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Abstract

The linear feedback shift-register is a widely used tool for generating cryptographic

sequences. The properties of the Galois model discussed here offer many oppor-

tunities to improve the implementations that already exist. We explore the overall

properties of the phases of the Galois model and conjecture a relation with modu-

lar Golomb rulers. This conjecture points to an efficient method for constructing

non-linear filtering generators which fulfil Golić’s design criteria in order to maxim-

ise protection against his inversion attack. We also produce a number of methods

which can improve the rate of output of sequences by combining particular distinct

phases of smaller elementary sequences.
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Chapter 1

Introduction

The goal of cryptography, from the Greek words kryptós and graphein, literally

meaning ‘secret writing’, is to establish a secure line of communication between

parties such that conversations retain their confidentiality, integrity and authen-

ticity in the presence of an adversary who is trying to intercept passing messages.

Of particular interest is the retention of the confidentiality of conversations across

the line and the systems that may be utilised in order to arrest any such attempt

on the conversation by an adversary. Many and various are the numbers of sys-

tems proposed with the intention of addressing this issue through the methods of

encryption and decryption and as can be expected, each system or cipher, has an

application best suited to its particular properties.

The one-time pad (OTP) is an example of a symmetric-key algorithm as

demonstrated in Figure 1.1, used repeatedly throughout the 20th century, to fulfil

the purpose of such a cipher. The greatest property of the OTP, if used correctly,

is that it will be impossible for an adversary to decrypt an intercepted encrypted

message. It was derived from the Vernam cipher of Gilbert Vernam, patented in

1919 [34], a simple cipher which details the method of combining a message or

plaintext with a key using the operation of exclusive or (XOR) to obtain a cipher-

text which could in turn be combined again with the key in the same manner to

reacquire the plaintext. In the example shown the OTP uses addition modulo 26

to combine the characters of the plaintext with the contents of the pad to obtain

the ciphertext, with each letter of the alphabet assigned a value between 0 and 25.

Attributed to Frank Miller for its first description in 1882 [23] the OTP consists

of a pad of paper with a randomly generated key written on each page. If one

used the key written on a page of the pad to encrypt a message, as in the spirit

of the Vernam cipher, and then destroyed the page, only someone with an exact

duplicate of the original pad could decrypt the message. It follows that in situ-

ations where the use of a OTP was known, the pads became greatly sought after

and the strength of the cipher then relied upon the care its participants took to

11



CHAPTER 1. INTRODUCTION 12

Figure 1.1: A one-time pad used to encrypt the first paragraph of this chapter.

NXPHI KLUUO DSFMS HDZPQ GVMSD PGCXX HNDXG ACODG
UDNRP LJRQC SDFEG UKIEC PPURJ AIRLB YEFRI WJNAV
YSHHP RIJTD HFJKR VDOFU ELXFZ RQFIY NVRJU RVVLV
UFYKI NTAQD LPJJE HGVYV LHZKF BDOLL LJPHD HGZUU
KUJDE UJEJW IRELO UIHAC LBNLP PJVDU KIWPE LQGVK
WWJXY MOVRH FIPLL FSJYT RYEFA MMDUI FLPFV OQZYR
YRBXL EEOIL XSAAH OCGWR QPYIH UZGQH KKLGM MTOGE

GETNW KWIZQ UQUFG NUZEX EADGP INGDO LRNPK CTSWC
LLGZC RRJJQ WVYEH FSALC HTWLA ETZYF MJHFU IDAIX
YLPVC SMCPH LSYKI OLSXM YNEYG RJNVR UZGAY JZINZ
IKYXI QOEHV LGHLS UBZPN LAHYS TUSEL TWIOH PXBIH
PCMHR NREUE BP0TB NMNRK EZNYS PDOKY XBERM EOUAZ
WNCFA GZVIP SBTCP XLRQM YCGTN RUGYV YTPQD HOQCK
CEUFZ RSTKZ KNERZ OVOKE IPAZV MRZXL VSYKM ZWHNI

One-time pad

Encrypted message

secure their pads.

Claude Shannon proved in 1949 [28] that the OTP has a property known as

perfect secrecy, which details that the ciphertext provides no extra information

to an adversary about the plaintext other than its maximum possible length.

This result holds true even to an adversary with infinite computational power, a

statement of enormous weight for sure. The strength of the OTP relied upon two

key points:

• The extreme extent of Shannon’s proof could only be realised if each of the

keys were truly random,

• the use of the OTP can only be as secure as the method used to exchange

the pads themselves.

In practice there are many very good approximations to truly random variables but

few of these lend themselves to generating the number of sequences which would be

required for large scale use of the OTP, this alone is a difficult, if not impossible,

goal to achieve. Also, in order that a pad does not fall into an adversary’s hands

it is imperative that the exchange take place in a totally controlled environment,

which again raises various issues in practicality.

The OTP is not suitable for many applications, but the notion of perfect

secrecy is a useful one and practical ciphers can be judged by this yardstick. In

the area of telecommunications when a party wishes to transmit data across a

public network securely, they can use a cipher that mimics a close approximation

of the OTP. Some such ciphers will generate pseudorandom sequences (PRSs)

which are determined to adequately approximate a truly random sequence and at

a reasonable speed which can be used as a key to encrypt the data. PRSs in this

context are referred to as keystreams to reflect their use as keys in the cipher. In

most applications these PRSs may be generated from another relatively smaller key

which can be more readily exchanged between clients along another channel. This
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key exchange is generally studied under the field of public-key cryptography and

we shall make the assumption in this thesis that whatever key exchange system

is used that it is adequately secure and the secret key remains unknown to an

adversary.

Stream ciphers, another class of symmetric-key algorithm which are discussed

herein, are designed to generate a keystream for encryption which simulates the

operation of the OTP. Due to the nature of the generation of the keystreams

within most stream ciphers, the resulting PRS is periodic. This is a cryptograph-

ically undesirable property of stream ciphers since it can leak information to an

adversary which can in turn be used to break the cipher. This situation can be

reduced in severity by ensuring that the period of the PRS is much greater than

the length of the data that is to be encrypted, thus avoiding a repetition in the

keystream within the limits of the encryption of our data. It is primarily for this

reason that one of the prime requirements of most stream ciphers is that they can

efficiently produce PRSs with very large periods given relatively small secret keys.

The LFSR shown in Figure 1.2, is constructed from a collection of memory cells

whose values are allowed to change over time according to a predefined set of rules,

is a widely used and well documented component of many stream ciphers. The

taps of the LFSR shown in this diagram may be turned on and off by supplying

a signal to the connections across the top. In the figure the implementation uses

D flip-flops, a latch circuit which captures the input value D and presents the last

captured value onto the output Q at each clock cycle. The LFSRs ubiquity is due

to the fact that it can be used to produce PRSs with very large periods given a

relatively low number of components. Apart from being able to produce PRSs

with very large periods, an LFSR may be constructed such that the sequences

will also have a number of other cryptographically desirable properties such as

good randomness properties as described by Golomb [13], balancedness, large

period and high linear complexity. However, used by themselves or as standalone

cryptographic systems, LFSRs can be broken relatively easily using a myriad of

differing techniques [35] and it is for this reason that they will generally appear

only as a core element of a larger stream cipher along with other components that

each provide some other desired properties to reinforce the system’s security.

Many design criteria exist to ensure that a cipher meets some set of standard

requirements and generally each of the design criteria must be met for the system

to resist current cryptographic attacks. One such design principle that has not

received a lot of attention until recently is the interaction between an LFSR and

the rest of the cipher.

Following our own examination of this area it is clear that not only the methods

used to access an LFSR can affect the cipher on a larger scale but also the physical
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Figure 1.2: A realisation of an LFSR using an array of D flip-flops, AND gates
and XOR gates

QD

>

QD

>

QD

>

Output

Clock

QD

>

model used to describe the LFSR itself. These physical models shall be presented

in Chapter 2 of this thesis along with an overview of the main mathematical tools

used to study LFSRs and some important definitions and concepts that are used

throughout this thesis. Included in Chapter 2 under Section 2.2 are two new

notations devised by ourselves in order to ease the manipulation of sequences.

Following this overview, Chapter 3 goes on to cover our own exploration of the

nature of LFSRs under different conditions, such as when restrictions are applied

to the polynomial used to drive the LFSR or linking numerous LFSRs in various

ways using XOR. The consideration here being specifically when non-primitive

irreducible polynomials are used in conjunction with the LFSRs and the generation

of elementary sequences.

Implementing some points described in Chapter 3, Chapter 4 draws up a newly

discovered property of LFSRs involving modular Golomb rulers (MGRs). Here we

are using primitive polynomials to generate sequences and we are observing the

state of the LFSR over time to derive a set of sequences. We explore the properties

of the sequences produced by the LFSR and conjecture on whether the shifts of

these sequences themselves form a MGR.

Chapter 5 contains some examinations of biases within existing stream ciphers

and how the interaction between an LFSR and the rest of the cipher can cause

undesired side effects upon the generated keystream. This chapter also focuses

on Golić’s inversion attack [11]. The attack is examined both as described in

the current literature and in relation to the work in this thesis. We observe how

the attack performs against one of the models introduced in this thesis and also

how the attack itself can be tweaked to handle this model. Chapter 6 contains

another interesting property that was noticed during experimentation that did

not provide itself to immediate application involving work in this thesis. Finally

Chapter 7 provides a summary of the findings of this work in relation to the use

of certain LFSRs within cryptographic systems and speculates on directions for

further research in this area.



Chapter 2

Background

Stream ciphers are symmetric-key algorithms that combine a plaintext with a

keystream. This keystream is usually a PRS generated from some secret key or

seed value. Most stream ciphers operate in the field of F2 of two values {0, 1}
and thus most computer based stream ciphers manipulate binary values. The

plaintext is encoded usually one bit at a time using XOR, although some of the

latest stream ciphers operate in a manner similar to block ciphers in that groups of

bits or blocks are encoded at once. This newer style of operation can be attributed

to the growing processing speeds of small scale electronics and the tendency of

electronics to employ faster and more efficient parallelization techniques.

This chapter describes the existing fundamental concepts of mathematics upon

which much of cryptographic theory is built. We shall first define a particular type

of sequence which will become the model of the keystreams mentioned earlier

and we shall describe a handful of methods of manipulating and analysing these

sequences. To end this chapter we will define one of the ubiquitous constructions

that is implemented as the core of many stream ciphers to generate sequences and

keystreams.

2.1 Sequences

The sequences we study in this thesis are known as linear recurrence sequences

and are inherently deterministic. This means that given some distinct initial

parameters we can generate identical sequences at any time, in any place and

given most any software or hardware.

Recalling the definition of the OTP in Figure 1.1 this property of time and

location independence is an obvious advantage to one who wishes to send and

receive secret messages.

Let us begin by introducing some notation that will allow us to express se-

15
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quences of values of varying length in their entirety.

Definition 2.1. We shall represent a sequence s as a tuple of elements of a set S

and we will write the tuple within the usual parentheses but with additional limits

a and b which represent the bounds of the index i of the sequence, s = (si)
b
i=a =

sa, sa+1, . . . , sb−1, sb where sa, . . . , sb ∈ S are the elements of the sequence.

This allows us to separate the actual values of the sequence and concentrate

on the relations between elements at certain positions of the sequence.

2.1.1 Linear recurrence relations

We now define some concepts of linear relations and introduce these ideas to

our notion of sequences. These concepts form the cornerstone of the study of

determinant sequences.

Definition 2.2. [15] Given an ordered list of k elements we refer to a predecessor

of an element as all those that appear topologically previous to it. A k-th order

recurrence relation is then a functional relation between an element and k of its

predecessors of the form

ai+k = f(ai+k−1, . . . , ai+1, ai). (2.1)

We shall study recurrence relations in which the function f as shown above is

linear and homogeneous. Explicitly, f is of the form

f(ai+k−1, . . . , ai+1, ai) = ck−1ai+k−1 + · · ·+ c1ai+1 + c0ai. (2.2)

Example 2.3. A common example of a simple recurrence relation is ai+2 = ai+1+

ai, the relation that defines the Fibonacci numbers. Here, each element is the sum

of the two elements immediately previous to itself.

Now we apply this relation to the ordered elements of a sequence either by

finding a relation to fit a sequence or by generating a sequence from the relation.

Definition 2.4. An infinite sequence s = (si)
∞
i=0 with elements in a field F is

called a linear recurrence sequence if there exists a linear homogeneous recurrence

relation, i.e. a relation of the form

si+n = cn−1si+n−1 + · · ·+ c1si+1 + c0si (2.3)

for all i = 0, 1, . . . where c0, c1, . . . , cn−1 ∈ F are constants.
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Example 2.5. Given the relation from Example 2.3 ai+2 = ai+1 + ai and using it

to generate a sequence (ai)
∞
i=0 we obtain

x, y, x+ y, x+ 2y, 2x+ 3y, 3x+ 5y, 5x+ 8y, . . . . (2.4)

Substituting x = y = 1 we arrive at the familiar Fibonacci sequence. Note that

the actual values of the elements of the sequence are uniquely determined by our

choice of x and y.

There are many ways to encapsulate the relational function of a sequence but

the one we shall use in this thesis is known as the characteristic polynomial of the

linear recurrence relation of the sequence. This representation has many uses one

of which is the linear complexity of the sequence which will be important in the

last section of this chapter.

Definition 2.6. Given a linear recurrence relation of the form described above

we associate to it a characteristic polynomial

f(x) = xn − cn−1xn−1 − · · · − c1x− c0. (2.5)

If n is minimal for the given sequence we call n the linear complexity of the

sequence and we call f the minimal polynomial of s. In this case we call s an n-th

order linear recurrence sequence.

Example 2.7. Again drawing from the previous examples we can see that the

Fibonacci relation may be associated with its characteristic polynomial f(x) =

x2 − x − 1. From this and an argument showing that this is also the minimal

polynomial of the sequence we see that the linear complexity of the Fibonacci

sequence is 2 and that such a sequence is a 2nd order linear recurrence sequence.

A k-periodic sequence for some k has the property that si = si+k for all i =

0, 1, . . . . Thus a k-periodic sequence (si)
∞
i=0 may be represented by any finite

sequence (si)
a+k−1
i=a , where a is usually chosen to be 0.

Theorem 2.8. [19, Theorem 6.11] If (si)
∞
i=0 is a linear recurrence sequence in

a finite field satisfying the linear recurrence relation si+n = cn−1si+n−1 + · · · +
c1si+1 + c0si for n = 0, 1, . . . and if the coefficient c0 is nonzero, then the sequence

s0, s1, . . . is periodic.

Sadly our Fibonacci sequence examples are not defined over a finite field but

over the naturals and thus are not necessarily periodic. Examples such as these

may be interpreted to have a period of ∞.

The period and related stability of linear recurrence sequences in regard to

linear complexity has a very rich and broadly studied background [5].
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Theorem 2.9. [19, Theorem 6.33] A linear recurrence sequence s over a finite

field F2 with linear complexity n has a maximum possible period of 2n − 1.

Definition 2.10. A sequence which has maximum period for given n is called a

maximal length sequence or m-sequence, the period of such sequences is 2n − 1.

All PRSs used in computer based cryptography can be represented as linear

recurrence sequences and generally these sequences have extremely large linear

complexities. The linear complexity of a sequence is used as a statistical measure

of randomness; a sequence with higher linear complexity is more desirable to

others. The Berlekamp-Massey algorithm [22], originally designed for use in the

field of coding theory can be used to synthesise a characteristic polynomial of a

sequence. This property has led to the common use of the Berlekamp-Massey

algorithm as a tool to calculate the linear complexity of sequences.

It may be noted that the order or naming of the coefficients c in the definitions

above are in reverse order to most standard definitions of linear recurrence relations

from the study of discrete mathematics [7, 2, 3]. It appears that those with intent

to use linear recurrence relations in a computational manner tend to prefer the

ordering we use here [19, 13, 24] This difference is purely cosmetic and our choice

allows some expressions to be handled more naturally later on.

2.1.2 Manipulating sequences

Now that we understand what sequences are and how we may represent them we

move on to describing some important methods of manipulating them that will

be used throughout this thesis. We begin by describing the shifting of sequences,

in essence moving relatively the positions of the elements of a sequence.

Definition 2.11. A shift of a sequence s is represented by (s � h) or (s � h)

using parentheses to avoid confusion with the notation for much-greater/less-than.

Given s = (si)
∞
i=0 we denote by (s� k) the sequence obtained by shifting s by k

positions to the left, i.e. the sequence (si+k)
∞
i=0. If s is n-periodic we denote by

(s � k) the sequence obtained by shifting s by k positions to the right, i.e. the

concatenation of the sequences (si+n−k)ki=0 and (si)
∞
i=0. Note that since (s� k) =

(s� (n− k)) we may view the shift on a periodic sequence as a rotation or as a

cyclic shift.

Example 2.12. Let us take the the 8-periodic sequence s = 01101001 and apply

a shift to it, (s � 3). The sequence we have after the shift, takes the form

01001011.
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A number of further representations of sequences are described in the follow-

ing definitions and for these we make an assertion about the sequences we shall

examine.

We are interested in those recurrence sequences with irreducible characteristic

polynomials over F2 since it is these sequences which model the sequences used in

cryptographic systems. By Theorem 2.8 we know that such sequences are periodic

since a requirement of irreducibility causes the coefficient c0 to be nonzero.

Definition 2.13. [19, Definition 2.22] For an element a ∈ F = Fqm and a field

K = Fq the trace of a over K, denoted TrF/K(a) is defined by

TrF/K(a) = a+ aq + aq
2

+ · · ·+ aq
m−1

. (2.6)

For any irreducible polynomial f over F2 we may apply the trace function

Tr(a) as defined above with q = 2 to powers of a root of f in order to produce a

representation of the linear recurrence relation with characteristic polynomial f .

Theorem 2.14. [19, Theorem 6.24] Let (si)
∞
i=0 be an n-th order homogeneous

linear recurring sequence in F2 whose characteristic polynomial f is irreducible

over F2. Let β be a root of f in the extension field F2n. Then there exists a

uniquely determined a ∈ F2n such that

si = Tr(aβi) =
n−1∑

k=0

a2
k

(β2k)i = aβi + (aβi)2 + (aβi)4 + · · ·+ (aβi)2
n−1

(2.7)

for all i = 0, 1, . . . .

The a here uniquely determines the initial n values of the sequence and since

each shift of the sequence changes these initial values, each a may represent a

particular shift of the sequence. Given the initial n values of an n-th order lin-

ear recurring sequence we may find a by solving the set of n linear equations

constituting the trace representation of the first n elements of the sequence.

Definition 2.15. An elementary sequence is a sequence that has an irreducible

minimal polynomial. m-sequences are therefore elementary sequences, but each

non-primitive irreducible polynomial is itself the minimal polynomial of a non-

maximal length elementary sequence.
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2.2 New Notation

2.2.1 The Seq notation

In order to facilitate the manipulation of multiple sequences later in this text we

introduce the following new short hand notation to refer to elementary sequences

in terms of their trace representation and a collection of important results that

follow from it:

Definition 2.16. We define Seqβ(a) (or just Seq(a) if β is clear from the context)

as the sequence s whose i-th element is represented by

si = Tr(aβi) =
n−1∑

k=0

a2
k

(β2k)i. (2.8)

Since this notation is our own we briefly outline some of the properties of the

function as it relates to our work. The shifting or rotating of sequences defined

by the Seq notation is related as follows:

Lemma 2.17. Let β be a primitive element of F2n. For a ∈ F∗2n and h ∈ Z we

then have the following equalities,

(Seqβ(a)� h) = Seqβ(aβ−h) (2.9)

(Seqβ(a)� h) = Seqβ(aβh) (2.10)

Proof. By the definition of the shift operators � and �, the i-th element of

(Seqβ(a)� h) is the (i− h)-th element of Seqβ(a),

si−h =
n−1∑

k=0

a2
k

(β2k)i−h =
n−1∑

k=0

(aβ−h)2
k

(β2k)i (2.11)

which by Definition 2.16 is the i-th element of Seqβ(aβ−h), similarly for (Seqβ(a)�
h).

2.2.2 The log notation

Although not entirely new we now introduce a new concept of the familiar log

notation to describe specifically the discrete logarithm over a field:

Definition 2.18. Let β be a primitive element of F2n then logβ(a) denotes the

discrete logarithm of a in the base of β such that k = logβ(a) ⇔ a = βk. Note

that when β is not a primitive element of the field logβ will not always be defined.
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Using the definition of the discrete logarithm we readdress the notation seen

in Lemma 2.17:

Lemma 2.19. Again, let β be a primitive element of F2n. For a1, a2 ∈ F∗2n and

h ∈ Z we then have the following relation,

(Seqβ(a1)� h) = Seqβ(a2)⇔ h = logβ(a1a
−1
2 ). (2.12)

Proof. From Lemma 2.17 we have (Seqβ(a1)� h) = Seqβ(a1β
−h) = Seqβ(a2) and

thus a1β
−h = a2 or equivalently by Definition 2.18 h = logβ(a1a

−1
2 ).

We note that Seq is linear and thus for any a, b ∈ F2n and c ∈ F2 we have the

following equalities:

Seqβ(a) + Seqβ(b) = Seqβ(a+ b) (2.13)

c Seqβ(a) = Seqβ(ca) (2.14)

Again since a uniquely determines the shift of the sequence, we can deduce a

relation between the set of all elements of F2n and the n-th order sequences over

F2.

Theorem 2.20. Let a0, a1, . . . , an−1 be elements of the field F2n. Viewing F2n as

an n-dimensional vector space over F2 we have the following equivalence: For some

β ∈ F2n with minimal polynomial g the values a0, a1, . . . , an−1 form a basis of F2n

if and only if Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis of the set of sequences

with a shared minimal polynomial g.

Proof. Let a ∈ F2n , then a0, a1, . . . , an−1 is a basis of F2n if and only if there

are unique c0, c1, . . . , cn−1 ∈ F2 such that a =
∑n−1

i=0 ciai = c0a0 + c1a1 + · · · +
cn−1an−1. This is equivalent to the requirement of unique c0, c1, . . . , cn−1 ∈ F2
such that Seqβ(a) = Seqβ(

∑n−1
i=0 ciai) =

∑n−1
i=0 ci Seqβ(ai) which is true if and only

if Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis of the set of sequences with some

minimal polynomial g.

Definition 2.21. If two periodic sequences are such that one can be obtained

from the other by a cyclic shift, then we say that the two sequences are equivalent

under cyclic shifts. The different cyclic shifts of a sequence are sometimes called

phases, especially in engineering contexts.
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2.3 Comparing and combining sequences

2.3.1 Polynomials

We now briefly recall the following definition of the order of a polynomial:

Definition 2.22. The least positive integer d such that a polynomial g ∈ F2[x]

divides xd − 1 is known as the order of g and is denoted as ord(g) = d.

Theorem 2.23. Given an irreducible polynomial g ∈ F2[x] of degree n and order

d, there are exactly 2n − 1 distinct non-zero elementary sequences with minimal

polynomial g. There are q = (2n−1)/d classes of equivalence (under cyclic shifts),

each having d elements.

If β is a root of g and α is a primitive element of F2n such that β = αq

then each of the classes above is of the form {Seqβ(αi+jq)|j = 0, 1, . . . , d − 1} for

i = 0, 1, . . . , q − 1.

Proof. The sequences can be written as Seqβ(a) with each of the 2n − 1 elements

a ∈ F∗2n uniquely identifying a sequence. By Lemma 2.17, two sequences Seqβ(b1)

and Seqβ(b2) are equivalent under cyclic shifts if and only if there is an integer h

such that b1 = b2β
h.

2.3.2 Decimation and interleaving

Definition 2.24. Given a sequence s = s0, s1, . . . , its q-decimation starting at

position j is the sequence r such that ri = sj+iq. If j is not specified, it is by

default zero, the decimation begins at the first element of the sequence s. Given a

sequence of length m, a q-decimation in which gcd(m, q) = 1 is known as a proper

decimation. If there exists some k such that m = qk then the decimation is called

improper.

It is known that decimating an m-sequence produces elementary sequences,

see [31] and [20, Theorem 11, Ch. 8, §4]. We recall this result here and tailor it

to better fit our needs:

Theorem 2.25. Let s = s0, s1, . . . be an m-sequence with composite period 2n −
1 = dq. Let α be a root of the minimal polynomial of s and let a ∈ F2n be such

that s = Seqα(a). Then the q-decimation of s starting at positions 0, 1, . . . q − 1

will result in the q sequences s(0), . . . , s(q−1) such that s(j) = Seqβ(aαj) for j =

0, 1, . . . q − 1 and β = αq.

Proof. The i-th element of s(j) is s
(j)
i = sj+iq = Tr(aαj+iq) = Tr(aαj(αq)i) =

Tr(aαjβi), which is exactly the i-th element of the sequence Seqβ(aαj).



CHAPTER 2. BACKGROUND 23

If we now consider the inverse of the above result and explore the outcome of

interleaving elementary sequences together we see the following:

Definition 2.26. The interleaving of q sequences r(0), r(1), . . . , r(q−1) is the se-

quence s defined as sj+iq = r
(j)
i with i = 0, . . . and j = 0, . . . , q − 1.

Note that if all the sequences r(0), r(1), . . . , r(q−1) have period d, then their

interleaving will have as period a factor of dq.

Theorem 2.27. Let s be an m-sequence of linear complexity n and minimal poly-

nomial f . Assume 2n−1 = dq is a non-trivial factorisation. Let g be an irreducible

polynomial of order d, degree n and let β be a root of g. Let t(0), . . . , t(q−1) be ele-

mentary sequences with minimal polynomial g.

If there is a primitive root α of f such that β = αq, and there is an a ∈ F2n
such that s = Seqα(a) and t(j) = Seqβ(aαj) for j = 0, 1, . . . , q − 1 then s can be

obtained by interleaving t(0), . . . , t(q−1).

Proof. For each t(j) we can choose some b ∈ F2n such that Seqβ(bβj). Since α is

a primitive root in F2n we have unique αqj = βj. Substituting α and choosing an

appropriate order in which to interleave the sequences t(0), . . . , t(q−1) we can create

the sequences Seqα(aαjq) j = 0, 1, . . . , q − 1, which we can see are precisely the

sequences produced by a q-decimation of the sequence s.

Note that if we start from g and construct the finite field F2n as the algebraic

extension by β, then there are several primitive elements α ∈ F2n which are

solutions for β = αq. Moreover these α need not all have the same minimal

polynomial.

Example 2.28. Let us take as example the field F64, n = 6 and the sequence s

with minimal polynomial f(x) = x6 +x4 +x3 +x+ 1. We note that f is primitive

and thus s is an m-sequence with period 63.

The factors of 63 are 3, 7, 9 and 21 and it happens that there are irreducible

polynomials of degree 6 with only orders 9 and 21. Let us take g(x) = x6+x5+x4+

x2+1 with order 21, and let β be a root of g. If we now set β = αq which in this case

q = 3 where α is a primitive root of f we find that g(α) = α18 +α15 +α12 +α6 +1.

Performing the necessary calculations we see that g(α) = 0.

From here if we generate and interleave the sequences t(j) = Seqβ(aαj), the

resulting sequence will be Seqα(a) for some a ∈ F2n .

If we arrange these sequences as shown below it should be clear that interleav-

ing them produces the correct result.
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Table 2.1: Interleaving sequences

t(0) = 000111001111110110001

t(1) = 001100100101000001101

t(2) = 011101010110111100001

000001011111100101010001100111101110101101001101100010010000111

2.4 Linear feedback shift registers

2.4.1 Fibonacci LFSRs

The LFSR can produce linearly recurring sequences with large periods and good

element distributions relatively easily. The Fibonacci model LFSR or just Fibon-

acci LFSR, named after the 12th century Italian mathematician Leonardo Bonacci,

is the most common model of LFSR used in systems that require a PRS to be

generated. It is these qualities along with its lightweight hardware implementation

that make it so popular in cryptographic systems. A Fibonacci LFSR consists of

a number of memory cells that shift their values with each clock interval and a

feedback function that feeds new values into the first cell, see Figure 2.1. The

memory cells whose values are evaluated by the feedback function are known as

the taps or tapped positions.

Figure 2.1: A Fibonacci model LFSR

c0 c1 cn−2 cn−1

Q(n−1)Q(n−2)Q(1)Q(0)

output st st+1 st+n−2 st+n−1

Firstly it shall be useful to note that the output sequence s of the LFSR shown

in Figure 2.1 satisfies the linear recurrence,

st+n = cn−1st+n−1 + cn−2st+n−2 + · · ·+ c1st+1 + c0st. (2.15)

In the diagram the presence of a connection between the lower track and an

XOR on the upper track represents a value of 1 in the corresponding coefficient

ci.

The feedback polynomial of the LFSR is equivalent to the reciprocal of the

characteristic polynomial of the linear recurrent sequence above:

f(x) = 1− cn−1x− · · · − c1xn−1 − c0xn. (2.16)
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Example 2.29. Let us take for example a Fibonacci LFSR composed of four

memory cells. Naming the cells from left to right as in Figure 2.1, Q(0), Q(1), Q(2)

and Q(3), and noting connections or taps at memory cells Q(0) and Q(3) we assign

the coefficients as such: c0 = c3 = 1, c1 = c2 = 0 and thus the feedback polynomial

of the LFSR is f(x) = 1− x− x3.

In the Fibonacci model the non-zero coefficients of the feedback polynomial

describe the tapped memory cells of the LFSR. In the literature studied there

does not seem to be a global naming convention for the memory cells of LFSRs.

While some authors choose to number the memory cells in order, from the input

cell to the output cell, there is also a discrepancy on choice of using 0 or 1 based

indexing. In this thesis the memory cells of the length n LFSR will be denoted by

Q(0), Q(1), . . . , Q(n−1).

The letter Q is chosen to reflect the output of a D flip-flop as it is this point

in most hardware implementations which holds the analog measurement of the

state of the memory cell. When designing what came to be known as Turing

machines this Q was introduced by Alan Turing as a reference to quanta in order

to emphasise the value’s discrete nature.

In this thesis the numbering of the memory cells is chosen to be in order from

output to input with 0 based indexing in order to provide an intuitive correlation

between the contents of the cells and elements of the resultant sequence. Note

that the indices of the coefficients c align with those of the memory cells Q. At

time t the content of memory cell Q(i) will be denoted Q
(i)
t . The contents of the

complete set of memory cells at time t denoted by the n-tuple

Qt =
(
Q

(0)
t , Q

(1)
t , . . . , Q

(n−1)
t

)
, (2.17)

is known as the internal state of the LFSR at time t. The initial state of the

LFSR is the state at time t = 0, Q0 = (Q
(0)
0 , Q

(1)
0 , . . . , Q

(n−1)
0 ). The contents of

the memory cell Q(i) over time equates to the sequence (Q
(i)
t )∞t=0 = Q

(i)
0 , Q

(i)
1 , . . . .

Definition 2.30. A Fibonacci LFSR of length n, see Figure 2.1, with feedback

polynomial f(x) = 1− cn−1x− · · · − c1xn−1− c0xn will update itself at each clock

interval of t according to the following

Q
(i)
t+1 =




cn−1Q

(n−1)
t + · · ·+ c1Q

(1)
t + c0Q

(0)
t if i = n− 1

Q
(i+1)
t otherwise.

(2.18)

When only a single output is required of the Fibonacci LFSR it is most com-

monly taken from memory cell Q(0). Note that this is also not a global convention

but is adopted for use within this thesis. When describing a set of taps of an LFSR
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many authors wisely use an explicit definition by way of a diagram or by stating

the linear recurrence relation of the output sequence to avoid any unnecessary

ambiguity.

2.4.2 Galois LFSRs

Another less commonly used implementation of the LFSR and the one this thesis

shall concentrate on is the Galois model, named after the 19th century French

mathematician Évariste Galois. The function and basic idea behind this model is

the same as the Fibonacci model. The critical difference is in how the feedback

polynomial is interpreted.

Figure 2.2: A Galois model LFSR

c0 c1 cn−2 cn−1

R(n−1)R(n−2)R(1)R(0)

output st st−1

Here the memory cells will be denoted R(i) to avoid confusion with the Fibon-

acci model. We do not reorder the indices of the memory cells since both models

can be seen as equivalent when representing each cell as in Figure 2.3.

This result shows the modular nature of the LFSR as each configuration may

be assembled using only these cells. We observe that using the F/G switches

an LFSR may be produced by daisy chaining these cells together. In each case,

regardless of the model being Fibonacci or Galois, the left most cell will be set to

Fibonacci mode and the right most cell will be set to Galois mode. Although this

idea is not used to a great extent in this thesis it has been included here as an

interesting observation that was made during the research.

Figure 2.3: A generic LFSR memory cell

Q(i)

F/G

The F/G input allows the cell to activate and deactivate its own Fibonacci and
Galois operating modes.

Note that the coefficients c are also numbered in the same order as its Fibonacci

counterpart. It is this choice that gives rise to the fact that given the same feedback
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polynomial and a suitable initial state the Galois model will produce the reverse

sequence of its Fibonacci counterpart. The other naming conventions for sequences

and memory cell contents by time are the same as in the previous section. As

before the presence of a connection between an XOR on the lower track and the

the upper track represents a value of 1 in the corresponding coefficient ci.

Example 2.31. Assuming a similar setup to the one described in Example 2.29

except now our memory cells are named R(i) instead of Q(i), according to Figure 2.3

we may arrive at the new connection state by flipping all cells from Fibonacci mode

to Galois mode except for R(0) which now operates under both modes and R(3)

which previously operated in both modes but now only operates in Galois mode.

This equivalence allows us to retain not only the numbering of the memory

cells but also the numbering of the coefficients derived from each connection or

tap. This LFSR has a feedback polynomial of f(x) = 1 − x − x3, which in this

particular case is the same polynomial stated in Example 2.29.

The sequences produced by examining a single memory cell of the Galois LFSR

over time have characteristic polynomial of the form xn−c0xn−1−· · ·−cn−2x−cn−1.
Reversing the step taken to arrive at a feedback polynomial from a characteristic

polynomial we define the feedback polynomial of the above Galois LFSR as f(x) =

1− c0x− · · · − cn−2xn−1 − cn−1xn.

There exists a relation between characteristic and feedback polynomials of both

Galois and Fibonacci LFSRs and these relationships are demonstrated relative to

the characteristic polynomial of the Fibonacci model in Table 2.2.

Table 2.2: Relationship between characteristic and feedback polynomials of LFSRs

Polynomial Fibonacci Galois

Characteristic xnf(x−1) x−1(f(x)− 1) + 1
Feedback f(x) xn(f(x−1)− 1) + 1

Definition 2.32. A Galois LFSR of length n, see Figure 2.2, with feedback poly-

nomial f(x) = xn−cn−1xn−1−· · ·−c1x−c0 will update itself at each clock interval

of t according to the following

R
(i)
t+1 =




cn−1R

(0)
t if i = n− 1

R
(i+1)
t + ciR

(0)
t otherwise.

(2.19)

The state Rt = (R
(0)
t , R

(1)
t , . . . , R

(n−1)
t ) at time t of a Galois LFSR with feedback

polynomial f primitive over F2 can be interpreted as the coefficients of the element

R
(0)
t αn−1 + · · · + R

(n−2)
t α + R

(n−1)
t ∈ F2n where α is a primitive root of f . If the
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initial state is interpreted as αk then at time t we have the state αk+t. It is this

property along with a particular primitive polynomial that some authors use to

generate the elements of finite fields.

2.4.3 Increasing the rate of output

Some authors have explored various ways to artificially increase the rate of output

of cryptographic systems that employ LFSRs to generate PRSs. Robshaw [26]

described a method of interleaving 2k phases of the desired m-sequence, with all

these phases being generated synchronously by separate LFSRs. Here k is a value

less than or equal to the complexity of the sequence n, see also [18, 31] whose

work is similar but places greater requirements on the properties of the sequences.

Robshaw’s method does not differentiate between Fibonacci and Galois LFSRs

since only one output bit is considered. Here the rate of output of offset by the

hardware complexity of the system since each increase by a factor of 2 to the

rate of output also requires an increase by a factor of 2 of the number of LFSRs.

However it must be noted that Robshaw’s method is designed to compromise

computational power for speed.

Blackburn [4] then extended this idea by using a smaller number of Galois

LFSRs in order to produce the required synchronous sequences, exploiting the fact

that a Galois LFSR with a primitive feedback polynomial can produce a greater

range of phases of a single m-sequence than an equivalent Fibonacci LFSR. This

method allows us to gain an increase in the rate of output without needing to suffer

the extra hardware costs. The main difficulty here is one of efficiently identifying a

primitive feedback polynomial that will produce sequences in the required phases.

The former of these methods claims to increase the rate of output by a factor of 2k

using 2k registers to generate a number of distinct phases and interleaving them.

The latter method increases the rate of output by a factor of k by interleaving k

phases in some situations generated by fewer than k registers.

Surböch and Weinrichter [31] explored interleaving so called elementary se-

quences instead of m-sequences. We look more closely at elementary sequences in

Section 3.2 where we shall use them almost exclusively to efficiently generate the

longer, more cryptographically robust m-sequences.
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Generating Elementary Sequences

This chapter examines first those Galois LFSRs which have specifically primitive

feedback polynomials, or equivalently generate maximal elementary sequences,

m-sequences, as output. In particular this chapter shall examine the relations

between the sequences which would be produced by viewing each memory cell

of the LFSR as it changes over time. Thus an LFSR of length n produces n

such sequences and in the Fibonacci model these sequences are each a shift by

one position of its neighbour. The Galois model however breaks this relation and

calculating the shifts becomes more complex. Later in the chapter we move our

attention to Galois LFSRs with irreducible non-primitive feedback polynomials.

By examining these shifts and the relations between them we hope to be able to

find some set of the sequences that we can use in some way to increase the rate of

output of m-sequences or other elementary sequences. The majority of the content

of this chapter has been presented in [8].

3.1 The shifts of the Galois LFSR

3.1.1 Index tables

Let f(x) = cnx
n + cn−1xn−1 + · · · + c1x + c0 ∈ F2[x] be a polynomial of degree

n giving us cn = 1. If we assume that f is irreducible then we have the case in

which c0 = 1 since c0 = 0 would allow the trivial factorisation f(x) = x(f(x)x−1)).

For now, we shall also assume that f is primitive and we shall define α to be a

primitive root of f and define F2n as F2[x]/〈f〉 or equivalently F2(α).

Consider now the table with 2n− 1 rows and n columns, see Table 3.1, further

examples in Appendix C, equivalent to the index table of powers of α in F2n
described in the polynomial basis

αi = bn−1α
n−1 + bn−2α

n−1 + · · ·+ b1α + b0. (3.1)

29
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We shall denote the polynomial entries of the i-th row of the table as follows,

r
(0)
i , r

(1)
i , . . . , r

(n−2)
i , r

(n−1)
i (3.2)

such that we may define the sequence r(j) as the elements of the j-th column

(r
(j)
i )2

n−2
i=0 = r

(j)
0 , r

(j)
1 , . . . , r

(j)
2n−3, r

(j)
2n−2.

This table is equivalent to the 2n − 1 consecutive states of a Galois LFSR

of length n with feedback polynomial f and initial state (0, 0, . . . , 0, 1). This

equivalence is apparent when we note that F2n is built from the equivalence classes

of F2[x] modulo f and that it is this modulus operation that the Galois LFSR

emulates in its feedback function.

Table 3.1: Index table of powers of α in F2[x]/〈x4 + x3 + 1〉

α3 α2 α1 α0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1 0 0 1

1 0 1 1

1 1 1 1

0 1 1 1

1 1 1 0

0 1 0 1

1 0 1 0

1 1 0 1

0 0 1 1

0 1 1 0

1 1 0 0

Example 3.1. This example references Table 3.2 where we see on the left the

consecutive internal states of a Galois LFSR with feedback polynomial f(x) =

x4 +x3 + 1 and initial state (0, 0, 0, 1). On the right is the index table of powers of

α in F2[x]/〈x4 + x3 + 1〉 or equivalently the polynomial representation of powers

of α modulo f(α). It is clear to see that the coefficients r
(j)
i of the polynomials

r
(0)
i α3 + r

(1)
i α2 + r

(2)
i α+ r

(3)
i correspond directly to the states of the LFSR chosen.

When we refer to this table we refer to the context of the table of states of the

Galois LFSR but all results may readily be applied in the context of the index

table of powers of α.

Since f is primitive the sequence s = r(j) is a (2n − 1)-periodic sequence and

so we can use the shift notation (s� h) to describe a rotation to the right of all
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Table 3.2: Interpretation of table Table 3.1

State Polynomial Power

0001 1 α0

0010 α α1

0100 α2 α2

1000 α3 α3

1001 α3 + 1 α4

1011 α3 + α + 1 α5

1111 α3 + α2 + α + 1 α6

0111 α2 + α + 1 α7

1110 α3 + α2 + α α8

0101 α2 + 1 α9

1010 α3 + α α10

1101 α3 + α2 + 1 α11

0011 α + 1 α12

0110 α2 + α α13

1100 α3 + α2 α14

elements of the sequence such that for each unit shift the new value of s0 becomes

the old value of s2n−2.

3.1.2 Powers of primitive roots of f

In the case of the index table of F2n , successive entries are generated by multiply-

ing the previous entry by α and performing a modulus operation relating to the

equality f(α) = 0, with the first entry of the table set to 1. This equivalence is

demonstrated in Table 3.1.

As for generating the table of states of a Galois LFSR, an equivalent method

exists as described earlier in Section 2.4.2. We assume that our Galois LFSR has

a primitive feedback polynomial f ∈ F2[x] of degree n and that α is a primitive

root of f .

Recall the definition of an m-sequence from Definition 2.4. We note that all

m-sequences have maximal period 2n − 1 where n is the linear complexity of the

sequence and we can use this property to draw an equivalence between the shift

(s� h) by h elements of the infinite sequence and the rotation of the sub-sequence

of an m-sequence with length equal to its period, i.e. the finite sequence (si)
2n−2
i=0 .

If we now choose an a such that r(0) = Seqα(a) we can use the shift notation to

describe the remaining sequences following the state update function of the Galois
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LFSR as described in Definition 2.32 as follows

r(j) =





(r(n−1) � 1) if j = 0

((r(j−1) + cjr
(n−1))� 1) otherwise.

(3.3)

An examination of the shifts or phases of the sequences produced by the

memory cells of the Galois LFSR has also been used by Blackburn in [4] where

interleaving of LFSR sequences is used to increase the rate of output of the sys-

tem. Blackburn’s approach was focused on finding a primitive polynomial f such

that the shifts of the LFSR contained certain prerequisite values and concluded

by stating that

‘Given a primitive polynomial f , it is not difficult to determine whether

any fixed value is contained in Σ(f). However, it seems difficult to say

much in general about Σ(f).’

Here Σ(f) is a variation on the set of shifts of the Galois LFSR. Using the Seq

notation we can easily deal with the manipulations required to explore this area

further.

Since we previously set r(0) = Seq(a), we know that r(n−1) = Seq(aα). If we

let r(j) = Seq(aαhj), such that hj is the relative shift of r(j) to r(0), then using

(3.3) and Lemma 2.17 we can show that αhj = αhj−1−1 + cj, j = 1, . . . , n− 1. By

induction on j and using Equations (2.13) and (2.14) we get

r(j) = Seq

(
a

j∑

k=0

ckα
k−j
)
, (3.4)

showing that

r(j) =
(
r(0) � hj

)
⇔

j∑

k=0

ckα
k−j = αhj . (3.5)

Note that we can use the equality f(α) = 0 to form the following equality

j∑

k=0

ckα
k−j =

n∑

k=j+1

ckα
k−j−1. (3.6)

Definition 3.2. The ordered list H = (hn−1, . . . , h0) contains the relative shift

modulo 2n− 1 of each memory cell of a Galois LFSR such that r(j) = (r(0) � hj).

Example 3.3. Using Example 3.1 as a basis and examining the states shown in

Table 3.1 we can see that the sequences contained within each column are indeed

shifts of the first. We then construct the list H = (1, 13, 14, 0).
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Proposition 3.4. In the list H = (hi|r(i) = (r(0) � hi)) each hi is unique.

Proof. Let us assume that there exists a hi = hj then in the table of states the

two sequences r(i) and r(j) are identical. This is not possible since every possible

state except the all zero state will appear.

Corollary 3.5. Given the list H = (hi|r(i) = (r(0) � hi)) we have hj−hi 6= hk−hi
for all j 6= k.

Theorem 3.6. Given a Galois LFSR with feedback polynomial f(x) = cnx
n +

cn−1xn−1 + · · · + c1x + c0 we may produce an ordered list H of the relative shifts

of the sequences r(j) produced over time from each memory cell. The values hj of

this list H(hn−1, . . . , h0) may be calculated by solving particular instances of the

discrete logarithm problem (DLP),

hj = logα

(
j∑

k=0

ckα
k−j
)
. (3.7)

Proof. From (3.4) we have each r(j) = Seq(a
j∑

k=0

ckα
k−j) and for each shift relative

to r(0) in the list H we write r(j) = (r(0) � hj). From (3.5) we deduce that
j∑

k=0

ckα
k−j = αhj for each r(j) and hj. Then we use Definition 2.18 to show that

indeed for each r(j) the corresponding entry in H may be calculated by hj =

logα(
j∑

k=0

ckα
k−j).

We may examine Table 3.1 and confirm Theorem 3.6 visually in this case.

It is useful to note that since α is primitive, as in (3.6), the following equality

holds:

logα

(
j∑

k=0

ckα
k−j
)

= logα

(
n∑

k=j+1

ckα
k−j
)

(3.8)

The problem here is equivalent to the state-based DLP as defined by Giuliani

and Gong in [9, Definition 7]: given the initial state of a Fibonacci LFSR and

another state at some time t, determine t. This is shown to be equivalent to

the DLP [9, Theorem 3]: given a ∈ 〈β〉 find k such that a = βk or equivalently

compute logβ(a).

Definition 3.7. Given a set D = {i1, . . . , ik} ⊆ {0, 1, . . . , n−1} we define the list

HD = (hi1 , . . . , hik) as the sublist of shifts corresponding to the subset of indices

D.

This will allow us to examine only a particular selection of the list H by

applying some restriction on the set of indices D.
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3.2 Irreducible polynomials in LFSRs

3.2.1 Elementary sequences

At the start of Section 3.1 regarding our observations of Galois LFSRs we made the

assumption that the characteristic polynomial, see Definition 2.4, was primitive.

This assumption specifies that the order of such a polynomial shall be equal to

2n − 1. We now relax this assumption and allow the order to become a divisor

of 2n − 1 whilst retaining the irreducibility of the polynomial. Essentially we

now wish to observe those Galois LFSRs which have an irreducible non-primitive

feedback polynomial. For the sake of readability we denote this new irreducible,

non-primitive polynomial of degree n by g and speak of a root β ∈ F2n . In relation

to LFSRs, Definitions 2.30 and 2.32 are still correct when substituting the feedback

polynomial f for g and much of fundamental theory remains unchanged.

Since we shall no longer be dealing strictly with primitive polynomials there

are a number of properties that arise from this added flexibility which are detailed

in the following text.

Firstly the idea of the states of the Galois LFSR having a direct correlation

with the index table as demonstrated in Example 3.1 is not entirely relevant in

this new context. Previously all results could be readily applied to the index table,

now that we no longer have a primitive polynomial we must tighten the definition

of the sequences r(i) such that we now only refer to the sequences produced at

each memory cell of a Galois LFSR over time.

If g has order d then we may denote a value q such that qd = 2n− 1. If such a

polynomial g is used as the feedback polynomial of a Galois LFSR, the sequences

r(n−1), . . . , r(0) will each have period d. Each sequence can then be represented

similarly to Definition 2.16,

r(j) = Seqβ

(
a

j∑

k=0

ckβ
k−j
)

(3.9)

for some a ∈ F2n .

If we choose some bi ∈ F2 in order to define α = bd−1βd−1+· · ·+b1β+b0 in such

a way that αi, i = 0, . . . , n− 1 are all unique then we may perform a full range of

operations over F2n including powers of β which do not belong in the same coset.

This property is particularly useful for converting elements of F2n between forms

involving α and β so that we can effectively perform calculations across ‘bases’.

We recall that binary m-sequences have period 2n − 1. Decimation and its

inverse, interleaving, will play an important role in the following chapter. Note

that if s has period N then any q-decimation of s has period N/ gcd(N, q).
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3.2.2 Interleaving elementary sequences

Given an irreducible non-primitive polynomial g of degree n over F2[x] the aim of

this chapter is to compute in parallel all the elementary sequences with minimal

polynomial g (i.e. one sequence from each class of equivalence under cyclic shifts).

Moreover, they need to each be in a suitable phase such that interleaving them

will produce an m-sequence with linear complexity deg(g); this m-sequence is

therefore produced at the rate of (2n − 1)/ ord(g) bits per clock cycle. Starting

from a general method we look at two particular cases:

• Running a small number of Galois LFSRs with suitable seeds and using

certain memory cells, possibly with a small amount of buffering.

• Making use of only one Galois or Fibonacci LFSR and computing certain

linear combinations of its memory cells.

In the first case we exploit the fact that, unlike a Fibonacci LFSR, each memory

cell of a Galois LFSR can produce elementary sequences from different equivalence

classes. In the second case we will use XOR operations and exploit the fact that

the n sequences obtained from the n memory cells form a basis in the vector space

of all elementary sequences with fixed minimal polynomial g as shown in (3.1).

For both cases ideally we aim to use less than q LFSRs in order to avoid trivial

solutions. Given an m-sequence s of length 2n− 1 it is known that for any proper

factor q of 2n − 1, the improper decimations of s by q are elementary sequences,

all having the same irreducible minimal polynomial g.

Taking the reverse approach, we can interleave q elementary sequences in order

to obtain an m-sequence. Not any arbitrary collection of q elementary sequences

with the same irreducible minimal polynomial will produce an m-sequence by

interleaving. Thus, the aim of this chapter is to obtain in an efficient way exactly

such a collection of sequences.

We ran experiments for all irreducible polynomials of degree n up to 14, where

2n − 1 is not prime and for each n we found that efficient methods exist in both

cases for at least one m-sequence.

Whilst these constructions of elementary sequences was targeted at fast gen-

eration of m-sequences, there are other possible applications of this construction.

In coding theory, elementary sequences are the codewords of minimal cyclic codes,

also known as irreducible cyclic codes. Hence this construction will produce the

non-equivalent codewords of such a code. In cryptography, one could use the

elementary sequences as inputs to a non-linear function in order to construct a

filtering generator for a stream cipher.



CHAPTER 3. GENERATING ELEMENTARY SEQUENCES 36

3.3 Efficient generation of m-sequences from

elementary sequences

To recap, the goal of this chapter is to produce q elementary sequences in the

correct phase relative to each other such that they may be interleaved to generate

an m-sequence. We know from Theorem 2.27 that the sequences we need must be

of the form Seqβ(aαj), j = 0, . . . , q − 1 where a ∈ F∗2n can be arbitrary.

We can generate these sequences using q (Galois or Fibonacci) LFSRs with

suitable chosen initial states. For Galois LFSRs an efficient way of computing

these initial states is described in [33] and [17]. Namely the first LFSR has an

arbitrary initial state (the impulse response, or in our case a suitable initial state

that produces Seqβ(a)). The initial state of each following LFSR is obtained as

a linear combination of the first n states of the previous LFSR. The coefficients

of this combination are exactly the coefficients of α when written in the base

1, β, . . . , βn−1.

However, we are interested in obtaining the desired sequences from less than

q LFSRs. To this end, we will examine closer what sequences we can obtain from

each of the memory cells of an LFSR. We denote as before the sequences produced

by a Galois LFSR as r(i) and we now use q(i) to denote those sequences produced

by Fibonacci LFSRs.

Theorem 3.8. Let g = xn + cn−1xn−1 + · · · + c1x + c0 ∈ F2[x] be an irreducible

non-primitive polynomial with root β ∈ F2n.

Consider a Galois LFSR with feedback polynomial g and Fibonacci LFSR with

feedback polynomial xng(x−1) both with initial states chosen such that they each

produce the same output Seqβ(a) for some given a ∈ F2n.

The memory cell Q(j) of the Fibonacci LFSR will produce the sequence

(
Q

(j)
t

)∞
t=0

= Seqβ(aβj), (3.10)

for j = 0, 1, . . . , n − 1. The j-th memory cell of the Galois LFSR, R(j) produces

the sequence (
R

(j)
t

)∞
t=0

= Seqβ (avj) (3.11)

where

vj = cj+1 + cj+2β + · · ·+ cn−1β
n−j−2 + βn−j−1, (3.12)

for j = 0, 1, . . . , n − 1. Moreover, if α is a primitive element of F2n such that

β = αq, where q = (2n − 1)/ ord(g), then the sequences above can be written as

(R
(j)
t )∞t=0 = Seqβ(aαhj) = (Seqβ(aαkj) � lj) where hj = logα vj = kj + ljq and

0 ≤ kj < q.
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Each of the sets of sequences {q(j)|j = 0, 1, . . . , n−1} and {r(j)|j = 0, 1, . . . , n−
1} form a basis for the set of sequences with minimal polynomial g when viewed

as a n-dimensional vector space over F2.

Proof. The expression for the sequences in each memory cell are derived by (3.9)

and to see that the sequences are bases of the vector space, use Theorem 2.20.

For speeding up the computation of the desired set of sequences

A = {Seqβ(aαj)|j = 0, . . . , q − 1} (3.13)

we shall employ several Galois or Fibonacci LFSRs, again we aim here to utilize

less than q LFSRs. We consider the set B of sequences generated in each memory

cell of each of the LFSRs. This set B will contain some of the sequences in A.

Any remaining sequences in A can be obtained from the sequences in B by either

buffering or by computing a linear combination of sequences in B. The buffering

takes place when we have the case in which sequence exists in B but is in the

wrong phase. The next two sections shall look at two particular cases of this

general method outlined previously.

3.3.1 Using several Galois LFSRs

The first restriction we shall consider here is that of producing our required se-

quences directly from a number of LFSRs without needing to then linearly combine

these sequences. For this we have to use Galois LFSRs, as only a Galois LFSR has

the potential of containing sequences from different equivalence classes in different

memory cells.

