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Abstract: Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time
series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that
seek exact analytical estimates based on closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or
Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed Gaussian conjugacy in this paper), form the
backbone for general time series filter design. Due to challenges arising from nonlinearity, multimode (including
target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints
(including circular quantities), and so on, new theories, algorithms and technologies are continuously being developed
in order to maintain, or approximate to be more precise, such a conjugacy. They have in a large part contributed to
the prospective developments of time series parametric filters in the last six decades. This paper reviews the state-
of-the-art in distinctive categories and highlights some insights which may otherwise be overlooked. In particular,
specific attention is paid to nonlinear systems with very informative observation, multimodal systems including
Gaussian mixture posterior and maneuvers, intractable unknown inputs and constraints, to fill the voids in existing
reviews/surveys. To go beyond a pure review, we also provide some new thoughts on Markov-free state process
modeling and filter evaluation regarding computing speed.
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1 Introduction

Dynamic state estimation is ubiquitous in en-
gineering and of central interest in fields of sig-
nal/information processing and control, with a broad
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range of applications related to detection, position-
ing, monitoring, tracking, navigation, and robotics.
The problem is basically concerned with estimating a
latent state that evolves over time from a sequence of
noisy observations in the presence of clutter, distur-
bances and outliers. The rapid development of phys-
ical sensors and the ever-increasing proliferation of
smartphones, mobile robots and unmanned vehicles
have further increased the interest in such problems.

Estimation has a long research history, al-
though it was the Kalman filter (KF) (Kalman,
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1960) that thrived the field and initiated modern
estimation study. Historical “giants” of estimation
include Gauss (1795) and Legendre (1806) who in-
vented the theory of least square estimation inde-
pendently which anticipates most of the modern-day
approaches to estimation problems, Fisher (1912)
who introduced the maximum likelihood method,
Kolmogorov (1940) and Wiener (1942) who estab-
lished the statistical foundation for interpolation &
extrapolation and filtering & prediction, and Bode
and Shannon (1950) who proposed the state space
model, among many others; please refer to retro-
spective reviews offered by (Sorenson, 1970; Grewal
and Andrews, 2014; Singpurwalla et al., 2017). It is
the interpretation of the KF from a Bayesian prior
to posterior viewpoint (Ho and Lee, 1964; Lindley
and Smith, 1972) that opened the floodgate for both
statisticians and engineers to advance the state of the
art of filtering. Considerable efforts have since been
devoted to both linear and nonlinear time series state
space models raised in a wide range of applications.

However, for a general nonlinear stochastic pro-
cess with very few exceptions, approximation has to
be resorted to. The approximation can be paramet-
ric, non-parametric or a mixture of both. In the non-
parametric case, the target probability density func-
tion (PDF) can be approximated with Monte Carlo
approaches based on random sampling of which the
particle filter (PF) (Arulampalam et al., 2002; Cappé
et al., 2007; Moral, Piere Del and Doucet, Arnaud,
2014; Bugallo et al., 2017) is the best known, and
grid-based approaches (Šimandl et al., 2006; Kaloge-
rias and Petropulu, 2016) based on finite state space
partitioning. In the parametric case, the PDF
is represented by a family of functions that are
fully characterized by certain parameters such as
Gaussian approximation (GA) and Gaussian mix-
ture/sum (GM/GS) filters. They are collectively re-
ferred to as parametric filters in this paper, of which
moment matching to the Bayes prior and posterior
is the key. They form the backbone for general time
series filter design and are the focus of this survey.

There are several excellent tutorials, surveys
and textbooks, primarily in the context of nonlin-
earity (Nørgaard et al., 2000; Wu et al., 2006; Cras-
sidis et al., 2007; Hendeby, 2008; Šimandl and Duník,
2009; Patwardhan et al., 2012; Stano et al., 2013;
Morelande and García-Fernández, 2013; García-
Fernández et al., 2015b; Huber, 2015; Duník et al.,

2015; Särkkä et al., 2016; Roth et al., 2016; Li et al.,
2016b; Afshari et al., 2017) or on some sub-topics
such as noise covariance metrics estimation (Duník
et al., 2017b) and circular Bayes filtering (Kurz et al.,
2016). However, some important parts have not been
addressed or only addressed briefly in those reviews,
including

• A unifying framework to analyze the common
essences of different filters,

• Very informative observation (i.e., the observa-
tion noise is insignificant),

• Multimodal system, and

• Intractable uncertainties and constraints (espe-
cially the state of the art and classification).

These topics will form the key part of our re-
view, complementing existing works. To minimize
overlap with these studies, common contents will not
be addressed. We base our review on a transparent
and concise framework termed approximate Gaus-
sian conjugacy (AGC). That is, all reviewed works
arguably aim at maintaining, or approximating to be
more precise, a closed-form Markov-Bayes recursion
from a GA/GM prior to a GA/GM posterior, to deal
with the challenges due to nonlinearity, multimode,
intractable uncertainty and constraint. By doing so,
different efforts are organized along the same line. To
go beyond a pure review, we also include discussions
on alternatives to hidden Markov model (HMM) and
on filter evaluation regarding computing speed, with
our new thoughts. All of these strive to give a concise
overview of the state of the art as well as shed some
light on future development in this area.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the three essential con-
cepts behind the sequential Bayesian inference (SBI)
consisting of the Markov-Bayes recursion, Cramér-
Rao lower bound, and Gaussian conjugacy. Sections
3, 4, 5 and 6 review the challenges and solutions for
parametric filtering under nonlinearity, multimode
(including GM filtering and target maneuver), in-
tractable uncertainties (including unknown and/or
non-Gaussian inputs/noise) and constraints on the
state or observation (including circular quantities),
respectively. Some new thoughts on HMM and fil-
ter evaluation are presented in Section 7 before we
conclude in Section 8.
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Fig. 1 Block-diagram of the evolution of a recursive
filter of the prediction-updating format

2 Basis of SBI

2.1 Markov-Bayes recursion

The time-series (a.k.a. sequential) Bayesian in-
ference is carried out by constructing the posterior
PDF of the latent state based the observation series
and the a prior model knowledge of the system. Us-
ing the posterior distribution, one can make state
inference, e.g., finding the value that maximizes the
posterior, namely maximum a posteriori (MAP) esti-
mation, or the value that minimizes a cost function,
e.g., mean square error (MSE) as is done in the KFs.

To be more specific, in the Markov-Bayes set-
ting, the state process is assumed to follow a first
order Markov process (a.k.a, HMM) and the ob-
servations are conditionally independent given the
states. This leads to a discrete-time state space
model (SSM) with additive noises

xt = ft(xt−1) + ut + vt (1)

yt = ht(xt) + wt (2)

where t ∈ N indicates the time instant, xt ∈ Rdx ,
yt ∈ Rdy and ut ∈ Rdx denote the state, the ob-
servation (also called measurement) and the input,
respectively, and vt ∈ Rdx , wt ∈ Rdy denote the
noises affecting the state function ft and the obser-
vation function ht, respectively. Except for yt, all
the other quantities can be unknown and if so may
need to be estimated jointly with the state xt. The
state process model (1) shall be written in a differen-
tial form for the continuous time case. Furthermore,
as a rare case, the observation process (2) can also
be modeled as a continuous process (Ghoreyshi and
Sanger, 2015). However, we will not distinguish this
in this paper.

SBI basically consists of one-step forward pre-
diction p(xt|y1:t−1), filtering p(xt|y1:t), and smooth-

ing p(xt|y1:T ), where t < T,y1:t , {y1,y2, . . . ,yt}.
Here we focus on the filtering distribution. The filter-
ing recursion is given by performing prediction and
correction recursively. The prediction step combines
the previous filtering distribution p(xt−1|y1:t−1)

with the state transition p(xt|xt−1,y1:t−1) (i.e.,
Chapman-Kolmogorov equation) as

p(xt|y1:t−1)

=

∫
p(xt−1|y1:t−1)p(xt|xt−1,y1:t−1)dxt−1 (3)

This forms the prior distribution (called the
prior hereafter) that is a one-step forecast of the
state. Next, given a new observation yt, the prior
will be updated by the Bayes’ rule as follows, result-
ing in the Bayes posterior distribution (called the
posterior hereafter)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(4)

where p(yt|xt) is the likelihood function.
Given the posterior in (4), the expectation of

the state xt conditioned on all the observations y1:t,
namely the expected a posteriori (EAP) estimate, is
given by

x̂EAP
t , E

[
xt|y1:t

]
=

∫
xtp(xt|y1:t)dxt (5)

which also gives the minimum MSE (MMSE) esti-
mation, of optimality defined on the second-order
statistics. Alternatively, the MAP estimate (García-
Fernández and Svensson, 2015) is given by

x̂MAP
t , arg max

xt
p(xt|y1:t) (6)

Different from the prevailing MSE criterion, it
might be of interest to base the lost function on some
other criteria, such as the maximum correntropy cri-
terion (MCC) (Liu et al., 2007) which has the advan-
tages to handle impulsive non-Gaussian noise thanks
to using higher-order statistics information. Corre-
spondingly, a new class of linear KFs (Wu et al., 2015;
Izanloo et al., 2016; Chen et al., 2017), have been
developed. More generally, there are cases when ro-
bustness (i.e., adaptability to outliers, system errors
and disturbances, etc.) is more preferable than op-
timality which will lead to various robust filtering
algorithms; see Section 5.5.

Without loss of generality, one typical itera-
tion process of a recursive filter can be illustrated
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as shown in Fig. 1. One of the main reasons for the
popularity of HMMs is the friendly first order as-
sumption that states are conditionally-independent
given the previous state. This facilitates forward-
backward inference for model learning and parame-
ter estimation but also severely limits the temporal
dependencies that can be modeled. Some alterna-
tives will be presented in Section 7.

2.2 Bayesian Cramér-Rao lower bound

It is theoretically pivotal to derive performance
bounds on estimation errors when estimating param-
eters of interest in a given model, as well as devel-
oping estimators to achieve these limits. When the
parameters to be estimated are deterministic, a pop-
ular approach is to bound the MSE achievable within
the class of unbiased estimators. The Cramér-Rao
lower bound (CRLB), given by the inverse of the
Fisher information matrix, provides the optimum
performance for any unbiased estimator of a fixed
parameter on the variance of estimation error; see
Table 1. However, it is necessary to note that,

Highlight 1. CRLB limits only the variance of un-
biased estimators and lower MSE can be obtained by
allowing for a bias in the estimation, while ensuring
that the overall estimation error is reduced (Stoica
and Moses, 1990; Eldar, 2008).

Van Trees presented an analogous MSE bound
for a random parameter, the posterior CRLB
(Van Trees, 1968), which is also referred to as the
Bayesian CRLB (BCRLB). Furthermore, an elegant
recursive approach was developed (Tichavsky et al.,
1998) to calculate the sequential BCRLB based on
the posterior distribution for a general discrete-time
nonlinear filtering problem that avoids Gaussian as-
sumptions. However, in general, BCRLB has no
closed-form expressions in nonlinear systems. As
such, a large body of alternative Bayesian bounds
has been proposed (Van Trees and Bell, 2007; Zuo
et al., 2011; Zheng et al., 2012; Fritsche et al., 2016).

On BCRLB, there are two points worth noting.
First, the unconditional BCRLB is determined only
by the system dynamic model, system observation
model and the prior knowledge regarding the system
state at the initial time, and is thus independent of
any specific realization of the system state. A vari-
ant of the CRLB for constrained estimation problems

was derived in (Gorman and Hero, 1990). Since more
information about the parameter is incorporated into
the estimator, the constrained CRLB can be lower
than the unconstrained version. Some attempts have
been made to include the information obtained from
observations by incorporating the tracker’s informa-
tion into the calculation of the BCRLB; please refer
to (Zuo et al., 2011; Fritsche et al., 2016) and the
references therein for details.

Second, in the Bayesian setting, both the state
and observation sequences are random quantities on
which the CRLB/BCRLB is based. However, in the
majority of practical setups particularly in the con-
text of tracking, positioning and localization, only a
single state sequence is of interest, such as a trajec-
tory of an aircraft or a ground vehicle. In these situ-
ations, the estimator performance shall be evaluated
based on the MSE matrix conditioned on a specific
state sequence, for which the general BCRLB does
not provide a lower bound (Fritsche et al., 2016).
Instead, it was shown that

Highlight 2. “The KF is conditionally biased with
a non-zero process noise realization in the given [de-
terministic] state sequence and is not an efficient es-
timator in a conditional sense, even in a linear and
Gaussian system.”

2.3 Gaussian conjugacy

Some important properties of the Gaussian dis-
tribution are notable. Given only the first two mo-
ments, the Gaussian distribution makes the least as-
sumptions about the true distribution in the maxi-
mum entropy sense and minimizes the Fisher infor-
mation over the class of distributions with a bounded
variance (Kim and Shevlyakov, 2008). As a general
example, letting θ denote the parameter vector, w
the noise and y = xθ + w the random observation
model, we have the following property (Stoica and
Babu, 2011; Park et al., 2013).

Highlight 3. Among all possible distributions of the
observation noise w with a fixed covariance matrix,
the CRLB for x attains its maximumwhenw is Gaus-
sian, i.e., the Gaussian scenario is the “worst-case”
for estimating x.

More importantly, the Gaussian variable is self-
conjugate. That is, if the likelihood function is Gaus-
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sian, choosing a Gaussian/GM prior over the mean
will ensure that the posterior distribution is also
Gaussian/GM without using any approximation; we
refer to this as strict Gaussian conjugacy in this pa-
per. In addition, the inverse Wishart distribution
provides a conjugate prior for the covariance ma-
trix of a Gaussian distribution with known mean,
termed Gaussian inverse Wishart (GIW). Please re-
fer to (Murphy, 2007) for more conjugate priors re-
lated to Gaussian distribution.

Based on conjugate prior, the Bayes prior and
posterior can be computed in a closed form. More
precisely, since the Gaussian PDF is uniquely deter-
mined by its first moment (mean) and the second
moment (covariance), the Gaussian conjugacy will
render recursive computations of the Bayes prior and
posterior in the simple manner of recursive algebraic
computing the mean and covariance of the condi-
tional PDFs, namely moment matching. Such a con-
jugacy is very engineering-friendly especially when
computing time is considered (see our discussion in
Section 7.2) and forms the essence for the sequential
closed-form recursion.

The strict Gaussian conjugacy, however, re-
quires both the state transition function ft, and
the observation function ht to be linear , the inputs
ut and the noises vt and wt unconditionally/white
Gaussian/GM (independent of the state). Then, the
optimal, conjugate solution is given by the KF (or
a mixture of KFs in case of GM filtering), as shown
in Table 2. Any violation of these requirements will
lead to a non-Gaussian/GM posterior and destroy
the closed-form Gaussian recursion. Also, all the pa-
rameters need to be known a priori. These require-
ments are fastidious and unrealistic in most realistic
systems. In order to retain the AGC, approxima-
tion has to be applied for easing the challenge from
nonlinearity (regarding both functions ft and ht),
multimodal posterior, and intractable system uncer-
tainties (primarily regarding noises vt and wt and
input ut) and constraints, which will be addressed in
the following Sections 3, 4, 5 and 6, respectively.

3 Nonlinearity

Nonlinearity appearing in the system functions
forms a pivotal and explicit challenge to the Gaus-
sian conjugacy simply because a Gaussian distribu-
tion after nonlinear transformation will be no more

Gaussian. A considerable number of approximation
approaches have been developed to account for non-
linearity, which can be primarily classified into two
categories, approximating either the nonlinear func-
tion or the nonlinear-transformed PDFs. The former,
with typical examples of extended KF (EKF), modal
KF (Mohammaddadi et al., 2016), divided difference
filter (Nørgaard et al., 2000), and Fourier-Hermite
KF (Sarmavuori and Särkkä, 2012) seeks functions’
approximation using polynomial expansions (e.g.
Taylor series, Fourier-Hermite series, Stirling’s inter-
polation, or Modal series). The latter one, with rep-
resentative examples of unscented KF (UKF) (Julier
and Uhlmann, 2004), Gauss-Hermite filter and cen-
tral difference filter (Ito and Xiong, 2000), cuba-
ture KF (CKF) (Arasaratnam and Haykin, 2009; Jia
et al., 2013), sparse-grid quadrature filter (Arasarat-
nam and Haykin, 2008; Jia et al., 2012), stochas-
tic integration filter (Duník et al., 2013), and it-
erated posterior linearization filter (IPLF) (García-
Fernández et al., 2015b; Raitoharju et al., 2017), is
based on a set of deterministically chosen weighted
sigma points. It was shown that many sigma-point
methods can be interpreted as Gaussian quadrature
based methods (Särkkä et al., 2016). They calculate
the posterior PDF using a direct numerical approx-
imation in a local sense, and are therefore also re-
ferred to as the local approach. An alternative to de-
terministic sampling for approximating an arbitrary
PDF is random sampling, e.g., the popular mixture
KF (Chen and Liu, 2000), ensemble KF (Evensen,
2003; Roth et al., 2017b), Monte Carlo KF (Song,
2000), and Gaussian/GS PF (Kotecha and Djurić,
2003a,b), which still strives to maintain AGC. This
allows asymptotically exact integral evaluation, al-
beit with much higher computational complexity.
These approaches carries out numerical approxima-
tion in a global sense like the PF and so are also
referred to as the global approach.

All of these GA filters have triggered tremen-
dous further developments. For instance, the UKF
has perhaps gained the most approval in the com-
munity whereas it may suffer from numerical in-
stability (e.g., may have a negative weight for the
center point) (Arasaratnam and Haykin, 2009; Jia
et al., 2013), systematic error (Duník et al., 2013),
and nonlocal sampling problem for high-dimensional
applications (Chang et al., 2013). These problems,
together with parameter setting strategies (Straka
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Table 1 Fisher information and Cramér-Rao inequality

Given that an unknown (random) parameter x is observed as y with likelihood function p(y|x), the second
moment of the partial derivative with respect to x of the natural logarithm of the likelihood function is called the
Fisher information for x contained in y, i.e.,

I (x) , E

[(
∂

∂x
logp (y |x )

)2

|x

]
=

∫ (
∂

∂x
logp (y |x )

)2

p (y |x ) dy (7)

where, for any given value of x, the expression E[...|x] denotes the conditional expectation over values for y with
respect to the probability function p(y|x) given x, and ∂

∂x
f is the derivative of function f with respect to x. Note

that 0 ≤ I (x) <∞. For any unbiased estimator x̂ (y), the Cramér-Rao inequality is given by

Var (x̂ (y)) ≥ 1

I (x)
(8)

In statistics, it is

MSE (x̂ (y)) ≥ 1

I (x)
(9)

or more precisely, MMSE (x̂ (y)) = 1
I(x)

.

