Loughborough University
Browse
boe-9-5-2351.pdf (4.33 MB)

Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography

Download (4.33 MB)
journal contribution
posted on 2018-05-08, 14:54 authored by Harnani Hassan, Sheila Jaidka, Vincent Dwyer, Sijung HuSijung Hu
One solution to the global challenge of increasing ocular disease is a cost-effective technique for rapid screening and assessment. Current ophthalmic imaging techniques, e.g. scanning and ocular blood flow systems, are expensive, complex to operate and utilize invasive contrast agents during assessment. The work presented here demonstrates a simple retinal imaging photoplethysmography (iPPG) system with the potential to provide screening, diagnosis, monitoring and assessment that is non-invasive, painless and radiationless. Time series of individual retinal blood vessel images, captured with an eye fundus camera, are processed using standard filtering, amplitude demodulation and principle component analysis (PCA) methods to determine the values of the heart rate (HR) and respiration rate (RR), which are in compliance with simultaneously obtained measurements using commercial pulse oximetry. It also seems possible that some information on the dynamic changes in oxygen saturation levels (SpO2) in a retinal blood vessel may also be obtained. As a consequence, the retinal iPPG modality system demonstrates a potential avenue for rapid ophthalmic screening, and even early diagnosis, against ocular disease without the need for fluorescent or contrast agents.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Biomedical Optics Express

Volume

9

Issue

5

Pages

2351 - 2364

Citation

HASSAN, H. ... et al, 2018. Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography. Biomedical Optics Express, 9 (5), pp.2351-2364.

Publisher

© Optical Society of America

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-sa/4.0/

Acceptance date

2018-04-10

Publication date

2018-04-26

Notes

© 2018 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.

ISSN

2156-7085

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC