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Abstract

Modeling error, stochastic error of inertial sensor, measurement noise and environmental
disturbance affect the accuracy of an inertial navigation system (INS). In addition, some
unpredictable factors, such as system fault, directly affect the reliability of INSs. This paper
proposes a new anti-disturbance fault tolerant alignment approach for a class of INSs sub-
jected to multiple disturbances and system faults. Based on modeling and error analysis,
stochastic error of inertial sensor, measurement noise, modeling error and environmental
disturbance are formulated into different types of disturbances described by a Markov s-
tochastic process, Gaussian noise and a norm-bounded variable, respectively. In order to
improve the accuracy and reliability of an INS, an anti-disturbance fault tolerant filter is
designed. Then, a mixed dissipative/guarantee cost performance is applied to attenuate
the norm-bounded disturbance and to optimize the estimation error. Slack variables and
dissipativeness are introduced to reduce the conservatism of the proposed approach. Finally,
compared with the unscented Kalman filter (UKF), simulation results for self-alignment of
an INS are provided based on experimental data. It can be shown that the proposed method
has an enhanced disturbance rejection and attenuation performance with high reliability.

Keywords: Inertial Navigation System, Fault Tolerant, Filter, Initial Alignment,
Robustness, Multiple Disturbances.

1. Introduction

An Inertial Navigation System (INS) is a dead reckoning system that uses gyroscopes,
accelerometers and a navigation computer to continuously calculate navigation parameters of
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a carrier based on Newton’s laws of motion (see [1]). INS has been widely applied in various
fields. One of the important issue is calibration and alignment, which directly relates to the
navigation precision and start-up time of an INS ([2]).

The process of traditional initial alignment includes a coarse alignment stage and a fine
alignment stage [3]. Analytic approaches are often applied to the coarse alignment. The
most widely used fine alignment method is based on Kalman filter (KF) (see [4, 5]). Kalman
filtering, known as linear quadratic estimation (LQE), is an algorithm that uses Bayesian
inference and estimates a joint probability distribution over the variables for each time
frame. For a nonlinear INS, an adaptive extended Kalman filter (EKF) was proposed to
linearize about an estimation of the current mean and covariance for in-flight alignment [6].
In addition, the unscented Kalman filter (UKF) uses the unscented transformation to pick
a minimal set of sample points (called sigma points) around the mean for nonlinear systems
(see [7] and references therein). Up to now, Kalman filtering type approaches (including
KF, EKF and UKF) have been successfully applied to initial alignment of INS and obtained
satisfactory results. In the filtering problems, not only external disturbances, measurement
noises, but also unmodeled dynamics, nonlinear and uncertain dynamics are usually merged
into a single disturbance. The accuracy of Kalman filtering type methods could be degraded,
since the merged disturbance may not be Gaussian in most INSs. Robust filtering methods
aim to achieve robust performance and stability in the presence of bounded modeling errors,
and no statistical assumptions on the noises are required [8, 9]. In [10, 11, 12], robust filters
were proposed to improve the filtering stability and performance for in-flight alignment.
Because of the complexity and special characteristics of INS, many other filtering approaches
have not been applied to the problem of initial alignment so far.

In most of the above-mentioned design, a single disturbance (either a Gaussian noise or a
norm bounded variable) is considered, and Kalman filtering type or robust filtering methods
can be used. It has been shown that multiple types of disturbances exist in most practical
processes and can be formulated into different mathematical descriptions (see [13]). For
example, in a class of INSs, measurement noises, stochastic error of inertial sensor, environ-
mental disturbances and unmodeled dynamics can be modeled by different descriptions [2].
Anti-disturbance control and filtering has been a hot topic in the control field nowadays (see
[13, 14] and references therein). A linear error model subjected to multiple disturbances
was established for an INS in [15], where modeling error and environmental disturbance are
merged into a norm bounded variable, measurement noise is assumed to be Gaussian, and
inertial sensor error is represented by a first order Gaussian Markov process. Then, a mixed
H2/H∞ filtering approach was presented for stationary base self-alignment with enhanced
disturbance rejection and attenuation performance. An anti-disturbance initial alignment
approach for nonlinear INS was presented in [16], where the nonlinear dynamics and multi-
ple disturbances were respectively analyzed and modelled. The healthy INSs were discussed
without sensor failure or performance degradation in [15, 16].

Research of fault detection and diagnosis (FDD) as well as fault tolerant control (FTC)
has been one of the important aspects in improving the reliability of practical processes (see
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and references therein). A velocity-free uncer-
tain attenuation control approach for a class of nonlinear systems with external disturbance
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and multiple actuator faults was addressed in [28]. The change of working temperature and
integrated circuit aging could result in the variation of error characteristics or performance
degradation for inertial sensors (see [29, 30]). In [29], the dynamic thermal error induced
by accelerations of a micro-electro-mechanical system (MEMS) gyroscope is analyzed based
on the thermal interferential moment. Additionally, the change of working environment
can lead to the variation of the noise covariance [6]. Therefore, some unpredictable factors
will affect the reliability of navigation system directly. In [31], failure modes and models
of integrated INS/GPS systems were systematically classified based on their effect on the
integration process and on each individual component of the integrated system. In [32],
a fault detection methodology was proposed for both low frequency faults in an inertial
measurement unit (IMU) caused by bias in the sensor readings and the misalignment of the
unit, and high frequency faults from the GPS receiver caused by multi-path errors for the
integrated IMU/GPS navigation system. A fault-detection algorithm based on the sequen-
tial probability ratio test and Chi-Square Test was proposed for a redundant multisensor
navigation system for hypersonic cruise vehicles in [33]. In [34], an adaptive two-stage EKF
was introduced to improve the reliability of coupled INS/GPS system with unknown bias
fault. A magnetic compass fault detection approach for GPS/INS/Magnetic compass inte-
grated navigation systems was proposed in [35], where the abrupt fault was supposed to be
caused by the hard iron and soft iron effect. In [36], a fault tolerant Strapdown INS (SIN-
S)/Global Navigation Satellite System (GNSS) approach was presented based on modified
EKF and divided difference KF. However, to the best of our knowledge, the problems of
fault tolerant alignment are still under research, which motivate us to study this meaningful
and challenging topic.

In this paper, an anti-disturbance fault tolerant alignment approach is proposed to im-
prove the accuracy and reliability of an INS. Firstly, a new INS error model subjected to
multiple disturbances and system fault is established instead of a healthy INS with a sin-
gle disturbance. The multiple disturbances are analyzed and modeled respectively. The
stochastic error of the inertial sensor is described by a first order Gaussian Markov pro-
cess. The modeling uncertainties, environmental disturbances and non-Gaussian noises are
merged into a norm bounded variable. Then, a fault tolerant filter is proposed with distur-
bance rejection and attenuation performance. In the proposed scheme, compensation terms
are designed to compensate the stochastic error of inertial sensor and to accommodate the
sensor fault. Dissipative performance is adopted to attenuate the norm bounded uncertain
disturbances and the guarantee cost index is applied to optimize the estimation error respec-
tively. Different from robust H∞ and passivity approaches, the proposed approach has less
conservatism. Finally, with collected experimental data, simulations and comparisons with
unscented Kalman filter (UKF) are carried out for stationary base alignment of an INS. It
is shown that the proposed approach has higher accuracy and reliability. The remainder
of this paper is organized as follows. In Section II, a new INS error model subjected to
multiple disturbances and sensor fault for stationary base is established. In Section III, an
anti-disturbance fault tolerant filter is proposed for the initial alignment problem. Simu-
lations based on experimental data are given in Section IV to show the efficiency of the
proposed method. Conclusions are given in Section V.
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2. Problem Formulation and Preliminaries

In this paper, the local level NED (North-East-Down) frame is selected as the navigation
frame. For INS on a stationary base, position and velocity errors can be ignored. Therefore,
a modified large azimuth misalignment angle error model of SINS can be formulated as
follows (see [37])

φ̇ = (I − Cp
n)w

n
ie + Cn

b ε
b (1)

where φ =
[
φN(t) φE(t) φD(t)

]T
are three misalignment angles, three gyroscope drifts

are εb =
[
εx(t) εy(t) εz(t)

]T
. I is a unit matrix with proper dimension. The subscripts

N , E and D are corresponding to north, east and down of the navigation frame n, and the
subscripts x, y and z denote front, right, down of the body frame b respectively. In many
practical processes, heading error is much larger than leveling errors, so that we take no
account of the linearization of azimuth misalignment angle for the sake of relatively large
modeling error. Cp

n represents the transformation matrix between the navigation frame n
and computation frame p, which can be further described by

Cp
n =




cosφD(t) sinφD(t) −φE(t)
−sinφD(t) cosφD(t) φN(t)