Table 2 Closed-form recursion of Kalman filtering

Given that in (1)-(2) both the state transition function ft, and the observation function ht are linear, the input
ut is known, and the noises vt and wt are unconditionally Gaussian, the SSM (1)-(2) can be rewritten as

xt = Fxt−1 + vt − E
[
vt

]
(10)

yt = Hxt +wt − E
[
wt

]
(11)

where the input ut and the mean of the noise vt are included in the function ft, yielding a new linear transition
function F; the remaining part of noise vt, namely vt −E

[
vt

]
, can be treated as zero-mean noise with covariance

Qt = E

[(
vt−E

[
vt

])(
vt−E

[
vt

])T]
. Similarly, the mean of the noise wt can be integrated into the observation

function ht, leading to a new observation function H and then the remaining part of noise wt, namely wt−E
[
wt

]
,

can be treated as zero-mean noise with covariance Rt = E

[(
wt −E

[
wt

])(
wt −E

[
wt

])T]
. For this formulation,

the prediction-correction steps of the KF are given as follows.
Prediction (time updating):

x̂t|t−1 =

∫
Fxt−1N (xt−1; x̂t−1,Pt−1) dxt−1 (12)

Pt|t−1 =

∫
Fxt−1(Fxt−1)

TN (xt−1; x̂t−1,Pt−1) dxt−1 − x̂t|t−1x̂
T
t|t−1 +Qt (13)

where N (x; x̂,P) denotes the Gaussian PDF with mean x̂ and covariance P.
Correction (data updating)

x̂t|t = x̂t|t−1 +Gt

(
yt − ŷt|t−1

)
(14)

Pt|t = Pt|t−1 −GtPyyG
T
t (15)

where,
Gt = PxyP

−1
yy (16)

ŷt|t−1 =

∫
HxtN

(
xt; x̂t|t−1,Pt|t−1

)
dxt (17)

Pxy =

∫ (
xt − x̂t|t−1

) (
Hxt − ŷt|t−1

)TN (xt; x̂t|t−1,Pt|t−1

)
dxt (18)

Pyy =

∫ (
Hxt − ŷt|t−1

) (
Hxt − ŷt|t−1

)TN (xt; x̂t|t−1,Pt|t−1

)
dxt +Rt (19)
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et al., 2014; Zhang et al., 2015; Scardua and Cruz,
2017) and constrained filtering (see Section 5), have
led to ever-increasing further research developments
for deterministic sampling-based filtering. Mean-
while, the degree of nonlinearity or non-Gaussianity
has also been well investigated and various measures
have been developed (not limited to state estima-
tion); see the review and discussion offered by (Liu
and Li, 2015) and (Duník et al., 2016). This provides
a principle to select a nonlinear filter from many ac-
cording to the property of the problem.

In order to better exploit the information about
the state from the same measurement sequence, dif-
ferent local filters that extract different portions of
the system information can be employed to linearize
the same nonlinear functions and the results com-
bined for better accuracy. This is called the coopera-
tive local (or Gaussian) filter design approach (Duník
et al., 2017a), which resembles the idea of multiple
conversion approach (Lan and Li, 2017) where jointly
utilizes multiple nonlinear filters based on a weighted
sum of several sub-functions of the (same) measure-
ment. Accuracy benefit to do so is as foreseeable the
challenge to computing complexity; see our discus-
sion in Section 7.2.

While general nonlinear filtering has been well
elaborated and reviewed from various viewpoints, we
focus on two interesting subtopics.

3.1 Converted measurement filtering

The unconditional noise requirement (that is,
the noises are white and independent of the state)
may not be met strictly in practice. This relaxation
is particularly useful when the state model is linear
and Gaussian while the measurement model is non-
linear but can be converted to a linear one, namely
injective. Although converting the nonlinear mea-
surement to the state space yields a non-Gaussian
uncertainty for sure, the system will become linear
enabling the use of a linear filter, namely converted
measurement filtering (CMF). It was first introduced
in (Lerro and Bar-Shalom, 1993). The state of the
art (Liu et al., 2013; Lan and Li, 2015) has demon-
strated that proper “uncorrelated conversion” of the
nonlinear measurement can make further use of the
measurement information and thereby can be used
to augment the filter rather than use original mea-
surement only. This leads to an updating protocol
that resembles “repeated” use of the measurement by

linear combination of the original measurement and
the nonlinearly converted measurement. However, it
was further pointed out in (García-Fernández et al.,
2015a) that CMF works better particularly for in-
formative systems but not for the non-informative
system that has large measurement noise variance.
Therefore, an interacting mechanism is advocated
to switch between an unscented linear CMF and a
normal unscented nonlinear filter.

Obviously, nonlinear conversion will lead to
(pseudo-measurement) noise that is state dependent
and non-Gaussian, even the original noise is state
independent and white Gaussian. Therefore, a criti-
cal issue involved is to determine the unbiased mean
and covariance of the observation noise after con-
verting (Bordonaro et al., 2014; Lan and Li, 2015),
entailing correct moment matching. A review and
comparison of algebraic approaches for the Gaussian
noise related debiasing was delivered in (Bordonaro
et al., 2014). To handle originally non-Gaussian
noises, Monte Carlo sampling can be used for gen-
eral conversion (Li et al., 2016). However, we note in
many cases the measurement model is non-injective,
e.g., a bearing observation of the target in the planar
space, preventing CMF unless multiple sensors are
used jointly to make the observation (in the form of
observation matrix) determined or over determined
(Li et al., 2017b).

When the noise is multiplicative, namely depen-
dent on the state, the conversion will need knowledge
of the state. For example, a maximum likelihood es-
timator is used in (Wang et al., 2012) to remove the
distance-sensing nonlinearity in case of hybrid addi-
tive and multiplicative noises.

3.2 Very informative observation

Dramatically fast and ever-increasing escalation
has been seen on computers and sensors including
radar, camera, sonar and so on. Incredibly, Moore’s
law proved accurate for several decades in the semi-
conductor industry. It is fair to say, what we have
today is totally different to that when Kalman in-
vented the KF. Clearly, either super-quality sensors
or high-dimensional observations due to the joint use
of multiple/massive moderate sensors, are supposed
to remarkably benefit our estimation by providing
very informative observation (VIO) of the system.
Unfortunately, advanced KFs may not always out-
perform the basic KF in such cases. But instead,
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Table 3 A VIO SSM
The state process function and the observation function are given as follows, respectively (Van Der Merwe
et al., 2000)

xt = 1 + sin(0.04πt) + 0.5xt + vt (20)

yt =

{
0.2x2t + wt, ift ≤ 30

0.5xt − 2 + wt, ift > 30
(21)

where the process noise ut is a gamma random variable Γ(3, 2) and the observation noise is Gaussian
vt ∼ N (v; 0, 0.00001) and the default simulation length is 60 iteration steps. For this SSM, the observation-
only inference (without debiasing) is given as

xO2
t =

{√
5yt, if t ≤ 30 (biased)

2yt + 4, if t > 30 (unbiased)
(22)

it turns out that (Morelande and García-Fernández,
2013; García-Fernández et al., 2015b):

Highlight 4. “For sufficiently precise measure-
ments, none of the KF variants, including the KF
itself, are based on an accurate approximation of the
joint density. Conversely, for imprecise measure-
ments all KF variants accurately approximate the
joint density, and therefore the posterior density. Dif-
ferences between the KF variants become evident for
moderately precise measurements.”

Therefore, seeking increasingly accurate ap-
proximations of the KF can be of limited benefit
in a VIO system. Instead, a SBI filter may just
lose to the observation-only (O2) inference that di-
rectly converts the observation to the state space
(Li et al., 2016) and is immune to any state process
modeling error/bias. As shown in Table 2, the basic
formulation of the KF omits any bias (whether due
to mis-modeling, intractable noises, disturbances or
over approximation) propagated in the prior, which
is naive at best to be true in real world problems.
Indeed, SBI becomes very sensitive to any bias in
the prior in a VIO system, which is the key factor
leading to the defeat. Please refer to the quantitative
results given in Section 4.2 of (Li et al., 2016).

A VIO SSM is given in Table 3, which was orig-
inally proposed in (Van Der Merwe et al., 2000) and
has since been widespread for filter test. For this
example, the computationally extremely fast O2 in-
ference can beat either EKF/UKF, unscented PF
and so on by orders of magnitude in both accuracy
and computational speed! As such, prominent atten-

tion is desired nowadays as sensors are deployed with
gradually increased quantity (higher precise) or qual-
ity (joint use of massive sensors) (Li et al., 2017b,c),
which popularizes VIO in reality. However, we have
the following note (Li et al., 2016, 2017b):

Highlight 5. While the BCRLB sets a best line (in
the sense of MMSE) that any unbiased sequential esti-
mator can at maximum achieve, the O2 inference sets
the bottom line that any “effective” estimator shall at
minimum achieve.

We would like to further add that “in nonlinear
systems, due to inevitable approximations, estima-
tors generally exhibit a bias, and thus the BCRLB
actually cannot be achieved by any unbiased estima-
tor.” (Fritsche et al., 2016)

As a compromise, iterative algorithms may be
applied to repeatedly leverage the informative obser-
vation. The first iterated EKF (IEKF) (Jazwinski,
1970, pp. 349-351) implemented the first-order Tay-
lor series expansion (TSE) of the observation func-
tion repeatedly for posterior updating to avoid fil-
tering divergence due to the once first-order TSE
truncation. It produces a sequence of mean esti-
mates, which was shown (Bell and Cathey, 1993)
to be equivalent to the Gauss-Newton (GN) algo-
rithm for computing the MAP estimate. IEKF per-
forms well when the true posterior is close to be-
ing Gaussian, but convergence of the GN algorithm
is not guaranteed. Furthermore, a generalized it-
erated KF (Hu et al., 2015) for nonlinear stochastic
discrete-time estimation with state-dependent obser-
vation noise, adopts the Newton-Raphson iterative
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optimization steps yielding an approximate MAP es-
timate of the states. Of high relevance, the IPLF
(García-Fernández et al., 2015b; Raitoharju et al.,
2017) uses statistical linear regression instead of the
first order TSE for better linearization and iterated
a posterior estimate updating.

More implementations for iterated/repeated ob-
servation (or its conversion) updating have been re-
alized on different Gaussian filters, e.g., (Zhan and
Wan, 2007; Zanetti, 2012; Steinbring and Hanebeck,
2014). This has a very close connection to the con-
cept of progressive Bayes (Hanebeck et al., 2003),
which strives to apply the Bayes updating in a pro-
gressive manner, and the aforementioned uncorre-
lated augmentation (Liu et al., 2013; Lan and Li,
2015, 2017). In fact, the idea of emphasizing the ob-
servation when it is very informative has also inspired
the development of random sampling based filters
such as annealed/unscented PFs (Van Der Merwe
et al., 2000; Godsill and Clapp, 2001), particle flow
filter (Daum and Huang, 2010) (and relevantly Gaus-
sian flow (Nurminen et al., 2017)) and feedback
PF (Yang et al., 2016) and some (re)sampling ap-
proaches (Li et al., 2015) (Li et al., 2015). In recent
years, there has been a burgeoning passion and in-
terest in applying similar ideas and techniques to
Bayesian filtering for informative systems; see also
(Mitter and Newton, 2003; Ma and Coleman, 2011)
for other attempts.

However, a rigorous criterion to determine the
optimal number of observation updating iterations
seems still missing. In existing works, the con-
vergence is primarily identified by monitoring the
Kalman gain as compared with a specified ad-hoc
threshold. More importantly, when the observation
is not so informative, it turns out to be a bad idea
to emphasize on the observation, as quantitatively
demonstrated in (Li et al., 2016). Therefore, partic-
ular caution should be exercised.

4 Multimode

4.1 Gaussian mixture

Based on the Wiener approximation theorem,
any distribution can be expressed as, or approxi-
mated sufficiently well by, a finite sum of known
Gaussian distributions, called GM. Mixture distribu-
tion may arise from stochastically switched Gaussian

systems (such as the maneuvering dynamics as ad-
dressed in the next subsection), systems with multi-
modal state (e.g., concurrent multiple targets), mul-
timodal observation (e.g., radar observations often
exhibit bimodal properties due to secondary radar
reflections), or systems with long-tailed stochastic
behavior or noise (see Section 5 for intractable un-
certainties), to name a few.

The posterior (4) in the manner of a GM of M
components can be written as

p(xt|y1:t) =

M∑
i=1

ωiN (xt; x̂
(i)
t ,P

(i)
t ) (23)

where ωi > 0 is the weight of the ith Gaussian com-
ponent which satisfies

∑M
i=1 ωi = 1 in general but

not in the finite set statistics-based multi-target in-
tensity cases (Mahler, 2014; Vo and Ma, 2006).

Assuming that the noise sequences have a uni-
formly convergent series expression in terms of
known Gaussian distributions, a number of Gaussian
terms with known moments can be used to develop a
MMSE filtering algorithm, namely Gaussian mixture
filtering (GMF) (Sorenson and Alspach, 1971; Faubel
et al., 2009; Ali-Loytty, 2010). Each Gaussian com-
ponent may be updated based on different nonlinear
filter updating rules. For linear dynamic systems
with GM noises, GMF provides the MMSE state es-
timate by tracking the GM posterior. The analytic
lower and upper MMSE bounds of linear dynamic
systems with GM noise statistics were analyzed in
(Pishdad and Labeau, 2015). It has been shown that
for highly multimodal GM noise distributions, the
bounds and the MMSE will converge and relevant
statistics like mean or covariance can be derived in a
closed form. In addition, to take system constraints
into account, projection based GM-UKF (Ishihara
and Yamakita, 2009), GMF (Duník et al., 2010) and
density truncation based GM-UKF) (Straka et al.,
2012) have been developed. Constrained filtering
will be addressed separately in Section 6.

Obviously, the mixture size lies in the core of
the trade-off between computing efficiency and fil-
ter accuracy. Many either sophisticated or straight-
forward algorithms have been proposed for adapt-
ing/reducing the number of components in the GM.
For an adaptive GM, two different approaches have
been proposed: adapting the weight of each Gaus-
sian component by minimizing the propagation er-
ror committed in the GM approximation (Ito and
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Xiong, 2000; Terejanu et al., 2011) and splitting the
Gaussian components during the propagation based
on nonlinearity induced distortion (DeMars et al.,
2013). Both require online optimizations which,
however, will add to the overall computational cost.
Instead, straightforward mixture reduction (MR) is
more practically useful, which is typically realized in
the manner of GM merging and pruning.

The first systematic GM merging scheme was
established in (Salmond, 1990), which is perhaps
still the most widely used protocol (Faubel et al.,
2009; Ali-Loytty, 2010) and can be interpreted as
a special type of conservative fusion of components
(Reece and Roberts, 2010). A survey has been pro-
vided in (Crouse et al., 2011) for more advanced
MR solutions with comparison including West’s al-
gorithm (West, 1993), Runnalls’ Kullback-Leibler re-
duction algorithm (Runnalls, 2007), constraint opti-
mized weight adaptation (Chen et al., 2010), andMR
via clustering (Schieferdecker and Huber, 2009).

A general principle for MR is to minimize the
discrepancy between the original and the reduced
mixtures, for which two typical metrics are integral
square error (ISE) and Kullback-Leiber divergence
(KLD). The KLD of the GM-PDF before MR p(x)

from that of after MR q(x), denoted DKL(p||q), is
an asymmetric measure of the information lost when
q(x) is used to approximate p(x), which is given as

DKL(p||q) ,
∫
p(x)ln

p(x)

q(x)
dx

=

∫
p(x)lnp(x)dx−

∫
p(x)lnq(x)dx

(24)

As the first term completely relies on the PDF before
MR, minimizing the KLD in (24) is equivalent to
maximizing the second

∫
p(x)lnq(x)dx. The KLD is

not a distance since it is not symmetric. The ISE
is a nonparametric distance which is given as, e.g.,
between p(x) and q(x),

DISE(p||q) ,
∫

(p(x)− q(x))2dx (25)

The ISE approach was first proposed for MR
in the context of multiple hypothesis tracking in
(Williams and Maybeck, 2006), which inspired fur-
ther development (Chen et al., 2010) and the normal-
ized ISE (Petrucci, 2005). One distinctive feature of
the method is the availability of exact analytical ex-
pressions for GMs. However, the cost function (25)

is a complicated multimodal function with many lo-
cal minima; hence gradient-based methods cannot
guarantee convergence to the global minimum, un-
less the initialization point happens to be close to
the global minimum (Williams and Maybeck, 2006).
In contrast, the Kullback-Leibler reduction method
(Runnalls, 2007) minimizes an upper bound on the
KLD between the original mixture and the reduced
mixture, which appears to perform better in terms
of slimming the GM, and has led to several fur-
ther developments (Schieferdecker and Huber, 2009;
Ardeshiri et al., 2015). Furthermore, a model or-
der reduction procedure is proposed in (Raitoharju
et al., 2017) for minimizing the KLD of the reduced
order density from the original density.

In contrast to the above MR schemes that grad-
ually reduce the mixture to a desired size via merg-
ing and pruning, the algorithm given in (Huber
and Hanebeck, 2008) gradually adds new compo-
nents to a mixture starting from a single component.
This method however could be beaten in terms of
the ISE by simpler approaches based on clustering
(Schieferdecker and Huber, 2009). Note that, MR
is closely connected to many multi-hypothesis based
approaches such as multi-hypothesis tracker (Reece
and Roberts, 2010) and GIW mixtures (Granström
and Orguner, 2012). It has been applied to dis-
tributed information fusion for consensus (Li et al.,
2017c,b), beyond the original centralized filtering.