We ran experiments for all irreducible polynomials g of degree n up to 14,

where 2n − 1 is not prime. For each g we computed all the possible values of

α and their minimal polynomial f (which will be the minimal polynomial of the

interleaved sequence). Table 3.3 shows a few examples of constructions yielding

an elementary sequence in the correct phase from each equivalence class. The n-

tuples named classes and shifts display the values (kn−1, . . . , k0) and (ln−1, . . . , l0),

with the notations from Theorem 3.8. The list named interleave specifies which

memory cells we need to interleave, with a triple of the form (R(j), aαi, lj) signifying

that we have to use a buffer of lj terms for memory cell R(j) of a Galois LFSR

initialised such that the LFSR output is Seqβ(aαi). The method used to compute

such an initial state is as described at the end of Section 2.4.2.

For all lengths in our experiment we were able to determine at least one efficient

construction, in the sense that the number of LFSRs needed for the construction

is less than q, the total number of sequences required. For each n there is at
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least one g which will produce 2 of the required sequences, for most n at least 3

sequences can be acquired from one LFSR. If we allow q to increase, such that

the elementary sequences become shorter, we generally see that we can obtain

elementary sequences from more equivalence classes from a single LFSR, thus

lowering the total number of LFSRs needed for the full construction.

Table 3.3: Generating m-sequences by combining the output of multiple Galois
LFSRs

n = 4, g = 11111, d = 5, q = 3, α = 1110, f = 10011
classes: (0, 1, 1, 0), shifts: (4, 4, 1, 0), LFSRs: 2
interleave: (R(0), a, 0), (R(1), a, 1), (R(0), aα, 0)

n = 6, g = 1010111, d = 21, q = 3, α = 101, f = 1100001
classes: (0, 2, 1, 1, 0, 0), shifts: (20, 8, 1, 0, 1, 0), LFSRs: 2
interleave: (R(0), a, 0), (R(2), a, 0), (R(2), aα, 0)

n = 8, g = 111010111, d = 17, q = 15, α = 10011100, f = 101110001
classes: (0, 3, 13, 13, 13, 13, 3, 0), shifts: (16, 0, 13, 12, 0, 16, 2, 0), LFSRs: 6
interleave: (R(0), a, 0), (R(0), aα, 0), (R(0), aα2, 0), (R(7), a, 0),

(R(7), aα, 0), (R(7), aα2, 0), (R(3), aα8, 0), (R(3), aα9, 0),
(R(0), aα8, 0), (R(0), aα9, 0), (R(0), aα10, 0), (R(7), aα8, 0),
(R(7), aα9, 0), (R(3), a, 0), (R(3), aα, 0)

n = 9, g = 1001100101, d = 73, q = 7, α = 111011111, f = 1001101111
classes: (0, 0, 5, 5, 5, 4, 0, 0, 0), shifts: (72, 71, 0, 72, 71, 63, 2, 1, 0), LFSRs: 4
interleave: (R(0), a, 0), (R(0), aα, 0), (R(6), aα4, 0), (R(6), aα5, 0),

(R(0), aα4, 0), (R(6), a, 0), (R(6), aα, 0)

n = 10, g = 10000001111, d = 341, q = 3, α = 1010000110, f = 10010000001
classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0), shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0), LFSRs: 2
interleave: (R(0), a, 0), (R(8), a, 1), (R(0), aα2, 0)

3.3.2 Using one LFSR and linear combinations of its

memory cells

Next we would like to examine an alternative restriction. We wish to produce the

required sequences using only one LFSR, either Fibonacci or Galois, but allow

ourselves to linearly combine the output of the memory cells to produce our se-

quences. This is possible according to Theorem 3.8. Let a be such that the output

of our LFSR is Seqβ(a).

To obtain a particular desired sequence Seqβ(aαj) for j = 1, . . . , q − 1 as a

linear combination of the memory cells it suffices to represent αj in the basis

1, β, . . . , βn−1 for a Fibonacci LFSR, or in basis v0, v1, . . . , vn−1 for a Galois LFSR.

Alternatively we can consider the first n terms of the sequence Seqβ(aαj), viewed
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Table 3.4: Generating m-sequences by combining Galois LFSR output

n = 4, g = 11111, d = 5, q = 3, α = 1010, f = 10011
classes: (0, 2, 2, 0), shifts: (4, 2, 4, 0)
interleave: R(1) ⊕R(2) ⊕R(3), R(2), R(3), XORs: 2

n = 6, g = 1010111, d = 21, q = 3, α = 101, f = 1000011
classes: (0, 2, 1, 1, 0, 0), shifts: (20, 8, 1, 0, 1, 0)
interleave: R(5), R(3), R(1) ⊕R(3) ⊕R(5), XORs: 2

n = 8, g = 101111011, d = 85, q = 3, α = 100101, f = 101011111
classes: (0, 0, 0, 2, 2, 0, 0, 0), shifts: (84, 14, 13, 45, 49, 32, 1, 0)
interleave: R(3) ⊕R(4) ⊕R(6), R(2) ⊕R(5) ⊕R(7), R(4), XORs: 4

n = 8, g = 110100011, d = 85, q = 3, α = 10010000, f = 110001101
classes: (0, 1, 1, 1, 1, 1, 1, 0), shifts: (84, 67, 66, 65, 64, 70, 69, 0)
interleave: (A = R(3) ⊕R(6))⊕R(5), (B = R(2) ⊕R(3)), R(3) ⊕ A⊕B, XORs: 5

n = 10, g = 10010011001, d = 341, q = 3, α = 1110011010, f = 10000100111
classes: (0, 0, 0, 1, 1, 1, 1, 0, 0, 0), shifts: (340, 339, 338, 85, 91, 90, 89, 2, 1, 0)
interleave: R(3) ⊕R(6) ⊕R(8), R(8) ⊕R(9), R(4) ⊕R(5) ⊕R(9), XORs: 5

n = 10, g = 10010011001, d = 341, q = 3, α = 1111100010, f = 10001100101
classes: (0, 0, 0, 2, 2, 2, 2, 0, 0, 0), shifts: (340, 339, 338, 312, 318, 317, 316, 2, 1, 0)
interleave: R(3) ⊕ (A = R(7) ⊕R(8)), (B = R(4) ⊕ A), R(8) ⊕R(9) ⊕B, XORs: 6

n = 10, g = 10000001111, d = 341, q = 3, α = 1010000110, f = 10000001001
classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0), shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0)
interleave: R(3), R(5) ⊕R(6), R(7) ⊕R(9), XORs: 2

as an element in the vector space Fn2 and write them in the basis consisting of the

first n elements of each of the sequences corresponding to the memory cells of the

LFSR. Any of these approaches will amount to solving an n× n system of linear

equations over F2, which is extremely fast.

Again we ran experiments for all irreducible polynomials g of degree n up to 14,

where 2n − 1 is not prime. We computed, for both Fibonacci and Galois LFSRs,

the combinations of memory cells needed to produce the required sequences needed

for interleaving. Tables 3.4 and 3.5 show a few examples of possible constructions

using Fibonacci and Galois LFSRs respectively. The tables display which memory

cells need to be combined in order to produce the sequences required. Interleaving

these sequences in order, one will obtain the m-sequence with minimal polynomial

f as shown in the table.

The first row in Table 3.5 shows how we may produce the 3 elementary se-

quences required to produce the sequence with minimal polynomial f . We may

combine memory cell Q(0) with each of the memory cells Q(1) and Q(2) to obtain

the two sequences A and B and interleave these with the original value in cell

Q(0), using the order shown in the table we produce the targeted sequence.
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Figure 3.1: Interleaving values from a Galois LFSR to produce an m-sequence.

LFSR r

interleave

Some values displayed as assigned inline variables may be used as optimisations

to further increase performance when the value may be used to produce more than

one required sequence. Such savings are highlighted with parentheses, but a full

optimisation is outside the scope of this thesis. The optimisation of these solutions

are most likely to described best by some combinatorial problem. For all lengths

in our experiment we were able to determine at least one efficient construction, in

the sense that for obtaining each of the required sequences the maximum number

of sequences that needed to be combined was b(n + 3)/2c, but for most n this

value was as low as b(n+ 1)/2c.
The second row in Table 3.4 is demonstrated in Figure 3.1, here we can see

how three values of the LFSR are combined, to make a new elementary sequence

and then use this sequence in combination with two of the original sequences to

interleave the required m-sequence.

Each of the constructions in these tables are more efficient than naive con-

structions, meaning that each uses less XORs than using one LFSR to generate

each elementary sequence required.
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Table 3.5: Generating m-sequences by combining Fibonacci LFSR output

n = 4, g = 11111, d = 5, q = 3, α = 1010, f = 10011
interleave: Q(2) ⊕Q(0), Q(1) ⊕Q(0), Q(0), XORs: 2

n = 6, g = 1010111, d = 21, q = 3, α = 101, f = 1000011
interleave: Q(0), Q(2) ⊕Q(0), Q(4) ⊕Q(0), XORs: 2

n = 6, g = 1010111, d = 21, q = 3, α = 111000, f = 1101101
interleave: Q(3) ⊕Q(0), Q(3) ⊕Q(1), Q(4) ⊕Q(2) ⊕Q(0), XORs: 4

n = 8, g = 101110111, d = 85, q = 3, α = 1100011, f = 100011101
interleave: Q(3) ⊕Q(1) ⊕Q(0), Q(5) ⊕Q(2), Q(4) ⊕Q(0), XORs: 4

n = 8, g = 110001011, d = 85, q = 3, α = 11101011, f = 101101001
interleave: Q(4) ⊕Q(1), Q(5) ⊕Q(3), Q(4) ⊕Q(2) ⊕Q(0), XORs: 4

n = 8, g = 111011101, d = 85, q = 3, α = 1111110, f = 101110001
interleave: Q(4) ⊕Q(3) ⊕Q(1), Q(5) ⊕Q(1), Q(3) ⊕Q(0), XORs: 4

n = 8, g = 100111111, d = 85, q = 3, α = 1111100, f = 110101001
interleave: Q(4) ⊕Q(3) ⊕Q(1), (A = Q(5) ⊕Q(2)), A⊕Q(4) ⊕Q(0), XORs: 5

n = 10, g = 10000001111, d = 341, q = 3, α = 11000110, f = 11100011101
interleave: (A = Q(6) ⊕Q(5))⊕Q(1) ⊕Q(0), A⊕Q(3) ⊕Q(2), Q(0), XORs: 5

n = 10, g = 10001000111, d = 341, q = 3, α = 11100011, f = 10001101111
interleave: Q(6) ⊕Q(3), Q(5) ⊕Q(4) ⊕Q(2) ⊕Q(0), Q(5) ⊕Q(1) ⊕Q(0), XORs: 5

n = 10, g = 10000001111, d = 341, q = 3, α = 1010000110, f = 10000001001
interleave: Q(6), Q(4) ⊕Q(3), Q(2) ⊕Q(0), XORs: 2



Chapter 4

Modular Golomb Rulers and the

Galois LFSR

Here we shall briefly outline the concept of Golomb rulers and some of the prop-

erties that we shall be using later in this chapter. The majority of the content of

the following two chapters has been presented in [30].

4.1 Golomb rulers

In this section we use the functions min(A) and max(A) to refer to the minimum

and maximum elements of a set A respectively.

Golomb rulers, named after the American mathematician Solomon Golomb,

also referred to as Sidon sets, after the Hungarian mathematician Simon Szidon,

or full positive difference sets are defined as follows:

Definition 4.1. A set of n integers A = {a0, . . . , an−1} is a Golomb ruler of order

n and length max(A)−min(A) if and only if all pairwise sums are different. For

all i, j, k, l ∈ {0, . . . , n− 1}, i > j, k > l we have

ai − aj = ak − al ⇔ i = k and j = l. (4.1)

Without loss of generality we will always assume that min(A) = 0.

Example 4.2. The set {0, 1, 4, 10} is a Golomb ruler since the positive pairwise

differences of all its elements are unique, see Figure 4.1. The differences in this

example being 1, 3, 4, 6, 9 and 10.

A small extension of the concept of the Golomb ruler is obtained by also

considering the pairwise differences of the elements modulo some chosen value:

42
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Figure 4.1: A Golomb ruler
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Definition 4.3. A Golomb ruler A = {a0, . . . , an−1} with the added property

(ai − aj) mod N = (ak − al) mod N ⇔ i = k and j = l (4.2)

for all i, j, k, l ∈ {0, . . . , n − 1}, i 6= j, k 6= l, N > max(A) is a modular Golomb

ruler modulo N of order n.

Example 4.4. The set {0, 1, 4, 10} is an MGR modulo 17 since the pairwise

differences mod 17 are all unique.

Figure 4.2: A modular Golomb ruler
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For the following Theorem and the remainder of this thesis we assert that we

have a0 = 0. Note that we may force this value without loss of generality by

substituting aj 7→ aj − a0 for all j ∈ {0, . . . , n− 1}.

Theorem 4.5. Let a set A = {a0, . . . , an−1} be an MGR modulo N , then A∪{N}
is a Golomb ruler of order n+ 1 and length N .

Proof. Since the set A is an MGR modulo N we know also that A is a Golomb

ruler. Let us now assume that for some i, j, k we have N − ai = aj − ak. It follows

from the definition of an MGR and the assertion that a0 = 0 that

(N − ai) mod N = (aj − ak) mod N (4.3)

(a0 − ai) mod N = (aj − ak) mod N. (4.4)
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Which would imply that j = 0 and i = k which is not possible since A is a Golomb

ruler. Therefore each difference N − ai for all i does not already appear in the set

of pairwise differences of elements of A and thus A ∪ {N} meets the criteria of a

Golomb ruler.

Example 4.6. From Example 4.4, we know that the set {0, 1, 4, 10, 17} is Golomb

ruler.

Definition 4.7. Optimal Golomb rulers of order n and length N are either:

• optimally dense, we have maximum n for a given N

• optimally short, we have minimal N for a given n.

Generally the term optimal Golomb ruler refers to the latter.

The notation vβ(k) is used by Graham and Sloane [14] to represent the smallest

number v such that there exists a k-element set A = {a0, . . . , ak−1}, 0 = a0 < a1 <

· · · < an−1 of integers with the property that the sums ai + aj for i ≤ j belong

to [0, v] and represent each element of [0, v] at most once, the set A is an optimal

MGR modulo v.

Lemma 4.8. Let A = {a0, . . . , an−1} with max(A) < N be a Golomb ruler. If

max(A)−min(A) < N/2 then A is also an MGR modulo N .

Proof. For all i < j we consider all the pairwise differences aj−ai and since A is a

Golomb ruler these differences are unique and bj − bi ≤ max(A)−min(A) < N/2.

Next we consider all the differences bi − bj = N − (bj − bi) > N/2 which are also

all unique and also distinct from the first set of differences.

This result will be used to show that when we are dealing with Fibonacci

LFSRs and Golomb rulers of length n we can assume that the lists H as defined

in Definition 3.2 are also MGRs mod 2n − 1.

4.2 Experimental observations concerning

modular Golomb rulers in Galois LFSR

shifts

Noticing that the shifts H of Definition 3.2 of the Galois LFSR could be calculated

from the coefficients of the feedback polynomial in x, see Theorem 3.8 for prelim-

inaries, brute force experimentation was performed on all Galois fields F2n with n

from 2 to 23 examining all primitive polynomials for each n. In each case the full
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states of the Galois LFSR were produced and the shifts hn−1, hn−2, . . . , h1, h0 were

computed by direct examination of the states. Some examples are described in

Table 4.1, with the primitive polynomial f represented as 1cn−1cn−2 . . . c11. The

limit on degree n to 23 was due to software and time restrictions.

It was then verified by automated checking that removing those hj for which

cj = 0 leaves a sublist which is an MGR. The values for which cj = 0 are shown

in brackets in Table 4.1

Table 4.1: A selection of primitive polynomials f and the corresponding shifts H.

n = 7, f = 11111101, wt(f) = 7,
H = (1, 110, 9, 74, 89, (126), 0)

n = 9, f = 1111000111, wt(f) = 7,
H = (1, 186, 51, (45), (46), (47), 48, 184, 0)

n = 15, f = 1100000111100111, wt(f) = 9,
H = (1, (28797), (28798), (28799), (28800), (28801), 28802, 2677,

20311, 4439, (8144), (8145), 8146, 28831, 0)

n = 21, f = 1010101011110110001101, wt(f) = 13,
H = ((1), 2, (300594), 300595, (763444), 763445, (901780),

901781, 588446, 1734126, 1277120, (560527), 560528,
1553314, (1962686), (1962687), (1962688), 1962689,
300591, (2097150), 0)

n = 23, f = 111111110111111111111111, wt(f) = 23,
H = (1, 7515189, 4958548, 5768351, 6854486, 655069,

5077177, (2274675), 2274676, 892313, 5080355, 436706,
8162489, 4446935, 3675906, 2274667, 5077170, 655063,
6854481, 5768347, 4958545, 7515187, 0)

Where the coefficient ci of f is equal to zero the member of the list relating to
the shift has been parenthesized.

Further experimental results are available in Appendix F. Recall briefly the

ordered list H = (hn−1, . . . , h0) containing the relative shift modulo 2n− 1 of each

memory cell of a Galois LFSR and the sublist HD with which we place restrictions

on the elements of H through the set of indices D. See Definitions 3.2 and 3.7 for

further details. The preceding results have led to the following conjecture and are

in support of the following proposition:

Conjecture 4.9. The sublist HD where D = {i|ci 6= 0}, is an MGR modulo 2n−1.

Later, in section Section 4.3, we shall attempt to prove this conjecture by

examining specific sublists of HD and showing that in all cases these sublists form

MGRs. It is now our objective to find a set of specific cases that together prove

that the entire list HD forms an MGR.
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Proposition 4.10. For all primitive polynomials f of degree less than or equal to

23, HD with D = {i|ci 6= 0} is an MGR modulo 2n − 1.

To determine if some sublist of shifts HD of a Galois LFSR is an MGR we

may use Algorithm 4.1 with time complexity O(n2) and a requirement of O(2n)

storage space.

The vi used in the algorithm are those as defined in (3.12) such that (R
(j)
t )∞t=0 =

Seqβ(avj). The array L of the algorithm shall use the polynomial representations

of vi as indices. This is accomplished by taking the coefficients of the polynomial

and producing a binary string which in turn may be interpreted as an integer to

index the array as normal.

We note that at each iteration of i the array L contains a non-zero entry at

select points. The values of the indices at these points describe the differences

between pairs of HD, hk − hj and hj − hk where k ≤ i and these differences will

all be unique.

On initialisation the array L contains all zeroes and thus the indices marked by

non-zero entries form the empty set, which trivially contains only unique elements

and we shall refer to this property as L-unique. Each iteration adds non-zero values

to the array L only after checking that the position does not already contain a

non-zero value. As such each iteration preserves the L-unique property on the

entries of the array L. If the algorithm finds a non-zero value in L whilst trying to

add another value it terminates returning False and thus the L-unique property

does not hold when k = 0, 1, . . . , n−1. When the algorithm returns True all values

of k = 0, 1, . . . , n−1 have been tested and the check that occurs on insertions into

L has not failed. Therefore we see that the L-unique property holds on the final

state of L. Since all differences hi − hj and hj − hi with i = 0, 1, . . . , n − 1 and

j = i+ 1, . . . , n− 1 are unique the set of values {h0, h1, . . . , hn−1} is by definition

an MGR.

A trivial time-memory trade-off exists whereby the array L is replaced by a

binary tree and lines 8 and 11 are replaced by binary searches and insertions

respectively. This reduces the memory requirement to O(n3) and increases the

time complexity to O(n4).

We may also iterate over i and j completely with j = 0, 1, . . . , n− 1 and check

and update L with only one of either viv
−1
j or v−1i vj on each iteration.
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Algorithm 4.1 GolombRulerDecision(f,D)

Input: f a primitive polynomial of degree n; D ⊆ {0, 1, . . . , n− 1}.
Output: True/False signifying whether {hj|j ∈ D} is an MGR.
begin
Initialise L to an all-zero array of length 2n − 1.

5: for i = 0, 1, . . . , n− 1 do
for j = i+ 1, . . . , n− 1 do

Compute the polynomial basis representation of viv
−1
j and of v−1i zj

if (L[viv
−1
j ] = 1) or (L[v−1i vj] = 1) then

return(False)
10: else

Set L[viv
−1
j ] = 1 and L[v−1i vj] = 1

end if
end for

end for
15: return(True)

end

4.3 Modular Golomb rulers in the shifts of the

Galois LFSR

We can prove that for certain non-trivial restrictions on the set of indices D of

HD we have an MGR modulo 2n − 1. With appropriate choices for the feedback

polynomial f these sublists can include up to half the elements of H.

Previously we have only set that all the shifts in H are relative to r(0). We

now assert that a, as used in Definition 2.16, is chosen so that r(0) = Seq(1) all

shifts in H are relative to Seq(1). Note that a is relative to the initial state of

the Galois LFSR and that in the previous assertion it will always have a unique

solution. Now by (3.3) we have that hn−1 = 1 and h0 = 0. We can also easily

show that for all i such that ci = 0 we have hi = hi−1−1. Hence if f = xn+xi+ 1

is a primitive trinomial, H = {0, 2n − 2, . . . , 2n − i, n− i, . . . , 2, 1}.

Theorem 4.11. Let HD be a list of values of shifts as in Definition 3.7. The list

HD is an MGR modulo 2n − 1 if and only if for all distinct pairs (i, j), (k, l) of

elements in D with i < j, k < l, j − i ≤ l − k we have both of the following

αhiα−hj 6= αhkα−hl (4.5)

αhiα−hj 6= α−hkαhl (4.6)

Proof. Express each αyα−z as logα(αyα−z) and these are the differences y − z

between pairs of elements of the list HD as in Definition 4.3.

Lemma 4.12. Assume ci, cj, ck, cl are all non-zero.
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Each of the following conditions is sufficient for (4.5) to be satisfied:

1. j − i = l − k

2. i+ l ≤ n

3. j + k ≥ n− 1

and each of the following conditions is sufficient for (4.6) to be satisfied:

4. j + l ≤ n

5. i+ k ≥ n− 1.

Proof. The general idea of these proofs is that we assume for a contradiction that

equality holds in (4.5) or in (4.6), respectively. We then simplify this equation to

the point that only powers of α between α0 = 1 and αn−1 appear. Since this is a

vector space basis of F2n an equality holds if and only if for all i the coefficients of

the corresponding αi are identical on the two sides of the equality. We then prove

that this is not the case for our equality thus obtaining a contradiction.

1. Note that in this case we have i 6= k since if i = k we would have j− i = l− i
which would then imply j = l and therefore (i, j) = (k, l). Assuming equality

in (4.5) we can recall (3.5) and rewrite αhiα−hj = αhkα−hl

i∑

m=0

cmα
m−i

l∑

m=0

cmα
m−l =

k∑

m=0

cmα
m−k

j∑

m=0

cmα
m−j. (4.7)

Using the fact that in this case we have i+ l = j + k this simplifies to

i∑

m=0

cmα
m

l∑

m=0

cmα
m =

k∑

m=0

cmα
m

j∑

m=0

cmα
m. (4.8)

Since i < j and k < l we have a situation where the indices of the elements

we are summing overlap and thus we may rewrite as follows,

(c0 + c1α + · · ·+ ciα
i)(c0 + c1α + · · ·+ ckα

k + · · ·+ clα
l) =

(c0 + c1α + · · ·+ ckα
k)(c0 + c1α + · · ·+ ciα

i + · · ·+ cjα
j). (4.9)

Breaking the sums in appropriate places we may again rewrite as

(c0 + c1α+ · · ·+ ciα
i)[(c0 + c1α+ · · ·+ ckα

k) + (ck+1α
k+1 + · · ·+ clα

l)] =

(c0 + c1α + · · ·+ ckα
k)[(c0 + c1α + · · ·+ ciα

i) + (ci+1α
i+1 + · · ·+ cjα

j)].

(4.10)
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In summation form the sums that we have broken up equate to

j∑

m=0

cmα
m =

i∑

m=0

cmα
m +

j∑

m=i+1

cmα
m (4.11)

and
l∑

m=0

cmα
m =

k∑

m=0

cmα
m +

l∑

m=k+1

cmα
m. (4.12)

Substituting (4.11) and (4.12) into (4.8) we get

i∑

m=0

cmα
m

(
k∑

m=0

cmα
m +

l∑

m=k+1

cmα
m

)
= (4.13)

k∑

m=0

cmα
m

(
i∑

m=0

cmα
m +

j∑

m=i+1

cmα
m

)
(4.14)

which simplifies to

i∑

m=0

cmα
m

l∑

m=k+1

cmα
m =

k∑

m=0

cmα
m

j∑

m=i+1

cmα
m. (4.15)

We can see that this equation, when expanded, will be of the form

αN(k) + · · ·+ αi+l = αN(i) + · · ·+ αj+k (4.16)

where N(m) is the smallest value u > m such that cu 6= 0. To bring all the

powers of α into the range 0, . . . , n− 1 we multiply both sides by α−i,

αN(k)−i + · · ·+ αl = αN(i)−i + · · ·+ αl. (4.17)

To show that this equation holds we must show that the coefficients of α on

both sides coincide. We can see this implies that either N(i) = N(k) which

is impossible since i 6= k. We now have two cases:

(a) i < k so that N(i) ≤ k < N(k)

(b) i > k so that N(i) > i ≥ N(k)

both of which lead to a contradiction.

We note that for the following cases Item 2 and Item 3 we can assume

j − i < l − k since the case that j − i = l − k has been covered here.
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2. Assuming equality in (4.5) we proceed as in Item 1 and rewrite (4.7) as

i∑

m=0

cmα
m

l∑

m=0

cmα
m = αl+i−j−k

k∑

m=0

cmα
m

j∑

m=0

cmα
m. (4.18)

Again we examine the expanded form of this equality

1 + · · ·+ αl+i = αl+i−j−k + · · ·+ αl+i (4.19)

and cancel the higher powers of α

1 + · · ·+ αl+i−j−k−1 = 0. (4.20)

We note that l + i− j − k − 1 < l + i− 1 < n and we have a contradiction

since the coefficients of α are not the same on both sides of the equality.

3. Recall the following statement from (3.6) which allows us to switch the

coefficients used when they are in the range 0, . . . , n− 1,

j∑

k=0

ckα
k−j =

n∑

k=j+1

ckα
k−j−1. (4.21)

Assuming equality in (4.5) and using (4.21) we rewrite αhiα−hj = αhkα−hl

as

n∑

m=i+1

cmα
m−i

n∑

m=l+1

cmα
m−l =

n∑

m=j+1

cmα
m−j

n∑

m=k+1

cmα
m−k. (4.22)

Examining the expanded form of this equality we see that

α−(i+l)(αN(i)+N(l) + · · ·+ α2n) = α−(j+k)(αN(j)+N(k) + · · ·+ α2n) (4.23)

Since i + l > j + k ≥ n − 1 all the powers of α are less than n but for this

equality to hold we clearly require that i+ l = j+k which is a contradiction.

4. Assuming equality in (4.6) and similarly to Item 1 we rewrite αhiα−hj =

α−hkαhl as

j∑

m=0

cmα
m

l∑

m=0

cmα
m = αj+l−i−k

i∑

m=0

cmα
m

k∑

m=0

cmα
m. (4.24)
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Again we examine the expanded form of this equality

1 + · · ·+ αj+l = αj+l−i−k + · · ·+ αj+l (4.25)

and cancel the higher powers of α

1 + · · ·+ αj+l−i−k−1 = 0. (4.26)

We note that j + l − i− k − 1 < j + l − 1 < n and we have a contradiction

since the coefficients of α are not the same on both sides of the equality.

