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ABSTRACT 
 

With the increase in population and the scarcity of fresh water in the Middle East 

desalination has taken an important role in the provision of water for everyday use and 

for industrial purposes. Reverse osmosis water treatment process is of particular interest 

as it is one of the key processes in a desalination plant. The modelling of this process 

and the prediction of permeate flow is useful in better understanding the process. In the 

present study, an artificial neural network based model was developed based on plant 

data for the prediction of permeate flow performance. 

Plant data was collected and a number of variables determined. Principal component 

analysis was then carried and factor loadings obtained to identify the main variables. 

Once the main input variables were obtained a statistical analysis of the data was done 

in order to remove outliers present in the data. This was done because the presence of 

outliers in data to be analysed using ANN models renders the models ineffective in 

prediction of an output. Once the removal of outliers was done, the data was then 

analysed using the developed model. 1081 sets of data were originally used with twelve 

input variables. After principal component analysis was done the input variables were 

reduced to five with one output variable. With the removal of outliers 981 sets of data 

were obtained and these were then used in the model. 

The model was able to predict the output accurately with r2 at 0.97. Key factors 

determined from the process were that to obtain an optimum network one has to 

consider the epoch size, the transfer function, the learning rate and finally the number of 

nodes in the hidden layers. The number of hidden layers also had an effect on the 

overall prediction of the data. It is also important when using ANN models to obtain the 

correct input variables and to remove any outliers that are present in the data in order to 

be able to predict the output. The use of plant data severely limited optimisation of the 

process due to it already being heavily optimised. 
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Chapter 1 INTRODUCTION 
 

1.1 RESEARCH MOTIVATION 
 

Several factors have led to the development of membrane separation technology 

recently. The most important ones are the necessity of fresh water production for 

drinking, domestic, agricultural, landscape or industrial uses, the requirement of higher 

performance level methods for waste water reclamation and reuse applications, as well 

as lower regulatory maximum allowed levels of contaminants. Membrane processes are 

often chosen in water treatment technology since these applications achieve high 

removals of constituents such as dissolved solids, organic carbon, inorganic ions, and 

regulated and unregulated organic compounds. Reverse osmosis (RO) and nanofiltration 

(NF) membrane processes are used around the world for potable and ultra‐pure water 

production, chemical process separations, as well as desalination of seawater (salinity 

around 35 g/l) and brackish water (less salty than the seawater). Moreover, lately there 

has been a growing interest in the integration of such membrane technologies for 

municipal and industrial water treatment, since they have been recommended as suitable 

for cost‐effective desalination and removal of a wide range of low‐molecular‐weight 

trace organic constituents [1‐9].  

Reverse osmosis is a pressure driven membrane separation process, used for removing 

low molecular weight solutes, such as inorganic salts or small organic molecules, from a 

solvent. It relies on the use of a semi permeable membrane, which allows solvent 

molecules to pass through it, impeding the pass of solutes. When two solutions of 

different concentrations are separated by such a membrane, the solvent from the lower 

concentration solution will move through the membrane into the concentrated one, in a 

process called osmosis. The osmotic flow is attributed to the tendency to equalize the 

both size’s solute concentrations. However, if the liquid on one side of the membrane is 

pure solvent, the two concentrations can never be equal. In this case, the process of 

osmosis continues until the chemical potentials of both solutions are equal. This 

happens when the pressure exerted by the concentrated solution against the membrane is 

high enough to prevent any further solvent flow. The hydrodynamic pressure difference 

between the two solutions found at chemical potential equilibrium is called the osmotic 

pressure difference. In a reverse osmosis process, a pressure must be applied to the 
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concentrated solution in order to overcome the osmotic pressure and to force the solvent 

to cross the membrane against the concentration gradient, as represented schematically 

in Figure 1.1 [3]. 

 

Figure  1.1: Schematic diagram of reverse osmosis process (Mulder, 1997) 

 

1.2 AIMS AND OBJECTIVES 
 

The main aim of this research was to develop an artificial neural network model that 

would help in the prediction of permeate flow data of a reverse osmosis process  from 

the Institute of Research for desalination in Saudi Arabia. The stages involved in 

achieving this aim were as follows: 

1. Reverse osmosis data collection 

2. Data preparation such as statistical analysis 

3. Identification of outliers 

4. Creating the ANN model 

5. Analysis of the data using the ANN model 
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1.3 THESIS STRUCTURE 
 
The thesis consists of six chapters; Chapter 1 puts the thesis into general context. 

Chapter 2 reviews relevant literature, Chapter 3 outlines the basics of artificial neural 

networks, Chapter 4 discusses how the raw data used in this research was collected, 

Chapter 5 then discusses findings from this research and finally Chapter 6 concludes the 

thesis by providing overall conclusion and suggesting possible future work. 
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Chapter 2 LITERATURE REVIEW 
 

This chapter introduces desalination processes starting with the history of desalination 

and its needs and moving on to the classifications of desalination processes. We next 

illustrate the principle and operational variables in multistage flash and reverse osmosis 

desalination plants. 

 

2.1 NEED FOR DESALINATION 
 
Water is an important resource for use of mankind. It is essential for agricultural and 

industrial growth, as well as for supporting growing populations who require a safe 

drinking water supply. We find 97% of all water in oceans, 2% in glaciers and ice caps, 

and the rest in lakes, rivers and underground. Natural resources cannot satisfy the 

growing demand for low-salinity water with industrial development, together with the 

increasing worldwide demand for supplies of safe drinking water. This has forced 

mankind to search for another source of water. In addition, the rapid reduction of 

subterranean aquifers and the increasing salinity of these non-renewable sources will 

continue to exacerbate the international water shortage problems in many areas of the 

world. Desalination techniques are capable of providing the solution (Temperely, 1995). 

Desalination refers to water treatment processes that remove salts from saline water. 

 

2.2 DESALINATION TECHNOLOGIES 
 
Desalination technologies enable the reduction of salinity in water thus converting it to 

suitable water for human consumption. It can be divided into two processes; thermal 

and membrane separation. The thermal process is one of the most ancient ways of 

desalting brackish or seawater; it is based on distillation and involves boiling or 

evaporation. Steam generators and boilers provide the thermal energy required.  
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2.3 CLASSIFICATION OF DESALINATION PROCESSES 
 
Figure 2.1, shows the major desalting processes. 

Two of the most popular methods for classifying the well-known desalination processes 

are as follows: 

A. Phase change desalination process.  There are three main methods: 

o Multi-effect  distillation 

o Multistage flash distillation  

o Vapour-compression distillation 

B. Non phase change desalination processes. These include the following two main 

methods: 

o Reverse osmosis 

o Electrodialysis 

o Nanofiltration 
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Figure  2.1: Desalting processes classification (Khan, 1986). 

 

The use of a particular process of desalination depends on the salt concentration in the 

feed water and on its water unit cost. Distillation is the oldest and most commonly-used 

desalting techniques. It involves the evaporation of the saline water and condensation of 

the generated vapour occurring in order to obtain fresh water. More often than not the 

water produced is of superior quality as compared to that produced through 

crystallisation and membrane processes. 

 

2.3.1 Distillation: thermal processes 
 

2.3.1.1 Vapour Compression  
 

Vapour-compression distillation uses mechanical energy rather than thermal energy. 

Saline water is sprayed over an evaporator tube bundle and the vapour formed at some 

temperature and pressure is then compressed either thermally in a steam ejector, or 

mechanically in a compressor. The condensation temperature and pressure increase and 
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the volume decreases. Compressed vapour is passed through the evaporator bundle, 

where it condenses and forms distilled water. Vapour-compression plants have single 

effects however multi-effect configurations could be used for a larger product capacity. 

Figure 2.2 illustrates the principle of vapour compression. The process utilises little 

energy and as a result unit operation costs are low. However the water produced is of 

low quality.  

 

Figure  2.2: Principle of vapour compression (Khan, 1986). 

 

2.3.1.2 multieffect distillation (MED). 
 

One of the pioneering processes used to produce a significant amount of water from the 

sea is Multieffect distillation. It takes place in a series of vessels and uses the principle 

of reducing the ambient pressure in the various vessels in order of their arrangement.  

This causes the feed water to undergo boiling in a series of vessels without supplying 

additional heat after the first effect. MED units are usually built for capacities of 2000-
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20000 m3/day and the energy consumption is about 15 kWh/m3 (Al-Sahili, et al., 2007). 

Figure 2.3 illustrates the arrangement of a multieffect distillation. Vapour generated in 

the first vessel gives up heat to the second effect for evaporation and is condensed 

inside the tubes. 

The seawater is distributed onto the surface of evaporator tubes in a thin film to promote 

rapid boiling and evaporation.  The condensate is recycled to the boiler for reuse. 

The larger the number of vessels, the less heat that is required as heat sources. There are 

vertical and horizontal tube evaporation vessels. In horizontal vessels evaporation takes 

place on the outer surfaces of the heating tubes and thus steam is condensed in the inner 

tubes. 

 

Figure  2.3: Schematic diagram of a multieffect distillation plant (Khan, 1986). 
 

2.3.1.3 Multistage flash distillation (MSF) 
 

Multistage flash distillation processes work on the principle that seawater will evaporate 

as it is introduced into the first evaporator (flash chamber) with lower pressure than 

saturation pressure. It condenses and cools down to a saturation temperature equivalent 

to chamber pressure. It enables to produce fresh water with low salt concentrations (< 

10 mg/l) from feed water with salinities of up to 70 g/l. MSF units are built for 

capacities of 4000-57000 m3/d. It is an energy intensive process consuming about 18 
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kWh/m3 which is the highest of all established technologies. It is up to three times 

higher than that of a reverse osmosis unit. It is still often used due to its high reliability 

and its easy layout and process control (Al-Sahili, et al., 2007). 

The multistage flash distillation plants consist of three sections: heat-rejection, heat-

recovery, and heat input (brine heater). The heat-rejection and heat-recovery consist of a 

number of flash chambers (stages) connected to one another.   

 

 

Figure 2.4: A recirculating-brine multistage flash desalination plant (Khan, 1986). 

2.3.2 Membrane processes 
Membrane processes are based on the separation of water and salts via a semi-

permeable membrane. The reverse osmosis process uses pressure to separate the 

dissolved salts from the feed water. In electrodialysis, electricity is used. 

2.3.2.1  Reverse osmosis  
 

Reverse osmosis processes are of high interest in two fields; in the biological science, 

because of the importance of selective transport through cell membranes to life 

processes and in chemical processing, including water and waste water treatment. 

The process is simple and highly effective thus generating a lot of interest in research as 

well as general application in industry. It is generally a very fine filtration process that 

uses a membrane to filter out salt from a solution using minimal driving pressure, 

osmotic pressure difference below which it fails (Hanbury et al., 1993). 
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In the reverse osmosis process feed water is pressurised by high pressure pumps up to 

80 bats and passes through special membranes to an enclosed vessel. The vessels 

selectively block most dissolved solids including salts and let pure water through. The 

amount of fresh water produced is dependent on the applied pressure and salt content of 

the feed water. It goes without saying that energy consumption increases with growing 

membrane pressure however recent methods of energy recovery mean that the energy 

consumption can be reduced to about 3 kWh/m3 (Buros, 2000). 

Its efficiency depends on the type of membrane used, its ability in separation and its 

resistance to chemical and environmental effects. Recent developments in membrane 

technology and construction material have made reverse osmosis plant attractive for 

large desalting capacities. The membranes used are fine in nature. 

The process is widely used in the desalination of sea water for plant use, wastewater 

reclamation and most importantly in water production for human consumption (Van der 

Kooij, Hi- jnen & Cornelissen, 2009). 

 

2.3.2.1.1 Principles of reverse osmosis 
 

During the separation of pure water and a salt solution through a semipermeable 

membrane, the pure water diffuses through the membrane and dilutes the salt solution. 

The membrane rejects most of the dissolved salts and allows water to permeate. This 

phenomenon is known as natural osmosis (Figure 2.5a). 

As water passes through the membrane, the pressure on the dilute side drops and that of 

the concentrated solution rises. The osmotic flux continues until equilibrium is reached, 

where the net water flux through the membrane becomes zero (Figure 2.5b). 

At equilibrium, the liquid level in the saline water will be higher than that on the 

waterside.  The amount of water passing in either direction will be equal. The 

hydrostatic pressure difference achieved is equal to the effective driving force causing 

the flow, called osmotic pressure. This pressure is a strong function of the solute 

concentration and the temperature, and depends on the type of ionic species present. 

Applying a pressure in excess of the osmotic pressure to the saline water section slows 

down the osmotic flow, and forces the water to flow from the salt solution into the 
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waterside. Therefore, the direction of flow is reversed, and that is why this separation 

process is called reverse osmosis (Figure 2.5c). 

Between two solutions with different concentrations a difference in osmotic pressure 

exists. The osmotic pressure is the minimum pressure which prevents the movement of 

water molecules to the concentrated solution. To make reverse osmosis possible the 

external pressure has to exceed osmotic pressure. When osmotic pressure and external 

pressure are equal, no water is flowing. When external pressure exceeds the osmotic 

pressure, the water starts to flow from left to right. (Crittenden, Trussel, Hand, Howe & 

Tchobanoglous, 2005) 
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Figure 2.5: Principle of reverse osmosis (Mulder, 1997). 
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2.3.2.1.2 Process description and terminology 
 

A reverse osmosis system consists of four major components, shown in Figure 2.6. 

They are: 

o pre-treatment system 

o high-pressure pump 

o membrane assembly 

o post-treatment system 

 

 

Figure 2.6: Flow diagram of a reverse osmosis system (Mulder, 1997). 

 

2.3.2.1.2.1 pre-treatment system 
 

Feed pre-treatment is necessary in all desalination methods. Proper pre-treatment of 

water before it reaches the membrane key to successful operations of a reverse osmosis 

plant. The need for pre-treatment depends on the feed water composition, the recovery 

of the RO system, and the solubility of the particular salt. Specifically, a pre-treatment 

step has the following objectives: 

o To remove excess turbidity and suspended solids.  

o Inhibiting and controlling scaling and precipitate formation which would 

block the membrane. 

o  To disinfect and prevent bio fouling and equipment contamination. 
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A new method for pre-treatment is the use of micro- or ultrafiltration. They give defined 

protection against particles. Membrane filtration has the advantage of non-chemical 

treatment and it can replace the granular filtration of conventional pre-treatment which 

needs chemical dosing. Micro and ultrafiltration membranes have also backwash 

possibility. They are more flexible to changes in feed water quality than conventional 

pre-treatment methods. Because of the good rejection of micro and ultrafiltration, 

reverse osmosis membranes age slower. (Greenlee, Lawler, Freeman, Marrot & Moulin 

2009) Recent studies show that ultrafiltration has become the most tested and studied 

membrane filtration pre-treatment (Van Hoof, Minnery, Mack 2001, 164-166. Halper, 

McArdle & Antrim 2005). The disadvantage of pre-treatment with membrane filtration 

is fouling of the pre-treatment membranes themselves. Fouling can be reduced by the 

use of inline coagulation. Coagulant cannot be applied at the same time with antiscaling 

agent. Coagulant and antiscaling chemical form together a complex which is a very  

difficult foulant (Greenlee, Lawler, Freeman, Marrot & Moulin, 2009). Ultrafiltration 

has yet another disadvantage, according to studies, ultrafiltration results in a very good 

rejection of particles but it does not remove material that causes bio fouling. (Van der 

Kooij, Hijnen & Cornelissen, 2009), (Vrouwen velder, van Paassen, van Agtmaal, van 

Loosdrecht, Kruithof, 2009). 

 

2.3.2.1.2.2 high-pressure pump 
 

It raises the pressure of the pre-treated feed water to the required feed pressure. The 

pressure required depends on the concentration and temperature of the feed water. 

Osmotic pressure increases with increasing concentration, so that the operating pressure 

must exceed the osmotic pressure corresponding to the concentration of the rejected 

brine at the membrane outlet. It can be up to three times the osmotic pressure for 

seawater desalination.  Brackish water requires 17-27 bar, whereas seawater operates in 

the range of 50-80 bar (Al-Sahili, et al., 2007). 

Figure 2.7 depicts the osmotic pressure of sodium nitrate, chloride and sulphate, and 

seawater as a function of salt content 25°C. In addition, osmotic pressure increases with 

temperature, so that any increase in the temperature must be accompanied by an 

increase in the applied pressure. 
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Figure 2.7: Osmotic pressures of sodium nitrate, chloride and sulphate, and seawater at 

25°C (Hanbury, et al., 1993). 

 

2.3.2.1.2.3 membrane assembly 
 

Membranes were originally made from cellular acetate but with advances in technology 

reverse osmosis processes use a variety of blends or derivatives of cellular acetate, 

polyamides. Plate-and-frame, tubular, spiral-wound and hollow-fine-fibre membranes 

are the most popular reverse osmosis devices. 
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An ideal membrane should have the following characteristics (Mulder, 1997): 

o High salt rejection 

o High permeability to water 

o Resistant to high temperature 

o Resistant to oxidizing agents 

o Resistant to all kind of fouling  

o Chemically, physically, and thermally stable in saline water. 

o Capable of being formed to yield high membrane area-to-volume ratio  

o Long and reliable life. 

o Inexpensive. 

 

Figure 2.8 shows the factors influencing the membrane performance. 

 

 

Figure 2.8: Factors influencing the membrane performance (Mulder, 1997). 
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2.3.2.1.2.3.1  Spiral-Wound Systems 
 

Originally developed in the mid-sixties, they became commercially available in the late 

sixties and replaced tubular membranes in water producing installations. They are 

characterised by their high packing densities in the order of 600 m2/m3 and can operate 

at pressures of up to 80 bar. 

Figure 2.9 shows the spiral-wound membrane assembly consisting of two or more 

leaves (envelopes). Each leaf has two flat sheets of semipermeable membrane separated 

and supported by a porous backing material, and sealed together at the edges by special 

epoxy or polyurethane adhesives. The edges of the membrane are sealed on three sides 

only to form a flexible envelope. The open end of the envelope is sealed around a 

central product collection tube from which the permeate flows. A flexible spacing, 

plastic netting is placed on top of the sealed membrane sandwich and the whole roll 

material is wrapped around the central tube, to form a spiral wound unit. This unit is 

then inserted into a glass-fibre, pressure vessel for use. 

 

 

Figure 2.9: Spiral-wound membrane assembly (Khan, 1986). 

2.3.2.1.2.3.2 Hollow Fibre Membranes 
 

Developed in the late sixties, they became commercially available in the early seventies. 

They have a maximum area per unit volume (about 30,000 m2/m3). They are designed 

as long capillary tubes with a diameter of about a human hair. The capillary tubes have 

an outside diameter of 80-200 microns, about twice the inside diameter of 40-100 
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microns, so they are relatively thick-walled tubes. An outside-to-inside diameter ratio of 

2 to 1 gives the fibres the strength to resist the high pressure involved. 

Figure 2.10 shows the hollow fibre membrane configuration. Millions of membrane 

fibres are arranged and wound around a backing cloth as a bundle which is rolled up 

around a feed distribution pipe, and then assembled into a sealed cylindrical pressure 

vessel made of a glass-reinforced plastic. Each end of the fibre bundle is set into epoxy 

resin blocks so that the bores are exposed. One end remains sealed, while the other is 

then cut away to expose the open end. This arrangement is much like a shell-and-tube 

arrangement, with the fine tube open at one end. 

 

 

Figure 2.10: Hollow fibre membrane assembly (Khan, 1986) 

 

2.3.2.1.2.4 Post-Treatment System 
 

The water produced as a product from the reverse osmosis plant requires further 

treatment before storage and transmission to consumers. This is necessary as the 

product water can cause serious corrosion problems in the pipe transmission system. 

(Hanbury, 1993). 
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The produced water requires pH adjustment. This is done by adding a base or by 

degasification (H2S and CO2). Most reverse osmosis membranes reject calcium in 

preference to sodium thus necessitating the addition of calcium salts. The water further 

requires disinfection to curb bacterial growth. 

 

2.3.2.1.3 Reverse osmosis working equations 
 

The reverse osmosis membranes must be tested for fluxes, salt rejection, and recovery 

under various temperatures, pressures, and feed water salinities. 

 

2.3.2.1.3.1 Water flux 
 

Water flux is defined by Equation 2.1, (Mulder, 1997) ; 

 

( )π∆−∆= PKJ 11        (2.1) 

 

τ
AKK w=1         (2.2) 

 

∑= iMT21.1π       (2.3) 

 

Where 

1J  Water flux (m3/m2/sec) 

P∆  Hydraulic pressure differential across the membrane (atm) 

π∆   Osmotic pressure differential across the membrane (atm) 
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1K   Pure water transport coefficient, i.e. the flux of water through the membrane per unit 

driving force, (m3/m2/sec atm) 

wK   Membrane permeability coefficient for water. 

A   Membrane area (m) 

τ   Membrane thickness (m) 

T   Feed water temperature (K) 

iM   Molarity of the ith ionic or non-ionic materials 

1K  is given by the membrane manufacturer or may be found by solving the equation at 

the standard test conditions. It depends on the membrane properties, temperature of the 

system and the chemical composition of the salt solution. 

 

2.3.2.1.3.2 salt flux 
 

It is an indicator of membrane effectiveness in the removal of salts from water. The salt 

flux as defined by Equation 2.4 (Mulder, 1997) is a function of the system temperature 

and the salt composition. Therefore, it is a property of the membrane itself and 

indirectly related to the feed pressure. It is proportional to the salt concentration 

difference across the membrane, according to the following equations; 

 

CKJ ∆= 22       (2.4) 

 

pf CCC −=∆      (2.5) 

 

where 

 

2J   Salt flux (Kg/m2/sec) 
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2K   Salt transport coefficient (m/sec) 

fC   Salt concentration in the feed (Kg/m3) 

PC   Salt concentration in the product (Kg/m3) 

 

Due to water flux being higher than that of salt through the membrane, an accumulation 

of salt on the membrane surface on the pressurised side of a membrane arises. This 

phenomenon is called concentration polarization. The increase in concentration 

polarization has two effects 6 (Mulder, 1997) 

o Increases the osmotic pressure thus reducing the water flux across the 

membrane. 

o Increases the driving force of the concentration difference across the 

membrane thereby reducing the driving potential and increasing the salt 

passage thus impacting negatively on product quality. 

 

2.3.2.1.3.3 Salt Rejection 
 

Salt rejection expresses the effectiveness of a membrane to remove salts from the water. 

It can be calculated from Equation 2.6 (Mulder, 1997); 

 

% 𝑠𝑎𝑙𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = �1 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝐹𝑒𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

� × 100%    (2.6) 

 

The salt passage depends on the feed water temperature and composition, operating 

pressure, membrane type and material, and pre-treatment. 

Salt passage and bundle pressure drop are the two indicators of membrane fouling. 
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2.3.2.1.3.4 Recovery 
 

Recovery rate of a RO system is defined by Equation 2.7(Mulder, 1997). 

 

𝑅 = 𝑄𝑝

𝑄𝑓
× 100%       (2.7) 

where 

PQ   Product flow (m3/day)  

fQ   Feed flow (m3/day) 

The recovery is specified by the feed water salinity. For example, seawater plant’s 

recovery varies between 20-35%.Increasing the recovery raises the brine concentration 

and the osmotic pressure, thus decreasing the permeate flux and increasing the total 

dissolved solid in the product.  We can increase the recovery by increasing the number 

of banks in the system. 

 

2.3.2.1.4 Reverse osmosis process variables 
 

When a reverse-osmosis system is used on a commercial level, it is important to check 

its performance periodically. As time passes, the membrane performance deteriorates 

continuously due to pressure compaction and fouling. This causes its transport 

parameters to change, and the performance of the module to decline. Therefore, data 

monitoring is an important step in optimizing the performance of an RO plant. The 

important operating variables of a RO desalination process are as follows; 

 

2.3.2.1.4.1 Permeate flux 
 

At a given feed salinity, the feed flow rate affects the production rate of the plant, water 

recovery, and the number of modules. A low production rate, below design 

specifications, could be an indication of membrane fouling. Every stage in an RO plant 
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is designed to operate at a certain recovery, which is the ratio of product flow to the feed 

flow. If the recovery is above the design specification, then the brine concentration and 

the osmotic pressure will increase, causing a decrease the permeate flux and an increase 

in dissolved solid content in the product. 

Since the feed flow is maintained constant during operation, the product flow must be 

controlled to maintain a constant recovery during operation. 

 

2.3.2.1.4.2 Permeate conductivity 
 

The main objective of an RO process is to produce product of a low total dissolved 

solids content. However, since the TDS is not easily measured except under controlled 

conditions in laboratories, the plant operators use conductivity to estimate the quality of 

the water produced. 

Monitoring the product conductivity is necessary to produce good water product. A 

gradual or rapid increase in the product conductivity is an indication of membrane 

fouling or mechanical damage in the membrane module, respectively. 

Both permeate flux and conductivity are affected by (Mulder, 1997); 

o pH 

o Temperature 

o Pressure 

 

2.3.2.1.5  MEMBRANE FOULING 
 
 
Fouling is the most important issue for membrane applications. It causes flux decline 

and shortens the membrane life. Fouling can be categorized by different characters: 

mechanism, reversibility and foulants (Crittenden, Trussel, Hand, Howe & 

Tchobanoglous, 2005). Surface fouling and fouling in pores are the two fouling 

mechanisms that are commonly detected. Fouling causes water flux decline, increase of 

trans-membrane pressure drop and feed channel pressure drop, and salt passage through 

NF/RO membranes (Greenlee, Lawler, Freeman, Marrot & Moulin, 2009). Permanent 

loss of performance after cleaning is called irreversible fouling. Reversible fouling is 
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fouling that could be removed by backwashing or cleaning (Crittenden, Trussel, Hand, 

Howe & Tchobanoglous, 2005). The next sections describe four common types of 

fouling: particulate fouling, organic fouling, scaling, and bio fouling. 

