (6.4.1) 

... 

or the partitioned form, 

~1 FJ 
~ D2 

(6.4.2) 

where the D's are square diagonal submatrices, not necessarily of 

the same order, and the E's and F's are rectangular submatrices. 

Assuming that the equations have been ordered so as to give a matrix 

of the form (6.4.1) or (6.4.2), then a different ordering of the 

equations is said to be consistent with form (6.4.1) or (6.4.2) 

th when the (n+l) iterative values for the two orderings are identical 

for n=O,1,2, .•• , initial inputs being the same of course. 

The importance of these two properties is that, if matrix A is 

consistently ordered and has property A, then the eigenva1ues, A, of 



the S.O.R. iteration matrix and ~ of the Point Jacobi matrix 

(see (6.3.16)) are related by the equation, 

i. e. 

222 
(A+w-1) = AW ~ , 

Now, from equatioIl (6.3.19) we see that the convergence rate 
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(6.4.3) 

(6.4.4) 

is dependent on A and so to optimise the rate of convergence, A, the 

eigenva1ue of maximum Inodu1us of the S.O.R. iteration matrix, must be 

minimised. This is achieved by making the square root in equation 

(6.4.4) equal to zero for ~, the eigenva1ue of maximum modulus of the 

Point Jacobi iteration matrix, i.e., 

2-2 
W ~ = 4(w-1) , 

which yields the result, 

2 

r::z 
1 + /1-1.i-

-2 f ( If this equation is used to eliminate ~ rom equation 6.4.3), we 

obtain the result, 

The eigenva1ue of maximum modulus value of H is called the 

spectral radius of H. Now, since the Gauss-Seide1 method is the 

same as S.O.R. with w=l, substitution of this value for w into 

(6.4.3) gives the result, 

p (G) = p (J) 2 

where peG) and p(J) are the spectral radii of the Gauss-Seide1 and 

Point Jacobi iteration matrices respectively. Thus, wb may be 

expressed in terms of peG) thus, 

2 
W = ---=---

b l+v'l-p (G) 

Using equation (6.3.19) it is not difficult to show that the 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 

(6.4.9) 

successive errors at any mesh point, after a large number of iterations, 
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are related by the equation, 

(6.4.10) 

where p is the spectral radius of H. Therefore the common 

logarithm (base 10) of p is an indication of the number of decimal 

digits by which the error is eventually decreased by each iteration. 

For theoretical purposes the asymptotic rate of convergence, R, is 

defined as, 
R = -log (p) e 

It is not difficult to see that R for the Gauss-Seidel method is 

twice that of the Point Jacobi method. Furthermore, by considering 

loge(wb-l), it can be shown that R for the S.O.R. method is 

approximately 2/€ times that of the Gauss-Seidel method, where 

~2=1_€2, € being small for large n. 

(6.4.11) 

Another useful result that we may obtain is an estimation of 

the number of iterations, n, necessary to make Jn~€, where € is the' 

required accuracy. From equation (6.4.10) it is not difficult to 

show that 

n 
log€ 

~ --''''-',--,,-
log(w-l) 

The estimation of wb and the other quantities defined here 

clearly depend on whether p(J) or peG) can be estimated. Several 
. ... 

methods have been suggested by Carre [1961] and Varga [1962], one 

of which is the Power Method that may be described as follows. 

Assuming the matrix of the finite difference equations is 

consistently ordered and has property A, calculate the sequence of 

approximations 1(1) ,1(2) , ... 1(i) to the solution of the system of 

equations A1=~ by the Gauss-Seidel method and then we have 

lid (i) I1 
peG) = Lim 

i-+«> 11 d (i-I) 11 
where d (i) is defined as ~ (i) =1 (i) -1 (i-I) and 

(6.4.12) 

(6.4.13) 
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(6.4.14) 

Thus, using the power method we can approximate peG), which, 

in turn, can be substituted into equation (6.4.9) to give an estimate 

of w
b

' the optimum acceleration factor. 

6.5 THE SOLUTION OF THE DIRICHLET PROBLEM BY S.O.R. ON A PARALLEL COMPUTER 

It is obviously a trivial problem to perform the Point Jacobi method 

on a parallel computer, since each iteration comprises of m
2 

independent 

evaluations defined by (6.3.2). The use of Successive Displacement methods 

on a parallel computer is not so simple since the order in which the 

(n+l) th l'terates 1 t d t' 1 1 'th S 0 R .. t t are eva ua e , par 1CU ar y W1 ••• , 1S 1mpor an • 

We have seen, in the previous section, that, with the S.O.R. method, it 

is desirable for matrix A, defined in (6.3.7), to possess property A and 

be consistently ordered, and so, when S.O.R. is performed on a parallel 

computer, it is useful but not vital to preserve these properties. 

If the order in which the (n+1)th iterates are evaluated is called 

an ordering, then an ordering that produces a coefficient matrix A which 

is consistently ordered is a consistent ordering. The ordering of the 

mesh points in (6.2.7) is a consistent ordering. This ordering, however, 

is of little use for a parallel computer because it is essentially 

sequential. A much more useful ordering is the red-black ordering 

defined as, 

10 @ 14 ® (6.5.1) 

® 12 ® 16 

9 0J 13 (j) 

CD 11 ® 15 



Clearly, the red-black ordering consists of two passes over the meshes. 

During the first pass we evaluate the (n+l)th iterates at alternate 

mesh points (circled in (6.5.1)) beginning at CD, and in the second 

pass the remaining points (uncircled in (6.5.1)) are dealt with. If 

the finite difference equation (6.2.6) is applied in this order, then 

using S.C.R. we have for the first pass, 

. (n+l) (l_w)</>~n~ (n) (n) (n) (n) 
<p. • = + weep· 1 . + ep. 1 . + ep. . 1 + ep .. 1)/4, 
I,J I,J 1+ ,J 1- ,J I,J+ 1 ,J-
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(6.5.2) 
and during the second pass, 

ep~n~l) = (1-wH~n~ + w(ep~n+l~ ep(n+l) + ep(n+l) + ep~n~li)/4. + . 1 . 1,] 1,] l+l,J 1- ,J i,j+l 1 ,J-

(6.5.3) 

Thus the first pass consists of independent evaluations which may be 

carried out simultaneously and similarly so does the second pass. 

It is unimportant how the evaluations in each pass are shared between 

the processors provided it is done evenly and that the first pass is 

completed before the second pass is commenced (this is to ensure that 

during the second pass, the (n+l)th iterates are available when required). 

An alternative application of the red-black ordering for a two 

processor computer can be produced by applying the technique of folding 

described in chapter 3, which we shall call the folding point ordering. 

In this ordering the two passes of the red-black ordering are executed 

simultaneously, in the following manner, 

(6.5.4) 
(j) 4 @ 8 

2 ® 6 CD 

.@) 3 @) 7 

1 ® 5 @ 
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Processor 1 evaluates the (n+l)th iterates at the uncircled mesh 

points while processor 2 evaluates the (n+l)th iterates at the circled 

mesh points in the order I and (!) , 2 and @ etc. The (n+l) th iterates 

are defined by equation (6.5.2) before the processors cross, and by 

(6.5.3) after they have crossed, for both processors. 

For both the red.black and folding point orderings the number of 

parallel operations per iteration is 

3tm2
2j multiplications + 5t~2j additions, 

where m2 is the number of internal mesh points. 

(6.5.5) 

In order to compare the two mesh point orderings, they are both 

used to solve the Dirichlet problem for different mesh sizes. In each 

case, peG) is estimated using the power method and, by substituting 

this value into equation (6.4.9), wb is obtained. An experimental 

optimum value of w is also found by solving the problem using different 

values of w. The value of w is initially set to 1 and incremented by 

6w until the number of iterations required to satisfy the conditions of 

convergence begins to increase. Then, in the vicinity of the value of 

w that requires the least number of iterations, a smaller value of 6w 

is used. The process is repeated until the region, in which the least 

number of iterations are required for convergence, is found to the 

required degree of accuracy. The experimental best value'of w, say 

w , is the average value of w for which the least number of iterations e 

is required. 

The condition for convergence of the S.O.R. method is, 

I ~.(n+.l) _ ~.(n).1 < e: 
'I' 'I' , for all i, j , 
1,J 1,J 

(6.5.6) 

-5 where e:=5xIO ,and also for the power method, the difference 

between successive estimates of peG) is chosen to be less than the 

same value of e:. Four 'different mesh sizes are used which produce 



(lOxlO) , (20x20) , (40x40) and (60x60) networks. The results obtained 

from these experiments are recorded in Table (6.1), where nA is the 

minimum number of iterations required for convergence, nE is the number 

of iterations estimated from equation (6.4.12), and we and wb are as 

previously defined. Obviously there is, as might be expected, little 

difference between the results achieved by the two orderings. 

Method Mesh size nA nE W ~ e 

10 15 14 1.495 1.490 

Red-black 20 29 30 1. 717 1.717 

point SOR 40 57 58 1.846 1.842 

60 82 76 1.890 1.877 

10 15 14 1.503 1.490 

Folding 20 32 30 1.732 1. 718 

point SOR 40 58 58 1.848 1.842 

60 83 76 1.894 1.877 

TABLE 6.1 

One fact that is not so obvious, however, is that the folding 

point ordering is not consistent. This is the result of the 

" f d" . th simultaneous evaluatlon 0 a Jacent mesh values, since the (n+1) 

iterates at the two points are evaluated using the nth iterative 

values of each other, whereas when evaluated sequentially, the second 

point to be evaluated would use the (n+l)th iterative·value of the 

first point. Hence the sequential ordering is not preserved. 

Clearly, in this case, the fact that the ordering is inconsistent, 

has no serious effect on the performance of the algorithm. One 

question that cannot be answered however until the algorithm is 

actually implemented, is, 'will the 2 processors cross at different 

points during each iteration?' and if so 'will it have a more serious 

effect on the algorithm's performance?' 

183 
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The necessity of consistent ordering is an important question and 

from some of the following orderings it will be seen that the lack of 

consistency can be a serious problem. The main disadvantage is that 

the theory of section 6.4 does not hold, which can make it impossible 

to estimate wb accurately. 

6.6 BLOCK AND LINE ITERATIVE SCHEMES 

The number of iterations required for the convergence of the 

iterative process may be reduced by evaluating iterates at groups of 

mesh points by a direct method. This technique leads to block and line 

iterative methods to which the results obtained in section 6.4 also apply. 

Consider for instance, the following group of mesh points, 

d 

e 2 c (6.6.1) 

~ 1 b 

a 

If equation (6.2.6) is applied to points 1.and 2 we obtain the formulae, 

4<1>1 = ~a • ~b • ~2 • ~f } (6.6.2) 
and 4<1>2 .... 

<I> + <I> + ~d + <I> 1 c e 

which may be rearranged to give, 

<1>1 = (4(<1> + <l>b + <I> f) + <I> + <l>d + <I> )/15 } . a c e (6.6.3) 
and <1>2 = (4(<j> + <l>d + <j>e) + <j> + <l>b + <l>f)/15 c a 

or in terms of i and j, 
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</> .. = (4(</>. 1 .+</> .. l+</>' . 1) +</>. 1 . 1+</>' 2 .+</>. 1 . 1)/15 1,J l-,J 1,J+ 1,J- 1+ ,J+ 1+,) 1+ ,J-

and </>. 1 . = (4(</>. 1 . l+</>' 2 .+</>. 1 . l)+</>' 1 .+</> .. l+</>' . 1)/15 1+ ,) 1+ ,)+ l+,J 1+ ,J- l-,J 1,)+ 1,)-

(6.6.4) 

Clearly, these two equations are independent of each other and 

so may be evaluated simultaneously. Thus, by partitioning the system 

of meshes into (2xl) blocks we can evaluate the iterates at the points 

within each block simultaneously using two processors. The order in 

which the blocks are considered is important and so, remembering that 

the processors of an Mum computer are not synchronous, we shall use 

the red-black ordering as in (6.5.1), except that each point represents 

a (2xl) block •. Any consistent ordering of the blocks may, of course, 

be used but with the ordering defined in (6.2.7) for instance, we cannot 

be sure that all of the latest iterative values will be available when 

required. 

So, using a red-black ordering of the blocks, the (n+1)th iterates 

of the SOR iterative scheme will be defined by, 

</> ~n:l) </>~n~ + ~(4r~n~ + (n) l§$i~~) 
} 

= r. 1 . 1,J 1,] 15 1,J 1+ ,J 
(6.6.5) 

and </> (n+l) (n) w (n) (n) l5</>~n) .) = </>i+1,j + IT( 4r. 1 . + r. . i+l,j l+,J 1,) 1+1,) 

where (n) (</>~n) . (n) + </>~n~ ) r .. = + </>. . 1 1,] l-l,J 1,J+ 1,J-l 

and (n) (n) (n) (n) 
ri+l,j = (</>i+l,j+1 + </>i+2,j + </>. 1 . 1) 1+ ,J-

during the first pass and, 

</>~n:l) = </>~n~ w (4 (n+l) (n+l) l5</>~n~) + IT r.. + r. 1 . -1,J 1,J 1,J 1+ ,J 1,J (6.6.6) 

and </>(n+l) (n) + ~(4r~n+l~ + (n+l) lS</>~n) .) = </>i+1,j r .. i+1,j 15 1+l,J 1,J 1+1,J 

during the second pass. 

In order to use more than two processors, we can either solve for 

more than one block at a time, or, alternatively, partition the system 
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of meshes into larger blocks; so consider the following (2x2) block 

of mesh points, 

i+2,j i+2,j+l 

i+l,j-l i+l,j i+l,j+l i+l, j+2 

(6.6.7) 

i,j-l i,j i,j+l ~ ,j+2 

i-l,j i-l,j+l 

Applying the same technique as was applied to the (2xl) block, we 

obtain the formulae, 

~ .. = (2(CP· 1 . l+CP .. 2+~· 2 .+~. 1'· 1)+7(CP. 1 .+cp • • 1) 1,J 1- ,J+ 1,J+ 1+,J 1+ ,J- 1-,J 1,J-

= r. ./24 
1,J 

= r .. 1/24 1,J+ 

= r. 1 . 1/24 1+ ,J+ 

+cp. 1 . 2+CP. 2 . 1)/24 1+ ,J+ 1+ ,J+ 

+~. 2 .+cp. 1 . 1)/24 1+,J 1+,J-

+cp. 1 .+cp. . 1)/24 1-,J 1,J-

+ cp. 1 . 1 + cp. • 2)/24 1- ,J+ 1,J+ = r. 1 ./24 1+ ,J 
(6.6.8) 

Again, using a red-black ordering of the blocks, the (n+l)th iterates 

during the first pass are defined by, 
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cfl~n:l) = cfl~n~ + ~(r~n~ _ 24cfl~n~) , 
1,J 1,J 24 1,J 1,J 

cfl(n+1) = cfl~n~ 1 + ~(r(n) - 24cfl~n~ ) 
i,j+l 1,J+ 24 i,j+l 1,J+l 

(n+ 1) = (n) ~( (n) _ 24 (n) ) 
cfli+l,j+l cfli+l,j+l + 24 ri+l,j+l cfli+l,j+l 

and ,!. (n+l) = (n) w ((n) _ 24'!' (.n) .) 
~. 1· cfl· 1 . + 24 r. 1· ~ 1 1+,J 1+,J 1+ ,J 1+ ,J 

and during the second pass by, (6.6.9) 

cfl~n:l) = cfl~n~ + ~(r~n:l) _ 24cfl~n~) , 
1,J 1,J 24 1,J 1,J 

cfl(n+l) = cfl(n) + ~(r~n:1) _ 24~~n~ ) 
i,j+l i,j+l 24 1,J 1,J+l 

(n+l) = (n) + ~((n+l) _ 24 (n) ) 
cfli+l,j+l ~i+l,j+l 24 ri+l,j+l ~i+l,j+1 

(n+l) (n) w (n+l) (n) 
cfl· 1 . = cfl· 1 . + 24(r. 1 . - 24 cfl· 1 .) . 1+,J 1+,J 1+ ,J 1+ ,J and 

Obviously, with this scheme, we may use 4 processors simultaneously. 