4.2 Maneuver

Maneuver is an important concept particularly
in the context of target tracking, which generally
refers to time varying target dynamical mode/model.
Maneuvering target tracking (MTT) is essentially a
hybrid estimation problem consisting of continuous-
state (base state) estimation and discrete-state
(mode) decision. The basic framework to describe
the maneuvering state dynamics is the so-called jump
Markov system (JMS), in which the target dynam-
ical model switches/jumps from one HMM to an-
other. Simply put, there are two primary types
of MTT methods: the single-model (SM) method
(also called decision-based method (Li and Jilkov,
2002; Zhou and Frank, 1996) and the multiple-model
(MM) method (Li and Jilkov, 2005). In the former,
the filter is adaptive and operated on the basis of
the model selected by the model decision process
and consequently the hybrid estimation problem is
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solved by combining state estimation with explicit
model decision. In this regard, timely detection of
the target maneuver, namely the model adaptation
of the filter, is key (Ru et al., 2009). Once it fails to
do so and a wrong model is used, the performance of
the filter will degrade significantly.

A much simpler adaptive filter for MTT is given
by handling maneuvers and random process noises
jointly by a white, colored or heavy tailed noise pro-
cess (Zhou and Frank, 1996; Gordon et al., 2003; Ru
et al., 2009; Guo et al., 2015). This will allow con-
verting the MTT problem into that of state estima-
tion in presence of non-stationary process noise with
unknown statistics; further discussion on uncertain-
ties will be presented in next section. This approach
primarily applies to insignificant maneuver.

For the sake of “not putting all the eggs in one
basket”, the MM method employs a bank of ma-
neuver models to describe the time-varying motion
and runs a bank of elemental filters based on these
models, each being associated with a probability.
The final estimate is given by the weighted result
of these sub-filters. The most representative MM
method is the interacting multi-model (IMM) algo-
rithm and variable-structure IMM estimators (Li and
Bar-Shalom, 1996; Li and Jilkov, 2005; Lan et al.,
2013; Granström et al., 2015). The number of mod-
els in the former is fixed, whereas in the latter it can
be adaptively selected from a broad set of candidate
models. However, operating multiple models in par-
allel can be computationally very costly, but still it
can be insufficient when the real model parameters
vary in a continuous space (Xu et al., 2016), or op-
positely, too many models become as bad as too few
models (Li and Bar-Shalom, 1996).

In either way, model decision/adaption delay is
inevitable (Fan et al., 2010), and it behaves as the
delay of maneuver detection in the SM methods and
as the time of probability convergence to the true
model in the MM methods.

Highlight 6. Many adaptive-model approaches pro-
posed for MTT may show superiority when the tar-
get indeed maneuvers but perform disappointingly or
even significantly worse than those without using an
adaptive model, when there is actually no maneuver.
We call this over-reaction due to adaptability.

To combat the model decision delay and over-
reaction, a novel solution (Li et al., 2017a) is to char-

acterize the target motion by a continuous-time tra-
jectory function as in (30) and thereby formulate the
MTT problem as an optimization problem with the
goal of finding a trajectory function best fitting the
sensor data, e.g., in the sense of least squares of the
fitting error; see Section 7.1. The fitting approach
needs neither ad-hoc maneuver detection nor mul-
tiple model design and therefore is computationally
reliable and fast. It is particularly applicable to a
class of smoothly maneuvering targets such as pas-
senger aircraft, ships, trains and buses, in which no
abrupt and significant change should occur for the
passengers’ safety and most often, the carrier moves
on a predefined smooth route.

5 Intractable uncertainty

5.1 Classification of uncertainties

Besides the system functions ft and ht which are
often considered deterministic, either known or un-
known, there are three key variables whose statistics
need to be specified properly for setting up a filter,
including the control input ut (which can be con-
sidered either deterministic or stochastic), the state
process noise vt and the observation noise wt. All
of these contribute to the uncertainty of the system,
the core of the stochastic process. On the one hand,
if their statistics are unknown, they have to be es-
timated concurrently with the hidden states using
available sensor observations, referred to as simul-
taneous state and parameter estimation or adaptive
filtering. This is a challenging task since in many
cases direct observation of certain parameters is very
expensive or difficult if not impossible (Ghahremani
and Kamwa, 2011) or the observation itself contains
significant intractable uncertainties such as outlier,
clutter and misdetection, to be explained below. On
the other hand, they may conflict with the uncon-
ditionally Gaussian system requirement, for which
proper remedies have to be taken for AGC.

In the most common case, the observation func-
tion ht is given a priori. However, it is also often
that the position of the sensor is unknown (and time
varying) and needs to be estimated simultaneously
with that of the target. This is often referred to as
joint sensor localization and target tracking ; see, e.g.,
(Guo et al., 2016). Beside the maneuvering model,
there are various specific problems where only a part
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of the parameters involved in the system function
vary and need to be estimated, such as resistance
in motor systems, aerodynamic parameters in UAV,
etc. Unlike discrete maneuvers, these parameters
may not change in a jump manner but in the con-
tinuous space. They are more generally related to
system identification, out the scope of our survey.

An emerging tool for non-parametric state space
modeling called Gaussian process (GP) regression
(Rasmussen and Williams, 2005), which represents
the unknown system function by a random function
and infers the posterior distribution of the function
from data, is very different from the PDF approxi-
mation addressed in this paper. GP gains increas-
ing importance in machine learning (Rasmussen and
Williams, 2005), robotics (Ko and Fox, 2009), signal
processing (Deisenroth et al., 2012; Frigola-Alcade,
2015; Särkkä et al., 2016), etc. when it is difficult to
find an accurate parametric form of the system func-
tion. It is interesting to recognize that the GP can
be broadly classified into our AGC framework, i.e.
from a GP prior to a GP posterior, to accommodate
more general likelihood functions.

Overall, the major intractable uncertainties in-
volved for an adaptive filter design based on SSM
can be classified as shown in Fig. 2. To avoid dis-
tracting our attention on filters under AGC, we will
leave aside the uncertainty issues caused by the (ei-
ther partly or entirely) unknown system functions
or abnormal observation data in this paper. What
follows will focus on estimation or approximation of
the statistics of inputs ut , state process noisewt and
observation noise wt when they are either unknown
or non-Gaussian/correlated.

5.2 Unknown input

The models and/or models’ parameters may de-
viate from their nominal values by an unknown con-
stant or time-varying bias, which are called unknown
inputs (UIs). The corresponding filtering problem in
the presence of UI is termed UI filtering (UIF). To
note, the UI may appear in both state dynamics and
measurement models, although we only model inputs
in the state dynamic model in (1). Based on differ-
ent assumptions made on UI in algorithm design, the
existing UIF algorithms can be broadly categorized
into the following three main classes.

Unknown 
Observation 

Function

Time varying 
dynamics

(Maneuvering) 

Unknown
 Inputs

Non-Gaussian
Noises Colored

Noises 

Multiplicative 
 Noises

Unknown Noise 
(Covariance)

Intractable
Uncertainties

Unknown and/or
Time Varying

Function or Variable

Non-Gaussian 
and/or Correlated

Variables or Statistics

Outliers, Clutter, 
Misdetection etc.

Parameter
 Uncertainty

Correlated
 Noises

Fig. 2 Classification of major uncertainties involved
in SSM. Only the highlighted three sub-topics are
accommodated in this review while the others are ei-
ther well addressed in existing surveys (e.g., unknown
noise covariance estimation in (Duník et al., 2017b)),
rare cases (e.g., unknown observation function) or
does not form the key theme of our review (e.g., cor-
related noises, outliers, clutter, misdetection, etc.)

5.2.1 Noise interpretation of UI

This approach is simply modeling the UI by a
zero mean Gaussian noise with a usually large, sta-
tionary or time-varying (Liang et al., 2004), covari-
ance. An expectation-maximization (EM) based it-
erative optimization framework has been proposed
for joint state estimation and parameter identifica-
tion, which treated unknown covariances as miss-
ing data in (Bavdekar et al., 2011). However, in
more general cases, this assumption is often violated,
which may have an adverse effect on the filtering
performance or suffer from instability (divergence)
(Azam et al., 2015). This is because the UI is usu-
ally a non-stationary process (i.e. signal with an ar-
bitrary type and magnitude) and cannot be well cap-
tured by a stationary and zero-mean random noise
(Ghahremani and Kamwa, 2011).

5.2.2 Known UI dynamics

In this category, the UI is assumed to (approx-
imately) follow known dynamics with an unknown
initial condition. This approach can accommodate
several types of UIs such as unknown constant, ramp,
polynomials in time, sinusoids, or their combinations
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(Su et al., 2016). A common approach is to aug-
ment the UI (or the state of its dynamics) into the
state variable, resulting in an augmented system for
which conventional filters can be adopted. This is
termed augmented KF (AKF) (Mayne, 1963) and
has shown particular supremacy in fault diagnosis
(Su and Chen, 2017). To reduce the computation
cost of the AKF, a two-stage KF was proposed in
(Friedland, 1969), which decouples the AKF into a
state sub-filter and an UI sub-filter. It was further
extended and optimized in (Hsieh, 2000) and gener-
alized to the optimal multi-stage KF in (Chen and
Hsieh, 2000). Inspired by (Bavdekar et al., 2011), an
EM optimization scheme for joint state estimation
and parameter identification has been proposed in
(Lan et al., 2013) for stochastic systems with UIs in
both the process and measurement models.

However, the augmented system is generally
nonlinear even though the original one is linear.
Moreover, one possible drawback of AKF is that a
mean estimation error (or bias) may appear when the
assumed UI dynamics is not satisfied, e.g., abrupt
maneuver in target tracking (Bogler, 1987), fast
time-varying disturbances in disturbance observer
based control (Kim and Rew, 2013). An intuitive so-
lution is to choose an appropriate covariance matrix
for the noise term in UI dynamics, which reveals the
confidence placed on the utilized UI model (Azam
et al., 2015), for a trade-off between estimation bias
and accuracy due to stochastic errors.

5.2.3 Unknown UI dynamics

In this category, no particular dynamics is as-
sumed on the UI. The original work of this kind (Ki-
tanidis, 1987) solved the problem of state filtering in
the presence of UI using the minimum variance un-
biased estimation (i.e. minimizing the trace of state
error covariance matrix under the unbiased algebra
constraint). Various properties for the developed
filters have been successively investigated, includ-
ing the existence condition (Darouach and Zasadzin-
ski, 1997), asymptotic stability (Fang and Callafon,
2012), and global optimality (Cheng et al., 2009).
Later, this approach was further extended to the case
with direct feed-through of UI (Cheng et al., 2009),
and simultaneous input and state filtering including
recursive three-step filter (RTSF) (Gillijns andMoor,
2007; Hsieh, 2009), and filtering with partial infor-
mation on the input (Su et al., 2015b). Recently,

its relationship with the classical KF has also been
rigorously established in (Li, 2013; Su et al., 2015a)
in terms of existence, optimality and asymptotic sta-
bility by assuming that the inputs are available at an
aggregate level.

In comparison to AKF, this approach could lead
to unbiased estimation while it is more sensitive to
sensor noise due to the lack of prior UI dynamics
information. Another point worth mentioning is the
existence condition. A necessary condition of AKF
is the detectability of augmented matrix pair, while
strong detectability is usually required in approaches
without information of UI dynamics (Yong et al.,
2016), which are slightly stricter.

Recent work is more focused on how to accom-
modate prior information on UI or unknown param-
eters so that both state and UI filtering performance
can be improved. For example, amplitude constraint
and equality constraint are considered in fault diag-
nosis (Simon and Simon, 2006) and in traffic man-
agement (Su et al., 2015b; Li, 2013), respectively. It
should be highlighted that the extra information on
UI stems from the experience or knowledge of the de-
signers. A better alternative is to learn from massive
historical data. To this end, clustering and classi-
fication are exploited in (Yi et al., 2016) to model
vehicle acceleration for a better situation awareness
performance. Another open problem comes from hy-
brid UIs such as an linear combination of dynamic,
random, and deterministic UIs (Liang et al., 2008)
or more challengingly, different UI switching.

5.3 Unknown noise

There is also a large amount of literature on
noise (covariance) estimation in both the state and
observation equations. Interested readers can refer
to a cutting-edge and comprehensive survey on this
topic in (Duník et al., 2017b). However, a remarkable
result which appears recently (Ristic et al., 2017)
states that

Highlight 7. The theoretically best achievable sec-
ond order error performance, namely the CRLB, in
target state estimation is independent of knowledge
(or the lack of it) of the observation noise variance.

This is in accordance with the results in (Djurić
andMiguez, 2002) which demonstrates that the noise
covariances are unnecessary in estimation, as they
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can be integrated out. More surprisingly, it was
shown that the filters which do not use the true value
of observation noise variance but instead estimate it
online can achieve the theoretical bound, while the
CKF, which is using the true value of the Gaussian
observation noise variance, cannot. An explanation
for this is that the filters that estimate the observa-
tion noise variance online are able to distinguish the
accurate from inaccurate bearing observations and
adapt their Kalman gains accordingly, resulting in
overall more accurate tracking performance. This
finding is interesting as it raises a puzzle: is it a
real advantage if the filter knows the true observation
noise statistics?

5.4 Non-Gaussian or non-white noise: heavy
tail, correlation, and dependence

Gaussian distribution is simply incompetent to
model outliers (because of clutter, impulsive noise,
glint noise, or unreliable sensors etc.), skewness,
heavy tails and bounded support. In addition to the
aforementioned GM, a pragmatic way to approach
outlier and skewed observation noise is to assume
heavy-tailed noise (also called glint noise), for which
elliptically contoured distributions, such as Student’s
t-distribution (Girón and Rojano, 1994; Tipping and
Lawrence, 2005; Loxam and Drummond, 2008; Ar-
avkin et al., 2012; Piché et al., 2012; Roth et al.,
2013; Nurminen et al., 2015) and Lévy distribution
(Sornette and Ide, 2001; Gordon et al., 2003) turn
out to be helpful.

The Student’s t-distribution has been demon-
strated to be less sensitive to outliers than the Gaus-
sian distribution, thereby enjoying better robustness
while retaining the minimum variance optimality of
the KF. Either the process noise or the observation
noise can be modeled as Student’s t distribution (Ar-
avkin et al., 2012) while the latter takes a majority
in literature. Based on Student’s t observation noise
assumption, the Bayesian filtering and smoothing re-
cursions are developed for linear systems in (Piché
et al., 2012; Roth et al., 2017a) based on which differ-
ent parametric filters can be implemented. Student’s
t mixture filter has also been developed in (Loxam
and Drummond, 2008).

While both Student’s t distribution and the
Gaussian distribution belong to the family of ellipti-
cally contoured distributions, the Gaussian approxi-
mation to the posterior PDF is more reasonable than

the Student’s t approximation with a fixed DOF (de-
gree of freedom) parameter for the case of moderate
contaminated process and observation noises (Huang
et al., 2017). In this sense, GM might be a better
alternative (Bilik and Tabrikian, 2010), given proper
MR-management. For an t-distributed observation
noise with heavy tails, while the CRLB significantly
underestimates the optimal MSE, the KF has signif-
icantly larger MSE (Piché, 2016).

There are actually at least two other intractable
uncertainties leading to non-white noise, such as col-
ored noise due to noise correlation in the time di-
rection (Wang et al., 2015) and multiplicative noises
due to their dependence on the state (Spinello and
Stilwell, 2010; Wang et al., 2014; Agamennoni and
Nebot, 2014; Liu, 2015; Huang et al., 2015, 2016).
Noise correlation could occur at the same time in-
stant or one time step apart (or more complicated
multiple time steps apart). Interested readers can
refer to the provided references.

5.5 Robust filtering

Another filtering optimality is regarding the
adaptability against a class of more significant un-
certainties such as clutter, disturbances/outliers and
misdetection, termed robust filtering. These uncer-
tainties can be classified as “abnormal noise” to the
system, which are unfortunately too “strong” to be
effectively handled by the aforementioned maneu-
vering/adaptive model, noise estimation methods or
heavy-tailed/correlated noise modeling approaches.
Instead, robust filtering technologies such as Huber’s
M (maximum-likelihood-type)-estimation that can
detect clutter in either state processes or observa-
tions (Koch and Yang, 1998; Yang et al., 2001; Zhang
et al., 2016) or the H-infinity/H-∞ filter (Simon,
2006) that can handle arbitrary (unknown) noise of
bounded energy, are required.

A filter is called robust if the actual error vari-
ances guarantee a minimal upper bound for all ad-
missible uncertainties. This variant research theme
was stimulated by the increased interest in robust
control theory and has received a lot of attention in
1990s and early 2000s with the development of con-
vex optimization. Some robust Gaussian filters have
been reviewed in (Afshari et al., 2017; Simon, 2006).
Recent attention on robust filtering turns to sensor
network and practical considerations such as miss-
ing data , and communication delay (Dong et al.,
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2010), etc. It is out of the focus of this review, but
we have the following observation to highlight the
core difference between robust filtering and MMSE
filtering.

Highlight 8. Robust filtering is much more related to
robustness with respect to statistical variations than
it is to optimality with respect to a specified statistical
model. Typically, the worst case estimation error
rather than the MSE needs to be minimized in a robust
filter. As a result, robustness is usually achieved by
sacrificing the performance in terms of other criteria
such as MSE and computing efficiency.

6 Constraint

There are two basic types of constraints: physi-
cal constraints reflecting limits to physical state vari-
ables, such as positivity of mass or pressure and limi-
tation of speed or angle; and design constraints which
represent desired operating limits, such as techno-
logical limitations or geometric considerations of the
system. The constraint can be either on the state
or on the observation, and can be given either in
equality or inequality. For example, an equality con-
straint between the state variables can be written as
a function

C(xt) = 0 (26)

A constraint like this can be taken into account
at different stages during the process of filtering, cor-
responding to three different classes of constrained
estimation, in a bottom-up order:

• System modeling stage - modify the model,

• Filter updating stage - modify the filter, and

• Estimate output stage - modify the estimates.

6.1 Equality and inequality

6.1.1 Constrained system modeling

When the equality is defined between dimen-
sions of the state in (26), the state can be converted
to a lower-dimensional unconstrained state by repre-
senting part of the state vector as a linear function of
the remaining part as governed by the equality con-
straint (Wen and Durrant-Whyte, 1992) . The di-
mension reduction can also be achieved through null
space decomposition (Hewett et al., 2010), in which

an orthogonal factorization is used to decompose the
constrained state estimation problem into stochastic
and deterministic components, which are then solved
separately. In contrast, the equality constraint can
also be appended to the observation equation by cre-
ating an additional deterministic pseudo-observation
(Tahk and Speyer, 1990; Duan and Li, 2013) from the
constraint (26) as follows

yt = C(xt) (27)

with the observation always treated as of mean 0 and
variance 0.

The pseudo-observation model will increase the
observation dimension and thereby increase the size
of the matrix that needs to be inverted in the Kalman
gain computation. It will also lead to a singular co-
variance matrix, which may cause numerical prob-
lems. More importantly, in (27), the state is not
guaranteed to obey the constraint value, inappropri-
ate for strict mathematical constraints.

6.1.2 Constrained estimation process

Instead of modifying the systemmodels that will
either increase or reduce the problem dimensions,
an alternative systematic approach is to take into
account the constraint during the filtering process,
e.g., designing equality constrained dynamic systems
based on which the filter estimate satisfies the con-
straints automatically (Duan and Li, 2015; Xu et al.,
2013), in order to provide constrained point esti-
mates, together with constrained covariance matri-
ces in some cases. As a representative example, the
moving horizon estimation (MHE) filter minimizes
the mean square error while satisfying the constraint
(Ishihara and Yamakita, 2009). However, it is com-
putationally intensive for larger horizons and nonlin-
earities in the observation equation or constraint.

It is important to note, under the constrained
dynamics, the state process noise is state dependent
in general (Duan and Li, 2015). Simply, the Gaussian
distribution has an infinite tail, which does not hold
in limited/constrained state spaces.

6.1.3 Constrained estimates

If neither the system models nor the filters are
modified to accommodate the constraint, the last
thing that can be done is to adjust the final esti-
mate(s) produced by the unconstrained filter based
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on unconstrained system models. This can be done
in two ways, either projecting the state space outside
the constraint into the constrained area or truncat-
ing the unconstrained conditional PDF of the state
so that only the part residing in the constrained area
is preserved and the remainder is set to zero.

The method in (Ko and Bitmead, 2007; Julier
and LaViola, 2007; Kandepu et al., 2008) projects the
unconstrained estimate onto the constraint subspace
by a projection function p(xt) satisfying (cf.(26))

C(p(xt)) = 0 (28)

for all values of xt.
The simplest projection approach is called clip-

ping, which moves point estimates lying outside the
constrained region to the boundary (Kandepu et al.,
2008). Furthermore, for curve road tracking, a
nonlinear projection method based on second order
TSE is realized in (Yang and Blasch, 2009), gain-
ing higher accuracy than the first order linearization
(Wang et al., 2002). In (Ko and Bitmead, 2007),
the projected KF is extended from discrete-time to
continuous-time and from linear constraints to non-
linear constraints. In (Julier and LaViola, 2007), the
projection method is utilized twice: one to constrain
the entire distribution and the other to constrain the
statistics of the distribution. Simon (2010) has ana-
lyzed three different ways that the KF solution can
be projected onto the state constraint surface.

Instead of revising the point-estimate with re-
spect to the constraint, it is more theoretically sound
to modify the conditional PDF of the state estimate,
typically the first two moments of the PDF. This is
referred to as the truncation approach, in which the
shape of the conditional PDF within the constrained
region is preserved. This provides generally high-
quality estimates with moderate computational de-
mands (Teixeira et al., 2010). In this manner, linear
(Simon, 2006) and nonlinear inequality constraints
(Straka et al., 2012) were considered, respectively.

Nonlinear equality constraints differ from the
linear case due to two sources of errors: trunca-
tion errors because of nonlinear transformation of
the PDF and base point errors because the filter lin-
earizes around the estimated value of the state rather
than the true value (Julier and LaViola, 2007; Geeter
et al., 1997). To overcome these difficulties, the so-
called smoothly constrained KF is proposed (Geeter
et al., 1997), which transforms hard constraints into

soft ones and provides an exponential weighting term
that progressively tightens the constraints.

Although the pseudo-observation and projec-
tion methods share the same property which al-
lows projecting the state estimate to the constraint
surface, they are qualitatively different (Julier and
LaViola, 2007). The pseudo-observation method
uses the KF’s linear update rule and therefore is
linear and its parameters are chosen to minimize
the MSE estimate. The projection method can uti-
lize any projection operator consistent with the con-
straint. However, if this operator takes no account
of the covariance matrix, it can actually cause the
covariance to increase (Geeter et al., 1997). Illustra-
tions of both approaches can be found in (Julier and
LaViola, 2007).

6.2 Circular statistics

Circular estimation is involved when the state
or the observation is subject to periodic quantities
such as angle, orientation, or direction, which ex-
ists in an enormous number of periodic phenom-
ena. The shifted Rayleigh filter (Clark et al., 2007)
is a moment matching algorithm that exploits the
essential structure of the nonlinearities present in
bearings-only tracking and generates the exact pos-
terior given a Gaussian prior. Instead of suboptimal
constrained filtering that treats the periodic charac-
ter as a constraint, the more reliable and systematic
solution shall be based on circular/directional statis-
tics; please refer to (Kurz et al., 2016) for an excellent
survey on circular Bayes filtering.

A straightforward projection of the standard 1D
Gaussian distribution to the circular state space is
wrapping the Gaussian distribution around the unit
circle and adding up all probabilities wrapped to the
same point (as illustrated in Fig. 3), namely the
wrapped normal (WN) distribution, of which the
PDF can be immediately given as

pWN(θ;µ, σ) =
1√

2πσ

∞∑
k=−∞

e−
(θ−µ+2kπ)2

2σ2 (29)

where the circular variable θ ∈ [0, 2π), k ∈ N and
parameters for location µ ∈ [0, 2π) and for concen-
tration σ > 0 which resemble the mean and stan-
dard deviation of the corresponding Gaussian distri-
bution, respectively.



Li et al. / Front Inform Technol Electron Eng in press 17

−2
−1

0
1

2

−2

0

2
0

0.05

0.1

0.15

0.2

0.25

x
1
=cos(φ)x

2
=sin(φ)

p
(x

1
, 
x 2

)

Fig. 3 A WN distribution (red) is obtained by wrap-
ping a Gaussian distribution (blue) with µ = 0 and
σ = 2 around the unit circle (black) centralized around
origin, where [x1, x2]T gives the position on the circle.

7 New thoughts

7.1 Limitations of HMM and alternatives

Despite their popularity, HMMs are believed
to be poor for modeling speech due to the restric-
tive conditional independence assumption that the
latent state is assumed to be Markovian, i.e., the
conditional density of xt given the past state x1:t−1,
depends only on xt−1. To overcome the limita-
tion, there are two popular approaches. The first
is to introduce additional latent variables that allow
more complex inter-state dependencies to be mod-
eled, such as factor analyzed HMM, switching linear
dynamical systems (Rosti and Gales, 2003), and seg-
mental models (Ostendorf et al., 1996). The second is
to relax the assumption that observations are condi-
tionally independent given the current state by intro-
ducing explicit dependencies between observations
such as buried Markov models (Bilmes, 1999), mixed
memory models (Saul and Jordan, 1999), trajectory-
HMM (Tokuda et al., 2004), and conditional Markov
chains (Bielecki et al., 2017), to name a few.

Different from the stochastic modeling of the
state process, Judd etc. presented a series of non-
sequential/optimization based estimation and fore-
casting methods, particularly in the area of chaotic
systems and weather forecasting applications, e.g.,
(Judd and Stemler, 2009; Smith et al., 2010; Judd,
2015), avoiding the use of state transition noise vt in
(1). However, it seems that, research in this field is
very little interacted with the mainstream Bayesian
inference that plays a dominating role in signal pro-
cessing and information fusion. In fact, similar de-

terministic Markov models have been applied in the
noise reduction methods (Kostelich and Schreiber,
1993), MHE (Michalska and Mayne, 1995), and the
GN filter (Nadjiasngar and Inggs, 2013). Inter-
estingly, Judd’s shadowing filter yields more reli-
able and even more accurate performance than the
Bayesian filters when the nonlinearity is significant,
but the noise is largely observational (Judd and
Stemler, 2009), or when the objects do not display
any significant random motions at the length and
the time scales of interest (Judd, 2015). The GN fil-
ter that models the state transition by a determinis-
tic differential equation is proven to be Cramér-Rao
consistent (yielding minimum variance) (Morrison,
2012). These approaches emphasize the determin-
istic part of the system and frame the estimation
problem as optimization, which has the advantage of
dealing with constraints.

Highlight 9. The standard structure of recursive
filtering is based on infinite impulse response (IIR),
namely all the observations prior to the present time
have effect on the state estimate at present time and
therefore the filter suffers from legacy errors.

As such, once an error is made, whether due to
erroneous modeling, outliers or too much approxi-
mation, it can hardly be removed. To combat this,
several Kalman-like FIR (finite impulse response)
estimators have been proposed, e.g., (Kwon et al.,
1999; Liang et al., 2004; Zhao et al., 2016a,b), which
have been proven to be superior to the standard KF
in certain cases such as the noise covariances and
initial conditions are not known exactly and noise is
not white. The FIR filter shares the similar idea to
MHE on limiting the use of legacy information.

