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Abstract: High-tech augmentative and alternative communication (AAC) methods are on a constant
rise; however, the interaction between the user and the assistive technology is still challenged for
an optimal user experience centered around the desired activity. This review presents a range of
signal sensing and acquisition methods utilized in conjunction with the existing high-tech AAC
platforms for individuals with a speech disability, including imaging methods, touch-enabled systems,
mechanical and electro-mechanical access, breath-activated methods, and brain–computer interfaces
(BCI). The listed AAC sensing modalities are compared in terms of ease of access, affordability,
complexity, portability, and typical conversational speeds. A revelation of the associated AAC
signal processing, encoding, and retrieval highlights the roles of machine learning (ML) and deep
learning (DL) in the development of intelligent AAC solutions. The demands and the affordability
of most systems hinder the scale of usage of high-tech AAC. Further research is indeed needed for
the development of intelligent AAC applications reducing the associated costs and enhancing the
portability of the solutions for a real user’s environment. The consolidation of natural language
processing with current solutions also needs to be further explored for the amelioration of the
conversational speeds. The recommendations for prospective advances in coming high-tech AAC are
addressed in terms of developments to support mobile health communicative applications.

Keywords: augmentative and alternative communication; assistive technologies; sensing modalities;
signal processing; voice communication; machine learning; mobile health; speech disability

1. Introduction

Recent studies show that up to 1% of the world population suffers a degree of speech, language
or communication need (SLCN) [1,2]. The loss of speech capabilities associated with extreme forms of
paralysis and further medical complications has long been regarded as a barrier between the sufferers
and the outside world. Augmentative and alternative communication (AAC) incorporates a wide range
of processes that augment, complement, or replace speech of individuals with complex communication
needs [3,4]. In the broad context of speech and language, speech is often associated with the motor
movements responsible for the production of spoken words, whereas language is associated with the
cognitive processing skills of communication.

AAC solutions are classified into three categories: no-tech, low-tech, and high-tech AAC [4].
No-tech AAC is considered the oldest of the three AAC categories, given its reliance on the
interpretation of facial expressions and voluntary motor movements, such as sign language, to deliver
non-verbal messages [5]. Low-tech AAC utilizes basic tools, such as books and display boards
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with extended lexicons of images and phrases to aid the communication process [6]. High-tech AAC
encompasses the use of electronic devices to achieve an AAC target. Devices falling under this category,
such as smart devices and dedicated AAC devices, integrate hardware and software to support a
user’s communication needs. A common attribute of modern day AAC solutions tends to rely on
the translation of a user’s intended meanings into speech via speech generating devices (SGDs) [4].
AAC communication is also often classified as either un-aided or aided, given the dependence of
the solution on the human body solely or the interaction with an external communicative aid for
communication, respectively [4].

The potential of AAC intervention has hence been substantial over the last 30 years, with the
provision of innovative solutions to a wide range of users with a speech disability [7]. However,
although high-tech AAC systems are rapidly evolving, several considerations are yet pertinent to
the provision of effective solutions efficiently serving AAC users [4,8]. Low-tech AAC solutions are
usually the first techniques tried by speech and language therapists, as the use of simplistic display
boards and communication books is both cost-effective and easy to obtain. Moreover, the high costs
and complicated training a user requires to operate most high-tech AAC devices could hinder the
access to high-tech AAC, and thus the usability of speech generating devices. In turn, an optimized use
of high-tech AAC should be researched to provide a faster means of communication, in comparison to
low-tech, by prioritizing the communicative needs of the users over the needs of the system. Studies
also show that, after testing several AAC systems, the potential of AAC might be limited by complex
operational difficulties given the number of users who are simultaneously physically impaired and
speech-disabled [8]. Predominantly, AAC users still use combinations of unaided low-tech methods
together with an aided high-tech device as suitable for the context of usage and the person they are
conversing with [9].

Due to the complex composition of the human body, speech and communication impairments
requiring an AAC intervention could result from diverse medical conditions [10,11]. These commonly
include Autistic Spectrum Disorders (ASD), strokes, learning disabilities, Locked-in-Syndrome (LIS),
Dementia, head and neck cancers, and brain injuries. This also expands to include patients with
progressive diseases, such as Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS) [10]. Other
AAC users include patients in transient post-operative states where interventions and treatments,
such as ventilator support, may render them unable to speak normally, or at all. In turn, the
users benefiting from AAC intervention could be classified into three major groups based on their
individual conditions and the intended target use of the AAC communicative aid [12]. These three
classes comprise alternative-language users, augmentative-language users, and temporary AAC
users. Alternative-language users have a well-established cognitive understanding of language and
speech, but have difficulties in conversing. On the other hand, augmentative-language users have
difficulties both in understanding speech and in conversing. To be able to use an AAC device,
augmentative-language users need assistance in the re-categorization of their surroundings into labels
and symbols they comprehend to form a communication language. Temporary AAC users require
AAC intervention only for a limited duration of time. This category primarily includes children with
developmental conditions, and adults who require transient speech assistance following surgical
intervention [12].

Given the complexity of the user base, and the wide need for AAC solutions to serve diverse
groups of individuals with a speech disability, current research efforts are being redirected towards
the establishment of assistive systems that are suited to respond to their personal users’ needs and
capabilities. The aim of this paper is to review the access and processing techniques pertaining to
predominant high-tech AAC methods, including the input signal sources, and the developments
of machine learning (ML) and deep learning (DL) associated with AAC solutions for the provision
of a personalized user experience. This review comprises six sections. Section 2 highlights the
relationship between the ACC user needs and the technological developments. In Section 3, the
high-tech AAC sensing modalities are classified and reviewed according to their signal sensing sources.
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A discussion of the listed modalities and a comparison framework of the reviewed systems is presented
in Section 4. Section 5 summarizes the discussed findings and concludes the paper. In Section 6, the
recommendations for future research are presented.