5. Assuming equality in (4.6) and using (3.6) we rewrite αhiα−hj = α−hkαhl as

n∑

m=j+1

cmα
m−j−1

n∑

m=l+1

cmα
m−l−1 =

n∑

m=i+1

cmα
m−i−1

n∑

m=k+1

cmα
m−k−1. (4.27)

Examining the expanded form of this equality we see that

α−(j+l)(αN(j)+N(l) + · · ·+ α2n−1) = α−(i+k)(αN(i)+N(k) + · · ·+ α2n−1) (4.28)

Since j + l > i + k ≥ n − 1 all the powers of α are less than n but for this

equality to hold we clearly require that j+ l = i+k which is a contradiction.

Theorem 4.13. Let D = {i|ci 6= 0} and let D1 = {i ∈ D, i ≤ n
2
} and D2 = {i ∈

D, i ≥ n−1
2
}. Then HD1 = {hi|i ∈ D1} and HD2 = {hi|i ∈ D2} are both MGRs

modulo 2n − 1.

Proof. For HD1 all indices satisfy conditions Item 2 and Item 4 in Lemma 4.12.

For HD2 all indices satisfy conditions Item 3 and Item 5 in Lemma 4.12.



Chapter 5

Application of Modular Golomb

Rulers in Galois LFSRs

We shall now explore some applications of the properties discussed in the previous

chapters. These properties will be applied to some existing notions widely used in

cryptography.

5.1 Combining functions

As mentioned before LFSRs are commonly used in cryptographic systems for their

good randomness properties but since many fast methods exist to break LFSRs

another layer of security is needed. This additional layer of security usually comes

in the form of combining various sequences in particular ways to reduce the risk

of attack. The appropriately named method known as combining assumes some

number of finite state machines (FSMs), sometimes LFSRs, operating in parallel

and a combining function which takes a single value from each FSM at every

time interval to produce an output. These combining functions can be nonlinear

and many results exist that show improved properties of the output sequence

compared to the input sequence. Such combining functions are known as nonlinear

combining function (NCF). The value taken from each FSM is usually the same

value that would be chosen for its output if it were treated as a solitary unit. Such

a system when regarded as a whole is normally described as a nonlinear combining

generator (NCG).

In binary systems a combining function is a boolean function g : Fk2 → F2
that takes as input sequential values from a number of sequences and produces as

output a single sequence,

zi = g(s
(0)
i , . . . , s

(k−1)
i ). (5.1)

52
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Figure 5.1: An LFSR fed nonlinear combining function
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When the combiner takes values from a number of LFSRs with primitive feed-

back polynomials the period and linear complexity of the output sequence can be

methodically computed [27].

5.2 Filtering functions

One trivial case of combining function is when the input sequences are phase

shifts of the same sequence, i.e. the inputs are values of one sequence taken from

different points in time see Figure 5.2. This method of utilizing the successive

states of sequences produced by FSMs is known as filtering.

Definition 5.1. We shall use γ = {γ0, . . . , γk−1} to denote the tapping sequence

and shall be used to describe the tapped positions of the sequence feeding a

nonlinear filtering function (NFF). We set γ0 = 0 and γi < N , i = 1, . . . , k − 1

where N is the maximum number of positions that may be tapped. For an unbuf-

fered Fibonacci LFSR this value is the length of the LFSR, n, whereas a Galois

LFSR the value of N has the potential to be anything up to 2n − 1.

The concept here is that we take a number of values, the tapping sequence

defined above, from the state of a FSM at each time interval i. We then perform

operations on these values to produce a value to use as the output of the system

at that time, known as the filtering function, as follows:

zi = g(si−γ0 , . . . , si−γk−1
). (5.2)
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It should be noted that the nonlinear filtering generator (NFG) can be viewed

as a specific case of an NCGs in which each FSM produces a distinct shift of the

same sequence.

Figure 5.2: An LFSR fed nonlinear filtering function

LFSR

NFFzt

st

f

st−γi

A system that uses a NFF to produce a PRS is known as a NFG.

5.3 Output biases

One small point that has been overlooked in the literature and in practice until

very recently is that the properties of these nonlinear combining functions are all

proved with the assumption that the inputs are random variables which is not

necessarily the case when they are used in cryptographic systems. Certainly when

used as filtering functions the inputs are not random variables but can be highly

correlated.

In [1] Anderson introduces the augmented function ḡ : Fk+m−12 → Fm2 which

maps a block of input sequence to a block of output sequence of length m.

(zi, . . . , zi+m−1) = ḡ(si−γ0+m−1, . . . , si−γk−1
) (5.3)

Anderson noticed that the correlations between the input and output frequencies

of the augmented function was irregular. Using this imbalance one can determine

the best possible local correlations of filtered sequences to use in a correlation

attack.

Although some work has been to done to reduce these correlations and to ensure

that the output sequence of filtering functions resists many different attacks there

are still areas that require a much closer inspection. Teo, Simpson and Dawson

show [32] a bias in the output sequences of some high profile balanced nonlinear

filters. Of particular interest was Observation 3.3 which stated that in certain

cases some m-tuples do not appear at all in the output sequence.

Teo, Simpson and Dawson only considered combinations of three filtering func-

tions, ten LFSRs and two types of tapping sequence. If there exists a large enough
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bias in the keystream then a possible distinguishing attack may be mounted on it.

Following from this work we performed a brute force test to the same three

filtering functions fed by LFSRs with all primitive polynomials of degree 5 to 15,

both Fibonacci and Galois models in order to assess the severity of the bias in the

keystream. Some results of these tests are included in Appendix G.

An examination of the frequency of different run lengths still present in the

output sequence of the filtering function showed that there was indeed a bias. m-

sequences, the sequences that are fed into the filtering function have a frequency

of 2n−l−1 runs of length l and a single run of length n, where n is the linear

complexity of the sequence. As shown by Mantin and Shamir [21] a bias in m-

tuple distribution allows an attacker to perform statistical analysis and mount

distinguishing and ciphertext-only attacks on the keystream. The output of the

filtering functions showed a bias towards shorter run lengths. Although there is

indeed a bias further examination is required in order to ascertain the amount of

statistical analysis would be required to exploit this bias and thus whether or not

a successful attack could be carried out.

The number of l-bit patterns that do not appear in the output sequence were

also examined and again there is a slight bias, more noticeable in sequences with

lower linear complexity. There are patterns of length n and a little shorter that

do not appear. These results are not listed here since there are too many to show

(approaching 7000 results).

Although these tests do not immediately show how this bias can be used to

attack these filtering functions it is interesting nonetheless to note that some

properties of the input sequences are not entirely preserved following application

of a filtering function.

5.4 Golić’s design criteria

Golić describes in [10, 11] methods of attacking NFGs whose tapping sequences

are uniformly distributed by some integer δ using decimation, i.e. γ = {iδ|i =

0, . . . , k − 1}. Also described is an equivalent attack that can exploit taps that

are distributed by integer multiples of δ. Golić explains that to render these

attacks infeasible one should choose a tapping sequence in order to maximise

∆ = max(γ) − min(γ) preferably so that ∆ is as close to the N as described in

Definition 5.1. In order to also prevent the uniform decimation attack γ should

be chosen such that gcd(γi, γj) = 1, i, j = 0, . . . , k− 1, i 6= j. Golić introduces the

intersection coefficient which describes for some f and γ the information leakage

of the augmented filter function. It is shown [11, Lemma 5] that the intersection

coefficient is minimised when γ is a Golomb ruler.
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5.4.1 Examination of Golić’s inversion attack

Golić’s inversion attack, generalized in [12] exploits a property of NFGs whose NFF

is of a particular form. Golić proves [11, Theorem 2] that the output sequence

of a NFG with a NFF g(a0, . . . , am−1), irrespective of the taps chosen, is purely

random, uniformly distributed and independent, given that the input sequence is

also purely random, uniformly distributed and independent if g may be written

with regard to either of the values a0 or am−1 as follows:

g(a0, . . . , am−1) = a0 + h(a1, . . . , am−1) (5.4)

or

g(a0, . . . , am−1) = am−1 + h(a0, . . . , am−2). (5.5)

In each case the NFF g is linear in either its first or last variable. Golić also

conjectures the necessity of this property which is studied further in [29].

The tapping sequence used in the NFG is represented by an increasing sequence

of m non-negative integers γ such that γm−1 < n. Using this notation the NFF g

is applied to the LFSR sequence to generate a keystream as follows:

zi = g(si−γ0 , . . . , si−γm−1), (5.6)

hence the input memory size of the NFG is γm−1−γ0 = M . From here we assume

without loss of generality that γ0 = 0.

If the NFF g is either of the form (5.4) or (5.5) we may write

si = zi + h(si−γ1 , . . . , si−γm−1) (5.7)

or

si−γm−1 = zi + h(si, . . . , si−γm−2). (5.8)

The objective of the inversion attack is to recover the initial state of the LFSR

used by a NFG to generate a particular keystream and takes on average 2M−1

trials to find a correct initial state. Given known NFF g of the form (5.4), LFSR

feedback polynomial f , tapping sequence γ and N bits of the keystream sequence

zi, . . . , zM−1 generated by the NFG the forward inversion attack proceeds as fol-

lows:

1. Guess (previously unchecked) M bits of s0, . . . , sM−1, the unknown initial

state.

2. Using (5.7), generate a segment sM , . . . , sn−1 of the LFSR sequence from a

segment zM , . . . , zn−1 of the keystream sequence.
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3. Using f with the initial state s0, . . . , sn−1 generate a sequence extending

sn, . . . , sN+M−1.

4. Using g, compute a sequence z′n, . . . , z
′
N+M−1 and compare with the original

zn, . . . , zN+M−1. If they are the same, stop and accept s0, . . . , sM−1 as a

correct initial state. Otherwise, go to step 1.

5. The entire initial state may be computed from s0, . . . , sM−1 using the back-

ward LFSR recursion.

If the NFF g was of the form (5.5) then a similar method known as the back-

ward inversion attack may be used. The expected number of false positives for

candidate initial states is not expected to exceed 2−c if the length of the keystream

is only N = n+ c.

5.4.2 Golić’s attack on the Galois LFSR

We now take Golić’s inversion attack and try to apply it directly to a Galois LFSR

fed NFG.

The Galois LFSR (see Figure 2.2) updates its state at each clock interval by

XOR-ing the value of the memory cell R(n−1) with itself and other memory cells

according to the values of the coefficients cn−1, . . . , c0 in its feedback polynomial.

Since the output sequence, taken from R(n−1) of the Galois LFSR, is out of phase

with the sequences produced by observing memory cells R(n−2), . . . , R(1) by values

not necessarily positively increasing or easy to predict we denote these sequences

as r(n−1), . . . , r(0) to differentiate between them.

Equations (5.7) and (5.8) do not simply transfer to the case of a Galois LFSR

since the tapping sequence no longer references values of the LFSR m-sequence. At

run time the tapping sequence γ of the NFG references the values of the memory

cells of the LFSR, such that in the case of the Galois model we must reformulate

equations (5.7) and (5.8) as

si = zi + h(si−hγ1 , . . . , si−hγm−1
) (5.9)

or

si−hγm−1
= zi + h(si, . . . , si−hγm−2

), (5.10)

where hi are defined by the list H = (hi) where r(i) = (r(n−1) � hi). Examining

first equation (5.10) we can see that the input memory size M is no longer γm−1−
γ0, it has increased to M = max(hγ2 , . . . , hγm−1) and immediately we note that

using the same steps as listed in the previous section will generally increase our
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search space far greater than that needed for a brute force attack over all possible

initial states.

However, reformulating (5.10) to acknowledge the various sequences of each

memory cell gives us

r
(n−1−γm−1)
i = zi + h(r

(n−1)
i , . . . , r

(n−1−γm−2)
i ). (5.11)

Using this equation and adjusting the steps of the inversion attack we may

proceed as follows:

1. Guess as before (previously unchecked) γm−1 bits of the unknown initial

state r
(n−1)
0 , . . . , r

(n−1−γm−1)
0 .

2. Generate the partial states r
(n−1−j)
i , i = 1, . . . , n + 1 − γm using the Galois

LFSR function for j = 0, . . . , γm−1 and (5.12) for j = γm−1.

3. Recover the full states r
(n−1−j)
i , i = 1, . . . , n+ 1− γm, j = 0, . . . , n− 1 from

the partial states using the Galois LFSR function.

4. Generate successive states r
(n−1−j)
i , i = n + 1, . . . , N , j = 0, . . . , n − 1 as

before using the Galois LFSR function.

5. Proceed from Step 4 as in the previous section.

Although more calculations are needed in this version of the attack it is still

possible to recover an initial state of the LFSR with 2γm−1 trials on average.

By the nature of the Galois LFSR the case in (5.9) cannot be resolved due to

the loss of information of R(n−1−γm−1). Reformulating as before:

r
(n−1)
i = zi + h(r

(n−1−γ1)
i , . . . , r

(n−1−γm−1)
i ), (5.12)

and attempting to proceed with the steps listed in this section fails at Step 2 since

equation (5.9) no longer provides new information as this value can be calculated

from the previous partial state. The value required to proceed is r
(n−1−γm−1)
i ,

i = 0, . . . , n − γm−1 and since it is the result of a nonlinear operation it can only

be predicted with probability 2−1. If we continue in this manner then the attack

will need on average 2n trials to find a correct initial state of the LFSR, no better

than a brute force attack over all possible initial states.

In short, we can derive a new form of the attack to exploit the case that the

NFF g is of the form (5.5) i.e. linear in its last variable, although in contrast, the

use of a Galois LFSR in conjunction with a NFF g of the form (5.4) i.e. linear in

its first variable does not seem to be vulnerable to the standard form of Golić’s

inversion attack.
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5.5 Modular Golomb rulers in the shifts of the

Galois LFSRs and filter generators

Since Golić’s original design only took into account the Fibonacci model LFSR

we shall now consider a new construction of a NFG that uses a Galois LFSR

with a dense primitive polynomial f . We select positions γ = {i0, . . . , ik−1}, a

subset of {0, 1, . . . , n − 1} as inputs to the filtering function in such a way that

(hi0 , . . . , hik−1
) is an MGR. This NFG would be equivalent to tapping positions

j0 = hi0 , . . . , jk−1 = hik−1
of a buffered section of length l = max(γ) − min(γ)

of the m-sequence. Using the Galois LFSR allows us to avoid this unnecessary

buffering of terms, saving storage space. This construction would satisfy Golić’s

design criterion but it remains to be seen whether it would be susceptible to other

forms of attack.

Following the results of Section 4.3, using the same dense primitive polynomial

f we could choose γ = D = {i|ci 6= 0} and use Algorithm 4.1 to check whether

Conjecture 4.9 is true in this case. If Algorithm 4.1 returns true then we have

|γ| = wt(f) − 1 which can be very close to n for some suitably chosen f . If

Algorithm 4.1 returns false then we can choose γ = {i|ci 6= 0, i ≤ n
2
} and by

Theorem 4.13 we know that HD is guaranteed to be an MGR. Again, choosing a

suitable f we can achieve |γ| equal to, or lower and very close to bn
2
c+ 1.

Choosing an equivalent tapping sequence from a Fibonacci LFSR of length n

such that they formed a Golomb ruler |γ| would have an upper bound of
√

2n+ 1

since n ≥ k(k−1)/2, i.e. the length of the LFSR must be greater than the greatest

difference between elements of γ. Therefore we would have a much smaller range

of inputs available and if we needed a fixed number k of inputs we would need a

larger Fibonacci LFSR, greater than k(k − 1)/2, compared to around 2k for the

Galois LFSR. This is illustrated by the following example:

Example 5.2. The first example in Table 4.1, after removing the elements in

brackets, produces an MGR of order k = 6. A Fibonacci LFSR of same length

n = 7 would allow us to produce a Golomb ruler of only k = 4 elements, which by

Lemma 4.8 would also be an MGR modulo 2n − 1. For k = 6 elements we would

need a Fibonacci LFSR of length n = 17 (see [14]).

The last example in Table 4.1 is a Galois LFSR of length n = 23 and after

removing the elements in brackets, produces an MGR of order k = 22. A Fibonacci

LFSR of same length n = 23 will allow us to produce a Golomb ruler (which by

Lemma 4.8 would also be an MGR modulo 2n− 1) of order only k = 6. For order

k = 22 we would need a Fibonacci LFSR of length n = 356 (see [14]).
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Observation on the Properties of

H

This section outlines another small interesting property of the list of shifts H of

the Galois LFSR that were noticed during experimentation. It is listed here as it

may have important implications to further results involving the set, including a

solution to Conjecture 4.9.

6.1 Reciprocal primitive polynomials

As may be expected we observed a relation between the shifts of systems with

reciprocal polynomials.

Below is an explanation of the results that were observed.

Proposition 6.1. Let f(x) = cnx
n + cn−1xn−1 + · · · + c1x + c0 be a primitive

polynomial then we know that its reciprocal g(x) = xnf(x−1) = c0x
n + c1x

n−1 +

· · · + cn−1x + cn is also primitive. The relative shifts corresponding to these two

polynomials are reversed such that

hi = 2n − ρn−i−1, i = 0, . . . , n− 1 (6.1)

or equivalently

hi = 1− ρn−i−1 mod 2n − 1, i = 0, . . . , n− 1 (6.2)

where ρi are the shifts corresponding to g(x).

Proof. Let us first examine g, since α is a primitive root of f it stands that β = α−1
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is a primitive root of g. Let us write

hi = logα

(
n∑

k=i+1

ckα
k−i
)
. (6.3)

Now let us examine the corresponding shift of g

2n − ρn−i−1 = logβ(β2n)− logβ

(
n−i−1∑

k=0

cn−kβ
k−n+i+1

)
(6.4)

= logβ(β)− logβ

(
n∑

k=i+1

ckβ
i−k+1

)
(6.5)

we now substitute in α−1

2n − ρn−i−1 = logα−1(α−1)− logα−1

(
n∑

k=i+1

ckα
k−i−1

)
(6.6)

= logα

(
n∑

k=i+1

ckα
k−i−1

)
− logα(α−1) (6.7)

= logα

(
n∑

k=i+1

ckα
k−i
)

(6.8)

Corollary 6.2. Let f(x) be a primitive polynomial and g(x) = xnf(x−1) be its

reciprocal polynomial. The difference between shifts corresponding to these two

polynomials are related such that

hi − hi−1 = ρn−i − ρn−i−1, i = 1, . . . , n− 1 (6.9)

where ρi are the shifts corresponding to g(x).

Example 6.3. Let us now consider the polynomial pair f and g = xnf(x−1)

whose coefficients are represented by 10110010111 and 11101001101 respectively.

We have

f(x) = x10 + x8 + x7 + x4 + x2 + x+ 1, (6.10)

with

Hf = (1, 260, 220, (221), 72, (73), (74), 516, 1022, 0) (6.11)

and

g(x) = x10 + x9 + x8 + x6 + x3 + x2 + 1, (6.12)



CHAPTER 6. OBSERVATION ON THE PROPERTIES OF H 62

with

Hg = (1, (2), 508, 950, (951), (952), 803, (804), 764, 0). (6.13)

Now, taking the values Hf −Hg modulo 210 − 1 we get

H ′ = (0, 258, 735, 294, 144, 144, 294, 735, 258, 0). (6.14)

Noting the symmetry in the list H ′ we may deduce the properties shown in Equa-

tions (6.1) and (6.9).

It may also be noted that all the information about the relative shifts of the

sequences is contained within the pair of sets HR and H ′R. Here the R notation

describes a list division such that a set S with k elements becomes SR = (si | i <
dk
2
e).
This fragmentation of information may be useful in some analytic applications

in which the information of full sets of data on the system is not readily available.

For example a system that leaks information about the content of only half of

its memory cells may be run in reverse to obtain information about the content

of half of the memory cells of its reciprocal system. Together these two data sets

may provide enough exploitable information for a feasible attack to be launched

on the original system.



Chapter 7

Conclusion

Upon examination of the Galois LFSR and its implementations there are some

results which have significant implications to cryptography, especially in regard

to the possible further applications of the properties of MGRs. These results

reflect the ability of the Galois LFSR to effectively hold more information over

time than its Fibonacci counterpart. We can see this presented in the shifts of the

elementary sequences produced by each of the LFSRs memory cells. As was shown

here, one implication of these results was in relation to Golić’s inversion attack,

and also as a property to be used to increase the rate of output of pseudorandom

number generators (PRNGs). It is clear that there are more mathematical results

yet to be discovered and in this regard, there is scope for much additional future

research into the suitability of Galois LFSRs as replacements for Fibonacci LFSRs

in cryptographic systems. For example being able to prove the existence of MGRs

in the shifts of the LFSR may present a great improvement of the methods used

to generate secure NFFs.

Proving this conjecture is of great future interest to the author and many

approaches have been considered as starting points. One such approach is to take

for example constructions of Golomb rulers as in [6] which have their foundations

in finite field theory. If one such construction can be used to create a superset of

the set of shifts of a Galois LFSR then one can infer that the child set is also a

Golomb ruler.

Also of great interest for further study are the m-tuple bias results explored in

Section 5.3. More targeted research in this area has the prospect of discovering a

method to exploit the bias in order to mount an attack. As is very often the case,

upon discovering a new attack work can then be directed more precisely in order

to protect against it. Many of the results in this thesis would be very beneficial

to research in this direction.

In a purely mathematical context it is also a step towards tying together many

fields of study such as Linear Algebra, Combinatorics and Finite Geometry. The
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study of these fields leads to many crossovers in the computing community in the

areas of Cryptography, Coding Theory and Electrical Engineering. Other advances

in the study of computer science that yield faster and more efficient algorithms

for calculating discrete logarithms may also provide further benefits in the fields

of cryptography when combined with the Galois LFSR.
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Appendix A

Acronyms and Terminology

Acronyms

DLP discrete logarithm problem

FSM finite state machine

LFSR linear-feedback shift register

MGR modular Golomb ruler

NCF nonlinear combining function

NCG nonlinear combining generator

NFF nonlinear filtering function

NFG nonlinear filtering generator

OTP one-time pad

PRNG pseudorandom number generator

PRS pseudorandom sequence

XOR the bitwise exclusive or operation
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Polynomial Classifications

Definition (Irreducible Polynomial). [19, Definition 1.57] A polynomial p ∈ F [x]

is said to be irreducible over F if p has positive degree and p = bc with b, c ∈ F [x]

implies that either b or c is a constant polynomial.

Definition (Minimal Polynomial). [19, Definition 1.81] If θ ∈ F is algebraic over

K, then the uniquely determined monic polynomial g ∈ K[x] generating the ideal

J = {f ∈ K[x] : f(θ) = 0} of K[x] is called the minimal polynomial of θ over K.

Definition (Primitive Polynomial). [19, Definition 3.15] A polynomial f ∈ Fq[x]

of degree m ≥ 1 is called a primitive polynomial over Fq if it is the minimal

polynomial over Fq of a primitive element of Fqm .
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Terminology

Characteristic polynomial (Definition 2.6, page 17)

Elementary sequence (Definition 2.15, page 19)

Fibonacci linear-feedback shift register (Definition 2.30, page 25)

Galois linear-feedback shift register (Definition 2.32, page 27)

Golomb ruler (Definition 4.1, page 42)

Linear recurrence sequence (Definition 2.4, page 16)

log notation (Definition 2.18, page 20)

m-sequence (Definition 2.10, page 18)

Modular Golomb ruler (Definition 4.3, page 42)

Polynomial order (Definition 2.22, page 22)

Recurrence relation (Definition 2.2, page 16)

Seq notation (Definition 2.16, page 20)

Sequence decimation (Definition 2.24, page 22)

Sequence interleaving (Definition 2.26, page 23)

Sequence notation (Definition 2.1, page 16)

Sequence phases (Definition 2.21, page 21)

Shift notation (Definition 2.11, page 18)

Trace notation (Definition 2.13, page 19)



Appendix B

Online Encyclopedia of Integer

Sequences: Sequences of Interest

Included here are sequences registered at the Online Encyclopaedia of Integer

Sequences [25]. Each example includes its unique designation, a description, a

formula where available and a sample of elements from the start of the sequence

itself.

A001037 Number of irreducible polynomials of degree n over F2.

 1

n

∑

d|n
2
n
dµ(d)



∞

n=1

(B.1)

2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, . . . (B.2)

A011260 Number of primitive polynomials of degree n over F2.
(
ϕ(2n − 1)

n

)∞

n=1

(B.3)

1, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, . . . (B.4)

A027375 Number of binary sequences with minimal period n.


∑

d|n
2
n
dµ(d)



∞

n=1

(B.5)

2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, . . . (B.6)
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Appendix C

Index Tables

Below are a collection of example index tables for fields of varying characteristic.

The columns headed Bi contain a representation of the summation of powers of α

in base i.

Table C.1: Index table of F4 with f(x) = x2 + x+ 1

Power Sum B2 B4

− 0 00 0
0 1 01 1
1 α 10 2
2 α + 1 11 3

Table C.2: Index table of F8 with f(x) = x3 + x+ 1

Power Sum B2 B8

− 0 000 0
0 1 001 1
1 α 010 2
2 α2 100 4
3 α + 1 011 3
4 α2 + α 110 6
5 α2 + α + 1 111 7
6 α2 + 1 101 5
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Table C.3: Index table of F16 with f(x) = x4 + x+ 1

Power Sum B2 B16

− 0 0000 0
0 1 0001 1
1 α 0010 2
2 α2 0100 4
3 α3 1000 8
4 α + 1 0011 3
5 α2 + α 0110 6
6 α3 + α2 1100 C
7 α3 + α + 1 1011 B
8 α2 + 1 0101 5
9 α3 + α 1010 A
10 α2 + α + 1 0111 7
11 α3 + α2 + α 1110 E
12 α3 + α2 + α + 1 1111 F
13 α3 + α2 + 1 1101 D
14 α3 + 1 1001 9

Table C.4: Addition/multiplication table of F16 with f(x) = x4 + x+ 1

×�+ 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 3 2 5 4 7 6 9 8 B A D C F E
2 2 4 1 6 7 4 5 A B 8 9 E F C D
3 3 6 5 7 6 5 4 B A 9 8 F E D C
4 4 8 C 3 1 2 3 C D E F 8 9 A B
5 5 A F 7 2 3 2 D C F E 9 8 B A
6 6 C A B D 7 1 E F C D A B 8 9
7 7 E 9 F 8 1 6 F E D C B A 9 8
8 8 3 B 6 E 5 D C 1 2 3 4 5 6 7
9 9 1 8 2 B 3 A 8 D 3 2 5 4 7 6
A A 7 D E 4 9 3 F 5 8 1 6 7 4 5
B B 5 E A 1 F 4 7 C 2 9 7 6 5 4
C C B 7 5 9 E 1 A 6 1 D F 1 2 3
D D 9 4 1 C 8 5 2 F B 6 3 E 3 2
E E F 1 D 3 2 C 9 7 6 8 4 A B 1
F F D 2 9 6 4 B 1 E C 3 8 7 5 A

Bold values displayed are the result of multiplication since any element added to
itself equals 0.
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Table C.5: Index table of F32 with f(x) = x5 + x2 + 1

Power Sum B2 B10

− 0 00000 0
0 1 00001 1
1 α 00010 2
2 α2 00100 4
3 α3 01000 8
4 α4 10000 16
5 α2 + 1 00101 5
6 α3 + α 01010 10
7 α4 + α2 10100 20
8 α3 + α2 + 1 01101 13
9 α4 + α3 + α 11010 26
10 α4 + 1 10001 17
11 α2 + α + 1 00111 7
12 α3 + α2 + α 01110 14
13 α4 + α3 + α2 11100 28
14 α4 + α3 + α2 + 1 11101 29
15 α4 + α3 + α2 + α + 1 11111 31
16 α4 + α3 + α + 1 11011 27
17 α4 + α + 1 10011 19
18 α + 1 00011 3
19 α2 + α 00110 6
20 α3 + α2 01100 12
21 α4 + α3 11000 24
22 α4 + α2 + 1 10101 21
23 α3 + α2 + α + 1 01111 15
24 α4 + α3 + α2 + α 11110 30
25 α4 + α3 + 1 11001 25
26 α4 + α2 + α + 1 10111 23
27 α3 + α + 1 01011 11
28 α4 + α2 + α 10110 22
29 α3 + 1 01001 9
30 α4 + α 10010 18



Appendix D

Sequences and Their Applications

2012

This paper was presented at Sequences and Their Applications (SETA) 2012 at

the University of Waterloo, Canada.

75



Index Tables of Finite Fields

and Modular Golomb Rulers

Ana Sălăgean, David Gardner, and Raphael Phan
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Abstract. For a Galois field GF(2n) defined by a primitive element α
with minimal polynomial f , the index table contains in row i the coor-
dinates of αi in the polynomial basis αn−1, αn−2, . . . , α, 1. Each column
i in this table equals the m-sequence with characteristic polynomial f ,
shifted cyclically by some offset hi.

In this paper we show that the set of the n shifts hi contains large
subsets which are modular Golomb rulers modulo 2n − 1 (i.e. all the
differences are different). Let D be the set of integers j such that the
coefficient of xj in f is non-zero. We prove that the set HD of shifts
corresponding to columns j ∈ D can be partitioned into two subsets
(the columns in the left half of the table and the ones in the right half)
each of which is a modular Golomb ruler. Based on this result and on
computational data, we conjecture that in fact the whole set HD is a
modular Golomb ruler.

We give a polynomial time algorithm for deciding if given a subset
of column positions, the corresponding shifts are a modular Golomb
ruler. These results are applied to filter generators used in the design
of stream ciphers. Golić recommends that in order to withstand his in-
version attack, one of the design requirements should be that the inputs
of the non-linear filtering function are taken from positions of a Fibonacci
LFSR which form a Golomb ruler. We propose using a Galois LFSR in-
stead and selecting positions such that the corresponding shifts form a
modular Golomb ruler. This would allow for a larger number of inputs to
be selected (roughly n/2 rather than

√
2n) while still satisfying Golić’s

requirement.

1 Preliminaries

First we recall the definitions of linear recurrent sequences and m-sequences.

Definition 1. An infinite sequence s̃ = s0, s1, . . . with elements in a field K is
called a linear recurrent sequence if there exists a relation of the form si+n =
cn−1si+n−1+· · ·+c1si+1+c0si for all i = 0, 1, . . ., where c0, c1, . . . , cn−1 ∈ K are
constants. We associate to it a characteristic polynomial f(x) = xn+cn−1x

n−1+
· · ·+c1x+c0. If n is minimal for the given sequence we call n the linear complexity
of the sequence. A sequence which has a primitive polynomial as characteristic
polynomial is called an m-sequence.

T. Helleseth and J. Jedwab (Eds.): SETA 2012, LNCS 7280, pp. 136–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Recall that a binary m-sequence of linear complexity n has period 2n − 1.
We now introduce a notation for (cyclic) shifts of sequences:

Definition 2. Given a sequence s̃ = s0, s1, . . ., we denote by s̃ � k the sequence
obtained by shifting s̃ by k positions to the left, i.e. the sequence sk, sk+1, . . ..

If s̃ is periodic with period N we denote by s̃ � k the sequence obtained by
cyclicly shifting s̃ by k positions to the right, i.e. the sequence sN−k, sN−k+1, . . . ,
sN−1, s0, s1, . . ..

Obviously (s̃ � k) = (s̃ � (N − k)).
Next we recall a few facts about the construction of a finite field with 2n

elements, denoted GF(2n).
Throughout the paper we fix f = xn+cn−1x

n−1+ · · ·+c1x+c0 ∈ GF(2)[x] to
be a primitive polynomial of degree n (hence c0 = 1) and denote by α a root of
f . We define GF(2n) as GF(2)[x]/〈f〉, or equivalently as the algebraic extension
field of GF(2) by α.

The elements of GF(2n) can be represented in different ways; we are interested
in the two most common representations: firstly we have the representation in
the polynomial basis αn−1, αn−2, . . . , α, 1, whereby

GF(2n) = {rn−1α
n−1 + rn−2α

n−2 + · · ·+ r1α+ r0|r0, . . . , rn−1 ∈ GF(2)}.
Secondly we have the representation as powers of the primitive root α, whereby

GF(2n) = {0, 1, α, α2, . . . , α2n−2}.
Since the first representation is convenient for addition and the second is con-
venient for multiplication (and multiplicative inverse), implementations often
use lookup tables for conversion between the two representations, also called
log/antilog tables or index tables. When n is large however, such tables can no
longer be computed/stored due to their exponential size.

Converting from a power of α to the polynomial basis representation is rela-
tively easy (polynomial time). However the reverse problem (given rn−1, . . . , r0
find i such that αi = rn−1α

n−1 + rn−2α
n−2 + · · · + r1α + r0) is difficult and it

is known as the Discrete Logarithm Problem (DLP) in GF(2n).
We will study the index table that gives the representation of 1, α, α2, . . . ,

α2n−2 in the polynomial basis. That is, if we denote

αi = r
(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(1)
i α+ r

(0)
i ,

the index table is the 2n − 1 by n matrix whose rows are indexed from 0 to

2n− 2 and the i-th row is the vector (r
(n−1)
i , r

(n−2)
i , . . . , r

(1)
i , r

(0)
i ). Note that the

rows of this table are precisely all the n-bit vectors except the all-zero one. We
will denote column j by r̃(j) and it will be convenient to view it as a periodic
sequence of period 2n − 1.

It is known, and not difficult to prove, that each sequence r̃(j) (being the image
under a projection homomorphism of the sequence 1, α, α2, . . .) has characteristic
polynomial f . Since f is primitive, r̃(j) is an m-sequence. For different values of
j we obtain different cyclic shifts of this same m-sequence. We will choose r̃(n−1)

as a reference point.
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Definition 3. For j = 0, . . . , n− 1 we denote by hj the integer modulo 2n − 1
such that r̃(j) = (r̃(n−1) � hj). We denote by H the set {hn−1, hn−2, . . . , h1, h0}.

Determining H seems difficult for large fields where the index table cannot be
computed in full. This problem was considered by Blackburn in [1]. In [1, Defini-
tion 3] he defines a set

∑
(f) that would correspond to H ∪{hi−hj |hi, hj ∈ H},

and searches for suitable values in this set in order to increase the rate of out-
put of m-sequences by interleaving. In the next section we will prove certain
properties of the elements of H without explicitly computing them.

It will be convenient to use the trace representation for m-sequences:

Theorem 1. [5, Theorem 6.21] The elements of an m-sequence s̃ = s0, s1, . . .

over GF(2) can be expressed as si = Tr(aαi) =
n−1∑
j=0

a2
j

(α2j )i, where α is a

primitive root of the primitive characteristic polynomial of s and a ∈ GF(2n),
a �= 0, is a constant, uniquely determined by the first n elements of the sequence.

Since we will work with a fixed primitive polynomial f , it is only the constant a
in the theorem above that determines which of the 2n−1 shifts of the m-sequence
we are dealing with. It is therefore convenient to introduce the following notation:

Definition 4. We define Seqα(a) (also denoted Seq(a) if α is clear from the
context) as the sequence s̃ whose i-th element is represented by

si = Tr(aαi) =

n−1∑

j=0

a2
j

(α2j )i. (1)

Seq is linear, i.e. for any a, b ∈ GF(2n) and c ∈ GF(2) we have:

Seq(a) + Seq(b) = Seq(a+ b) (2)

c Seq(a) = Seq(ca) (3)

The effect of shifting on sequences Seq(a) can be described as follows:

Lemma 1. Let a, a1, a2 ∈ GF (2n)∗ and h an integer. Then:
(i) (Seq(a) � h) = Seq(aαh) and (Seq(a) � h) = Seq(aα−h)
(ii) Seq(a2) = (Seq(a1) � h) where h is the discrete logarithm of a1a

−1
2 .

Proof. (i) The i-th element of (Seq(a) � h) is the (i+h)− th element of Seq(a),

si+h =
n−1∑

j=0

a2
j

(α2j )i+h =
n−1∑

j=0

(aαh)2
j

(α2j )i

which is indeed the i-th element of the sequence Seq(aαh) as in (1).
(ii) Write Seq(a2) = Seq(a1a2a

−1
1 ) = Seq(a1α

−h) and then use (i). 	


The following notion appears in the literature in different equivalent forms and
under different names: Golomb ruler, finite Sidon set, full positive difference
set, etc.
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Definition 5. A Golomb ruler of order m is a set of integers {b0, . . . , bm−1}
with b0 < b1 < · · · < bm−1, such that all the positive pairwise differences of
elements are unique,i.e. bj − bi �= bl − bk, for all (i, j) �= (k, l), i < j and k < l.

A modular Golomb ruler modulo N is a set {b0, . . . , bm−1} of numbers modulo
N such that all the pairwise differences of elements are unique modulo N , i.e.
(bj − bi) mod N �= (bl − bk) mod N , for all (i, j) �= (k, l).

There is no general construction for optimal (modular) Golomb rulers (i.e. min-
imum bm−1 − b0 for given order m); tables for the currently known optimal
values are available see [4], the Online Encyclopedia of Integer Sequences and
the references therein. The following is immediate:

Lemma 2. Let B = {b0, . . . , bm−1} with 0 ≤ b0 < b1 < · · · < bm−1 < N be
a Golomb ruler. If bm−1 − b0 < N/2 then B is also a modular Golomb ruler
modulo N .

Proof. For all i < j, we consider a first set of differences as the differences
bj − bi. These are all different because B is a Golomb ruler. Moreover, bj − bi ≤
bm−1− b0 < N/2. The second set of differences bi− bj = N − (bj − bi) > N/2 are
all different among themselves, and also different from the first set of differences.

	


2 Modular Golomb Rulers within the Set of Shifts of the
Index Table of a Galois Ring

In this section we show that certain non-trivial subsets of H (where H is de-
fined in Definition 3) are modular Golomb rulers. Moreover, we show that for
suitable choices of the primitive polynomial f these subsets contain about half
the elements of H .

For a start, all hj are different. (If we assumed there exist hi = hj then in
each row of the index table entries i and j are identical. However, this is not
possible as the table contains as rows all the possible binary vectors except the
all-zero one.) As an easy consequence hj − hi �= hk − hi for all j �= k.

Lemma 3. r̃(0) = (r̃(n−1) � 1) and r̃(j) = ((r̃(j−1) + cj r̃
(n−1)) � 1) for 1 ≤

j ≤ n− 1.

Proof.

αi+1 = r
(n−1)
i+1 αn−1 + r

(n−2)
i+1 αn−2 + · · ·+ r

(1)
i+1α+ r

(0)
i+1 = ααi

= α(r
(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(1)
i α+ r

(0)
i )

= r
(n−1)
i αn + r

(n−2)
i αn−1 + · · ·+ r

(1)
i α2 + r

(0)
i α

= r
(n−1)
i (cn−1α

n−1 + . . .+ c1α+ c0) + r
(n−2)
i αn−1 + · · ·+ r

(1)
i α2 + r

(0)
i α

= (r
(n−1)
i cn−1 + r

(n−2)
i )αn−1 + · · ·+ (r

(n−1)
i c1 + r

(0)
i )α+ (r

(n−1)
i c0).

Since αn−1, αn−2, . . . , α, 1 is a vector space basis, we have r
(j)
i+1 = r

(n−1)
i cj+r

(j−1)
i

and r
(0)
i+1 = r

(n−1)
i c0. 	
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Corollary 1. (i) hn−1 = 0, h0 = 1 and hj = hj−1+1 for all j for which cj = 0.
(ii) If f = xn + xj +1 is a trinomial, then H = {0, 2n − 2, 2n − 3, . . . , 2n − (n−
j), j, j − 1, . . . , 3, 2, 1}
Hence for determining H it suffices to determine those hj for which cj �= 0.

Let a be such that r̃(n−1) = Seq(a). The value of a can be computed from the
initial terms of r̃(n−1) but this will not be necessary for our purposes.

Theorem 2. Let zj = cj+1 + cj+2α+ · · ·+ cn−1α
n−j−2 + αn−j−1. Then:

(i) z0, z1, . . . , zn−1 form a vector space basis for GF(2n).
(ii) r̃(j) = Seq(azj), i.e. α

−hj = zj for all j = 0, . . . n− 1.
(iii) hj − hi equals the discrete logarithm of ziz

−1
j .

(iv) If j is such that cj �= 0 then hj = hj−1 + 1 − h where h equals the discrete
logarithm of 1 + z−1

j−1.

Proof. For (i), note that the zj have different degrees. The proof of (ii) is by
induction on j using Lemmas 1 and 3 as well as the linearity of Seq, i.e. equations
(2) and (3). For (iii), write αhj−hi = α−hiαhj = ziz

−1
j . Finally, (iv) is a particular

case of (iii). 	

Determining H is therefore equivalent to solving the particular instances of the
DLP problem α−hj = zj, for j = 0, 1, . . . , n−1 or alternatively solving particular
instances of the State-based DLP as defined by Giuliani and Gong in [2, Defini-
tion 7]. Namely, given the n initial terms of r̃(j), determine the starting position
hj where the n terms 0,0,. . . ,0,1 appear in r̃(j). It is shown in [2, Theorem 3]
that the State-based DLP is equivalent to the DLP.

Theorem 3. Let D ⊆ {0, 1, . . . , n− 1} be a set of indices and HD = {hi|i ∈ D}
be the set of corresponding values of shifts. The set HD is a modular Golomb
ruler (modulo 2n − 1) if and only if for all distinct pairs (i, j), (k, l) of elements
in D with i < j, k < l, j − i ≤ l − k we have

ziz
−1
j �= zkz

−1
l (4)

ziz
−1
j �= z−1

k zl (5)

Proof. Use Theorem 2(iii) and Definition 5. 	

Based on the theorem above, Algorithm 1 decides whether HD is a modular
Golomb ruler for a given D.

Theorem 4. Algorithm 1 has a time complexity of O(n4) and needs O(n3) extra
memory space.

Proof. Computing the polynomial basis representation of ziz
−1
j and of z−1

i zj
takes O(n2) steps. The list L has at most n(n − 1) elements of n bits each,
i.e. a total of O(n3) bits. With an appropriate data structure, we can maintain
the elements of L in lexicographic order and we do binary search to find out
if an element is in the list or to insert a new element. We would then need
log(n2) = 2 logn list element comparisons, and each comparison takes n steps.
Hence all operations inside the two nested for loops take O(n2) steps. 	
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Algorithm 1. GolombRulerDecision(f,D)

Input: f a primitive polynomial of degree n; D ⊆ {0, 1, . . . , n− 1}.
Output: True/False signifying whether {hj |j ∈ D} is a modular Golomb ruler.
begin
Initialise L to the empty list

5: for i = 0, 1, . . . , n− 1 do
for j = i+ 1, . . . , n− 1 do

Compute the polynomial basis representation of ziz
−1
j and of z−1

i zj

if (ziz
−1
j is in L) or (z−1

i zj is in L) then
return(False)

10: else
Insert ziz

−1
j and z−1

i zj in L
end if

end for
end for
return(True)

15: end

For certain subsets of H we will be able to show that they are always modular
Golomb rulers. Intuitively, runs of zero coefficients in f correspond to runs of
consecutive integers in the corresponding shifts hj by Corollary 1(i). In such
regions of consecutive integers we can only choose very small subsets which are
Golomb rulers. A much more promising source of Golomb ruler subsets comes
from those hj for which cj �= 0.

Next we will gather sufficient conditions for (4) and (5) to hold.

Lemma 4. We use the notations of Theorem 3 and assume ci, cj , ck, cl are all
non-zero.
Each of the following conditions is sufficient for (4) to be satisfied:
(i) j − i = l− k
(ii) i+ l ≤ n
(iii) j + k ≥ n− 1
Each of the following conditions is sufficient for (5) to be satisfied:
(iv) j + l ≤ n
(v) i+ k ≥ n− 1.

Proof. We write zi = α−(i+1)vi where vi = 1+c1α+c2α
2+ . . .+ciα

i. We denote
by next(i) the smallest index u > i such that cu �= 0. Note that next(i) ≤ j.

The general idea of these proofs is that we assume for a contradiction that
equality holds in (4) or in (5), respectively. We then simplify this equation to
the point that only powers of α between α0 = 1 and αn−1 appear. Since this
is a vector space basis of GF(2n), an equality holds if and only if for all i the
coefficients of the corresponding αi are identical on the two sides of the equal-
ity. We then prove that this is not the case for our equality, obtaining thus a
contradiction.

(i) Note that in this case we cannot have i = k, because j − i = l − k would
then imply j = l and therefore (i, j) = (k, l). Assuming equality in (4) and using
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j− i = l−k, this simplifies to vkvj = vivl. Writing vj = vi+αi+1(ci+1+ ci+2α+
· · ·+ cjα

j−i−1) and similarly for vl the equality further simplifies to either

vk(ci+1 + ci+2α+ · · ·+ cjα
j−i−1) = αk−ivi(ck+1 + ck+2α+ · · ·+ clα

l−k−1)

for the case i < k, or

αi−kvk(ci+1 + ci+2α+ · · ·+ cjα
j−i−1) = vi(ck+1 + ck+2α+ · · ·+ clα

l−k−1)

for the case i > k. In the case of i < k, on the l.h.s. the smallest power of
α is next(i) and the highest is l − 1 and on the r.h.s. the smallest power is
k − i + next(k) and the highest is l − 1 . Since all powers of α are below n,
all the corresponding coefficients of the powers of α must coincide on the l.h.s
and r.h.s. This implies next(i) = k − i+ next(k), i.e. i + next(i) = k + next(k).
However, one can see that this is a contradiction because i < k, which due to
the way we defined next implies next(i) ≤ k < next(k). The case i > k leads to
a contradiction in a similar way.

(ii) We may assume l − k > j − i, as the case l − k = j − i was covered by
(i). Assuming equality in (4) we obtain α(l−k)−(j−i)vjvk = vlvi. On the l.h.s. the
lowest power of α is (l − k) − (j − i) > 0 and the highest is l + i. On the r.h.s.
the lowest is 0 and the highest is l+ i. The highest powers on both sides cancel
out, leaving only powers of at most l + i − 1 ≤ n− 1. Since all powers of α are
below n, all the corresponding coefficients of the powers of α must coincide on
the l.h.s and r.h.s. However this cannot be the case as the lowest powers with a
non-zero coefficient are different on the two sides.

(iii) Again we may assume l− k > j − i, as the case l− k = j − i was covered
by (i). Note i+ l > j+k ≥ n−1. Assuming equality in (4) gives zizl = zjzk. The
powers of α range from some integer ≥ 0 to 2(n−1)− (i+ l) < n−1 on the l.h.s.
and from some integer ≥ 0 to 2(n−1)−(j+k) ≤ n−1 on the r.h.s.. That means
the coefficients must be identical, hence 2(n− 1)− (i + l) = 2(n− 1)− (j + k).
But that implies l − k = j − i, which is not true.

(iv) Assuming equality in (5) gives vjvl = αl−k+j−ivivk. Again, the powers
of α range on the l.h.s. from 0 to j + l and on the r.h.s from l − k + j − i > 0
to j + l, with the highest ones canceling out and leaving powers of at most
j + l− 1 ≤ n− 1. The range needs to be the same on both sides. Contradiction.

(v) Note j+ l > i+k ≥ n−1. Assuming equality in (5) gives zjzl = zizk. The
powers of α range from some integer ≥ 0 to 2(n−1)− (j+ l) < n−1 on the l.h.s.
and from some integer ≥ 0 to 2(n− 1)− (i+ k) ≤ n− 1 on the r.h.s.. Therefore
the coefficients must be identical, which is not true as 2(n − 1) − (j + l) <
2(n− 1)− (i + k). 	


Theorem 5. Let D = {i|ci �= 0} and let D1 = {i ∈ D, i ≤ n
2 } and D2 = {i ∈

D, i ≥ n−1
2 }. Then HD1 = {hi|i ∈ D1} and HD2 = {hi|i ∈ D2} are modular

Golomb rulers (modulo 2n − 1).

Proof. For HD1 all indices satisfy conditions (ii) and (iv) in Lemma 4. For HD2

all indices satisfy conditions (iii) and (v) in Lemma 4. 	
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Conjecture 1. HD = {hi|ci �= 0} is a modular Golomb ruler (modulo 2n − 1).

In view of Lemma 4, the missing cases for proving the conjecture are: showing
that (4) holds when j+ k < n− 1 and it also holds when n < i+ l; showing that
(5) holds when i + k < n − 1 and also when n < j + l. The experiments in the
following section support this conjecture. Moreover, they allow us to state:

Proposition 1. For all primitive polynomials f of degree 23 or less, HD =
{hi|ci �= 0} is a modular Golomb ruler (modulo 2n − 1).

Finally, note that these results mean that H can have very large subsets which
are modular Golomb rulers. One of the subsets in Theorem 5 will have at least
�(wt(f)− 1)/2� elements, where wt(f) is the Hamming weight of f (number of
non-zero coefficients). If Conjecture 1 is true for a particular f (and this can
be checked by Algorithm 1), the subset obtained is even larger, namely it has
wt(f)− 1 elements.

For many, but not all n, there exists a primitive polynomial of weight n for n
odd or of weight n−1 for n even. It seems likely that for all n there are primitive
polynomials of weight close to n, and therefore H contains in these cases a
modular Golomb ruler subset consisting of almost the whole H (if Conjecture 1
is true). Moreover, it seems likely that for any n there are primitive polynomials
f for which all or almost all coefficients in the lower half of f are non-zero, and
therefore H contains in these cases a modular Golomb ruler subset consisting of
half or almost half of the elements of H (by Theorem 5, so regardless whether
Conjecture 1 is true).

3 Experiments

Brute force experimentation was performed on all Galois fields GF(2n) with n
from 2 to 23, examining all the different primitive polynomials for each n. In
each case the full index table was produced, and the shifts hn−1, hn−2, . . . , h1, h0

were computed by direct examination of the table. Some examples are described
in Table 1, with the primitive polynomial f represented as 1cn−1cn−2 . . . c11. It
was then verified (using Definition 5) that removing those hj for which cj = 0
(shown in brackets in Table 1) leaves indeed a subset which is a modular Golomb
ruler. Thus it was verified that Conjecture 1 holds for all primitive polynomials
up to degree n = 23. For 24 ≤ n ≤ 29 we ran Algorithm 1 for all primitive
polynomials f with wt(f) ≥ n− 1 and again Conjecture 1 was verified.

4 An Application to Galois LFSRs and Filter Generators

Linear recurrent sequences are often generated in practice by hardware devices
called Linear Feedback Shift Registers (LFSR). There are two common types of
LFSR, usually called the Fibonacci LFSR and the Galois LFSR. We recall these
notions here. The registers of a Fibonacci LFSR of length n will be denoted by
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Table 1. A selection of primitive polynomials f and the corresponding shifts H

n = 7, f = 11111101, wt(f) = 7,
H = {0, 18, 119, 54, 39, (2), 1}
n = 9, f = 1111000111, wt(f) = 7,
H = {0, 326, 461, (467), (466), (465), 464, 328, 1}
n = 15, f = 1100000111100111, wt(f) = 9,
H = {0, (3971), (3970), (3969), (3968), (3967), 3966,
30091, 12457, 28329, (24624), (24623), 24622, 3973, 1}
n = 21, f = 1010101011110110001101, wt(f) = 13,
H = {(0), 2097150, (1796558), 1796557, (1333708),
1333707, (1195372), 1195371, 1508706, 363026, 820032,
(1536625), 1536624, 543838, (134466), (134465), (134464),
134463, 1796561, (2), 1}
n = 23, f = 111111110111111111111111, wt(f) = 23,
H = {0, 873419, 3430060, 2620257, 1534122, 7733539,
3311431, (6113933), 6113932, 7496295, 3308273, 7951902,
226119, 3941673, 4712702, 6113941, 3311438, 7733545,
1534127, 2620261, 3430063, 873421, 1}

Q0, Q1, . . .Qn−1. The content of register Qj at time i will be denoted q
(j)
i and

the contents of all the registers at time i are called the state at time i. The initial
state is the state at time 0. The sequence q̃(j) consists of the values of register

Qj in time, i.e. q
(j)
0 , q

(j)
1 , . . .. Similarly for a Galois LFSR we denote the registers

by Rn−1, Rn−2, . . . , R0 and the contents of the register Rj in time by r̃(j).

Definition 6. A Fibonacci LFSR of length n (see Fig. 1) with characteristic
polynomial f(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0 will update itself at each clock
interval i according to the following

q
(j)
i+1 =

{
cn−1q

(n−1)
i + · · ·+ c1q

(1)
i + c0q

(0)
i if j = n− 1

q
(j+1)
i otherwise.

Qn-2Q1Q0

cn-2c1 cn-1c0

Qn-1
...

...

Fig. 1. A Fibonacci style LFSR
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Definition 7. A Galois LFSR of length n (see Fig. 2) with characteristic poly-
nomial f(x) = xn + cn−1x

n−1 + · · · + c1x + c0 will update itself at each clock
interval i according to the following

r
(j)
i+1 =

{
c0r

(n−1)
i if j = 0

r
(j−1)
i + cjr

(n−1)
i otherwise.

Rn-2 R1 R0

cn-2 c1cn-1 c0

Rn-1
...

...

Fig. 2. A Galois style LFSR

The output of the Fibonacci LFSR is taken from register Q0, i.e. equals q̃
(0); the

output of the Galois LFSR is taken from register Rn−1, i.e. equals r̃
(n−1). It is

known that a Fibonacci LFSR and a Galois LFSR with the same characteristic
polynomial will produce the same output sequence provided the initial states
are suitably chosen. We now fix the characteristic polynomial f to be the same
primitive polynomial in both LFSRs, so both produce the same m-sequence.

In the Fibonacci LFSR each sequence representing the content of a register
is equal to the neighbouring sequence shifted by one position. More precisely,
q̃(j) = (q̃(j−1) � 1). Taking the output sequence q̃(0) as reference, q̃(j) = (q̃(0) �
j) = (q̃(0) � (2n − 1− j)).

