
IET Signal Processing

Research Article

Auction-based competition of hybrid small
cells for dropped macrocell users

ISSN 1751-9675
Received on 11th April 2016
Revised 2nd December 2016
Accepted on 20th December 2016
E-First on 31st May 2017
doi: 10.1049/iet-spr.2016.0168
www.ietdl.org

Bokamoso Basutli1 , Sangarapillai Lambotharan1

1Signal Processing and Networks Research Group, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
 E-mail: basutlib@biust.ac.bw

Abstract: We propose an auction-based beamforming and user association algorithm for a wireless network consisting of a
macrocell and multiple small cell access points (SCAs). The SCAs compete for serving the macrocell base station (MBS) users
(MUs). The corresponding user association problem is solved by the proposed bid-wait auction method. The authors considered
two scenarios. In the first scenario, the MBS initially admits the largest possible set of MUs that it can serve simultaneously and
then auctions off the remaining MUs to the SCAs, who are willing to admit guest users in addition to their commitments to serve
their own host users. This problem is solved by the proposed forward bid-wait auction. In the second scenario, the MBS aims to
offload as many MUs as possible to the SCAs and then admits the largest possible set of remaining MUs. This is solved by the
proposed backward bid-wait auction. The proposed algorithms provide a solution that is very close to the optimum solution
obtained by using a centralised global optimisation.

1 Introduction
The fifth generation wireless system is anticipated to address the
growing demand for spectrum and wireless capacity [1]. Usage of
small cell access points (SCAs) in terms of cell densification is
expected to increase spectral efficiency as it allows aggressive
reuse of frequencies within a macrocell. SCAs can be either
operator deployed or user deployed. SCAs could operate in open-
access mode, hybrid mode or closed-group mode [2]. Among these
three modes, works in [2] advocate for hybrid mode as it allows
shared resources between host users (HUs) and guest users (GUs).
The macrocell operator can provide incentives to the SCAs for
serving its users [3, 4]. Within this context and using the notion of
game theory, the wireless system can be categorised into buyers,
sellers, goods and auctioneers [5]. Auction is a process of selling
or buying goods or services. In an auction, the goods are
exchanged between the sellers and the buyers according to the
variation of the prices. Hence, pricing is used for coordinating and
equilibrating the markets.

1.1 Related works

The benefits of offloading traffic have been extensively studied in
[6–9]. The findings in [7] show that small cells can achieve higher
network capacity and energy efficiency. In [8], a small cell
activation mechanism for offloading traffic from a macrocell to
small cells, while avoiding user quality of service (QoS)
degradation, was proposed. The work in [9] considered a
centralised energy aware offloading mechanism for cloud-radio
access network.

In [10], a problem wherein the service providers compete for
femtocell under a multi-leader follower game framework was
considered. A framework for user association in infrastructure-
based wireless network that considered optimal throughput, delay
and load equalisation was proposed in [11].

Auction-based algorithms have been proposed in [12–16]. A
reverse auction framework based on Vickrey–Clarke–Groves
(VCG) mechanism was proposed in [12] for a fair and efficient
access permission that maximises the social welfare of the network
consisting of one wireless service provider and several femtocell
owners. Authors in [17] proposed a mechanism to switch between
open and closed modes to maximise their performance. The
problem was solved using a game theoretic approach.

The authors [4, 18, 19] proposed distributed algorithms for
assigning users to SCAs using auctioning, heuristic beamforming
designs, Stackelberg games and evolutionary games. Despite all
these auction-based algorithms reported in [20, 21], algorithms that
considered multiple user access through spatial beamforming and
auctioning mechanism have not been reported in the literature,
which is the focus of this paper.

1.2 Contributions

Our objective is to develop an auction framework for performing
beamforming-based spatial multiplexing, user offloading and user
association in a heterogeneous network. This framework enhances
the network capacity by utilising transmitting infrastructure. The
specific contributions of our work are as follows:

• We propose and analyse a novel auction mechanism called the
bid-wait auction (BWA) that jointly performs downlink
beamformer design and user association. To the best of our
knowledge, auction mechanisms in the literature have not
considered joint beamformer design and user allocation.

• We develop a novel valuation function for bidder that
automatically monitors resource budgets for the bidder.

• We propose and analyse a novel payment rule that allows BWA
to allocate items to bidders with sparse information. We proved
the existence of the dominant-strategy equilibrium (DSE).

Notations: We use the following notations: We use the upper-case
bold face and lower-case bold face letters for matrices and vectors,
respectively. The notation ∥ ⋅ ∥ denotes the Euclidean norm. The
operators ℜ( ⋅ ) and ℑ( ⋅ ) extract the real and the imaginary parts
of their arguments, respectively. The regular and Hermitian
transposes are denoted by ( ⋅ )T and ( ⋅ )H, respectively.

2 System model and assumptions
Consider a downlink network consisting of a macrocell base station
(MBS) deployed with S number of SCAs as shown in Fig. 1. The
SCAs are privately owned and are operated in a hybrid mode. The
MBS and the SCAs employ non-overlapping frequency bands. The
MBS is equipped with MMBS antennas and each SCA is equipped
with MSCA antennas. The MBS has M0 MBS users (MUs) wanting
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access to the network. The MBS and each SCA have maximum
transmission powers of p0

max and ps
max, respectively. All of the users

have single antenna at the receiver and have specific QoS
requirements. 

