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Abstract 

 

Non-contact counting of people in a specified area has many applications for safety, security 

and commercial purposes.  Visible sensors have inherent limitations for this task, being 

sensitive to variations in ambient lighting and colours in the scene.  Infrared imaging can 

overcome many of these problems but normally hardware costs are prohibitively expensive.  

A system for counting people in a scene using a combination of low cost, low resolution 

visual and infrared cameras is presented in this paper.  The aim of this research was to assess 

the potential accuracy and robustness of systems using low resolution images.  This approach 

results in considerable savings on hardware costs, enabling the development of systems which 

may be implemented in a wide range of applications.  The results of eighteen experiments 

show that the system can be accurate to within 3% over a wide range of lighting conditions. 
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1. Introduction 

Automated counting is an active research topic in many areas including biology [1], 

medicine, quality control and industrial machine vision processes amongst others. There are 

many situations where it is useful or essential to count people and numerous automated 

people-counting systems have been developed over the years. A variety of contact based 

sensors are in use, such as pedestrian barriers on entrances to public buildings and gateways. 

Most commercially available non-contact based counters use infrared beams or ultrasonic 

sensors, and specialized human information sensors are also developed for this task [2]. 

However the most commonly used non-contact system still remains the visual camera [3-5].  

One present disadvantage with visual counting systems is the cost – a high spatial 

resolution visual camera and a frame grabber required for the system are still fairly expensive 

items.  However a more fundamental problem, even with high spatial resolution cameras, 

remains the inaccuracy associated with visual detection of people. If a person is wearing the 

same shades of grey as the background it is difficult to distinguish between the background 

and the clothes. Also there are no reliable ways of distinguishing with accuracy a person from 

similar objects. These objects in the background are one of the main concerns, commonly 

raising false alarms in many automated people counting systems. Generally it can be said that 

background separation is not an easy task. Furthermore visual automated counting systems 

can only work in the presence of ambient lighting such as in an office environment, sunlight, 

or other types of lighting. In case of emergencies, such as fire or blackouts, the system will 

malfunction during evacuation of the building and thus could be rendered useless at crucial 

times. Similar situations can occur with exterior use of visual people counters [5], there will 

be false alarms during night time if there is no special lighting arrangement in the area under 

consideration. 

Thus a system is proposed to overcome these problems by using a low cost infrared 

thermal imager together with a visual camera. The visual camera uses an image-processing 

algorithm that can distinguish between people and objects with an accuracy of about 12%. 
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This system, developed by Schofield et al [4], uses visual automated counting but can be 

modified easily to accommodate low spatial resolution visual images. The working principle 

is based on the background training of visual images using a neural network. 

2. Thermal Imaging 

Thermal infrared (IR) imaging sensors respond to emitted, more than reflected, radiation.  

All objects emit heat by three means - conduction, convection and radiation. Conduction 

transfers heat through solid objects, convection transfers heat through fluids and radiation 

transfers heat through electromagnetic radiation. 

Objects continuously radiate heat with certain wavelengths, dependent upon the 

temperature of the radiating object and its spectral emissivity. As the object temperature 

increases the radiation increases. The radiation emitted includes the infrared emission which 

consists of electromagnetic wavelengths between 0.7µm and 100µm. Small ranges of 

infrared emission from the objects are detected by the thermal imager and then made visible 

as an image in the form of a thermogram – a mapping of apparent temperatures. 

The concept behind infrared emission detection of the thermal imager is the assumption 

that a black body is a perfect radiator; it emits and absorbs all incident energy. The energy 

emission for the black body is the greatest possible for energy emission for that particular 

temperature. Radiation power emitted by a black body as given by Plank’s radiation law [6] 

is: 
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Real objects are not perfect emitters or absorbers. Thus emissivity (ε ) of the real 

surface is defined as the ratio of thermal radiation emitted by a surface at given temperature to 

that of a black body for the same temperature, spectral and directional conditions [7, 8]. Thus 

the emissivity of a black body is 1 and all other real surface emissivities will be between 1 

and 0. 
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According to the Stefan Boltzman Law of emissivity radiation: 

[ ]4           2w Tε= η  

 

Thermal imaging converts thermal radiation into a digital signal which is then 

converted into a visible image. This study uses a newly developed thermal imager of type 

IRYSIS IRI 1001.  This offers many advantages including low cost, a wide temperature 

measurement range and the capability to capture images on an IBM-PC via an RS-232C port. 