If there are m2 internal mesh points, m must be even. The latter point 

also applies to the (2xl) block scheme. 

Considering now the number of parallel operations per iteration, 

we have for the (2xl) block s9heme, 

272 (2m multiplications + zm add~tions) 

when using 2 processors and for the (2x2) block scheme, 

(5 2 1· 1·· 9 2 dd·· ) ~ mu t1P 1cat10ns + ~ a 1t10ns 

when using 4 processors. 

The next size of block to be considered is the (3 X3) block, 

9 8 7 

10 c f k 6 

11 b e h 5 

12 a d g 4 

1 2 3 

(6.6.10) 

(6.6.11) 

(6.6.12) 

- -• ....--. --- -.- •• , -=-::.;..------"=--====--=.;.;;--=-=--==-=---::..;====:;.".,.;:;~==-:::--==-==--..:,;:-'"--::::;--:::-=='-='-::"::~-=-



Applying the same technique as before, we obtain the formulae, 

~a = (67(~1+~12)+22(~2+~11)+7(~3+~4+~9+~lO)+6(~5+~S) 

+3(~6-1-~7))/224 

~b = (37~11+11(~1+~9+~lO+~12)+7(~2+~8)+5~5 

+3(~3+~4+~6+~7)/112 , 

~c = (67(~9+~lO)+22(~8+~11)+7(~1+~6+~7+~12)+6(~2+~5) 

+3(~3+~4))/224 , 

~d = (37~2+l1(~1+~3+~4+~12)+7(~5+~11)+5~8 

+3(~6+~7+~9+~lO))/112 , 
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~e = (2(~2+~5+~8+~11)+~1+~3+~4+~6+~7+~9+~lO+~12)/16 (6.6.13) 

~f = (37~8+ll(~6+~7+~9+~lO)+7(~5+~11)+5~2 

+3(~1+~3+~4+~12))/112 , 

~g = (67(~3+~4)+22(~2+~5)+7(~1+~6+~7+~12)+6(~8+~11) 

+3(~9+~lO))/224 , 

~h = (37~5+ll(~3+~4+~6+~7)+7(~2+~8)+5~11 

+3(~1+~9+~lO+~12))/112, 

and ~k = (67(~6 +~7)+22(~5+~8)+7(~3+~4+~9+~lO)+6(~2+~11) 

+3(~1 +~12) )/224 

from which it is not difficult to produce the corresponding S.O.R. 

formulae. Thus, by evaluating the iterative values at all of the mesh 

points within a block simultaneously, we can use 9 processors. Again, 

it is preferable to employ a red-black ordering of the blocks, and for 

this scheme, m must be devisable by 3. 

An unfortunate property of this block size is that the equations 

(6.6.13) are not all of the same form and so the rates at which each of 

the processors traverse the system of meshes will not be the snme. 

However, by considering the processor that has the most work to do, the 

number of parallel operations will be, 
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(8 2 1" 1"" 13 dd"") " " gm mu tlP lcatlons + 91 a ltl0ns per lteratlon. (6.6.14) 

If we compare the number of parallel operations per iteration of 

the three block S.O.R. schemes considered so far, it can be seen that, 

as might be expected, this quantity decreases as the block size (and 

therefore the number of processors) is increased. However, going from 

the (2Xl) block to the (2X2) block, for instance, does not halve the 

number of operations and so it is important to compare the respective 

rates of convergence. For this purpose the experiments performed using 

the point iterative schemes were repeated using the block schemes, the 

results of which are contained in Table 6.2. The headings of Table 6.2 

are the same as those of Table 6.1. The differences in the mesh sizes 

for the (3x3) block scheme are to allow for the fact that m ,(the square 

root of the total number of internal mesh points) must be divisible by 3. 

Method Mesh size n
A nE W wb e 

10 13 13 1.449 1.439 

(2Xl) Block 20 26 26 1.681 1.681 

SOR 40 50 52 1.822 1.824 

60 73 70 1.874 1.867 

10 11 10 1.371 1.365 

(2x2) Block 20 22 22 1.617 1.625 

SOR 40 42 43 1.784 1. 793 

60 61 61 1.846 1.850 

11 10 10 1.345 1.333 

(3x3) Block 20 18 18 1.561 1.563 

SOR 41 36 37 1. 749 1.760 

62 52 54 1.826 1.830 

TABLE 6.2 

As expected, by increasing the block size, the number of iterations 

required for convergence of the iterative schemes is decreased. The 

results contained in Table 6.2 can be combined with the number of operations 
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per iteration required by each method given in (6.6.10), (6.6.11) and 

(6 .. 6.14), to give the total number of parallel operations required by 

each of the block S.O.R. methods, and are recorded in Table 6.3. 

Mesh size 10 20 40 60 

Method P M A M A M A M A 

(2xl) Block 2 26m2 91 2 52m
2 91m2 

100m
2 

175m
2 146m

2 511 2 zm --ym 
SOR 

(2x2) Block 4 55 2 99 2 55 2 99 2 105 2 189 2 305 2 549 2 
-111 --;rn zm zm zm --ym ~ ~ SOR 4 

* 80 2 130 2 
16m

2 
26m

2 
32m

2 
52m

2 416 2 676 2 (3x3) Block 9 g1II --gm ~ --gm 
SOR 

where P=no. of processors, M=multiplications and A=additions 

*mesh sizes are 11~20~41 and 62 as in TabZe 6.2 

TABLE 6.3 

Clearly, by increasing the block size from (2xl) to (2x2), we see that 

the number of parallel operations is approximately halved and so would be 

justified if sufficient processors are available. The effect of increasing 

the block size to (3x3) is not quite so successful but still impressive. 

However, it must be remembered that the equations generated by the (3 X3) 

block are not identical in form and also the parallel overheads will be 

considerably more for 9 processors than for 2 or 4 processors. 

An interesting strategy that should further improve the power of 

these block SOR methods would be to overlap the blocks. Consider, for 

instance, the (2x2) block method defined in the equations (6.6. 9). In 

order to achieve a block ordering similar to (6.2.7), the i and j indices 

are incremented by 2 from 1 to (m-I); the i index being incremented first. 

If the i index is incremented by 1 instead of 2, the blocks in each column 

will overlap such that the elements (i,j) and (i,j+l) of each block will be 
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the elements (i+l,j) and (i+l,j+l) of the previous block (see (6.6.7)). 

Obviously, during an iteration, each element will be evaluated 

twice using the latest iterates at neighbouring mesh points which are 

illustrated as follows: 

(n) (n) 

1-- - - - - - - - -I 
I I 

(n+2) I 
1 

(n+l) (n+l) I 
I 

(n) 
I I 
I I 

(6.6.15) 
1 

I 1 

(n+2) I 
I 

(n+2) (n+2) I (n) 
I i __ - - - - - - - -

Cn+2) (n+2) 

where bracketed values represent the iterative level at each mesh point. 

This method is called the (2X2) Overlapping Block SOR method and by 

applying a similar technique to the (2Xl) Block SOR method we obtain the 

(2Xl) Overlapping Block Method. Table 6.4 contains the results obtained 

by performing the same experiments, as applied to the other S.O.R. methods, 

using the two Overlapping Block S.O.R. methods. 

Method Mesh size nA nE w w 
e b 

10 23 11 1.358 1. 397 

(2Xl) Overlapping 20 62 24 1.204 1.653 

Block SOR 40 137 47 1.147 1.808 

60 200 67 1.159 1.858 

10 18 9 1.321 1.309 

(2X2) Overlapping 20 45 19 1.298 1.583 

Block SOR 40 99 38 1. 239 1. 767 

60 149 55 1.255 1.833 

TABLE 6.4 
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These two overlapping block methods lack consistent ordering, and 

the effect that this has, can plainly be seen in Table 6.4. Apart from 

the number of iterations being excessively large, the value of wb obtained. 

from (6.4.9) is grossly inaccurate. Although subsequent attempts to overlap 

blocks were more successful, the strategy was abandoned because of the 

inability to estimate W satisfactorily. 

The final schemes that we shall investigate are Line S. o. R. Methods 

which involve the solution of one or more complete lines of mesh points by a 

direct method. 

Consider the j th column of mesh points (j =1,2, ... ,m) . I f equation 

(6.2.6) is applied to each mesh point in the column, then the following 

tridiagonal system of equations is created:-

4 -1 <1>1 . 
(n+l) dl . (n) 

,J ,J 
-1 4 -1 <1>2 . d2 . 

0 ,J ,J 
-1 4 .... 

"-
..... ..... .... = 

.... , I 

0 ~-l I I 
.... I I , 

d l '-1 ' 4 <l>ml,j m,j 

where, the right hand side, d .. (i=1,2, ..• ,m), which consists of 
1,J 

(6.6.16) 

values at neighbouring mesh points not lying on the column, is defined 

as, 
d (n) <I> (n~l) + <I> (n+l) (n) = + <I> . l,j 1,J -1 o ,j 1,J+l 

d~n~ <I>~n~l) + (n) for i=2,3, .•. , (m-I) (6.6.17) = <l>i,j+l 1,] 1,J -1 

and d(n~ <I>(n+l) + (n) (n) = <l>m+l,j + <I> . 
m,J m,j-l m,J+l 

Clearly, these formulae represent the Gauss-Seidel Iteration scheme 

and one iteration involves the solution of m such systems of equations. 

In order to.perform this method on a parallel computer, there are 

two possible approaches. One approach involves the use of the Folding 



Triangular Factorisation Method described in Chapter 3, i.e., each 

system of equations would be solved using this method thus permitting 

the use of two processors. Alternatively, Gaussian Elimination 

[Wilkinson, 1965] can be used to solve each system of equations, each 

processor of the parallel computer executing the algorithm on one or 

more of the m systems. 

Since the properties of the Folding Triangular Factorisation Method 

are detailed in Chapter 3, we shall only consider the latter method. If 

the Gaussian Elimination Method is applied to the system of equations 

(6.6.16), the following set of equations are derived: 

1 
4 

1 
gi = (4-g. 1) 

1-

(n) 
for i=2 (l)m , 
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h. = (d .. +h. l)g. 1 1,J 1- 1 (6.6.18) 
",(n+.l) h then, 'I' = 

m,J m 

and for i=m-1(-1)1 

Now considering the S.O.R. method, the (n+1)th iterates of the 

jth column are redefined by the equations, 

~~n~ 1) = ~~n~ 
1,J 1,J 

+ w(~~ ._~~n~) 
1,J 1,J 

for i=l (l)m , 

where <j>'!' . (i=1,2, ... ,m) represents the Gauss-Seide1 solution to the 
1,J 

system of equations (6.6.16) which is defined in (6.6.18) as <j>~n~l). 1,J 

It is important to remember that the g. (i=1,2, ... ,m) need only be 
1 

(6.6.19) 

calculated once since they remain constant for each system of equations 

. and each iteration. 

As with the point S.O.R. schemes and for the same reasons, it is 

necessary to consider the columns of mesh points in a red-black order. 

If the columns are numbered 1 to m from left to right, then each 



i tel'lttion conS.lsts of two passes, the first of which includes columns 

1,3,5 ... (m-l) and the second, columns 2,4, •.. m, assuming that m is even. 

Furthermore, the right hand side vector ~(n), is redefined for the 

first pass as, 

den) 4> (n) + 4>(n~ (n) = + 4> . l,j l,j-l o ,J 1,J+l 
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d~n~ 4> (n) (n) for i=2,3, ••. (m-l) (6.6.20) = + 4>. . 1 1,J i,j-l 1,J+ 

d(n~ 4> (n~ + (n) (n) = 4>m+ 1, j + cj> • 
m,J m,J -1 m,J+l 

and for the second pass, the right hand side vector will be ~(n+l) as 

defined in (6.6.20) instead of den) as defined in (6.6.17). Again, as 

with the point S.O.R. scheme, the first pass should be completed before 

the second is started but within each pass, the order in which the 

columns are considered or shared between the processors is not important. 

Of course, as with the point SOR schemes, it is also possible to apply 

the technique of folding to give a Folding Line S.O.R. method where, 

using two processors, one processor evaluates columns 1,3,5 ..• (m-l) 

while the other evaluates columns m,m-2, ... ,2. Once more the right 

hand side is redefined as d(n) before the processors cross and d(n+l) 

after they have crossed where ~(n) is as in (6.6.20). 

For both methods, assuming m is even and two processors are used, 

the number of parallel operations per iteration will be, 

2 
I(3m-l) multiplications + 5~ additions 

with an additional m multiplications +(m-l) additions before the 

first iteration to evaluate the g. (i=1,2, ••• ,m). 
1 

Now consider two adjacent columns of mesh points which are 

numbered in the following way, 

(6.6.21) 



2irl-1 2m 

2m-3 2m-2 

5 6 

3 4 

1 2 

As with the single line method, equation (6.2.6) may be applied to 

each mesh point in the two columns to give the system of equations, 

4 -1 -1 <PI 
(n+1) d1 

(n) 

-1 4 0 -1 <P2 d2 
-1 0 4 -1 -1 

-1 -1 4 0 -1 ... , 
-1 o " , , , 

-1 
, , , , 

.... .... , 
... ... 

... , .... 
.... ... 

" ... .... ... 
... ~1 ... , ... ... 

... .... ... -1 ... .... .... .... ... \. '4 
I 

-1 -1 <P 2m d2m 

where the solution vector !Cn+1) is defined as: 

<p(n+1)= <P(k+1)/2,j' for k=1,3, ... ,(2m-1) 
{ 

(n+1) 

-k . '" (1"1+ ,) f k 2 4 2 'I'k/2 , j + 1 ' or = , , ... , m 

and the right hand side vector, ~Cn), is defined as, 

den) = <p(n:1) + <p(n) 
1 1,J-1 O,j 

den) = (n) + (n) 
2 <Po,j+1 <P 1,j+2 

{ (n+!) for k=3,5, ... ,(2m-3) 
<P Ck+1)/2,j-1 ' 

dCn) = 
k (n) 

<Pk/ 2,j+2 ' for k=4,6, ..• ,(2m-2) 

den) <p(n+1) + . (n) 
= <Pm+ 1, j 2m-1 m,j -1 

and den) Cn) (n) = <Pm+1 ,j+ 1 + <Pm,j+2 2m 
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(6,6.22) 

(6.6.23) 

(6.6.24) 

(6.6.25) 



These formulae again represent the Gauss-Seidel Iteration scheme and 

one iteration involves the solution of m/2 such systems of equations. 

The coefficient matrix is quindiagonal and so (6.6.23) may be 

solved using the Folding Triangular Factorisation Method or by Gauss 

Elimination. As with the single line S.O.R. method, the latter algorithm 

is considered which leads to the following formulae, 

gl = 1/4, 

g2 = 1/(4+al ), a2 = 

and for k=3(1)2m, 

= {ak _2 

(a
k

_
2
-l) 

hI = dlg l , 

h2 = (d2+hl )g2 

when k is odd 

when k is even 

gk = 1/(4-gk_2-bkak_l), 
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fbkgk-I-I)gk when k is odd (6.6.26) 

a
k 

= 
bkgk-lgk when k is even 

and hk = (dk+hk_2-bkhk_l)gk 

ifJ(n+l) = 2m 
then 

h2m ' 

. (n+ 1) 
ifJ 2m- l = h -a <i. (".l) 

2m-l 2m-l 2m 

ifJ(n+l) = k 
h a1:n+i'> ",(M I' f k 2 2 k-akTk+l+gkrk+2' or =2m- , m-3, ... I. and 

As with the single line S.O.R. method, the application of the relaxation 

technique leads to the (n+l) th iterates of the j th and (j+l) th columns 

being redefined to give the S.O.R. formulae as 

ifJ ~n~l) = ifJ~n~ + w(ti- I-t(n)) } 1,J 1,J 1- 1,J "_ (6.6.27) (n) for1-l,2, ... m, 

and ifJ(n+l) (n) + w(ifJ Zi -= ifJi,j+l 1,J+l) i,j+l 

where 1.* represents the Gauss-Seidel solution 1.(n+l) defined in (6.6.26). 

Again it is only necessary to calculate gk,ak and bk (k=1,2, ..• 2m) 

once. Obviously, with this 2 line S.O.R. method, m must be even and for 



the same reasons as before, a red-black ordering will be used on the 

pairs of columns. This means that the right hand side vector den) is 

now defined as 

(n) 
<p (n) + <P (n~ d1 = 1, j-1 o ,J 

(n) (n) (n) 
d2 = <PO ,j+1 + <P I ,j+2 

for k=3,s, ..• (2m-3) 
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rn1 
d (n) <P(k+I)/2,j-1 

= (6.6.28) 
k 

<P k/ 2 ,j+2 for k=4,6, ... (2m-2) 

den) <P (n) (n) 
= <Pm+l • j 2m-l m,j -1 + 

and den) (n) (n) 
= <P . + <Pm.j+2 2m m+l.J+l 

during the first pass and as d(n+l) during the second pass. Now, if 

m is divisible by 4. the number of parallel operations per iteration 

using 2 processors will be. 

~(lOm-s) multiplications + I(6m-l) additions. (6.6.29) 

with an additional (8m-s) multiplications + (6m-3) additions before 

the first iteration to evaluate gk,ak and bk (k=1.2 •... 2m). 

Thus, we have defined 3 line SOR methods which we shall call the 

Line SOR. Folding Line SOR. and Two Line SOR Methods respectively. In 

order to compare the rates of convergence of these methods, the previously 

described experiments were applied to the methods the results of which 

are contained in Table 6.5. 

It is clear from this table that there is a discrepancy between the 

estimated and actual values of nand w for the Folding Line SOR Method. 

This is because. as with the Folding Point SOR Method. the sequential 

consistent ordering is not preserved. In this case, although not 

disastrous. the effect is noticeable. Not only is the rate of convergence 

less but the estimation of w is inaccurate. and so the method will no 
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longer be considered but it serves to demonstrate the effect that the 

absence of consistent ordering can have. 

Method Mesh size nA nE w wb e 

10 12 10 1.381 1.367 

20 22 22 1.630 1.625 
Line SOR 40 42 43 1. 792 1. 793 

60 61 61 1.855 1.849 

10 15 12 1.559 1.408 

Folding 20 30 23 1. 731 1.640 
Line SOR 40 57 44 1.843 1.797 

60 81 62 1.888 1.850 

10 9 8 1.273 1.244 

Two 20 17 15 1.521 1.516 

Line SOR 40 31 31 1.729 1.724 

60 45 46 1.804 1.804 

TABLE 6.5 

The results obtained using the other two methods are more impressive 

and to make a direct comparison between them, the results contained in 

Table 6.5 must be combined with the numbers of parallel operations per 

iteration found in equations (6.6.21) and (6.6.29). This will give the 

total number of parallel operations required by each of the methods and 

these appear in Table 6.6. 

Clearly, from Table 6.6, it can be seen that the single line SOR 

method, although requiring more additions, requires [ewer multiplications 

than the two line SOR method. Since a multiplication operation takes 

longer than an addition operation, the line SOR method is faster 

operationally than the 2 line SOR method. 

This line SOR technique can be extended to include more than two 

lines of mesh points. However, the resulting systems of equations will 

have a wider bandwidth and will be more sparse. Thus, the object of 



Mesh size 10 20 I 40 60 
I 

Method ~f A M A 
I 

M 
I 

A M A 

Line SOR 2 2 2 2 2 2 183 2 59 305 2 1 ISm -Srn 30m +m-l 33m -1Om 55m +m-l 63m -20m 105m +m-l --zm --zm --zm +m-

Two Line ~2_~_5 2 3 ~2_~_5 2 5 mro2_mn_5 2 19 ~2_~_5 2 33 SOR 2 4 27m 7-3 2 4 5lm -zn-3 2 4 93m --zm-3 2 4 l35m --zm-3 

where M=multiplications and A=additions 

TABLE 6.6 



using an iterative method to solve the original system of difference 

equations will have been defeated in that, once again, the method of 

solution will not take advantage of the large number of zeros that occur 

in the systems of equations. 

In this section point, block and line SOR methods have been 

considered with some interesting results and so, to complete the analysis, 

a comparison will be made between these different types of method in the 

flnal section. 

6.7 CONCLUSIONS 

In this chapter, a variety of SOR methods have been investigated with 

some impressive results. It has become clear, however, that the way in 

which the system of mesh points is partitioned is not as important as the 

order in which values at the mesh points or blocks of mesh points are 

evaluated. Furthermore, the best ordering is the red-black ordering, 

since it produces the conditions necessary for a parallel algorithm. 

The final choice of which method to use will depend on the character

istics of the parallel computer on which it is to be implemented such as 

the number of processors that are available. It is still useful to make 

some sort of comparison between the methods included here. 

Let us consider the Red-Black Point, (2XI) Block, (2X2) Block, Line 

and Two Line SOR methods. Although the (2X2) Block Method requires 4 

processors it is not difficult to implement it on a computer with 2 

processors and so a comparison shall be made between the performances of 

the methods on a parallel computer with two processors. The most 

meaningful comparison that can be made concerns the total number of 

arithmetic operations required by each of the methods which is the 

product of the number of iterations and the number of operations per 

iteration. This technique has already been applied in the previous 
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201 

section to some of the methods and, by applying it to the other methods, 

Table 6.7 can be produced. 

Mesh size 10 20 40 60 

Method M A M A M A M A 

Red-Black 22!m 2 3- 1 2 43!m 
2 

72!m 
2 

85~m 
2 

l42!m 
2 123m2 205m2 

Point SOR /2m 

(2Xl) Block 26m2 45!m 
2 52m2 91m2 100m2 175m2 146m2 255!m 

2 
SOR 

(2x2) Block 27!m 2 49!m 2 55m2 99m2 105m2 189m2 l52!m 2 274!m 2 
SOR 

Line SOR* 18m2 30m
2 33m2 55m2 63m2 105m2 9l!m 

2 
l52!m 2 

Two Line* 22!m 2 27m2 42!m 2 51m2 
77!m 2 93 m 

2 
112!m2 67!m2 

SOR 

where M=multiplications and A=additions 

*results on these lines include terms in m2 only. 

TABLE 6.7 

The results contained in Table 6.7 reveal that the Block SOR methods 

are not as good as the other methods. The best method is the Line SOR 

Method with the Two Line and Red-Black Point SOR Methods also achieving 

very good results. These results are not conclusive however since no 

allowance has been made for such factors as the unsolved problem of 

memory contention (see Chapter 2). 

A final comment on the importance of consistent ordering arises from 

the effect that the choice of W has on the number of iterations required 

for convergence of the method. The number of iterations against w for a 

20x20 system of meshes has been plotted in Graph 6.1 for the 5 methods 

considered in this section. Clearly, a bad choice of w can greatly 

increase the number of iterations and so it is important to be able to 

estimate wb reasonably accurately. 
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To conclude this chapter, let us reiterate the main points in 

developing a parallel SOR algorithm. Firstly, it is desirable but not 

vital to preserve the properties of the sequential ordering, i.e., 

property A and consistent ordering, and secondly, the ordering of the 

mesh points or blocks of mesh points is more important than the way 

in which the system of mesh points is partitioned. Finally the most 

useful ordering, although not the only one suitable, is red-black ordering. 

'" .B. The. ("e.so\\-s, 'hc.lud-td ,1'\ ",,~ ~pte.r) Ih ~r";GlJ'Qr '''' +o.b'.e.s Co. \ ,10. '2. ) 

10.4 and fo.S, were e.."Q.1",o."'.ed on ~~ ICL '<)04S ~M?Ote.r o.t-

lo~hboroo.9~ UV'\i'/e.<S\\-,/ ond ("ouf\ocui .J.o ttifee detlMo..{ -Hju(es. 



CHAPTER 7 

THE CORRECTION OF THE ELEMENTS OF THE INVERSE MATRIX 

BY IMPLICIT ITERATIVE PROCESSES 
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7.1 INTRODUCTION 

The inversion of a matrix involves the solution of the matrix 

equation, 
A.Y = I (7.1.1) 

for Y, the inverse of the (mxm) matrix A. 

The co~puted solution Y of (7.1.1) may be improved or 

corrected by the application of the iterative procedure defined by 

the equations, 

and 

R(n) = I _ y(n)A ,. 

) D(n) = R(n)y(n) (7.1.2) 

y(n+l) = yen) + D(n) , 

which can be reduced to the familiar explicit iterative process, 

y(n+l) = yen) + [I _ yen) .A]y(n) , (7.1.3) 

where the initial approximation y(l) is the computed solution Y of 

equation (7.1.1). Hotelling [1943] showed that this process has 

quadratic convergence. 

In this chapter, two implicit methods are derived and are 

shown to have faster rates of convergence than (7.1.3). The first 

involves a similar amount of work and has the same rate of convergence 

as (7.1.3), but, by applying it in a different manner to that of 

-1 
(7.1.3), A can be evaluated to the same degree of accuracy in a 

shorter time. 

The second method is shown to have quartic convergence but 

despite the impressive results that it achieves, the excessive work 

that is involved per iteration makes it uncompetitive with other 

methods. 
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7.2 HOTELLING'S METHOD 

The iterative process attributed to Hotelling is given in (7.1.3). 

It is essential that the right hand side of this equation is not 

expressed in the form 2y(n)_y(n)Ay(n) so as to avoid the cancellation 

of errors and thus make the method ineffective. It is also important 

that the residual or correction matrix, 

c = (I - y(n)A) 
n 

is computed using the accumulation of inner products with each 

compon'ent of C being rounded once on completion. 
n 

The iterative process is usually terminated when the following 

condition is satisfied 

'" (n) (n) max. abs . [(C . Y ).. ] < 2. eps . (max. abs . [Y ).. ]) 
n 1,J 1,J 

(7.2.1) 

(7.2.2) 

where max.abs.[(Z) .. ] is the greatest absolute value of the elements 1,J 

of matrix Z .. and eps. is the smallest number for which l+eps>l on 

the given computer. 

If we now consider the correction matrix (I_y(2)A), then using 

(7.1.3) we have: 

(J - Y (2) A) = I 

= I 2y(1)A + (y(I)A)2 

= (I_y(I)A)2 = c~ 

Hence we can say that, if all the roots of Cl are less than unity 

in modulus, then the method converges quadratically. 

7.3 THE DERIVATION OF IMPLICIT MATRIX PROCESSES 

It is possible to derive implicit iterative methods by 

proceeding in the following manner. To avoid confusion, let X(l) 

be an approximation to the inverse of A. Then we can write, 

(7.2.3) 

x(l)A = -LI + 01 - U
l 

(7.3.1) 
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where Ll and Ul are strictly lower and upper triangular matrices 

respectively whose non-zero elements are sma~l and 0
1 

is a diagonal 

matrix whose non-zero elements are usually close to unity. 

-1 If we pre-multiply (7.3.1) by Dl we have, 

and letting, 
..... = 'D-lL Ll 1 1 
'V -1 and Ul = Dl Ul 

} 
we may rewrite (7.3.2) as, 

which in turn may be rewritten in the alternative form, 

where 

and 

O~lX(l)A = (I-Ll ) (I-VI) - LlDl 

= (I-Fl)Gl 

~ 'V -v -1 -v-I 
Fl = LlUl (I-Ul ) (I-Ll ) 

-v "V 

Gl = (I-Ll ) (I-Ul ) } 
Equation (7.3.5) may be rearranged to have the form, 

A-I = G-l(I~F )-lO-lX(l) 
1 1 1 

which leads to the implicit matrix equation, 

G X(2) ~ (I-F )-lO-lX(l) 
1 1 1 

where X(2) is a closer approximation to A-I than X(l). 

Now the elements of the matrix Fl are certainly small from our 

initial assumptions and if all the roots of Fl lie within the unit 

circle, we can expand (I-Fl)-l in the form of an infinite series in 

Fl . Thus 

If we now neglect all of the terms in Fl we obtain the simple 

matrix equation, 

(7.3.2) 

(7.3.3) 

(7.3.4) 

(7.3.5) 

(7.3.6) 

(7.3.7) 

(7.3.8) 

(7.3.9) 

G X(2) 
1 (7.3.10) 



Using (7.3.3) we may rewrite this as, 

(I_O- 1L )(I-0-1U )X(2) 
1 1 1 1 

which leads to, 

Introducing the auxiliary matrix Y such that, 

Y = 0-1 (0 -U )X(2) 
1 1 1 

equation (7.3.11) may be expressed in the form, 

(0 -L )Y = X(l) 

} 1 1 

and (0 -U )X(2) = DIY 1 1 

The matrices 01,L1 and U1 may be easily obtained from (7.3.1) 

and thus so may (01- L1) and (01-U1)' Hence, equations (7.3.13) may 

be solved by carrying out simple consecutive implicit forward and 

backward substitution processes acting on each column of X(2) using 

the corresponding column of X(l) as the right hand side vector. 

Thus we have a first order implicit iterative method for 

improving the inverse of the matrix A. 

A second order implicit process may be obtained by returning 

to equation (7.3.9) and this time retaining the initial term in 

-1 the expansion of (I-F1) . Thus, 

G X(2) = (I+F )O-lX(l) 
1 1 1 

but from equation (7.3.5) we have, 

F1 = I_0- 1X(1)AG- 1 
1 1 

from which on substituting into (7.3.14) we obtain, 

G X (2) 
1-

207 

(7.3.11) 

(7.3.12) 

(7.3.13) 

(7.3.14) 

(7.3.15) 

Now from (7.3.6) we have, 

and using (7.3.3), 

G~l = [(I-L1)(I-U
1
)]-1 

= (I-U
1
)-1(I-L

1
)-1 
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-1 -1 -1 
Gl = (D1-Ul ) Dl(Dl-Ll ) 01 (7.3.16) 

Substituting this result into (7.3.15) and rearranging we have 

where 

As with the first order process (7.3.11), the second order 

process may be expressed in the form 

and 

where 

(D -L )Y = X(l) + 
1 1 

(D -U )X(2) = D Y 
III 

Y = D-l(D -U )X(2) 
III 

H X(l) 
1 } 

(7.3.17) 

(7.3.18) 

which may be solved by carrying out consecutive forward and backward 

substitution processes acting on each column of X(2) and the 

corresponding column of X(l) • 

Again the matrices D1,LI,Ul,(DI-Ll) and (DI-UI ) are easily 

obtainable and since the latter two are triangular in form, their 

inversion presents no special computational difficulties. Once the 

matrix product X(l)A has been evaluated, matrix HI is produced by 

first evaluating (Dl-Ul)-l and Dl(Ol-Ll)-l, then their product 

( -1 -1. (1) -1 -1 Dl-Ul ) Dl(Dl-Ll ) and f1nally [I-X A(D1-U l ) 0l(Dl-L
l

) J. The 

greater potential of this second order process is seen in section 7.5. 