2.1 Motivation

It is likely that the resources at the SCAs may be under utilised by
the HUs. On the other hand, resources at the MBS may be over
utilised. To avoid user dropouts, MBS will offload some of its
users to SCAs. In the presence of dense deployment of SCAs, there
is a high chance that a GU may be in the vicinity of more than one
SCAs. This work proposes a mechanism that handles competition
among SCAs to serve MUs in return for monetary benefits through
user allocation and beamforming.

2.2 Forward bid-wait auction (FBWA) and backward bid-wait
auction (BBWA) algorithms

We consider two scenarios: In the first scenario, the MBS admits
the maximum possible MUs it can serve and then offloads the
dropped MUs to SCAs via auctioning. In the second scenario, the
MBS allows the SCAs to bid for serving GUs and then later aims
to admit the remaining MUs. We propose the BWA and supplement
it with an admission control to develop FBWA and BBWA
algorithms. The FBWA and BBWA algorithms solve problems in
the first and second scenarios, respectively.

2.3 System metric design

We index the MBS by 0 and the sth SCA by s. Let the set of MUs
served by the MBS be ℳ0. Each MU is denoted by index m. In the
downlink, the transmitted signal for MU m from the MBS is
written by

xm(t) = wmsm(t), (1)

where sm(t) ∈ ℂ represents the information symbol at time t, and

wm ∈ ℂMMBS × 1 is the transmit beamforming vector for user m, the
squared norm of which provides the allocated power. Without loss
of generality, assume that sk(t) is normalised such that
𝔼{ |sk(t) |2 } = 1, and that all data streams are independent such that,
𝔼{sm(t)si(t)

∗} = 0, if m ≠ i. The received signal at the mth MU is
given by

y0m = h0m
H xm(t) + ∑

i ∈ ℳ0∖m
h0m

H xi(t) + ηm(t), (2)

where h0m ∈ ℂMMBS is the random channel vector from the MBS to
the mth MU, and ηm(t) ∈ 𝒞𝒩(0, σ2) is the circular symmetric zero

mean complex Gaussian noise with variance σm
2 . Let the set of HUs

and GUs served by the sth SCA be ℋs, each denoted by h. The
transmitted signal for HU h from the SCA s is xh(t) = whsh(t). The
received signal at the hth HU is given as

ysh = hsh
H xh(t) + ∑

j ∈ ℋs∖h
hsh

H x j(t) + ηh(t), (3)

where hsh ∈ ℂMSCA × 1 is the random channel vector from the SCA s
to the hth HU, and ηh(t) ∈ 𝒞𝒩(0, σ2) is the circular symmetric zero
mean complex Gaussian noise with variance σh

2 .
The downlink signal-to-interference-plus-noise ratio (SINR) of

the mth MU and the hth HU are given, respectively, by

SINR0m =
|h0m

H wm|2

∑i ∈ ℳ0∖m |h0m
H wi |

2 + σm
2 , (4)

SINRsh =
|hsh

H wh|
2

∑ j ∈ ℋs∖h |hsh
H w j |

2 + σh
2 . (5)

2.4 User admission by the MBS

Let us define the SINR targets of the MUs as Ξ0 = [ξ1
0, …, ξM0

0 ] and
ℳ′0 ⊆ ℳ0 as a set of admitted users, whose cardinality is a
parameter to be maximised. The user admission problem at the
MBS is formulated as

maximise |ℳ′0|
subject to SINR0m ≥ ξm

0 , m ∈ ℳ0,

∑
m ∈ ℳ0

∥ wm ∥2 ≤ p0
max,

(6)

where |ℳ′0| denotes the cardinality of the set ℳ′0. We assume that
all of the MUs have identical QoS requirements. This latter
assumption encourages the SCAs to admit as many GUs as
possible, as shown later. The problem in (6) is non-convex due to
non-convex objective function. However, QoS constraints can be
rewritten in their equivalent second-order cone (SOC) [22] as

SINRm
0 ≥ ξm

0 ⇒ ∥

h0m
H w1

⋮
◻

h0m
H wM0

∥ ≤
1 + ξm

0

ξm
0 ℜ(h0m

H wm), (7)

ℑ(h0m
H wm) = 0, ∀m . (8)

Let the matrix W0 = [wm]m ∈ ℳ0
 be defined by concatenating the

column vectors wm at MBS. We introduce slack variables
a0 = [a1

0, …, aM0
0 ] and rewrite the problem in (6) as

minimise
{wm}, {a0}

∥ a0 ∥0

subject to
1 + 1

ξm
0 h0m

H wm + am
0

h0m
H W0

σ

⪰SOC 0, m ∈ ℳ0,

ℑ(h0mHwm) = 0 ∀m,
a0 ≥ 0 ∀m,
∑

m ∈ ℳ0

∥ wm ∥2 ≤ p0
max ∀m,

(9)

Fig. 1  Heterogeneous network consisting of one MBS and several hybrid
SCAs. All transmitters operate in non-overlapping frequency bands. Each
of the SCAs is serving its HUs. There are GUs (coloured in red) that have
been dropped by the MBS
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The objective in (9) is an ℓ0-norm, which accounts for the number
of non-zero elements in the vector a0. This ℓ0-norm problem is a
combinatorial problem, which is non-convex and non-deterministic
polynomial-time (NP) hard. A widely adopted approach in the
literature to deal with this form of non-convex problem is to
approximate the ℓ0-norm with an ℓ1-norm [23, 24]. Hence, we have
replaced the objective function with an ℓ1-norm. This together with
the SOC constraints makes the overall problem a convex problem,
known as SOC programming [22] as follows:

minimise
{wm}, {a0}

∥ a0 ∥1

subject to constraints in (9) .
(10)