For a Galois LFSR with a primitive polynomial f which has a primitive root α,

the state (r
(n−1)
i , r

(n−2)
i , . . . , r

(0)
i ) at time i can be interpreted as the coefficients

of the element r
(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(0)
i of GF(2n). Then the state

at time i will be αi+k where k is such that αk corresponds to the initial state.
We can see now that each sequence r̃(j) coincides with the sequence r̃(j) defined
in Section 1, shifted by k positions to the left. We are only interested in the
relative shifts of different r̃(j), hence the shifts by k will cancel out. Taking
the output sequence r̃(n−1) as reference point, the other sequences r̃(j) can be
obtained by shifting r̃(n−1) to the right by hj positions, where hj is as defined in
Definition 3.

For designing stream ciphers, one of the classical constructions for the key-
stream generator is the filter generator (see Fig. 3). It consists of a binary LFSR
(usually Fibonacci LFSR) generating an m-sequence of period 2n − 1 and a
boolean function g : GF(2)k → GF(2) with k ≤ n, called a non-linear filtering
function. The output of the generator is obtained by applying the function g to
k selected registers of the LFSR, say j1, j2, . . . , jk. Hence the output at time i

equals g(q
(j1)
i , q

(j2)
i , . . . , q

(jk)
i ).
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Rn-2 R1 R0

dn-2 d1dn-1 d0

Rn-1
...

nonlinear filtering function

Fig. 3. An LFSR fed NFF

There is a large number of results concerning the recommended choice of
the function g and the “tapped” positions j1, j2, . . . , jk in order to avoid various
cryptanalysis attacks. Here we are interested in the results of Golić [3]. In [3, The-
orem 2], Golić gives a sufficient condition for a non-linear filtering function g to
produce a purely random output provided its inputs come from a purely random
sequence z̃ in such a way that the output at time i equals g(zi−j1 , zi−j2 , . . . , zi−jk)
for fixed tapping positions j1, . . . , jk. In our notation, the input of g at time i
consists of the i-th elements of the sequences (z̃ � j1), (z̃ � j2), . . . , (z̃ � jk).
The sufficient condition is that g is linear in the first or last variable. Golić
conjectured the condition was also necessary, see [6] for further results on this
conjecture. Based on this result, Golić introduces an inversion attack for gen-
erators which use a Fibonacci LFSR and tapping position j1, . . . , jk together
with a non-linear filtering function which is linear in the first or last variable. He
recommends that for withstanding this attack one design criterion is that the
tapped positions of the Fibonacci LFSR should form a full positive difference
set (Golomb ruler). Note that since the tapped positions are in the range 0 to
n− 1, they also form a modular Golomb ruler modulo 2n − 1, by Lemma 2, as
n− 1 < (2n − 1)/2 for all n ≥ 2.

Golić’s results still apply if we use an m-sequence of complexity n and we
buffer t terms for some t ≥ n; we can then tap any positions j1, j2, . . . , jk provided
maxu=1,...,k(ju)−minu=1,...,k(ju) ≤ t. We suspect that in that case Golić’s design
criterion would need to be enhanced, requiring that the tapped positions be a
modular Golomb ruler modulo 2n − 1 (the period of the m-sequence) rather
than simply a Golomb ruler. The two are no longer equivalent if the range
maxu=1,...,k(ju)−minu=1,...,k(ju) exceeds 2

n−1− 1. Buffering t > n terms would
allow a larger number of positions to be tapped while still satisfying Golić’s
design criterion. This would come at the cost of extra storage.

We propose constructing a filter generator that uses a Galois LFSR with a
dense primitive polynomial f . We then select positions D = {i1, i2, . . . , ik} ⊆
{0, 1, . . . , n − 1} as inputs to the filtering function in such a way that
{hi1 , hi2 , . . . , hik} is a modular Golomb ruler. The filter generator thus con-
structed would be equivalent to tapping positions j1 = hi1 , j2 = hi2 , . . . , jk = hik

of a buffered section of length t = minl=1,...,k(maxu=1,...,k((jl−ju) mod (2n−1))
of the m-sequence, with the advantage that we do not need to actually buffer
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such a long section, we are only using the n memory registers of the Galois
LFSR. This construction would satisfy Golić’s design criterion. It remains to be
seen whether it would be susceptible to other forms of attack.

According to the discussion at the end of Section 2, we can chooseD = {i|ci �=
0} and check whether Conjecture 1 is true in this case by running Algorithm 1.
If the answer is positive, we have k = wt(f) − 1, which can be very close to n
for suitably chosen f . If Algorithm 1 returns a negative result, we can still chose
D = {i|ci �= 0, i ≤ n/2} and HD is guaranteed to be a modular Golomb ruler
by Theorem 5. For suitably chosen f we can then have k equal, or lower but
very close to �n/2� + 1. If we had to choose inputs from a Fibonacci LFSR of
length n so that they are a Golomb ruler, the well known bound n ≥ k(k− 1)/2
would mean k <

√
2n+1, hence a much smaller number of inputs are available.

Equivalently, if we required some fixed number k of inputs, we would need a much
larger length n for the Fibonacci LFSR, namely more than k(k− 1)/2 compared
to approximately 2k for the Galois LFSR. The following example illustrates this:

Example 1. The first example in Table 1, after removing the elements in brack-
ets, produces a modular Golomb ruler of order k = 6. A Fibonacci LFSR of same
length n = 7 would allow us to produce a Golomb ruler (which by Lemma 2
would also be a modular Golomb ruler modulo 2n − 1) of only k = 4 elements.
For k = 6 elements we would need a Fibonacci LFSR of length n = 17 (see [4]).

The last example in Table 1 is a Galois LFSR of length n = 23 and after
removing the elements in brackets, produces a modular Golomb ruler of order
k = 22. A Fibonacci LFSR of same length n = 23 will allow us to produce a
Golomb ruler (which by Lemma 2 would also be a modular Golomb ruler modulo
2n − 1) of order only k = 6. For order k = 22 we would need a Fibonacci LFSR
of length n = 356 (see [4]).

Acknowledgements. We would like to thank Simon Blackburn for a useful
discussion regarding his paper [1].
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Abstract. Given an irreducible non-primitive polynomial g of degree n
over F2[x] we aim to compute in parallel all the elementary sequences
with minimal polynomial g (i.e. one sequence from each class of equiva-
lence under cyclic shifts). Moreover, they need to each be in a suitable
phase such that interleaving them will produce an m-sequence with lin-
ear complexity deg(g); this m-sequence is therefore produced at the rate
of q = (2n − 1)/ord(g) bits per clock cycle. A naive method would use
q LFSRs so our aim is to use considerably fewer. We explore two ap-
proaches: running a small number of Galois LFSRs with suitable seeds
and using certain registers, possibly with a small amount of buffering;
alternatively using only one (Galois or Fibonacci) LFSR and computing
certain linear combinations of its registers. We ran experiments for all
irreducible polynomials of degree n up to 14 and for each n we found
that efficient methods exist for at least one m-sequence. A combination
of the two approaches above is also described.

Keywords: Fibonacci LFSR, Galois LFSR, m-sequences, interleaving,
elementary sequences.

1 Introduction

The linear feedback shift register (LFSR) has become a standard way to gen-
erate linearly recurrent sequences and in particular m-sequences, i.e. sequences
which have the maximum period given the length of the LFSR. m-sequences are
commonly used as good approximations of random binary sequences, so called
pseudo-random or pseudo-noise sequences. Sequences with such properties are
invaluable in symmetric key cryptographic systems implemented both in hard-
ware and software. Hence rapid generation of m-sequences without excessive
memory requirements is desirable. There are many other areas of applications
for m-sequences.

Some authors have explored various ways to artificially increase the rate of
output of such cryptographic systems; Robshaw[6] described a method of inter-
leaving a number of phases of the desired m-sequence, all these phases being
generated synchronously by separate LFSRs (see also [3]). Blackburn[1] then ex-
tended this idea by using a smaller number of Galois LFSR in order to produce
the required synchronous sequences exploiting the fact that a Galois LFSR with

M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 16–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a primitive feedback polynomial can produce a greater spread of phases of a
single m-sequence than an equivalent Fibonacci LFSR. The main difficulty in [1]
lies in identifying a primitive feedback polynomial that will produce sequences
in the required phases.

Surböch and Weinrichter[8] explored interleaving “elementary sequences” in-
stead of m-sequences. In the present paper we are further developing this ap-
proach. An elementary sequence is one whose minimal polynomial g is irreducible
but not necessarily primitive. For a fixed non-primitive g, there are several such
sequences, not all of which are cyclic shifts of one another. More precisely, with
equivalence given by cyclic shifts, there are exactly q = (2n − 1)/ord(g) classes,
each having ord(g) elements.

Given an m-sequence s of length 2n− 1 it is known that for any proper factor
q of 2n − 1, the (improper) decimations of s by q are elementary sequences, all
having the same irreducible minimal polynomial g.

Taking the reverse approach, we can interleave q elementary sequences in
order to obtain an m-sequence. Not every arbitrary collection of q elementary
sequences with the same irreducible minimal polynomial will produce an m-
sequence by interleaving. The sequences need to satisfy further conditions: to be
inequivalent under cyclic shifts, and to be in a certain phase, see Theorem 4.
Our aim is to obtain in an efficient way exactly such a collection of sequences.

Our general approach is to use a certain number (less than q) of Galois or Fi-
bonacci LFSRs, and then extract from different registers the sequences we need,
by possibly using additional buffering or XORs. We look then at two particular
cases of this approach. In the first case, we use a small number of Galois LFSRs
and possibly some small amount of buffering, but no additional XORs. We ex-
ploit the fact that, unlike a Fibonacci LFSR, each register of a Galois LFSR can
produce elementary sequences from different equivalence classes. In the second
particular case we consider, we only run a single (Galois or Fibonacci) LFSR
and obtain all the required sequences by doing further XOR operations between
different registers. We exploit the fact that the n sequences obtained from the
n registers form a basis in the vector space of all elementary sequences with
fixed minimal polynomial g. We ran experiments for all irreducible polynomials
of degree n up to 14, where 2n − 1 is not prime.

While our construction of elementary sequences was targeted at fast genera-
tion of m-sequences, there are other possible applications of this construction. In
coding theory, elementary sequences are the codewords of minimal cyclic codes
(also known as irreducible cyclic codes), hence our construction will produce the
non-equivalent codewords of such a code. In cryptography, one could use the
elementary sequences as inputs to a non-linear function in order to construct a
filtering generator for a stream cipher.

2 Preliminaries

Throughout the paper all the fields are finite fields. We define linear recurring
sequences as usual and note elementary sequences and m-sequences as special
cases:
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Definition 1. An infinite sequence s = s0, s1, . . . with elements in a field K is
called a homogeneous linear recurring sequence if there exists a homogeneous
linear recurrence relation of the form si+n = cn−1si+n−1+ · · ·+ c1si+1+ c0si for
all i = 0, 1, . . ., where c0, c1, . . . , cn−1 ∈ K are constants. We associate to it a
characteristic polynomial f(x) = xn+ cn−1x

n−1+ · · ·+ c1x+ c0. If n is minimal
for the given sequence we call n the linear complexity of s and f the minimal
polynomial of s.

An elementary sequence is a sequence that has an irreducible minimal polyno-
mial. If the minimal polynomial is moreover primitive, the the sequence is called
m-sequence.

Recall that an m-sequence with linear complexity n has period |K|n−1, so binary
m-sequences have period 2n − 1. More generally, a sequence with irreducible
minimal polynomial f has period equal to ord(f), where ord(f) denotes the
order of f , i.e. the minimum integer k > 0 such that f |xk − 1. We have that
ord(f) is a factor of |K|deg(f) − 1 with ord(f) = |K|deg(f) − 1 achieved iff f is
primitive.

Decimation and its inverse, interleaving, will play an important role in our
constructions:

Definition 2. Given a sequence s = s0, s1, . . ., its q-decimation starting at po-
sition j is the sequence u such that ui = sj+iq. If j is not specified, it is by
default j = 0.

Note that if s has period N then any q-decimation of s has (not necessarily
minimal) period N/ gcd(N, q).

Definition 3. The interleaving of q sequences u(0), u(1), . . . , u(q−1) is the se-

quence s defined as sj+iq = u
(j)
i .

Note that if all the sequences u(0), u(1), . . . , u(q−1) have (not necessarily minimal)
period d, then their interleaving will have (not necessarily minimal) period dq.

For the rest of this paper we will restrict to binary sequences. Some of these
constructions could be applicable to other fields, but this will be a subject for
further research. We will denote by F2n the finite field with 2n elements.

Any linear recurrent sequence can be represented using the trace transforma-
tion. We are interested in elementary sequences:

Theorem 1. [4, Theorem 6.24] Let s0, s1, . . . be a linear recurring sequence in
F2 whose characteristic polynomial g is irreducible over F2 and has degree n.
Let β be a root of g in the extension field F2n . Then there exists a uniquely

determined a ∈ F2n such that si = Tr(aβi) =
n−1∑
k=0

a2
k

(β2k)i, i = 0, 1, . . ..

We introduce the following short hand notation to refer to elementary se-
quences in terms of their trace representation:

Definition 4. We define Seqβ(a) as the sequence s whose i-th element is rep-

resented by si = Tr(aβi).
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We note that Seq is linear: for any a1, a2 ∈ F2n and c1, c2 ∈ F2 we have

c1Seqβ(a1) + c2Seqβ(a2) = Seqβ(c1a1 + c2a2)

For elements β, x in a finite field we will denote by logβ(x) the discrete log-
arithm of x in the base β, i.e. the smallest positive integer i with the property
βi = x, if such an integer exists. When β is not a primitive element of the fields
we must remember that logβ will not always be defined.

Given s = s0, s1, . . . we denote by (s � k) the sequence obtained by shifting
s by k positions to the left, i.e. the sequence sk, sk+1, . . .. If s is periodic with
period N we denote by s � k the sequence obtained by cyclicly shifting s by k
positions to the right, i.e. sN−k, sN−k+1, . . . , sN−1, s0, s1. Note that (s � k) =
(s � (N − k)).

If two sequences of period N are such that one can be obtained from the other
by a (cyclic) shift, then we say the two sequences are equivalent (under cyclic
shifts). The different cyclic shifts of a sequence are sometimes called “phases”,
especially in engineering contexts.

Shifting relates to the Seq() notation as follows:

Lemma 1. Let b, b1, b2 ∈ F∗
2n , and h ∈ Z.

(Seqβ(b) � h) = Seqβ(bβ
−h)

(Seqβ(b) � h) = Seqβ(bβ
h)

(Seqβ(b1) � h) = Seqβ(b2) ⇔ h = logβ(b1b
−1
2 ).

Proof. The proof is similar to [7, Lemma 1], as it does not depend on whether
the minimal polynomial of β is primitive or not.

3 Fibonacci and Galois LFSRs

We recall the definition of both the Fibonacci and Galois Linear Feedback Shift
Registers (LFSRs) and establish the notations that we will use later. As there
are some variations in the literature, we will define everything explicitly.

Fig. 1. Fibonacci LFSR

A Fibonacci LFSR is depicted in Fig. 1. We will denote the n registers
Q(0), Q(1), . . . , Q(n−1). At time t = 0, 1, . . . the content of register Q(j) will be



20 D. Gardner, A. Sălăgean, and R.C.-W. Phan

denoted q
(j)
t , so the contents of the register Q(j) over time forms the sequence

q(j) = q
(j)
0 , q

(j)
1 , . . .. The contents of all the registers at time t, i.e. the n-tuple

(q
(0)
t , . . . , q

(n−1)
t ), is known as the state of the LFSR at time t. The initial state

of the LFSR is the state at time 0. The content of the registers will be updated
at each clock interval i according to the following

q
(j)
i+1 =

{
cn−1q

(n−1)
i + · · ·+ c1q

(1)
i + c0q

(0)
i if j = n− 1

q
(j+1)
i otherwise.

(1)

Fig. 2. Galois LFSR

The Galois LFSR, shown in Figure 2, will produce from each register R(j),

j = 0, 1, . . . , n − 1 a sequence denoted r(j) = r
(j)
0 , r

(j)
1 , . . .. These values are

updated at each clock interval i according to the following

r
(j)
i+1 =

{
c0r

(n−1)
i if j = 0

r
(j−1)
i + cjr

(n−1)
i otherwise.

(2)

There are two related polynomials associated to the (Fibonacci or Galois)
LFSR, namely the feedback polynomial c0x

n + c1x
n−1 + · · ·+ cn−1x+ 1 and the

characteristic polynomial f(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0. The feedback

polynomial is the reciprocal of the characteristic polynomial, so if one of these
polynomials is irreducible/primitive, so is the other.

Both the Fibonacci and the Galois LFSR produce as their output q(0), respec-
tively r(n−1) a sequence with characteristic polynomial f . The initial states are in
a one-to-one correspondence with the sequences with characteristic polynomial
f .

Given the initial state of a Fibonacci LFSR, a Galois LFSR that produces
exactly the same output sequence will need to have initial state given by

r
(j)
0 = q

(n−1−j)
0 + cn−1q

(n−1−j−1)
0 + . . .+ cj+1q

(0)
0

for j = 0, 1, . . . , n− 1.
Conversely, given the initial state of a Galois LFSR, a Fibonacci LFSR that

produces exactly the same output sequence will need to have initial state

q
(n−1−j)
0 = r

(j)
0 + cn−1q

(n−1−j−1)
0 + . . .+ cj+1q

(0)
0

for j = n− 1, n− 2, . . . , 0.
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4 Efficient Generation of Elementary Sequences for
Interleaving

We first need to recall the number of (inequivalent) elementary sequences and
their connection to m-sequences. The following two theorems are known results,
but we make them more precise, as needed for our purposes.

Theorem 2. Given an irreducible polynomial g of degree n and order d, there
are exactly 2n − 1 distinct non-zero elementary sequences with minimal polyno-
mial g. There are q = (2n − 1)/d classes of equivalence (under cyclic shifts),
each having d elements.

If β is a root of g and α is a primitive element of F2n such that β = αq then
each of the classes above is of the form {Seqβ(αi+jq)|j = 0, 1, . . . , d − 1} for
i = 0, 1, . . . , q − 1.

Proof. The sequences can be written as Seqβ(a) with each of the 2n−1 elements
a ∈ F∗

2n uniquely identifying a sequence. By Lemma 1, two sequences Seqβ(b1)
and Seqβ(b2) are equivalent under cyclic shifts iff there is an integer h such that

b1 = b2β
h.

Theorem 3. (cf. [8] and [5, Theorem 11, Ch. 8, §4]) Let s = s0, s1, . . . be an
m-sequence with composite period 2n−1 = dq. Let α be a root of the minimal poly-
nomial of s and let a ∈ F2n be such that s = Seqα(a). Then the q-decimation of
s (staring at positions 0, 1, . . . q− 1) will result in the q sequences s(0), . . . , s(q−1)

such that s(j) = Seqβ(aα
j) for j = 0, 1, . . . q − 1 and β = αq.

Proof. The i-th element of s(j) is s
(j)
i = sj+iq = Tr(aαj+iq) = Tr(aαj(αq)i) =

Tr(aαj(β)i), which is exactly the i-th element of the sequence Seqβ(aα
j).

The result above and its proof immediately lead to the following generalisation:

Theorem 4. Let s be an m-sequence of linear complexity n and minimal polyno-
mial f . Assume 2n−1 = dq is a non-trivial factorisation. Let g be an irreducible
polynomial of order d, degree n and let β be a root of g. Let u(0), . . . , u(q−1) be
elementary sequences with minimal polynomial g.

We have the following equivalence: s can be obtained by interleaving
u(0), . . . , u(q−1) if and only if there is a primitive root α of f such that β = αq,
and there is an a ∈ F2n such that s = Seqα(a) and u(j) = Seqβ(aα

j) for
j = 0, 1, . . . , q − 1.

Note that if we start from an irreducible non-primitive polynomial g of degree n
and order d and construct the finite field F2n as the algebraic extension by β, a
root of g, then there are several primitive elements α ∈ F2n which are solutions
for β = αq (with q = (2n − 1)/d). Moreover these α need not all have the same
minimal polynomial.
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Our goal is, given g, to produce one elementary sequence from each of the q
equivalence classes; moreover these sequences should be in the correct phase rela-
tive to each other (as described by Theorem 4) such that they may be interleaved
to generate an m-sequence.

A first, straightforward approach would be to generate these sequences using q
(Galois or Fibonacci) LFSRs with suitably chosen initial states. Let us examine
in more detail how to compute the initial states. Assume we are given n initial
terms of the target m-sequence s.

The initial states of the q Fibonacci LFSRs can be obtained by computing a
further (q− 1)n terms of s (to give us a total of qn terms) and q-decimating the
qn terms to obtain the q initial states.

The initial states of the q Galois LFSRs can be obtained by computing first
the initial states of the Fibonacci LFSRs, and then transforming them into the
equivalent initial states of Galois LFSRs as described at the end of Section 3.
An alternative efficient way of computing the Galois initial states is described
in [9] and [2].

However, we are interested in obtaining the desired sequences from less than
q LFSRs. To this end, we will examine closer what sequences we can obtain from
each of the registers of an LFSR, rather than just from the output register.

Theorem 5. Let g = xn + cn−1x
n−1 + · · · + c1x + c0 be an irreducible non-

primitive polynomial with root β.
Consider a Fibonacci and a Galois LFSR, both with characteristic polynomial

g and initial states chosen such that they both produce the same output Seqβ(a)
for some given a ∈ F2n .

The register Q(j) of the Fibonacci LFSR will produce the sequence q(j) =
Seqβ(aβ

j) = (Seqβ(a) � j), for j = 0, 1, . . . , n− 1.

The register R(j) of the Galois LFSR will produce the sequence r(j) =
Seqβ(avj) where vj = cj+1 + cj+2β + · · · + cn−1β

n−j−2 + βn−j−1, for j =
0, 1, . . . , n − 1. Moreover, if α is a primitive element of F2n such that β = αq,
where q = (2n − 1)/ord(g), then r(j) = Seqβ(aα

hj ) = (Seqβ(aα
kj ) � lj) where

hj = logα vj = kj + ljq and 0 ≤ kj < q.

Proof. For the Fibonacci LFSR the result is immediate and well known. For the
Galois LFSR, (2) can be rewritten as r(0) = (r(n−1) � 1) and r(j) = ((r(j−1) +
cjr

(n−1)) � 1) for 1 ≤ j ≤ n− 1. By induction, and using Lemma 1 we obtain
the required expression, similar to [7, Theorem 2].

This result tells us that for Fibonacci LFSRs all registers contain the same se-
quence, shifted by 1, 2, . . . , n−1 positions, so we cannot hope to obtain sequences
from different equivalence classes. The situation is more interesting for Galois
LFSRs. Here, depending on the characteristic polynomial, we may obtain se-
quences from several classes. It all depends on the values of hj = logα vj . If hj

is not a multiple of q (or equivalently vj �∈ 〈β〉) then the sequence produced in
the register R(j) is inequivalent to (i.e. not a cyclic shift of) the output of the
LFSR. Moreover if hj and hk are not congruent modulo q then the sequences in
registers j and k are inequivalent. So we can hope to obtain several inequivalent
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elementary sequences from the same Galois LFSR, and thus obtain from less
than q LFSRs all the q elementary sequences needed for interleaving. Of course
we also need to examine the relative shifts of the sequences, given by the integer
quotients lj in the Theorem above. Experimental data using this approach is
described in Section 4.1.

An alternative approach to obtaining more than one elementary sequence
from one LFSR is the following. It is well known that the set of sequences with
given minimal polynomial g forms a vector space over F2. Therefore, if we have
a basis we can obtain any other sequence as a linear combination.

Theorem 6. Let a0, a1, . . . , an−1 ∈ F2n . We have the following equivalence:
a0, a1, . . . , an−1 is a basis of F2n (viewed as an n-dimensional vector space over
F2) if and only if Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis of the set of
sequences with minimal polynomial g (viewed as an n-dimensional vector space
over F2).

Proof. Let a ∈ F2n . a0, a1, . . . , an−1 is a basis of F2n iff there are unique
c0, c1, . . . , cn−1 ∈ F2 such that a =

∑n−1
i=0 ciai iff there are unique

c0, c1, . . . , cn−1 ∈ F2 such that Seqβ(a) = Seqβ(
∑n−1

i=0 ciai) =
∑n−1

i=0 ciSeqβ(ai)
iff Seqβ(a0), Seqβ(a1), . . . , Seqβ(an−1) is a basis.

Corollary 1. With the notations of Theorem 5, each of the sets of sequences
{q(j)|j = 0, 1, . . . , n − 1} and {r(j)|j = 0, 1, . . . , n − 1} form a basis for the set
of sequences with minimal polynomial g (viewed as a n-dimensional vector space
over F2).

Hence it turns out that the sequences from the n LFSR registers do form a basis
(regardless whether Fibonacci or Galois LFSR) so any other sequence can be
obtained as a linear combination of the registers. Examples of this approach are
discussed in Section 4.2.

More generally we can combine the two approaches above. Namely, for speed-
ing up the computation of the desired set of sequences A = {Seqβ(aαj)|j =
0, . . . , q − 1} we will use the following general method: we employ several (but
less that q) Galois or Fibonacci LFSRs. We consider the set B of sequences
generated in each register of each of the LFSRs. This set B will contain some
of the sequences in A. Any remaining sequences in A can be obtained from the
sequences in B by either buffering (if the sequence exists in B but is in the wrong
phase) or by computing a linear combination of sequences in B. Experimental
results using this combined method are a subject of further research.

4.1 Using Several Galois LFSRs

For given irreducible characteristic polynomials g we examine the Galois LFSR,
computing the equivalence class and the relative shift for each register, see The-
orem 5. We then identify suitable registers that produce sequences from different
classes, preferably in the same phase or with a small difference of phase. We then
determine the number of Galois LFSRs we need to produce all the elementary
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sequences we need for interleaving. It suffices to run the experiments for only
one initial state, as the classes and the shifts are computed relative to the output
sequence.

We ran experiments for all irreducible polynomials g of degree n up to 14,
where 2n − 1 is not prime. For each g we computed all the possible values of
α and their minimal polynomial f (which will also be the minimal polynomial
of the interleaved sequence). Table 1 shows a few examples of constructions
yielding an elementary sequence in the correct phase from each equivalence
class. The “Classes” and “Shifts” n-tuples display the values (kn−1, . . . , k0) and
(ln−1, . . . , l0), with the notations from Theorem 5. The list “Interleave” specifies
which registers we need to interleave, with a triple of the form (R(j), aαi, lj)
signifying that we have to use a buffer of lj terms for register R(j) of a Galois
LFSR initialised such that the LFSR output is Seqβ(aα

i). Finally, the LFSRs
value indicates the total number of Galois LFSRs we need.

For all lengths in our experiment we were able to determine at least one
efficient construction, in the sense that the number of LFSRs needed for the
construction is less than q, the total number of sequences required. For each n
there is at least one g which will produce 2 of the required sequences, for most
n at least 3 sequences can be acquired from one LFSR. If we allow q to increase,
such that the elementary sequences become shorter, we generally see that we can
obtain elementary sequences from more equivalence classes from a single LFSR,
thus lowering the total number of LFSRs needed for the full construction.

4.2 Using One LFSR and Linear Combinations of Its Registers

We wish to produce the required elementary sequences using only one LFSR,
either Fibonacci or Galois, but allow ourselves to linearly combine the output of
the registers to produce our sequences. This is possible according to Corollary 1.
Let a be such that the output of our LFSR is Seqβ(a).