 

2.3.2.1.5 .1 Particulate fouling 
 

Source water for reverse osmosis is often sea water or brackish water and compared to 

fresh surface waters sea water has less particle content. However sea water treatment 

plants that treat water from open water intake are typically fouled by particles and 

organic matter. Particle fouling is caused by sand, sludge, silicates, salt precipitates and 

remains of micro- organisms. Particle fouling causes cake formation on the membrane 

and plugging in the feed channel or piping. From micro and ultrafiltration membranes 

particle fouling is easy to remove with backwash but NF/RO processes do not have a 

backwash cycle. Big part of particles exits the membrane in the concentrate because of 

turbulence flow in the membrane elements. If the load of particles is too big or there is 

not enough turbulence, particles will start accumulating which results in salt passage 

through NF/RO membrane, pressure drop over membrane elements and a decrease  in  

water  flux. Ultrafiltration and   microfiltration as a pre-treatment for reverse osmosis 

give excellent particle removal (Crittenden, Trussel, Hand, Howe & Tchobanoglous, 

2005), (Greenlee, Lawler, Freeman, Marrot & Moulin, 2009),(Van der Kooij, Hijnen & 

Cornelissen, 2009). 

 

2.3.2.1.5.2  Organic fouling 
 

Natural organic matter is a term often used when describing organic material. Natural 

organic matter (NOM) is a term used to characterise a complex group of organic 

chemicals originating from biological activity in water bodies such as metabolic activity 

of algae or micro-organisms. It can also be washed from land into water. It is composed 

of biological matter, reaction products between NOM molecules or reaction products 

between NOM molecules and inorganic components. This makes it very complex 

mixture of different chemical features (Crittenden, Trussel, Hand, Howe & 

Tchobanoglous, 2005). NOM consist of particles, biological material and dissolved 
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organic compounds. It can be partly removed by backwashing from MF/UF membranes 

(Crittenden, Trussel, Hand, Howe & Tchobanoglous, 2005). Also coagulation and 

activated carbon treatment as part of MF/UF can help to reduce organic content and thus 

decrease fouling. 

In NF/RO processes NOM precipitates and adsorbs on the membrane surface and 

causes decrease in water flux (Van der Kooij, Hijnen & Cornelissen, 2009). Organic 

fouling can be reduced by pre-treatment with bio filtration or very tight ultrafiltration 

membranes are also able to reduce the organic load (Liikanen, 2007), (Mosqueda-

Jimenez, Huck, 2009). 

 

2.3.2.1.5.3  Scaling 
 

Scaling is fouling by inorganic substances. Scaling occurs when the concentration of 

salts exceeds the solubility and they start to precipitate. They crystallise on the 

membrane surface. Micro and ultrafiltration membranes allow salts to permeate through 

the membrane so the salt concentration will not rise on the membrane surface. Scaling is 

mainly a problem of NF/RO membrane processes. In sea and brackish water there are 

lots of inorganic ions. The main ions are calcium, magnesium and barium. 

Concentration polarization is a phenomenon which occurs when dissolved ions 

accumulate in a thin layer of the feed water. It is the ratio of salt concentration at the 

membrane surface and in the bulk solution. Concentration polarization decreases water 

flux through the membrane and increases salt transport through the membrane. It leads 

also to scaling. Water flux declines because higher concentration on the membrane 

surface causes higher osmotic pressure which leads to the overall pressure difference 

decrease. Salt transport increases due to increase in concentration and decrease in water 

flux. Scaling is prevented by using antiscalants which increase the threshold of 

concentration when the ions start to crystallise and disturb the formation of crystal 

structure (Crittenden, Trussel, Hand,  Howe  &  Tchobanoglous,  2005). 
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2.3.2.1.5.4  Bio fouling 
 

Bio fouling is accumulation and attachment of micro-organisms on membrane surface 

where they form a biofilm. Bio fouling is troublesome because it cannot be controlled 

by reducing microbes in the feed water. If there is any microbe left, it will multiply as 

long as nutrients are available. (Crittenden, Trussel, Hand, Howe & Tchobanoglous, 

2005.) Part of NOM can be used by micro-organisms as nutrient. Assimilable organic 

carbon (AOC) is a ready to use energy source for microbes and if it’s available in big 

concentrations that means that microbes have a lot of potential to grow. So the bio 

fouling potential can be derived from nutrient concentration in the system. (Van der 

Kooij, Hijnen & Cornelissen, 2009) 

A biofilm is formed always when micro-organisms have a surface to attach. Micro-

organisms can attach to the membrane and they are difficult to remove during 

backwash. On the membrane they start to excrete gel-like extracellular material that 

protects them from cleaning and results in additional fouling. The possibilities to 

prevent bio fouling are disinfection, biocide dosing and nutrient reduction by bio 

filtration. Disinfection kills microorganisms but if the dead biomass is not removed a 

new biofilm will grow on it fast using the biodegradable compounds from the dead 

mass. According to studies limiting nutrient concentration is an effective way to control 

bio fouling (Griebe, Flemming 1998, 156. Hu, Song, Ong, Phua, Ng 2005, 128, 132). 

Biofilm forms in phases. It occurs when the biofilm growth exceeds the threshold of 

interference. Because it’s impossible to kill all the micro-organisms from the system, 

the other option is to live with biofilm formation as long as it does not  lead to bio 

fouling. The threshold of interference is the limit below which the biofilm does not 

interfere with membrane performance. Bio fouling results mainly in pressure drop 

increase but it can also decrease the permeate flux and salt rejection on NF/RO 

membrane.  
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2.3.2.2  Electrodialysis  
 

Many salts in water are ionic in nature and thus can be attracted to an electric field. 

Electrodialysis involves the use of two membranes, that is the cation and the anion 

membrane. The cation membrane allows only positive ions to permeate whereas the 

anion membrane allows only negative ions to permeate. The membranes are alternately 

immersed in salty water in parallel, and an electric current is passed through the liquid. 

The cations migrate to the cathode and the anions migrate to the anode. Water passing 

between membranes is then split into two streams, pure water and brine.  Due to the 

energy being used in the process being directly proportional to the quantity of salt 

removed it is usually used in the desalination of brackish water. Figure 2.11 illustrates 

an electrodialysis process. 

 

Figure 2.11: Principle of electrodialysis (Khan, 1986). 
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2.4 ADSORPTION 
 
Selective adsorption concerns the separation of components in a fluid mixture by the 

transfer of one or more components (the adsorbates) to the internal surface of a porous 

solid (the adsorbent) where they are held by intermolecular forces. Desorption is the 

reverse process in which the adsorbates are removed from the solid surface so that the 

adsorbent becomes partially or fully regenerated for reuse.  

Selective separation may depend on one or more of three mechanisms (Crittenden B.D. 

and Thomas J., 1998): 

1. Differences in adsorption equilibria between adsorbates and the adsorbent (the 

equilibrium mechanism) 

2. Differences in the rates of adsorption and/or desorption of different adsorbents 

within the adsorbent structure (the kinetic mechanism) 

3. Complete exclusion of one or more adsorbates from the adsorbent pores because 

they are too small (the true molecular sieving mechanism) 

 

The phenomenon of adsorption- the accumulation of concentration at a surface is 

essentially an attraction of adsorbate molecules to an adsorbent surface. Adsorption 

occurs when molecules diffusing in the fluid phase are held for a period of time by 

forces emanating from an adjacent surface. The surface represents a gross discontinuity 

in the structure of the solid, and atoms at the surface have a residue of molecular forces 

which are not satisfied by surrounding atoms like those in the body of the structure (5). 

These residual forces are common to all surfaces and the only reason that certain solids 

are designated ‘adsorbents’ is that they can be manufactured in a highly porous form, 

giving rise to a larger internal surface area (Coulson J.M., Richardson J.F., Backhurst 

J.R., Harker J.H., 1991). Interaction between adsorbate and adsorbent consists of 

molecular forces embracing (Crittenden B.D. and Thomas J., 1998): 

• Permanent dipole 

• Induced dipole 

• Quadrupole electrostatic effects (van der Waal’s forces)- 



29 
 

The reason for the preferential concentration of molecules in the proximity of a surface 

to arise is because the surface forces of an adsorbent solid are unsaturated. When 

adsorption occurs, both short range (repulsive) and long range (attractive) forces 

between adsorbate and adsorbent become balanced (Crittenden B.D. and Thomas J., 

1998).   

The adsorption which results from the influence of van der Waals forces is essentially 

physical in nature. The forces in this case are not so strong and therefore the adsorption 

can easily be reversed. In some systems, additional forces bind adsorbed molecules to 

the solid surface. These are chemical in nature and they involve the exchange or sharing 

of electrons, or molecules breaking up into atoms or radicals. It is less easily reversed 

than physical adsorption.  

Highly volatile components with low polarity, as represented by hydrogen in this case, 

are essentially non-adsorbable compared with other molecules.  

When a molecule having three degrees of freedom approaches an unsaturated surface, at 

least one degree of freedom is lost. This is a consequence of its attraction to the surface 

where it is constrained to movement across the adsorbent surface. When spontaneous 

processes such as physical adsorption occur, there is a decrease in Gibbs free energy (

0<∆G ). Further, there must also be a decrease in entropy because the gaseous 

molecules lose at least one degree of freedom (of translation) when adsorbed as seen in 

Equation 2.8 balanced (Crittenden B.D. and Thomas J., 1998). 

 

STHG ∆−∆=∆       (2.8) 

 

It follows then from the expression above that delta H becomes negative, that is to say 

heat is released. Physical adsorption is normally characterized by the liberation of 

between 10 to 40 kJ/mol of heat which is close to condensation values.  
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2.4.1 Granular activated carbon 
 

Many adsorptions of organic substances by GAC result from specific interactions 

between functional groups on the sorbate and on the surface of the sorbent. There are 

three primary rate steps in the adsorption of materials from solution by GAC, that is the 

transport of the adsorbate through a surface film to the exterior of the adsorbent, film 

diffusion, second is the diffusion of the adsorbate within the pores of the adsorbent, 

pore diffusion, third is adsorption of the solute on the interior surfaces bounding pore 

and capillary spaces. For most operating conditions the transport of the adsorbate 

through the surface film or boundary layer is rate limiting, if sufficient turbulence is 

provided the transport of the adsorbate through the porous carbon may control the rate 

of uptake. 

Factors affecting adsorption are (Crittenden B.D. and Thomas J., 1998); 

• Surface area 

• Solute properties 

• Temperature 

• Adsorbent properties 

 

2.4.1.1 granular activated carbon from date pits  
 

The final product of activation process of carbonaceous materials is activated carbon. 

The activation commences with carbonisation of the raw material to obtain high carbon 

content within this material. That is a material with a high degree of porosity and large 

inter particulate surface area which are the desired properties of activated carbon and 

useful particularly in the removal of organic compounds in filtration and separation 

process. 

Activated carbon is predominantly used for water treatment, waste reclamation, gas 

purification and as a catalyst support. The adsorption capacity depends on method of 

preparation and initial structural property. They can be prepared by physical or chemical 

activation. Activated carbon produced by the physical method is obtained after two 

steps, the first step being carbonisation which involves pyrolysis of the carbon material 

at high temperature in inert conditions to aid in the removal of oxygen and hydrogen 
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elements from the structural matrix. The second step is thermal activation at a higher 

range of temperature than the previous step in the presence of an oxidising gas such as 

water or carbon dioxide or both. Chemical activation usually involves one step, that is 

both pyrolysis and activation occur simultaneously in the presence of dehydrating 

agents. 

Activated carbon can be produced from any organic substance with high carbon content, 

recently many agricultural by products have been used as raw material in the production 

of activated carbon such as; coconut shells, olive stones, cherry stones and pecan stones, 

very few studies have been conducted on date stones. As of 2004, world production of 

dates was approximately 6.7 million tonnes. The major producers happen to be in the 

Middle East. As can be seen in Table 2.1, dates have a significantly high source of 

carbonaceous material and hence would be ideal for the production of GAC. 

 

Table 2.1: Approximate chemical composition of dates pits (% dry weight) (Bouchelta 

et al, 2008). 

Compound % 

Moisture 5-10 

Protein 5-7 

Oil 7-10 

Ash 1-2 

Crude fibre 10-20 

Carbohydrates 55-65 
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2.6 CLOSURE 
 
Desalination means the removal of fresh water from saline water.  Distillation is the 

oldest and most commonly-used desalting techniques.  In this process, evaporation of 

the saline water and condensation of the generated vapour occur to obtain fresh water. 

Reverse osmosis is pressure-driven processes, to allow water, not salt, to diffuse from a 

salty solution across a semipermeable membrane. The pressure difference across the 

membrane should be high enough to overcome the osmotic pressure and push 

reasonable water flux across the membrane. The proper pre-treatment of water before it 

reaches the membrane is the key to successful operation of a reverse osmosis process. 



33 
 

Chapter 3 ARTIFICIAL NEURAL NETWORKS  
 

This chapter discusses the artificial neural networks and there various methods 

especially those that will be employed in the modelling approach of the desalting 

process. 
 

3.1 INTRODUCTION 
 
Interest in the early development of neural networks arose from the desire of 

researchers to mimic human brain functionality (Barr and Feigenbaum, 1981). A 

neural network is an intelligent data-driven modelling tool that is able to capture 

and represent complex and non-linear input/output relationships (Robert Hecht-

Nielson, 1990). Neural networks are used in many important applications, such as 

function approximation, pattern recognition and classification, memory recall, 

prediction, optimisation and noise-filtering.  

 
The human brain has the ability to learn and classify. Neural networks take their name 

from the simple processors in the brain, called neurons, which are interconnected by a 

network that transmits signals between them. 

 

3.2 NEURONS 
 

The brain is made up of a large number of connected cells called neurons which are 

paired to receptors and effectors. The relationship between receptors and effectors is 

best understood through the study of a neuron. Figure 3.1 shows the major components 

of a typical nerve cell (neuron) in the central nervous system.  The major structure of 

the cell includes dendrites, cell body, and axon.  Dendrites are the receptive zones and 

form the major part of the input layer of the neuron. The axon acts as a transmission 

line or the output. Synapses connect the axon of a neuron to other neurons. 

 

When an input signal is transmitted into the synapses local changes in the input 

potential in the cell body of the receiving neurons occurs. The potentials are weighted 

since some are stronger than others thus the resulting inputs are either excitatory or 

inhibitory. Polarisation increases with the later and decreases with the former. 

When the input signals (nerve impulse) come into these synapses, this results in local 

changes in the input potential in the cell body of receiving neurons. The input 
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potentials are summed at the axon hillock.  If the amount of depolarization at the axon 

hillock is equal to or greater than the threshold for the neuron, then an action potential 

(output) is generated and travels down the axon away from the main cell body. Figure 

3.2 shows the block diagram of the nervous system. 

 

 
 

Figure  3.1: A simplified representation of a neuron (Haykin, 1994). 

 

 

 
 

Figure  3.2:  Block diagram of the nervous system (Haykin, 1994). 

 

The nervous systems adjust to a signal which is termed learning and the rate of 

responding by firing an output is altered by the activities of the nervous system.  

Individual neurons process information by receiving signals from the dendrites and 

produce outputs that are transmitted to other neurons. 

 

 

3.3 NEURAL NETWORK ARCHITECTURE 
 

Neural networks can be thought of as black box devices into which specific inputs are 

sent to each node in the output layer. The network then processes the information 

through the interconnections between the nodes. The network then gives an output 

from the nodes on the output layer. One cannot view the processing step.  Figure 3.3 
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shows a typical neural network structure. The layers are summarised as 

follows(Haykin, 1994): 

 

• Input Layer:  receives information from an external source and forwards this 

information for processing. 

• Hidden Layer: it receives the information from the input layer and processes it 

in the background 

• Output Layer: A layer of neurons that receives processed information and sends 

output signals out of the system. 

 

 
Figure  3.3: Structure of a typical multilayer neural network (Haykin, 1994). 

 

The number of inputs and outputs determine the number of neurons on the input and 

output layer. The number of neurons on the hidden layer is dependent on the network 

application. 

 

3.4 PROPERTIES OF NEURAL NETWORKS 
 

3.4.1 Neural networks merits 
 

Neural networks derive their computing power in solving complex problems through 

their parallel distributive structure, and their ability to learn and therefore generalize. 

 

Table 3.1 summarizes some of the useful properties and capabilities of neural networks 

that give them advantages over conventional algorithmic techniques. 
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Table  3.1: Neural network properties and capabilities (Baugham and Liu,1995) . 

STRENGTHS REMARKS 
In/Output Mapping Network learns by identifying in/output 

relationship for the problem 

Adaptability A neural network trained to operate in a 

specific environment can be retrained to 

discover new input relationships 

Non linearity Neural networks are inherently non linear 

thus can model complex relationships 

Effective in processing inconsistent or 

incomplete data 

Easily minimises incomplete data in any 

given node as the nodes send continuous 

functions 

Knowledge is disbursed throughout the 

system 

In neural networks knowledge is not 

stored in specific memory locations thus 

greater flexibility of the system 

Online use plausible Initial training may take a long time but 

after training, the process becomes easier 

hence could be used online for a control 

system 

No programming Algorithms do not have to be known and 

written as the neural network programs its 

own solution to a problem 

Knowledge indexing Ease of indexing and storage of a large 

amount of knowledge between variables 

and ease of access of this data 

 

3.4.2 Neural networks limitations 
 

Neural networks are inappropriate for applications that require number crunching or for 

situations where an explanation of behaviour is required. Table 3.2 illustrates a number 

of concerns that must be understood before deciding to use neural networks for a 

specific application. 
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Table  3.2: Limitations of neural networks (Baugham and Liu,1995) 

 

LIMITATIONS REMARKS 
Long training time Training time is usually long and increases 

with the complexity of the problem 

Not precise If precision is required, neural networks 

cannot justify the accuracy of computed 

answers as training may get trapped in 

local minima 

Not 100 % reliable True with limited training data 

Difficulty in selecting inputs Whereas outputs are easy to select, the 

selection of the wrong inputs leads to poor 

predictions 

Large amounts of training data Neural networks need large amounts of 

training data to be effective and as such 

cannot be used if one has very little data or 

similar data 

 

3.5 NEURAL NETWORK APPLICATION 
 

Neural networks can deal with problems that are complex, nonlinear, and uncertain, 

due to the properties and capabilities listed in Table 3.2. Table 3.3 lists several typical 

neural network applications as provided by Matlab. 
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Table  3.3: Potential applications of neural networks (Baugham and Liu,1995). 

 

APPLICATION DEFINITION 
Prediction Uses input to predict an output 

Classification Uses input values to predict a categorical 

output. 

Data Association Learn associations of error free data and 

classify data which contain errors 

Data Conceptualisation Analyse data and determine relationships 

Data Filtering Smoothing input data 

Optimisation Determine optimal values 

 

 

3.6 NEURAL NETWORKS ELEMENTS 
 

The node/neuron is the basic component of the neural network. They contain 

mathematical processing elements governing the operation of the neural network. 

Figure 3.4 illustrates a single node of a neural network. 

 

 
 

Figure  3.4: Single node anatomy (Haykin, 1994). 
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3.6.1 Inputs and outputs 
 

The inputs are represented by a1, a2 and the output by bj. Just as there are many inputs 

to a neuron, there should be many input signals to our nodes. The nodes manipulate 

these inputs to give a single output signal. 

 

3.6.2 Weighting Factors 
 

The values w1j, w2j, and wnj, are weight factors associated with each input to the node. 

Weights are adaptive coefficients within the network that determine the intensity of the 

input signal. Every input (a1, a2, …, an) is multiplied by its corresponding weight 

factor (w1j, w2j, …, wnj), and the node uses this weighted input (w1j  a1, w2j  a2, …, wnj 

an) to perform further calculations. If the weight factor is positive, then (wij ai) tends to 

excite the node and if negative it inhibits the node. 

During the initial setup of the neural network, the weight factors are chosen according 

to statistical distribution. As the network is developed these are adjusted. 

 

3.6.3 Internal threshold 
 

The input Tj, is the node’s internal threshold. This is a randomly chosen value that 

governs the activation or total input of the node through Equation 3.1 (Baugham and 

Liu,1995) . 

 

Total activation = ( ) j

n

i
iiji TaWx −= ∑

=1
   (3.1) 

 

Total activation depends on the magnitude of the internal threshold Tj. If Tj is large or 

positive, the node has a high internal threshold and inhibits node-firing. If Tj is zero or 

negative, the node has a low internal threshold and excites node-firing. If no internal 

threshold is specified, we assume it to be zero. 
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3.6.4 Transfer Functions 
 

When a nodes output is determined using a mathematical operation on the activation of 

the node, the operation is called transfer function. The transfer function can transform 

the node’s activation in a linear or nonlinear manner. Figure 3.5 shows several types of 

commonly used transfer functions. 

 

 
Figure  3.5: Commonly used transfer functions (Baugham and Liu,1995). 

 

The corresponding equations for the transfer functions are as follows: 

• Sigmoid transfer function is shown in Equation 3.2 (Baugham and Liu,1995): 

 

( ) xe
xf −+
=

1
1

 ( ) 10 ≤≤ xf      (3.2) 
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• Hyperbolic tangent transfer function is shown in Equation 3.3 (Baugham and 

Liu,1995): 

 

( ) ( ) xx

xx

ee
eexxf −

−

+
−

== tanh  ( ) 11 ≤≤− xf     (3.3) 

 

 

• Gaussian transfer function is shown in Equation 3.4 (Baugham and Liu,1995): 

 

( ) 






 −
=

2
exp

2Xxf  ( ) 10 ≤≤ xf      (3.4) 

 

The output, bj, is found by performing one of these functions on the total activation, xi. 

 

3.7 NEURAL NETWORK LAYOUT 
 

Two different classification levels of neural networks structures exist.  The first level is 

known as the external structure which describes the overall arrangement of and 

connections between individual nodes both within and between the layers. The second 

level is the internal structure which refers to the actual connections between individual 

nodes both within and between layers.  The various arrangements incorporate both 

internal and external connections, depending upon the specific application of the 

network, the available data, and the ease of use. 

 

3.7.1 External neural network structure 
 

Several general external arrangements for neural networks exist for example, single-

input and single-output (SISO), multiple-input and single-output (MISO) and multiple-

input and multiple-output (MIMO). The fourth arrangement, single-input and multiple-

output (SIMO), is not generally used, because data for a single input are not sufficient 

to predict the behaviour of several output variables.  

The simplest external structure is the single input single output network. It is designed 

to predict the behaviour of one output variable based on data for one input variable. It 
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is only applicable to very simple systems or in cases where there is a direct relationship 

between two variables. A disadvantage of this type of network is that it is unable to 

consider the interactions between input variables. Figure 3.6 illustrates a single input 

single output network. 

 

 
Figure  3.6: Example of a single input single output arrangement (Baugham and 

Liu,1995). 

Multiple input single output networks take input data from many variables and use 

them to predict the value of a single output variable. Figure 3.7.shows an example of 

a multiple input single output network. 

 

 
Figure  3.7: Example of a multiple input single output network (Baugham and 

Liu,1995) 

 

Multiple input multiple output networks have the greatest degree of complexity. 

Input data from multiple variables is used to predict the values for multiple output 

variables. Figure 3.8 illustrates a MIMO network. 
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Figure  3.8: Example of a multiple input multiple output network(Baugham and 

Liu,1995) 

 

3.7.2 Internal Neural Network Structure 
 

Individual connections between nodes form the internal structure of a network. A node 

can be connected to any node in the network. The relative position of the origin to the 

endpoint of the connection defines the network’s internal structure. Three types of 

connections are used: interlayer, intralayer, and recurrent. Figure 3.9 shows the three 

options for connecting nodes to one another.  Layers K, H, and W could be any layer in 

the network. 

 

 
Figure  3.9: The connection options in a neural network (Baugham and Liu,1995). 

 

• Interlayer Connection 

Outputs from nodes on one layer feed into nodes in another layer. 

• Intralayer Connection 
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Outputs from nodes in one layer feed into nodes in that same layer. 

• Recurrent Connection 

Outputs from a node feed into itself as inputs. 

 

Within the interlayer connection, we have two main network architectures:  

1. Feed forward network 

2. Feed backward networks  

shown in Figure 3.10 (Baugham and Liu,1995). 

 

In the feed forward network, the direction of signal flow is from the input layer, 

through each hidden layer, to the output layer. We frequently use feed forward 

networks in process modelling and in most engineering applications of neural 

networks. In a feed backward network, signals flow from the input layers to the 

hidden layers.  However, in a feedback network, the output from a hidden layer can 

return to the input layer. 

 

 
Figure  3.10: Feed forward and feedback networks (Baugham and Liu,1995). 

 

3.7.3 Multilayer Networks 
 

Most neural networks contain one to three hidden layers (Baugham and Liu,1995). The 

hidden layer intervenes between the external input and the network output. Multilayer 

networks are feed forward networks with one or more hidden layers between the input 

and output layers. These may be formed by cascading a group of single layers; the 

output of one layer provides the input to the subsequent layer. Figure 3.11 shows such a 



45 
 

network with three hidden layers. 

 

 
Figure  3.11: Feed forward network with three hidden layers (Baugham and Liu,1995). 

 

Large, more complex networks generally offer greater computational capabilities.  

These multilayer networks have greater representational power than single-layer 

networks if nonlinearity is introduced. 

 

3.8 LEARNING AND TRAINING WITH NEURAL NETWORKS 
 

To effectively build a model two sets of data are used that is a training set and a testing 

set. The training phase needs to produce a neural network that is both stable and 

converges and us a result data selection to be used for training is a key step in building 

stable neural network models. Neural networks interpolate data very well, but are 

ineffective with extrapolation.  

 

3.8.1 Training the network 
 

Training involves the neural network adjusting the weights of interconnections between 

nodes so that the network can predict the correct outputs for a given set of inputs 

(Moody, 1992). In order to obtain the best learning, large sets of input/output data are 

needed. 