The above convex problem can be solved using the CVX tool [25],
which is able to indicate if the problem is feasible or not. The value
of each am

0  indicates the feasibility gap for the corresponding user
and preference of any users by the transmitter. To obtain the
optimal admission set ℳ′0, as proved in [23], the elements of a0 are
rearranged in ascending order and the MUs are sequentially
admitted starting with those users that have smallest am

0 . This is
done by performing feasibility check at every admission stage by
solving

minimise
{wm}

∑
∀m ∈ ℳ0′ ∪ m

∥ wm ∥2

subject to SINRm
0 ≥ ξm

0 ∀m ∈ ℳ0′ ∪ m,

∑
m ∈ ℳ′0

∥ wm ∥2
2 ≤ p0

max ∀m,
(11)

If a newly admitted user makes the constraints in (11) infeasible
(i.e. when feasibility test fails), then that user will be removed from
the set ℳ′0. The resulting admission set ℳ′0 will be optimal in
sense of maximising admitted users.

3 Bid-wait auction
The MBS wishes to offload as many users as possible to SCAs.
This is usually formulated as a surplus maximisation in auctioning
[26]. Therefore, we use the number of admitted GUs as our
performance metric. We form a BWA considering the MBS as the
auctioneer, the SCAs as the bidders, and the GUs as the items.

Let us denote the beamformer vector at the SCA for serving the
ith HU given that GU g is admitted by the SCA as ŵi. Also, we
denote the beamformer vector at the SCA for serving the kth HU
before the GU g is admitted as wk. The cost of connecting the gth
GU during the rth auction round is given by

csg
r = μ ∑

∀i ∈ ℋs ∪ g
∥ ŵi ∥2

2 − ∑
∀k ∈ ℋs

∥ wk ∥2
2 , (12)

where μ is the cost per unit power. The first term in (12) is the total
transmission power after the admission of the gth GU. The last
term is the total transmission power before gth GU is admitted.

Each served user pay the SCA an amount of κ per unit of data
rate. Since the MBS auctions some of its users to the SCAs, the
GUs will pay SCAs that will in turn pay MBS. The difference of
the payment is the profit generated by the SCA for serving a GU.
We denote the SINR target for the GU as ξg

s . Hence, each GU has a
marginal value vsg

r  given by

vsg
r = κlog2(1 + ξg

s) − csg
r , (13)

which is a value contributed by that GU given the already admitted
users. These values are private and they are unknown to other
bidders and the auctioneer. The marginal value in (13)
demonstrates that the GUs are substitutes, i.e. admitting a user by

an SCA at a particular stage will change the required beamformer
and power allocation of already admitted users as well as the
remaining users that SCAs will be bidding. This will change the
preference order of items for every SCAs. Therefore, it is critical
that an SCA comes up with an effective preference profile. In
Section 4, we propose two types of preference profiles.

3.1 Surplus maximisation in BWA

An intuitive approach in surplus maximisation is to allocate items
to bidders that value them the most. This allocation rule indirectly
allows maximisation of allocated items. The BWA is a collection of
concurrent sealed-bid single-item auctions. In the proposed BWA,
the objective of the MBS is to assign the GUs to those SCAs that
value them the most.

Let us define a set 𝒢s ⊆ 𝒢 to contain all GUs that can be
assigned to sth SCA and a competitors’ set 𝒞g which contains all
SCAs competing to connect the gth GU. A feasible assignment 𝒜
is the set of SCA-GU pairs (sg), with g ∈ 𝒢s. An SCA can be part
of more than one pair (sg) ∈ 𝒜. The surplus maximisation problem
at the MBS is formulated as the following integer program:

maximise
xsg

r
∑
r = 1

R

∑
s = 1

S
vsg

r xsg
r

subject to ∑
g ∈ 𝒢′s

xsg
r ≤ 1 ∀s ∈ 𝒮,

∑
s ∈ 𝒞g

xsg
r ≤ 1 ∀g ∈ 𝒢, ∀r,

xsg
r ∈ {0, 1} ∀(sg) ∈ 𝒜′,

(14)

where R is the total number of auction rounds, 𝒜′ is the set of all
possible SCA-GU assignment pairs (sg)(𝒜′ ⊆ 𝒜) and (xsg

r )g ∈ 𝒢s′ are

binary decision variables, indicating association of SCAs. xsg
r = 1

means that SCA s is assigned to GU g and otherwise xsg
r = 0.

Hence, the term ∑s ∈ 𝒮 vsg
r xsg

r  is the surplus at the rth auction round.
We propose to solve (14) by running simultaneous sealed-bid
single-item auctions wherein, at each auction round, each bidder's
action is a bid bsg

r  (not necessarily the true value) on the most
preferred GU. This accounts for the summation over the total
number of auction rounds in the objective. Therefore, BWA
mechanism decomposes the combinatorial nature of the problem
and runs virtual single-item auctions repetitively. The second and
the third constraints ensure that each SCA can be assigned to one
or more GUs and each GU can be assigned to only one SCA.