2. Human Interaction

Several studies exist in the literature of modeling the user’s interaction with assistive technologies
(AT) [13]. A primary, well-established, AT framework is the Human Activity Assistive Technology
(HAAT) model [4]. The HAAT model underpins a consolidated approach of the interactions between
the activity, the human, the context, and the assistive technology. It links the process of selection of an
assistive technology solution with the person carrying out an activity in a given context [14]. The four
components constituting the HAAT model are shown in Figure 1. Particular attention is drawn to each
component, detailing the importance of firstly considering the target activity (self-care, productivity,
and leisure), the human abilities of the person using the device (physical, cognitive, emotional, and
expertise), the context the device is used in (physical, cultural, and institutional), and in turn the
consideration of the suitable AT device (interfaces, processor, and output) [4]. The developers of the
HAAT model emphasize on the concept of serving the needs of the users to optimize the usage of the
technology, stating that the technology aspect should encompass the function it serves, the person who
will be using the AT device, and the context of usage [4].

Figure 1. The four components of the Human Activity Assistive Technology (HAAT) model presented
in [4]. The interaction between the human and the assistive technology (AT) is emphasized to highlight
the relationship between the needs of the AAC users and the elements of development of high-tech
solutions discussed in this review.

In light of the HAAT model, AT could hence be used to aid the communication process of
individuals with a speech disability, given that the technology prioritizes the activities and abilities of
the user. Basing high-tech AAC applications and platforms on the skills and communicative needs
of the users, persons with a disability could in turn be allowed to participate in a wider range of
activities to communicate their individual needs [15]. From the societal perspective, smart devices
have been promoting both the visibility and acceptance of AAC [16]. A number of factors also aids
in increasing the access to high-tech AAC platforms, including the ease of operating and using the
AAC device, its processing capabilities, the cost of the hardware, and the licensed software packages
used to operate the devices [4]. Emphasis is also placed in several studies [4,17] on the importance of
customizing AT solutions to address the needs of the users who might find difficulties in accessing
the devices’ interfaces. A survey study in [18] further highlights the importance of the provision of
technical support and the time taken by a device to communicate a message.
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3. Sensing Modalities and Their Functionalities

The integration of smart developments into daily life activities has widened the scope of dedicated
and non-dedicated AAC applications [7,19]. A survey of high-tech AAC devices with regards to the
signal acquisition, ML, and output generation is presented in this section.

3.1. AAC Signal Sources and Associated Processing

AAC interfaces are activated through an array of methods for the detection of human signals
generated via body movements, respiration, phonation, or brain activities [4]. The acquisition of
AAC signals is accomplished through several modalities. Table 1 outlines the AAC signal sensing
categories discussed in this review together with their relevant activation methods. The listed AAC
access methods could be used in a stand-alone format or in combination with one another. For example,
imaging methods may be combined with touch-activated methods or mechanical switches to provide
the users with a multi-modal access using the same device. A commercial example is Tobii Dynavox
PCEye Plus, which combines several functionalities including eye tracking and switch access to use a
computer screen [20].

Table 1. Sensing modalities of AAC signals.

Signal Sensing Category Activation Method

Imaging methods Eye gaze systems, head-pointing devices
Mechanical and Electromechanical methods Mechanical keyboards, switch access
Touch-activated methods Touchscreens, touch membrane keyboards
Breath-activated methods Microphones, low-pressure sensors
Brain–Computer Interface methods Invasive and non-invasive

3.1.1. Imaging Methods

Imaging methods, such as eye gazing, eye tracking and head-pointing devices, have been
widely reported in the literature [21–31]. Eye gaze technologies work using the principle of tracking
the eye movements of a user for the determination of the eye gaze direction [24,27]. Several eye
tracking methods are commonly used, including video-oculography [32], electro-oculography [33],
contact lenses [34], and electromagnetic scleral coils [21,25,30,35,36]. Oculography is involved
with the measurement and recording of a user’s eye movements [35]. Video-oculography and
electro-oculography use video-based tracking systems and skin surface electrodes, respectively, to
track the movements of the eye [25]. In the context of AAC, non-invasive eye tracking methods
are better suited to address the daily needs of the users who lack motor abilities [27,29]. Practical
methods involve the utilization of non-invasive cameras, an illumination source, image processing
algorithms, and speech synthesizers to communicate a user’s message [25,27]. Image data are obtained
in video-oculography-operated systems using one or more cameras [23,27]. Typical video-oculography
systems use glints produced on the surface of the eye through an illumination source, such as
near-infrared (NIR) LEDs with typical wavelengths of 850 ± 30 nm, and in turn, gaze locations
are estimated from the movement of the eye pupil in relation to the illuminated glint positions [34].

The components of a typical video-based tracking system are shown in Figure 2. Different
approaches are presented in the literature for calculating the accuracy of an eye tracking system,
including the distance accuracy (in cm or in pixels) and the angular accuracy (in degrees) [22]. The pixel
accuracy can be given by

Pacc =

√(
XtargetPX

)2
+ (YtargetPY)2 (1)

where Xtarget and Ytarget are the coordinates of the target points, and PX and PY are the gaze point
coordinates given by

PX = mean
(PXle f t + PXright

2

)
(2)
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and

PY = mean
(PYle f t + PYright

2

)
(3)

respectively, with the subscripts le f t and right referring to the coordinates of gaze points of the left
and right eyes. The on-screen distance accuracy (DA) is similarly given by

DA = psize

√(
PX −

xpixels

2

)2
+

(
ypixels − PY +

o f f set
pixelsize

)2
(4)

where psize is calculated based on the resolution, height, and width of the screen, xpixels and ypixels
are the pixel shifts in the directions of x and y, respectively, and the o f f set is the distance between
the eye tracking unit and the lower edge of the screen [22,37]. The angular accuracy (AA) can be also
computed via

AA =
psize × Pacc × cos(mean(θ))2

meandist
(5)

where the gaze angle θ is given by

θ = tan−1
(

DA
dist

)
(6)

and dist and meandist are the distances from the eye to the screen and from the eye to the tracker,
respectively [22,37].