3.8.1.1 Learning modes 
 

There are a number of approaches to training neural networks.  Most fall into one of two 
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modes (Simpson, 1990): 

• Supervised Learning: Supervised learning requires an external teacher to control 

the learning and incorporates global information.  The teacher may be a training 

set of data or an observer who grades the performance. Examples of supervised 

learning algorithms are the least-mean-squire (LMS) algorithm and its 

generalization, known as the back propagation algorithm. 

• Unsupervised Learning: No external teacher is used; the system must organize 

itself by internal criteria and local information designed into the network. 

Unsupervised learning is sometimes referred to as self-organizing learning, 

learning to classify without being taught. 

 

3.8.1.2 back propagation fundamentals  
 

Many different types of training algorithms exist (Baugham and Liu,1995) (cheng, 

1994) . The most common class of training algorithms for feed forward interlayer 

networks is called back propagation. In back propagation, a set of inputs is fed to the 

network and outputs are returned. Then, the network compares its output with the output 

of the actual data source. The network calculates the amount of error between its 

predicted output and the actual output. The network works backwards through the 

layers, adjusting the weight factors according to how much error it has calculated in its 

output. Once all of the weight factors have been adjusted, the network works in a 

forward path, taking the same input data to predict the output, based on the new weight 

factors. The network again calculates the error between the predicted and actual outputs. 

It adjusts the weight factors and the process continues, iteratively, until the error 

between the predicted and actual outputs has been minimised 

To describe the basic concept of back propagation learning algorithm, each of its 

elements and how they combine to form the back propagation topology are briefly 

looked at. Figure 3.12 illustrates a simple three-layer feed forward neural network. 

• Input layer A: The input vector I is feeding into layer A.  It has L nodes, ai 

(I=1 to L), one node for each input variable. 

• Hidden layer B: It has m nodes, bj (j=1 to m). 

• Output layer C: It has n nodes, ck (k=1 to n), one node for each output 

variable: dk is the desired output, and ck is the calculated output. 
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• Interconnecting weight between the ith node of layer A and the jth node of 

layer B is denoted as vij. 

• Interconnecting weight between the jth node of layer B and the kth node of 

layer C is denoted as wij. 

• Internal threshold value for layer A is TAi, for layer B, TBj, and for layer C, 

TCk. 

 

 
Figure  3.12: Three-layer feed forward neural network (Baugham and Liu,1995). 

 

Back propagation learning attempts to map given inputs with desired outputs by 

minimizing the sum-of-square errors, by adjusting both sets of weight factors, vij and 

wjk, along with the internal thresholds. 

The total mean-square errors function, E, is described by Equation 3.4 (Baugham and 

Liu,1995): Figure 3.13 illustrates the step-by-step adjustment procedure. 

 

 

E = (Output error)2 = ∑ ∈
k k

2 = ( )2∑ −
k kk cd     (3.4) 
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Figure  3.13: Back propagation learning steps (Baugham and Liu, 1995). 

 

3.8.2 Network testing 
 

In the development of the neural network it is important to determine how well the 

network performs after training (Baugham and Liu, 1995). Checking the performance of 

a trained network involves two main criteria: 

 

1. how well the neural network recalls the predicted response, the output, from 

data sets used to train the network (called the recall step); and 

2. how well the network predicts responses from data sets that were not used in 

training (called the generalisation step). 

 

The networks performance in recalling initial input used in training is evaluated in the 

recall step. The network attempts to predict the corresponding output of a previously 
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used input pattern. If the network has been trained sufficiently, the network output will 

differ only slightly from the actual output data. Note that in testing the network, the 

weight factors are not changed: they are frozen at their last values when training ceased. 

Generalisation testing is conducted in the same manner as recall testing; however, the 

network is given input data with which it was not trained.  In the generalisation step, 

new input terms whose results are unknown to the network are fed to the trained 

network.  The network generalises well when it sensibly interpolates these new patterns. 

In generalisation testing, the error between the actual and predicted outputs is larger 

than recall testing. These two errors converge upon the same point corresponding to the 

best set of weight factors for the network. A learning curve can be generated when both 

types of testing at various points during the learning process are done. 

 

3.9 PRACTICAL ASPECTS OF NEURAL COMPUTING 
 

Many neural network parameters control the network’s performance and prediction 

capability. These parameters must be controlled as seen in Figure 3.14 if an effective 

neural network is to be developed. 
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Figure  3.14: Neural network parameters that control the network’s performance and 

prediction capability (Baugham and Liu,1995). 

 

 

 

3.9.1 Number of hidden layers selection 
 

 

The number of network inputs and outputs give rise to the number of input and output 

nodes (Gaurang, 2011). The choice of the number of hidden layers and the nodes in the 

hidden layer(s) depends on the network application. Determining the number of hidden 

layers is a critical part of designing a network and thus not straightforward as it is for 

input and output layers. 
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To obtain an optimal number of hidden layers and nodes in each layer, the network is 

trained using various configurations. The best configuration is selected when the 

combination of few layers and nodes yield a minimum root mean square error quickly 

and efficiently. Baugham and Liu (1995) found out that adding a second hidden layer 

significantly improves the network’s prediction capability without having any 

detrimental effects on the generalisation of the testing data set. However, adding a third 

hidden layer yields prediction capabilities similar to those of 2-hidden layer networks, 

but requires longer training times due to the more complex structures. Baugham and Liu 

(1995) recommend a 30:15 hidden-layer configuration as the initial architecture for 

most networks but it may not always be the optimal configuration. 

Although using a single hidden layer is sufficient for solving many functional 

approximation problems, some problems may be easier to solve with a two-hidden-layer 

configuration. 

 

3.9.2 Normalisation 
 

Neural networks require that their input and output data are normalized to have the same 

order of magnitude. Normalisation is very critical; if the input and the output variables 

are not of the same order of magnitude, some variables may appear to have more 

significance than they actually do. The training algorithm has to compensate for order-

of- magnitude differences by adjusting the network weights, which is not very effective 

in many of the training algorithms. In addition, typical transfer functions, such as a 

sigmoid function, or a hyperbolic tangent function, cannot distinguish between two 

values of xi when both are very large, because both yield identical threshold output 

values of 1.0. 

To avoid such problems all input and output data have to be normalised. Often one can 

normalize input and output data in different ways for different runs. Figure 3.15 shows 

the three normalization methods. 
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Figure  3.15: Three normalization techniques (Baugham and Liu,1995). 

 

Method 1: Normalise each variable, xi, in the data set to between 0 and 1.The 

normalsed variable is calculated from Equation 3.18 (Baugham and Liu,1995): 

 

max,
,

i

i
i X

X
X =      (3.18) 

 

One limitation of this method is that it does not utilize the entire range of transfer 

functions. Figure 3.15 shows that only a small portion of the transfer function 

corresponds to xi values of 0.5 to 0.9 and -0.5 to -0.9. The weight factors can broaden 

and shift this range to include a larger region of the transfer function. However, as 

the number of variables and weight factors increase, these adjustments become more 

difficult for training algorithms. As a result, this normalisation method is adequate 

for many simple networks, but problems can arise as the network architecture 

becomes more complex. We have chosen to use this normalization technique for 

most data sets and to interpret results without more complex data transformations. 

 

Method 2: the normalisation is expanded so that the minimum value of the 

normalized variable, xi,norm, is set at 0 and the maximum value, xi,max is set at one. The 

normalized variable xi,norm is defined by using the minimum and maximum values of 

the original variable, xi,min and xi,max, respectively as seen in Equation 3.20 (Baugham 

and Liu,1995). 
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min,
,

ii

ii
normi XX

XX
X

−

−
=       (3.20) 

 

This method significantly improves on the first method by using the entire range of 

the transfer function, as Figure 3.15 illustrates. In this method every input variable in 

the data set has a similar distribution range, which improves training efficiency. 

 

Method 3: The data set is normalised between limits of -1 and +1, with the average 

value set to zero. This technique is called the zero-mean normalization and represent 

the normalisation variable, xi,norm  as seen in Equation 3.21 (Baugham and Liu,1995): 

 

max,

,
,

i

avgii
normi R

XX
X

−
=      (3.21) 

 

and 

 

max,iR = Maximum ( ) ( )[ ]min,,,max, , iavgiavgii XXXX −−   (3.22) 

 

where xi is an input or output variable, xi,avg is the average value of the variable over 

the data set, xi,min is the minimum value of the variable, xi,max is the maximum value 

of the variable, and Ri,max is the maximum range between the average value and either 

the minimum or the maximum value. 

The zero-mean normalisation method utilises the entire range of the transfer 

function, and every input variable in the data set has a similar distribution range. This 

allows the weight factors to follow a more standard distribution, without requiring 

them to shift and broaden the input variables to match their respective output 

variables. This method gives some meaning to the values of the normalized variable; 

0 represents the normal states (average) of the variable; -1 represents a very low level 

of the variable, and +1 represents a very high level of variable. In addition, by setting 

all of the normal states of the variables to zero, the network will have a standard 

structure that makes training more efficient and consistent from one problem to the 

next. That is, all networks should normally predict output responses of approximately 

0 (normal value) for a set of input variables at their normal values. Therefore, the 
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network is essentially only training deviations in the output variable due to various 

deviations in the input variables. The zero mean normalisation technique was used in 

normalising the data range for this research. 

 

3.10 CLOSURE 

 

The artificial neural network approach has been discussed and various methods used in 

this type of approach discussed. There is no doubt that neural network design is of 

significance importance in order to be able to close to the desired result. 
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Chapter 4 METHODOLOGY 
 

In this chapter, the following will be discussed; the desalting process and plant as 

pertains to the Saline Water Conversion Corporation (SWCC), how the experimental 

data was collected and finally how the collected experimental data was analysed in the 

context of Artificial neural network approach. 

 

4.1 DESALINATION PRE-TREATMENT 
 
The membrane is the heart of the RO plant and is made of special semipermeable thin 

polymeric film deposited on a relatively thick strong support material or made of a thin 

polymeric film of the same composition as its strong support material. 

Membranes are characterized by their unique properties of high water permeation 

(flow), very low salt passage and dimensional and chemical stability. In spite of their 

small sizes and high solubilities in water, salts, even those with small molecular 

weights, do not pass through the membrane at a significant rate. Their passage is held to 

a very low level, for example., less than 1% using thin film composite (TFC) seawater 

membranes. Passage of the larger size colloidal and other suspended solid particles is 

not permitted at all through the membrane closed structure. This is also true of 

microorganism such as bacteria which, when present in the feed, will be trapped on the 

membrane surface causing it to foul Membrane fouling is also introduced by the 

presence in the feed of scaling and corrosion products. The presence of any of the above 

matters in the feed could cause membrane fouling and the lowering of the reverse 

osmosis plant efficiency, hence feed pre-treatment is required. 

In water desalination by the reverse osmosis process feed water pre-treatment is 

essential in order to remove all the potential membrane foulants from the feed. The 

degree of pre-treatment, however, is dependent on the raw water quality, particularly its 

content of suspended and biological matter as well as on the membrane configuration. 

The Hollow fine fibre membrane configuration with tight fibre packing in the module 

requires maximum pre-treatment as compared to an intermediate, and modest degrees of 
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pre-treatment for the spiral wound and plate & frame membrane configurations, 

respectively. 

Pre-treatment of surface seawater, however, is rather more demanding than that of 

membrane treated feed. It may consist of disinfection, followed by coagulation-filtration 

and dosing of antiscalants. Feed chlorination/de-chlorination is also required when the 

feed is intended for chlorine sensitive membranes while antiscalant agents are added as 

needed. 

An ideal pre-treatment is designed to cause a minimum or no membrane fouling at the 

lowest possible cost. This not only results in longer membrane life but also improves the 

overall plant efficiency and reduces the cost of fresh water production. Seawater feed 

derived from a well-designed requires minimum of pre-treatment by passing it only 

through cartridge filter, size 5 to 15 microns.  

In this investigation an exhaustive, systematic study was carried out to optimise the 

coagulation-filtration SWRO pre-treatment for Gulf seawater taken from an open 

intake, Al-Jubail, Saudi Arabia, by investigating the effects of various pre-treatment 

variables on feed water quality. 

 

4.2 EXPERIMENTAL WORK AND EQUIPMENT 
 
The variables examined were as follows: 

• Feed flow rate 

• Sand filter layer thickness 

• Ferric chloride coagulant 

• The coagulant-aid, Polyelectrolyte with ferric chloride 

• coagulant 

• pH of seawater feed to the pre-treatment plant 

• Chlorinated and non-chlorinated seawater 

• feed 
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• Ultrafiltration. 

A schematic flow diagram of the pilot plant is given in Figure 4.1. Basic components of 

the unit are: seawater feed line, destabilisation-agglomeration tanks, feed pumps, dual 

media and fine sand filters, followed by five 11m cartridge filter and a pre-treated feed 

holding tank. The unit was equipped with a filter backwash system to wash the filter as 

needed and a booster feed pump to boost feed pressure (up to 50 psi) supplied to the 

SWRO high pressure pump. 

 

 

 

Figure  4.1: Schematic flow diagram of SWCC pre-treatment and SWRO pilot plant 
(Saline Water Conversion Corporation) 

 

Chlorinated or non-chlorinated seawater was supplied to the unit by the feed pipeline at 

an adjustable flow rate. After its dosing with the coagulant agents, feed flows to the 

destabilization-agglomeration tanks where flocks formation takes place. Under low 

pressure the feed water pump supplies the water to the dual media (sand/anthracite) 

filter from which the filtrate flows into a second fine sand filter followed by the 

cartridge filter. Antiscalant acid and sodium bisulphite are introduced after the five 11m 

cartridge filter to condition the feed and to remove the chlorine from it prior to the feed 

entry into the SWRO feed tank. 

 



58 
 

 

 

4.3 DATA ACQUISITION 
 

There are three parameters that will be studied in the course of this work. That is 

pressure, flow and conductivity, this will be studied in relation to the feed, permeate and 

retentate, with conductivity of the product as the target.  

 

4.4 DATA FILTERING AND NORMALISATION 
 

Wrong data leads to wrong fitting using fitting algorithms especially in data modelling. 

The reason for finding outliers in a data set is that they have a significant effect 

on estimating the model parameters which at last influence the output (caroni et al 

2004). Outliers occur in a data set because of incorrect measurement resulted from 

malfunctioning or poorly calibrated instruments or human error in recording of data.  

Even if data reflects the real system behaviour, the trained network may produce 

results with high error and one of the main reasons is either not normalizing the data 

set or normalising using the wrong method. For the case presented, the normalisation 

to the maximum method was chosen as the best method. The reason for this was that 

some data was fed to the neural network and using all the normalisation techniques in 

Figure 3.15 in Chapter 3, the normalisation to the maximum method gave the least 

error. The frequency of the normalised input data is viewed in Figures 4.2 to 4.4 with 

the rest seen in Appendix B 
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Figure  4.2: Normalised feed conductivity frequency. 

 

Figure  4.3: Normalised Feed flow frequency. 
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Figure  4.4: Normalised feed pressure frequency. 

 

4.5 NEURAL NETWORK DESIGN 
 
In the development of a neural network model the goal is always to obtain the least error 

between the actual and predicted values of the output variable. This gives rise to an 

important argument, what are the optimum design criteria for the selection of transfer 

function, number of hidden layers and number of neurons to be used in each layer.  

 

4.5.1 Picking the best transfer function 
 
The network output accuracy is highly affected by the selected transfer function. As 

shown in chapter 3, there are three main transfer functions normally used in neural 

network modelling. To determine the best combination of transfer functions in 

network with one and two hidden layers, different transfer functions were used in the 

developed network. The advantage of the written code was that one could choose any 

transfer function based on errors obtained as can be seen in the written code in 

Appendix A. 
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4.5.2 Number of layers 
 
The selection of the numbers of hidden layer is critical for the network to predict 

the network output with less error. Usually the optimum number of hidden layers is 

decided through trial and error procedure and the lowest number of hidden layers 

with satisfactory generated error is selected. The reason for such selection is that as 

the number of hidden layers kept at an optimum low, the less time required for 

training the network.  

The ability of neural network to learn complex mapping function is enhanced by 

the proper selection of the number of neurons in the hidden layers (Kamel, 1999). 

Neural networks are highly responsive to the number of neurons in the hidden layers. 

Using too few neurons will make the network not able to learn al1 often patterns 

accurately. In contrast, too many neurons will make the network tending to 

remember the patterns rather than learning to distinguish the global characteristics 

of the pattern. 

 

4.5.3 Initialisation of weights 
 

After the number of layers and neurons in each layer are decided and before 

training the network, network weight should be set otherwise the Matlab 

initializes weight to random values. The process of training neural network with 

Back propagation algorithm can be described as an optimization process in which 

the error is minimized through manipulating the network weights Back 

propagation follows the local optimization technique which works to reach the 

minimum error (Mercedes et al,  2001). 

 

4.6 CLOSURE 
 
The desalting process pertaining to the Saline Water Conversion Corporation has been 

explained along with how the experimental data was obtained and how it was analysed 

in order to get basic inputs for neural network design. The neural network procedure has 

been explained and in the proceeding chapter will be seen in more detail and the results 

obtained discussed in the context of the objectives that pertain to this research. 
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Chapter 5 ARTIFICIAL NEURAL NETWORK FOR THE 
MODELLING OF REVERSE OSMOSIS PLANT DATA 

 

This chapter describes the application of neural networks specifically to predicting 

problems of large-scale reverse osmosis plants. We first introduce the desalting plant 

under study. We next demonstrate the use of neural-network predictors in conjunction 

with statistical techniques to identify the major independent variables to optimise the 

process performance.  

 

5.1 REVERSE OSMOSIS PLANT DATA 
 
ANN models can effectively describe membrane process performance with respect to 

the dynamics of both flux and separations performance. ANN models developed in 

previous studies were based on training the model with a certain fraction of 

experimental data through the complete dataset and including extreme values. As a 

result the models were successful for predicting an input variable range which the ANN 

model had been trained on. However this meant that it was impossible to predict 

performance for those occasions not covered by the training data set. 

The desire to be able to predict membrane plant performance would make it possible to 

provide additional process control strategies and would be used for example in aiding 

membrane cleaning and adjusting process variables such as flow rate and pressure. 

Although ANN approach is data‐driven and therefore results in plant‐specific 

application, it has the advantage of capturing unique aspects of the plant such as 

operational behaviour for example; pumps and control devices, processes elements and 

plant configuration as well as feed quality variations. With this in mind, an ANN model 

of RO plant performance was developed to predict the temporal changes in product 

flow. The experimental data used for building the ANN models was provided by the 

Institute of Research for desalination in Saudi Arabia, a government body.  

 

Figure 5.1 illustrates the methodology used for developing a neural network model, 

based on the back propagation algorithm, for the prediction and optimisation of process 

performance variables of large-scale desalination plants. 
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Figure  5.1: Methodology of neural network development 

(Baughman and Liu, 1995) 
 

 
This study demonstrates the use of neural-network predictors in conjunction with 

statistical techniques to determine the optimal operating conditions of commercial RO 

processes. This study also compares the neural network model and the statistical model 

in predicting the performance variables of desalination plants. 

To accomplish this work, we use MATLAB neural networking tool as well as Microsoft 

excel for graphing and data analysis purposes. 

 

5.2 DATA PREPARATION AND ANALYSIS 
 
Real-life data obtained from the plant must be filtered to remove unmeasured noise, 

outliers, and fault-contaminated measurements. It often contains outliers, which are 

observations that do not reasonably fit within the pattern of the bulk of the data points 

and are not typical of the rest of data. Some outliers are the result of incorrect 

measurements and can be immediately rejected and removed from the data set. Other 
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outliers are observations resulting from unusual process phenomena that are of vital 

interest. Data require careful inspection and examination in order to observe this 

distinction. 

Outliers are given particular attention in a neural network and in a statistical analysis in 

order to determine the reasons behind large discrepancies between those points and the 

remainder of the data set. The inclusion of outliers in training data forces the network to 

consider a larger solution space, and can therefore reduce the overall precision of the 

resulting network. This is observed as occasional large differences between actual and 

predicted values of output variables. Removing outliers generally improves network 

performance. 

One of the simplest techniques for detecting outliers is to examine the frequency 

histogram of the data, plotting the number of occurrence of the observed data within a 

specific range of a selected operating variable. Figures 5.2-5.8 illustrate the frequency 

distribution of the 5 operational variables after removing the outliers. The frequency 

distribution becomes to be continuous and normally distributed with a bell shape, with 

the exception of a few outliers that are observations of unusual phenomena. 

 

 
Figure  5.2:Feed conductivity 
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Figure  5.3: Feed flow 

 

 

 

 
Figure  5.4: Retentate conductivity 
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Figure  5.5: Retentate flow 

 

 

 
 

Figure  5.6: Product flow 
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The nature of the data meant that all the best fit equations were non-linear in type. The 

coefficient of regression, R2, measures how a line fits, good or undetermined. However 

this does not mean that the model is good if R is huge as one may find that insignificant 

variables in the model contribute to the total R2 . The various variables and there fits are 

shown in Figures 5.7-5.11. 

 

 
Figure  5.7: Nonlinear regression plot of feed conductivity 

 

 
Figure  5.8: Nonlinear regression plot of feed flow 
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Figure  5.9: Nonlinear regression plot of retentate conductivity 

 

 
Figure  5.10: Nonlinear regression plot of retentate flow 
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Figure  5.11: Nonlinear regression plot of permeate flow 

 

As can be seen from the figures above, all the figures showed non linearity and their 

respective best fit equations as well as R2 are shown in Table 5.1. 

 

 
Table  5.1: Best fit equations and R2 values after outlier removal 

Variable Best fit equation R2 

Feed 

conductivity 49.0345.5552.3841.8
115.91477.4185.6

23

456

+−+−−−+

−−−+−−=

XEXEXE
XEXEXEy  

0.694 

Feed flow 

03.1306.4554.1993.5
1001.11352.11786.6

23

456

+−−−+−+

−−−+−−=

XEXEXE
XEXEXEy  

0.932 

Retentate 

conductivity 79.0340.7597.8765.3
1096.61331.61620.2

23

456

+−+−−−+

−−−+−−=

XEXEXE
XEXEXEy  

0.877 

Retentate flow 

72.0460.8693.4813.1
1168.11470.11855.7

23

456

+−+−−−+

−−−+−−=

XEXEXE
XEXEXEy  

0.097 

Permeate flow 

04.1367.4592.1968.3
1161.81337.11725.6

23

456

+−−−+−−

−−−+−−=

XEXEXE
XEXEXEy  

0.187 
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5.3 INPUT VARIABLE SELECTION 

5.3.1 Principal component analysis 
 

A number of multivariable statistical methods are available to reduce the data 

dimensionality and to extract useful information from process data involving large 

numbers of measured variables. Utojo and Bakshi (1995) give an excellent overview 

and comparison of multivariable statistical methods and neural networks for data 

processing. 

Factor analysis is a technique of multivariate analysis that attempts to account for the 

covariation among a set of observable random variables (denoted as X) in term of a 

minimal number of unobservable or latent random variables called factors. These 

unobserved factors are assumed to be linear combinations of the variables which make 

up the set X. Thus, the objective becomes one of reducing the complexity of the set X 

into as few linear combinations of those variables within X as possible. There are 

numerous strategies for performing this reduction of the set X. One such approach is 

Principal Component Analysis (PCA) that reduces the complexity of the set X via a 

canonical analysis of the correlation matrix of X. The dominant eigenvectors of the 

matrix X are then taken to be the principal factors of X. The elements comprising the 

eigenvectors are then taken to be the weights which produce the linear combination of 

the set of variables within X. For instance, if we denote the first factor as F1, then F1 is 

simply a linear combination of the variables in X, where the weights are determined by 

the elements of the first (most dominant) eigenvector of the correlation matrix of X as 

seen in Equation 5.1 (Utojo and Bakshi, 1995). 

 

pp xexexeF 12211111 ......+++=     ( 5.1) 
 
Where 121111 ..... peeee =  denotes the most dominant eigenvector of the correlation matrix 

of X. The elements of 1e  are known as factor loading for each of the p variables that 

comprise X. These factor loadings are always between -1.0 and 1.0, and a useful 

heuristic is that variables whose factor loadings have absolute value greater than 0.5 are 

related highly to the corresponding factor. The rotated principal component analysis 

generally involves the following steps (Herve, 2010): 

a) Selecting the variables 
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b) Computing the matrix of correlations among the variables 

c) Extracting the unrotated factors 

d) Rotating the factors 

e) Interpreting the rotating matrix 

 

Current estimation and rotation methods require iterative calculations that must be done 

on a computer and XLSTAT software was used to carry out the factor analysis tests. 

The resulting factor loadings for the seven variables are summarised in Table 5.2 

 

Table  5.2: Factor loadings for the seven operating variables 

Variable PC1 PC2 PC3 PC4 PC5 

Feed flow 0.640 0.763 -0.081 -0.026 -0.006 

Feed 

conductivity 

-0.724 0.346 -0.103 0.587 -0.019 

Retentate 

flow 

-0.237 0.550 0.799 -0.057 0.007 

Retentate 

conductivity 

-0.856 0.391 -0.283 -0.164 0.078 

Permeate 

flow 

0.721 0.621 -0.308 -0.010 -0.008 

      

      

 

According to the preceding heuristic, the variables whose loading values are greater 

than 0.5 for a particular factor are taken to represent that factor. PC1 has a high loading 

value for the variables permeate flow and much lower values for all the rest. PC2 has a 

high loading factor for feed flow and much lower values for the rest of the variables. 