φE(t) φN(t) 1


 (2)

where

φE(t) = φN(t)sinφD(t) + φE(t)cosφD(t)

and

φN (t) = φE(t)sinφD(t)− φN(t)cosφD(t)

wn
ie = [ ΩN 0 −ΩD ]T represents the earth rate in frame n. The superscript n denote the

navigation frame. ΩD and ΩN are the down and north components of earth rate, respectively.
Cn

b is the attitude matrix relating the body frame b with navigation frame n, which can be
computed by the roll, pitch and yaw angles of the carrier, denoted as

Cn
b = {Cij}i,j=1,2,3 (3)

Because of the variations of working temperature and aging of integrated circuit, there
may exist unpredictable performance degradation or fault including bias in the sensor read-
ings and the misalignment of the unit (see [32, 29, 31]). Modeling error, internal sensor
noises and environmental disturbances are merged into a norm bounded disturbance in the
SINS. Thus, the error equation subjected to multiple disturbances and sensor faults can be
further described as follows




φ̇N(t)

φ̇E(t)

φ̇D(t)


 = A0




φN(t)
φE(t)
φD(t)


+ Cn

b




εx(t)
εy(t)
εz(t)


+B2C

n
b ωf0(t) + g0(φ) +B1d(t) (4)
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where the matrix A0 is defined as

A0 =




0 −ΩD 0
ΩD 0 0
0 0 0


 (5)

and nonlinear function is

g0(φ) =
[
ΩN (1− cosφD) ΩNsinφD −ΩNφE

]T
(6)

ωf0(t) is the sensor faults for the concerned SINS. d(t) is the norm bounded disturbance.
B1 and B2 are two coefficient matrices of the system with suitable dimensions.

The principle of self-alignment for SINS is to measure the earth rate wie and the local
gravity acceleration g by the gyroscopes and accelerometers, respectively. Similarly to [1,
15, 16], the level accelerometer outputs fE(t), fN(t) and east gyro output wE(t) are selected
as the measured signals. Then, the measurement output equation is selected as follows




fN(t)
fE(t)
wE(t)


 = C0




φN(t)
φE(t)
φD(t)


+D0ω0(t) +D0ωf0(t) + h0(φ) +D1d(t) (7)

where

C0 =




0 g 0
−g 0 0
ΩD 0 0


 (8)

D0 =




0 0 0 C11 C12

0 0 0 C21 C22

C11 C12 C13 0 0


 (9)

and nonlinear function

h0(φ) =
[
0 0 ΩNsinφD

]T
(10)

In (7), the inertial sensor errors are denoted by

ω0(t) = [ εx(t) εy(t) εz(t) ∇x(t) ∇y(t) ]T

where ∇ represents the accelerometer measurement error. D1 is a coefficient matrix of the
system with suitable dimensions.

Similar to [15, 16], based on the relationship between navigation frame and body frame,
the equations (4) and (7) can be further formulated as follows








φ̇N(t)

φ̇E(t)

φ̇D(t)


 = A0




φN(t)
φE(t)
φD(t)


+




εN(t)
εE(t)
εD(t)


+ g0(φ) +B1d(t) +B2ωf(t)




fN(t)
fE(t)
wE(t)


 = C0




φN(t)
φE(t)
φD(t)


+




∇N(t)
∇E(t)
εE(t)


+ h0(φ) +D1d(t) +D2ωf(t)

(11)
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The Taylor series expansions of sinusoidal and cosine functions can be denoted as follows

sin(θ) = θ −
θ3

6
+

θ5

120
+ o(θ5), (12)

and

cos(θ) = 1−
θ2

2
+

θ4

24
+ o(θ5). (13)

θ is supposed to be in the neighborhood interior of zero, then o(θ5) is the high order in-
finitesimal term. Applying (12) and (13) to the nonlinear terms of the error model (11), the
nonlinear INS error system (11) can be formulated by

{
ẋ(t) = Ax(t) +Gg(x(t)) +B[ω(t) + ωf(t)] +B1d(t)

y(t) = Cx(t) +Hh(x(t)) +D[ω(t) + ωf (t)] +D1d(t)
(14)

where the system state

xT (t) = [ φN(t) φE(t) φD(t) ]

the system output variable is

yT (t) = [ fN(t) fE(t) wE(t) ]

and ωf is the sensor fault in navigation frame. The inertial sensor errors in frame n are

ω(t) = [ εN(t) εE(t) εD(t) ∇N(t) ∇E(t) ]T

Similar to [15, 16, 38], stochastic error of inertial sensor is supposed to be a first-order
Gaussian Markov process, which can be described by