To obtain a particular desired sequence Seqβ(aα
j) for j = 1, . . . , q − 1 as

a linear combination of the registers it suffices to represent αj in the basis
1, β, . . . , βn−1 for a Fibonacci LFSR, or in basis v0, v1, . . . , vn−1 for a Galois
one. Alternatively we can consider the first n terms of the sequence Seqβ(aα

j),
viewed as an element in the vector space Fn

2 and write them in the basis consist-
ing of the first n elements of each of the sequences corresponding to the registers
of the LFSR. Any of these approaches will amount to solving an n × n system
of linear equations over F2, which is extremely fast. In our experiments we set
up the LFSRs so as to generate the m-sequence in its “impulse response” form,
i.e. starting with initial terms 00. . . 01.

Again we ran experiments for all irreducible polynomials g of degree n up
to 14, where 2n − 1 is not prime. We computed, for both Fibonacci and Galois
LFSRs, the linear combinations of registers needed to produce the required se-
quences needed for interleaving. Tables 3 and 2 show a few examples of possible
constructions using Fibonacci and Galois LFSRs respectively. The tables display
which registers need to be XORed in order to produce the sequences required.
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Table 1. Generating m-Sequences by Interleaving Registers of Several Galois LFSRs

n = 4 g = 11111 d = 5 q = 3 α = 1110 f = 10011
Classes: (0, 1, 1, 0) Shifts: (4, 4, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(1), a, 1), (R(0), aα, 0)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1100001
Classes: (0, 2, 1, 1, 0, 0) Shifts: (20, 8, 1, 0, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(2), a, 0), (R(2), aα, 0)

n = 8 g = 111010111 d = 17 q = 15 α = 10011100 f =
Classes = (0, 3, 13, 13, 13, 13, 3, 0) Shifts = (16, 0, 13, 12, 0, 16, 2, 0) LFSRs: 6

Interleave: (R(0), a, 0), (R(0), aα, 0), (R(0), aα2, 0), (R(7), a, 0), (R(7), aα, 0), (R(7), aα2, 0),

(R(3), aα8, 0), (R(3), aα9, 0), (R(0), aα8, 0), (R(0), aα9, 0), (R(0), aα10, 0), (R(7), aα8, 0),

(R(7), aα9, 0), (R(3), a, 0), (R(3), aα, 0)

n = 9 g = 1001100101 d = 73 q = 7 α = 111011111 f = 1001101111
Classes: (0, 0, 5, 5, 5, 4, 0, 0, 0) Shifts: (72, 71, 0, 72, 71, 63, 2, 1, 0) LFSRs: 4

Interleave: (R(0), a, 0), (R(0), aα, 0), (R(6), aα4, 0), (R(6), aα5, 0), (R(0), aα4, 0), (R(6), a, 0), (R(6), aα, 0)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10010000001
Classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0) Shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0) LFSRs: 2

Interleave: (R(0), a, 0), (R(8), a, 1), (R(0), aα2, 0)

Table 2. Generating m-Sequences by XORing and Interleaving the Registers of one
Galois LFSR

n = 4 g = 11111 d = 5 q = 3 α = 1010 f = 10011
Classes: (0, 2, 2, 0) Shifts: (4, 2, 4, 0) XORs: 2

Interleave: R(1) ⊕R(2) ⊕R(3), R(2), R(3)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1000011
Classes: (0, 2, 1, 1, 0, 0) Shifts: (20, 8, 1, 0, 1, 0) XORs: 2

Interleave: R(5), R(3), R(1) ⊕R(3) ⊕R(5)

n = 8 g = 101111011 d = 85 q = 3 α = 100101 f = 101011111
Classes: (0, 0, 0, 2, 2, 0, 0, 0) Shifts: (84, 14, 13, 45, 49, 32, 1, 0) XORs: 4

Interleave: R(3) ⊕R(4) ⊕R(6), R(2) ⊕R(5) ⊕R(7), R(4)

n = 8 g = 110100011 d = 85 q = 3 α = 10010000 f = 110001101
Classes: (0, 1, 1, 1, 1, 1, 1, 0) Shifts: (84, 67, 66, 65, 64, 70, 69, 0) XORs: 4

Interleave: R(3) ⊕R(5) ⊕R(6), (R(2) ⊕R(3)), (R(2) ⊕R(3))⊕R(6)

n = 10 g = 10010011001 d = 341 q = 3 α = 1110011010 f = 10000100111
Classes: (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) Shifts: (340, 339, 338, 85, 91, 90, 89, 2, 1, 0) XORs: 5

Interleave: R(3) ⊕R(6) ⊕R(8), R(8) ⊕R(9), R(4) ⊕R(5) ⊕R(9)

n = 10 g = 10010011001 d = 341 q = 3 α = 1111100010 f = 10001100101
Classes: (0, 0, 0, 2, 2, 2, 2, 0, 0, 0) Shifts: (340, 339, 338, 312, 318, 317, 316, 2, 1, 0) XORs: 5

Interleave: R(3) ⊕ (R(7) ⊕R(8)), R(4) ⊕ (R(7) ⊕R(8)), R(4) ⊕R(7) ⊕R(9)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10000001001
Classes: (0, 1, 2, 0, 0, 0, 0, 0, 0, 0) Shifts: (340, 1, 101, 6, 5, 4, 3, 2, 1, 0) XORs: 2

Interleave: R(3), R(5) ⊕R(6), R(7) ⊕R(9)

Interleaving these sequences in order yields the m-sequence with minimal poly-
nomial f as shown in the table. Some optimisations are denoted by brackets, for
example in Table 2 the fourth example shows that the computation (R(2)⊕R(3))
can then be reused for computing (R(2) ⊕R(3))⊕R(6) with only one additional
⊕. A full optimisation is outside the scope of this paper. For all lengths in our
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Table 3. Generating m-Sequences by XORing and Interleaving the Registers of one
Fibonacci LFSR

n = 4 g = 11111 d = 5 q = 3 α = 1010 f = 10011 XORs: 2

Interleave: Q(2) ⊕Q(0), Q(1) ⊕Q(0), Q(0)

n = 6 g = 1010111 d = 21 q = 3 α = 101 f = 1000011 XORs: 2

Interleave: Q(0), Q(2) ⊕Q(0), Q(4) ⊕Q(0)

n = 6 g = 1010111 d = 21 q = 3 α = 111000 f = 1101101 XORs: 4

Interleave: Q(3) ⊕Q(0), Q(3) ⊕Q(1), Q(4) ⊕Q(2) ⊕Q(0)

n = 8 g = 101110111 d = 85 q = 3 α = 1100011 f = 100011101 XORs: 4

Interleave: Q(3) ⊕Q(1) ⊕Q(0), Q(5) ⊕Q(2), Q(4) ⊕Q(0)

n = 8 g = 110001011 d = 85 q = 3 α = 11101011 f = 101101001 XORs: 4

Interleave: Q(4) ⊕Q(1), Q(5) ⊕Q(3), Q(4) ⊕Q(2) ⊕Q(0)

n = 8 g = 111011101 d = 85 q = 3 α = 1111110 f = 101110001 XORs: 4

Interleave: Q(4) ⊕Q(3) ⊕Q(1), Q(5) ⊕Q(1), Q(3) ⊕Q(0)

n = 8 g = 100111111 d = 85 q = 3 α = 1111100 f = 110101001 XORs: 5

Interleave: Q(4) ⊕Q(3) ⊕Q(1), Q(5) ⊕Q(2), (Q(5) ⊕Q(2))⊕Q(4) ⊕Q(0)

n = 10 g = 10000001111 d = 341 q = 3 α = 11000110 f = 11100011101 XORs: 5

Interleave: Q(6) ⊕Q(5) ⊕Q(1) ⊕Q(0), (Q(6) ⊕Q(5))⊕Q(3) ⊕Q(2), Q(0)

n = 10 g = 10000001111 d = 341 q = 3 α = 1010000110 f = 10000001001 XORs: 2

Interleave: Q(6), Q(4) ⊕Q(3), Q(2) ⊕Q(0)

experiment we were able to determine at least one efficient construction, in the
sense that for obtaining each of the required sequences the maximum number of
XORs was �(n+ 3)/2�, but for most n this value was as low as �(n+ 1)/2�.

5 Conclusion

We developed a general framework for efficiently producing several elementary
sequences (i.e. linearly recurrent sequences with an irreducible characteristic
polynomial) such that they are inequivalent under cyclic shifts and if needed are,
moreover, in suitable phases so that interleaving them produces an m-sequence.
Experimental data identified irreducible polynomials particularly suited for this
purpose. Future work will aim to further improve the efficiency of the method
by analysing in more depth the gate complexity of the different constructions,
combining the different approaches, and improving the efficiency of determining
the initial states.
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Appendix F

Galois LFSR Shift Results

The following results display the shifts of the stages of Galois LFSRs with primitive

feedback polynomial f with degrees ranging from 2 to 11. The polynomial f

here is displayed in the form dn2n + dn−12n−1 + · · · + d12 + d0 such that f(x) =

dnx
n+dn−1xn−1+· · ·+d1x+d0 and the shifts are relative to the sequence in memory

cell R(n−1). The results of polynomials with degrees 12 to 23 are not reproduced

here due to the lack of space, in this range a further 634, 358 polynomials were

tested.

Table F.1: Shifts of Galois LFSRs of length 3

Polynomial Shifts H

1011 (1, 2, 0)
1101 (1, 6, 0)

Table F.2: Shifts of Galois LFSRs of length 4

Polynomial Shifts H

10011 (1, 2, 3, 0)
11001 (1, 13, 14, 0)

Table F.3: Shifts of Galois LFSRs of length 5

Polynomial Shifts H

100101 (1, 2, 3, 30, 0)
101001 (1, 2, 29, 30, 0)
101111 (1, 2, 25, 11, 0)
110111 (1, 20, 21, 18, 0)
111011 (1, 14, 11, 12, 0)
111101 (1, 21, 7, 30, 0)

101
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Table F.4: Shifts of Galois LFSRs of length 6

Polynomial Shifts H

1000011 (1, 2, 3, 4, 5, 0)
1011011 (1, 2, 50, 54, 55, 0)
1100001 (1, 59, 60, 61, 62, 0)
1100111 (1, 26, 27, 28, 24, 0)
1101101 (1, 9, 10, 14, 62, 0)
1110011 (1, 40, 36, 37, 38, 0)

Table F.5: Shifts of Galois LFSRs of length 7

Polynomial Shifts H

10000011 (1, 2, 3, 4, 5, 6)
10001001 (1, 2, 3, 4, 125, 126)
10001111 (1, 2, 3, 4, 95, 86)
10010001 (1, 2, 3, 124, 125, 126)
10011101 (1, 2, 3, 39, 107, 126)
10100111 (1, 2, 102, 103, 104, 113)
10101011 (1, 2, 43, 44, 19, 20)
10111001 (1, 2, 21, 89, 125, 126)
10111111 (1, 2, 39, 54, 119, 18)
11000001 (1, 122, 123, 124, 125, 126)
11001011 (1, 40, 41, 42, 37, 38)
11010011 (1, 90, 91, 86, 87, 88)
11010101 (1, 108, 109, 84, 85, 126)
11100101 (1, 15, 24, 25, 26, 126)
11101111 (1, 56, 34, 35, 31, 54)
11110001 (1, 42, 33, 124, 125, 126)
11110111 (1, 74, 97, 93, 94, 72)
11111101 (1, 110, 9, 74, 89, 126)



APPENDIX F. GALOIS LFSR SHIFT RESULTS 103

Table F.6: Shifts of Galois LFSRs of length 8

Polynomial Shifts H

100011101 (1, 2, 3, 4, 101, 48, 254, 0)
100101011 (1, 2, 3, 68, 69, 241, 242, 0)
100101101 (1, 2, 3, 39, 40, 223, 254, 0)
101001101 (1, 2, 47, 48, 49, 44, 254, 0)
101011111 (1, 2, 245, 246, 108, 179, 121, 0)
101100011 (1, 2, 140, 193, 194, 195, 196, 0)
101100101 (1, 2, 212, 207, 208, 209, 254, 0)
101101001 (1, 2, 33, 216, 217, 253, 254, 0)
101110001 (1, 2, 208, 155, 252, 253, 254, 0)
110000111 (1, 100, 101, 102, 103, 104, 98, 0)
110001101 (1, 60, 61, 62, 63, 116, 254, 0)
110101001 (1, 14, 15, 187, 188, 253, 254, 0)
111000011 (1, 158, 152, 153, 154, 155, 156, 0)
111001111 (1, 142, 163, 164, 165, 160, 140, 0)
111100111 (1, 116, 96, 91, 92, 93, 114, 0)
111110101 (1, 135, 77, 148, 10, 11, 254, 0)

Table F.7: Shifts of Galois LFSRs of length 9

Polynomial Shifts H

1000010001 (1, 2, 3, 4, 5, 508, 509, 510, 0)
1000011011 (1, 2, 3, 4, 5, 488, 195, 196, 0)
1000100001 (1, 2, 3, 4, 507, 508, 509, 510, 0)
1000101101 (1, 2, 3, 4, 79, 80, 37, 510, 0)
1000110011 (1, 2, 3, 4, 417, 101, 102, 103, 0)
1001011001 (1, 2, 3, 343, 344, 339, 509, 510, 0)
1001011111 (1, 2, 3, 237, 238, 156, 181, 52, 0)
1001101001 (1, 2, 3, 173, 168, 169, 509, 510, 0)
1001101111 (1, 2, 3, 263, 275, 276, 167, 92, 0)
1001110111 (1, 2, 3, 214, 455, 278, 279, 442, 0)
1001111101 (1, 2, 3, 137, 164, 403, 466, 510, 0)
1010000111 (1, 2, 389, 390, 391, 392, 393, 193, 0)
1010010101 (1, 2, 453, 454, 455, 449, 450, 510, 0)
1010100011 (1, 2, 73, 74, 32, 33, 34, 35, 0)
1010100101 (1, 2, 62, 63, 57, 58, 59, 510, 0)
1010101111 (1, 2, 396, 397, 333, 334, 164, 452, 0)
1010110111 (1, 2, 412, 413, 349, 171, 172, 460, 0)
1010111101 (1, 2, 53, 54, 160, 119, 50, 510, 0)
1011001111 (1, 2, 372, 296, 297, 298, 177, 440, 0)
1011010001 (1, 2, 475, 432, 433, 508, 509, 510, 0)
1011011011 (1, 2, 492, 162, 163, 158, 499, 500, 0)
1011110101 (1, 2, 462, 393, 352, 458, 459, 510, 0)
1011111001 (1, 2, 46, 109, 348, 375, 509, 510, 0)
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Table F.8: Shifts of Galois LFSRs of length 9 continued

Polynomial Shifts H

1100010011 (1, 115, 116, 117, 118, 111, 112, 113, 0)
1100010101 (1, 477, 478, 479, 480, 438, 439, 510, 0)
1100011111 (1, 429, 430, 431, 432, 259, 271, 427, 0)
1100100011 (1, 399, 400, 401, 394, 395, 396, 397, 0)
1100110001 (1, 409, 410, 411, 95, 508, 509, 510, 0)
1100111011 (1, 250, 251, 252, 177, 224, 247, 248, 0)
1101001111 (1, 136, 137, 400, 401, 402, 175, 134, 0)
1101011011 (1, 127, 128, 288, 289, 106, 124, 125, 0)
1101100001 (1, 316, 317, 24, 507, 508, 509, 510, 0)
1101101011 (1, 387, 388, 406, 223, 224, 384, 385, 0)
1101101101 (1, 12, 13, 354, 349, 350, 20, 510, 0)
1101110011 (1, 264, 265, 288, 335, 260, 261, 262, 0)
1101111111 (1, 405, 406, 420, 53, 187, 264, 403, 0)
1110000101 (1, 319, 119, 120, 121, 122, 123, 510, 0)
1110001111 (1, 328, 464, 465, 466, 467, 461, 326, 0)
1110110101 (1, 52, 340, 341, 163, 99, 100, 510, 0)
1110111001 (1, 70, 233, 234, 57, 298, 509, 510, 0)
1111000111 (1, 186, 51, 45, 46, 47, 48, 184, 0)
1111001011 (1, 378, 337, 110, 111, 112, 375, 376, 0)
1111001101 (1, 72, 335, 214, 215, 216, 140, 510, 0)
1111010101 (1, 60, 348, 178, 179, 115, 116, 510, 0)
1111011001 (1, 420, 345, 236, 237, 249, 509, 510, 0)
1111100011 (1, 85, 241, 253, 80, 81, 82, 83, 0)
1111101001 (1, 460, 331, 356, 274, 275, 509, 510, 0)
1111111011 (1, 109, 248, 325, 459, 92, 106, 107, 0)
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Table F.9: Shifts of Galois LFSRs of length 10

Polynomial Shifts H

10000001001 (1, 2, 3, 4, 5, 6, 7, 1021, 1022, 0)
10000011011 (1, 2, 3, 4, 5, 6, 58, 491, 492, 0)
10000100111 (1, 2, 3, 4, 5, 363, 364, 365, 84, 0)
10000101101 (1, 2, 3, 4, 5, 200, 201, 360, 1022, 0)
10001100101 (1, 2, 3, 4, 703, 347, 348, 349, 1022, 0)
10001101111 (1, 2, 3, 4, 255, 698, 699, 168, 574, 0)
10010000001 (1, 2, 3, 1017, 1018, 1019, 1020, 1021, 1022, 0)
10010001011 (1, 2, 3, 890, 891, 892, 893, 965, 966, 0)
10011000101 (1, 2, 3, 919, 163, 164, 165, 166, 1022, 0)
10011010111 (1, 2, 3, 15, 998, 999, 89, 90, 944, 0)
10011100111 (1, 2, 3, 907, 422, 428, 429, 430, 473, 0)
10011110011 (1, 2, 3, 204, 623, 618, 941, 942, 943, 0)
10011111111 (1, 2, 3, 545, 497, 709, 732, 979, 585, 0)
10100001101 (1, 2, 820, 821, 822, 823, 824, 817, 1022, 0)
10100011001 (1, 2, 858, 859, 860, 861, 105, 1021, 1022, 0)
10100100011 (1, 2, 441, 442, 443, 216, 217, 218, 219, 0)
10100110001 (1, 2, 675, 676, 677, 321, 1020, 1021, 1022, 0)
10100111101 (1, 2, 261, 262, 263, 48, 327, 258, 1022, 0)
10101000011 (1, 2, 490, 491, 751, 752, 753, 754, 755, 0)
10101010111 (1, 2, 472, 473, 789, 790, 391, 392, 746, 0)
10101101011 (1, 2, 581, 582, 393, 399, 400, 288, 289, 0)
10110000101 (1, 2, 207, 200, 201, 202, 203, 204, 1022, 0)
10110001111 (1, 2, 506, 240, 241, 242, 243, 616, 763, 0)
10110010111 (1, 2, 508, 950, 951, 952, 803, 804, 764, 0)
10110100001 (1, 2, 664, 823, 824, 1019, 1020, 1021, 1022, 0)
10111000111 (1, 2, 962, 112, 360, 361, 362, 363, 991, 0)
10111100101 (1, 2, 766, 697, 976, 761, 762, 763, 1022, 0)
10111110111 (1, 2, 549, 178, 259, 254, 108, 109, 273, 0)
10111111011 (1, 2, 674, 86, 36, 870, 82, 846, 847, 0)
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Table F.10: Shifts of Galois LFSRs of length 10 continued

Polynomial Shifts H

11000010011 (1, 356, 357, 358, 359, 360, 352, 353, 354, 0)
11000010101 (1, 269, 270, 271, 272, 273, 533, 534, 1022, 0)
11000100101 (1, 805, 806, 807, 808, 581, 582, 583, 1022, 0)
11000110111 (1, 993, 994, 995, 996, 746, 395, 396, 991, 0)
11001000011 (1, 670, 671, 672, 664, 665, 666, 667, 668, 0)
11001001111 (1, 713, 714, 715, 85, 86, 87, 635, 711, 0)
11001011011 (1, 899, 900, 901, 937, 938, 240, 896, 897, 0)
11001111001 (1, 81, 82, 83, 406, 401, 820, 1021, 1022, 0)
11001111111 (1, 423, 424, 425, 410, 65, 240, 506, 421, 0)
11010001001 (1, 58, 59, 131, 132, 133, 134, 1021, 1022, 0)
11010110101 (1, 735, 736, 624, 625, 631, 442, 443, 1022, 0)
11011000001 (1, 532, 533, 966, 1018, 1019, 1020, 1021, 1022, 0)
11011010011 (1, 127, 128, 784, 86, 87, 123, 124, 125, 0)
11011011111 (1, 624, 625, 897, 76, 77, 843, 873, 622, 0)
11011111101 (1, 177, 178, 942, 154, 988, 938, 350, 1022, 0)
11100010111 (1, 700, 551, 552, 553, 554, 547, 548, 698, 0)
11100011101 (1, 33, 661, 662, 663, 664, 912, 62, 1022, 0)
11100100001 (1, 940, 659, 660, 661, 1019, 1020, 1021, 1022, 0)
11100111001 (1, 551, 594, 595, 596, 602, 117, 1021, 1022, 0)
11101000111 (1, 326, 476, 477, 470, 471, 472, 473, 324, 0)
11101001101 (1, 260, 220, 221, 72, 73, 74, 516, 1022, 0)
11101010101 (1, 278, 632, 633, 234, 235, 551, 552, 1022, 0)
11101011001 (1, 80, 934, 935, 25, 26, 1009, 1021, 1022, 0)
11101100011 (1, 33, 628, 629, 278, 28, 29, 30, 31, 0)
11101111101 (1, 751, 915, 916, 770, 765, 846, 475, 1022, 0)
11110001101 (1, 261, 408, 781, 782, 783, 784, 518, 1022, 0)
11110010011 (1, 313, 389, 937, 938, 939, 309, 310, 311, 0)
11110110001 (1, 450, 856, 325, 326, 769, 1020, 1021, 1022, 0)
11111011011 (1, 402, 151, 181, 947, 948, 127, 399, 400, 0)
11111110011 (1, 603, 518, 784, 959, 614, 599, 600, 601, 0)
11111111001 (1, 439, 45, 292, 315, 527, 479, 1021, 1022, 0)
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Table F.11: Shifts of Galois LFSRs of length 11

Polynomial Shifts H

100000000101 (1, 2, 3, 4, 5, 6, 7, 8, 9, 2049, 0)
100000010111 (1, 2, 3, 4, 5, 6, 7, 450, 451, 3250, 0)
100000101011 (1, 2, 3, 4, 5, 6, 137, 138, 439, 3655, 0)
100000101101 (1, 2, 3, 4, 5, 6, 655, 656, 1729, 2049, 0)
100001000111 (1, 2, 3, 4, 5, 97, 98, 99, 100, 3878, 0)
100001100011 (1, 2, 3, 4, 5, 1199, 856, 857, 858, 3236, 0)
100001100101 (1, 2, 3, 4, 5, 265, 1196, 1197, 1198, 2049, 0)
100001110001 (1, 2, 3, 4, 5, 1380, 1445, 2044, 2045, 2049, 0)
100001111011 (1, 2, 3, 4, 5, 1325, 1355, 625, 1107, 2987, 0)
100010001101 (1, 2, 3, 4, 599, 600, 601, 602, 297, 2049, 0)
100010010101 (1, 2, 3, 4, 1279, 1280, 1281, 636, 637, 2049, 0)
100010011111 (1, 2, 3, 4, 1952, 1953, 1954, 1972, 281, 2073, 0)
100010101001 (1, 2, 3, 4, 1513, 1514, 1715, 1716, 2045, 2049, 0)
100010110001 (1, 2, 3, 4, 778, 779, 773, 2044, 2045, 2049, 0)
100011001111 (1, 2, 3, 4, 1430, 555, 556, 557, 1709, 3227, 0)
100011010001 (1, 2, 3, 4, 1275, 1269, 1270, 2044, 2045, 2049, 0)
100011100001 (1, 2, 3, 4, 603, 668, 2043, 2044, 2045, 2049, 0)
100011100111 (1, 2, 3, 4, 1475, 1663, 1868, 1869, 1870, 2704, 0)
100011101011 (1, 2, 3, 4, 675, 1260, 1274, 1275, 1190, 2904, 0)
100011110101 (1, 2, 3, 4, 1790, 1310, 668, 1915, 1916, 2049, 0)
100100001101 (1, 2, 3, 633, 634, 635, 636, 637, 864, 2049, 0)
100100010011 (1, 2, 3, 1750, 1751, 1752, 1753, 1797, 1798, 2296, 0)
100100100101 (1, 2, 3, 1365, 1366, 1367, 997, 998, 999, 2049, 0)
100100101001 (1, 2, 3, 1882, 1883, 1884, 1877, 1878, 2045, 2049, 0)
100100111011 (1, 2, 3, 1407, 1408, 1409, 1119, 870, 1762, 2332, 0)
100100111101 (1, 2, 3, 419, 420, 421, 166, 88, 1452, 2049, 0)
100101000101 (1, 2, 3, 1397, 1398, 1308, 1309, 1310, 1311, 2049, 0)
100101001001 (1, 2, 3, 170, 171, 164, 165, 166, 2045, 2049, 0)
100101010001 (1, 2, 3, 332, 333, 534, 535, 2044, 2045, 2049, 0)
100101011011 (1, 2, 3, 1730, 1731, 1350, 1351, 248, 1671, 2423, 0)
100101110011 (1, 2, 3, 988, 989, 1391, 1409, 1095, 1096, 2998, 0)
100101110101 (1, 2, 3, 1298, 1299, 1505, 286, 254, 255, 2049, 0)
100101111111 (1, 2, 3, 357, 358, 1303, 226, 256, 950, 2645, 0)
100110000011 (1, 2, 3, 1558, 836, 837, 838, 839, 840, 3254, 0)
100110001111 (1, 2, 3, 1944, 614, 615, 616, 617, 1052, 3207, 0)
100110101011 (1, 2, 3, 522, 857, 858, 16, 17, 1943, 2151, 0)
100110101101 (1, 2, 3, 928, 1588, 1589, 1248, 1249, 665, 2049, 0)
100110111001 (1, 2, 3, 395, 801, 802, 287, 391, 2045, 2049, 0)
100111000111 (1, 2, 3, 1491, 494, 1120, 1121, 1122, 1123, 3731, 0)
100111011001 (1, 2, 3, 1657, 1761, 1246, 1247, 1653, 2045, 2049, 0)
100111100101 (1, 2, 3, 728, 743, 595, 1956, 1957, 1958, 2049, 0)
100111110111 (1, 2, 3, 1237, 1058, 1627, 339, 608, 609, 3471, 0)
101000000001 (1, 2, 2039, 2040, 2041, 2042, 2043, 2044, 2045, 2049, 0)
101000000111 (1, 2, 107, 108, 109, 110, 111, 112, 113, 4043, 0)
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Table F.12: Shifts of Galois LFSRs of length 11 continued