The factor columns in the matrix represent the input variables. In order to determine the 

relationship between significant input variables and output variables, each input variable 

must be matched to a factor column. To match an input variable to a factor column, an 

examination of the input variable’s row of loading values is carried out and the input 

variables determined. Specifically the largest loading value in that row is identified and 

the column in which this value is located indicates the appropriate factor match for that 

output variable. This process was repeated for each of the input variables, and if there 

are fewer input variables than columns, we discard the extraneous columns. 
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5.3.2 Engineering know how as input selection 
Variable selection comprises decisions to include or exclude input variables and these 

decisions are necessarily made on only the specifications determined by the researcher. 

Often as an aid in this process, we use the factor analysis, R2 test or some other 

statistical method to examine relationships between inputs and outputs, and to select 

input variables. In using these methods, there is always the risk that significant input 

variables may be excluded if we do not utilize the particular functional relationship in 

that testing method. Our emphasis is on selecting an appropriate subset of these 

variables for use in a final prediction model. Therefore, we investigated various 

specifications of the input variables, based on the plant design and engineering 

knowhow, and retained any that were deemed worthy of further study. Table 5.3 

presents the input variables when using engineering know how approach we have 

twelve inputs as compared to principle component analysis which give seven. 

Table  5.3: Factor loadings for the seven operating variables 

Engineering knowhow Principal component analysis 
Feed conductivity Feed conductivity 

Feed pressure Feed flow 

Feed pH Salt out 

Feed flow Retentate conductivity 

Retentate conductivity Retentate flow 

Retentate pressure Permeate flow 

Retentate pH  

Retentate flow  

Permeate conductivity  

Permeate pressure  

Permeate pH  

Permeate flow  

 
Figures 5.12-5.13 compares the neural network performance of permeate flow 

prediction as an output based on principle component analysis and engineering 

knowhow variable selection. It is evident that the network with variables selected based 

on more variables, engineering knowhow, gave less reliable results than those based on 

factor analysis.  
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Figure  5.12: Actual and predicted output variables for permeate flow prediction by engineering 

knowhow 
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Figure  5.13: Actual and predicted output variables for permeate flow prediction by principal 

component analysis  

The degree of success in variable selection greatly influences the resulting networks 

ability to predict the output. In general, statistical methods aid in the process of variable 

selection; however when it comes to accurate predictions it is better to use more 

mathematically proven concepts like principal component analysis. 

5.4 ARTIFICIAL NEURAL NETWORK APPROACH 
 

5.4.1 Training and testing sets 
 

Two subsets of data were used to build a model; that is, a training set and a testing set. 

The training phase was needed to produce a neural network that was both stable and 

convergent. Therefore, the selection of what data to use for training a network was one 
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of the most important steps in building the neural network model. Neural networks 

interpolate data very well, but they do not extrapolate. Therefore, the training set should 

be selected in such a way that it includes data from all regions of desirable operation. 

An important aspect of developing neural networks is determining how well the 

network performs once training is complete. Checking the performance of a trained 

network involves two main criteria  

1) how well the neural network recalls the predicted response from data sets used 

to train the network, the recall step 

2) how well the network predicts responses from data sets that were not used in 

training, the generalisation step. 

In the recall step, the network’s performance in recalling (retrieving) specific initial 

input used in training is evaluated. Thus, we introduce a previously used input pattern to 

the trained network. A well-trained network should be able to produce an output that 

deviates very little from the desired value. 

In the generalisation step, the network is feed with new input patterns to the trained 

network. The network is said to generalise well when it sensibly interpolates these new 

patterns. Generalisation is affected by three factors (Baughman and Liu, 1995): 

i. the size and the efficiency of the training data set 

ii. the architecture of the network  

iii. the physical complexity of the problem. 

To effectively visualize how well a network performs recall and generalization, we 

often generate a learning curve, which represents the average error for both the recall of 

training data sets and the generalization of the testing sets as a function of the number of 

examples in the training data set. The two main uses of a learning curve are (Baughman, 

and Liu, 1995): 

• to find the number of training example required to achieve a fixed average error.  

• to estimate the minimum average error attainable through adding data sets. 
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5.4.2 ANN Model development  
 

In the development of the neural network model the objective was to try and maximise 

the performance of the model developed, which is the speed of convergence and 

accuracy of prediction. This was done through the investigation of the following 

network characteristics (Baughman and Liu, 1995): 

• Normalisation of input data 

• Weight initialisation 

• Optimum network architecture 

o epoch size 

o transfer function 

o learning rate 

o number of nodes in the hidden layers 

• Network configuration 

• Comparison between statistical analysis and neural network approach 

5.4.2.1 normalisation of input data  
 

The raw data input was normalised by using the zero mean normalisation method, 

Equation 3.20, which was explained in great detail in Chapter 3, section 3.9.2. The real 

valued were scaled down to network ranges for representation to the network.  

 

5.4.2.2 weight initialisation 
 

The first step in neural computing, prior to training a neural network, is to initialize the 

weight factors between the nodes of the hidden layers. Since no prior information about 

the system being modelled is available, it was preferable to set all the free parameters of 

the network to random numbers that are uniformly distributed inside a small zero-mean 

range of values, say, between 5.0± . optimal network architecture 
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epoch size 
The optimum epoch size should be determined for better training. An epoch is defined 

as a sequence of training data sets presented to the network between weight updates. 

The epoch size was chosen such that the total number of training patterns used for each 

run was constant. Setting the epoch size to the size of the training data set allows the 

RMS error graph to show the performance of the entire training data set. When using 

back propagation, the optimal epoch size is a function of the data. Therefore, 

determining the epoch size is important for better training. This can be done by setting 

the epoch size to different fractions of the total training set (1/10, 2/10, 9/10, full 

training set size) and testing the R2 values of different networks. Select the epoch size 

produce the highest lowest R2 value. This method is particularly successful on noisy 

data. A default epoch size of 100 was chosen for all network predictions. 

choice of transfer function 
Another factor governing a node’s output is the transfer function. The most common 

transfer functions are the sigmoid, hyperbolic tangent, and radial-basis functions. The 

hyperbolic tangent transfer function performs well for the prediction networks, while 

the radial-basis-transfer function works best in classification problems (Baughman and 

Liu, 1995). 

A multilayer prediction network trained with the back propagation algorithm will, in 

general, learn faster when the transfer function built into the network is symmetric 

(hyperbolic tangent, with output value between -1.0 and +1.0) rather than non-

symmetric (sigmoid, with output value between 0.0 and 1.0), as previously described in 

Chapter 3. The hyperbolic tangent transfer function is used throughout this study. 

setting the learning rate 
The learning rate is an important parameter that controls the effectiveness of the training 

algorithm. The learning rate is a positive parameter that regulates the relative magnitude 

of weight changes during learning. However, a question one has to ask is how would a 

change in the learning rate change the performance of the algorithm? To understand the 

effect of the learning rate on the network training, let us consider the prediction network 

for the salt removal with 210 training examples. We use a back propagation network 

with the 30:15 hidden-layer configurations, the delta learning rule and the hyperbolic 

tangent transfer function. 



78 
 

Figure 5.14-5.16 compared the RMS error using a low learning rate of 0.01, a moderate 

learning rate of 0.3, and a high learning rate of 5.0. In general it was observed that a low 

learning rate resulted in slower convergence. When the learning rate was low (0.01), the 

network took a longer time, roughly 200 iterations to reach an RMS error of 3.24. This 

was due to the fact that the smaller the learning rate, the smaller the changes to the 

weights in the network from one iteration to the next, and the larger the number of 

update steps were needed to reach a minimum. However, when the learning rate was set 

at 0.3, the network reached an RMS error of 0.66 in a shorter time, about 66 iterations. 

When the learning rate was set to high values, greater than 4 error fluctuations increased 

and minimums were never attained thus it was deemed to give unstable results.  

 

Figure  5.14: RMS error for permeate flow prediction by principal component analysis 
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Figure  5.15: RMS error for permeate flow prediction by principal component analysis 

learning rate set at 0.3 

 

 

Figure  5.16: RMS error for permeate flow prediction by principal component analysis 
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oscillations. The momentum coefficient is a constant, between 0 and 1, used to promote 

stability of weight adaptation in a learning rule, and it tends to accelerate descent in a 

steady downhill direction. In back propagation with momentum coefficient, the weight 

changes in a direction that is a combination of the current gradient and the previous 

gradient. This will help in moving the minimization routine out, if during training; it is 

trapped in a local minimum. 

In general a smaller learning rate results in a slower convergence, thus the learning rate 

was set at 0.3 which agreed with what was recommended by Baugham and Liu (1995). 

The learning rate should be assigned a smaller value in the last layers than the front-end 

layers, because the last layers tend to have larger local gradients than the layers at the 

front-end of the network. 

number of nodes in the hidden layers 
The number of input and output nodes corresponds to the number of inputs into the 

network and the number of desired outputs of the network, respectively. The choice of 

the number of nodes in the hidden layer(s) depends on the network application. 

Although using a single hidden layer is sufficient in solving many functional 

approximation problems, some problems may be easier to solve with a two-hidden-layer 

configuration.  

For the prediction of permeate specified in Tables 5.5, the network consisted of 5 input 

and 1 output variables. The back propagation network was used with hyperbolic transfer 

function and 0.3 learning rate. 607 data sets were used to train these configurations with 

100 iterations. The network was tested with 1 and 2 hidden layer configuration with an 

increase in number of nodes in each hidden layer. Figures 5.17-5.18 illustrate the 

network response as the number of nodes in one and two hidden layer network 

increases. The results showed that the two hidden layer network performed significantly 

better. The optimal configuration in the two hidden layer network with less network 

error was found to be 25:10. Figures 5.19-5.20 showed that the trained network 

predicted the salt removal efficiency well. 
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Table  5.4: Format of data used for training salt removal efficiency network 

Column number Variable name Variable type 

1 Feed conductivity Input 

2 Feed flow Input 

4 Retentate conductivity Input 

5 Retentate flow Input 

6 Permeate flow Output 

   

 

 
Figure  5.17: Average error trained with one hidden layer for prediction of permeate 

flow 
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Figure  5.18: Average error trained with two hidden layers for prediction of permeate 

flow 
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Figure  5.19: Actual and predicted permeate flow 25:10 hidden-layer configuration. 
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Figure  5.20: Actual and predicted permeate flow for 25:10 hidden-layer configurations. 

Based on the above results, the optimal network architecture recommended for permeate 

flow prediction network is one based on a back propagation algorithm, using the delta 

learning rule, and the hyperbolic tangent transfer function. The learning rate is set to 0.3 

and it decreases with increasing number of hidden layers, and with increasing  

The two hidden layers have 25 and 10 nodes, respectively, whereas the maximum 

number of training iterations is 100 and the epoch size is fixed at 10 examples. The data 

are divided into 607 sets of data for training and 300 for testing. 

 

5.5 NETWORK APPROACH VERSUS STATISTICAL APPROACH 
 

Using the statistical approach and using R2 as a determinant to the perfect fit, Table 5.6 

shows the resulting polynomial fit equations and R2 values. Figures 5.21 -5.22 shows 

the predicted output when using statistical analysis. It can be seen that using the 

statistical approach to predict salt removal efficiency proves rather difficult owing to the 

value of R2 being low and the predicted model giving predictions that are not similar to 

the original salt removal efficiency data. It is also worthwhile noting that the statistical 

approach also does not take into account the interaction between the inputs and outputs 
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whereas the neural network approach has been show to give near perfect predictions of 

salt removal efficiency 

 

Table  5.5: Best fit equations and R2 values for predicting permeate flow 

Variable Best fit equation R2 

Permeate flow  

04.1367.4592.1968.3
1161.81337.11725.6

23

456

+−−−+−−

−−−+−−=

XEXEXE
XEXEXEy  

0.187 

 

 

 
Figure  5.21: Nonlinear regression plot of permeate flow 
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Figure  5.22: Predicted model output of permeate flow 

 

 

5.6 CLOSURE 
 
The RO membrane process operation was successfully modelled using ANN. The 

network was observed to be effective in predicting the performance variable and was 

capable of handling complex and nonlinear problems. A comparison between statistical 

and network predictions showed that the network outperformed the statistical in 

prediction. 
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Chapter 6 CONCLUSION AND FUTURE WORK 
 

6.1 CONCLUSION 
 

The reverse osmosis data was successfully modelled by using ANN by analysing plant 

data. Careful data analysis revealed a significant amount of outliers present in the raw 

data. As discussed Chapter 4, these outliers make it hard for the prediction of pattern 

recognition using ANN and were evident in initial findings. Perhaps the methods of data 

collection need to be synchronised between human intervention and controller 

intervention thus anomalies are eliminated. Careful data analysis is also quite important 

in the preparation of data for use in ANN networks as was shown in Chapter 4. Many 

variables were obtained and choosing the right variables to use as input data would be 

quite difficult without the use of principal component analysis. This aided in the 

selection of the right inputs and led to the discarding of the least effective inputs. A total 

of five inputs were determined to be the most important in the prediction of salt removal 

efficiency.  

The design of the optimum ANN network was done through trial and error, by adjusting 

various combinations of hidden layers and number of nodes in each layer, the best 

combination was found to be a network with two hidden layers with a 25 and 10 nodes 

in the hidden layers respectively. 1200 sets of data were used for each input variable, 

with 804 used for training and 396 used for testing and validation. What was quite clear 

from the onset was that the results obtained were poor with R2 oscillating between -0.1 

to 0.6. One of the contributing factors to this was that a lot of the data contained outliers 

and thus once these outliers were identified, the new data then consisted of 907 sets of 

data for each input variable, 607 were used for testing and 300 for testing and validation 

and the process was carried out again. 

The ANN network model that was developed predicted the salt removal efficiency 

which could be described as perfect prediction based on the value of R2 which was 

greater than 0.9, meaning it was a perfect fit. This would seem to suggest that for single 

output single input it was highly effective but this theory was not tested further due to 

unavailability of plant data. The use of plant data also severely limits the effectiveness 

of the model in trying to investigate different effects of input variables on the output. 
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This is also quite significant owing to the fact that the plant is highly optimised thus 

further optimisation of input variables cannot be carried out.  

6.2 FUTURE WORK 
 

It has been shown that using plant data severely compromises investigations on various 

effects of different variables thus reducing the understanding of better performance of 

the RO membrane. Possible suggestion to overcome this limitation would be; 

1. To use an alternative approach such as Fuzzy logic which would be useful in 

forecasting the process performance parameters considered thus comparing 

between this approach and neural network approach 

2. It would be interesting to model the RO membrane using Aspen Hysys and thus 

be able to use model predictive control algorithms to actually find the optimum 

input variable parameters and comparing these findings with those of the 

experimental stage and combining this with the results of ANN prediction in 

order to compare the three methods. 
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NOMENCLATURE 
 

A   Membrane area (m2) 

fC   Salt concentration in the feed (Kg/m3) 

PC   Salt concentration in the product (Kg/m3) 

1J  Water flux (m3/m2/sec) 

2J   Salt flux (Kg/m2/sec) 

1K   Pure water transport coefficient, i.e. the flux of water through the membrane per unit 

driving force, (m3/m2/sec atm) 

2K   Salt transport coefficient (m/sec) 

1k   given by the membrane manufacturer or may be found by solving the equation at 

the standard test conditions. 

wK   Membrane permeability coefficient for water. 

iM   Molarity of the ith ionic or non-ionic materials 

PQ   Product flow (m3/day)  

fQ   Feed flow (m3/day) 

R Recovery rate 

Ri,max  maximum range between the average value and either the minimum or the 

maximum value 

T   Feed water temperature (K) 

xi,avg   average value of the variable over the data set,  

xi,min  minimum value of the variable 

 xi,max  maximum value of the variable 

P∆  Hydraulic pressure differential across the membrane (atm) 

π∆   Osmotic pressure differential across the membrane (atm) 
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τ   Membrane thickness (m) 
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APPENDIX A  
ANN CODE 

 
% %%__________________Book1 modeling using 
ANN_________________________________ 
% MATLAB neural network back propagation code 
% by Hakem AlShalan 
  
% 
% This code implements the basic backpropagation of 
% error learning algorithm. 
  
% %%_________________training 
program________________________________________ 
close all 
clear all 
clc 
format long 
data = xlsread('hakout.xlsx'); 
%  
%%---------------------train------------------------------------------
----- 
inputs=data(:,1:2)';  %all inputs 
outputs=data(:,10)'; %all outputs   
%  
[u1,us] = mapminmax(inputs); 
[y1,ys] = mapminmax(outputs); 
  
% % % random selection for inputs and outputs 
N= 907; %number of data 
w=randperm(N);  
s=size(w); 
intrn=u1(:,w(1:ceil(N*2/3))); %inputs 
outtrn=y1(:,w(1:ceil(N*2/3))); %outputs 
%  
% % ------------ Create the network-----------------------------------
----- 
%m=[10] 
%m=round (2/3*(size(intrn,1))+size(outtrn,1)+sqrt(20)) %Number of 
hidden neurons=2/3(inputs+outputs)+sqrt(number of training patterns) 
%n=m; 
%  
%net = newff(intrn,outtrn,[30,15],{'tansig','tansig'}, 'trainBfg'); 
net = newff(intrn,outtrn,[10],{'tansig'}, 'trainlm'); 
%net = newff(intrn, outtrn,[30,15,10,5]);  
%net.trainFcn = 'trainBFg' 
%net.trainFcn = 'trainlm' 
net.trainParam.epochs=50; 
net.trainParam.show=10; 
net.trainParam.lr = 0.3; % Learning rate 
net.trainParam.goal=1e-6; 
tolerance = 1e-3; 
%net = newrb(intrn, outtrn,1e-6,1) 
%net = newrbe(intrn, outtrn,110); 
%net = newpnn(intrn, outtrn); 
%net = newgrnn(intrn, outtrn); 
net = init(net); 
  
  
%  
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% %%----------- train the network-------------------------------------
------ 
  
%[net,tr] = train(net,intrn,outtrn); 
[net, record] = train(net, intrn, outtrn); 
X = getx(net); 
  
%plotperform(tr); 
%plottrainstate(tr); 
  
  
%Training ANN 
figure (1) 
plot(record.epoch, record.perf); 
  
xlabel('Epochs'); 
ylabel('Mean square error on train set'); 
hold on 
%  
% % % ---------- simulate the network --------------------------------
-------- 
ytrn = sim(net,intrn); 
%  
outtrn_again=mapminmax('reverse',outtrn,ys); 
ytrn_again=mapminmax('reverse',ytrn,ys); 
%  
plotregression(outtrn,ytrn);grid on  
 plotregression(outtrn_again,ytrn_again);grid on 
 figure(1) 
 [m1,b1,r1]=postreg(ytrn_again,outtrn_again) 
%  
 %save Book1train_bfg2 
 %% ____________________testing program 
___________________________________ 
%load Book1train_bfg22 
close all 
intst=u1(:,w(ceil(N*2/3)+1:s(2))) ; %inputs 
outtst=y1(:,w(ceil(N*2/3)+1:s(2))); %outputs 
  
ytst = sim(net,intst); 
  
intst_again=mapminmax('reverse',intst,us) ; 
ytst_again=mapminmax('reverse',ytst,ys) 
outtst_again=mapminmax('reverse',outtst,ys) 
  
figure(2) 
plot(ytst_again', 'g')  
hold on  
plot(outtst_again', 'r'); grid on 
legend('Testing data','real data') 
xlabel('Data') 
ylabel('Output') 
hold off 
  
err = ytst_again-outtst_again; 
disp('Absolute error='); disp(err) 
figure(3) 
plot(err);grid on  
title('Absolute error') 
xlabel('Data') 
ylabel('Absolute error (%)') 
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relerr = abs((ytst_again-outtst_again))./outtst_again*100; 
disp('Relative error (%)='); disp(relerr) 
figure(4) 
plot(relerr);grid on 
title('Relative error (%)') 
xlabel('Data') 
ylabel('Relative error (%)') 
  
meanrelerr=mean(abs(relerr));% average on each raws 
disp('mean of relative error (%)=') ; disp(meanrelerr) 
 mse=mse(err) 
mse2=sum((ytst_again-outtst_again).^2)/74 
disp('Test MSE='); disp(mse2) 
figure(5) 
[m,b,r]=postreg(ytst_again,outtst_again) 
plotregression(outtst,ytst);grid on  
plotregression(outtst_again,ytst_again);grid on 
  
  
%%%____________________________ ANN plot 
_______________________________________________ 
figure(6) 
plot(ytst_again(1,:),'*b');hold on ; plot(outtst_again(1,:),'ok');grid 
on  
%title('Book1','FontName','arial','color','k') 
legend('simulated-test-Book1','experimental-test-Book1') 
xlabel('Number of test data') 
ylabel('Output of Book1') 
%figure('NumberTitle','off','Name','Regression (plotregression)'); 
  
  
  
%save Book1test_bfg2 
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APPENDIX B 
RAW DATA 

  
Feed Product Reject 

Pressu
re 

(bar) 

Flow 
(m3/
h) pH 

Temperat
ure (oC) 

Conducti
vity 

(µS/cm) 

Flow 
(m3/
h) pH 

Conducti
vity 

(µS/cm) 

Pressu
re 

(bar) 

Flow 
(m3/
h) pH 

Temperat
ure (oC) 

Conducti
vity 

(µS/cm) 

25 325 5.8 31.5 58300 190 
5.6
4 48300 22.5 135 

5.9
8 

 
61300 

30 358 5.8 31.5 58300 232 5.5 44300 26.25 126 
5.8
8 32.2 78200 

30 350 5.9 32.4 58400 224 5.7 44200 26.5 126 6 33.1 76000 

30 350 5.8 31.7 58500 224 5.7 44400 26.5 126 
5.9
5 33.3 75600 

30 350 5.8 31.4 58400 224 5.6 44400 26.25 126 6 33.1 75400 
30 350 6 30.6 58400 224 5.6 44400 26.25 126 6.1 32.5 75600 
30 350 6 30.6 58400 224 5.6 44400 26.25 126 6.1 32.5 75600 
30 350 6 30.2 58300 224 5.6 44600 26.25 126 6.1 32.2 75500 
30 349 6 30.2 58400 223 5.6 44700 26.25 126 6.1 31.9 75700 
30 350 6 30.3 58300 224 5.6 44500 26.5 126 6.1 32.2 75600 
30 350 6 30.3 58300 224 5.6 44500 26.25 126 6.1 31.9 75500 
30 350 6 30 58300 224 5.6 44500 26.25 126 6.1 31.9 75400 
30 350 6 30 58300 224 5.6 44700 26.25 126 6.1 31.7 75200 
30 350 6 30.8 58300 224 5.6 44800 26 126 6.1 32.8 75300 

30 
358.

5 6 31.1 58300 234 5.6 45500 26.25 
124.

5 6.2 32.8 76900 
31.2 360 6 31.1 58400 234 5.6 45600 27.5 126 6.2 32.8 77500 
31.2 360 6 31.1 58400 234 5.6 45600 27.5 126 6.2 32.8 77600 
31.2 360 6 30.6 58400 234 5.6 45500 27.5 126 6.1 32.5 77500 

31.2 
356.

5 6 30 58400 
230.

5 5.6 45500 27.5 126 6.1 32.2 77500 

31.2 
356.

5 6 30 58400 
230.

5 5.6 46000 27.5 126 6.1 32.2 78000 
31.2 360 6 30.3 58400 234 5.6 45600 27.5 126 6.1 32.2 77500 
31.2 360 6 30.3 58400 234 5.6 45300 27 126 6.1 32.2 77300 
32.1 360 6 30 58400 234 5.6 45300 28 126 6.1 31.7 77300 
32.1 360 6 30 58400 234 5.6 45300 27.75 126 6.1 31.4 77300 
32.1 360 6 29.7 58400 234 5.6 45200 27.75 126 6.1 31.4 77300 
32.4 360 6 30 58400 234 5.6 45200 28 126 6.1 31.7 77300 
32.4 360 6 29.4 58400 234 5.6 45200 28.25 126 6.1 31.1 77200 
33 360 6 29.7 58400 234 5.6 45100 28.75 126 6.1 31.4 77200 
33 360 6 29.7 58400 234 5.6 45000 28.75 126 6.1 31.7 77200 
33 360 6 30 58400 234 5.6 45000 29 126 6.1 31.7 77500 

33.45 360 6 29.7 58400 234 5.6 45000 29.25 126 6.1 31.7 77600 
32.7 360 6 29.7 58400 234 5.6 44900 29.5 126 6.1 31.7 77800 
32.7 360 6 28.9 58300 234 5.6 44700 29.75 126 6.1 30.6 77800 
32.7 360 6 28.6 58300 234 5.6 44600 30 126 6.1 30.6 77800 
33 360 6 28.6 58300 234 5.6 44600 30 126 6.1 30.6 78000 

32.7 360 6 28.6 58300 234 5.6 44600 30 126 6.1 30.6 77900 
33 360 6 28.6 58300 234 5.6 44600 30 126 6.1 30.6 77900 
33 360 6 28.3 58300 234 5.6 44500 30 126 6.1 30.8 78000 
33 360 6 28.1 58300 234 5.6 44400 30.25 126 6.1 30.6 78000 
33 360 6 28.3 58300 234 5.6 44400 30.25 126 6.1 30.8 78000 
33 360 6 28.3 58300 234 5.6 44400 30.5 126 6.1 30.6 78000 
33 360 6 28.3 58300 234 5.6 44400 30.25 126 6.1 30.3 78000 
33 360 6 28.3 58400 234 5.6 44600 30.25 126 6.1 30.3 77900 



e 
 

33.3 360 6 28.3 58400 234 5.6 44600 30.5 126 6.1 30 78000 
33.3 360 6 28.3 58400 234 5.6 44600 30.5 126 6.1 30 78000 
33.6 360 6 28.1 58300 234 5.6 44500 30.5 126 6.1 30 78000 
33.6 360 6 27.8 58400 234 5.6 44600 30.75 126 6.1 29.7 78100 
33.9 360 6 27.5 58300 234 5.6 44500 31 126 6.1 29.1 78000 
33.3 360 6 27.5 58300 234 5.6 44400 30.75 126 6.1 29.4 78000 
33.6 360 6 27.8 58400 234 5.6 44600 30.5 126 6.1 30 78100 
33.6 360 6 28.1 58400 234 5.6 44600 30.75 126 6.1 29.7 78100 
33.6 360 6 27.8 58400 234 5.6 44600 30.75 126 6.1 30 78000 
33.6 360 6 27.8 58300 234 5.6 44500 30.75 126 6.1 29.7 78100 
33.6 360 6 27.8 58400 234 5.6 44500 30.75 126 6.1 29.7 78100 
33.6 360 6 27.8 58400 234 5.6 44500 30.75 126 6.1 29.7 78100 
33.6 360 6 27.8 58400 234 5.6 44500 30.75 126 6.1 29.7 78100 
33.9 360 6 27.5 58300 234 5.6 44500 31 126 6.1 29.4 78100 
33.9 360 6 27.5 58400 234 5.6 44600 31.25 126 6.1 29.8 78100 
33.9 360 6 27.2 58400 234 5.6 44700 31 126 6.1 29.2 78000 
33.9 360 6 27.2 58400 234 5.6 44600 31 126 6.1 29.2 77600 
33.9 360 6 27.2 58400 234 5.6 44600 31 126 6.1 29.2 78000 
33.9 360 6 27.2 58400 234 5.6 44500 31.25 126 6.1 29.2 78000 
34.5 360 6 26.7 58400 234 5.6 44500 31.5 126 6.1 28.6 78300 
34.5 360 6 26.7 58400 234 5.6 44500 31.5 126 6.1 28.6 78400 
34.5 360 6 26.7 58400 234 5.6 44500 31.5 126 6.1 28 78000 
34.8 360 6 26.7 58400 234 5.6 44400 31.75 126 6.1 28.9 78200 
34.8 360 6 26.5 58400 234 5.6 44500 31.75 126 6.1 28.9 78100 
34.8 360 6 26.45 58400 234 5.6 44400 31.75 126 6.1 28.9 78200 
34.8 360 6 26.15 58400 234 5.6 44400 32 126 6.1 28.9 78200 
34.8 360 6 26.4 58400 234 5.6 44500 32 126 6.1 28.6 78200 

34.8 360 6 26.1 58400 234 
5.6
4 44500 32 126 6.1 28.3 78200 

34.8 360 
6.0
5 25.8 58400 234 5.7 44500 32 126 

6.1
5 28.1 78100 

34.8 360 6 26.1 58400 234 5.6 44500 32 126 
6.1
3 28 78100 

35.1 
356.