7.4 CONVERGENCE PROPERTIES OF THE FIRST ORDER IMPLICIT PROCESS 

Let us now consider the error of X(l)A which is quite simply 

the amount by which X(l)A differs from the truesolution I. Thus we 

have, 
I_X(I) A = L 

1 

When equation (7.3.10) 

the result, 

is post-multiplied by A, we obtain 

(7.4.1) 



or 

Combining this result with equation (7.3.5), we obtain, 

X(2)A = GilCI-Fl)Gl 

-1 = I-Gl FlGl 

Hence, the error of x(2)A is given by, 

I - x(2)A = GilFlGl 

where from equations (7.3.6) we have defined 

and 

Since the elements of Ll and Ul are small, and if the roots 

of Ll and Ul lie within the unit circle, then equation (7.4.4) Inay 

be expanded in the form, 

I - X(2)A = (I-Ul)-l(I-Ll)-lLlU
l 

'" -v 'V 

= (I+Ul +· .. )(I+Ll+···)LlUl 
""" ""tJ --....." """ - ....., .....,2'" 

= LlUl + (Ll+Ul)LlUl + UlLlUl +··· 
-1 -1 

= 01 LlOlYl+ 
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(7.4.2) 

(7.4.3) 

(7.4.4) 

(7.4.5) 

(7.4.6) . 

At this stage it is necessary to discuss the order of magnitude 

of the elements of the matrices Ll,Ul and °1, which we would normally 

find in practice. 

If, for example the first approximation to the inverse has been 

determined by a simple direct method, the elements of Ll,Ul and 

(1-01) will in general be of the same order of magnitude. Then, we 

may write, 

Also, since matrix 01 is a close approximation to I then its 

elements and likewise the elements of Oil will have values close to 

unity and so may be replaced by I. 

Hence, by applying norms to equation (7.4.6) to the first 

order of approximation we have, 

(7.4.7) 



where 

N(I-X(2)A) = N(L U ) 
1 1 

N (C) = [L:L:C~ ,j] ~ 
and is defined as the square root of the sum of the products of 

its elements by their complex conjugates. 

Since, from (7.4.1) we have, 

2 2 
Cl = (Ll+Ul+I-Dl ) 

then N(C~) > N(LlUl ) 
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(7.4.8) 

(7.4.9) 

(7.4.10) 

for omitted terms can only be positive or zero in the trivial case. 

Hence,from (7.2.3) we can say that, 

N(I-X(2)A) < N(I-y(2)A) . 

Thus, the proposed implicit method has quadratic convergence 

and competes with Hotelling's method. However, it is obvious that 

the formula given by equations (7.3.13) converges faster through 

having smaller neglected terms. The amount of work in each 

iteration remains the same as that for the Hotelling's formula, 

i.e. 0(2m
3
) multiplications per 1teration where m is the order 

of the matrix. 

We shall now derive an upper bound for the error in xCi) in 

terms of N(x(l)) and N(Cl ), the norms of the matrices X(l) and Cl 

respectively. 

(7.4.11 ) 

Let R. denote the residual matrix. Then by definition we have, 
1 

where 

R. = I -
1 

G.x(i+l) = 
1 

together with, 

X(i)A = -L.+D.-U. 
111 

and 

for i=1,2,3, ..• , 

D. X (i) 
1 

...1 -1 
G. = D. (D. -L. )D. (D. -U.) . 

1 1 111 1 1 

Now, by taking norms in equation (7.4.12), we have 

N (RI) = 

and from equation (7.4.11), 

N(I-x(I)A) = N(C ) 
1 

N(R2) = N(I-X(2)A) < N(Ci). 

(7.4.12) 

(7.4.13) 

(7.4.14) 



finally giving, 
N(R. ) = N(I_X(i+l)A) < N((C

1
2)i) . 

1+1 

Hence, it follows immediately that 
i 

N(A-l_X(i+l)) < N(Ci A-I) 

-1 
which on substitution for A as given by equation (7.4.1) yields 

the final required result 
i 

N(A-l_X(i+l)) < N(C2 (I-C )-lX(l)) 
1 1 

2i 2 (1) 
< N(Cl (I+Cl+Cl+···)X ). 

If N(Cl)~k<l, the roots of Cl are less than unity in absolute 

value and we obtain the result, 

N(A-l_X(i+l))< N(x(1))k
2i

/(1_k) 

where N(Cl ) = k < 1 • 

This gives an upper bound for the difference between each 

element of X(i+l) and the corresponding element of A-I. 

A simpler limit can be derived when we use the relation 

N CX Cl)) < mx , 

where x is the greatest absolute value of any element of XCI) and 

we substitute this relation into equation (7.4.17). 

7.5 CONVERGENCE PROPERTIES OF THE SECOND ORDER IMPLICIT PROCESS 

We shall now apply a similar analysis to the second order 

implicit process as has been applied to the first order process 

in section (7.4). First of all we shall consider the error of 

X(2)A which, as before, is the amount by which X(2)A differs from I. 

So, from equation (7.3.14) we have, 

G X(2) = (I+F )D-lX(l) 
1 1 1 
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(7.4.15) 

(7.4.16) 

(7.4.17) 

which on post-multiplying by A and rearranging gives, 

X(2)A = G~l(I+Fl)D~lX(l)A . (7.5.1) 



Now, using the result of equation (7.3.5), we have 

X(2)A = Gi1(I-F~)G1 
-1 2 = I-Gl FlGl 

Thus, the error in X (2) A is given by, 

I - X(2)A = G- l F2G 
III 

Since, from the definitions'of Fl and G
l 

in (7.3.6), we have, 
~ -v 

FlGl = LlUl 

and -1 ~ -1 ~ _1""" '" '" -1 ~ -1 
Gl FI = (I-Ul ) (I-Ll ) LlUl (I-Ul ) (I-Ll ) 
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(7.5.2) 

(7.5.3) 

= (I+Ul +···) (I+Ll +·· .)Lli\ (I+Ul +···) (1+1:
1
+ .•• ), 

then, 
~.-v 2 

(LlUl ) + higher powers 

-1 -1 2 = (01 LlDl Ul ) -1 -1 + higher powers of 0
1 

LlDl U
l

• 

If we again examine the elements of the matrices Ll,U
l 

and 0
1

, 

then (7.5.4) may be reduced to the form, 

In the light of earlier observations concerning the error in 

the first order implicit process, we can write immediately that 

N(I_X(2)A) < N(C1) 

Thus. the proposed method has quartic convergence and so 

represents an extremely powerful process. Unfortunately, offset 

against this advantage, we note that the computational requirements 

(7.5.4) 

(7.5.5) 

(7.5.6) 

for the implicit formula is O(~3) multiplications for each iteration. 

As with the first order implicit method, we shall now derive an 

upper bound for the error in Xli) in terms of N(X(l)) and N(C
l
). 

Once again we have the residual matrix Ri defined in (7.4.12) 

as 

where now, 



and taking norms we have, 

From equation (7.5.6) we now have 

N(R2) = N(I_X(2)A) < N(Ci) 

and hence, 
N(Ri +l ) = N(I_X(i+l)A) < N((Ci)i) 

Again it follows that 
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(7.5.7) 

(7.5.8) 

(7.5.9) 

and N(Cl)~k<l, the roots of Cl are less than unity in absolute value 

and we obtain the result, 
i 

N(A-l_X(i+l)) < N(X(1))k4 j(l-k) 

where N(Cl)=k<l. 

Thus, as in (7.4.17), we have produced an upper bound for the 

error in X(i+l) and again this may be simplified by the use of the 

relation 
N eX Cl)) < mx, 

where x is the greatest absolute value of any element of x(l) . 

7.6 IMPLEMENTATION OF IMPLICIT ITERATIVE METHODS AND RESULTS 

In the following experiments we shall consider the inversion 

of symmetric positive definite matrices. The normal implementation 

(7.5.10) 

of Hotelling's method involves the calculation of an initial 

approximation to A-I by a direct method, i.e., Choleski factorisation 

(Martin, Peters and Wilkinson [1965], [1966]). 

Choleski factorisation may be defined as follows: 

A = L.LT (7.6.1) 

where L is a lower triangular matrix whose elements are determined 

by the following formulae, 



for i=l (l)n 
j -1 

L . = Ca .. - I L kJl,· k)/JI,. . 
1,J 1,J k=l 1, J, J,J 

j=l, •.. ,i-I. 

and JI, .. = Ca .. -
1,1 1,1 

Since triangular matrices are easily invertable, then we may 

take advantage of this fact by observing that, 

A-I = CLoLT)-l = (LT)-l.L- l = (L-l)TL-l . 

-1 If we denote L (also a lower triangular matrix) by P, then 

the elements of P are defined thus, 

for i=l(l)n 

p .. = l/JI, .. 
1,1 1,1 

) j -1 
p. . = - ( r JI,. kPk .) / JI,. . 

J,1 k=i J, ,1 J,J 

for j=i+l, ... ,n. 

Finally, we have 

-1 and since A is symmetric it is only necessary to calculate the 

lower triangle of elements defined as follows: 

-1 
(A ) .. = 

J,1 
T 

(P • P) .. = 
J,1 

n 

r Pk, J' Pk, i 
k=j 

for j=i, ... ,n 

and i=l, ..• ,n. 

Now using this method to provide an initial approximation to 

-1 A , the three methods i.e., Hotelling's method and the first and 

second order implicit iterative methods, were used to find the 
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(7.6.2) 

(7.6.3) 

(7.6.4) 

(7.6.5) 

inverses of the following examples, take.n +ct,N\ Cresor"J o.",d u..o.me.'11)~b~] 

Example 1 

A = ~
1.0 

-0.02 
-0.12 
-0.14 

-0.02 
1.0 

-0.04 
-0.06 

-0.12 
-0.04 
1.0 

-0.08 

-O'l~ -0.06 
-0.08 
1.0 
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Example 2 The quindiagonal matrix, 

5 -4 1 0 0 
-4 6 -4 1 0 

A = 1 -4 6 -4 1 
0 1 -4 6 -4 
0 0 1 -4 5 

ExamEle 3 The Wilson matrix, 

[~ 
7 8 

1~ A 5 6 = 6 10 
5 9 

ExamEle 4 

[I 
1 4 

-~ A 10 5 = 5 10 
-1 7 

ExamEle 5 

r 210 140 

1O~ A 
210 140 105 84 = 140 105 84 70 
105 84 70 60 

The performance of each method is recorded in Table 7.1 where for 

each example we give the number of iterations required for convergence 

of the formula and the run time. The condition for convergence is 

given in equation (7.2.2). 

In the first example, each method converges in one iteration. 

Clearly.the initial approximation to A-I is correct to within the 

accuracy of the computer and the first application of each iterative 

formula merely confirms this. 

In examples 2,3,4 and 5, each method converges in two iterations. 

-1 In these cases, the initial approximation to A is very good and the 

first iteration produces the correct result to within machine accuracy 

which the second iteration confirms. 

-1 Obviously, the initial approximation to A provided by the 

Choleski inversion method is too accurate to demonstrate the improved 

convergence rates of the implicit iterative methods, so the examples 



lVere repeated using the identity matrix as the initial approximation 

-1 
to A . The results from the second set of experiments are contained 

in Table 7.2. 

The results for example 1 clearly demonstrate the different 

convergence rates. In complete agreement with sections 7.4 and 7.5, 
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the first order implicit method has a slightly better convergence rate 

than Hotelling's method while the second order implicit method requires 

only half the number of iterations that Hotelling's method requires. 

Hotelling's method does not converge for examples 2,3,4 and 5, 

but the implicit methods do. The second order method requires 

approximately the same number of iterations as the first order method. 

This is due to the effect of rounding errors in the second order method, 

which is as might be expected because of the extra arithmetic involved. 

It is clear, from Tables 7.1 and 7.2, that Hotelling's method does 

not always converge when using I as an initial approximation to A-I and 

that the more accurate approximation produced by the Choleski Inversion 

Method must be used. Using. this approximation with the first order 

implicit method, it can be seen that it is competitive with Hotelling's 

method both in terms of the number of iterations and the run time, 

being at least as fast as Hotelling's method. However, since the first 

order method is reliable when using I as an initial approximation to A-I, 

then unlike Hotelling's method it is not necessary to use the more 

accurate approximation. So, comparing the run times for the First 

Order Method using I with those of Hotelling's Method using Choleski 

Inversion, we see that the former method is significantly faster. 

The second order implicit method, although achieving some 

impressive results in terms of the number of iterations, is relatively 

slow because of the excessive work involved per iteration. 



" 

EXAMPLE HOTELLING'S 1ST ORDER 
METHOD IMPLICIT METHOD 

1 

2 

3 

4 

5 

No. of iterations 1 

Run time 24 

No. of iterations 2 

Run time 25 

No. of iterations 2 

Run time 24 

No. of iterations 2 

Run time 24 

No. of iterations 2 

Run time 25 

N.B. The run time is given in miZl units 

TABLE 7.1 

1 

23 

2 

24 

2 

24 

2 

23 

2 

23 

EXAMPLE HOTELLING'S 1ST ORDER 
METHOD IMPLICIT METHOD 

1 

2 

3 

4 

5 

No. of iterations 6 

Run time 21 

No. of iterations Does 
not Run time converge 

No. of iterations Does 

Run time not 
converge 

No. of iterations Does 

Run time not 
converge 

No. of iterations Does 

Run time not 
converge 

N.B. The run time is given in milZ units 

TABLE 7.2 

5 

22 

6 

24 

6 
22 

6 

23 

6 

23 
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2ND ORDER 
IMPLICIT METHOD 

1 

27 

2 

29 

2 

27 

2 

28 

2 

27 

2ND ORDER 
IMPLICIT METHOD 

3 

26 

6 

32 

5 
28 

6 

29 

5 

29 



218 

Finally, the program for the first order implicit method calculates 

the full inverse A while the program for Hotelling's only produces the 

-1 lower triangle of A • Hence the first order method's program can be 

used to evaluate the inverse of an unsymmetric matrix while the program 

for Hotelling's method would have to be adapted to produce the full 

inverse of the matrix. 
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In the opening chapters of this thesis, various types of parallel 

computer were discus·sed. It was stated that since the problems 

associated with SIMD computers were less formidable than those 

associated with MIMD computers, the present state of the development 

of SIMD computers is more advanced. However, it is also obvious that 

it is important not to neglect the development of MIMD computers since 

there is only a relatively small class of problems for which the 

solution on an SIMD computer is eminently suitable. The point is that 

it is important not to develop one type of computer while neglecting 

others, particularly if, for that. type of computer, it is difficult or 

impossible to design good algorithms. 
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In the same way it is important not to develop one type of algorithm, 

while neglecting others, if there is not a suitable computer on which to 

use that type of algorithm. At the same time a type of algorithm should 

not be dismissed completely if it does not perform as well as another 

type of algorithm on existing computers. 

Clearly then, it is important that the development of computers 

and algorithms goes hand in hand, i.e., the computer designer must be 

aware of the types of algorithms available while the algorithm designer 

must be aware of the capabilities and performance of the proposed 

computers. 

The algorithms presented in this thesis outline a variety of 

different strategies for developing parallel algorithms. A general 

classification of the different types of parallel algorithm has been 

made by Kung [1976] and are as follows: 

(a) synchronized parallel algorithms, 

Cb) asynchronous parallel algorithms, 

(c) synchronized iterative algorithms, 

(d) asynchronous iterative algorithms, 



(e) semi-synchronized iterative algorithms, 

and (f) adaptive asynchronous algorithms. 

To define these classes of algorithms, it is assumed that'an algorithm 

consists of segments some or all of which can be executed in parallel. 