Figure 2. Components of a typical eye gaze system, adapted from [22,38]. The optical and the visual
axes are used for the calibration process commonly required to set up the eye gaze system [22,39].

Fixations and saccades are commonly used to analyze eye movements [40]. Fixations are the
pauses a user intently inputs by fixing his eye movements at the target gaze point, whereas saccades
are the eye movements rapidly occurring following and in between the fixations. Metrics of eye gaze
estimations include fixation durations, fixation rates, fixation sequences, saccadic amplitudes and
velocities [22,40]. Although electro-oculography is a cost-effective eye tracking method, Infrared pupil
corneal reflection (IR-PCR) video-based systems are most commonly used by speech and language
practitioners due to their non-invasive nature [25,27]. A calibration operation is essential in video-based
trackers to fine-tune the system with a user’s eye movements [41]. As shown in Figure 2, a user’s
visual axis deviates from the optical axis upon the usage of a gaze system. Calibration is expressed as
the process of finding the visual axis pertinent to each user by calculating the angle between the line
joining the fovea (the highest point of sensitivity in the eye retina) with the center of corneal curvature,
and the optical axis [22].
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The estimation of the visual axis is usually not feasible, and as such, the calibration process
enables the tracker to capture and learn the difference between the user’s eye positions when gazing at
a specific target in comparison to the actual coordinates of the gaze target. The user’s head orientation
should be also considered in IR-PCR systems, as the movements of the user’s head can adversely
impact the calculations of the glint vectors [22]. Studies are however addressing advances in eye
tracking methods to overcome the related constraints, providing the forthcoming possibilities of free
IR eye tracking and robust algorithms for head movements compensation [42].

A large number of eye tracking and eye gaze AAC applications is commercially available. Several
AAC eye gaze and eye tracking applications, such as Tobii Dynavox PCEye Plus [20] and Eyespeak [43],
can be accessed in a multimodal form. This enables the users to use other methods of input, such as
switch access, headtracking or touchscreens together with the tracking software to suit their individual
needs. IntelliGaze (version 5) with integrated communication & environment control [44] is also an
example of an eye tracking AAC tool which allows sending and receiving messages for an improved
communication. Most of the listed solutions include extensive vocabulary sets, word predictions, and
advanced environmental controls for an enhanced support of the user. Other eye tracking systems,
such as EagleEyes [45], allow the control of an on-screen cursor via the electrodes placed on the user’s
head to aid the communication of users with profound disabilities [31].

3.1.2. Mechanical and Electro-Mechanical Methods

Mechanical and electro-mechanical AAC devices have applications for both direct and indirect
selection access methods. Direct selections offer the users sets of choices, and require a voluntary input
selection of the intended messages from the user’s side. This usually involves the coordination of
voluntary controls using a body part, such as the hand or fingers, or a pointing device, to select a
message [19]. Mechanically activated direct-selection methods include mechanical keyboards, which
utilize the physical mechanical depression of the pressed keys to activate a user selection. Keyboard
layouts maybe reconfigured for individuals who find the use of a standard keyboard difficult due to
the required coordination between the two hands [4].

For individuals lacking voluntary controls, communication via direct selections is often
cumbersome, and, consequently, indirect selection methods are best-suited for this group of
users [19]. Scanning methods are predominantly in use with indirect selections, involving a systematic
representation of options appearing in timed intervals for the users to select from [19,46]. Mechanical
scanning methods include single switches, arrays of switches, or other variations of methods activated
via the application of a force [4]. Switches are generally considered a form of low-tech AAC due to their
minimal hardware requirements; however, switching applications have recently expanded to allow
users the access of several high-tech AAC platforms, including computers, tablets, or smart devices
via scanning. Scanning techniques range across three levels, each suited to accommodate users with
specific motor abilities: Automatic scanning is used to present items in adjustable time intervals, based
on the user’s skills, until a selection is made; step scanning allows the users to control the presentation
of selections, in turn controlling the rate of advancement; and inverse scanning involves holding down
a control interface and releasing it upon the desired selection [4]. Figure 3 shows a visual scanning
interface together with typical activation switches.

In addition to letters, scanning interfaces expand to include a variety of access options, including
icons, pre-stored messages, and auditory messages. Some operating systems also provide the option
of device navigation via an external switch. The position and access methods of switches are user
dependent. They can be adjusted to be in close proximity to the hands or the feet for the ease of
activation. Mechanical switches can be also mounted on wheelchairs to allow access using head
movements. Different variations of switches are available in terms of shapes and types to suit the
user’s requirements. In general, mechanical switch scanning requires minimal motor movements;
however, the communicative rates could be slowed down by the delay required to make a selection.
Nonetheless, based on the requirements of some AAC user groups, indirect access methods utilizing
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switch scanning may still aid in the communication of basic needs. As implied from the HAAT
model, the user’s requirements specify the objectives of using a communication aid. Therefore, the
independent communication of these user groups could be among the primary targets of using
an intervention.

Figure 3. (a) A sample visual scanning interface activated via switch scanning. The yellow box
moves vertically across the lines until a selection is made, followed by a gliding green box moving
horizontally across the highlighted line until a letter is also selected. In (b), two scanning button
switches are displayed.

3.1.3. Touch-Activated Systems

With the escalation of the touchscreen developments, touch-activated AAC applications are
commonly in use with AAC direct selection activation. Touchscreen technologies comprise various
types, including resistive, capacitive, surface acoustic wave, and optical/infrared touchscreens [47].
Resistive and capacitive touchscreens are predominantly used with smart devices [48]. Resistive
touchscreens are dependent on the production of a force or pressure using the user’s fingers, whereas
capacitive touchscreens are activated using the electrical charge present on the user’s finger [49].
Although resistive touchscreens are cost efficient, capacitive touchscreens are often known to present
a better visual clarity, presenting an added benefit for AAC users suffering a degree of visual
impairments. Touch membrane keyboards are also in use by AAC users. They are built using
non-conductive spacers separating conductive flat surfaces, and acquire electronic signals through the
pressure resulting from holding down a key, generating an input signal to the AAC device [19].

Several AAC touchscreen applications, such as Verbally [50], Proloquo2Go [51], and
PredictableTM [10,52], are currently available for the use with tablets and smart devices for a rapid
and portable access to an AAC solution. The tools operate based on a variety of activation methods,
primarily including image-based solutions and word spelling for synthesis via the device’s inbuilt text
to-speech capabilities and speech generation, as shown in Figure 4. The interfaces of the applications
could be usually tailored to allow users the flexibility of setting up the devices according to their needs.
The costs of the solutions vary according to several factors, including the capabilities of the tool and
the sophistication of the software. AAC users utilize touchscreens and touch activated systems to
make selections via swiping and tapping; however, such actions could be restrictive for users who
are physically impaired [4]. Nonetheless, the accuracy can be augmented using pointers, as the icons
presented on a touchscreen often have the advantage of being cognitively easy to select, and less
demanding in comparison to the operation of a regular computer [4].
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Figure 4. Examples of (a) a dedicated touch-based device and (b) a non-dedicated smart device running
an AAC application (APP), usually with predictive language model and speech generation capabilities.

3.1.4. Breath-Activated Systems

The wide availability of sensing modalities expands the scope of AAC control interfaces to
include the detection of respiratory signals in addition to the regular voluntary body movements [4].
Voluntary body movements are commonly detected through the integration of sensors with imaging,
and/or optical, mechanical, and electro-mechanical devices. Respiration signals are recorded via
a wide range of modalities, including fibre optic sensors [53], pressure and thermal sensors [54],
photoplethysmogram (PPG) measurements [55], electroencephalogram (EEG) signals [56], and the
examination of airflow [56,57]. Discrete and continuous breathing signals can be used to encode
messages, as shown in Figure 5. Discrete breath encoding involves the generation of soft and heavy
breathing blows encoded as binary combinations of zeros and ones, or Morse codes to represent the
user’s intended messages or the International Morse code’s letters, respectively. On the other hand,
continuous breath encoding uses the modulation of the speed, amplitude, and phase of breathing
signals to create patterns representing the intended message. The modulation of the continuous
breathing patterns encoded to represent user selected phrases, including the training and retrieval
modes, is shown in Figure 6 for a mobile based APP.

Figure 5. Examples of (a) discrete breath encoding, where soft and heavy breathing blows are recorded
to encode combinations of zeros and ones, or Morse codes, representing the intended messages, and
(b) continuous breath encoding, where the speed, amplitude, and phase of breathing are modulated to
create patterns representing the intended message.
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Figure 6. Examples of (a) training mode, and (b) live mode of continuous breath encoding for the
storage and the retrieval of breathing patterns linked to a user phrase using a mobile APP.

An early respiration activated AAC development involving a breath-to-text application was
initiated at the Cavendish Laboratory at Cambridge University [58]. The study presented the use of
fine breath tuning to use Dasher to support the communicative requirements of AAC users. Dasher is
a text-entry system with a predictive language model available on several operating systems, and uses
one- and two-dimensional inputs from pointing devices to access an on-screen cursor. The fine breath
tuning system encodes letters using Dasher’s interface and a specially designed thoracic belt worn
around the chest. Two inches of the belt are replaced by an elastic material, with a sensor measuring
the changes of a user’s waist circumference resulting from breathing variations. The study reports
an expert user conversational rate of 15 words per minute using this system. The usage of sniffing
signals was also established in the scope of AAC in [59]. A device was developed for the measurement
of human nasal pressure via a nasal cannula and a pressure transducer. The device was tested with
individuals in LIS, and quadriplegic users. To write text, the captured nasal pressure changes are
converted into electrical signals, and passed to a computer. The device comprises two associated
interfaces for the user’s selection of letters, including a letter-board interface, and a cursor-based
interface. The system aids the users in LIS, with reported rates of three letters per minute.

Microphones could be also used in combination of an AAC interface. The loss of speech abilities
associated with SLCN centralizes the usage of microphones around two AAC areas, including speech
augmentation of individuals suffering partial loss of speech [60] and breath encoding for individuals
with a speech disability [57,61]. Speech augmentation applications, such as “Voiceitt” [62], are currently
researched to aid the communication of individuals suffering from Dysarthria or using non-standard
forms of speech. “Voiceitt” uses a specialized software and the inbuilt capabilities of a portable device
to understand dysarthric speech and allow a real time user communication. On the other hand,
breath encoding is being researched to aid the communication of the users lacking speech abilities.
Encoding distinct inhalation and exhalation signals is presented in [61] to produce synthesized machine
spoken words (SMSW) through soft and heavy blows represented through four-bit combinations of
zeros and ones. The classification is achieved based on the threshold values of the generated blows.
A micro-controller unit together with an MP3 voice module are appended to the microphone for
the execution of the pattern classification and the playback of SMSW. The 16 discrete combinations
are linked to predefined phrases selected with the aid of medical practitioners. A device named
“TALK” is also a solution involving a micro-electro-mechanical-system (MEMS) microphone together
with two low-cost micro-controllers, and is similarly in use with distinct inhalation and exhalation
signals to encode letters through the International Morse Code to produce SMSW [2]. A study also
reports the use of analog breath encoding for AAC purposes by utilizing the recognition of continuous
breathing modulations [57]. Analog encoding of the acquired breathing signals is reported to provide
an increased bandwidth at the low breathing frequencies, as it utilizes the signal’s amplitude, frequency
and phase changes to encode a user’s intended meanings. The classification is achieved based on the
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dynamic time warped distances between the tested breathing patterns. A systematic reliability of 89%
is reported with increased familiarity with the system.