4 6 26.1 58400 
230.

4 5.6 44500 32.25 126 
6.1
3 28.05 78300 

35.4 
355.

6 
6.0
2 25.8 58400 

228.
6 

5.6
4 44500 32.5 126 

6.1
6 27.8 78200 

35.4 
352.

8 
6.0
1 25.6 58400 

226.
8 

5.6
5 44400 32.5 126 

6.1
7 27.5 77900 

35.4 
352.

8 6 25.6 58400 
226.

8 
5.6
1 44500 32.5 126 

6.1
6 27.5 77900 

35.4 
352.

8 
6.0
1 25 58400 

226.
8 5.6 44400 32.5 126 

6.1
2 27.2 78000 

35.4 
352.

8 
5.9
8 25 58400 

226.
8 

5.6
6 44400 32.75 126 

6.1
4 27.2 78100 

35.4 
352.

8 
6.0
1 25.3 58500 

226.
8 5.6 44500 32.75 126 

6.1
2 27.3 78100 

35.7 351 
5.7
9 25 58400 225 

5.7
1 44400 33 126 

6.1
5 27.2 78100 

35.7 351 6 25 58400 225 
5.6
4 44400 33 126 

6.1
6 27.2 78200 

35.7 
352.

8 
6.0
3 25 58500 

226.
8 5.6 44500 32.75 126 

6.1
7 27.2 78000 

35.4 351 
5.9
4 25.2 58500 225 

5.6
5 44500 32.75 126 

6.1
3 26.9 78000 

35.7 351 
5.9
8 24.7 58500 225 

5.6
2 44500 32.75 126 

6.1
6 26.9 78000 

35.7 
349.

2 
6.0
2 24.7 58500 

223.
2 5.6 44500 32.75 126 

6.1
8 26.9 78000 
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36 
349.

2 
6.0
3 24.4 58500 

223.
2 5.6 44500 33 126 

6.1
5 26.6 78100 

35.4 
354.

6 6 25.5 58500 
228.

6 
5.6
1 44700 32.5 126 

6.1
2 27.5 77700 

35.4 
353.

7 
5.9
7 25.3 58400 

227.
7 

5.6
2 44700 32.5 126 

6.1
3 27.2 77900 

35.7 
356.

4 
5.9
9 25.5 58500 

230.
4 

5.6
4 44700 33 126 

6.1
2 27.5 77700 

36 
354.

6 
5.9
6 25.3 58500 

228.
6 

5.0
9 44600 33 126 

6.0
9 27.2 77700 

35.7 
352.

8 
5.9
7 24.3 58600 

226.
8 5.6 44600 33 126 6.1 27.5 77400 

36 351 
5.9
8 24.4 58600 225 5.6 44600 33 126 6.1 26.3 77400 

36.3 348 
5.9
8 23.9 58600 

222.
5 5.6 44500 33.5 126 6.1 26.1 77600 

36.6 
345.

6 
5.9
8 23.4 58600 

219.
6 5.6 44400 33.5 126 

6.0
9 26.1 77400 

36 
345.

6 
5.9
7 23.8 58600 

219.
6 5.6 44500 33.25 126 6.1 25.8 77300 

36 
343.

8 
5.9
6 24.2 58600 

217.
8 5.6 44500 33.25 126 6.1 26.1 77200 

36.3 
343.

8 
5.9
8 24.2 58600 

217.
8 5.6 44500 33.5 126 6.1 26.4 77200 

36.3 
343.

8 6 24.4 58600 
217.

8 5.6 44500 33.25 126 6.1 26.1 77600 

36 
345.

6 
5.9
8 24.7 58600 

219.
6 5.6 44600 33.25 126 6.1 26.7 77100 

36.6 
345.

6 
5.9
8 24.7 58600 

219.
6 5.6 44600 33.5 126 6.1 26.7 77200 

36.9 
343.

8 
5.9
7 24.4 58600 

217.
8 5.6 44500 34 126 6.1 26.4 77300 

36.6 342 
5.9
8 24.4 58600 216 5.6 44500 34 126 6.1 26.1 77200 

36.6 342 
5.9
5 23.9 58600 216 5.6 44500 34 126 6.1 26.1 77200 

36.6 348 
5.9
8 23.6 58600 216 5.6 44500 34 126 6.1 26.1 77200 

36.6 
338.

6 6 23.3 58600 
210.

6 5.6 44500 34 126 6.1 25.6 77100 

36.6 
334.

8 6 23.3 58600 
208.

8 5.6 44500 34 126 6.1 25.6 77100 

36.9 
336.

6 
5.9
8 23.3 58600 

210.
6 5.6 44500 34.25 126 6.1 25.6 77000 

36.6 
334.

8 6 23.3 58600 
208.

8 5.6 44400 34 126 6.1 25.6 76600 

36.6 
334.

8 6 23.3 58600 
208.

8 5.6 44400 34 126 6.1 25.6 76600 

36.6 
334.

8 6 23.9 58600 
208.

8 5.6 44600 33.75 126 6.1 25.9 76400 

36.6 
334.

8 
5.9
7 23.6 58600 

208.
8 5.6 44600 34 126 6.1 25.8 76300 

36.6 
334.

8 
5.9
8 23.6 58600 

208.
8 5.6 44500 33.75 126 6.1 25.6 76300 

36.6 333 
5.9
8 23.3 58600 207 5.6 44500 34 126 6.1 25.6 76300 

36.6 333 
5.9
7 23.3 58600 207 5.6 44500 34 126 6.1 25.5 76100 

36.6 
331.

2 
5.9
8 23.3 58600 

205.
2 5.6 44400 34 126 6.1 25.5 76000 

37.2 
331.

2 
5.9
8 23.1 58700 

205.
2 5.6 44400 34.75 126 

6.1
5 25.3 76500 



g 
 

37.2 
331.

2 
5.9
8 23.1 58700 

205.
2 5.6 44400 34.75 126 

6.1
6 25.3 76300 

37.2 333 6 23.6 58700 207 5.6 44600 34.5 126 
6.1
4 25.8 76200 

36.9 333 6 23.6 58700 207 5.6 44700 34.5 126 
6.1
7 25.8 76200 

37.32 
330.

3 6 23.3 58700 
204.

3 5.6 44600 34.9 126 
6.1
6 25.6 76300 

37.5 
329.

4 
5.9
8 23.3 58700 

203.
4 5.6 44600 35 126 

6.1
5 25.6 76300 

37.5 
329.

4 
5.9
8 23.1 58700 

203.
4 5.6 44600 35 126 

6.1
4 25.3 76300 

37.8 333 6 23.1 58700 207 5.6 44600 35.5 126 
6.1
1 25.3 76400 

37.8 
329.

4 6 23.3 58600 
203.

4 5.6 44400 35.5 126 
6.1
5 25.6 76000 

37.8 
327.

6 6 23.1 58700 
201.

6 5.6 44400 35.5 126 
6.1
4 25 75900 

38.1 
329.

4 
5.9
8 23.1 58700 

203.
4 5.6 44500 35.75 126 6.1 25 76100 

38.1 
329.

4 
5.9
7 23.3 58700 

203.
4 5.6 44600 35.5 126 6.1 25 76000 

37.2 
342.

9 
5.9
7 23.9 58800 

212.
4 5.6 44700 34.5 

130.
5 6.1 25.8 76200 

37.2 
346.

5 
 

24.4 58800 216 
 

44900 34.5 
130.

5 
 

26.1 75700 

36.9 
342.

9 6 24.4 58800 
212.

4 5.6 44800 34 
130.

5 6.2 26.4 75600 

36.6 
344.

7 
 

24.8 58600 
214.

2 
 

44900 33.75 
130.

5 
 

26.3 73500 

36.3 
346.

5 6 25.3 58700 216 5.6 45200 33.75 
130.

5 6.2 27.2 75400 

36.3 
346.

5 
6.0
2 25.6 58700 216 

5.6
5 45300 33.5 

130.
5 

6.1
5 27.5 75800 

36.6 
348.

3 
6.0
1 25.6 58600 

217.
8 5.7 45200 33.75 

130.
5 

6.1
6 27.5 75400 

36.6 
346.

5 
6.0
1 25.6 58600 216 

5.6
4 45200 34 

130.
5 

6.1
5 27.5 75200 

36.6 
342.

9 6 25.6 58600 
212.

4 
5.6
3 45200 33.75 

130.
5 

6.1
3 27.5 75000 

36.6 
344.

7 6 25.6 58400 
214.

2 
5.6
4 45100 33.75 

130.
5 

6.1
4 27.5 74900 

36.6 
344.

7 6 25.6 58300 
214.

2 
5.6
4 45000 33.75 

130.
5 

6.1
5 27.5 74800 

36.9 
344.

7 
5.9
5 25.6 58300 

214.
2 5.6 45000 34 

130.
5 

6.1
7 27.5 74800 

36.9 
346.

5 6 26.1 58300 216 5.6 45200 34 
130.

5 6.1 28.1 74700 

36.3 
346.

5 6 26.1 58300 216 5.6 45300 33.75 
130.

5 6.1 28.1 75100 

36 
339.

3 6 26.4 58300 
208.

8 5.6 45300 34 
130.

5 6.1 28.3 74400 

36.3 
342.

9 6 26.4 58300 
212.

4 5.6 45400 34 
130.

5 6.1 28.3 74600 

36.6 
341.

1 6 26.4 58600 
210.

6 5.6 45600 34.25 
130.

5 6.1 28.3 74900 

36.6 
339.

3 6 26.7 59000 
208.

8 
5.6
5 46100 34 

130.
5 

6.1
5 28.9 75900 

36.6 
339.

3 6 26.7 59200 
208.

8 5.6 46100 34.25 
130.

5 
6.1
1 28.9 75800 

36.6 
339.

3 6 26.9 59000 
208.

8 5.6 46200 34.25 
130.

5 
6.1
8 28.9 75800 



h 
 

36.6 
344.

7 6 27.8 59000 
214.

2 
5.6
5 46200 34 

130.
5 

6.1
5 30 76300 

36.6 
346.

5 6 27.8 59100 216 
5.6
4 46300 34 

130.
5 

6.1
1 30.2 76400 

36.3 
344.

7 6 28.1 59000 
214.

2 5.6 46200 34.25 
130.

5 
6.1
6 30 75300 

36.6 343 6 28.3 59000 216 5.7 46300 34 127 
6.1
8 30.3 75600 

36.9 
341.

2 6 28.3 59000 
214.

2 
5.6
5 46200 34.25 127 

6.1
8 30.3 75600 

36.9 
337.

6 6 28.1 59000 
210.

6 5.6 46100 33.25 127 
6.1
8 30 75400 

36 
350.

1 6 27.2 58800 
219.

6 5.7 46200 33.75 
130.

5 6.2 29.2 75000 

36.3 
350.

1 6 27.2 58800 
219.

6 5.7 46300 34 
130.

5 6.2 29.2 75300 

36.3 
346.

5 
6.0
1 27.2 58900 216 

5.6
2 46400 34.25 

130.
5 6.2 29.2 75200 

36.3 
350.

1 6 27.2 58900 
219.

6 
5.6
5 46500 34 

130.
5 

6.1
2 29.2 75300 

36.3 
346.

5 6 27.2 59000 216 
5.6
6 46400 34 

130.
5 

6.1
5 29.2 75100 

35.7 
346.

5 6 27.2 58900 216 5.7 46500 33.25 
130.

5 6.2 29.2 75000 

36 
346.

5 6 27.2 59000 216 5.7 46500 34 
130.

5 6.2 29.2 75100 

36 
346.

5 6 27.5 58900 216 
5.7
5 46400 34 

130.
5 6.2 29.4 75200 

36.9 
350.

1 
6.0
2 27.5 59000 

219.
6 

5.7
5 46400 34.75 

130.
5 

6.1
8 29.4 75300 

36.6 
350.

1 
6.0
1 27.5 59100 

219.
6 5.7 46600 34.5 

130.
5 6.2 29.7 75300 

36.6 
350.

1 6 27.5 59200 
219.

6 
5.7
1 46800 34.5 

130.
5 

6.1
6 30 75400 

36.3 
350.

1 
6.0
1 28.3 59100 

219.
6 

5.7
3 46800 34.25 

130.
5 

6.1
8 30.3 75200 

36.6 
350.

1 6 28.3 59100 
219.

6 
5.7
5 46900 34.25 

130.
5 

6.1
9 30.3 75200 

36.6 
350.

1 
6.0
1 28.1 59100 

219.
6 

5.7
5 46800 34.25 

130.
5 

6.1
6 30 75000 

36.3 
350.

1 6 28.1 59000 
219.

6 
5.7
1 46900 34.25 

130.
5 

6.1
6 30 75000 

36.3 
350.

1 6 28.3 59100 
219.

6 
5.7
5 46900 34.25 

130.
5 

6.1
7 30.3 75000 

36.3 
350.

1 
6.0
2 28.6 59000 

219.
6 

5.7
5 47000 34 

130.
5 6.2 30.6 74900 

36.6 
350.

1 6 28.6 59000 
219.

6 5.7 47000 34.25 
130.

5 
6.1
8 30.6 74900 

36.6 
351.

9 6 28.9 59000 
221.

4 
5.6
5 47000 34.25 

130.
5 

6.1
3 30.6 74500 

36.3 
350.

1 6 28.9 59000 
219.

6 
5.6
9 47000 34.25 

130.
5 

6.1
6 30.6 74700 

36.6 
350.

1 6 29.2 59000 
219.

6 
5.6
5 47000 34.25 

130.
5 

6.1
2 30.8 74600 

36.6 
350.

1 6 29.2 58900 
219.

6 
5.6
6 47100 34.25 

130.
5 

6.0
8 30.8 74300 

36.7 
350.

1 6 29.2 58900 
219.

6 
5.6
4 47000 34.5 

130.
5 

6.1
5 30.8 74300 

36.9 
346.

5 6 29.2 58900 216 5.7 46900 34.25 
130.

5 
6.1
4 30.8 74100 

36.6 
344.

7 6 29.2 58900 
214.

2 
5.6
8 46800 34.25 

130.
5 

6.1
1 30.8 74400 



i 
 

37.2 
338.

4 6 29.2 59000 
212.

4 
5.6
8 47100 35 126 6.1 30.8 75900 

37.5 
338.

4 6 28.6 59000 
212.

4 
5.6
5 47100 35.25 126 

6.0
8 30.8 75500 

38.36 
336.

6 6 28.6 59000 
210.

6 5.7 46800 35.5 126 6.1 30.3 74100 

37.5 
334.

8 6 28.4 59000 
208.

8 
5.7
1 46800 35.5 126 

6.0
8 30.3 74000 

37.5 333 6 28.6 59000 207 5.7 46800 35.5 126 
6.0
7 30.6 74000 

37.5 
336.

6 6 29.7 58900 
210.

6 
5.6
5 47200 35.25 126 

6.1
4 31.4 73700 

37.8 
336.

6 6 29.7 58900 
210.

6 
5.6
5 47100 35 126 

6.1
5 31.4 73700 

37.5 
336.

6 6 30 58900 
210.

6 
5.6
5 47500 35.5 126 

6.1
6 31.9 73700 

37.5 
336.

6 6 30 58900 
210.

6 
5.6
5 47200 35.25 126 

6.1
7 31.9 73700 

37.8 333 6 30 58900 207 
5.6
5 47200 35.5 126 

6.1
5 31.9 73600 

37.8 
334.

8 6 30.3 59000 
208.

8 5.7 47500 35.5 126 
6.1
3 32.2 73900 

37.5 
334.

8 6 30.3 59000 
208.

8 
5.6
5 47500 35.5 126 

6.1
1 31.9 74500 

37.5 
334.

8 6 30.3 59100 
208.

8 5.7 47700 35.5 126 
6.1
4 31.9 74100 

37.5 
334.

8 
6.0
2 30.3 59000 

208.
8 

5.6
8 47700 35.5 126 

6.1
5 31.9 73600 

37.8 333 
6.0
1 30.3 58800 207 

5.6
9 47400 35.75 126 

6.1
9 32.2 73200 

37.8 
331.

2 6 30.3 58900 
205.

2 
5.6
5 47400 35.75 126 

6.1
9 32.2 73300 

37.8 
329.

4 6.1 30.6 58800 
203.

4 
5.6
8 47400 35.5 126 

6.1
3 32.8 73400 

26.1 360 6 30.6 58900 234 5.8 49900 23.25 126 
6.1
6 32.8 73900 

26.7 360 
5.9
8 31.4 58700 234 

5.7
5 49800 24 126 

6.1
7 33.1 71700 

25.8 360 
5.9
8 31.9 58900 234 

5.7
4 50100 23.25 126 

6.1
2 33.9 71400 

26.4 360 6 31.4 58800 234 5.8 50000 23.75 126 
6.1
7 33.1 71600 

26.4 360 
6.0
2 31.9 58800 234 

5.7
5 50000 23.75 126 

6.1
8 33.9 71700 

26.4 360 6 31.9 58700 234 
5.7
5 49900 23.75 126 

6.1
6 33.9 71500 

26.4 360 6 32.2 58900 234 
5.7
8 50200 23.75 126 

6.1
8 34.2 71400 

26.4 360 6 32.7 58800 234 5.8 50200 24 126 6.1 34.4 71400 

26.1 360 6 32.8 58800 234 5.8 49900 23.5 126 
6.1
5 34.4 71300 

26.4 360 6 32.8 58800 234 
5.7
6 49900 24 126 6.2 34.4 71400 

26.4 360 6 32.8 58800 234 
5.7
5 49900 24 126 

6.1
8 34.4 71600 

26.4 360 
6.0
2 32.8 58800 234 

5.7
6 50000 24 126 

6.1
5 34.4 71500 

26.7 360 
6.0
2 32.8 58800 234 

5.7
5 50000 24.25 126 

6.1
9 34.4 71600 

26.7 360 
6.0
2 33.1 58800 234 

5.7
6 50000 24.25 126 

6.1
7 35 71800 

26.4 360 6 33.3 58800 234 5.8 50000 24.25 126 6.1 36.1 71500 



j 
 

6 8 

26.7 360 
6.0
2 33.3 58800 234 

5.7
4 50000 24.25 126 

6.1
7 35.3 71500 

26.7 360 
6.0
2 33.3 58800 234 

5.7
4 50100 24.25 126 

6.1
7 35.3 71500 

26.7 360 6 33.3 58700 234 
5.7
4 50000 24.25 126 

6.1
9 35.3 71400 

27.3 360 
6.0
4 33.3 58800 234 

5.7
6 50100 24.5 126 

6.1
7 35.3 71400 

27.9 360 
6.0
5 33 58700 234 

5.7
8 49900 25 126 

6.1
8 35.5 71400 

27.6 360 
5.9
6 33.6 58600 234 

5.7
5 49900 25 126 

6.1
4 35.5 71000 

27.9 360 6 33.6 58700 234 
5.7
9 49800 25 126 6.2 35.5 71400 

28 360 6 33.6 58700 234 
5.7
5 49800 25 126 6.2 35.5 71400 

28.8 360 6 33.6 58600 234 
5.7
3 49900 25.5 126 

6.1
2 35.3 71400 

28.8 360 
5.9
4 33.4 58600 234 

5.7
1 49700 25.75 126 6.1 35.3 71400 

28.8 360 
5.9
7 33.6 58600 234 5.7 49800 25.75 126 

6.1
2 35.3 71200 

29.1 360 
5.9
8 33.6 58600 234 

5.7
8 49800 26.25 126 

6.1
7 35.4 71200 

29.4 360 
5.9
6 33.6 58500 234 

5.7
1 49700 26.75 126 

6.1
6 35.5 71200 

29.4 360 
5.9
7 33.6 58500 234 

5.7
4 49700 26.5 126 

6.1
5 35.5 71200 

29.4 360 
5.9
7 34.1 58500 234 

5.7
3 49700 26.5 126 

6.1
8 36.1 70900 

29.1 360 
5.9
5 34.4 58500 234 

5.7
3 49800 26.5 126 

6.1
1 36.4 71100 

30.3 360 
6.0
5 33.9 58400 234 

5.8
5 49500 27.5 126 

6.2
2 35.8 70900 

30.3 360 
6.0
4 33.9 58300 234 5.6 49500 27.5 126 

6.2
2 35.8 70900 

30.9 360 6 34.4 58200 234 
5.7
8 49200 28 126 6.2 36.1 70900 

31.2 360 
6.0
4 34.1 58300 234 

5.7
7 49400 28 126 

6.2
1 35.8 71000 

31.5 360 6 33.9 58200 234 5.7 49400 28.5 126 
6.0
9 35.8 71000 

31.8 360 
5.9
7 33.9 58200 234 

5.7
6 49400 29 126 

6.1
2 35.8 70900 

32.4 360 
6.0
2 33.9 58200 234 

5.7
6 49300 29.5 126 

6.1
4 35.8 70900 

32.4 360 
6.0
4 33.9 58200 234 5.8 49400 29.75 126 

6.1
5 35.8 70900 

33 360 
6.0
2 33.9 58300 234 5.8 49400 30 126 

6.1
9 35.8 71000 

32.7 360 
6.0
1 33.9 58300 234 5.8 49400 30 126 

6.1
6 35.8 71000 

33.9 359 
6.0
1 34.2 58300 234 

5.8
3 49400 31.25 125 

6.1
6 36.1 71400 

33.6 359 
6.0
4 34.4 58300 234 5.8 49400 31 125 

6.1
9 36.4 71500 

34.4 359 
6.0
4 34.4 58300 234 5.8 49400 32 125 

6.1
8 36.4 71400 

34.8 359 
6.0
1 34.25 58300 234 5.8 49400 31.5 125 6.2 36.1 71200 

31.8 359 6 34.25 58300 234 5.8 49400 28.5 125 6.1 36.1 70800 



k 
 

8 

33.9 359 
6.0
4 34.2 58100 234 5.8 49200 30.5 125 

6.1
6 36.1 70800 

34.5 359 
6.0
1 33.9 58000 234 

5.7
8 49000 31.25 125 

6.2
5 35.8 70700 

33.3 
358.

5 
6.0
2 34.1 58100 234 

5.8
5 49300 30.25 

124.
5 

6.2
3 36.1 70800 

34.5 358 
6.0
4 33.65 58100 234 

5.8
3 49100 31.5 124 

6.1
6 35.6 70900 

35.4 358 
6.0
4 33.35 58100 234 

5.8
1 49100 32.5 124 

6.1
5 35.6 71000 

35.7 349 
6.0
1 33.1 58100 225 5.8 49000 33 124 

6.1
4 35 70800 

36 
349.

2 
6.0
2 32.8 58100 

223.
2 

5.8
4 49000 33 126 

6.1
8 35 70400 

36 
349.

2 6 32.8 58100 
223.

2 5.8 49000 33 126 
6.1
8 35 70400 

36.3 
349.

2 
6.0
2 33.05 58100 

223.
2 

5.8
1 49000 33.25 126 

6.1
6 35 70300 

36.3 
345.

6 
6.0
4 33.1 58100 

219.
6 5.8 49000 33 126 6.2 35 70200 

36.9 
338.

4 6 32.3 58000 
212.

4 
5.7
6 48500 33.75 126 

6.1
4 34.4 69600 

36.9 
338.

4 
6.0
1 32.2 57900 

212.
4 5.8 48600 34 126 

6.1
2 34.4 69700 

36.9 
336.

6 
6.0
2 32.2 57900 

210.
6 5.8 48600 33.5 126 

6.1
3 34.4 69600 

36.6 
338.

4 6 32.2 57900 
212.

4 
5.8
2 48600 33 126 

6.1
3 34.4 69700 

36.6 
334.

8 
6.0
4 32.2 57900 

208.
8 

5.8
1 48700 33.25 126 

6.1
4 34.4 69700 

37.2 333 
6.0
4 32.2 57900 207 

5.8
3 48700 33.5 126 

6.1
5 34.4 69700 

36.9 
331.

2 
5.9
7 32.2 58000 

205.
2 

5.7
8 48800 33.5 126 

6.1
1 34.4 69600 

37.2 
327.

6 
6.0
1 32.2 57900 

201.
6 

5.7
6 48700 33.75 126 6.1 34.4 69400 

37.2 
329.

4 
6.0
3 32.2 57900 

203.
4 5.8 48600 33.9 126 

6.1
4 34 69400 

37.5 
336.

9 
6.0
3 31.85 57900 

212.
4 5.8 48700 33.9 

124.
5 

6.1
3 34 70000 

37.8 331 6 31.7 57900 207 5.8 48700 34.5 124 
6.1
5 33.9 69800 

38.1 
325.

6 6 31.7 57900 
201.

6 5.8 48700 34.5 124 
6.1
8 33.9 69700 

37.8 
329.

2 
6.0
3 31.4 57900 

205.
2 5.8 48800 34.5 124 

6.1
6 33.3 69700 

38.1 
329.

2 
6.0
3 31.1 57900 

205.
2 

5.7
8 48700 34.5 124 

6.1
2 33.3 69800 

38.1 
327.

4 6 31.4 57900 
203.

4 5.8 48700 34.75 124 
6.1
2 33.3 69700 

38.4 
325.

6 6 31.7 58000 
201.

6 5.8 48800 35 124 6.1 33.9 69600 

38.4 
323.

8 
5.9
8 31.7 58000 

199.
8 5.8 48800 35 124 

6.1
3 33.9 69600 

38.7 
323.

8 6 31.7 58000 
199.

8 5.8 48800 35.25 124 
6.1
2 33.9 69500 

38.7 
323.

8 6 31.7 58000 
199.

8 5.8 48800 35 124 
6.1
5 33.9 69500 

38.7 322 6 31.7 58000 198 5.8 48800 35.25 124 6.1 33.4 69500 

38.7 
320.

2 6 31.9 58000 
196.

2 5.8 48900 35.75 124 
6.0
8 33.4 69200 



l 
 

39.6 
318.

4 6 31.7 58000 
194.

4 5.8 48800 36.25 124 
6.1
2 33.9 69300 

39 
323.

8 6 31.4 58000 
199.

8 5.8 48800 36 124 
6.0
9 33.3 69200 

39 322 
6.0
2 31.1 58000 198 5.8 48700 35.75 124 6.1 33.3 69200 

39 322 
6.0
3 31.1 58100 198 5.8 48700 36 124 

6.1
2 33.3 69200 

23.1 
354.

4 6 31.4 58500 
230.

4 5.8 52100 19.25 124 
6.0
6 33.6 67700 

23.4 
352.

6 
5.9
8 31.1 58500 

228.
6 

5.8
2 51900 20 124 

6.0
8 33.1 67700 

23.88 
352.

6 6 30.8 58500 
228.

6 
5.8
3 51700 20.25 124 6.1 32.8 67700 

26.4 358 6 31.1 58400 234 
5.8
1 51400 22.75 124 

6.1
2 32.8 68100 

26.7 358 6 31.1 58400 234 
5.8
2 51400 23 124 

6.1
6 32.8 68600 

27 358 6 30.8 58400 234 5.8 51300 23.5 124 
6.1
5 32.8 68600 

27.3 360 6 31.1 58300 234 5.8 51200 23.5 126 
6.1
3 32.8 68500 

27.72 360 6 30.8 58300 234 5.8 51100 23.75 126 
6.1
4 32.8 68600 

29.1 360 6 30 58300 234 
5.8
5 50900 25 126 6.1 31.9 68800 

26.4 360 
6.0
2 30 58400 234 

5.8
3 51000 23 126 

6.1
4 31.7 69100 

27 360 6 30 58400 234 
5.8
5 51000 23.5 126 

6.1
5 31.7 69100 

27.3 360 6 30 58400 234 
5.8
5 51000 23.75 126 

6.1
3 31.7 69100 

27.9 360 6 30 58400 234 
5.8
5 51000 24.25 126 

6.1
4 31.7 69400 

28.2 360 6 29.7 58300 234 
5.8
5 51000 24.75 126 

6.1
5 31.4 69500 

28.5 360 6 29.4 58200 234 
5.8
6 50500 25 126 

6.1
4 31.1 69100 

29.1 360 6 29.4 58200 234 
5.8
5 50500 25.5 126 

6.1
4 31.1 69300 

29.1 360 6 29.2 58200 234 
5.8
5 50500 25.75 126 

6.1
6 31.1 69300 

30 360 6 29.2 58200 234 
5.8
1 50600 26.25 126 

6.1
3 31.1 69400 

29.7 360 
6.0
2 29.2 58200 234 

5.8
5 50400 26.25 126 

6.1
3 31.1 69300 

30 360 6 29.2 58200 234 
5.8
5 50400 26.5 126 

6.1
2 31.1 69400 

30.3 360 6 29.2 58200 234 
5.8
5 50400 26.75 126 

6.1
2 31.1 69300 

30.9 360 6 28.9 58100 234 
5.8
4 50300 27.25 126 

6.1
4 30.6 69400 

31.5 360 6 28.9 58100 234 
5.8
6 50200 27.75 126 

6.1
7 30.6 69600 

31.8 360 6 28.25 58200 234 
5.8
5 50200 28.25 126 

6.1
7 30.6 69700 

32.4 360 6 28.3 58200 234 
5.8
4 50200 28.5 126 

6.1
5 30.3 69700 

32.4 360 6 28.3 58100 234 
5.8
6 50100 29 126 

6.1
5 30 69700 

33 360 6 28.3 58100 234 
5.8
5 50100 29.5 126 

6.1
4 30 69800 



m 
 

33.3 360 6 28.3 58100 234 
5.8
4 50000 29.5 126 

6.1
3 30 69800 

33.9 360 6 28.1 58100 234 
5.8
3 49900 30.25 126 

6.1
3 30 70100 

34.2 360 6 28.1 58100 234 
5.8
5 49900 30.5 126 

6.1
4 30 69700 

34.2 360 6 27.8 58100 234 
5.8
3 49800 30.5 126 

6.1
4 29.4 69700 

35.4 360 6 27.5 58100 234 
5.8
2 49800 31.25 126 

6.1
2 29.4 70000 

35.4 360 
6.0
2 27.2 58100 234 

5.8
6 49800 31.75 126 

6.1
6 29.2 70000 

36 360 
6.0
3 27.2 58100 234 

5.8
6 49800 32.25 126 

6.1
8 29.2 70000 

36 360 
6.0
2 27.2 58100 234 

5.8
5 49800 32.25 126 

6.1
8 29.2 70100 

36 360 6 27.2 58100 234 
5.8
5 49600 32.5 126 

6.1
5 29.2 69700 

36 360 6 27.2 58000 234 
5.8
5 49700 32.25 126 

6.1
5 29.2 69800 

36 360 6 27.2 58000 234 5.8 49700 32 126 
6.1
4 29.2 69600 

36.3 
356.

4 6 26.7 58000 
230.

4 
5.8
1 49600 32.5 126 

6.1
2 28.9 69500 

36.3 
354.

6 6 26.7 58000 
228.

6 
5.8
5 49600 32.5 126 

6.1
2 28.9 69500 

35.7 358 6 27.2 58000 234 
5.8
6 49700 32 124 

6.1
3 29.2 69300 

36 358 6 26.4 58000 234 
5.8
3 49500 32.25 124 

6.1
2 28.3 69500 

36.6 
350.

8 6 25.8 58000 
226.

8 
5.8
4 49500 32.75 124 

6.1
1 27.8 69500 

35.7 358 6 25.8 58000 234 
5.8
5 49501 31.75 124 

6.1
4 27.8 69600 

36 
354.

4 6 25.8 58100 
230.

4 
5.8
6 49700 32 124 

6.1
2 27.8 69900 

36.3 
354.

4 6 25.8 58100 
230.

4 5.8 49700 32.5 124 
6.1
5 27.8 70000 

36.9 
350.

8 6 25.8 58100 
226.

8 
5.8
2 49600 33.25 124 

6.1
3 27.8 69700 

36.9 
350.

8 6 25.55 58000 
226.

8 5.8 49400 33.25 124 
6.1
1 27.8 69400 

37.2 
343.

6 6 25.6 58000 
219.

6 
5.8
5 49300 34 124 6.1 27.5 69300 

36.9 340 6 25.6 58000 216 
5.8
5 49400 33.75 124 6.1 27.5 69300 

36.9 340 6 25.6 58000 216 
5.8
5 49300 34.25 124 

6.1
2 27.5 69200 

36.9 
338.

2 6 25 58000 
214.

2 
5.8
5 49300 34.5 124 6.1 27.2 69200 

36.9 
334.

6 6 25 58000 
210.

6 
5.8
5 49300 34.5 124 

6.0
9 27 69100 

36.9 
334.

6 6 25.3 58000 
210.

6 
5.8
5 49300 34.25 124 

6.0
9 27.2 69100 

36.9 
334.

6 6 25.3 58000 
210.

6 
5.8
4 49400 34.5 124 

6.0
9 27.5 69100 

36.9 
332.

8 6 25.3 58000 
208.

8 
5.8
1 49400 34.5 124 

6.0
7 27.5 69100 

36.9 
336.

4 6 26.7 58100 
212.

4 5.8 49500 34.25 124 
6.1
2 28.3 69100 

36 
354.

6 6 26.1 58100 
228.

6 
5.7
5 46800 33.25 126 

6.1
2 28.1 73900 



n 
 

36 
352.

8 6 26.1 58100 
226.

8 
5.7
5 46800 33.5 126 

6.0
9 28.1 73700 

36.6 
352.

8 6 25.8 58000 
226.

8 5.8 46600 33.5 126 
6.1
6 27.8 73600 

36.6 
352.

8 6 25.6 58000 
226.

8 
5.7
6 46600 33.75 126 

6.0
8 27.5 73600 

36.9 
352.

8 6 25.6 58000 
226.

8 
5.7
4 46600 34 126 

6.1
2 27.5 73600 

37.2 
352.

8 6 25.3 58000 
226.

8 
5.7
5 46500 34 126 

6.0
9 27.2 73400 

37.2 
349.

2 6 24.7 58000 
223.

2 
5.7
6 46400 34 126 6.1 26.7 73600 

37.5 
347.

4 6 24.4 58000 
221.

4 
5.7
4 46200 34.5 126 

6.0
7 26.4 73600 

37.8 
343.

8 6 24.2 57800 
217.

8 
5.8
4 45900 34.75 126 

6.1
4 25.6 73100 

37.8 
343.

8 6 23.9 57800 
217.

8 5.8 46000 35 126 
6.0
9 25.6 73100 

37.8 342 6 23.9 57800 216 5.8 46100 35 126 6 25.6 73100 

37.8 
343.

8 6 23.9 57900 
217.

8 
5.8
2 46100 35 126 6 25.8 73300 

37.8 342 6 23.8 58000 216 
5.7
8 46200 35 126 6 25.8 73300 

37.8 
336.

6 6 23.3 58000 
210.

6 5.8 46200 35 126 6 25.6 73300 

37.5 
340.

2 6 23.3 58000 
214.

2 
5.8
4 46300 35 126 6 25.3 73100 

37.8 
340.

2 6 23.3 58100 
214.

2 
5.8
4 46400 35 126 6 25.3 73200 

37.8 
338.

4 6 23.3 58100 
212.

4 
5.8
1 46300 35 126 6 25.3 73100 

37.8 
336.

6 6 23.1 58000 
210.

6 5.8 46000 35 126 
6.1
5 25 72900 

38.1 
334.

8 
5.9
8 23.3 58100 

208.
8 

5.7
7 46200 35.5 126 

6.1
6 25.6 72900 

30 360 
5.9
6 24.2 58200 234 

5.7
7 48700 26.75 126 6.1 26.1 71800 

30 360 
5.9
9 23.3 58100 234 

5.7
9 48500 26.75 126 

6.1
8 25.3 71700 

30 360 
5.9
8 23.3 58100 234 

5.7
8 48400 27.25 126 

6.1
5 25.3 71700 

30.3 360 
5.9
8 23.9 58100 234 

5.8
1 48500 27.25 126 

6.1
2 25.8 72000 

25.8 360 
5.9
8 23.3 58200 234 

5.7
8 48800 22.75 126 6.1 25.8 71800 

25.5 360 6 23.9 58200 234 
5.8
2 48800 22.75 126 

6.1
5 25.8 71300 

25.5 360 6 23.9 58300 234 
5.7
8 48900 22.5 126 

6.1
1 25.8 71300 

24.9 360 
5.9
8 26.1 58200 234 

5.7
2 49100 22 126 

6.1
1 27.2 71000 

24.9 360 
6.0
5 25 58200 234 

5.8
3 49100 21.75 126 

6.1
3 26.9 71000 

24.9 360 
6.0
4 25.6 58200 234 

5.8
5 49300 21.75 126 

6.1
5 27.2 71100 

25.2 360 
6.0
2 25 58200 234 

5.7
2 48900 22 126 

6.1
3 26.7 71000 

25.2 360 6 24.65 58000 234 5.8 48900 22.25 126 
6.0
7 26.2 71200 

25.5 360 6 25 58000 234 
5.7
4 48900 22.5 126 

5.9
8 25 71200 

25.8 360 5.9 27 58200 234 5.6 49000 22.5 126 6.0 26.9 71600 



o 
 

8 3 

25.8 360 
5.9
1 24.25 58100 234 5.7 48800 22.5 126 

6.0
2 25 71400 

25.8 360 
5.9
2 26.5 58300 234 

5.7
5 49100 22.5 126 

6.0
6 27 71800 

25.2 360 
5.9
1 24.95 58100 234 

5.8
1 49000 22.4 126 

6.0
3 26 71500 

25.2 360 
5.9
2 25.8 58500 234 

5.8
1 49500 22 126 

6.0
3 25.9 71600 

24.9 360 
5.9
2 26 58000 234 

5.8
2 49100 21.5 126 

6.0
2 26 71100 

25.5 360 
5.9
4 26 58200 234 

5.9
2 49200 22 126 

6.0
3 26 71400 

25.8 360 
5.9
5 25 58100 234 

5.9
7 49100 22 126 

6.0
4 25.1 71200 

25 360 
5.9
6 25 58200 234 

5.8
6 49200 22.25 126 

6.0
5 26.7 71500 

25 360 
6.0
4 25 58100 234 

5.8
8 49000 22.5 126 

6.2
2 26.7 71200 

25 360 6 25.3 58000 234 
5.8
5 49100 22.25 126 

6.1
2 27.2 71100 

25 360 5.9 25.6 58100 234 
5.8
5 48300 22 126 6.1 27.2 71200 

25 360 
5.9
8 25.6 58100 234 

5.9
8 48100 22 126 

6.1
8 27.8 71100 

25 360 
5.9
8 26.1 58000 234 

5.9
8 48000 21.75 126 6.1 28.1 70700 

24 360 5.8 26.1 58000 234 
5.9
6 49300 21.75 126 6.1 28.05 70700 

24 360 
5.9
8 26.4 58100 234 

5.9
8 49300 21.75 126 6.1 28.05 70700 

24.3 360 
5.9
8 26.4 58100 234 

5.9
8 49300 21.25 126 

6.1
2 28.3 70300 

24.6 360 6 26.4 58000 234 6 49200 21.25 126 
6.0
9 28.3 70500 

24.6 360 
6.0
3 26.1 58100 234 

5.8
5 49000 21.5 126 6.2 28.1 70300 

24 360 
6.0
4 26.1 58000 234 5.8 49100 21.25 126 

6.1
5 28.1 70600 

22.8 360 6 26.7 58100 234 5.9 49200 21 126 6.2 28.3 70300 

24 360 
6.0
3 25.6 57900 234 

5.8
7 49000 21.5 126 

6.2
2 27.2 70000 

24 360 
6.0
4 25.8 57900 234 

5.8
7 49100 21.75 126 6.2 27.2 70900 

23.4 360 
6.0
2 25.8 57900 234 

5.8
2 49100 21.25 126 

6.2
3 27.5 70900 

23.7 360 
6.0
4 26.1 58000 234 

5.8
1 49300 21.25 126 

6.1
5 28.1 70700 

24 360 
6.0
3 26.1 57800 234 5.8 48900 21.5 126 

6.1
1 27.5 70300 

24.9 360 
5.9
7 25.8 57900 234 5.8 48900 22.5 126 

6.1
4 27.2 70700 

24.6 360 6 25 57000 234 
5.8
2 48900 22.25 126 

6.1
1 26.9 70900 

24.6 360 
6.0
2 26.1 58100 234 5.8 49400 22 126 

6.1
3 27.8 70900 

24.9 360 
6.0
1 25.6 58000 234 

5.8
2 49200 22.25 126 

6.0
8 27.8 71200 

25.5 360 
5.9
8 25 57900 234 5.8 49000 22.75 126 

6.1
2 26.9 71000 

25.5 360 
5.9
7 25.3 58000 234 5.8 49000 23 126 

6.1
2 27.2 71300 



p 
 

25.2 360 6 25.3 58000 234 5.8 49100 23 126 
6.1
3 29.2 71300 

25.2 360 
5.9
8 26.7 58100 234 5.9 48100 22.75 126 

6.1
5 27.8 71300 

25.2 360 6 25.8 58100 234 5.8 48100 23 126 
6.1
5 27.5 71300 

25.2 360 6 26.4 58100 234 
5.8
5 49300 22.75 126 

6.1
7 28.1 71200 

24.6 360 6 27.2 58200 234 
5.8
5 49600 22.5 126 

6.1
6 28.9 71000 

24.6 360 
6.0
4 27.2 58000 234 

5.8
6 49400 22.25 126 

6.1
5 28.9 70800 

24.3 360 6 27.2 58000 234 
5.8
6 49400 22 126 

6.1
8 29.2 70600 

24 360 6 28.1 58000 234 
5.8
8 49600 21.75 126 

6.1
9 30 70400 

23.4 360 6 28.3 58100 234 
5.8
4 49800 21.5 126 

6.1
9 30.3 70400 

24.6 360 
6.0
2 27.2 57900 234 

5.8
5 49100 22.25 126 6.2 29.2 70100 

24.9 360 
6.0
1 26.9 57700 234 

5.8
5 49100 22.25 126 

6.2
4 28.9 70200 

24.9 360 6 26.9 57700 234 
5.8
4 49100 22.25 126 

6.1
7 28.9 70300 

25.5 360 
6.0
3 26.9 57700 234 

5.8
4 49100 22.5 126 

6.1
1 28.9 70300 

24.6 360 6 26.9 57700 234 
5.8
5 49100 22.25 126 

6.1
5 28.9 70100 

24 360 
6.0
1 27.8 57800 234 

5.8
3 49400 21.5 126 

6.1
5 29.4 69900 

24 360 6 27.8 57800 234 
5.8
4 49400 21.5 126 

6.1
5 29.4 69800 

24 360 
6.0
2 27.8 57800 234 

5.8
6 49400 21.5 126 6.2 29.4 69700 

24 360 
6.0
2 27.8 57800 234 

5.8
2 49400 21.5 126 

6.1
7 29.4 69700 

24 360 
5.9
8 27.8 57800 234 

5.8
2 49400 21.5 126 6.1 29.4 69700 

24.3 360 6 27.8 57800 234 5.8 49400 21.75 126 
6.1
2 29.7 69800 

24.3 360 
5.9
8 27.8 57800 234 5.8 49400 22 126 

6.1
1 29.7 70000 

24 360 6 27.8 57900 234 5.8 49500 22 126 6.1 29.7 69900 

24.3 360 6 28.1 58000 234 5.8 49600 22 126 
6.1
1 30 69900 

24.3 360 6 28.1 58000 234 5.8 49600 21.75 126 6.1 30 69900 

24 360 6 29.2 58200 234 
5.8
2 49800 21.75 126 

6.0
8 31.1 70200 

24.3 360 6 28.9 58200 234 5.8 49800 21.75 126 
6.1
1 30.8 69800 

24.3 360 6 28.9 58000 234 
5.8
2 49700 22 126 

6.1
2 30.8 69800 

24.6 360 6 28.3 58000 234 
5.9
8 49600 22.25 126 

6.0
9 30.3 70000 

24.6 360 6 28.6 58000 234 5.8 49700 22.25 126 
6.1
2 30.6 70000 

25.8 360 6 28.3 58000 234 5.8 49800 23.25 126 
6.0
8 31.1 69800 

25.8 360 6 28.3 58000 234 5.8 49800 23.25 126 6.1 30 69900 
25.8 360 6 28.1 58300 234 5.8 50100 23.25 126 6.1 30.6 69800 

26.1 360 6 28.3 58100 234 5.8 49900 23.75 126 
6.0
7 30.3 69900 



q 
 

26.1 360 6 29.4 58100 234 5.8 50100 23.5 126 
6.1
1 31.4 69700 

24 360 6 29.4 58200 234 5.8 50200 22.25 126 
6.0
7 31.4 69700 

25.5 360 6 28.9 58000 234 
5.8
2 50000 23 126 6.1 31.1 69700 

25.8 360 6 29.4 58000 234 5.8 50000 23.25 126 
6.0
9 31.1 69500 

25.8 360 6 29.4 58000 234 
5.7
8 50100 23 126 

6.0
7 31.1 69500 

26.1 360 
5.9
8 30 58000 234 5.8 50200 23.5 126 

6.1
2 31.7 69400 

26.4 360 6 30 58100 234 5.8 50200 23.5 126 
6.1
2 31.7 69400 

26.7 360 
5.9
8 29.7 58000 234 

5.8
2 50200 24 126 6.1 31.7 69400 

27 360 
5.9
7 29.7 57900 234 

5.8
4 50200 24.5 126 

6.1
2 31.7 69400 

27.6 360 
6.0
2 29.4 58000 234 

5.8
2 50100 25 126 

6.1
2 31.4 69500 

27.9 360 
5.8
9 30 58100 234 

5.8
5 50200 25 126 

6.0
7 31.4 69400 

27.3 360 
6.0
1 30.6 58100 234 

5.8
5 50200 24.75 126 

6.1
5 32.2 69400 

27.9 360 
5.9
8 30.6 58100 234 

5.8
6 50200 25.5 126 6.1 32.2 69400 

27.9 360 
5.9
8 30.8 58200 234 

5.8
7 50300 25.25 126 

6.1
9 32.8 69200 

27.9 360 6 31.1 58200 234 
5.8
8 50300 25.25 126 

6.1
9 32.8 69400 

28.8 360 6 31.1 58000 234 
5.8
8 50200 26.5 126 

6.1
4 32.8 69500 

24.3 360 6 31.1 58100 234 
5.8
6 50700 21.75 126 

6.1
6 33.1 69200 

24.6 360 6 31.1 58100 234 5.8 50700 22 126 
6.1
4 33.1 69200 

25.2 360 
6.0
2 31.1 58100 234 5.8 50600 22.75 126 

6.0
7 32.8 69200 

25.5 360 
5.9
6 31.1 58100 234 

5.8
5 50600 22.75 126 

6.0
5 32.8 69200 

25.8 360 
5.9
6 31.4 58200 234 5.8 50700 22.75 126 

6.0
8 33.3 69200 

25.8 360 
6.0
3 31.1 58200 234 

5.8
2 50700 23 126 

6.0
8 33.3 69200 

26.4 360 
6.0
4 31.1 58100 234 

5.8
2 50600 23.5 126 

6.0
8 33.3 69200 

27 360 
6.0
3 31.1 58100 234 

5.8
4 50600 24 126 

6.0
7 33.3 69400 

24.6 360 
5.9
6 31.7 58100 234 

5.8
3 50900 21.75 126 

6.0
5 33.4 68600 

26.4 360 
5.9
7 32.2 58100 234 

5.8
4 50900 23.5 126 

6.0
8 33.9 69100 

26.7 360 6 32.2 58100 234 
5.8
5 50800 24 126 

6.0
6 33.9 69100 

26.7 360 
5.9
8 32.2 58100 234 

5.8
1 50800 24 126 

6.0
7 33.9 69100 

27 360 
5.9
8 32.2 58100 234 5.8 50800 24.25 126 

6.1
2 33.9 68700 

27.9 360 
5.9
8 32.2 58100 234 5.8 50800 25.25 126 

6.0
6 33.9 68800 

28.2 360 
5.9
8 32.2 58000 234 5.8 50700 25.25 126 

6.0
7 33.9 69100 



r 
 

27 360 
5.9
7 32.2 58000 234 

5.7
8 50700 24.25 126 

6.0
6 33.9 68800 

27 360 6 32.8 58000 234 5.8 50800 24.25 126 
6.0
7 34.4 68800 

27 360 6 32.8 58000 234 5.8 50700 24.75 126 
6.0
7 34.4 68800 

27.9 360 
5.9
8 32.8 58000 234 5.8 50800 25.5 126 6.1 34.4 68900 

28.8 360 
5.9
7 32.8 58000 234 5.8 50700 26 126 

6.0
9 34.4 69100 

28.8 360 
5.9
8 32.8 58000 234 

5.8
5 50700 26.5 126 

6.1
4 34.4 68900 

29.1 360 
5.9
7 33.1 58000 234 

5.8
4 50700 26.75 126 

6.1
4 34.7 68900 

30 360 
5.9
6 33.1 58000 234 

5.8
4 50700 27.5 126 

6.0
6 35 69000 

30 360 
5.9
6 33.1 58000 234 

5.8
1 50700 27.5 126 

6.0
5 35 69100 

30 360 
5.9
6 33.1 58000 234 5.8 50700 27.5 126 

6.0
5 35 68900 

30.6 360 
5.9
7 33.1 58000 234 5.8 50700 28 126 

6.0
7 35 69000 

30.6 360 
5.9
8 33.1 58000 234 

5.8
2 50600 28.6 126 

6.0
6 35 68900 

31.8 360 
5.9
7 33.1 58000 234 

5.7
8 50500 29.5 126 

6.0
6 35 68900 

32.4 360 
5.9
6 33.1 58000 234 

5.8
4 50500 29.75 126 

6.0
5 35 68800 

32.4 360 
5.9
6 33.1 58000 234 5.8 50500 29.5 126 6.1 35 69000 

32.4 360 
5.9
8 33.3 58000 234 

5.7
8 50500 29.75 126 

6.0
8 35 68900 

32.4 360 
5.9
7 33.6 58000 234 5.8 50500 29.5 126 

6.0
6 35.3 69000 

34.2 360 
6.0
4 33.6 57900 234 

5.8
5 50400 31.5 126 

6.1
1 35.6 69100 

34.8 360 
6.0
2 33.6 57900 234 

5.8
2 50200 32 126 

6.1
4 35.6 68900 

35.1 360 
6.0
2 33.6 57800 234 

5.8
4 50200 32 126 

6.1
2 35.6 68900 

35.1 360 
5.9
8 33.3 57800 234 

5.8
5 50100 32.5 126 

6.0
5 35.3 68800 

35.4 360 
5.9
5 33 57700 234 5.8 50000 32.5 126 

6.0
4 35 68700 

35.7 
354.