ω̇(t) = Wω(t) + Eδ(t) (15)

where W = diag{− 1

τ1
, · · · ,− 1

τ5
} and τi (i = 1, · · · , 5) are correlation times of Markov pro-

cess. E represents the coefficient matrix and can be determined by the properties of the
selected inertial sensors. δ(t) is the Gaussian noise. B1 and D1 are denoted in (4) and (7),
respectively. The coefficient matrices in the nonlinear model (14) are determined by the
kinetic and kinematic equations of INS, and denoted as

A =




0 −ΩD 0
ΩD 0 ΩN

0 −ΩN 0


 , C =




0 g 0
−g 0 0
ΩD 0 ΩN


 ,

B =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


 , D =




0 0 0 1 0
0 0 0 0 1
0 1 0 0 0


 .
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The nonlinear terms can be denoted as

g(x(t)) =
[

φ2

D

2
−

φ4

D

24
−

φ3

D

6
+

φ5

D

120
φE

]T
, (16)

and

h(x(t)) =
[
0 0 −

φ3

D

6
+

φ5

D

120

]T
(17)

where

φE = φN(φD −
φ3
D

6
+

φ5
D

120
) + φE(−

φ2
D

2
+

φ4
D

24
)

For the stationary base initial alignment, the initial misalignment angles should be in a
proper interval. Therefore, the high order infinitesimal term o(φ5

D) can be merged into the
norm bounded disturbance d(t). Correspondingly, the parameter matrices are denoted by

G =




ΩN 0 0
0 ΩN 0
0 0 −ΩN


 , H =




0 0 0
0 0 0
0 0 ΩN




It is noted that g(0) = 0 and h(0) = 0 hold. The nonlinear vector function g(x(t)) is
supposed to satisfy

‖g(x1(t))− g(x2(t))‖ ≤ ‖U1(x1(t)− x2(t))‖ (18)

for any x1(t) and x2(t), and for a known matrix U1. Similarly, the nonlinear vector function
h(x(t)) satisfies

‖h(x1(t))− h(x2(t))‖ ≤ ‖U2(x1(t)− x2(t))‖ (19)

for any x1(t) and x2(t), and for a known matrix U2. After the process of coarse alignment
on a stationary base, the misalignment angles are quite small so are supposed to satisfy
|φ| ≤ π/18 in this paper. Then, the constant matrices U1 and U2 are selected as

U1 =




0 0 π
18

0 0 π2

648
π
18

π2

648

18π+π2

324


 , U2 =




0 0 0
0 0 0

0 0 π2

648


 (20)

Remark 1. In most previous results, such as [5, 6, 37], stochastic error of inertial sensor is
simplified to be a random constant. In this article, we adopt a first-order Markov process
(15) to represent the stochastic error of inertial sensor, which can approximate the physical
random processes with improved accuracy. In addition, the modeling error and environ-
mental disturbance of SINS are merged into the norm bounded disturbance d(t) rather than
a Gaussian noise. Different from [5, 6, 15, 16], performance degradation or faults of the
inertial sensors are further discussed to improve the reliability of INS in this article.

In this section, a new nonlinear SINS model subjected to multiple disturbances and
sensor faults is established. Then, the initial alignment problem is transformed into a fault
tolerant filter design problem for a class of nonlinear systems with multiple disturbances and
faults.
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3. Anti-Disturbance Fault Tolerant Filter Design

This section is to design an anti-disturbance fault tolerant filter for estimating misalign-
ment angles for the alignment problem described in Section II. In the following, we will
analyze the characteristics of various disturbances, and respectively describe the different
types of disturbances. In order to improve the accuracy, both disturbance rejection and
attenuation performances should be achieved simultaneously. Different from Kalmam type
filters, compensation terms will be designed to reject inertial sensor errors and to accommo-
date sensor faults in the proposed filter. For this purpose, a mixed multi-objective filter is
constructed as follows





˙̂x(t) = Ax̂(t) +Gg(x̂(t)) + L[y(t)− ŷ(t)] + uc1(t)

ŷ(t) = Cx̂(t) +Hh(x̂(t)) + uc2(t)

˙̂ω(t) = Wω̂(t) +K1[y(t)− ŷ(t)]

˙̂ωf(t) = K2[y(t)− ŷ(t)]

(21)

where x̂(t) is the estimation of state x(t), ŷ(t) represents the estimation of output signal
y(t). ω̂(t) is the estimation of inertial sensor errors ω(t). ω̂f(t) is an adaptive estimation
term, which is adopted to estimate the sensor faults. We use uc1(t) = Bω̂(t) + Bω̂f(t)
and uc2(t) = Dω̂(t)+Dω̂f(t) as the compensation terms, which are applied to reject inertial
sensor errors and accommodate sensor faults. K1, K2 and L are filter gains to be determined
later.