3.1.5. Brain–Computer Interface Methods

In the scope of AAC, Brain–Computer Interface (BCI) solutions are being widely researched to
allow AAC users to control external devices by modulating their brain signals [63–65]. Brain interfaces
are either invasive or non-invasive. Invasive interfaces involve the usage of implanted electrodes and
the interconnections of the brain with the peripheral nerves [64]. Non-invasive BCIs comprise the usage
of external devices to monitor a user’s brain activities through EEG [60,64], magnetoencephalography
(MEG) [63], functional magnetic resonance imaging (fMRI) [63,64] or near-infrared spectroscopy
(NIRS) [63,64]. The components and flow diagram of a typical BCI system are shown in Figure 7.

Figure 7. The components and flow diagram of a Brain–Computer Interface (BCI) system, adapted
from [66,67].

EEG is a popular BCI recording method, given its non-invasive nature and its relatively lower
cost [68,69]. In electrical BCI systems, the brain produces a set of electrical signals when triggered by
a stimulus, known as the evoked potential [70]. EEG signals are acquired using 2–64 sensors placed
on the scalp of the user to record the brain activity [71]. Amplifiers and filters are typically utilized,
with an output fed back to the user to accordingly modulate the brain activity [64]. To translate a
brain activity into a computer command, regression and classification algorithms can be used [72].
An adaptive auto-regressive (AR) parameter estimation model used with EEG BCI describes a time
series signal x(t) as

x(t) =
p

∑
i=1

φix(t − i) + εt (7)

x(t) = φ1x(t − 1) + ... + φpx(t − p) + εt, (8)

where φi and p are the AR coefficients and the order of the model, respectively, and εt is white
noise [73,74]. A review study [72] demonstrates that the use of classification algorithms is an
increasingly popular approach with BCI interfaces, as they are commonly used to identify the
acquired brain patterns. Classification is the process of using a mapping f to predict the correct
label y corresponding to a feature vector x. A training set T is used with the classification model to
find the best mapping denoted by f* [72]. The classification accuracy of a model is dependent on a
variety of factors. A study [72] demonstrates that, using the mean square error (MSE), three sources
are identified to be the cause of classification errors, given that

MSE = E[(y − f (x))2] (9)



Sensors 2019, 19, 1911 11 of 24

could be decomposed into
MSE = Var( f (x)) + Bias( f (x))2 + σ2, (10)

where the variance (Var) represents the model’s sensitivity to T, the Bias represents the accuracy
of the mapping f, and the noise σ2 is the irreducible error present in the system. Common ML
algorithms used with BCI include linear classifiers (such as linear support vector machines), neural
networks, nonlinear Bayesian classifiers, nearest neighbors, and combinations of classifiers [71,72].
Signal processing techniques pertinent to BCI methods include both time-frequency analysis, such
as AR models, wavelets, and Kalman filtering, and spatiotemporal analysis, such as the Laplacian
filter [75]. Hybrid BCI is a different approach to brain signals processing, combining a variety of
brain and body signals in sequential and parallel processing operations with the aim of improving the
accuracy of BCI systems [76].

BCIs are under continuous research to aid the communication of individuals suffering from
motor strokes [63], ALS, and LIS, and spinal cord injuries [77]. BCI systems involve three basic pillars,
including the user training, the associated ML, and the application in use [78,79]. Research in the area
of BCIs is currently evolving [63], with promising results in recent state-of-the-art projects. A study
by Stanford University [80] confirmed the usability of BCIs to control an unmodified smart device
for quadriplegic users. BCIs have been also in use to surf the Internet [81], with an EEG BCI based
application tested with LIS and ALS conditions [82]. It is also reported that BCIs could aid users
control spelling and play games [80].

3.2. Machine and Deep Learning

Typical signal processing of the acquired AAC signals encompasses three primary operations:
encoding, prediction, and retrieval [10]. Encoding involves the conversion of the acquired signal
into a pre-defined format accepted by the system for the production of a specified output, whereas
prediction is concerned with building the algorithms used to select the desired output [10]. Prediction
encompasses several operational contexts, including word [83], message, and icon prediction [10].
In general, an ideal AAC system should integrate self-learning capabilities to respond to its users’
individual needs [2,8]. Demographic data show that current AAC users belong to numerous cultural
and linguistic backgrounds [7]. In turn, the design of systems tailored to address specific users’
requirements is vital for an enhanced adaptability. High-tech AAC is hence becoming a highly
interdisciplinary area of research, combining rehabilitation engineering with clinical and psychological
studies, signal processing, and ML [84].

ML has been widely evolving over the last decade, with a number of applications aimed at
aiding the provision of intelligent AAC solutions to address the users’ needs. The automation of
algorithms, prediction, and classification capabilities presented by ML solutions could be of great
benefit to the users. Technologies such as natural language processing (NLP) are highly dependent on
artificial intelligence (AI). The operation of NLP is centered around the analysis, augmentation, and
generation of language, including the computation of probabilities of incoming words and phrases,
and complete sentence transformations [85]. NLP has various applications in AAC, utilizing ML and
statistical language models to process and generate outputs by optimizing word prediction models,
topic models [86], speech recognition algorithms, and processing of the context of usage [85]. BCI is also
highly dependent on ML, as users learn to encode the desired intended messages through dedicated
brain signal features captured by the BCI for the translation to the intended meaning or the desired
control [78,84,87,88]. Recent studies also show that advances with DL algorithms, such as conventional
and recurrent neural networks, could have a potential superior performance in comparison with
conventional classification methods [70]. As demonstrated in [89], ML is also used in conjunction with
ECG spelling based BCI applications to minimize training times, although the conversational rates
are still generally reported to be slow [90]. On the broader scale, research in [91] demonstrates that
Neural Networks could be potentially used to learn, predict, and adapt to the events within a user’s
environment to aid the people with disabilities.
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3.3. Outputs and Speech Generating Devices

High-tech AAC systems can produce outputs in a variety of formats, including symbols, icons, and
electronic digitized or synthesized speech [10]. SGDs, or voice output communication aids (VOCAs),
are devices with the ability to produce digitized or synthesized speech [9,92]. Digitized speech is
pre-stored speech acquired via a microphone and stored in electronic format for retrieval upon a user
action [93], whereas synthesized speech is generated based on mathematical algorithms and played as
natural voice [10]. The wide availability of smart devices facilitates the access to VOCA applications.
Synthesized speech includes the production of output messages via text to speech synthesis, and is
therefore commonly researched to assist the communication and free personal expression of individuals
with a speech disability. This is primarily due to the benefit of providing a greater flexibility in contrast
with digitized speech. Studies show that AAC devices with SGD capabilities contribute to significant
developments in terms of AAC solutions [10,92]. However, the efficiency and effectiveness of using a
VOCA with an AAC user remains dependent on the user’s abilities, their medical condition, and the
communication partners they are conversing with [9].

4. Comparison of Existing AAC Signal Sensing Methods

With respect to the discussed HAAT model and the listed AAC access methods, the integration
of state-of-the-art AAC systems with AI applications could help in the improvement and the ease of
use of common AAC devices and their associated user interfaces. The focus on the user activity to be
carried out needs to be at the core of the implementation. Table 2 provides a comparison of the input
signal sources, the requirements for operation, the areas of strength, and the areas of limitation of the
listed AAC sensing methods. A summary of each of the listed access categories is demonstrated below
in terms of the ease of access, affordability, ease of programming and maintaining, portability, and
conversational rates.

4.1. Ease of Access

Imaging methods, including eye gaze and eye tracking methods, are generally utilized as
non-invasive means of communication for the individuals with minimal voluntary controls and
motor movements. The natural eye gazing process is a an advantageous trait for accessing devices [26].
However, typical imaging methods were shown to require a learning curve for both the users and the
systems, as a calibration step is usually required for the customization of an imaging device to each
individual user [94]. The accuracy of the system is also dependent on many variants, including the
gaze angle, the pixel accuracy, and the distance between the eye and the screen, as demonstrated in
Equations (1), (4), and (5), rendering eye gaze difficult when selecting small items on the screen [26].
The movements of the head and the direction of the gaze might impact the usability of the acquired
signals, usually with algorithms implemented to cancel out the effects of such movements [22]. Recent
eye gaze systems are better proofed against head movements, and in turn need to be calibrated less
frequently [60]. Calibration models are also in use to facilitate the process of gaze calibration [95].
Recent studies are beginning to address the current constraints to create forthcoming robust imaging
systems that are easy to use [94]. Mechanical and electro-mechanical activated switches and keyboards
are usually easier to operate due to their simplistic nature. Mechanical switches are predominantly
used with individuals requiring minimal motor movements to access a computer or a smart device via
indirect selection [4]. Touch-activated methods require voluntary muscle controls, however with a
minimal activation pressure, as discussed in Table 2. Touchscreens can also be used in combination
with mechanical switches for individuals lacking motor controls to access the devices for indirect
selections enablement. This multi-modal access can in turn be advantageous, as users will have a
choice to access the device using more than one modality. Breath-activated methods are similarly used
with individuals with minimal voluntary controls; however, they require a training step to recognize
the selected patterns [57,61]. With regards to BCI access, non-invasive methods, such as EEG, are used
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due to their non-intrusive nature. BCI systems provide a natural means of access, aiding the users to
gain independence [96]. However, the signal acquisition from the brain is at times cumbersome for the
users, especially with EEG applications requiring the use of electrolytic gel to facilitate the acquisition
of the brain signals from the scalp [97]. The length of the training process required to use a BCI system
could also present a challenge for usage [98].

4.2. Affordability

In terms of costs, the expenses associated with the hardware and software requirements of the
utilized platforms directly impact the expenses related to the systems. Imaging methods, including eye
gazing and tracking, are relatively expensive in comparison to switch access, touch-based methods,
and breath-activated methods. This is mainly due to the high-costs associated with the systems’
hardware requirements, which are listed in Table 2, together with the costs of research, programming
and maintaining the devices [99]. Depending on a solution’s capabilities, the price of a typical eye
tracker ranges from hundreds to thousands of dollars [94]. Some solutions are emerging to reduce
the costs of imaging AAC devices [27,94]; however, more research is still needed to widen the scope
of usage of highly performing, low-cost eye trackers. On the other hand, mechanical keyboards and
access switches are commonly simple to design and thus they are usually more affordable. The reliance
of switch access or touch-based methods on a smart or a high-tech dedicated device could increase
the costs of the provided solutions; however, with the prevalence of smart devices, several AAC
communicative applications (APPs) are now available on various operating systems, widening the
usability of AAC in contrast with traditional SGDs [16,100]. As listed in Table 2, breath-activated
methods are usually accessed using pressure sensors or microphones together with micro-controller
boards or a computer. The hardware requirements could increase the costs of the solutions; however,
the escalating prevalence of smart devices might aid in the provision of cost-effective breath-activated
APPs. BCI methods are also being researched to reduce the costs associated with the systems [76];
however, low-cost BCI systems are reported to require further research to improve the accuracy and
quality of the acquisition in comparison with advanced BCI systems.