A parallel algorithm is said to be synchronised if one of the 

segments of the algorithm cannot be executed until one or more of the 

other segments have been completed. As an example, consider the 

evaluation of the simple expression, 

T = AxB + CxDxE 

which has three segments, sl,s2 and s3' defined as 

sI is X = AxB 

s2 is Y = CxDxE 

and s3 is T = X+Y 

Clearly sI and s2 can be executed concurrently, but s3 cannot be 

started until sI and s2 have been completed and so this is a simple 

synchronized parallel algorithm. 

When there is no such dependency b~tween segments, the parallel 
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(8.1) 

(8.2) 

algorithm is said to be asynchronous. In general, with an asynchronous 

algorithm there will be global variables, accessible to all processors, 

which control which segment is executed next by a processor. The 

manipulation of global variables would be programmed as a critical 

section to protect the variables from being operated on by more than 

one processor simultaneously. A simple example of this type of 

algorithm is the addition of two vectors (2.1.1). If one segment is 

and another is 

c. = a. + b. for i=l,2, ... n/2 , } 1 1 1 

c. = a. + b. for j=n/2,n/2+l, .•. n, 
J J J 

(8.3) 

then obviously there is no dependency between the two segments. 

In a synchronized iterative algorithm, each iteration has more 

than one segment and synchronization occurs at the end of each 



. . . h ( l)th. . '1 h th IteratIon, I.e., t e n+ IteratIon cannot commence untl ten 

iteration is completed. As an example, consider the Newton iteration 

formula -1 
xi+l = xi - ft(xi) f(xi ) 

which evaluates the zeros of function f. During each iteration f(x) 

and fl(x) can be evaluated followed by x. 1 which is where the 
1+ 

synchronization is needed. 
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(8.4) 

An asynchronous iterative algorithm does not require synchronization 

at all. This may be illustrated by using the same example as used for 

the synchronized iterative algorithm but with one processor evaluating 

f(x) and x, and another evaluating fl(x). If each processor uses the 

latest values of x, f(x) and f'ex), then they can run independently. 

This is then an asynchronous iterative algorithm. 

Semi-synchronized iterative algorithms are a combination of 

synchronized and asynchronous iterative algorithms. If one processor 

. l' .th. t' d h . .th. . IS current y on Its lItera Ion an anot er on ItS] IteratIon 

then, assuming that i>j, a restriction is imposed such that i-j<b, 

where b is a positive integer. This implies that the first processor 

does not get more than b iterations ahead of the second. This 

technique can easily be applied to the asynchronous Newton iteration 

algorithm. 

Finally, there are adaptive asynchronous algorithms in which 

the number of segments performed by each processor are not pre-

determined but depend on the relative speeds of the processors. 

Consider the example of vector addition (8.3) used to illustrate the 

asynchronous parallel algorithm. Although the work has been shared 

equally between the processors, if the processors do not work at the 

same speed, the difference in the time that each processor requires 

can be considerable. Let the two segments be redefined as 



c. = a. + b. i=1,2, ..• ,m } 1 1 1 

and c. = a. + b. j=n,n-l, ••. ~m+l 
J J J ')lI,~ 

" 

where m is determined at run time i.e., each processorcontiriues 

operating until the indices i and j are such that i=j =m~ '; 'This is 
" 

an adapti ve ~synchronous algorithm. Obviously, the time between each 

processor finishing can be at most equal to the timerequ~~e~' to 
.. 11.,,, • 

evaluate one element of c and so the algorithm is expected to be 

relatively efficient. 
v(: ; 

If we classify the main algorithms presented in this thesis 

using these definitions, the algorithms presented in Chapters 3 and 4 
, .. ~ . .' 1 \..." , ;;" !J~: 

for the soiution of banded and triangular syst~m~ of equations are 
.... ' " , ., .,.ti ~'. . "! .... ... ." : .. ~ .: 

synchronised parallel algorithms. The Parallel Quicksort Algorithm 
, .~ ,~ "1" ... ," "\/. 

(Chapter 5) is an adaptive asynchronous algorithm and the S.O.R. 
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(8.5) 

, .. " i l~' ' 

strategies presented in Chapter 6 are synchronized iterative algorithms. 
. ~ .' , ... ' .. 

The implementation of the algorithms, contained in this thesis, 
. ' " '.;:J" , : (It, ~; '.I,': 

on a parallel computer has been limited by both time and opportunity. 
, ~" .. : ~ 

The only available working computer is the Loughborough University 
.':. '. '1:·: ~. 

Department of Computer Studies Interdata Dual Processor which has 

restricted experiments to the use of two processors only. However, 
):1~' . ." ,' ... 

some of the algorithms have been implemented successfully [Bar10w, 1977(a) 
. '-_e:' ' j ';. I 

and (b), and Bar10w and Evans,1977] and the Speed Ups attained by them 
, , 

., I 

are presented in Table 8.1. 

Algorithm 
: , ... ' 

Order of Problem Speed Up Effi~~ency 
... ". (:' . ..I,' ,( 

Parallel Triangular 
Factorisation Method 

(Chapter 3) 
, .' . ,~ -

Parallel Quicksort 
Method (Chapter 5) 

p'aralle1 Line S.O.R. ' 
Method (Chapter 6) 

, 

m=2,. ' ' " 

n=64 

n=1024 
, ~ c' 

m=18 
m=30 

TABLE 8.1 

", 

1.6 

.J .', 

, , L'6 

~ 1. 81 
( 1.87 

" 

" 

0.8 ,h " 

'O~ 905 'L 

0.935 
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These results are clearly very encouraging at this stage in the 

development of both parallel algorithms and the Interdata Dual Processor. 
I 

The efficiency of the Parallel Triangular Factorisation and Parallel 

Quicksort Methods are not quite as good as the Parallel S.O.R. Method. 

This is due to ~ynchronization in the former case, and in the latter 

case to the initial partitioning step being sequential. Theresults 

also give some idea of the parallel overheads which, although not 
I 

large, are significant. 

Conclusive evidence is not presented here of any type of algorithm 

being significantly better than others. Any such evidence would only be 

conclusive of course for the Interdata Dual Processor. However the 

results do reveal that for MIMD computers, it is best to keep sequential 

segments of a parallel algorithm to a minimum and avoid excessive 

synchronization. Thus, these two points coupled with the techniques 

applied in this thesis should enable the development of good 'parallel 

algorithms for the solution of many problems. 
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APPENDIX A 



An esser!tia1 part of the analysis of the run time of Parallel 

Quicksort is the estimation of the frequencies with which each state-

ment is executed. Thus, to complete the analysis, it is necessary to 

know the time required to execute each statement. This information is 

also require~! so that the method can be simulated accurately. 

The statement times will of course vary from computer to computer 

but since the algorithm is not designed for a particular computer, we 

shall use computer independent timings. 

To derive computer independent statement times, we define a matrix 

T such that t .. is the time for statement i (i=1,2, ... n) when executed 1,J 

on computer j (j=1,2, ... ,m). Obviously there will not qe a constant 

ratio between statement times on different computers but it is a 

reasonable assumption to make that, 

t .. '" s. x M. (i=1,2, ... n, j=1,2, ... m) 
1,J 1 J 

where s. is a time factor dependent on the statement only 
1 

and M. is a time factor depending on the computer only. 
J 

If we introduce a factor R. . into equation (1) where R. . 
1,J 1,J 

is close to anity, then we have 

t .. = s. x M. 
1,J 1 J 

Now, in order to calculate the s. 
1 

least squares to minimise errors 

x R .. , (i=1,2, ... n, j=1,2, .•. m). 
1,J 

and M. we may use the method of 
J 

by first assuming that s. and M. 
1 J 

are exact and that the errors in R. . are the amount by which they 
1,J 

differ from unity. Then, taking logs, equation (2) becomes, 

(1) 

(2) 

R,n t .. = tn s. + tn M. + tn R .. , (i=1,2, ... n, j=1,2, ••• m) (3) 1,J 1 J 1,J 

where R,nX = log (X), e 

and since R,nl=O, we must now minimise R,n R ... So let E, the sum of 
1,J 

the squared errors, be, 

E = 2 I I {R,n R. .} 
.. 1, J 
1 J 

(4) 
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To minimise E with respect to s. and M., equation (4) must be 
1. J 

differentiated with respect to these variables giving, 

L U~ s. + Q,n M. - Q,n t .. ) = m Q,n s. + LQ,n M. Q,n t.* = 0 
j 1 J 1,J 1 . J 1 

J 
and 

I Un s. + Q,n M. - Q,n t. .) = L Q,n s. + nQ,n M. - Q,n t*. = 0 
i 1 J 1,J i 1 J J 

where Q,n t.* and Q,nt*. are row and column sums respectively of the 1 J 
matrix (Q,n t. .). By taking Ml=l, these equations may be solved 1,J 

explici tly to give, 
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(5) 

and 

Q,n M. 
J 

Q,n s. 
1 

= (Q,n t*j - Q,n t*l)/n 

= Q,n ti*/m + Q,n t*l/n 

for j=1,2, ..• m 

i=I,2, ... JC61 
where Q,n t** is the sum of all the elements of (Q,n t .. ). 

1,J 
Finally, by taking exponentials, values of the s. and M. can be 

1 J 
calculated easily, in particular, the s .. 

1 

Computer independent statement times have been obtained in this 

manner for Algol 60 by Wichmann [1973], and those of relevance to the 

analysis of Program 7 are as follows, where the units aTe approximately 

one machine instruction time:-

for operators, +,- = 1 unit, 

and 'I' (integer division) = & units. 

Access to simple and array variables = 1 unit, 

and use of constants = 1 unit. 

Array variable access is allowed for by weighting the opening 

bracket thus, [ 

and commas separating subscripts as 

The assignment symbol + is ignored. 

For boolean operators we have' 'GT' ,'LT' 

and for conditional statements 'IF' 
'THEN' 

and 'ELSE' 

= 3 units, 

= 3 units. 

= 2 units, 

= 0 units J 

= 2 units, 
= 1 unit. 



Loop statements are weighted according to the for list elements which 

are, 

(i) <a> 'WHILE' <b> where for each time around the loop allow 

(expression <a> + expression <b> + 8) units and the same amount for 

the final test, 

(ii) <a> 'STEP' <b> 'UNTIL' <c> where for the initial assignment 

and test allow (expression <a> + expression <c> + 3) units and for each 

time round the loop (expression < b > + expression <c> + 12) units. 

For the branch statement 'GOTO' = 2 units, 

and for entry and exit to a block allow 10 units. 

'BEGIN' and 'END' of compound statements and are ignored. 

Procedure calls are allowed for as follows: 

procedure identifier 25 units, 

parameter bracket ( 12 units, 

, separating parameters 8 units, 

integers by value 1 unit, 

and array identifiers by name 1 unit. 

Fork and Join statements are difficult to assess since they have 

rarely been implemented. However, their use in program 7 is more than 

allowed for by the procedure calls. 

In the remainder of this appendix we shall derive proofs for 

identities used in the analysis of the run time of the Parallel Quicksort 

Method. First we shall list the notations used: 

n 
I a

J
" = a l + a2 + ••• an 

j=l 

l
l! aj = al x a2 x ... xan 
~J~n 

H = 
n 

n 1 
I " 

j=l J 
(nth harmonic number) , 

n! = IT j (n factorial) 
l~j~n 

(7) 

(8) 

(9) 

(10) 
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and 6f(n) = f(n+l) - fen) (forward difference operator) . 

Now let us consider the sum of the first n harmonic numbers. 

Clearly we have, 
n n k 

1 l: Hk = l: l: 
k=l k=l j=l j 

and by inter~hanging the order of summation 

which leads to, 

n 
l: Ilk 

k=l 

n 

n n 
1 = l: l: 

j=l k=j j 

n 
= I 

j=l 

n 
= I 

j=l 

1 
j 

n 
l: 1 

k=j 

n-j+l 
j 

n n 
= (n+l) l: ~ l: 1 

j=l J j=l 

= (n+l)H - n 
n 

l: Hk = (n+l)(H 1-1) 
k=l n+ 

we obtain, 

Next we must consider binomial coefficients (~) defined as 

n! 
k! (n-k) ! 

or in its less restrictive form, 
1 k 

(~) "{:! jl]! (n-k+ j) 

In particular, we observe that, 

for integer k>,O , 

for integer k<O. 
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(ll) 

(12) 

(~) = n and (~) = (n~k) for positive integers. 

A not so obvious relationship is 

(-n) = (_l)k(n+k-l) 
k k 

which may be proved as follows, 
k 

-n 1 TT . ( ) = -, (-n-k+J) 
k k .. 1 J= 

(13) 



(-1/ k 
= TT (n+k-j) k! 

j=l 

= (-1/ (n+k-l) ! 
(n-l) !k! 

= (-1) k (n+k-l) 
k 

The addition formula, 

n n (n+l) (k) + (hI) = k+l 

is easily proved as follows: 

1 k+l k+l 
(~:~) - (k~l) = (k+l)! (n (n-k+j) - IT (n-k-l+j)) 

j=l j=l 

k k 
= (k+i)! ((n+l) n (n-k+j)-(n-k) TT (n-k+j)) 

j=l j=l 

1 k 
= -, TT (n-k+j) 

k .. 1 
J= 

which may be rearranged to give formula (14). 

The relationship, 

n 
\' (k) __ (n+l) . 
l. lntegers n,m~O 

k=O m m+l 
may be proved by induction. 

and 

Obviously, letting n=l, we have 

1 
L (k) = (0) + (1) 

k=O m m m 

n+l 2 
(m+ 1) = (m+l ) 

If we generate these 

find that they are equal. 

quantities for different values of m we 
n+l k 

Considering L ( ) we find that, 
k=O m 

n+l 
(k) 

n 
(k) (n+l) L = L + 

k=O m 
k=O m m 

= (n+l) + (n+l) 
m+l m 

= (n+2) 
m+l 
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(14) 

(15) 



Thus, equation (15) is true for n=l and if it is true for n, it 

is true for n+l, so by induction it is true for all n. 

Another important formula is 

which may be proved as follows: 

n k k 1 
L (k)H = L (k) L 7 

k=l m k k=l m j=l] 

and by interchanging the order of summation we have, 

1 n j-l 
m+l .L ( m ) 

]=1 

1 n 
m+l (m+l) 

which finally leads to the result 

(n+l)(H 1 ) 
m+l n+l - m+l 

To obtain the remaining results necessary for the run time 

analysis we must consider generating functions. A generating function 

A (z) defined as 

is the generating function for the sequence <a
k

>, e.g., the generating 

function for binomial coefficients is 

or 

A(z) = (l+z)n = L (~)Zk 
k~O 

If result (13) is substituted into equation (18) we have, 

(l+z)n = L (_l)k(-n~k-l)Zk 
k~O 
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(16) 

(17) 

(18) 



= r 
k~n 

which leads to, 
n 

(k) zk z I = 
(l_z)n+l k~O 

n 

In particular, we have 

1 
r z 

k and z r kzk = = (l-z) 2 
k~O (l-z) k~O 

Now by considering the quantity (l+z)rCl+z)s we have 

but 

r s (l+z) (l+z) = 

= 

= 

r (~) 
k~O 

m 
r r 

m~O k=O 

r Cs) zm 
m-k 

m~k 

(r) ( s, ) zm 
km-I( 

( 1 + z) r (1 + z) s = ( 1 + z ) r+ s 

= r (r+s) zm 
m 

m~O 

If these infinite series are equal, the coefficients of zm 

must be equal and therefore, 

m 
\ Cr)C s ) = Cr+s) 
!.. k m-k m k=O 
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(19) 

(20) 

We already know that (r)=( r )=C_l)r-kC-k-l) 
k r-k r-k when r is an integer, 

and so another important identity may be obtained by substituting 

these values into equation (20), which gives, 

r(_l)r-kC-k-l)C_l)s-m+kC-m+k-l) = C_I)r+s-mC-m-l ) . 
k r-k s-m+k r+s-m 

If we now replace k by k-n-l, where n is an integer, and cancel 

C-l) factors we have, 

\ n-k -m-n-2+k -m-l 
!.. Cr +n+l - k) Cs-m-n-l+k) = Cr +S _m) 
k 

and changing variables to m=-m-n-2, r=-r-l and s=-s-l leads to 

\ n-k m+k m+n+l 
!.. (n-r-k)Cm- s+k) = (r+s+l) 
k 

Finally, if O~n-r-k~n-k and O~m-s+k~m+k, then we have 



(m+n+l) 
r+s+l 

for integers n~s~O, m>r~O . 

Now returning to generating functions, if we let A(z) be the 

generating function for <az> and 8(z) be the generating function 

for <b > then, 
z 

A(z)8(z) = 

= 

= 

I a. 
j~O J 

k 
I I 
k~O j=O 

k a.bk .. z 
J -J 

k 
and thus A(z)8(z) is the generating function for < I a.b

k
_.>. It is 

j=O J J 

not difficult to see that if B(z)=l~Z and aO=o then (l~Z)A(Z) is the 

generating function for <6a
k

>, i.e., 

~(z) = 
z when A(z) = 

This final equation completes the proofs of the identities that 

are required in Chapter 5 for the analysis of the run time of the 

Parallel Quicksort Algorithm. 
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(21) 

(22) 



APPENDIX B 



In this Appendix, programs 2,4,8 and 9 use the procedure 

FOlARA(L,S,U,Al,A2,A[K],B[K],K,A3,A4) 

which is a NAG library routine (NAG, 1976) that accumulates the inner 

product, 
U 

A3 = Al + I AK.BK K=L 
, 

to double precision and rounds the result to single precision. 
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PROGRAM 1 

'PR0cEDURE' F0LTRID1(N,A,B,C,D); 
'C0MMENT' Procedure solves the set of linear equations Ax=d, where A is 

an (NxN) tridiagonal matrix, using the parallel factorisation method 
without partial pivoting (see Chapter 3). The main diagonal of 
matrix A is stored in vector A, the. lower sub-diagonal in vector B 
and the upper sub-diagonal in vector C. On input, vector D contains 
the right hand side of the system of equations, during computation 
the intermediate solution and on exit it contains the solution x. 
Matrices P and Q are overwritten on A,B and C. ; 

'ARRAY' A,B,C,D;'INTEGER' N; 
'BEGIN' 

'INTEGER' S,I,J; 
S+(N+l) , /, 2; 
'C0MMENT' The factorisation process. 
'F0RK' Ll,L2; 

Ll: B[2]+B[2]/A[1]; 
'F0R' 1+2 'STEP' 1 'UNTIL' S-l 'D0' 
'BEGIN' 

A[I]+A[I]-B[I]*C[I]; 
B[I+l]+B[I+l]/A[I] 

'END' ; 
'G0T0' L3; 

L2: C[Nf-C[N]/A[N]; 
'F0R' J+N-l 'STEP' 1 'UNTIU S+l 'D0' 
'BEGIN' 

A[J]+A[J]-C[J+l]*B[J+l]; 
C[J]+C[J]/A[J] 

'END' ; 
'G0T0' L3; 

L3: 'J0IN' Ll,L2; 
A[S]+A[S]-(B[S]*C[S]+C[S+l]*B[S+l]); 
'C0MMENT' The inward substitution process. 
'F0RK' L4,L5; 

L4: 'F0R' 1+2 'STEP' 1 'UNTIL' S-l '00' D[I]+D[I]-B[I]*D[I-l]; 
'r,0T0' L6; 

L5: 'F0R' J+N-l 'STEP' -1 'UNTIL' S+l 'D0' D[J]+D[J]-C[J+l]*D[J+l]; 
'G0T0' L6; 

L6: 'J0IN' L4,L5; 
D[S]+D[S]-(B[S]*D[S-l]+C[S+l]*D[S+l]); 
'C0MMENT' The outward substitution process. 
D[S]+D[S]/A[S] ; 
'F0RK' L7,L8; 

L7: 'F0R' I+S-l 'STEP' -1 'UNTIL' 1 'D0' D[I]+(D[I]-C[I+l]*D[I+l])/A[I]; 
'G0T0' L9; 

L8: 'F0R' J+S+l 'STEP' 1 'UNTIL' N 'D0' D[J]+(D[J]-B[J]*D[J-l])/A[J]; 
'G0T0' L9; 

L9: 'J~IN' L7,L8 
'END' ; 
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PROGRAM 2 

'PR0CEDURE' F~LTRID2(N,A,D); 
'C0~~ENT' Procedure solves the set of linear equations Ax=d, where A is 

an (NXN) tridiagona1 matrix, using the parallel factorisation method 
with partial pivoting (Chapter 3). On input, vector D holds the 
right hand side of the system of equations, during computation the 
intermediate solution and, on exit, the final solution x. Matrices 
P and Q are overwritten on A. 

'ARRAY' A,D;' INTEGER 'N; . 
'BEGIN' 

'INTEGER' S,I,J,K1,K2,L1,L2,U1,U2; 
'REAL' W1,W2,E,A2,A4; 
, ARRAY' R [ 1 : N] ; 
S+-(N+1) '/'2; 
'C0~ENT' The factorisation process. 
'F0RK' L1,L2; 

L1: 'F0R' 1+-1 'STEP' 1 'UNTIV S-l 'D0' 
'BEGIN' 

U~ 'IF' I 'GT' 3 'THEN' 1-2 'ELSE' 1; 
'F0R' K1+-o,1 'D0' 
'BEGIN' 

F01ARA(U1,1,1-1,A[I+K1,1],A2,A[I+K1,L1],A[L1,1],L1,W1,A4); 
R[I+K1]+--W1 

'END' ; 
'IF' ABS(R[I+1])'GT' ABS(R[I]) 'THEN' 
'BEGIN' 

'F0R' K1+-1 'STEP' 1 'UNTIL' 1+2 'D0' 
'BEGIN' 

W1+-A[I,K1];A[I,K1]+-A[I+1,K1];A[I+1,K1]+-W1 
'END' ; 
W1+-D[I];D[I]+-D[I+1];D[I+1]+-W1; 
W1+-R[I];R[I]+-R[I+1];R[I+1]+-W1 

'END' ; 
A [I, I ]+-R [I] ; 
'F0R' K1+-1,2 'D0' 
'BEGIN' 

F01ARA(U1,1,1-1,-A[I,I+K1],A2,A[I,L1],A[L1,I+K1],L1,W1,A4); 
A[I,I+K1]+--W1 

'END' ; 
A[I+1,1]+-R[I+1]/A[I,I] 

'END' ; 
'G0T0' L3; 

L2: 'F0R' J+-N 'STEP' -1 'UNTIL' S+2 'D0' 
'BEGIN' 

U2+-'IF' N-J+1 'GT' 3 'THEN' J+2 'ELSE' N; 
'F0R K2+-O,1 'D0' 
'BEGIN' 

F01ARA(J+1,1,U2,-A[J-K2,J],A2,A[J-K2,L2],A[L2,J],L2,W2,A4); 
R[J-K2]+--W2 

'END' ; 
'IF' ABS(R[J-1]) 'GT' ABS(R[J]) 'THEN' 
'BEGIN' 

'F0R' K2+-N 'STEP' -1 'UNTIL' J-2 'D0' 
'BEGIN' 

W2+-A[J,K2];A[J,K2]+-A[J-1,K2];A[J-1,K2]+-W2 
'END' ; 



W2+D[J];D[J]+D[J-1];D[J-1]+W2; 
W2+R[J];R[J]+R[J-1];R[J-1]+W2 

'END' ; 
A[J,J]+R[J]; 
'F0R' K+1,2 '00' 
'BEGIN' 

FOIARA(J+I ,1,U2,-A[J,J-K2] ,A2,A[J ,L2] ,A[L2,J-K2] ,L2,W2,A4); 
A[J,J-K2]+-W2 

'END' ; 
A[J-l,J]+R[J-l]/A[J,J] 

'END' ; 
'G0T0' L3; 

L3: 'J0IN' Ll,L2; 
'F0R' K2+O,1 'D0' 
'BEGIN' 
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FOIARA(S+2,1,S+3,-A[S-K2+1,S+1],A2,A[S-K2+1,L2],A[L2,S+1],L2,E,A4); 
FOIARA(S-1,1,S-1,E,A2,A[S-K2+1,L2],A[L2,S+1],L2,W2,A4); 
R[S-K2+1]+-W2 

'END' ; 
'IF' ABS(R[S])'GT' ABS(R[S+l]) 'THEN' 
'BEGIN' 

'F0R' K2+1 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

W1+A[S+1,K2];A[S+1,K2]+A[S,K2];A[S,K2]+W2 
'END' ; 
W2+D[S+1] ;D[S+l]+D[S] ;D[S]+W2;. 
W2+R[S+1];R[S+1]+R[S];R[S]+W2 

'END' ; 
A[S+l,S+l]+R[S+l]; 
F01ARA(S+2,1,S+3,-A[S+1,S],A2,A[S+1,L2],A[L2,S],L2,E,A4); 
F01ARA(S-2,1,S-1,E,A2,A[S+1,L2],A[L2,S],L2,W2,A4); 
A[S+1,S]+-W2; 
A[S,S+I]+R[S]/A[S+l,S+l]; 
F01ARA(1,1,2,-A[S,S]A2,A[S,S-L2],A[S-L2,S],L2,E,A4); 
F01ARA(1,1,2,E,A2,A[S,S+L2],A[S+L2,S],L2,W2,A4); 
A[S,S]+-W2; 
'C0MMENT' The inward substitution process. 
'F0RK' L4,LS; 

L4: 'F0R' I+2 'STEP' 1 'UNTIL' S-l 'D0' 
'BEGIN' 

F01ARA(1,1,I-1,-D[I],A2,A[I,L1],D[Ll],L1,W1,A4); 
D[I ]+- I'll 

'END' ; 
'G0T0' L6; 

LS: 'F0R' J+N-1 'STEP' -1 ' UNTIL' S+2 'D0' 
'BEGIN' 

FOIARA(J+1,1,N,-D[J],A2,A[J,L2],D[L2],L2,W2,A4); 
D[J]+-W2 

'END' ; 
'G0T0' L6; 

L6: 'J0IN' L4,LS; 
'F0R' J+S+l,S 'D0' 
'BEGIN' 

FOIARA(J+1,1,N,-D[J],A2,A[J,L2],D[L2],L2,E,A4); 
F01ARA(1,1,S-1,E,A2,A[J,L2],D[L2],L2,W2,A4); 
D[J]+--W2; 

'END' ; 



'C0MMENT' The outward substitution process. 
D[S]+D[S]/A[S,S]; 
D[S+I]+(D[S]-A[S+I,S]*D[S])/A[S+I,S+I]; 
'F0RK' L7,L8; 

L7: 'F0R' J+S+2 'STEP' 1 'UNTIL' N '00' 
'BEGIN' 

FOIARA(J-2,I,J-l,-D[J],A2,A[J,K2],D[K2],K2,W2,A4); 
D[J]+-W2/A[J,J] 

'END' ; 
'G0T0' L9; 

L8: 'F0R' I+S-l 'STEP' -1 'UNTIL' 1 'D0' 
'BEGIN' 

FOIARA(I+l,I,I+2,-D[I],A2,A[I,Ll],D[Ll],Ll,Wl,A4); 
D [I]+-Wl/A[I, I] 

'END' ; 
'G0T0' L9; 

L9: 'J0IN' L7,L8 
'END' ; 
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PROGRAM 3 

'PR0cEDURE' F0LTRID3(N,A,D,M); 
'C0MMENT' Procedure solves the set of linear equations Ax=d, where A is 

an (NXN) banded matrix of semi-bandwidth M, using the parallel 
factorisation method without partial pivoting (Chapter 3). Matrix A 
is stored in an (NX(2M-lD array A, the main diagonal being held in 
column M, the lower sub-diagonals in columns 1 to M-I and the upper 
sub-diagonals in columns M+l to 2M-l. On input, vector D contains 
the right hand side of the system of equations, during computation 
the intermediate solution and on exit the final solution x. Matrices 
P and Q are overwritten on A. 

'ARRAY' A,B; 'INTEGER' M,N; 
'BEGIN' 

'INTEGER' S,I,J,Kl.K2,Ll,L2,Ul,U2; 
S+(N-M+3) '/'2; 
'C0MMENT' The factorisation process. 
'F0RK' Ll,L2; 

Ll: 'F0R' 1+1 'STEP' 1 'UNTIL' S-l 'D0' 
'BEGIN' 

'F0R' Kl+O 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

Ul+'IF' M-Kl 'GT' I 'THEN' I-I 'ELSE' M-Kl-l; 
'F~R' L~l'STEP' 1 'UNTIL' U1 'D0' A[I+Kl,M+Kl]+A[I+Kl,M+Kl] 
-A[I,M-Ll]*A[I+Kl,M+Kl+Ll] 

'END' ; 
'F0R' Kl+l 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

Ul+'IF' M-Kl 'GT' I 'THEN' I-I 'ELSE' M-Kl-l; 
'F0R' Ll+l 'STEP' 1 'UNTIL' Ul 'D0' A[I+Kl,M-Kl]+A[I+Kl,M-Kl] 
-A[I+Kl,M-Kl-Ll]*A[I,M+Ll]; 
A[I+KI,M-Kl]+A[I+Kl,M-Kl]/A[I,M] 

'END' 
'END' ; 
'G0T0' L3; 

L2: 'F0R' J+N 'STEP' ~ 'UNTIL' S+M-l 'D0' 
'BEGIN' 

'F0R' K2+O 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

U2+'IF' M-K2 'GT' N-J+l 'THEN' N-J 'ELSE' M-K2-l; 
'FOR' L2+l 'STEP' 1 'UNTIL' U2 'DO' A[J,M-K2]+A[J,M-K2] 
-A[J+L2,M+L2]*A[J+L2,M-K2-L2] 

'END' ; 
'F0R' K2+l 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

U2+'M-K2 'GT' N-J+l 'THEN' N-J 'ELSE' M-K2-l; 
'F0R' L2+l 'STEP' 1 'UNTIL' U2 'D0' A[J,M+K2]+A[J,M+K2] 
-A[J+L2,M+K2+L2]*A[J+L2,M-L2]; 
A[J,M+K2]+A[J,M+K2]/A[J,M] 

'END' 
'END' ; 
'G0T0' L3; 

L3: 'J0IN' Ll,L2; 
'F0R' J+S+M-2 'STEP' -1 'UNTIL'S 'D0' 
'BEGIN' 



'F0R' K2+O 'STEP'1 'UNTIL' J-S 'D0' 
'BEGIN' 

'F~R' L2+1 'STEP' 1 'UNTIL' M-K2-1 'D0' A[J,M-K2]+A[J,M-K2] 
-A[J+L2,M+L2]*A[J+L2,M-K2+L2]; 
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'F0R' L2+M-l 'STEP' -1 'UNTIL' J-S+1 'D0' A[J,M-K2]+A[J,M-K2] 
-A[J,M-L2]*A[J-K2,M-K2+L2] 

'END' ; 
'F0R' K2+1 'STEP' 1 'UNTIL' J-S 'D0' 
'BEGIN' 

'F0R' L2+-1 'STEP' 1 'UNTIL' M-K2-1 'D0' A[J ,M+K2]+A[J ,M+K2] 
~A[J+L2,M+K2+L2]*A[J+L2,M-K2]; 
'FOR' L2+M-l 'STEP' -1 'UNTIL' J-S+l 'D0' A[J,M+K2]+A[J,M+K2] 
-A[J-K2,M+K2-L2]*A[J ,M+L2]; 
A[J,M+K2]+A[J,M+K2]/A[J,M] 