6 
6.0
4 33.5 57800 

228.
6 

5.9
4 50200 33 126 

6.2
1 35.5 68600 

35.4 
352.

8 
6.0
2 33 57900 

226.
8 

5.8
5 50200 32.5 126 

6.1
5 35 68600 

33.9 360 
5.9
7 33 57700 234 

5.8
6 50300 31.5 126 6.1 35 68500 

26.1 360 
5.9
6 33.3 57900 234 5.9 51000 23.5 126 

6.1
4 35 67800 

28.8 360 
6.0
4 33 57700 234 

5.9
2 50800 26 126 

6.1
7 35 67700 

29.7 360 
6.0
5 33 57700 234 5.9 50700 27 126 

6.1
9 34.5 67900 

30 360 
6.0
5 33 57700 234 5.9 50600 27.25 126 6.2 34.5 68100 

28.8 360 
6.0
4 33.3 57700 234 

5.8
9 50800 26.5 126 

6.1
9 34.7 67900 

31.2 360 
6.0
5 33 57900 234 

5.9
2 50900 28.5 126 6.2 34.5 68500 



s 
 

35.1 360 
6.0
2 33 57800 234 

5.8
5 50500 32.5 126 

6.1
4 34.5 68700 

35.4 360 
5.9
6 33 57800 234 5.8 50500 33 126 

6.1
2 34.5 68600 

36 
356.

4 6 33 57800 
230.

4 
5.8
5 50500 33.25 126 6.1 34.5 68600 

36 
349.

2 
5.9
8 33 57800 

223.
2 

5.8
4 50500 33.5 126 

6.1
2 34.5 68400 

36.3 
349.

2 6 32.5 57800 
223.

2 
5.8
5 50500 33.75 126 

6.1
2 34 68300 

36.9 333 
5.9
8 32.5 57800 207 

5.8
7 50400 34 126 

6.1
1 34 67600 

18.9 360 
5.9
8 32 57900 234 

6.0
6 52700 16 126 

6.0
6 34 66300 

19.2 360 
5.9
7 32 57900 234 

5.8
7 52600 16.25 126 6.1 34 66400 

19.8 360 
5.9
8 31.5 57800 234 

5.8
7 52300 17.25 126 

6.0
7 33.5 66400 

20.4 360 6 31.5 57900 234 
5.8
8 52300 17.5 126 

6.0
7 33 66400 

20.4 360 
6.0
1 31 57900 234 

5.8
6 52300 17.5 126 

6.1
1 33 66400 

20.7 360 
5.9
7 31 57900 234 

5.8
2 52300 18 126 

6.0
6 33 66400 

20.7 360 
6.0
4 31 57800 234 

5.8
5 52200 18 126 6.1 33 66300 

21 360 6 31 57900 234 
5.8
8 52200 18.5 126 

6.0
7 32.5 66700 

21.3 360 
5.9
8 31 57900 234 

5.8
7 52100 18.75 126 

6.0
8 32.5 66500 

21.3 360 6 31 57900 234 
5.8
5 52100 18.75 126 

6.0
7 32.5 66600 

21.6 360 
5.9
7 31 57900 234 

5.8
4 52100 19 126 

6.0
5 32.5 66600 

21.6 360 
6.0
1 31 57900 234 

5.8
8 52100 19 126 

6.0
5 32.5 66600 

22.8 360 
6.0
2 31 57900 234 

5.8
7 52000 20 126 

6.0
5 32.5 66700 

21.9 360 6 30.5 57800 234 5.9 51800 19 126 
6.1
5 32 66400 

22.5 360 6 30.5 57800 234 
5.8
6 51800 20 126 

6.1
7 32 66500 

22.5 360 
6.0
5 30.5 57800 234 

5.8
9 51800 19.5 126 

6.0
7 32 66700 

22.2 360 6 30.5 57900 234 
5.8
4 51900 19.75 126 

6.0
6 32 66500 

22.2 360 
6.0
4 31 57800 234 

5.8
6 51900 19.25 126 

6.0
7 32.5 66700 

22.5 360 
6.0
5 30.5 57800 234 

5.8
7 51900 19.5 126 

6.0
7 32 66500 

22.8 360 
5.9
8 31 57800 234 5.8 52000 19.5 126 

6.0
5 33 66500 

22.8 360 
5.9
8 31 57900 234 

5.7
8 52000 19.75 126 

6.0
4 33 66700 

22.5 360 6 31 57900 234 5.8 52000 19.25 126 
6.0
5 33 66500 

23.1 360 6 32 57800 234 
5.8
2 52000 19.75 126 

6.0
7 33.5 66400 

23.4 360 
5.9
8 31 57700 234 

5.8
2 51900 20 126 

6.0
5 33.5 66400 

23.4 360 
5.9
7 31 57700 234 

5.8
2 51900 20 126 

6.0
4 32.5 66500 



t 
 

24 360 6 31 57700 234 
5.8
4 51900 20.25 126 

6.0
4 32.5 66400 

24.9 360 
5.9
6 32.15 57800 234 

5.8
1 51800 21.5 126 

6.0
7 33.5 66400 

25.2 360 
5.9
7 32.5 57700 234 

5.8
2 51700 21.75 126 

6.0
6 32.5 66400 

25.2 360 
6.0
3 31 57700 234 

5.8
5 51800 21.5 126 

6.1
7 32.5 66400 

25.2 360 
6.0
4 31 57700 234 

5.8
6 51800 21.5 126 

6.1
4 32.5 66400 

25.8 360 
6.0
4 31 57700 234 5.9 51800 22 126 

6.1
6 32.5 66400 

27.3 360 
6.0
5 30.5 57700 234 

5.9
2 51600 23.5 126 

6.1
6 32 66600 

28.2 360 
6.0
2 30.5 57600 234 

5.8
9 51500 24.25 126 

6.1
8 32 66600 

28.8 360 
6.0
4 30.5 57600 234 

5.9
3 51500 24.75 126 

6.1
4 32 66500 

22.8 360 6 31 57700 234 5.9 51800 19 126 
6.1
5 32.5 66600 

23.4 360 
6.0
4 30.5 57600 234 5.9 51800 19.5 126 

6.1
2 32 66200 

25.2 360 
6.0
4 30 57800 234 5.9 51800 21.25 126 

6.1
8 32 66000 

25.5 360 
6.0
5 30 57800 234 

5.9
1 51800 21.75 126 

6.1
2 32 66600 

26.1 360 
6.0
3 30 57800 234 

5.8
8 51800 22.25 126 

6.1
5 32 66600 

26.4 360 
6.0
4 30 57800 234 5.9 51800 22 126 

6.1
7 32 66700 

26.7 360 
6.0
5 30.5 57800 234 

5.9
2 51800 22.75 126 

6.1
5 32.5 66700 

28.2 360 
5.9
6 30 57900 234 

5.8
9 51700 24.25 126 

6.0
8 32.5 67800 

28.8 360 
5.9
6 30 57800 234 

5.8
5 51700 24.75 126 

6.0
6 32 67200 

29.4 360 
5.9
6 30 57800 234 

5.8
2 51700 25.25 126 

6.0
8 32 67400 

29.7 
352.

5 
5.9
6 30 57800 234 5.8 51700 25.75 

118.
5 

6.0
5 32 67400 

30 351 
5.9
5 30 57800 234 5.8 51600 26.75 117 

6.0
6 32 67500 

32.4 
346.

5 6 29.5 57900 234 5.8 51600 28.5 
112.

5 6.1 31.5 67800 

32.7 345 
5.9
6 29.5 57900 234 

5.8
1 51700 29 111 6.1 31.5 68100 

33.3 
343.

5 
5.9
7 29.5 57800 234 5.8 51600 29.5 

109.
5 

6.0
7 31.5 67900 

33.6 
343.

5 
6.0
1 29.5 57900 234 5.8 51700 29.75 

109.
5 

6.1
1 31.5 68100 

34.5 342 
5.9
6 29 57800 234 

5.8
4 51600 31 108 

6.0
7 31 68100 

36.6 342 
5.9
5 29 57800 234 5.8 51600 33.5 108 

6.0
6 31 68400 

36.9 339 
5.9
7 29 57900 234 

5.8
7 51600 33.5 105 

6.0
8 31 68400 

30 339 
5.9
5 29 57900 234 

5.8
4 51900 26.25 105 

6.0
5 31 68100 

30.6 336 6 29 57900 234 
5.8
5 51800 27 102 

6.0
5 31 68100 

33 336 
5.9
5 28.5 57900 234 

5.8
5 51800 29.75 102 

6.0
7 30.5 68300 



u 
 

34.2 336 
5.9
6 28 57700 234 

5.8
2 51600 31 102 

6.0
5 30 68400 

35.4 
334.

5 6 28 57700 234 5.8 51600 32 
100.

5 
6.0
7 30 68500 

36 
334.

5 
5.9
8 28 57800 234 

5.8
3 51600 33.25 

100.
5 

6.1
2 30 68600 

29.1 360 6 28.5 57900 234 
5.8
3 50300 26 126 6.1 30.5 68800 

30 360 
5.9
7 27.5 57700 234 

5.8
2 50100 27 126 

6.0
7 29.5 69100 

30 360 
5.9
5 27.5 57700 234 5.8 50200 26.75 126 

6.0
7 29.5 69000 

30.3 360 
5.9
7 27.5 57700 234 5.8 50100 27 126 

6.0
6 29 69200 

30.6 360 
5.9
7 27.5 57700 234 5.8 50100 27.5 126 

6.0
5 29 69200 

31.5 360 
5.9
6 27.5 57700 234 

5.8
4 50000 28 126 

6.0
6 29 69400 

32.4 357 
5.9
6 27 57800 234 5.8 49900 29 123 

6.0
4 29 69700 

32.4 360 
5.9
6 27 57800 234 5.8 49800 29.25 126 

6.0
4 29 69600 

31.8 360 
5.9
6 27.5 57700 234 

5.8
3 49800 28.5 126 

6.0
5 29 69200 

32.4 360 
5.9
7 27 57500 234 

5.8
3 49500 29.25 126 

6.0
8 28.5 69200 

33.6 360 
5.9
5 27 57500 234 

5.8
2 49500 30.25 126 

6.0
7 29 69200 

34.8 360 6 26.5 57700 234 5.8 49400 31.5 126 
6.1
4 28 70000 

35.4 360 6 26.5 57700 234 
5.8
2 49400 32 126 

6.1
4 28 70000 

35.7 360 6 26 57700 234 
5.8
2 49200 33 126 

6.1
3 27.5 70200 

36 360 6 26 57500 234 
5.8
5 49200 33.25 126 

6.1
4 27.5 70200 

35.1 360 
6.0
3 26 57500 234 

5.8
6 49300 31.75 126 

6.1
3 27.5 69900 

36.3 
352.

8 6 25.5 57600 
226.

8 5.8 49200 33.25 126 
6.1
4 27 70000 

36.3 
354.

6 
5.9
6 25 57500 

228.
6 

5.7
8 49100 33.25 126 

6.0
8 27 70300 

36.6 348 6 25 57500 225 
5.8
5 49100 33.5 123 

6.1
1 27 70200 

36.9 
343.

2 6 25 57600 
223.

2 
5.8
4 49100 33.75 120 

6.1
4 27 70100 

36.6 
339.

6 
5.9
7 25.5 57500 

219.
6 

5.7
5 49100 33.25 120 

6.1
4 27.5 69700 

37.2 
340.

8 
6.0
5 24.5 57500 

217.
8 

5.8
6 48900 34.25 123 

6.1
2 27 70000 

37.8 
337.

2 
5.9
8 24.5 57600 

214.
2 5.8 48900 34.75 123 6.1 26.5 69900 

37.8 
335.

4 
6.0
4 24.5 57600 

212.
4 

5.7
8 48800 35 123 

6.1
5 26 69800 

37.8 
331.

8 
5.9
8 24.5 57600 

208.
8 

5.8
2 48800 35 123 

6.1
1 26 69800 

37.5 339 
6.0
3 24.5 57600 216 5.8 48800 34.5 123 6.1 26 69600 

37.8 
335.

4 
5.9
7 24 57600 

212.
4 5.8 48800 35 123 

6.0
8 26 69600 

38.4 
331.

8 
5.9
8 24 57600 

208.
8 

5.8
2 48800 35 123 

6.0
7 26 69600 



v 
 

38.1 
328.

2 
5.9
1 24 57600 

205.
2 5.8 48900 35 123 

6.0
7 26 69700 

38.1 
331.

8 
5.9
6 24 57700 

208.
8 

5.8
2 49000 35 123 

6.1
4 26 69500 

38.1 
328.

9 6 24 57700 
205.

9 
5.8
1 49000 34.75 123 

6.0
8 26 69500 

38.1 
328.

2 
6.0
3 25 57700 

205.
2 

5.9
2 50400 35 123 

6.0
9 26.6 69300 

37.8 
331.

8 
5.9
7 25 57700 

208.
8 

5.9
7 49200 35 123 

6.1
2 27 69200 

37.8 
331.

8 
6.0
5 25 57700 

208.
8 

5.8
8 49200 35 123 

6.0
9 27 69300 

37.8 
331.

8 
6.0
2 25.5 57500 

208.
8 

5.8
6 49100 34.75 123 

6.1
2 27 69100 

38.7 
319.

2 6 24 57800 
196.

2 
5.9
4 49100 35.75 123 

6.0
9 26 69200 

39 318 
6.0
7 24.5 57700 195 

5.8
7 49200 35.5 123 

6.1
2 26.5 69100 

39 
317.

4 
5.9
6 24 57700 

194.
4 

5.8
4 49000 35.5 123 

6.0
7 26 69000 

38.7 
315.

6 6 24 57700 
192.

6 
5.8
4 49200 35.5 123 

6.0
7 26 69000 

38.7 
313.

8 6.1 24 57700 
190.

8 
5.9
4 48900 35.5 123 

6.1
6 25.5 68900 

39 
310.

2 
6.2
2 23 57700 

187.
2 

6.2
2 49100 35.75 123 

6.2
2 25 68700 

39 312 
6.0
3 23 57700 189 

5.9
6 49200 35.75 123 

6.1
2 25 68700 

39 
310.

5 
6.0
1 25.2 57800 

187.
5 5.9 49200 35.75 123 6.1 26 68700 

39 
310.

2 
5.9
5 23 57800 

187.
2 

5.8
1 48900 35.5 123 

5.9
8 25 68800 

38.1 
309.