4.3. Ease of Programming and Maintaining

Programming an AAC access modality is dependent on the acquired signals, together with the
research and skills required to set up and maintain the systems. Typical imaging devices are associated
with increased complexities in terms of algorithm writing, data processing, and data parsing [101,102].
This in turn requires extensive programming and coding skills to set up the gaze detection algorithms,
calibrate the sensors to individual users, and accurately respond to the needs of the users. The resulting
data also need to be addressed, with specific considerations to sample sizes and data resolution [102].
Mechanical switch access of smart devices, and the programming of touch-activated APPs is in turn less
variant in terms of calibration and set up. The APPs however need to be carefully designed and tested
to respond to the user’s input generated via a switch, a keyboard, or a touchscreen. Touch-activated
methods also need to incorporate a visual or auditory feedback mechanism to confirm the user’s
selection, as demonstrated in Table 2 [19]. Breath-activated methods are similarly programmed based
on breath thresholds [61], and classification algorithms [57]. The complexities are in turn dependent
on the requirements of the APP design together with the selected classification algorithms required for
the system operation. Concerning BCI methods, the challenges related to managing and programming
the systems are centred around the information transfer rates, the non-linearity of the systems, and the
complexities associated with the high signals’ dimensionalities [98].



Sensors 2019, 19, 1911 14 of 24

4.4. Portability

In terms of portability, the typical requirements of the systems dictate the ease of moving the
device for usage in a different setting. Commercial solutions of the AAC imaging methods are starting
to address this constraint to increase the usability of the devices [42,94]; however, most typical system
requirements still restrict eye-tracking systems to be used indoors [23] or together with a monitor. On
a similar note, the portability of mechanically activated switches is variant depending on the context
of usage; however, the integration of switch access with mobile and smart devices increases the ease of
portability. Touch-activated methods are similarly highly portable, given the typical sizes of the smart
devices used in coordination with the method. On the other hand, the portability of breath-activated
systems is application dependent, as the solutions requiring the need of a computer interface still
need to be developed to address this constraint. BCI methods are still challenged in terms of the
communicative interfaces [98]; however, some advances in BCI have been reported for the potential
possibility of home usage [96] and increased portability [103].

4.5. Conversational Rates

Natural speech has a rate of 125–185 words per minute (WPM) [104]. Speech rates of less than 100
WPM are identified as slow [105]. Direct selection techniques, including eye gaze systems, are found
to provide conversational rates of about 8–10 WPM [104]. Similarly, mechanically activated AAC
switches and keyboards also affect the conversational rates. The automatic, step, and inverse activation
of switches often requires the users to wait until the desired selection is displayed, introducing
conversational delays. Scanning methods are reported to allow communicative rates of around two
WPM [104]. Selecting letters to form words may also impact the user’s communication rate. This is
apparent in touch-activated methods, where users are required to spell words or select icons to form
sentences or to write text. The conversational rates of breath-activated systems are further dependent
on the encoding method, as systems where breathing variations are used to select letters to write
words could negatively impact the conversational rates. A recent study [97] similarly reports that
most BCI technologies still offer conversational rates of less than 20 letters per minute. Generally, the
rates of conversation using AAC systems, including word prediction and letter abbreviation, were
found to be 12–18 WPM, highly contrasting with the rates of natural speech [104]. For some AAC user
groups, such as individuals primarily requiring an independent form expression, the communication
of basic needs is at times prioritized over the speed of conversation. Nonetheless, moving beyond
transactional conversations remains a target for current state-of-the-art AAC technologies for an
enhanced experience when using an AAC tool [104].
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Table 2. Signal sources, areas of strength and areas of limitation of current commercial AAC devices.

Signal Source Mode Typical Hardware Requirements Areas of Strength Limitations and Areas of Improvement

Imaging methods Eye gazing

• IR/NIR illumination source
(commonly: 850 +/− 30 nm)
• Monitor
• Camera

• Non-invasive
• Minimal voluntary control of muscles
• Can be used with patients requiring
mechanical ventilation [26]
• IR is invisible to the user’s eyes [23]
• IR can stabilize gaze estimation [23]

• High Temporal resolution = high volume
of data as patterns are averaged over long
time spans [101]; Consequence: sample sizes
are often small [102]
• Eye tracking data processing [102] and
parsing is complex [101]
• Need for calibration algorithms
• IR signals are not reliable for outdoor use [23]
• Generally, high cost [27]

Head-pointing

• Head-mounted visors
in addition to a monitor
and a camera [106]
• Light/optical pointers [4,19]

Less expensive compared to typical
eye-gaze systems

• Need fine user precision and controls [106]
• In direct contact with the user’s head

Mechanical/Electro-
mechanical
methods

Automatic, step, or
inverse activation

Single switch,
array of switches

Requires minimal motor control
[4] Generally slow

Typing/icon
selection Mechanical keyboards

Instant feedback to user
whenever a key is pressed
[4,19]

Voluntary muscle control is
a requirement for activation
[4,19]

Touch-activated
methods

Force production
through:
• Hand/arm/
body part control
• control extender
[107]

• Resistive/Capacitive
touch screen circuitry
• Membrane keyboards:
Non-conductive spacers
separating conductive flat
surfaces
[4,19]

Minimal activation pressure

• No direct feedback upon activation
• Requires appended feedback
mechanisms (auditory/sensory)
[4,19]
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Table 2. Cont.

Signal Source Mode Typical Hardware Requirements Areas of Strength Limitations and Areas of Improvement

Breath-activated
methods

Fine breath
tuning [58]

• Thoracic belt
• Sensor measuring the changes
of waist circumference

Integration with a
predictive language model

• Physical control of movements:
restricted for paralyzed users.
• Portability constraints
• Slow conversational rate

Sniff control
[59]

Control sensors for the acquisition
of nasal pressure.

Confirmed usability with
patients in LIS

Slowness: rate of
three characters per minute.

Discrete
breath encoding
[61,108]

• Microphones/MEMS sensors
• Microcontroller boards Wearable configuration

• Digitized inputs
• Predefined words and sentences
(not user-selected)
• Confinement to limited patterns.