'END' 
'END' ; 
'C0MMENT' The inward substitution process. 
'F0RK' L4,L5; 

L4: 'F0R' 1+2 'STEP' 1 'UNTIL' S-1 'D0' 
'BEGIN' 

Ul+'IF' M 'GT' I 'THEN' 1-1 'ELSE' M-I; 
'F0R' Ll+l 'STEP' 1 'UNTIL' Ul 'D0' D[I]+D[I]-A[I,M-Ll]*D[I-Ll] 

'END' ; 
'G0T0' L6; 

L5: 'F0R' J+N-l 'STEP' -1 'UNTIL' S+M-l 'D0' 
'BEGIN' 

U2+'IF' M 'GT' N-J+l 'THEN' N-J 'ELSE' M-I; 
'FOR' L2+1 'STEP' 1 'UNTIL' U2 'DO' D[J]+D[J]-A[J+L2,M+L2]*D[J+L2] 

'END' ; 
'G0T0' L6; 

L6: 'J0IN' L4,L5; 
'F0R' J+S+H-2 'STEP' -1 'UNTIL'S 'D0' 
'BEGIN' 

'F0R' L2+1 'STEP' 1 'UNTIL' M-I 'D0' D[J]+D[J]-A[J+L2,M+L2]*D[J+L2]; 
'F0R' L2+M-l 'STEP' -1 'UNTIL' J-S+l 'D0' D[J]+D[J]-A[J,M-L2]*D[J-L2] 

'END' ; 
'C0MMENT' The outward substitution process. 
D[S]+D[S]/A[S,M]; 
'F0R' J+S·l 'STEP' 1 'UNTIL' S+M-2 'D0' 
'BEGIN' 

'F0R K2+1 'STEP' 1 'UNTIL' J-S 'D0' D[J]+D[J]-A[J,M-K2]*D[J-K2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'F0RK' L7,LB; 

L7: 'F0R' J+S+M-l 'STEP' 1 'UNTIL' N 'D0' . 
'BEGIN' 

'F0R' K2+1 'STEP' 1 'UNTIL' M-I 'DO' D[J]+D[J]-A[J,M-K2]*D[J-K2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'G0T0' L9; 

LB: 'F0R' I+S-l 'STEP' -1 'UNTIL' 1 'D0' 
'BEGIN' 

'FOR' Kl+l 'STEP' 1 'UNTIL' M-I 'D0' D[I]+D[I]-A[I+K1,M+Kl]*D[I+Kl]; 
D[I]+D[I]/A[I,M] 

'END' ; 
'G0T0' L9; 

L9: 'J0IN' L7,LB 
'END' ; 



PROGRAM 4 

'PR0cEDURE' F'oLTRID4(N,A,D,M); 
'C0MMENT' Procedure solves the set of linear equations Ax=d, where A 

is an (NxN) banded matrix of semi-bandwidth M, using the parallel 
factorisation method with partial pivoting (Chapter' 3). On input, 
matrix D. holds the right hand side of the system of equations, 
during computation the intermediate solution and on exit the final 
solution x. The matrices P and Q are overwritten on A. 

'ARRAY'A,D; 'INTEGER' M,N; 
'BEGIN' 

'INTEGER'S,I,J,Kl,K2,Ll,L2,Ul,U2,MAXl,MAX2; 
'REAL' Wl,W2,E,A2,A4; 
'ARRAY' R[l:N]; 
S+(N+5)'/'2-M; 
'C0MMENT' The factorisation process. 
'F0RK' Ll,L2; 

Ll: 'F0R' 1+1 'STEP' 1 'UNTIL' S-l 'D0' 
'BEGIN' 

Ul+'IF'I 'GT' 2*M-l 'THEN' 1-2*(M-l) 'ELSE' 1; 
'F0R' Kl+O 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

FOIARA(Ul,I,I-l,0,A2,A[I+Kl,Ll],A[Ll,I],Ll,R[I+Kl],A4); 
R[I+Kl]+A[I+Kl,I]-R[I+Kl] 

'END' ; 
MAXl+I; 
'F0R' Kl+l 'STEP' 1 'UNTIL' M-I 'D0' 

'IF' ABS(R[I+Kl])'GT'ABS(R[MAXl]) 'THEN' MAXl+I+Kl; 
'IF' MAXI 'NE' I 'THEN' 
'BEGIN' 

'F0R' Kl+l 'STEP' 1 'UNTIL' I+2*(M-l) 'D0' 
'BEGIN' 

Wl+A[I,Kl];A[I,Kl]+A[MAXl,Kl];A[MAXl,Kl]+Wl 
'END' ; 
Wl+D[I];D[I]+D[MAXl];D[MAXl]+Wl; 
Wl+R[I] ;R[I]+R[MAXl] ;R[MAXl]+Wl 

'END' ; 
A[I ,I]+R[I]; 
'F0R' Kl+l 'STEP' 1 'UNTIL' 2*(M-l) 'D0' 
'BEGIN' 

FOIARA(Ul,1,I-l,O,A2,A[I,Ll],A[Ll,I+Kl],L,W,A4); 
A[I,I+Kl]+A[I,I+Kl]-W 

'END' ; 
'F0R' Kl+1 'STEP' 1 'UNTIL' M-I 'D0' A[I+Kl,I]+R[I+Kl]/A[I,I] 

'END' ; 
'G0T0' L3; 

L2: 'F0R' J+N 'STEP' -1 'UNTIL' S+2*(M-l)'D0' 
'BEGIN' 

U2+'IF' N-J+l 'GT' 2*M-l 'THEN' J+2*(M-l)'ELSE'N; 
'F0R' K2+O 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

FOlARA(J+l,1,U2,0,A2,A[J-K2,L2],A[L2,J2],L2,R[J-K2],A4); 
R[J-K2]+A[J-K2,J]-R[J-K2] 

'END' ; 
MAX2+J; 
'F0R' K2+1 'STEP' 1 'UNTIL' M-I 'D0' 
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'IF' ABS(R[J-K2])'GT'ABS(R[MAX2])'THEN'MAX2+J-K2; 
'IF' MAX2 'NE' J 'THEN' 
'BEGIN' 

'F0R' K2+N 'STEP' -1 'UNTIL' J-2*CM-l)'D0' 
'BEGIN' 

W2+A[J, K2] ;A [J, K2]+A [MAX2, K2] ;A[MAX2, K2]+W2 
'END'; 

W2+0[J];0[J]+0[MAX2];0[MAX2]+W2; 
W2+R[J];R[J]+R[MAX2];R[MAX2]+W2; 

'END' ; 
A[J ,J]+R[J]; 
'F~R' K2+1 'STEP' 1 'UNTIL' 2*(M-l) 'D0' 
'BEGIN' 

FOIARA(J+I,I,U2,O,A2,A[J,L2],A[L2,J-K2],L2,W2,A4); 
A[J,J-K2]+A[J,J-K2]-W2 

'END' ; 
'F0R' K~1 'STEP' 1 'UNTIL' M-I '00' A[J-K2,J]+R[J-K2]/A[J,J] 

'END' ; 
'G0T0' L3; 

L3: 'J0IN' Ll,L2; 
'F0R' J+S+2*M-3 'STEP' -1 'UNTIL' S+1 '00' 
'BEGIN' 

U2+'IF' N-J+l 'GT' 2*M-l 'THEN' J+2*(M-l) 'ELSE' N; 
'F0R' K2+O 'STEP' 1 'UNTIL' J-S 'D0' 
'BEGIN' 

FOIARA(J+1,1,U2,O,A2,A[J-K2,L2],A[L2,J],L2,E,A4); 
FOIARA(J-2*M+2,1,S-1,E,A2.A[J-K2,L2],A[L2,J],L2,R[J-K2],A4); 
R[J-K2]+A[J-K2,J]-R[J-K2] 

'END' ; 
MAX2+J; 
'F0R' K2+1 'STEP' 1 'UNTIL' J-S 'D0' 

'IF' ABS(R[J-K2]) 'GT'ABS(R[MAX2]) 'THEN' MAX2+J-K2; 
'IF' MAX2 'NE' J 'THEN' 
'BEGIN' 

'F0R' K2+1 'STEP' 1 'UNTIL' N '00' 
'BEGIN' 

W2+A[J,K2];A[J,K2]+A[MAX2,K2];A[MAX2,K2]+W2 
'ENP' ; 
W2+D[J];D[J]+0[MAX2];0[~"X2]+W2; 
W2+R[J] ;R[J]+R[MAX2] ;R[MAX2]+W2 

'END' ; 
A[J ,J]+R[J] ; 
'F0R' K2+1 'STEP' 1 'UNTIL' J-S 'D0' 
'BEGIN' 

FOIARA(J+1,1,U2,O,A2,A[J,L2],A[L2,J-K2],L2,E,A4); 
FOIARA(J-K2-2*~+2,1,S-1,E,A2,A[J,L2],A[L2,J-K2],L2,W2,A4); 
A[J,J-K2]+A[J,J-K2]-W2 

'END' ; 
'F0R' K2+1 'STEP' 1 'UNTIL' J-S 'D0' A[J-K2,J]+R[J-K2]/A[J,J] 

'END' ; 
FOIARA(1,1,2*M-2,O,A2,A[S,S-L2],A[S-L2,S],L2,E,A4); 
FOIARA(1,1,2*~1-2,E,A2,A[S,S+L2] ,A[S+L2,S] ,L2,W2,A4); 
A[S,S]+A[S,S]-W; 
'C0MMENT' Inward substitution process. 
'F0RK' L4,L5; 
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L4: 'F0R' 1+2 'STEP' 1 'UNTIL' S-l '00' 
'BEGIN' 

F01ARA(1,1,1-1,O,A2,A[I,L1],D[L1J,L1,W1,A4); 
D[I]+D[I]-W1 

'END'; 
'G0T0' L6; 

L5: 'F0R' J+N-1 'STEP' -1 'UNTIL' S+2*(M-1) '00' 
'BEGIN' 

F01ARA(J+1,1,N,O,A2,A[J,L2],D[L2],L2,W2,A4); 
D[J]+D[J]-W2 

'END' ; 
'G0T0' L6; 

L6: 'J0IN' L4 ,L5; 
'F0R' J+S+2*M-3 'STEP' -1 'UNTIL'S '00' 
'BEGIN' 

F01AFA(J+1,1,N,O,A2,A[J,L2],D[L2],L2,E,A4); 
F01ARA(1,1,S-1,E,A2,A[J,L2],D[L2],L2,W2,A4); 
D[J]+D[J]-W2 

'END' ; 
'C0r4MENT' The outward subs ti tution process. 
D[S]+D[S]/A[S,S]; 
'F0R' J+S+1 'STEP' 1 'UNTIL' S+2*M-3 '00' 
'BEGIN' 

F01ARA(S,1,J-1,O,A2,A[J,K2],D[K2],K2,W2,A4); 
D[J]+(D[J]-W2)/A[J,J] . 

'END' ; 
'F0RK' L7,LB; 

L7: 'F0R' J+S+2*M-2 'STEP' 1 'UNTIL' N '00' 
'BEGIN' 

F01ARA(J-2*(H-1),1,J-1,O,A2,A[J,K2],D[K2],K2,W2,A4); 
D[J]+(D[J]-W2)/A[J,J] 

'END' ; 
'G0T0' L9; 

LB: 'F0R'I+S-1 'STEP' -1 'UNTIL' 1 'D0' 
'BEGIN' 

F01ARA(I+1,1,1+2*(M-1),O,A2,A[I,L1],D[L1],L1,W1,A4); 
D[I]+(D[I]-W1)/A[I,I] 

'END' ; 
'G0T0' L9; 

L9: 'J0IN' L7,LB 
'END' ; 
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PROGRAM 5 

'PR~CEDURE' F0CH1(N,A,B,D); 
'C0~~NT' Procedure solves the set of linear equations Ax=d, where A is 

a symmetric tridiagona1 (NxN) matrix, using the symmetric parallel 
factorisation method (Chapter 3). The main diagonal of matrix A is 
stored in vector A and the sub-diagonals in vector 3. On input, 
vector D contains the right hand side of the system of equations, 
during computation the intermediate solution and on exit it contains 
the solution x. Matrix P is overwritten on A and B; 

'ARRAY' A,B,D;'INTEGER'N; 
'BEGIN' 

'INTEGER' S,I,J; 
S+-(N+1)'/'2; 
'C0MMENT' The factorisation process. 
, F0RK' L1, L2 ; 

L1: A[1]+-SQRT(A[1]);B[2]+-B[2]/A[1]; 
'F0R' 1+-2 'STEP' 1 'UNTIL' S-l 'D0' 
'BEGIN' 

A[I]+-SQRT(A[I]-B[I]*B[I]); 
B[I+1]+-B[I+1]/A[I] 

'END' ; 
'G~T~' L3; 

L2: A [N]+-SQRT (A [N]) ; B [N]+-B [N] / A [N] ; 
'F~R' J+-N-1 'STEP' -1 'UNTIL' S+l 'D0' 
'BEGIN' 

A[J]+-SQRT(A[J]-B[J+1]*B[J+1]); 
B[J]+-B[J]/A[J] 

'END' ; 
'G~T~' L3; 

L3: 'J0IN' L1,L2; 
A[S]+-SQRT(A[S]-(B[S]*B[S]+B[S+l]*B[S+l])); 
'C0MMENT' The inward substitution process. 
, F0RK' L4, L5 ; 

L4: D[l]+-D[l]/A[l]; 
'F0R' 1+-2 'STEP' 1 'UNTIL' S-l' 'D~' D[I]+-(D[I]-B[I]*D[I-1])/A[I]; 
'G0T0' L6; 

L5: D[N]+-D[N]/A[N]; 
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'F0R' J+-N-1 'STEP' -1 'UNTIL' S+l 'D0' D[J]+-(D[J]-B[J+1]*D[J+1])/A[J]; 
'G0T0' L6; 

L6: 'J0IN' L4,L5; 
D[S]+-(D[S]-(B[S]*D[S-l]+B[S+l]*D[S+l]))/A[S]; 
'C~MMENT' The outward substitution process. ; 
D[S]+-D[S]/A[S]; 
'F0RK' L7,L8; 

L7: 'F0R' I+-S-1 'STEP' -1 'UNTIL' 1 '00' D[I]+-(0[I]-B[I+1]*D[I+1])/A[I]; 
'GOT0' L9; 

L8: 'F0R' J+-S+1 'STEP' 1 'UNTIL' N 'D~' D[J]+-(0[J]-B[J]*D[J-1])/A[J]; 
'G0T0' L9; 

L9: 'J0IN' L7,L8 
'END' ; 



PROGRAM 6 

'PR0CEDURE' F~CH2(N,A,D,M); 
'C0MMENT' Procedure solves the set of linear equations Ax=d, where A is 

an (NxN) symmetric banded matrix of semi-bandwidth M, using the 
symmetric parallel factorisation method (Chapter 3). Matrix A is 
stored in an (NxM) array A, the main diagonal being held in column 
M and th,e sub-diagonals in columns 1 to M-I. On input, vector D 
contains the right hand side of the system of equations, during 
computation the intermediate solution and on exit the final solution 
x. Matrix P is overwritten on A. 