4 Bidders valuation functions
If an SCA wins a GU during auction round r, it pays a price psg

r  to
the MBS. The bidders utility model at rth auction round, on the
bid/action profile br = [b1g

r , …, bSḡ
r ] is a quasilinear utility model

define as

usg
r (br) = vsg

r (br)xsg
r (br) − psg

r (br), (15)

where the subscript g and ḡ could refer to the same or different
GUs. The overall objective of the SCA is to maximise

∑
r = 1

R
usg

r (br) . (16)

By assuming positive utility at each auction round, and some
payment psg

r (br) that is independent of vsg
r (br)xsg

r (br) the utility in
(16) is maximised by admitting as many GUs as possible. This is
because we assumed that all of the MUs have identical QoS targets.
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4.1 Fixed preference profile (FPP) criterion

In this case, we assume that bidders determine their preference
profile once, at the beginning of the auction, and fix it for the entire
BWA. Each SCA identifies the GUs that fall within its auction
coverage area. This is followed by determining the FPP by solving
the admission problem. Let us define the QoS targets of the HUs
and GUs as Ξs = [ξ1

s, …, ξFs

s ]. We introduce auxiliary variables

as = [a1
s, …, aFs

s ] and use the same procedures for deriving (6)–(10)
to form an ℓ1-norm admission problem for the SCA as

minimise
{w j}, {as}

∥ as ∥1

subject to
1 + 1

ξ j
s hs j

Hw j + a j
s

hs j
HWs

σ

⪰SOC 0, j ∈ ℱs,

ℑ(hs j
Hw j) = 0 ∀ j,

as = 0, j = 1, …, Hs,

as ≥ 0, j = Hs + 1, …, Fs,

∑
j ∈ ℱs

∥ w j ∥2
2 ≤ ps

max ∀ j,

(17)

where the third constraint ensures that the HUs are given first
priority. To build up a preference set of GUs 𝒢′s ⊆ ℱs, we sort the
vector as in ascending order of its elements. The corresponding
indices of the sorted as with an exclusion of the HUs give the FPP
f s. It should be noted that at this stage, no valuation profile that
corresponds to f s is determined. Since there is no guarantee that all
GUs in the preference set will be won, the values are computed on
a ‘need-to-know’ basis. At every auction round, an SCA will use
(13) to place a value on the most preferred GU.

4.2 Adaptive preference profile (APP) criterion

It is anticipated that the level of preference over GUs will be
reduced if an admission of a particular GU is already made due the
substitute nature of the GUs. Therefore the preference profiles need
to be revised every time a new GU is admitted. The values for
every GU g ∈ 𝒢s are computed separately and sorted in descending
order to determine the current preference profile. A bid is then
placed on a GU that is perceived to have the highest value. Let us
define the QoS targets of the HUs and gth GU as
Ξs = [ξ1

s, …, ξHs

s , ξg
s]. Also let the set ℋs as a set of HUs and

admitted GUs. For every available GU g ∈ 𝒢s, each of the SCA
determines the connection cost by solving the following feasibility
problem:

minimise
{wk}

∑
∀k ∈ ℋs ∪ g

∥ wk ∥2
2

subject to SINRk
s ≥ ξk

s ∀k ∈ ℋs ∪ g,

∑
∀k ∈ ℋs ∪ g

∥ wk ∥2
2 ≤ ps

max .

(18)

The connection cost can be determined using (12). With the
exception of the first auction round, we note that for every auction
round, losers from the previous round do not need to revise their
preference profiles. The bidders on WAIT (i.e. bidders are on
WAIT if the decision on their bid is withheld) do nothing while the
winners are required to revise their preference profiles and submit
new bids. The losers from the previous round only need to submit
the bid on the next most preferred and available GUs since the
values are already known. When the preference profile needs
revision, all the values of the available GUs need to be calculated.

Though it may appear, it offers the SCAs with the capability to
identify and prune away all the GUs that will never be feasible for
admission. This is not applicable when FPP criterion is used. In
FPP criterion, only the value of the next preferred and available
GU is determined at every SCA in the contact_list (i.e. a list of
SCAs that are eligible to submit new bids).

For any non-conflicting preference profile, the MBS will permit
the corresponding SCA to submit bundle bids on the largest set of
the remaining GUs that it can admit simultaneously. If any SCA
has knowledge that some GUs are not bid by all of the remaining
SCAs, there is a possibility for unfaithful bidding. However, as it is
difficult for any SCA to acquire preference profiles of other SCAs,
we exclude this possibility in our work.

5 BWA mechanism design
We propose a BWA auction which inherits some properties of the
second-price auction proposed in [27]. To reduce the amount of
information shared between the MBS and the SCAs, the BWA uses
iterative indirect mechanism to gather useful information from
SCAs. It is assumed that the MBS has knowledge of the locations
of all of the bidders and the GUs. Therefore it can formulate the
preference sets of all of the SCAs. The MBS sets a rule that each
bidder should submit one bid at a time. The bids should be
monotonically decreasing in each auction round. Even though the
BWA uses some of the principles from the VCG mechanism, we
emphasise that the two methods are totally different. To highlight
this difference, we present the following example with the aid of
Fig. 2. 
 
Example 1: Consider a bid-wait auction with six GUs and four
bidders SCA1, SCA2, SCA3 and SCA4 with preference sets
{GU2, GU3, GU4, GU5, GU6}, {GU1, GU2, GU3, GU4, GU6},
{GU2, GU3, GU4, GU5} and {GU2, GU3, GU4, GU5},
respectively. The BWA will iterate as shown in Fig. 2. Note that
unlike the VCG which charges the winner the second highest bid
on the winning item, the BWA charges the winner the second
highest price from the competitor's set. The set
𝒢GU1 := {SCA1, SCA2, SCA3, SCA4} is the competitors set for
GU1. Therefore in the first auction round the BWA allocates GU1
to SCA1 and charges it 7 from bidder SCA2. SCA2 and SCA4 are
then put on WAIT while SCA1 and SCA3 are put in the
contact_list making them the only two bidders who are
allowed to submit new bids on the second round. The same process
is repeated until the contact_list becomes empty. The BBWA
and the FBWA algorithms are summarised in Algorithms 1 (Fig. 3)
and 2 utilise this BWA in their main loops. 

5.1 Existence of equilibrium in the BWA

During the rth auction round, we denote the valuation of the sth
bidder on the gth GU by vsg

r  and a collection of all bidders’
valuations as vr = [v1g

r , …, vSḡ
r ], where g and ḡ are the identities of

the GUs. The GUs g and ḡ do not need to be different. We define
the strategy of each bidder ss, g

r  as a function that maps a bidder's
valuation to any of other bidder's possible actions. Let us define a
collection of all bidders’ strategies and actions in the rth auction
round as sr = [s1g

r , …, sSḡ
r ] and br = [b1g

r , …, bSḡ
r ] respectively. Given

R as the maximum number of auction rounds required before the
market closes, the sth bidder valuations, strategies and actions for
the entire BWA are denoted by vs = [vs1

1 , …, vsGs

R ], ss = [ss1
1 , …, ssGs

R ]
and bs = [bs1

1 , …, bsGs

R ], respectively. The entire BWA has the
valuation, strategy and action spaces denoted by V = [v1, …, vS],
B = [b1, …, bS] and S = [s1, …, sS], respectively.
 
Definition 1: A sub-auction dominant-strategy equilibrium (sDSE)
at every auction round is a strategy profile sr such that for all s, vsg

r

and b−s
r , the utility of bidder s is maximised by following the

strategy ssg
r (vsg

r ) [26].
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We now develop a dominant-strategy incentive compatible
(DSIC) mechanism for the BWA and prove that the BWA has a
unique sDSE at each auction round and a unique DSEfor the entire
BWA. Since the BWA is a collection of concurrent sealed-bid
single-item auctions, we can confine our problem into a single-
parameter environment [26] for mechanism design. The outcome
of such mechanism is the allocation and payment vectors
xr = [x1, g

r , …, xS, ḡ
r ] and pr = [p1, g

r , …, pS, ḡ
r ].

5.2 Allocation rule

If the bids from a particular bidder are not monotonically
decreasing, its current bid will not be accepted and the bidder is
dropped from the auction. In every auction round, the BWA
allocates the GU to the bidder with the highest bid if the feasible
assignment set 𝒜 has the minimum required information using the
allocation rule

xr(br) = arg max
𝒜

∑
s ∈ 𝒮

bsg
r xsg

r . (19)

 
Proposition 1: Assume the auctioneer has the preference sets of all
bidders 𝒢s, ∀s ∈ 𝒮. Suppose bidders j and k are the only bidders

who are eligible to bid on item m. If during the rth auction round,
item m is bidder j's first preference with a bid of b jm

r  and the current
bid from k's bidder is bkp

r  on item p (i.e. item p is more preferred
than item m from bidder k's perspective), then the following
conditions exist:

i. If b jm
r > bkp

r , it suggests that b jm
r > bkm

r , concluding that bidder
k stands no chance in winning item m. The item is then
assigned to bidder j. Under this condition, the auctioneer has
complete bid information on item m. We henceforth refer to bid
bkp

r  as bidder j's critical bid.
ii. If b jm

r < bkp
r , then bidder k still stands a chance to win item m.

Therefore bidder j will have to WAIT (hence the term BID-
WAIT) until the auctioneer has the right information to
announce the winner between bidders j and k. Under this
condition, the auctioneer has incomplete bid information on
item m.

 
Proof: Since the auctioneer has access to the preference sets and
uses the one bid at a time rule, and by assuming truthful bidding,
the preference profiles at the SCAs dictates that the bids submitted

Fig. 2  Example of the steps performed by the BWA
 

Fig. 3  Algorithm 1: Forward bid-wait auction
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should be monotonically decreasing at each auction round.
Therefore, the next bid on the next available preferred item is
always less or equal to the current submitted bid. □
 
Algorithm 2: BBWA

 Data: Initialisation: contact_list=1:number of eligible
SCAs, 𝒢 = ℳ0,

    𝒜 = ∅, auction round: i = 0.
 Result: Optimal allocation set 𝒜′ ⊆ 𝒜.

 SCA-GU admission: BWA
1 Perform steps 3–12 of Algorithm 1 (Fig. 3).
2 Set ℳ0 = ℳ0∖𝒢′.
 MBS-MU admission
3 Solve to (6) and (10) to get ℳ′0.

5.3 Payment rule

The BWA extends the second-price rule by charging the winner the
second highest bid from the bidder in competitors’ set 𝒞g, i.e. the
critical bid. It is very important to note that the critical bid needs
not to be the second highest bid on a particular item as elaborated
in Proposition 1.
 
Theorem 1: Truthful bidding is a weak dominant strategy in the
BWA.
 
Proof: Consider an arbitrary bidder s, its valuation at rth auction
round on the gth GU is vsg

r  and b−s
r  is the bids of other bidders. The

bids b−s
r  do not necessarily have to be placed on the gth GU. The

valuation vsg
r  is an immutable valuation for bidder s on the gth GU.

Let B = maxt ≠ s vtḡ
r  denote the highest bid by some other potential

bidder of gth GU (i.e. gth GU belongs to the preference set of
bidder t). The bid B is the critical bid of bidder s. The GU ḡ could
be the gth GU or any other GU. Now, given the bid B, there are
only two distinct outcomes for bidder s. If bidder s bids bsg

r < B, he
loses and receives utility usg

r = 0. But if he bids bsg
r ≥ B, and by

assuming that the ties are broken in favour of bidder s, then he
wins and receives utility usg

r = vsg
r − B. In the BWA, we break the

ties by random choice. Now the following cases exist. If vsg
r < B,

maximum utility that bidders s will obtain is max {0, vsg
r − B} = 0.

On the other hand if vsg
r ≥ B, maximum utility that bidders s will

obtain is max {0, vsg
r − B} = vsg

r − B, which occurs by bidding
truthfully and winning. □
 

Theorem 2: Bidding on the most preferred GU is a dominant
strategy in the bid-wait auction. (see (20) and (21)) (see (21)) 
 
Proof: Without loss of generality, consider two items with
identities g and ḡ. Fix an arbitrary bidder s with the preference
profile f s = [g, ḡ] at the rth auction round. Set its valuations profile
as vs = [vsg

r , vsḡ
r ] where vsg

r > vsḡ
r , and denote the bids from other

bidders as b−s
r , b−s

r + 1 during the auction rounds r and r + 1,
respectively. Again without loss of generality, let us assume that all
other bidders have the same preference profiles as bidder s at the
rth auction round. Let Br = maxt ≠ s vtg

r  and Br + 1 = maxz ≠ s vzḡ
r + 1

denote the critical bids for bidder s during auction the rounds r and
r + 1, respectively. The critical bids Br and Br + 1 should satisfy
Br > Br + 1. If during rth auction round bidder s bids bsḡ

r  on GU ḡ, its
potential utility is us = usḡ

r + usg
r + 1. In this case, only three distinct

outcomes as described in (20) exists. In (20d), ϵsg | ḡ
r + 1 > 0 implies a

decrease in valuation on GU g during auction round r + 1 given
that GU ḡ is already admitted. In (20a), bidder s is put on WAIT
during auction round r and he loses GU g. In the auction round r + 
1, he also loses GU ḡ. In (20b), bidder s is put on WAIT during
auction round r and he loses GU g but during auction round r + 1,
he wins GU ḡ. In (20c), bidder s wins GU ḡ during auction round r
and other bidders are put on WAIT. In the auction round r + 1, only
bidder s is allowed to submit a new bid bsg

r + 1 < bsḡ
r . Still under

(20c), if the new bid bsg
r + 1 < Br, then he loses GU g. In (20d),

bidder s wins both the GUs.
On the contrary, suppose bidder s places his order of preference
truthfully by bidding on item g in the rth auction round, and ḡ in
the (r + 1)th auction round. The potential utility the bidder s will
obtain is given in (21), where ϵsḡ |g

r + 1 > 0 implies a decrease in
valuation on GU ḡ during auction round r + 1 given that GU g is
already admitted. By comparing the overall utilities in (20b)–(20c)
with (21c), we get (vsḡ

r − Br) < (vsg
r − Br + 1). Similarly, by

comparing the overall utilities in (20d) with (21d)–(21e), we get
(vsḡ

r − Br) + (vsg
r − ϵsg | ḡ

r + 1 − Br) < (vsg
r − Br) + (vsḡ

r − ϵsḡ |g
r + 1 − Br + 1).

This concludes that the bidder s can get highest utility only by
being truthful in terms of both the valuation and preference order.
□

5.4 Uniqueness of the sDSE and the DSE

Both the sDSE and DSE require that, for all s, vr, and bsg
r , bidder s

has a high utility for playing strategy at vsg
r  than following any

other strategy at bsg
r , i.e.

vsg
r ⋅ xsg

r (vr) − psg
r (vr) ≥ vsg

r ⋅ xsg
r (bsg

r , v−s
r ) − psg

r (bsg
r , v−s

r ) . (22)

us =

0, if bsḡ
r < Br + 1, (a)

(vsḡ
r − Br) + 0, if Br + 1 ≤ bsḡ

r < Br, (b)
(vsḡ

r − Br) + 0, if bsḡ
r ≥ Br, bsg

r + 1 < Br, (c)
(vsḡ

r − Br) + (vsg
r − ϵsg | ḡ

r + 1 − Br), if bsḡ
r ≥ Br, bsg

r + 1 ≥ Br, (d)

(20)

max {0, us} =

0, if vsg
r < Br + 1, vsḡ

r < Br + 1, (a)
0, if Br + 1 ≤ vsg

r < Br, vsḡ
r < Br + 1, (b)

(vsḡ
r − Br + 1), if Br + 1 ≤ vsg

r < Br, (c)
Br + 1 ≤ vsḡ

r < Br,
(vsg

r − Br) + (vsḡ
r − ϵsḡ |g

r + 1 − Br + 1), if vsg
r ≥ Br, Br + 1 ≤ vsḡ

r + 1 < Br, (d)
(vsg

r − Br) + (vsḡ
r − ϵsḡ |g

r + 1 − Br + 1), if vsg
r ≥ Br, vsḡ

r + 1 ≥ Br . (e)

(21)
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We now derive a unique payment rule that will guard against
insincere bidding such that the allocation rule xr is implementable.
 
Definition 2: An implementable allocation rule is a function xr

which when coupled with payment rule pr is such that (xr, pr) is
DSIC. An allocation rule is monotone if for every bidder s and for
fixed bids b−s

r  of other bidders, the allocation xsg
r (bsg

r , b−s
r ) to s is

increasing in its bid bsg
r  [26].

The BWA payment rule should satisfy

psg
r (br) ∈ [0, bsg

r ⋅ xsg(br)], ∀s ∈ 𝒮 (23)

where the lower bound ensures that no payment should be made by
the auctioneer to the bidders. The upper bound guarantees a bidder
that for as long as he bids truthfully, he will have non-negative
utility. For completeness, we invoke Myerson's Lemma in [28] to
derive a unique BWA payment rule.
 
Theorem 3 (Myerson's lemma): In a single-parameter environment,
where the bidders have independent utility and quasilinear utility
functions, a profile of allocation and payment rules (xr, pr) is in
sDSE and implementable only if for all s ∈ 𝒮;

i. xr is monotone and non-decreasing
ii. there is a unique payment rule given as

ps
r(bsg

r , v−s
r ) = ∫ 0

bsg
r

bsg
r ⋅ xs′(bsg

r , v−s
r ) dz, where bsg

r = 0 implies
ps

r(0, v−s
r ) = 0.

 
Proof: Let us assume that (xr, pr) is DSIC. Consider two possible
bids (b̌sg

r , b
^
sg
r

) from bidder s on item g during rth auction round such

that 0 ≤ b̌sg
r < b

^
sg
r

. Assume that the private valuation of bidder s on

its most preferred GU g during the rth auction round is b
^
sg
r

 but he

underbids by submitting b̌sg
r  instead. Using the DSIC principle in

(22) we get (24). Similarly, if private valuation of the bidder s on
GU g at the rth auction round is b̌sg

r  but he overbids by submitting

b
^
sg
r

 instead, we get (25).

b
^
sg
r ⋅ xsg(b

^
sg
r , b−s

r ) − psg
r (b^sg

r , b−s
r ) ≥ b

^
sg
r ⋅ xsg(b̌sg

r , b−s
r ) − psg

r (b̌sg
r , b−s

r ) .
(24)

b̌sg
r ⋅ xsg(b̌sg

r , b−s
r ) − psg

r (b̌sg
r , b−s

r ) ≥ b̌sg
r ⋅ xsg(b

^
sg
r , b−s

r ) − psg
r (b^sg

r , b−s
r ) .
(25)

b
^
sg
r

xsg(b̌sg
r , b−s

r ) − xsg(b
^
sg
r , b−s

r ) ≤ psg
r (b̌sg

r , b−s
r ) − psg

r (b^sg
r , b−s

r )

≤ b̌sg
r xsg(b̌sg

r , b−s
r ) − xsg(b

^
sg
r , b−s

r )
(26)

(see (27)) The payment difference (psg
r (b̌sg

r , b−s
r ) − psg

r (b^sg
r , b−s

r ))
from (24) and (25) is given by the sandwich theorem as shown in
(26). Noting that xsg

r ( ⋅ , b−s
r ) is a piecewise constant, now applying

the limit inequality theorem on (26), the change in payment is
given in (27), where Δ

|b^sg
r  is the magnitude of change at b

^
sg
r

. Now

the unique payment formula for each bidder at the rth auction
round is given by

psg
r (bsg

r , b−s
r ) = ∑

c = 1

Cg
r

bcg
r ⋅ Δ

|bsg
r xsg

r ( ⋅ , b−s
r ), (28)

where bcg
r  is the cth breakpoint of the allocation function xsg

r ( ⋅ , b−s)
in the range [0, bsg

r ] during rth auction round, and
Cg

r = |𝒞g
r ⊆ 𝒞g | ≤ Cg = |𝒞g| is maximum number of active

bidders in the competitive set of the gth GU. Now the overall
payment formula for bidder s for the entire BWA is given as

ps(bs, B−s) = ∑
r = 1

R

∑
c = 1

C′g
bcg

r ⋅ Δ
|bsg

r xsg
r ( ⋅ , b−s), (29)

The total revenue generated from the BWA is given by
∑s ∈ 𝒮 ps(bs, B−s). Since the allocation function xsg

r ( ⋅ , b−s) is a
bounded monotone function, it is continuous and differentiable. Let
us assume that b̌sg

r = b
^
sg
r + db

^
sg
r

. Now dividing (28) by db
^
sg
r

 and
following the same procedure as in (29) we get

d
db

^
sg
r p(b^sg

r , b−s
r ) = b

^
sg
r ⋅ d

db
^
sg
r x(b^sg

r , b−s
r ) . (30)

The unique payment formula of every bidder during the rth auction
in (28) can be rewritten as

ps
r(bsg

r , b−s
r ) = ∫

0

bsg
r

bsg
r ⋅ d

dbsg
r xsg

r (bsg
r , b−s

r ) dbsg
r (31)

which is in agreement with the second condition of Theorem 3.
Hence the proof. □

Equations (28) and (29) show that the allocation and payment
rules of BWA lead to a unique sDSE and ultimately a unique DSE.
Note that a bidder only pays when he is assigned a GU(s).

6 Numerical example
We consider a network with one MBS and 25 SCAs. Each SCA is
committed to serve one HU with a data rate target of 2 bits/s/Hz.
The SCAs are only allowed to bid for GUs that fall within twice
their nominal coverage radius. The cost per unit data rate and the
cost per unit power were set to κ = 0.1 and μ = 0.00001,
respectively. All other model parameters are summarised in
Table 1. We used MATLAB and CVX to simulate the proposed
algorithms. We investigated the performance of the proposed
methods by varying the target data rate for MUs while fixing the
data rate for HUs at 2 bits/s/Hz. The proposed algorithms are
compared with the simultaneous ascending auction (SAA)-based
algorithm proposed in [29, 30]. In the SAA, the auctioneer
gradually increase the price or payment for serving users with a
small value δ. The bidders then indicate which set of GUs they are
interested on for a given price. This is repeated until there is only
one bidder who expresses an interest to each GU. Fig. 4a shows the
average number of MUs admitted by the SCAs and the MBS
(shown separately). For a given preference criterion, the BBWA
admits more users than the FBWA. Also, the FPP criterion admits
more users than APP criterion for a given algorithm. In terms of
surplus maximisation, the BBWA with FPP criterion is most

lim
b̌sg

r → b^sg
r

b
^
sg
r

xsg(b̌sg
r , b−s

r ) − xsg(b
^
sg
r , b−s

r ) ≤ lim
b̌sg

r → b^sg
r

psg
r (b̌sg

r , b−s
r ) − psg

r (b^sg
r , b−s

r )

≤ lim
b̌sg

r → b^sg
r

b̌sg
r xsg(b̌sg

r , b−s
r ) − xsg(b

^
sg
r , b−s

r ) = Δ
|b^sg

r psg
r = b

^
sg
r ⋅ Δ

|b^sg
r xsg(bsg

r , b−s
r ),

(27)
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preferred. The BBWA with FPP criterion admits more users when
compared with the SAA algorithm. 

As seen in Fig. 4b, in terms of revenue generation, the SCAs
would prefer the BBWA with the FPP criterion. However, as the
primary intention of the MBS is to minimise the dropped users, it
will also prefer BBWA algorithm. In comparison to SAA
algorithm, BBWA with FPP criterion generates more revenue at
lower targets rates, while the SAA algorithm generates more
revenue at higher targets rates. This is due to the following reason.
The competition is very strong among the bidders at lower target
rates than at higher target rates. In SAA algorithm, bidders (SCAs)

pay the bid they submitted rather than the second highest bid from
the set of competitors. Hence when there is high competition
among SCAs, the price being paid for the GUs in the SAA is
higher than that being paid in the BBWA with FPP criterion. In
contrast, when the competition is low, the bidders will pay less
under SAA than that under BBWA with FPP criterion.

We also compared the average system overheads measured in
terms of the number of invitations for bidding, the number of bids
submitted and the number of announcements made. As seen in
Fig. 4c, the system overhead drops with increasing target data rate.
This is because with increasing target data rate, the SCAs will
reach its admission capacity quickly and there is no need for
further auctioning. The average number of auction rounds is also
compared in Fig. 4d. For the same reason, the number of auction
rounds drops with the increasing data rate. To reduce the system
overheads in SAA, the price increment step was set as
δ = 0.001 × (target data rate)/(0.5) (bits/s/Hz). Regardless of this
price increment adaptation, it is observed in Figs. 4c and d that the
proposed algorithms outperform the SAA algorithm in terms of
both the system overheads and the auction rounds.

In Fig. 5, we compared the performance of the BWA to a
centralised solution proposed in [31]. We considered six MUs and
two SCAs. As seen in Fig. 5a, as the target data rate of the MUs is
increased, the total transmission power increases exponentially.
Starting from target data rate of 10.5 bits/s/Hz, the average number
of admitted users at SCA 1 drops from 3 to 2.75. Consequently, the
total transmission power is also dropped. A similar trend is
observed in Fig. 5b for the BWA. By comparing Figs. 5a and b, it
is observed that the BWA is close to optimal. 

7 Conclusion
We have proposed a framework that performs user association and
beamforming in a wireless downlink heterogeneous network
through auctioning. We considered two scenarios. In the first
scenario, the MBS admits as many users as it can serve and then

Fig. 4  Average performance of the proposed BBWA and FBWA for 20 channel realisations. There are 100 MUs and 25 SCAs
(a) Average MUs/GUs admitted by the SCAs, (b) Average revenue generated through auctioning, (c) Average system overheads incurred, (d) Average auction rounds

 
Table 1 The parameters for numerical evaluation
Description/parameter Value
macrocell radius 500 m
small cell radius 30 m
MBS downlink transmit power p0

max 46 dBm

SCA downlink transmit power ps
max 20 dBm

MBS path and penetration loss at d (km) 128.1 + 37.6log10(d) dB
SCA path and penetration loss at d (km) 127 + 30log10(d) dB
log normal shadowing standard deviation 7 dB
MBS-MUs minimum distance constraint 35 m
SCA-MUs minimum distance constraint 3 m
noise variance σ2 −127 dBm
wall attenuation 20 dB
number of MUs 100
number of HUs per SCA 1
number of MBS antennas Mmbs 50

number of SCA antennas Msca 8

small-scale fading distribution h jk ∼ 𝒞𝒩(0, R jk)
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auctions off the remaining users to SCAs. This is solved using the
FBWA algorithm. In the second scenario, the MBS auctions off as
many users as possible to the SCAs and then admits a largest
possible set of users from the remaining users. This is solved using
the BBWA algorithm. The results show that the BBWA with FPP
criterion is preferred by the MBS as well as the SCAs. The
proposed algorithm is able to provide closer to optimal solution
with significant saving in complexity.
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