6 
6.0
1 23.5 57700 

183.
6 5.9 49000 35.25 126 

6.0
3 25 68500 

37.8 306 6 23 57700 180 
5.8
2 49200 34.75 126 

6.0
2 25 68600 

25.8 360 
6.1
2 23 57800 234 

5.8
2 51400 22.5 126 

6.1
4 25 68200 

26.4 360 
6.0
2 22 57700 234 

5.8
4 51100 23.25 126 

6.1
8 24 68000 

27.6 360 
6.0
6 22 57800 234 

5.8
5 50900 25 126 

6.1
3 24 68300 

28.2 360 
6.0
5 22 57800 234 

5.8
3 50900 25.5 126 

6.1
3 24 68300 

28.5 360 
6.0
5 22 57800 234 

5.9
3 50800 25.5 126 

6.1
3 23.5 68500 

28.8 360 
6.0
3 22 57800 234 

5.8
9 50700 25.75 126 

6.1
3 23.5 68500 

30 360 
5.9
7 22 57700 234 

5.8
4 50400 27 126 

6.1
1 24 68700 

30.3 360 
6.0
2 22 57800 234 

5.8
5 50400 27.5 126 

6.0
7 24 68800 

30.45 360 6 22 57800 234 
5.8
5 50400 27.75 126 

6.0
8 24.3 68800 

30.3 360 
6.0
5 22 57800 234 

5.8
4 50400 27.5 126 

6.1
4 24 68800 

29.4 360 6 23 58000 234 
5.8
1 50900 26.25 126 

6.1
4 25 68800 

31.2 360 
5.9
8 22 57800 234 

5.8
5 50400 28.25 126 

6.1
2 24 69100 

30.9 360 6 22 57800 234 
5.8
2 50300 28.5 126 

6.0
8 24 69100 



w 
 

31.8 360 6 22 57800 234 
5.8
5 50300 28.75 126 

6.0
9 24 69200 

31.5 360 
5.9
8 22 57800 234 

5.8
6 50200 29.25 126 

6.1
2 23.5 69200 

32.4 360 
5.9
8 21.5 57800 234 

5.8
3 50200 29.25 126 

6.1
2 23.5 69300 

33 360 6 21.5 57800 234 
5.8
1 50100 30 126 

6.1
3 23 69400 

31.2 360 
6.0
4 21.5 58000 234 

5.8
5 50600 28 126 

6.1
6 23 69200 

30.9 360 6 22.5 58100 234 
5.8
2 50700 28 126 

6.1
4 24 69200 

31.8 360 6 22 57900 234 
5.8
5 50400 29 126 

6.1
7 24 69100 

31.8 360 
6.0
2 22 57900 234 

5.8
6 50300 29 126 

6.1
8 24 69200 

32.7 360 
6.0
5 22 57900 234 

5.8
6 50300 30 126 

6.1
9 24 69400 

33 360 
6.0
5 22 57900 234 

5.8
9 50400 30 126 6.2 24 69500 

33.15 360 
6.0
4 22 57900 234 

5.8
4 50200 30.5 126 6.2 24 69500 

33.6 360 
6.0
5 22 57900 234 

5.8
6 50100 31 126 

6.1
7 24 69400 

33.6 360 
6.0
3 23 57900 234 

5.8
8 50300 30.75 126 

6.1
7 25 69300 

33.9 360 
6.0
5 23 57800 234 5.9 50200 31 126 

6.2
2 25 69200 

34.2 360 
6.0
5 23 57800 234 5.9 50100 31.5 126 

6.1
8 25 69300 

34.2 360 
6.0
5 23 57800 234 5.9 50200 31.5 126 6.2 25 69200 

35.7 360 
6.0
5 22 57800 234 5.9 49900 33 126 

6.1
9 24 69500 

35.7 360 
5.9
8 22 57800 234 

5.8
4 50000 33.25 126 

6.1
6 24 69600 

36 360 
5.9
6 22 57800 234 5.8 50000 33.25 126 

6.1
5 24 69500 

36 360 
5.9
8 22.5 58100 234 5.8 50100 34 126 

6.0
9 24.5 70100 

31.2 360 6 21.5 57900 234 
5.8
2 50400 29.25 126 

6.1
1 23.5 69400 

33.6 360 6 22 58000 234 
5.8
3 50300 30.1 126 6.1 24 69600 

33.75 360 6 22 57900 234 5.8 50300 30.75 126 6.1 24 69600 

33.6 360 
5.9
8 22 57900 234 

5.8
1 50200 30.5 126 

6.1
1 24 69500 

33.6 360 6 22 58000 234 
5.8
2 50200 30.5 126 

6.1
3 24 69500 

33.6 360 
6.0
2 22.5 57900 234 

5.8
5 50200 30.5 126 

6.1
2 24.5 69400 

30.6 360 
6.0
4 25 58000 234 

5.8
6 50800 27.75 126 

6.0
6 27 68800 

27.6 360 6 26 58100 234 
5.8
6 50900 25.25 126 

6.1
5 27.5 68600 

28.5 360 
5.9
5 26.5 58100 234 

5.8
1 51100 25.5 126 

6.1
1 28.2 68000 

28.2 360 
6.0
4 26 58100 234 5.8 51400 26 126 

6.1
9 25.75 68500 

27.9 360 6 26 57800 234 5 50100 25.5 126 
6.1
7 28 68000 

28.8 360 5.9 25.5 57500 234 5.8 50400 25.5 126 6.1 27.5 67900 



x 
 

6 1 

28.8 360 
5.8
4 25.5 57400 234 

5.8
4 50400 25.75 126 

6.1
6 27.5 67800 

29.1 360 6 26 57300 234 5.8 50300 26 126 
6.1
1 28 67800 

29.7 360 
6.0
2 26 57300 234 

5.8
3 50300 26 126 

6.1
1 27.5 67800 

29.4 360 
6.0
4 26 57300 234 

5.8
4 50300 26 126 6.1 27 67800 

29.4 360 
6.0
1 26.5 57400 234 5.8 50800 26.25 126 

6.0
9 28.5 68000 

29.4 360 6 26 57500 234 5.8 50600 26.25 126 6.1 28.5 68000 

30.6 360 
5.9
8 26 57800 234 

5.8
2 50300 27.75 126 

6.0
7 28.5 67900 

31.2 360 6 25.5 57300 234 
5.8
3 50200 28 126 

6.0
6 27.5 68100 

31.2 360 
5.9
8 25 57300 234 5.8 50100 28.5 126 

6.0
9 27 68200 

30.9 360 
5.9
8 28 57600 234 

5.8
5 50600 28.25 126 

6.0
7 28 68400 

31 360 6 26 57500 234 
5.8
2 50300 28.75 126 

6.0
7 27.5 68100 

32.4 360 6 25 57300 234 
5.8
2 50100 29.5 126 

6.0
9 27 68500 

33.6 360 
5.9
7 25 57300 234 5.8 50000 30.25 126 

6.0
7 27 68700 

33.6 360 
6.0
2 25 57300 234 5.8 50000 30.5 126 6.1 27 68800 

33.6 360 
5.9
6 25.5 57700 234 

5.7
6 50200 31 126 

6.1
2 27.5 68700 

33.6 360 6 26 57700 234 
5.8
1 50200 30.75 126 6.1 28 68700 

33.6 360 
6.0
3 26 57600 234 

5.7
6 50300 31 126 6.1 28 68700 

27 360 
5.9
8 27 57600 234 5.8 50600 24.25 126 6.1 29 66900 

27 360 
5.9
8 27 57600 234 5.8 50900 25 126 

6.1
2 29 67500 

27.3 360 
6.0
4 28 57600 234 5.8 50900 25 126 

6.1
2 30 67500 

27.6 360 
6.0
4 28 57600 234 5.8 51000 25 126 

6.1
2 30 67600 

25.2 360 
5.9
8 29 57600 234 

5.8
5 51200 23 126 

6.1
5 30.5 67000 

26.1 360 
6.0
4 29 57400 234 

5.8
7 51000 23.75 126 

6.1
3 31 66900 

25.2 360 
5.9
6 29 57300 234 

5.8
4 51000 23 126 

6.0
7 31 66800 

25.2 360 6 29 57500 234 5.8 51300 23 126 
6.0
7 31 66800 

24.9 360 
5.9
6 29 57300 234 

5.8
3 51000 20 126 

6.1
4 31 66800 

25.2 360 6 29 57300 234 
5.8
6 51100 20 126 6.1 31 66800 

25.8 360 
5.9
7 29 57300 234 

5.8
2 50900 20 126 

6.0
6 31 66700 

25.8 360 
6.0
4 30 57400 234 

5.8
9 51000 22.75 126 

6.1
3 32 66900 

25.2 360 
5.9
6 29 57300 234 5.8 51200 22 126 

6.0
6 31 66800 

26.4 360 
6.0
5 29 57300 234 5.9 51000 23.25 126 

6.1
6 31 66700 



y 
 

26.7 360 
5.9
6 29 57300 234 5.8 50800 23.75 126 

6.0
7 31 66800 

27 360 
5.8
5 29 57300 234 

5.8
5 50700 24 126 6.1 31 67100 

27.6 360 
6.0
5 29 57300 234 5.9 50800 24.75 126 

6.1
4 31 67300 

27.6 360 
5.9
6 29 57400 234 

5.8
6 50900 24.75 126 

6.0
7 31 67200 

27.9 360 
5.9
6 29 57500 234 

5.8
5 51000 25 126 

6.0
8 31 67400 

28.1 360 
5.9
6 29 57400 234 

5.8
6 50800 25.25 126 

6.0
6 31 67200 

28.2 360 6 29 57400 234 
5.8
6 50800 25.25 126 6.1 31 67100 

28.2 360 6 29.5 57400 234 
5.8
4 51000 25 126 6.1 31.5 67200 

28.2 360 
5.9
5 29.5 57300 234 5.8 50900 25.25 126 

6.1
2 31.5 67100 

28.5 360 
5.9
6 29.5 57200 234 

5.8
6 50700 25.5 126 

6.0
6 31.5 67200 

28.8 360 
5.9
7 29.5 57200 234 

5.8
6 50500 25.75 126 

6.1
4 31.5 66800 

28.8 360 
5.9
6 29.5 57100 234 

5.8
2 50500 25.75 126 

6.1
2 31.5 66700 

29.1 360 
6.0
5 30 57400 234 

5.8
7 50800 26 126 

6.0
7 32 67200 

29.4 360 
5.9
5 30 57300 234 

5.8
4 50700 26.25 126 

6.0
7 32 67100 

29.4 360 
5.9
7 30 57200 234 

5.8
3 50600 26.25 126 

6.0
7 32 66900 

27 360 6 30 57200 234 
5.8
3 50700 24.5 126 

6.0
7 32 66800 

27.6 360 
6.0
4 30 57200 234 

5.8
8 50900 25 126 

6.1
1 32 66700 

28.05 360 6 30 57200 234 
5.8
5 50900 25.75 126 

6.0
7 32 66800 

28.2 360 
6.0
5 30 57200 234 

5.8
7 51000 25.75 126 6.1 32 66800 

28.2 360 
5.9
7 30.5 57200 234 

5.8
3 50900 26 126 

6.0
6 32.5 66800 

28.2 360 
5.9
6 31 57300 234 

5.8
9 51000 26 126 

6.0
5 33 66800 

29.1 360 
6.0
1 31 57300 234 

5.8
8 50900 26.75 126 

6.0
5 33 67000 

28.8 360 6 31.5 57300 234 
5.8
7 51000 26.75 126 

6.0
5 33.5 66900 

29.1 360 
6.0
2 31.5 57300 234 

5.8
7 50900 26.75 126 

6.0
6 33.5 66700 

29.1 360 6 31.5 57200 234 5.9 50900 27 126 
6.0
9 33.5 66600 

30 360 6 31.5 57200 234 
5.8
2 50800 27.5 126 

6.0
6 33.5 68800 

30.6 360 
6.0
2 31.5 57200 234 

5.8
4 50900 28 126 

6.0
9 33.5 66900 

30.6 360 
5.9
5 31.5 57400 234 

5.8
2 51000 28 126 

6.0
5 33.5 67100 

30.9 360 6 31.5 57300 234 
5.8
8 50900 28.5 126 

6.1
2 33.5 67300 

27.75 360 
6.0
5 31.5 57200 234 

5.8
9 51000 25.13 126 

6.1
8 33.5 66400 

29.4 360 
5.9
6 31 57200 234 

5.9
6 51000 26.5 126 

6.0
6 33 66800 



z 
 

30 360 6 31 57300 234 
5.8
6 51000 27 126 

6.0
9 33 66900 

30 360 
5.9
5 31.5 57500 234 

5.8
3 51100 27.25 126 

6.0
4 33.5 67000 

30.3 360 
5.9
6 31.5 57500 234 5.8 51200 27.75 126 

6.0
3 33.5 67000 

30 360 
5.9
6 31.5 57600 234 

5.8
4 51400 27.5 126 

6.0
4 33.5 67400 

31.8 360 
5.9
5 31.5 57700 234 5.8 51300 29 126 

6.0
2 33.5 67500 

31.8 360 
5.9
5 31.5 57700 234 

5.8
1 51300 29 126 

6.0
3 33.5 66900 

31.5 360 
6.0
5 32 57600 234 

5.8
8 51100 28.75 126 

6.1
2 33.5 67200 

32.7 360 
6.0
5 32 57700 234 5.9 51100 30 126 

6.1
1 33.5 67600 

33 360 6 32 57600 234 5.9 51000 30.75 126 
6.1
2 33.5 67500 

33.9 360 
6.0
5 32 57800 234 5.9 51200 31.25 126 

6.1
5 34 67800 

34.5 360 
6.0
1 32 58000 234 5.9 51300 31.75 126 6.1 34 68000 

34.8 360 
5.9
8 31.5 57800 234 

5.8
2 51100 31.75 126 

6.0
6 33.5 67700 

35.4 360 
6.0
4 31.5 57700 234 

5.8
6 51000 32.25 126 

6.0
8 33.5 67800 

35.4 360 6 32 57700 234 6 51000 32 126 
6.0
8 34 67800 

36 360 
6.0
1 32 57700 234 

5.8
8 51000 32.75 126 

6.0
7 34 67900 

36 360 
6.0
2 32 57700 234 

5.8
8 50900 32.75 126 

6.0
5 34 67700 

18 360 
5.9
6 32.5 58000 234 

5.8
4 53900 14.5 126 

6.0
6 34.5 64900 

18.9 360 
5.9
5 32.5 58000 234 

5.8
8 53800 15.75 126 

6.0
5 34.5 65200 

19.2 360 
6.0
4 33 58300 234 5.9 53700 16.13 126 

6.0
8 35 65600 

19.5 360 
5.9
3 33 58300 234 

5.8
8 53600 16.5 126 

6.0
4 35 65800 

19.5 360 6 33 58300 234 
5.8
5 53600 16.5 126 

6.0
5 35 65600 

19.8 360 6 33 58300 234 
5.8
4 53600 16.5 126 

6.0
6 35 65500 

19.8 360 6 32.5 58200 234 
5.8
5 53500 17.25 126 

6.0
5 34 65500 

20.1 360 
5.9
6 32.5 58200 234 

5.9
6 53800 17.25 126 

6.0
4 34 65600 

20.1 360 6 32.5 58200 234 
6.0
6 53400 17.25 126 

6.0
6 34 65700 

20.1 360 
5.9
8 32 58200 234 

6.0
5 53400 17.25 126 

6.0
5 34 65700 

20.4 360 6 32 58200 234 
5.8
6 53300 17.5 126 

6.0
6 34 65800 

20.7 360 
5.9
6 32 58200 234 

5.9
6 53300 17.75 126 

6.0
4 34 65800 

20.7 360 
5.9
6 32 58200 234 

5.8
6 53300 17.75 126 

6.0
4 34 65800 

20.85 360 6 32 58200 234 
5.8
8 53300 17.75 126 

6.0
5 34 65900 

21 360 
5.9
6 32 58200 234 

5.8
7 53300 18 126 

6.0
3 34 65900 



aa 
 

21 360 
5.9
8 32 58200 234 

5.9
8 53200 18 126 

6.0
4 34 65900 

20.4 360 
5.9
6 31 58000 234 

5.8
6 53000 19.25 126 

6.0
3 33 65800 

21 360 6 31 58000 234 
5.8
5 53000 19.25 126 

6.0
4 33 65900 

21.6 360 
5.9
8 31 58000 234 

5.8
8 52900 19.25 126 

6.0
3 33 65700 

21.9 360 
5.9
7 31 58000 234 

5.8
8 52800 19 126 

6.0
4 33 66100 

22.2 360 
6.0
4 31.5 58100 234 

5.8
6 52900 19.25 126 

6.0
7 33.5 65800 

22.5 360 
5.9
8 31 58100 234 

5.9
8 52900 19 126 

6.0
4 33 66200 

22.2 360 
5.9
8 31 58000 234 

6.0
4 52800 19.25 126 

6.0
4 33 66200 

24 360 
5.9
5 30.5 58000 234 5.8 52300 20.5 126 

6.0
2 32.5 67000 

25.2 345 
5.9
5 30.5 58100 234 5.8 52300 22 111 

6.0
2 32.5 67600 

25.2 360 
5.9
6 30.5 58100 234 

5.8
6 52300 22.25 126 

6.0
3 32.5 67600 

25.8 345 
5.9
8 30.5 58100 234 

5.8
6 52400 22.5 111 

6.0
4 32.5 67700 

26.1 345 
5.9
8 30 58000 234 

5.8
8 52300 22.5 111 

6.0
3 32 67800 

24 360 
5.9
7 30 58000 234 

5.8
6 52100 21 126 

6.0
3 32 67200 

24.9 360 
5.9
6 30 58000 234 5.8 52100 21.75 126 

6.0
1 32 67500 

24.9 360 
5.9
5 30 58000 234 

5.9
5 52000 22 126 

6.0
1 32 67200 

25.5 360 
5.9
7 30 58000 234 

5.9
7 51900 22.5 126 

6.0
2 32 67500 

25.8 360 
5.9
7 30 58000 234 5.8 51900 22.75 126 

6.0
2 32 67600 

26.88 360 
5.9
6 29.5 58000 234 

5.8
4 51700 24 126 

6.0
3 31.5 67400 

27 360 
5.9
5 29.5 58000 234 5.8 51700 24.25 126 

6.0
2 31.5 67800 

27.3 360 
6.0
1 29.5 58100 234 

5.8
3 51700 25 126 

6.0
5 31.5 67900 

27.3 360 
5.9
7 30 58100 234 

5.8
7 51600 25 126 

6.0
8 32 67900 

27.3 360 
6.0
3 30 58100 234 

5.8
6 51700 25 126 6.1 32 68000 

28.2 360 
5.9
6 29.5 57900 234 5.9 51400 25.75 126 

6.0
4 31.5 67800 

28.5 360 
5.9
7 29 57800 234 

5.8
2 51200 26 126 

6.0
4 31 67700 

28.8 360 
6.0
4 29 57700 234 5.9 51000 26.25 126 6.1 31 67800 

29.1 360 
5.9
8 29 57800 234 

5.8
9 51100 26.75 126 

6.0
5 31 68000 

29.4 360 
6.0
4 29 57900 234 5.9 51100 26.75 126 

6.0
6 31 68200 

29.4 360 
6.0
4 29 57900 234 

5.8
7 51200 27.5 126 

6.0
7 31 68400 

29.4 360 6 29 57900 234 
5.8
5 51200 27 126 

6.0
6 31 68400 

30 360 6 29 57900 234 
5.8
6 51100 28 126 

6.0
4 31 68300 



bb 
 

29.88 360 
5.9
8 29 57900 234 

5.8
7 51100 27.75 126 

6.0
4 31 68300 

30 360 6 29.5 57400 234 
5.8
3 50600 28 126 

6.0
5 31.5 67700 

30 360 
5.9
8 29.5 57500 234 

5.8
2 50700 28.25 126 6.1 31.5 67700 

30.3 360 6 30 57600 234 5.8 50800 28.5 126 
6.0
9 32 67800 

30.6 360 6 30 57600 234 5.8 50700 28.75 126 
6.0
6 32 68000 

31.2 360 
5.9
7 29.5 57700 234 5.8 50700 29 126 

6.0
7 31.5 68100 

32.1 360 
6.0
4 29 57700 234 5.8 50800 30 126 6.1 31 68600 

32.4 360 
5.9
7 29.5 57800 234 

5.7
5 50900 30 126 

6.0
7 31.5 68600 

32.7 360 
5.9
6 29.5 57800 234 

5.7
6 50800 30 126 

6.0
6 31.5 68500 

33 360 
5.9
6 29.5 57700 234 

5.7
7 50700 30.5 126 6.1 31.5 68500 

33 360 
5.9
7 29 57700 234 

5.8
4 50700 30.75 126 6.1 31 68600 

33.9 360 
5.9
6 29 57700 234 

5.9
6 50700 31.25 126 

6.1
2 31 68800 

34.2 360 
6.0
5 29 57800 234 5.8 50600 31.5 126 6.1 31 68900 

34.8 360 
6.0
1 29 57900 234 

5.8
3 50600 32.25 126 

6.0
8 31 69000 

35.4 360 
5.9
5 29 57800 234 

5.7
8 50500 33 126 

6.0
4 31 69200 

36 360 
5.9
6 29 57800 234 

5.8
1 50500 34.25 126 

6.0
5 31 69100 

36.6 
356.

4 
5.8
5 29.5 57900 

230.
4 

5.6
5 50500 34.5 126 

5.9
3 31.55 69100 

36.3 
354.

6 
6.0
5 29.5 57800 

228.
6 

5.8
1 50500 34.5 126 6.1 31.55 69100 

30.3 360 5.7 28 57900 234 
5.6
8 50800 28.25 126 

5.8
8 29.5 68300 

31.2 360 
5.8
5 29.52 57800 234 

5.8
1 50500 29.25 126 5.9 30.2 69100 

31.8 360 
5.9
6 29.5 57800 234 

5.7
7 50600 29.5 126 6.1 31.5 69100 

32.7 360 5.9 28.7 57700 234 5.8 50600 30.5 126 6.1 29.5 69100 

33 360 
6.0
1 29 57700 234 

5.8
1 50600 31 126 

6.0
8 30.1 69000 

33.3 360 
6.0
1 30.1 57800 234 

5.8
2 50600 31.25 126 

6.0
7 30.05 69100 

34.8 360 
6.0
2 30.15 57700 234 

5.8
2 50600 32.5 126 6.1 30.81 69100 

35.7 360 
6.0
1 30.12 57700 234 

5.8
1 50500 33.25 126 

6.0
6 30.05 69000 

36.6 
358.

2 
6.0
4 29 57700 

232.
2 

5.8
2 50500 33.75 126 6.1 30 69000 

36.6 
356.

4 
6.1
5 28.1 57800 

230.
4 5.9 50000 33.5 126 

6.1
5 29.3 69000 

36.9 
354.

6 6.1 29.5 57900 
228.

6 
5.8
4 50100 33.25 126 

6.1
6 30 69600 

36.9 
352.

8 
6.1
2 29.5 57800 

226.
8 

5.8
5 50100 33.25 126 

6.1
7 30 69100 

37.2 
349.

2 
6.1
2 28.5 57600 

223.
2 

5.8
5 50200 33.5 126 

6.1
5 29 69000 

37.5 345. 6.0 27.01 58000 219. 5.8 49900 33 126 6.1 28 69300 



cc 
 

6 2 6 2 2 

37.2 
345.

6 6.1 26 58000 
219.

6 6 50000 33 126 
6.1
5 26.5 69200 

37.8 
345.

6 
6.0
1 27 58000 

219.
6 

5.8
3 49900 33 126 

6.1
2 28 69300 

37.5 
343.

8 
6.0
8 28.16 58700 

217.
8 

5.9
5 50400 32.5 126 

6.1
6 29 69700 

37.8 342 
5.9
8 29 58300 216 

5.8
1 50500 33 126 

6.2
3 29.5 69600 

36.9 
354.

6 6.1 29 57900 
228.

6 
5.8
5 49900 31.25 126 

6.1
9 30 68700 

37.8 342 
5.9
5 25 57800 216 5.8 49900 32 126 

6.0
3 27 68700 

38.7 
343.

8 
5.9
5 25 57400 

217.
8 

5.7
9 49600 32.25 126 

6.0
3 27 68000 

38.7 342 
5.9
5 25 57700 216 5.8 49600 32.75 126 

6.0
4 27 68600 

39 
340.

2 
5.9
6 25 57700 

214.
2 

5.9
8 49700 33 126 

6.0
4 27 68600 

39 
338.

4 
5.9
6 25 57800 

212.
4 5.8 49800 33.5 126 

6.0
6 27 68500 

39 
338.

4 5.9 24 57800 
212.

4 
5.7
5 49900 33.5 126 

6.0
2 26 68500 

39 
338.

4 
5.9
6 24 57900 

212.
4 

5.7
7 49900 34 126 

6.0
4 26 68700 

39 
336.

6 
5.9
7 24 57900 

210.
6 5.8 49900 33.75 126 

6.0
8 26 68600 

39 342 
5.9
5 25 57800 216 

5.7
5 49900 33.5 126 

6.0
2 27 68500 

38.7 
336.

6 6 25 57900 
210.

6 
5.8
3 50000 34 126 

6.0
9 27 68500 

39 333 
6.0
4 24.5 57800 207 

5.8
5 49800 34 126 

6.1
4 26.5 68300 

39 
331.

3 
6.0
5 24 57700 

205.
3 

5.8
6 49700 34 126 

6.1
5 26 67800 

39 
336.

6 
6.0
8 26.5 57700 

210.
6 5.8 49800 34.5 126 

6.0
8 26.5 67800 

39.3 
329.

4 
6.0
4 24.5 57600 

203.
4 

5.8
6 49600 34.5 126 

6.1
1 26.5 67700 

26.6 360 
6.0
5 23.5 57600 234 

5.8
8 51700 23.83 126 

6.1
4 25.5 67200 

27.19 360 
6.0
5 23 57600 234 

5.8
4 51700 24.2 126 

6.1
5 25 67600 

26.51 360 
6.0
5 23 57700 234 5.9 51700 23.52 126 

6.1
6 25 67500 

27.17 360 
6.0
4 23 57800 234 5.9 51700 24.19 126 

6.1
7 25 67400 

26.02 360 
6.0
5 23 57000 234 5.9 51700 23.48 126 

6.1
8 25 66700 

28.39 360 6.1 22.5 57800 234 5.9 51500 25.15 126 
6.1
8 24.5 67400 

27.26 360 6.1 22.5 57800 234 
5.9
3 51500 24.65 126 

6.1
8 24.5 67400 

27.99 360 
6.0
6 22.5 57800 234 5.9 51400 25.1 126 

6.1
6 24.5 67400 

28.68 360 
6.0
5 22.5 57800 234 5.9 51200 25.75 126 

6.1
7 24.5 67500 

30.03 360 
6.0
5 22.5 57800 234 

5.8
7 51100 27.08 126 

6.1
2 24.5 67800 

31 360 6 22 57900 234 
5.8
6 51100 28 126 

6.0
7 24 68000 

31.51 360 6.0 22 57700 234 5.8 50800 28.59 126 6.1 24 67900 



dd 
 

5 8 1 

32.83 360 
6.0
3 22 57700 234 

5.8
7 50700 29.82 126 

6.1
4 24 68300 

32.88 360 
6.0
3 22 57800 234 5.9 50800 29.98 126 

6.1
6 24 68300 

32.66 360 
6.0
2 22 57800 234 

5.8
7 50800 29.83 126 6.1 24 68200 

29.88 360 
6.0
2 22.5 57800 234 

5.8
9 51200 27.07 126 

6.0
9 24.5 67800 

29.8 360 
6.0
5 23 57900 234 5.9 51300 27 126 

6.1
3 25 67800 

30.97 360 
6.0
5 23 57900 234 5.9 50900 28.13 126 

6.1
6 25 67700 

32.33 360 
6.0
2 23 57900 234 

5.8
9 50900 29.4 126 

6.1
4 25 68100 

33.75 360 6 21.5 57900 234 
5.8
6 50700 30.83 126 

6.1
2 23.5 68400 

34.9 360 
5.9
7 22 57800 234 

5.8
6 50500 32.07 126 6.1 24 68700 

34.4 360 
5.9
8 22 57800 234 

5.8
5 50400 31.5 126 

6.0
9 24 68400 

36.7 360 
5.9
6 22 57800 234 5.8 50400 33.88 126 

6.0
7 24 69200 

36.93 360 6 22 57800 234 
5.8
7 50400 34.16 126 

6.0
6 24 69100 

37.18 360 6 22 57800 234 5.8 50300 34.42 126 
6.1
2 24 69000 

36.79 360 
6.0
4 22 57900 234 

5.8
5 50400 34 126 

6.1
2 24 68900 

35.5 360 
5.9
8 22 57900 234 

5.8
4 50400 32.8 126 

6.1
1 24 68900 

36.32 360 6 22.5 57900 234 
5.8
2 50500 33.56 126 

6.0
8 24.5 68800 

36.41 360 6 22.5 57900 234 
5.8
3 50600 33.71 126 

6.0
9 24.5 68800 

36.02 360 6 23 58000 234 
5.8
1 50700 33.16 126 

6.0
7 25 68900 

34.76 360 
6.0
1 24 58100 234 5.8 50800 32.07 126 

6.0
6 26 68700 

29.77 360 6 24 57800 234 5.8 51300 26.97 126 
6.0
9 26 67500 

30.59 360 
5.9
8 24 57700 234 

5.8
7 51100 27.98 126 

6.0
7 26 67600 

32.19 360 
6.0
4 24 57700 234 

5.8
9 50900 29.33 126 

6.0
8 26 67600 

32.97 360 
6.0
5 24 57700 234 

5.8
4 50800 30.11 126 

6.0
9 26 68000 

32.57 360 
6.0
5 24 57800 234 

5.8
4 50900 29.75 126 

6.0
9 26 68000 

33.32 360 
6.0
5 24 57800 234 

5.8
6 50800 30.45 126 

6.1
2 26 68200 

34.91 360 
6.0
5 23.5 57800 234 

5.8
7 50700 32.07 126 6.1 25.5 68500 

35.42 360 
6.0
5 23.5 57800 234 

5.8
3 50700 32.65 126 

6.0
9 25.5 68500 

32.41 360 
6.0
5 23 57900 234 

5.8
8 50800 29.54 126 

6.1
4 25 68100 

33.45 360 6 23 57900 234 
5.8
8 50900 30.63 126 

6.1
1 25 68200 

33.85 360 
6.0
5 23 57900 234 

5.8
3 50800 31.11 126 

6.1
2 25 68400 

32.22 360 6 23.5 58000 234 5.8 51000 29.51 126 6.1 25 68200 



ee 
 

8 1 

33.28 360 
6.0
3 24 57900 234 

5.8
8 51000 30.4 126 

6.1
1 26 68200 

32.33 360 
5.9
6 24.5 58000 234 

5.8
1 51000 29.51 126 

6.0
8 26.5 68200 

32.53 360 
6.0
1 25 58000 234 

5.8
8 51200 29.69 126 

6.0
8 27 68100 

32.81 360 6 25 58000 234 
5.8
7 51200 29.98 126 

6.1
1 27 68100 

33.25 360 
6.0
3 25 58000 234 

5.8
2 51100 30.38 126 6.1 27 68100 

31.96 360 
6.0
5 26 58000 234 

5.8
5 51200 29.18 126 

6.0
8 28 67800 

32.5 360 
6.0
5 26 58000 234 

5.8
8 51200 29.75 126 

6.1
1 28 67800 

33.45 360 
6.0
1 25.5 57900 234 

5.8
7 51000 30.61 126 

6.1
2 27.5 67800 

33.85 360 
6.0
1 25.5 57800 234 

5.8
5 50900 31.02 126 

6.0
9 27.5 67900 

34.9 360 
6.0
4 25 57700 234 

5.8
8 50600 32 126 

6.1
2 27 68000 

33.07 360 
5.9
7 25 57600 234 

5.7
6 50800 30.32 126 

6.0
4 27 67700 

33.66 360 6 25 57800 234 
5.8
4 50900 31.02 126 

6.1
2 27 67900 

34.3 360 
6.0
5 25 57900 234 

5.8
8 51000 31.7 126 

6.1
4 27 68000 

35.83 360 6 25 58000 234 
5.8
5 51000 33.09 126 6.1 27 68400 

36.28 360 
5.9
8 25 58000 234 

5.8
6 51000 33.51 126 

6.1
4 27 68300 

34.24 360 
6.0
2 25.5 58100 234 5.9 51200 31.42 126 

6.1
2 27.5 68400 

36.98 360 
6.0
4 25 58100 234 

5.8
5 51000 34.09 126 

6.1
1 27 68500 

37.1 353 
6.0
2 25 58100 227 

5.8
6 51000 34.39 126 

6.1
1 27 68500 

35.94 349 
5.9
8 25 58100 223 

5.8
6 50900 33.23 126 6.1 27 68400 

37.02 354 
6.0
4 25 58100 228 

5.8
7 50900 34.1 126 

6.1
1 27 68600 

34.7 360 
6.0
2 25 58000 234 

5.8
3 51000 31.86 126 6.1 27 68300 

35.43 360 6 25 57900 234 
5.8
4 51000 32.73 126 

6.0
7 27 68300 

35.36 360 
5.9
7 26 57900 234 5.8 51000 32.55 126 

6.0
5 28 68000 

35.33 360 
5.9
8 26 57800 234 5.8 51000 32.57 126 

6.0
6 28 67900 

36.13 360 
5.9
7 26 57800 234 

5.8
4 51000 33.38 126 

6.1
2 28 68000 

36.84 358 
5.9
6 26 57800 232 

5.8
5 51000 34.1 126 

6.1
2 28 68000 

36.22 357 
6.0
3 26.5 57900 231 

5.8
7 51000 33.84 126 

6.1
2 28.5 68000 

36.09 355 
6.0
5 27 57800 229 

5.8
5 51000 33.51 126 6.1 29 69000 

35.83 355 
6.0
4 28 57900 229 

5.8
7 51100 33.14 126 

6.1
2 30 67800 

36.4 358 
5.9
8 28 57900 232 

5.8
5 51100 33.5 126 

6.0
6 30 67700 

36.18 355 6 28 57900 229 5.8 51100 33.59 126 6.1 30 67700 



ff 
 

5 1 

24.65 360 
5.9
5 27.5 58200 234 

5.7
9 53100 21.79 126 

6.0
5 29.5 66500 

26.02 360 
5.9
6 27.5 58400 234 

5.8
2 52900 23.15 126 

6.0
5 29.5 67000 

26.6 360 
5.9
7 27.5 58400 234 

5.8
1 52800 23.76 126 

6.0
3 29.5 67000 

27 360 
5.9
7 27.5 58500 234 

5.8
2 52800 24.12 126 

6.0
2 29.5 67200 

27.1 360 
6.0
1 27.5 58500 234 

5.8
2 52800 24.2 126 

6.0
7 29.5 67500 

27.26 360 
5.9
7 27.5 58500 234 

5.8
1 52800 24.36 126 

6.0
4 29.5 67800 

27.88 360 
6.0
2 27 58600 234 

5.8
1 52800 25 126 

6.0
5 29 67400 

28.19 360 
5.9
8 27 58600 234 5.8 52800 25.38 126 

6.0
4 29 67400 

28.66 360 
5.9
8 27 58600 234 

5.8
6 52800 25.64 126 

6.0
6 29 67400 
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