'ARRAY' A,D;'INTEGER' N,M; 
'BEGIN' 

'INTEGER' S,I,J,Kl,K2,Ll,L2,Ul,U2; 
S+(N-M+3) '/'2; 
'C0MMENT' The factorisation process. 
'F0RK' Ll,L2; 

Ll: 'F0R' 1+1 'STEP' 1 'UNTIL' S-1 'D0' 
'BEGIN' 

Ul+'IF' M 'GT' I 'THEN' I-I 'ELSE' M-I; 
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'FOR' Ll+l 'STEP' 1 'UNTIL' Ul 'D~' A[I,M]+A[I,M]-A[I,M-Ll]*A[I,M-Ll]; 
A[I,M]+SQRT(A[I,M]); 
'F0R' Kl+l 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

Ul+'IF' M-Kl 'GT' I THEN' I-I 'ELSE' M-Kl-l; 
'FOR' Ll+l 'STEP' 1 'UNTIL' Ul 'D,o' A[I+Kl,M-Kl]+A[I+Kt,M-Kl] 
-A[I,M-Ll]*A[I+Kl,M-Kl-Ll]; 
A[I+Kl,M-Kl]+A[I+Kl,M-Kl]/A[I,M] 

'END' 
'END' ; 
'G0T0' L3; 

L2: 'F0R' J+N 'STEP' -1 'UNTIL' S+M-l 'D0' 
'BEGIN' 

U2+'IF' M 'GT' N-J+l 'THEN' N-J 'ELSE' M-I; 
'F0R' L2+l 'STEP' 1 'UNTIL' U2 'D0' A[J,M]+A[J,M]-A[J+L2,M-L2] 
*A[J+L2,M-L2] ; 
A[J,M]+SQRT(A[J,M]); 
'F0R' K2+l 'STEP' 1 'UNTIL' M-I 'D0' 
'BEGIN' 

U2+'IF' M-K2 'GT' N-J+l 'THEN' N-J 'ELSE' M-K2-l; 
'F0R' L2+l 'STEP' 1 'UNTIL' U2 'D0' A[J,M-K2]+A[J,M-K2] 
-A[J+L2,M-L2]*A[J+L2,M-K2-L2]; 
A[J,M-K2]+A[J,M-K2]/A[J,M] 

'END' 
'END' ; 
'G0T0' L3; 

L3: 'J0IN' Ll,L2; 
'F0R' J+S+M-2 'STEP' -1 'UNTIL'S 'D0' 
'BEGIN' 

'F0R' L2+l 'STEP' 1 'UNTIL' M-I 'D0' A[J,M]+A[J,M]-A[J+L2,M-L2] 
*A[J+L2,M-L2] ; 
'F0R' L2+J-S+l 'STEP' 1 'UNTIL' M-I 'D0' A[J,M]+A[J,M]-A[J,M-L2] 
*A[J,M-L2]; 
A[J,M]+SQRT(A[J,M]); 
'F0R' K2+l 'STEP' 1 'UNTIL' J-S 'D0' 
'BEGIN' 



'F~R' L2+1 'STEP' 1 'UNTIL' M-K2-1 'D~' A[J,M-K2]+A[J,M-K2] 
-A[J+L2,M-L2]*A[J+L2,M-K2-L2]; 
'FOR' L2+J-S+l 'STEP' 1 'UNTIL' M-I 'DO' A[J,M-K2]+A[J,M-K2] 
-A[J,M-L2]*A[J-K2,M+K2-L2]; 
A[J,M-K2]+A[J,M-K2J/A[J,M] 

'ENQ' 
'END' ; 
'C~MMENT' The inward substitition process. 
'F~RK' l;4,L5; 

L4: 'F~R' 1-+-1 'STEP' 1 'UNTIL' S-1 'D~' 
'BEGIN' 

Ul+'IF' M 'GT' I 'THEN' I-I 'ELSE' M-I; 
'F~R' Ll+l 'STEP' 1 'UNTIL' Ul 'D~' D[I]+D[I]-A[I,M-Ll]*D[I-Ll]; 
D[I]+D[I]/A[I,M] 

'END' ; 
'G~T~' L6; 

L5: 'F~R' J+N 'STEP' -1 'UNTIL' S+M-l 'D~' 
'BEGIN' 

U2+'IF' M 'GT' N-J+l 'THEN' N-J 'ELSE' M-I; 
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'F~R' L2+1 'STEP' 1 'UNTIL' U2 'D~' D[J]+D[J]-A[J+L2,M-L2]*D[J+L2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'G~T~' L6; 

L6: 'J~IN' L4,L5; 
'F~R' J+S+M-2 'STEP' -1 'UNTIL' S 'D~' 
, BEGIN' 

'F0R' L2+1 'STEP' 1 'UNTIL' M-I 'D0' D[J]+D[J]-A[J+L2,M-L2]*D[J+L2]; 
'F~R' L2+J-M+l 'STEP' 1 'UNTIL' M-I 'D~' D[J]+D[J]-A[J,M-L2]*D[J-L2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'C~MMENT' The outward substitution process. 
D[S]+D[S]/A[S,M]; 
'F~R' J+S+l 'STEP' 1 'UNTIL' S+M-2 'D~' 
'BEGIN' 

'F0R' L2+1 'STEP' 1 'UNTIL' J-S 'D~' D[J]+D[J]-A[J,M-L2]*D[J-L2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'F~RK' L7,LS; 

L7: 'F~R' J+S+M-l 'STEP' 1 'UNTIL' N 'D~' 
'BEGIN' 

F~R' L2+1 'STEP' 1 'UNTIL' M-I 'D~' D[J]+D[J]-A[J,M-L2]*D[J-L2]; 
D[J]+D[J]/A[J,M] 

'END' ; 
'G~T~' L9; 

LS: 'F~R' I+S-1. 'STEP' -1 'UNTIL' 1 'D~' 
'BEGIN' 

'F~R' Ll+1 'STEP' 1 'UNTIL' M-I 'D~' D[I]+D[I]-A[I+L2,M-L2]*A[I+L2]; 
D[I]+D[I]/A[I,M] 

'END' ; 
'G~T~' L9; 

L9: 'J~IN' L7,LS 
'END' ; 
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PROGRAH 7 

'PR0cEDURE' PQUICKS0RT(A,L,U); 
'C0~~fENT' Procedure sorts N numbers into ascending order using 

the parallel quicksort method (see Chapter 5). Subsets with 
more than M elements are sorted using the partitioning 
procedure and those with less than M,or M elements are sorted 
using the linear insertion process. 

'ARRAY' A; 'INTEGER' L,U;'VALUE' L,U; 
, BEGIN' 

'INTEGER' I,J;'REAL'V,W; 
'C0MMENT' Test the size of the subset. 
'IF' U-L 'GT' M 'THEN' 
'BEGIN' 

'C0MMENT' Select the partition element. 
1+ (L+U) '1'2; 
'IF' A[L] 'GT' A[U] 'THEN' 
'BEGIN' 

V+A[L];A[L]+A[U];A[U]+V 
'END' ; 
'IF' A[I] 'GT' A[U] 'THEN' 
'BEGIN' 

V+A[I] ;A[I]+A[U] ;A[U]+V 
'END' ; 
'IF' A[L] 'GT' A[I] 'THEN' 
'BEGIN' 

V+A[L] ;A[L]+A[I] ;A[I]+V 
'END' ; 
V+A[I];A[I]+A[L+l];A[L+l]+V; 
'C0MMENT' Set up pointers and partition on V, the 

partition element. ; 
I+L+l; J+U; 

Ll: 1+1+1; 
'IF' A[I] 'LT' V 'THEN' 'G0T0' Ll; 

L2: J+J-l; 
'IF' A[J] 'GT' V 'THEN' 'G0T0' L2; 
'C0~ffiNT' If pointers have crossed, insert partition 

element, otherwise interchange A[I] and A[J]. ; 
'IF' I 'LT' J 'THEN' 
'BEGIN' 

W+A[I];A[I]+A[J];A[J]+W; 
'G0T0' LI 

'END' ; 
A[L+l]+A[J];A[J]+V; 
'C0~ffiNT' Test for largest subset. 
'IF' J-L 'GT' U-J 'THEN' 
'BEGIN' 

'C0MMENT' Test smaller subset to see if it has at 
least 2 elements. ; 

'IF' U 'GT' J+l 'THEN' 
'BEGIN' 

'F0RK' L3,L4; 

L3: PQUICKS0RT(A,L,J-I); 
'G0T0' L5; 

L4: PQUICKS0RT(A,J+l,U); 
'G0T0' LS; 
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"N-A' 

L5: 'J0IN' L3,L4; 
'END' 
'ELSE' PQUICKS0RT(A,L,J-l) 

'END' 
'ELSE' 
'BEGIN' 

'C0MMENT' Test smaller subset to see if it has at 
least 2 elements. ; 

'IF' J-l 'GT' L 'THEN' 
'BEGIN' 

'F0RK' L6,L7; 

L6: PQUICKS0RT(A,J+l,U); 
'G0T0' L8; 

L7: PQUICKS0RT(A,L,J-l); 
'G0T0' L8; 

L8: 'J0IN' L6,L7; 
'END' 
'ELSE' PQUICKS0RT(A,J+l,U) 

'END' 
'END' 
'ELSE' 
'BEGIN' 

'C0MMENT' Linear Insertion Process. 
'F0R' I+L+l 'STEP' 1 'UNTIL' U '00' 
, IF' A [I] , LT' A [I -1] 'THEN' 
'BEGIN' 

V+A[I] ;J+I; 
'F0R J+J-l 'WHILE' A[J] 'GT' V '00' A[J+l]+A[J]; 
A[J+l]+V " 

'END' EN 
'END' 

'END' ; 
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PROGRAM 8 

'PR~CEDURE' MATINV1(N,A,X,L,EPS); 
'C~MMENT' Procedure evaluates the inverse of a real symmetric matrix A 

using the first order implicit iterative process (Chapter 7) with 
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an initial approximation of I. On input, matrix X holds the initial 
approximation I and on exit, the inverse of A. The iterative 
process is terminated when the difference between successive 
approximations is less than 2*EPS* (the element of X with largest 
modulus). ; . I 

'INTEGER' N,L;'REAL' EPS;'ARRAY'A,X; 
'BEGIN' 

'REAL' C,D,XMAX,ZMAX,E; 
'INTEGER'I,J,K; 
'ARRAY' B[l:N,l:N],Y[l:N]; 
L+~; 

'C~MMENT" Formation of X.A; 

Ll: 'F0R' 1+1 'STEP' 1 'UNTIL' N 'D~' 
'F0R' J+l 'STEP' 1 'UNTIL' N 'D0' 
F01ARA(1,1,N,O,O,X[I,K],A[K,J],K,B[I,J],D); 
XMAX+ZMAX+O ; 
'F0R' J+l 'STEP' 1 'UNTIL' N 'D~' 
'BEGIN' 

'C~MMENT' Solution for Y. ; 

'F~R' 1+1 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

F01ARA(1,1,I-l,-X[J ,J] ,O,B[I,K] ,Y[K] ,K,C,D); 
Y [I ]+-C/B [I, I] 

'END' ; 

'C~MMENT' Solution for Xo ; 

'F~R' I+N 'STEP' -1 'UNTIL' 1 'D~' 
'BEGIN' 

F01ARA(I+l,1,N,O,O,B[I,K],Y[K],K,C,D); 
Y[I]+Y[I]-C/B[I,I]; 
C+ABS (Y [ I]) ; 
'IF' C 'GT' XMAX 'THEN' XMAX+C; 
C+ABS(Y[I]-X[I,J]); 
'IF' C 'GT' ZMAX 'THEN' ZMAX+C; 
X[I,J]+Y[I] 

'END' 
'END' ; 
L+L+l; 
D+ZMAX/XMAX; 
'IF' D 'GT' 2*EPS 'THEN' 'G~T~' Ll 

'END' ; 



259 

PROGRAM 9 

'PR0CEDURE' MATINV2(N,A,X,L,EPS); 
'C0MMENT' Procedure evaluates the inverse of a real 5ymmetric matrix A 

using the second order implicit iterative process (Chapter 7), with 
an initial approximation of I. On input, matrix X holds the initial 
approximation I and on exit, the inverse of A. The iterative 
process is terminated when the difference between successive 
approximations is less than 2*EPS* (the element of X with largest 
modulus). 

'INTEGER' N,L;'REAL' EPS;'ARRAY' A,X; 
'BEGIN' 

'REAL' C,D,Xb~X,ZMAX,E; 
'INTEGER' I,J,K; 
'ARRAY' B,F[l:N,l:N],Y[l:N]; 
L+D; 

'C~MMENT' Formation of X.A; 

Ll: 'F0R' I+l 'STEP' 1 'UNTIL' N 'D0' 
'F0R' J+l 'STEP' 1 'UNTIL' N 'D0' 
F01ARA(1,1,N,O,O,X[I,K],A[K,J],K,B[I,J],D); 

'C0MMENT' Formation of INV(D-U). 

'F0R' I+l 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

F[I,I]+B[I,I]; 
'F0R' J+I+l 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

F01ARA(I,1,J-l,O,O,F[I,K],B[K,J],K,C,D); 
F[I,J]+-C/B[J,J] 

'END' 
'END' ; 

'C0MMENT' Formation of D.INV(D-L). 

'F0R' J+l 'STEP' 1 'UNTIL' N-l 'D0' 
'F0R' I+J+l 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

Y[J]+F[J,J]; 
F01ARA(J,1,I-l,O,O,B[I,K],Y[K],K,C,D); 
Y[I]+-C/B[I,I]; 
F [I,J]+-C 

'END' ; 

'C0MMENT' Formation of INV(D-U).[D.INV(D-L)]. 

'F0R' I+l 'STEP' 1 'UNTIL' N 'D0' 
'F0R' J+l 'STEP' 1 'UNTIL' N 'D0' 
FOlARA('IF' I>J 'THEN' I 'ELSE' J+l,l,N, 'IF' I>J 'THEN' 0 

'ELSE' F[I,J],O,F[I,K],F[K,J],K,F[I,J],D); 

'C0MMENT' Formation of I-[XoA].[INV(D-U) .D.INV(D-L)]. 

'F0R' J+l 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 



'F0R~ 1+1 'STEP' 1 'UNTIL' N 'D0' 
F01ARA(1,1,N,'IF' I=J 'THEN' -1 'ELSE' O,O,B[I,K],F[K,J], 

K,Y[I],D); 
'F0R' 1+1 'STEP' 1 'UNTIL' N 'D0' F[I,J]+-Y[I] 

'END' ; 

'C0MMENT' Formation of X+[I-X.A.INV(D-U).D.INV(D-L)j.X. 

'F0R' 1+1 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

'F0R' J+1 'STEP' 1 'UNTIL' N 'D0' 
F01ARA(1,1,N,X[I,J],O,F[I,K],X[K,J],K,Y[J],D); 
'F0R' J+1 'STEP' 1 'UNTIL' N 'D0' F[I,J]+Y[J] 

'END' ; 
XMAX+ZMAX+O; 
'F0R' J+1 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

'C0MMENT' Solution for Y. 

'F0R' 1+1 'STEP' 1 'UNTIL' N 'D0' 
'BEGIN' 

F01ARA(1,1,I-1,-F[I,J],0,B[I,J],Y[K],K,C,D); 
Y[I]+-C/B[I,I] 

'END' ; 

'C0MMENT' Solution for X. 

'F0R' I+N 'STEP' -1 'UNTIL' 1 'D0' 
'BEGIN' 

F01ARA(I+1,1,N,0,0,B[I,K],Y[K],K,C,D); 
Y[I]+Y[I]-C/B[I,I]; 
C+ABS(Y[I]) ; 
IIF' C 'GT' XMAX 'THEN' XMAX+C; 
C+ABS(Y[I]-X[I,J]); 
'IF' C 'GT' ZMAX 'THEN' ZMAX+C; 
X[I,J]+Y[I] 

'END' 
'END' ; 
L+L+1; 
D+ZMAX/XMAX; 
'IF' D 'GT' 2*EPS 'THEN' 'G0T0' L1 

'END' ; 
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