Analogue breath
encoding [57]

• Microphone
• PC Continuous/analogue breath encoding

• The processing of warped distances
is computationally complex
• Portability constraints

BCI methods
Invasive Implantable electrodes Communication and control of

environment without the need
for body movements
[64]

• Prone to classification errors [22]
• Low transfer rates of ECG-based BCI
due to the low signal to noise ratio [68]
• Most platforms are not yet suitable
for everyday usage/ in-home usage
• BCI devices often require extensive
assistance from caregivers [109]

Non-invasive
External monitoring: EEG,
MEG, fMRI, NIRS.
[63]
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5. Conclusions

In this review, a global view of predominant high-tech AAC systems is presented in relation
to their signal sensing categories, including the modalities’ key features and sensing mechanisms.
The listed categories are analyzed in terms of their strengths and limitations to highlight the advantages
and drawbacks of the discussed high-tech AAC systems. The review focuses on consolidating the
current prevalent AAC tools from the technological aspect to provide a global view of the contemporary
interventions.

Considering the comparison framework and the AT requirements of the HAAT model, AAC
technologies evidently provide solutions that increase the participation and engagement of individuals
with a speech disability. However, such technologies are still generally challenged in terms of an
optimal usage centred around the user’s intended activity. The development of robust AAC solutions
should consider some of the shortfalls of the current technologies. These primarily include addressing
the affordability requirements of most high-tech AAC sensing modalities, as they negatively impact
the scale at which high-tech AAC is expanding. This also expands to include the adaptability of the
interventions to respond to the different needs and requirements of the user in compliance with the
HAAT model. The increased complexities of some AAC systems might also require special support
from the user’s carers to set up and operate the systems, and in turn some tools have remained
restrictive. AAC solutions are also still confined to approximately 10% the rate of natural speech [110]
for narrative speech and conversation.

The on-going high-tech AAC research activities have been consolidated in terms of their sensing
modalities to include the conventional AAC works and moving beyond the present existing systems
to address the requirements of individuals with a speech disability. Based upon this point, the review
emphasizes that the signal source plays a vital role to well understand what flexible AAC devices
acquire. The potential of high-tech AAC systems could be foreseen to help in the expansion of the
current tools beyond their present applications to include an improved user engagement and advanced
unrestricted means of communication.

6. Future Research and Prospective Advances in AAC

State-of-the-art AAC tools demonstrate a potential for the provision of an enhanced user
experience centred around the needs of the users. Based on the comparison framework and the
AAC sensing modes presented in this review, the following implications can be drawn regarding the
prospective AAC advances and recommendations for future research.

6.1. Signal Sources and Usable Information Content

The facilitation of the signal acquisition and robustness of the control interfaces play a significant
role in the general usability of the devices. The comparison of the reviewed modalities for sensing body
signals generated via voluntary movements, respiration, phonation, or brain activities demonstrate
that the ease of using a solution for effective communication is commonly related to the ease of
acquiring the desired signals. Moreover, the usability of the solutions tends to be related to the number
of user environments in which the device is fully functional increasing the likelihood of a regular
usage of the device. For example, Infrared (IR) based imaging systems and the sensitivity of ECG BCI
systems could restrict the usage in specific environments. Continuing to address these constraints
could therefore be beneficial in terms of the increased rate of usability of the systems. An unobtrusive
use of a communication aid is also critical, and in turn, invasive AAC sensing methods, such as
invasive BCI, are usually less frequently used. Similarly, efforts are being directed at reducing the
rigorous signal calibration required by imaging systems to facilitate the usage. Future AAC solutions
maximizing the use of the sensed signals would hypothetically provide added advantages in terms of
ease of control, and in turn the possibility for an improved communication output. Capitalizing the
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information content of the sensed signal while reducing the activation requirements from the user’s
side would therefore theoretically provide an increased bandwidth of usability benefits.

6.2. Intelligent AAC, DL functionalities, and NLP

The advances of the integration of state-of-the-art AAC systems with AI and DL applications
could be researched to further improve the access to high-tech devices, the speed of the output
generation and the customization and adaptability of the AAC interfaces to suit the needs and
requirements of each individual user. Recent research also reveals a direction of adopting DL in
assistive communication applications by recognizing and anticipating the user’s environment [111].
For narrative communication applications, pre-programmed phrases restrict the dynamicity of the
user’s conversations, whereas spelling-based communication is generally slow. Further research with
regards to NLP and DL functionalities is needed for the provision of innovative activity-oriented AAC
methods to support the user, the facilitator, and the communication partner in real environments [104].

6.3. Mobile APP Integration and Mobile Health Applications

The development of AAC APPs utilizing the capabilities of smart phones and tablets could also be
further explored to assist the communication of individuals with a speech disability, in turn reducing
cost and enhancing portability. As demonstrated, the usage of VOCAs is of a potential benefit for
users of different age ranges suffering a variety of medical conditions [112]. However, it is shown
that the variability in terms of operational principles, user groups, and the complexity of a real and
complicated user’s environment still need to be tackled. The implications for future research could
also expand beyond the usage of the AAC devices for simple communication, as the integration of
high-tech AAC with accessible smart devices paves the way for state-of-the-art developments, such
as mobile health (m-Health) communicative applications, to exist. The development of smart mobile
platforms would in turn aid the remote communication between users and their medical practitioners.
This would expand the scope of AAC beyond physical communications, increasing the usability and
the context of usage of future AAC solutions.
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Abbreviations

The following abbreviations are used in this manuscript:

AAC augmentative and alternative communication
AI artificial intelligence
ALS Amyotrophic Lateral Sclerosis
APP applications
AR auto-regressive
ASD Autistic Spectrum Disorders
AT assistive technology
BCI brain computer interface
DL deep learning
EEG electroencephalogram
fMRI functional magnetic resonance imaging
HAAT Human Activity Assistive Technology
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IR Infrared
IR-PCR Infrared pupil corneal reflection
LIS Locked-in-Syndrome
MEG magnetoencephalography
MEMS micro-electro-mechanical systems
ML machine learning
MSE mean square error
NIR near-infrared
NIRS near-infrared spectroscopy
NLP natural language processing
PPG photoplethysmogram
SGD speech generating device
SLCN speech, language or communication need
SMSW synthesized machine spoken words
VOCA voice output communication aid
WPM words per minute
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