Polynomial Shifts H

101000010011 (1, 2, 503, 504, 505, 506, 507, 248, 249, 3845, 0)
101000010101 (1, 2, 130, 131, 132, 133, 134, 126, 127, 2049, 0)
101000101001 (1, 2, 737, 738, 739, 740, 650, 651, 2045, 2049, 0)
101001001001 (1, 2, 1049, 1050, 1051, 681, 682, 683, 2045, 2049, 0)
101001100001 (1, 2, 850, 851, 852, 1783, 2043, 2044, 2045, 2049, 0)
101001101101 (1, 2, 225, 226, 227, 147, 994, 995, 222, 2049, 0)
101001111001 (1, 2, 90, 91, 92, 1453, 1305, 1320, 2045, 2049, 0)
101001111111 (1, 2, 381, 382, 383, 1508, 991, 567, 1683, 3906, 0)
101010000101 (1, 2, 1921, 1922, 1914, 1915, 1916, 1917, 1918, 2049, 0)
101010010001 (1, 2, 1411, 1412, 767, 768, 769, 2044, 2045, 2049, 0)
101010011101 (1, 2, 182, 183, 2031, 2032, 2033, 27, 179, 2049, 0)
101010100111 (1, 2, 1598, 1599, 1405, 1406, 698, 699, 700, 2274, 0)
101010101011 (1, 2, 1995, 1996, 27, 28, 1889, 1890, 995, 3099, 0)
101010110011 (1, 2, 1649, 1650, 20, 21, 851, 821, 822, 3272, 0)
101010110101 (1, 2, 98, 99, 297, 298, 292, 94, 95, 2049, 0)
101011010101 (1, 2, 1953, 1954, 1756, 1750, 1751, 1949, 1950, 2049, 0)
101011011111 (1, 2, 1147, 1148, 1415, 1493, 1494, 1716, 705, 3523, 0)
101011101001 (1, 2, 1793, 1794, 1762, 543, 749, 750, 2045, 2049, 0)
101011101111 (1, 2, 1631, 1632, 1701, 767, 394, 395, 848, 3281, 0)
101011110001 (1, 2, 132, 133, 1380, 738, 258, 2044, 2045, 2049, 0)
101011111011 (1, 2, 1008, 1009, 150, 896, 54, 712, 1525, 2569, 0)
101100000011 (1, 2, 1823, 904, 905, 906, 907, 908, 909, 3185, 0)
101100001001 (1, 2, 1184, 1411, 1412, 1413, 1414, 1415, 2045, 2049, 0)
101100010001 (1, 2, 1751, 1446, 1447, 1448, 1449, 2044, 2045, 2049, 0)
101100110011 (1, 2, 1239, 1041, 1042, 1043, 96, 616, 617, 3477, 0)
101100111111 (1, 2, 1346, 1296, 1297, 1298, 854, 991, 825, 2400, 0)
101101000001 (1, 2, 319, 1392, 1393, 2042, 2043, 2044, 2045, 2049, 0)
101101001011 (1, 2, 671, 1421, 1422, 1415, 1416, 1417, 333, 3761, 0)
101101011001 (1, 2, 1383, 799, 800, 459, 460, 1120, 2045, 2049, 0)
101101011111 (1, 2, 215, 1611, 1612, 1554, 1555, 318, 1230, 3989, 0)
101101100101 (1, 2, 1826, 1053, 1054, 1901, 1821, 1822, 1823, 2049, 0)
101101101111 (1, 2, 1934, 1316, 1317, 1290, 1872, 1873, 1458, 2106, 0)
101101111101 (1, 2, 1938, 528, 529, 1976, 468, 1323, 1935, 2049, 0)
101110000111 (1, 2, 1329, 90, 982, 983, 984, 985, 986, 3432, 0)
101110001011 (1, 2, 1795, 1020, 1013, 1014, 1015, 1016, 895, 3199, 0)
101110010011 (1, 2, 219, 1474, 289, 290, 291, 106, 107, 3987, 0)
101110010101 (1, 2, 1869, 2021, 15, 16, 17, 1865, 1866, 2049, 0)
101110101111 (1, 2, 1111, 243, 502, 503, 1661, 1662, 1239, 3541, 0)
101110110111 (1, 2, 752, 714, 1694, 1695, 1689, 169, 170, 2697, 0)
101110111101 (1, 2, 947, 1932, 207, 208, 353, 1777, 944, 2049, 0)
101111001001 (1, 2, 596, 1960, 1882, 1627, 1628, 1629, 2045, 2049, 0)
101111011011 (1, 2, 1226, 1349, 1740, 1805, 1806, 1345, 1634, 2460, 0)
101111011101 (1, 2, 1104, 271, 1695, 1840, 1841, 116, 1101, 2049, 0)
101111100111 (1, 2, 1819, 1207, 1774, 972, 650, 651, 652, 3187, 0)
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Table F.13: Shifts of Galois LFSRs of length 11 continued

Polynomial Shifts H

101111101101 (1, 2, 113, 725, 1580, 72, 1519, 1520, 110, 2049, 0)
110000001011 (1, 310, 311, 312, 313, 314, 315, 316, 307, 3787, 0)
110000001101 (1, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 225, 2049, 0)
110000011001 (1, 1207, 1208, 1209, 1210, 1211, 1212, 490, 2045, 2049, 0)
110000011111 (1, 1208, 1209, 1210, 1211, 1212, 1213, 1571, 1957, 2889, 0)
110001010111 (1, 1505, 1506, 1507, 1508, 1331, 1332, 52, 53, 2592, 0)
110001100001 (1, 1189, 1190, 1191, 1192, 849, 2043, 2044, 2045, 2049, 0)
110001101011 (1, 828, 829, 830, 831, 1563, 1279, 1280, 825, 3269, 0)
110001110011 (1, 1477, 1478, 1479, 1480, 1234, 1742, 1473, 1474, 2620, 0)
110010000101 (1, 1798, 1799, 1800, 1541, 1542, 1543, 1544, 1545, 2049, 0)
110010001001 (1, 249, 250, 251, 295, 296, 297, 298, 2045, 2049, 0)
110010010111 (1, 802, 803, 804, 2022, 2023, 2024, 252, 253, 3295, 0)
110010011011 (1, 1173, 1174, 1175, 549, 550, 551, 1843, 1170, 2924, 0)
110010011101 (1, 1940, 1941, 1942, 1757, 1758, 1759, 574, 1829, 2049, 0)
110010110011 (1, 238, 239, 240, 1179, 1180, 766, 234, 235, 3859, 0)
110010111111 (1, 1530, 1531, 1532, 1897, 1898, 905, 490, 185, 2567, 0)
110011000111 (1, 1211, 1212, 1213, 1258, 1957, 1958, 1959, 1960, 2886, 0)
110011001101 (1, 1430, 1431, 1432, 1952, 1005, 1006, 1007, 809, 2049, 0)
110011010011 (1, 1812, 1813, 1814, 1282, 868, 869, 1808, 1809, 2285, 0)
110011010101 (1, 1225, 1226, 1227, 1197, 2027, 2028, 398, 399, 2049, 0)
110011100011 (1, 573, 574, 575, 306, 814, 568, 569, 570, 3524, 0)
110011101001 (1, 951, 952, 953, 639, 657, 1059, 1060, 2045, 2049, 0)
110011110111 (1, 549, 550, 551, 269, 694, 639, 127, 128, 3548, 0)
110100000011 (1, 1740, 1741, 1732, 1733, 1734, 1735, 1736, 1737, 2357, 0)
110100001111 (1, 374, 375, 1112, 1113, 1114, 1115, 1116, 1775, 3723, 0)
110100011101 (1, 1152, 1153, 1032, 1033, 1034, 1035, 1028, 253, 2049, 0)
110100100111 (1, 1354, 1355, 1951, 1952, 1953, 1265, 1266, 1267, 2743, 0)
110100101101 (1, 1714, 1715, 631, 632, 633, 626, 627, 1377, 2049, 0)
110101000001 (1, 1608, 1609, 1910, 1911, 2042, 2043, 2044, 2045, 2049, 0)
110101000111 (1, 1497, 1498, 408, 409, 1462, 1463, 1464, 1465, 2600, 0)
110101010101 (1, 1052, 1053, 158, 159, 2020, 2021, 52, 53, 2049, 0)
110101011001 (1, 104, 105, 2031, 2032, 1190, 1191, 1526, 2045, 2049, 0)
110101100011 (1, 1222, 1223, 768, 769, 485, 1217, 1218, 1219, 2875, 0)
110101101111 (1, 628, 629, 471, 472, 1379, 1877, 1878, 1988, 3469, 0)
110101110001 (1, 857, 858, 773, 774, 788, 1373, 2044, 2045, 2049, 0)
110110010011 (1, 877, 878, 205, 1497, 1498, 1499, 873, 874, 3220, 0)
110110011111 (1, 330, 331, 745, 1425, 1426, 1427, 984, 764, 3767, 0)
110110101001 (1, 376, 377, 1800, 697, 698, 317, 318, 2045, 2049, 0)
110110111011 (1, 768, 769, 182, 1937, 1938, 1932, 1212, 765, 3329, 0)
110110111101 (1, 413, 414, 703, 242, 243, 308, 699, 822, 2049, 0)
110111001001 (1, 285, 286, 1178, 929, 639, 640, 641, 2045, 2049, 0)
110111010111 (1, 478, 479, 300, 1119, 771, 772, 161, 162, 3619, 0)
110111011011 (1, 1282, 1283, 836, 116, 110, 111, 1866, 1279, 2815, 0)
110111100001 (1, 940, 941, 1423, 693, 723, 2043, 2044, 2045, 2049, 0)
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Table F.14: Shifts of Galois LFSRs of length 11 continued

Polynomial Shifts H

110111100111 (1, 1156, 1157, 1568, 1133, 51, 865, 866, 867, 2941, 0)
110111110101 (1, 522, 523, 1336, 1994, 1152, 1898, 1039, 1040, 2049, 0)
111000000101 (1, 1996, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 2049, 0)
111000011101 (1, 1385, 1062, 1063, 1064, 1065, 1066, 1958, 719, 2049, 0)
111000100001 (1, 1831, 1948, 1949, 1950, 1951, 2043, 2044, 2045, 2049, 0)
111000100111 (1, 719, 1262, 1263, 1264, 1265, 1257, 1258, 1259, 3378, 0)
111000101011 (1, 553, 583, 584, 585, 586, 1639, 1640, 550, 3544, 0)
111000110011 (1, 839, 88, 89, 90, 91, 790, 835, 836, 3258, 0)
111000111001 (1, 1684, 925, 926, 927, 928, 1554, 557, 2045, 2049, 0)
111001000111 (1, 1331, 789, 790, 791, 783, 784, 785, 786, 2766, 0)
111001001011 (1, 696, 781, 782, 783, 95, 96, 97, 693, 3401, 0)
111001010101 (1, 227, 1348, 1349, 1350, 642, 643, 449, 450, 2049, 0)
111001011111 (1, 899, 844, 845, 846, 1717, 1718, 644, 841, 3198, 0)
111001110001 (1, 657, 178, 179, 180, 385, 573, 2044, 2045, 2049, 0)
111001111011 (1, 894, 1181, 1182, 1183, 1997, 915, 480, 891, 3203, 0)
111001111101 (1, 1140, 1396, 1397, 1398, 1076, 274, 841, 229, 2049, 0)
111010000001 (1, 1203, 1597, 1598, 2041, 2042, 2043, 2044, 2045, 2049, 0)
111010010011 (1, 1248, 1795, 1796, 24, 25, 26, 1244, 1245, 2849, 0)
111010011111 (1, 70, 1924, 1925, 1823, 1824, 1825, 204, 1921, 4027, 0)
111010100011 (1, 545, 1995, 1996, 716, 717, 540, 541, 542, 3552, 0)
111010111011 (1, 1572, 1886, 1887, 1276, 1277, 929, 1748, 1569, 2525, 0)
111011001111 (1, 1466, 1781, 1782, 1628, 296, 297, 298, 1778, 2631, 0)
111011011101 (1, 650, 1878, 1879, 359, 353, 354, 1334, 1296, 2049, 0)
111011110011 (1, 1501, 1920, 1921, 1409, 1354, 1779, 1497, 1498, 2596, 0)
111011111001 (1, 1424, 1439, 1440, 1709, 421, 990, 811, 2045, 2049, 0)
111100001011 (1, 1676, 273, 932, 933, 934, 935, 936, 1673, 2421, 0)
111100011001 (1, 1160, 996, 1431, 1432, 1433, 1434, 104, 2045, 2049, 0)
111100110001 (1, 1180, 339, 1491, 1492, 1493, 618, 2044, 2045, 2049, 0)
111100110111 (1, 584, 270, 1750, 1751, 1752, 420, 266, 267, 3513, 0)
111101011101 (1, 1494, 809, 386, 387, 1545, 1546, 1805, 937, 2049, 0)
111101101011 (1, 1422, 60, 170, 171, 669, 1576, 1577, 1419, 2675, 0)
111101101101 (1, 59, 590, 175, 176, 758, 731, 732, 114, 2049, 0)
111101110101 (1, 1234, 1200, 1653, 1654, 1281, 347, 416, 417, 2049, 0)
111110000011 (1, 842, 91, 477, 835, 836, 837, 838, 839, 3255, 0)
111110010001 (1, 26, 1767, 76, 94, 95, 96, 2044, 2045, 2049, 0)
111110010111 (1, 1980, 127, 1844, 223, 224, 225, 123, 124, 2117, 0)
111110011011 (1, 1720, 1284, 1064, 621, 622, 623, 1303, 1717, 2377, 0)
111110100111 (1, 1151, 1207, 1404, 330, 331, 1202, 1203, 1204, 2946, 0)
111110101101 (1, 1942, 818, 1730, 493, 494, 436, 437, 1833, 2049, 0)
111110110101 (1, 1476, 1343, 332, 554, 555, 633, 900, 901, 2049, 0)
111111001101 (1, 353, 1223, 1057, 1194, 750, 751, 752, 702, 2049, 0)
111111010011 (1, 520, 1863, 1558, 1143, 150, 151, 516, 517, 3577, 0)
111111100101 (1, 1859, 365, 1481, 1057, 540, 1665, 1666, 1667, 2049, 0)
111111101001 (1, 598, 1098, 1792, 1822, 745, 1690, 1691, 2045, 2049, 0)



Appendix G

Grain’s Nonlinear Filtering

Function Keystream Bias

The following results describe the run counts of the output of the 5-bit boolean

function used in Grain [16],

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2

+ x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4. (G.1)

Primitive polynomials of degree 5 to 9 are used to clock the LFSR and are rep-

resented here in the form dn2n + dn−12n−1 + · · · + d12 + d0 such that f(x) =

dnx
n + dn−1xn−1 + · · · + d1x + d0. The tuples contain the number of length m

bit runs that are contained in one period of keystream, m = 1, . . . , n. The input

sequences used are generated by Galois LFSRs and have run frequencies of the

form (2n−2, . . . , 2, 1, 1).

Table G.1: Keystream bias from Galois LFSRs of length 5

Polynomial Count of m-tuples

100101 (18, 4, 2, 0, 1)
101001 (15, 4, 2, 2, 0)
101111 (11, 6, 1, 2, 0)
110111 (7, 4, 3, 1, 2)
111011 (14, 9, 3, 0, 0)
111101 (13, 8, 2, 0, 0)

111
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Table G.2: Keystream bias from Galois LFSRs of length 6

Polynomial Count of m-tuples

1000011 (23, 14, 2, 1, 2, 0)
1011011 (23, 7, 7, 2, 0, 0)
1100001 (23, 11, 7, 0, 1, 0)
1100111 (19, 15, 5, 1, 0, 0)
1101101 (22, 12, 1, 2, 2, 0)
1110011 (23, 14, 5, 1, 1, 0)

Table G.3: Keystream bias from Galois LFSRs of length 7

Polynomial Count of m-tuples

10000011 (42, 19, 13, 6, 0, 0, 0)
10001001 (44, 22, 10, 1, 2, 1, 0)
10001111 (40, 22, 10, 3, 2, 0, 0)
10010001 (42, 24, 7, 5, 0, 1, 0)
10011101 (42, 23, 10, 0, 2, 0, 1)
10100111 (40, 20, 10, 4, 1, 0, 0)
10101011 (42, 22, 7, 4, 2, 0, 0)
10111001 (43, 21, 10, 2, 1, 1, 0)
10111111 (43, 21, 9, 7, 0, 0, 0)
11000001 (41, 22, 10, 1, 0, 1, 1)
11001011 (41, 22, 9, 3, 2, 0, 0)
11010011 (45, 23, 9, 3, 2, 0, 0)
11010101 (44, 19, 12, 0, 3, 0, 0)
11100101 (42, 21, 10, 3, 2, 0, 0)
11101111 (39, 22, 8, 4, 0, 1, 1)
11110001 (42, 23, 7, 4, 1, 1, 0)
11110111 (40, 22, 6, 6, 1, 0, 0)
11111101 (41, 22, 10, 1, 3, 0, 0)
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Table G.4: Keystream bias from Galois LFSRs of length 8

Polynomial Count of m-tuples

100011101 (79, 40, 18, 7, 1, 2, 0, 0)
100101011 (81, 40, 16, 11, 2, 0, 0, 0)
100101101 (81, 41, 19, 7, 1, 2, 0, 0)
101001101 (82, 41, 18, 6, 3, 1, 0, 0)
101011111 (78, 42, 19, 4, 4, 1, 0, 0)
101100011 (80, 42, 18, 5, 6, 0, 0, 0)
101100101 (81, 40, 20, 5, 4, 1, 0, 0)
101101001 (80, 41, 18, 7, 2, 0, 1, 0)
101110001 (78, 41, 21, 6, 1, 1, 1, 0)
110000111 (79, 42, 19, 5, 5, 0, 0, 0)
110001101 (79, 42, 19, 6, 3, 1, 0, 0)
110101001 (80, 40, 19, 7, 2, 0, 1, 0)
111000011 (81, 41, 18, 7, 2, 0, 1, 0)
111001111 (78, 40, 18, 7, 4, 0, 0, 0)
111100111 (80, 42, 20, 2, 5, 1, 0, 0)
111110101 (80, 42, 17, 8, 2, 1, 0, 0)

Table G.5: Keystream bias from Galois LFSRs of length 9

Polynomial Count of m-tuples

1000010001 (154, 82, 36, 14, 5, 1, 0, 1, 0)
1000011011 (156, 80, 37, 12, 6, 1, 1, 0, 0)
1000100001 (157, 80, 37, 14, 4, 0, 1, 1, 0)
1000101101 (156, 81, 38, 11, 8, 0, 1, 0, 0)
1000110011 (159, 80, 37, 11, 7, 2, 0, 0, 0)
1001011001 (158, 82, 36, 15, 5, 1, 0, 1, 0)
1001011111 (156, 82, 36, 12, 7, 2, 0, 0, 0)
1001101001 (158, 82, 37, 14, 4, 0, 1, 1, 0)
1001101111 (153, 83, 37, 12, 5, 3, 0, 0, 0)
1001110111 (153, 81, 37, 12, 5, 3, 0, 0, 0)
1001111101 (158, 82, 38, 13, 5, 0, 2, 0, 0)
1010000111 (154, 81, 37, 12, 5, 3, 0, 0, 0)
1010010101 (158, 81, 38, 11, 8, 0, 1, 0, 0)
1010100011 (159, 82, 36, 12, 6, 1, 1, 0, 0)
1010100101 (156, 81, 37, 12, 6, 1, 1, 0, 0)
1010101111 (153, 81, 36, 12, 7, 2, 0, 0, 0)
1010110111 (155, 81, 38, 13, 4, 2, 1, 0, 0)
1010111101 (155, 81, 36, 12, 6, 1, 1, 0, 0)
1011001111 (155, 80, 36, 13, 5, 3, 0, 0, 0)
1011010001 (154, 82, 37, 14, 4, 0, 1, 1, 0)
1011011011 (155, 80, 37, 12, 7, 2, 0, 0, 0)
1011110101 (155, 81, 36, 12, 6, 1, 1, 0, 0)
1011111001 (158, 81, 36, 13, 5, 1, 0, 1, 0)
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Table G.6: Keystream bias from Galois LFSRs of length 9 continued

Polynomial Count of m-tuples

1100010011 (159, 82, 38, 11, 7, 2, 0, 0, 0)
1100010101 (158, 80, 36, 12, 8, 0, 1, 0, 0)
1100011111 (155, 83, 36, 12, 5, 4, 0, 0, 0)
1100100011 (156, 81, 36, 12, 7, 1, 1, 0, 0)
1100110001 (155, 81, 37, 14, 5, 1, 0, 1, 0)
1100111011 (157, 81, 36, 11, 10, 1, 0, 0, 0)
1101001111 (153, 82, 36, 12, 5, 3, 0, 0, 0)
1101011011 (157, 81, 36, 11, 7, 2, 0, 0, 0)
1101100001 (157, 80, 36, 13, 5, 1, 0, 1, 0)
1101101011 (160, 83, 38, 12, 6, 1, 1, 0, 0)
1101101101 (154, 81, 36, 13, 6, 1, 1, 0, 0)
1101110011 (158, 81, 36, 12, 9, 1, 0, 0, 0)
1101111111 (156, 83, 37, 13, 4, 2, 1, 0, 0)
1110000101 (158, 82, 37, 12, 6, 1, 1, 0, 0)
1110001111 (154, 81, 36, 13, 4, 2, 1, 0, 0)
1110110101 (155, 81, 37, 13, 5, 0, 2, 0, 0)
1110111001 (157, 81, 39, 12, 7, 0, 0, 1, 0)
1111000111 (157, 83, 36, 14, 4, 2, 1, 0, 0)
1111001011 (156, 80, 38, 10, 9, 1, 0, 0, 0)
1111001101 (157, 82, 36, 12, 6, 1, 1, 0, 0)
1111010101 (159, 81, 36, 12, 6, 1, 1, 0, 0)
1111011001 (157, 81, 36, 13, 6, 1, 0, 1, 0)
1111100011 (158, 81, 37, 12, 7, 2, 0, 0, 0)
1111101001 (157, 81, 37, 14, 4, 0, 1, 1, 0)
1111111011 (155, 80, 37, 11, 7, 2, 0, 0, 0)
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Table G.7: Keystream bias from Galois LFSRs of length 10

Polynomial Count of m-tuples

10000001001 (311, 161, 73, 24, 12, 3, 0, 0, 1, 0)
10000011011 (306, 160, 73, 25, 11, 5, 1, 0, 0, 0)
10000100111 (308, 162, 72, 24, 12, 3, 2, 0, 0, 0)
10000101101 (307, 162, 72, 24, 12, 2, 1, 1, 0, 0)
10001100101 (309, 162, 72, 24, 12, 2, 1, 1, 0, 0)
10001101111 (305, 161, 72, 25, 11, 3, 2, 0, 0, 0)
10010000001 (310, 163, 73, 24, 13, 1, 1, 0, 1, 0)
10010001011 (308, 162, 73, 24, 10, 5, 1, 0, 0, 0)
10011000101 (310, 162, 72, 24, 11, 4, 0, 2, 0, 0)
10011010111 (306, 163, 72, 24, 11, 3, 2, 0, 0, 0)
10011100111 (310, 161, 72, 24, 12, 1, 3, 0, 0, 0)
10011110011 (310, 163, 72, 24, 11, 3, 2, 0, 0, 0)
10011111111 (308, 160, 73, 25, 11, 3, 2, 0, 0, 0)
10100001101 (308, 161, 73, 24, 11, 4, 0, 1, 0, 0)
10100011001 (309, 161, 74, 25, 12, 3, 0, 0, 1, 0)
10100100011 (310, 160, 73, 24, 10, 5, 1, 0, 0, 0)
10100110001 (308, 162, 74, 24, 12, 3, 0, 0, 1, 0)
10100111101 (306, 162, 73, 24, 12, 2, 1, 1, 0, 0)
10101000011 (312, 161, 72, 24, 10, 5, 1, 0, 0, 0)
10101010111 (305, 162, 73, 24, 11, 3, 2, 0, 0, 0)
10101101011 (310, 160, 72, 24, 10, 5, 1, 0, 0, 0)
10110000101 (311, 162, 72, 24, 12, 2, 1, 1, 0, 0)
10110001111 (307, 162, 73, 24, 11, 3, 2, 0, 0, 0)
10110010111 (307, 163, 72, 24, 12, 1, 3, 0, 0, 0)
10110100001 (309, 161, 73, 24, 12, 3, 0, 0, 1, 0)
10111000111 (308, 161, 73, 25, 11, 3, 2, 0, 0, 0)
10111100101 (310, 163, 72, 24, 12, 2, 1, 1, 0, 0)
10111110111 (305, 161, 73, 24, 12, 1, 3, 0, 0, 0)
10111111011 (307, 161, 73, 24, 11, 5, 1, 0, 0, 0)
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Table G.8: Keystream bias from Galois LFSRs of length 10 continued

Polynomial Count of m-tuples

11000010011 (309, 162, 72, 25, 11, 3, 2, 0, 0, 0)
11000010101 (309, 161, 73, 24, 12, 2, 1, 1, 0, 0)
11000100101 (311, 161, 74, 24, 11, 4, 0, 1, 0, 0)
11000110111 (306, 162, 72, 24, 11, 3, 2, 0, 0, 0)
11001000011 (308, 162, 74, 24, 11, 5, 1, 0, 0, 0)
11001001111 (305, 160, 73, 24, 12, 1, 3, 0, 0, 0)
11001011011 (311, 163, 72, 24, 11, 3, 2, 0, 0, 0)
11001111001 (309, 163, 72, 24, 12, 3, 0, 0, 1, 0)
11001111111 (310, 160, 73, 24, 11, 3, 2, 0, 0, 0)
11010001001 (310, 161, 73, 24, 12, 3, 0, 0, 1, 0)
11010110101 (308, 163, 73, 24, 11, 4, 0, 1, 0, 0)
11011000001 (308, 161, 73, 24, 12, 3, 0, 0, 1, 0)
11011010011 (313, 162, 72, 24, 10, 5, 1, 0, 0, 0)
11011011111 (306, 162, 72, 25, 12, 1, 3, 0, 0, 0)
11011111101 (307, 161, 72, 25, 12, 4, 0, 1, 0, 0)
11100010111 (306, 161, 72, 24, 12, 1, 3, 0, 0, 0)
11100011101 (307, 161, 72, 24, 11, 4, 0, 1, 0, 0)
11100100001 (312, 161, 73, 24, 12, 3, 0, 0, 1, 0)
11100111001 (309, 162, 73, 24, 14, 1, 1, 0, 1, 0)
11101000111 (307, 161, 72, 25, 11, 3, 2, 0, 0, 0)
11101001101 (313, 162, 72, 24, 12, 2, 1, 1, 0, 0)
11101010101 (310, 161, 72, 24, 11, 4, 0, 1, 0, 0)
11101011001 (311, 164, 72, 25, 14, 1, 1, 0, 1, 0)
11101100011 (308, 163, 72, 24, 11, 3, 2, 0, 0, 0)
11101111101 (307, 161, 72, 24, 11, 4, 0, 1, 0, 0)
11110001101 (307, 162, 72, 25, 11, 4, 0, 1, 0, 0)
11110010011 (311, 161, 73, 25, 11, 3, 2, 0, 0, 0)
11110110001 (307, 161, 72, 24, 12, 3, 0, 0, 1, 0)
11111011011 (309, 161, 75, 24, 11, 3, 2, 0, 0, 0)
11111110011 (311, 164, 72, 25, 12, 3, 2, 0, 0, 0)
11111111001 (308, 162, 73, 24, 12, 3, 0, 0, 1, 0)
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