Moreover, particularly in the context of target
tracking, positioning and localization, HMM utilizes
only certain structural information in a specific and
exact manner. It is unclear how to properly use some
important but fuzzy/linguistic information such as a
context that “the trajectory is smooth” or “the tar-
get moves close to a straight line”. This type of
information is analogous to the aforementioned soft
constraint (Simon, 2010) but the difference is also
obvious: soft constraints are usually referred to the
constant that is strictly defined as in (26), (27), (28)
but does not need to be strictly satisfied while the
fuzzy/linguistic information addressed here can not
be quantitatively defined even.
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Given these considerations, Li et al. (2017a)
proposes to use a trajectory function to replace the
HMM for describing the state function, i.e.,

xt = f(t) (30)

where f(t) is a deterministic trajectory function of
time t (FoT) defined in the state-time domain.

Considering that any trajectory can be repre-
sented by a FoT to an arbitrary accuracy, formula-
tion (30) is quite general and versatile. Now, the
state estimation problem is reformulated as an tra-
jectory function estimation problem, which is finding
a deterministic trajectory that best explains the time
series observations in the underlying time-window
[k1, k2] that may move forward or extend-in-size with
time, conditioned on a priori model information.
Once the FoT estimate F (t) is obtained, the state
at any time t in the effective fitting time window
(EFTW) [K1,K2] (that does not have to be an inte-
ger) can be estimated, namely,

x̂t = F (t),∀t ∈ [K1,K2], (31)

where EFTW [K1,K2] at least covers the sampling
time window [k1, k2], namely K1 ≤ k1, k2 ≤ K2.

To incorporate any model information such as
that “the target is free falling” or “the trajectory
starts from a known position”, the trajectory func-
tion may be more precisely specified as F (t;Ck) ∈ F

where F is a finite set of specific functions, such as a
set of polynomials of no more than 3-order and Ck is
the parameter set to be estimated at discrete filtering
time instant k (when new sensor data arrive), both
of which shall reflect the a priori model information
and fully determine the FoT at discrete time instant
k. To be more precise, one may define a penalty fac-
tor Ω(Ck) on the model fitting error as a measure of
the disagreement of the fitting function to the model
constraint a priori, e.g.,

Ω(Ck) ,‖ F (t0;Ck)− x0 ‖ (32)

to measure the mismatch between the fitting trajec-
tory and known state x0 at time t0 given a priori,
where ‖ a−b ‖ is a measure of the distance between
a ∈ RDy and b ∈ RDy such as the square error.

Then, combining the observation function (2), a
priori constraint (32) and the trajectory FoT (30)
leads to an optimization problem for minimizing

both the data fitting error and the model fitting er-
ror, which can be written as follows

argmin
F (t;Ck)

k2∑
t=k1

‖ yt − ht(F (t;Ck), v̄t) ‖ +λΩ(Ck),

(33)
where v̄t is an average to compensate for the obser-
vation error that can be specified as the noise mean
E(vt) if known or otherwise as zero to assume zero-
mean noise and λ > 0 controls the trade-off between
the data fitting error and the model fitting error.

As an advantage to the HMM, the FoT motion
model (30) does not only ease restrictive indepen-
dence assumption among time series states but also
relaxes the chronological, uniform-incoming require-
ment posed on the observation series. As such, nei-
ther missing detection/delayed data, nor irregular
sensor revisit frequency will be so challenging as in a
Markov-Bayes estimator (Li et al., 2017a). More im-
portantly, the fitting framework accommodates poor
prior information on the target dynamics (while it
can handle smooth target maneuver) or even on the
sensor observation statistics. However, how to ob-
tain the statistical property of the estimate in these
situations is still an open problem.

7.2 Filter evaluation: on computing speed

So far, we have fully omitted the computing
speed of different estimators, which however is the
key in many real word applications. To set up a filter,
we must be clear that the affordable filtering itera-
tion interval is determined by the duration between
adjacent observations. That is, the filter updating
speed must be higher or at least equal to that of the
sensor revisit speed; otherwise, some sensor data will
be missed/delayed.

When the filter updating speed is much faster
than the sensor revisit speed, there will be some idle
time at each filter iteration before the next sensor
data arrives. This time can be used for additional
computation such as smoothing the estimate series
made so far (Li et al., 2016a) by revising preceding
estimates including the estimate that has just been
made. Or more straightforwardly, adjust the filter a
priori to properly include more computation (such as
using higher order polynomial expansions or a larger
number of sampling data-points or jointly exploiting
multiple filters for cooperation) to reduce the idle
time while obtaining better estimation.
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On the opposite, when the sensor revisit rate
is higher than the filtering iteration rate, or high
enough to always provide newest observation, such
as described by a continuous-time observation model
(Ghoreyshi and Sanger, 2015), it will be another
story. In such a situation, a faster updating filter has
the advantage of making use of more sensor data, and
suffering from smaller state transition uncertainty.
For example, in real time visual tracking based on
a high speed video stream, the video can be divided
to a sufficient number of frames. The more frames
used, the less difference between successive frames.
Both more frames and less process noise can help
track the content in the video. All of these will very
likely lead to the conclusion that a faster filter has a
better estimation performance.

Unfortunately, computing speed is often treated
as a pure engineering issue and is overlooked by theo-
retical scientists. Instead, different filters are usually
compared and evaluated based on the same simula-
tion/ experiment setting such as using the same sen-
sor data series and state process noises, disregarding
the real filter updating rate. These pure simulations
may be beyond reproach, but the indication makes
sense only in very limited real world scenarios. Oth-
erwise, whether the sensor revisit rate is high or low,
it is unfair to force a computationally faster filter to
wait [for a slower filter to have the same updating
rate for comparison]. It should always update as fast
as possible for maximally and timely utilizing more
sensor data if possible, or carry out additional calcu-
lation such as smoothing to improve its estimation
(before new sensor data arrive). In either way, we
assert clearly that:

Highlight 10. Computing speed matters!

Disregarding this key issue may lead to end-
lessly seeking complicated modeling and/or filtering
strategies for fantastically better result, which may
never come true in reality. To illustrate this, we con-
sider one case involved in sampling-based filters. In
a common simulation setup as addressed above (i.e.,
setting all parameters disregarding the computing
speed of the filter), more samples tend to yield bet-
ter estimation accuracy almost for sure. This, how-
ever, cannot be guaranteed at all in reality since fur-
ther increasing the number of samples will increase
the computational load, slow down the filtering it-
eration, and therefore increase the state transition

interval and the corresponding process noise. Even
some sensor data may be missed when the filter up-
dating rate turns to be slower than the sensor revisit
rate. Finally, it may reduce the estimation accuracy
more than it can improve. This fact will overturn the
simulation indication in which more samples will al-
most always offer better estimation. Bearing this in
mind, it is not always a good idea to develop compu-
tationally complicated filters, not only because it will
definitely cost more computation resources, but also
because it may lead to worse estimation accuracy.

8 Conclusion

The state-of-the-art time series parametric fil-
ters have been reviewed in four major categories,
including nonlinearity (especially very informative
nonlinear systems), multimode (including GM filter-
ing and MTT), intractable uncertainties (including
unknown and non-Gaussian inputs/noise) and con-
straints. We pointed out that a key concept behind
these works is approximate Gaussian conjugacy. A
few important points have been given in highlights,
as well as some of our thoughts on hidden Markov
modeling and practical filter evaluation. To avoid
unnecessary overlap with existing review/surveys,
several important topics such as noise covariance es-
timation approaches, correlated/independent noise-
based filters, and circular statistics-based filters were
not touched in this work.

Instead of addressing any applications of these
filters, we put our focus on the common and general
theory and algorithm design. However, we note that,
efficient filter design should be based on the specific
problem characteristics and requirement, e.g., esti-
mation in robotics can be very different to that of
fault diagnosis and that of target tracking.

In addition, to avoid over-wide discussion, an-
other two major subfields regarding time series para-
metric filtering were not addressed either, including:

• Sensor network related distributed fusion and
filtering, in the presence of imperfect sensor
data such as unknown correlation, communica-
tion delay, packet loss, etc., and

• Finite set statistics (Mahler, 2014) based multi-
target filtering, especially regarding multiple-
sensor multiple-target scenario in the presence
of misdetection and false alarm.
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Both topics are closely related and have gained
increasing interest. For example, finite set statistics
provide a promising platform for dealing with ran-
dom clutter/false alarms and misdetection as well
as a random, time-varying, number of targets. Re-
cently, an interesting connection of it to the con-
ventional multi-target filters is presented in (Streit,
2017). Sensor network based distributed fusion is
also highly tangled with imperfect sensor data such
as missing data (like misdetection), false data (like
false alarm) and moving sensory platforms (causing
sensor uncertainty). In particular, the rapid develop-
ment of sensors and their joint deployment, e.g., large
scale wireless sensor networks, provide a foundation
for new paradigms to address the challenges that
arise in harsh environments. As a consequence, the
signal processing community has showed increasing
interest in novel data fusion/mining methods such
as clustering, data fitting, and model learning, in-
cluding the mentioned GP regression, for incorporat-
ing statistical filtering techniques to gain substantial
performance enhancement. Hopefully and if in any
way possible, we plan to address these issues in our
second part of the series of survey.
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