Denoting x̃(t) = x(t)− x̂(t), ω̃(t) = ω(t)− ω̂(t), ω̃f(t) = ωf(t)− ω̂f(t), f̃(t) = f(x(t))−
f(x̂(t)) and g̃(t) = g(x(t))− g(x̂(t)), the estimation error system yields





˙̃x(t) = (A− LC)x̃(t) +Gg̃((t))− LHh̃(t)

+(B − LD)ω̃(t) + (B1 − LD1)d(t) + (B − LD)ω̃f(t)

˙̃ω(t) = (W −K1D)ω̃(t)−K1Cx̃(t)−K1Hh̃(t)

−K1Dω̃f(t) + Eδ(t)−K1D1d(t)

˙̃ωf(t) = ω̇f(t)−K2Dω̃(t)−K2Cx̃(t)−K2ω̃(t)

−K2D1d(t)−K2Hh̃(t)

(22)

After the inertial sensor errors and faults are compensated by their estimations, the next
step is to attenuate the norm bounded disturbances d(t) and ω̇f(t). We select the dissipative
performance to attenuate the norm bounded disturbances, and guarantee cost index to op-
timize the estimation error. Combining the dissipative and guarantee cost reference outputs
with estimation error Equation (22) yields





Ẋ(t) = (Ā− L̄C̄)X(t) + Ḡg(X(t))− L̄Hh(X(t))

+(B̄1 − L̄D̄1)d̄(t) + Ēδ(t)

zd(t) = CdX(t)

z2(t) = C2X(t)

(23)
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where

X(t) =




x̃(t)
ω̃(t)
ω̃f(t)


 , Ā =




A B B
0 W 0
0 0 0


 , L̄ =




L
K1

K2


 ,

Ḡ =




G
0
0


 , B̄1 =




B1 0
0 0
0 I


 , Ē =




0
E
0


 , d̄(t) =

[
d(t)
ω̇f(t)

]
,

C̄ = [ C D D ], D̄1 = [ D1 0 ],

g(X(t)) = g̃(t), h(X(t)) = h̃(t),

C2 = [ C21 C22 C23 ], Cd = [ Cd1 Cd2 Cd3 ].

zd(t), z2(t) are dissipative and guarantee cost performance outputs respectively. C21, C22,
C23, Cd1, Cd2 and Cd3 are selected weighting matrices.

After the stochastic error and bias fault of inertial sensor are rejected in the proposed
filter, we will use the mixed dissipative/guaranteed cost performance to attenuate the norm
bounded disturbance and the Gaussian noise. Sone definitions will be introduced in the
following.

Definition 1. For a real constant τ and any given vectors x(t), y(t), the inner product
operator of vectors is defined as

(x(t), y(t))τ =

∫ τ

0

xT (t)y(t)dt (24)

Before proceeding further, we consider a general linear system

{
ξ̇(t) = ¯̄Aξ(t) + ¯̄Bη(t)

z(t) = ¯̄Cξ(t)
(25)

where ξ(t) is the state variable, η(k) is the norm bounded disturbance input and z(t) is the
reference output. ¯̄A, ¯̄B and ¯̄C represent the coefficient matrices with suitable dimensions.

Definition 2. For any τ > 0 and norm bounded disturbance η(t), if there exists constant
γ > 0 satisfying the following inequality

(z(t), Qz(t))τ +2(z(t), Sη(t))τ + (η(t), Rη(t))τ > γ(η(t), η(t))τ (26)

where Q, R are symmetric matrices and S is a matrix with suitable dimensions, then the
concerned system (25) is strictly (Q, S,R) dissipative.
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Definition 3. The guarantee cost performance index for (23) is defined as J2 =‖ z2(t) ‖
2.

Definition 4. The dissipative performance index for (23) is defined as

J(τ, γ) = (zd(t), Qzd(t))τ + 2(zd(t), Sd̄(t))τ + (d̄(t), R− γId̄(t))τ (27)

At this stage, the objective is to find L̄ such that system (23) is strictly (Q, S,R) dissi-
pative and satisfies the mixed performance index.

Theorem 1. For the constants λ1 > 0, λ2 > 0, tuning parameters α > 0 and matrices C2,
Cd, Q, S and R, if the following LMI-based optimization problem:

min{XT (0)P1X(0)} (28)

subject to




Ξ1 Ξ12 P2Ḡ −R1H Ξ15 C
T

dQ− C
T

2

∗ Ξ2 αP2Ḡ −αR1H Ξ25 0 0
∗ ∗ −λ1I 0 0 0 0
∗ ∗ ∗ −λ2I 0 0 0
∗ ∗ ∗ ∗ γI −R 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I




< 0 (29)

where Q− satisfies −Q = QT
−
Q−, and

Ξ1 = sym(P1Ā−R1C̄) + λ1U
T
1 U1 + λ2U

T
2 U2,

Ξ12 = P1 − P2 + α(P2Ā− R1C̄)T ,

Ξ15 = P2B̄1 − R1D̄1 − C
T

d S, Ξ2 = −αP2 − αP T
2 ,

Ξ25 = α(P2B̄1 −R1D̄1).

are feasible with respect to constant γ > 0, matrices P1 > 0, P2 and R1, then there exists a
mixed multi-objective filter with gains L̄ = P−1

2 R1 such that the error system (23) is strict
(Q, S,R) dissipative and satisfies J2 ≤ XT (0)P1X(0) and J(τ, γ) > 0.

A real symmetric matrix M > (≥)0 denotes M being a positive definite (positive semi-
definite) matrix, andM > (≥)N meansM−N > (≥)0. The symmetric terms in a symmetric
matrix are denoted by ∗. The symbol sym() represents sym(Θ) := Θ + ΘT .
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Proof. Define the Lyapunov function candidate as follows

V (t) = XT (t)P1X(t) + λ1

∫ t

0

[‖U1X(τ)‖2 − ‖g(X(τ))‖2]dτ

+λ2

∫ t

0

[‖U2X(τ)‖2 − ‖h(X(τ))‖2]dτ (30)

It is verified that V (t) ≥ 0 holds for all arguments. Variable t will be omitted in the
following procedures for the sake of simplicity, if it does not cause any confusion. Indeed,
the Lyapunov function V (t) can also be denoted as follows

V =

[
X

Ẋ

]T [
I 0
0 0

] [
P1 0
P T
2 αP T

2

] [
X

Ẋ

]
+ λ1

∫ t

0

[‖U1X(τ)‖2 − ‖g(X(τ))‖2]dτ

+λ2

∫ t

0

[‖U2X(τ)‖2 − ‖h(X(τ))‖2]dτ

Along with the trajectories of system (23), it can be shown that

V̇ = 2XTP1Ẋ + λ1[‖U1X‖2 − ‖g(X)‖2] + λ2[‖U2X‖2 − ‖h(X)‖2]

= 2

[
X

Ẋ

]T [
P1 P2

0 αP2

] [
Ẋ
0

]
+ λ1[‖U1X‖2 − ‖g(X)‖2]

+λ2[‖U2X‖2 − ‖h(X)‖2]

= 2XTP1Ẋ − 2XTP2Ẋ + 2XTP2(Ā− L̄C̄)X + 2ẊTαP2(Ā− L̄C̄)X

−2ẊTαP2Ẋ + 2XTP2(B̄1 − L̄D̄1)d̄+ 2XTP2Ḡg(X)

+2ẊTαP2(B̄1 − L̄D̄1)d̄+ 2ẊTαP2Ḡg(X)

+λ1X
TUT

1 U1X + λ2X
TUT

2 U2X − 2XTP2L̄Hh(X)

−2ẊTαP2L̄Hh(X)− λ1 ‖g(X)‖2 − λ2 ‖h(X)‖2

In the absence of d̄(t) (i. e. d̄(t) = 0), it can be concluded that

V̇ (t) = sT (t)[Φ− ζ(t)ζT (t)]s(t)

where

Φ =




Ξ1 + C
T

2C2 Ξ12 P2Ḡ −R1H
∗ Ξ2 αP2Ḡ −αR1H
∗ ∗ −λ1I 0
∗ ∗ ∗ −λ2I




sT (t) =
[
XT ẊT gT (X) hT (X)

]
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ζT (t) =
[
C2 0 0 0

]

It can be seen by using of Schur complement formula that (29) leads to Φ < 0. When Φ < 0
holds, we have

V̇ (t) < −sT (t)ζ(t)ζT (t)s(t) = −zT2 z2 ≤ 0

Consider the auxiliary function as follows

J0 = zT2 (t)z2(t) + V̇ (t)

It can be verified that J0 ≤ sT (t)Φs(t) holds.
In the presence of d0(t), it can be concluded that

V (τ)− J(τ, γ) =

∫ τ

0

sT0 (t)Ψs0(t)

where sT0 (t) =
[
sT (t) dT0 (t)

]
, and

Ψ =




Ξ1 − C
T

dQCd Ξ12 P2Ḡ −R1H Ξ15

∗ Ξ2 αP2Ḡ −αR1H Ξ25

∗ ∗ −λ1I 0 0
∗ ∗ ∗ −λ2I 0
∗ ∗ ∗ ∗ γI −R



.

Using of Schur complement formula again to (29) yields Ψ < 0. Therefore, it can be
claimed that both J0 < 0 and V (τ) − J(τ, γ) < 0 can be guaranteed under the condition
(29). It implies that J2 ≤ XT (0)P1X(0) and J(τ, γ) > 0. This completes the proof.

Remark 2. The dissipative performance is an extension of robust H∞ and passivity. The
passive design methodologies make use of the information of phase, and the H∞ perfor-
mances aim at the gain of system. The dissipative performance splits the difference between
the phase and system gain, and also has less conservatism [39]. When Q = 0, S = I and
R = 0 establish, the proposed robust dissipative performance is equal to passivity. Similar-
ly, the proposed dissipative performance is equal to robust H∞ performance when Q = −I,
S = 0 and R = 2γI. Different from mixed H2/H∞ performance index in [15, 16], The-
orem 1 provides an anti-disturbance fault tolerant alignment method based on the mixed
dissipative/guaranteed cost performance index. This result involves a tuning parameter α
and slack variable P2, and can lead to less conservative solutions based on the augmented
Lyapunov functional approach.

4. Simulation Examples

The simulation results are based on experimental data in a laboratory (see Figure 1).
The testing conditions are as follows
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• Local latitude is 39.9degN ;

• Initial misalignment angles φD, φE , φN are chosen as 5, 0.5 and 0.5 deg, respectively;

• Gyroscopes: the relative times of Markov process are τ1 = τ2 = τ3 = 3600s and random
drift is 0.05deg/hr;

• Accelerometers: the relative times of Markov process are τ4 = τ5 = 1800s and random
bias is 50µg.

Based on the properties of selected sensors, the correlated times of Markov process are
determined by the testing method. The coefficient matrices in the nonlinear model (14) are
given by

A = 10−4 ×




0 −0.467752 0
0.467752 0 0.559426

0 −0.559426 0


 ,

D =




0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


 , C =




0 9.801609 0
−9.801609 0 0
0.000047 0 0.000056


 ,

D1 =
[
10−5g 10−5g 0.1π

648000

]T
,

E = [
0.0001π

648000
,
0.0001π

648000
,
0.0001π

648000
, 10−7g, 10−7g]T ,

B =
[
I3 03×2

]
, B1 = [

0.01π

648000
,
0.01π

648000
,

0.1π

648000
]T ,

G = 0.559426× 10−4diag{1, 1,−1},

H = 0.559426× 10−4diag{0, 0, 1}.

Due to the changes of working temperature, environment and aging of integrated circuit,
there may exist unpredictable poor performance or faults in the concerned SINS. To verify
the performance of the proposed fault tolerant alignment method for the SINS with multiple
disturbances and unknown bias fault, a gyroscope bias fault and accelerometer bias faults
are considered as shown in Table 1 [34].

Similar to [34], we insert bias faults of inertial sensors into the data obtained from an
experiment. Select the parameter matrices as Q = −I, S = 0, R = 2γI. The dissipative
reference output weighting matrices are selected as

Cd =
[
0.1 0.1 0.01 0 0 0 0 0

]
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Table 1: Fault Type of Inertial Sensor

Occurrence Position Magnitude of Fault Occurrence Time
Gyroscope z-axis 1 deg/hr 150s-300s

Accelerometer x-axis 3mg 150s-300s
Accelerometer y-axis 10mg 150s-300s
Accelerometer z-axis 5mg 150s-300s

The guarantee cost reference output weighting matrices are selected as

C2 =
[
10−6g 10−6g 10−5g 0.01π

180

0.01π
180

0.01π
180

0.1π
180

0.1π
180

]

For weighting parameters λ1 = 0.013211, λ2 = 0.013211, and tuning parameters α = 20,
it can be solved via LMI related to (29) that γ = 2.179985× 10−11, and the gain of multi-
objective filter (21) is

L̄ =




−0.036805 0.043127 0.999999
−0.026919 0.013858 0.000000
0.054935 −0.067048 0.000000
−0.000001 −0.000001 0.000000
−0.000005 0.000002 0.000000
−0.000001 −0.000000 0.000000
−0.001230 −0.000861 0.000000
−0.001230 −0.000861 0.000000
0.141475 −0.173774 0.056144




The parameter matrices of UKF are selected as follows. The initial mean square error
matrix is

P (0) = diag{(1deg)2, (1deg)2, (10deg)2, (0.2deg/hr)2,

(0.2deg/hr)2, (0.2deg/hr)2, (200µg)2, (200µg)2}

The variance matrix of system noise is

Q = diag{(0.1deg/hr)2, (0.1deg/hr)2, (0.1deg/hr)2},

and variance matrix of measurement noise is selected as

R = diag{(50µg)2, (50µg)2, (0.05deg/h)2}.

The estimation errors of three misalignment angles are described in Figures 2-5, where
the solid lines represent the estimation errors by the proposed anti-disturbance fault tolerant
(ADFT) filter in this paper and dash-dot lines denote the estimations errors based on UKF.
Figure 2 shows the results with a gyroscope bias fault and Figures 3-5 demonstrate the
results with accelerometer bias faults. The standard deviations (STD) of estimation error of
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Table 2: The Standard Deviation (STD) of estimation error with gyroscope z-axis bias fault (10−5rad)

Method leveling x leveling y azimuth
ADFT Filter 2.04567 2.11038 5.77020

UKF 2.87675 2.62836 29.2468

Table 3: The STD of estimation error with accelerometer x-axis bias fault: 3mg (10−5rad)

Method leveling x leveling y azimuth
ADFT Filter 6.28524 2.29582 13.8386

UKF 16.3337 3.40254 28.3640

three misalignment angles (after the 30th second) between the proposed approach and UKF
are shown in Tables II-V. From Figures 2-5 and Tables II-V, it can be seen that the proposed
ADFT filter has a good ability for initial alignment of SINS with multiple disturbances and
sensor faults, and the UKF is degraded. It is shown that the proposed filter has enhanced
disturbance rejection and attenuation performance, and high reliability. Because of the
poor observable degree of azimuth misalignment angle, the estimation error of azimuth is
less accuracy than level misalignment angles.

Figure 1: Triaxial test turntable

5. Conclusion

In this paper, the problem of initial alignment is investigated for INS with multiple
disturbances and sensor faults. There are the following features of the proposed algorithm
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Figure 2: Gyroscope z-axis bias fault: 1 deg/hr
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Figure 3: Accelerometer x-axis bias fault: 3 mg

Table 4: The STD of estimation error with accelerometer y-axis bias fault: 10mg (10−5rad)

Method leveling x leveling y azimuth
ADFT Filter 3.51955 14.7711 8.80387

UKF 8.21254 53.8093 29.6776
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Figure 4: Accelerometer y-axis bias fault: 10 mg
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Figure 5: Accelerometer z-axis bias fault: 5 mg

Table 5: The STD of estimation error with accelerometer z-axis bias fault: 5mg (10−5rad)

Method leveling x leveling y azimuth
ADFT Filter 2.04612 2.11129 5.77145

UKF 6.06999 2.64613 28.7699
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compared with the previous results.

• Firstly, a new SINS model with multiple disturbances and sensor faults is established
instead of lumping all the errors and disturbances together as a Gaussian noise or
bounded noise. In our approach, inertial sensor error is represented as a first order
Markov process, while modeling error, environmental disturbance and measuremen-
t noise are merged into a norm bounded disturbance. Then, the initial alignment
problem is transformed into a filter design problem of nonlinear systems with multiple
disturbances and faults.

• Secondly, an anti-disturbance fault tolerant filter is designed for the concerned nonlin-
ear systems with both disturbance rejection and attenuation performance. For systems
with multiple disturbances and faults, classical Kalman filtering type methods may
provide a degraded performance and accuracy. By taking advantage of disturbance
characteristics, corresponding compensation terms are applied to reject inertial sensor
error and accommodate sensor fault. Robust multi-objective performance is used for
optimizing the system performance.

• Thirdly, introducing slack variables and dissipative performance can reduce conser-
vatism of the proposed approach. Comparison results show that the proposed method
has higher accuracy and reliability.
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