The thermal imager is housed in an aluminium casing of 100 mm by 100 mm complete with 

optics, pyroelectric detector [9], chopping motor and optical modulator. It has a temperature 

measurement range of –20 to 90oC with an accuracy of +/-0.1oC [10]. Although it is a low 

resolution, 16 x 16 pixel, thermal imager it can be used to display images of up to 128x128 

pixels using bilinear or bicubic interpolation. The interpolation process estimates values of 

intermediate components of continuous function in discrete samples. An interpolation 

technique does not add extra information into the image but can provide better thermal images 

for human perception. For bicubic interpolation, the output pixel value is the weighted 

average of the pixels in the nearest 4 x 4 neighbourhood. Mathematically, bicubic 

interpolation can be described as follows: 

Let Li be a third degree polynomial. The Lagrange polynomial interpolation is given by [11]  
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Previous research by Schofield et al [4]  has shown that low resolution visual images give 

similar visual information to that of high resolution devices, as the visual information will be 

processed by computer. A similar approach is used for low-resolution thermal images. A low 

resolution thermal imager will cost much less than a typical high resolution thermal imager, 

around one tenth of the cost, and will be much smaller than a conventional thermal imager. 

Additionally the low resolution imager is specially designed for embedded systems, where 
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data can be directly streamed through an RS232 connection to the computer for on-line 

monitoring and off-line analysis.   

3. Neural Networks 

An artificial neural network (ANN) is an information-processing paradigm inspired by the 

way in which the densely interconnected, parallel structure of the human brain processes 

information. Neural networks resemble the human brain in the following two ways:  

A neural network acquires knowledge through learning.  

A neural network's knowledge is stored within inter-neuron connection strengths 

known as synaptic weights. 

Artificial neural networks are collections of mathematical models that emulate some of the 

observed properties of biological nervous systems and draw on the analogies of adaptive 

biological learning. The key element of the ANN paradigm is the novel structure of the 

information processing system. It is composed of a large number of highly interconnected 

processing elements that are analogous to neurons and are tied together with weighted 

connections that are analogous to synapses. 

The main advantage of using a neural network is the full automation of the learning and 

classification processes, allowing them to be implemented in fully automated monitoring 

systems, such as people counting, to recognize and classify different patterns without human 

involvement.  

Neural networks are composed of simple elements operating in parallel. As in nature, the 

network function is determined largely by the connections between elements. Some Neural 

networks are classified as feed-forward while others are recurrent (i.e., implement feedback) 

depending on how data is processed through the network. Another way of classifying neural 

network types is by their method of learning or training, as some employ supervised training 

while others are referred to as unsupervised or self-organizing networks. The selection of a 

supervised or unsupervised network is largely dependent on the data to be processed for the 



 7 

training of the network.  More detailed information is available in a number of sources [12, 

13]. 

During supervised learning of an ANN an input stimulus is applied that results in an output 

response. Then this response is compared with a desired output i.e. the target response. If the 

actual response differs from the target response, the neural network generates an error signal. 

A popular measure of the error ‘E’ for a single training pattern, is the sum of square 

differences i.e. [14]. 
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The error “E” is then used to calculate the adjustment that should be made to the network’s 

synaptic weights so that the actual output matches the target output. 

 In contrast to supervised learning the case of unsupervised learning does not require a 

teacher; i.e. no target output is required. It is usually found in the context of recurrent and 

competitive nets. In the case of unsupervised learning there is no separation of the training set 

into input and output pairs during the training session, the neural net receives as its input 

many different excitations, or input patterns, and it arbitrarily organizes the patterns into 

categories. When a stimulus is later applied the neural net provides an output response 

indicating the class to which the stimulus belongs. If a class cannot be found for the input 

stimulus, a new class is generated. However, it should be noted that even though unsupervised 

learning does not require a teacher, it requires guidelines to determine how it will form 

groups. Grouping may be based on shape, colour, or material consistency or on some other 

property of the object [14, 15]. 

 

In this study, a sequential (RAM based) neural network has been used which uses binary 

weights, i.e. 0/1 values, stored in RAM memory blocks which themselves play the role of the 

'neurons' in the system. This approach, sometimes called 'weightless neural computing’, has 

many advantages over other neural networks, including fast network training. It uses 'one-
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shot' learning procedures very different from the iterative ones of conventional neural 

networks and furthermore they can operate well on low resolution images [13, 16]. 

4. Experimental work 

The experiment was conducted by mounting the low-cost visual imaging device (Webcam) 

and the IRISYS IRI1001 thermal imager looking vertically down. Markers were placed on the 

floor under consideration so that both infrared imager and visual camera were sharing the 

same information. The visual imager has a much wider field of view than the thermal imager, 

thus only a cropped visual view was taken into consideration.  

 Three control experiment scenarios were used. Each scenario was based on six 

experiments with differences in position, movement of subjects and different lighting 

conditions. The background images with no subjects were also taken each time. Each 

experiment conducted contained around 150 visual and infrared samples of data stored on a 

hard disk. The length of each experiment varied from 3 to 5 minutes depending upon the 

subjects involved, and during all experiments the data acquisition software was kept running. 

The three scenarios were as follows: 

4.1. Elevator camera (static) 

In this scenario ten volunteers were involved which resulted in thirty tests. This simulates the 

elevator surveillance camera with a restriction of any volunteer leaving the scene during the 

length of each test. During each test volunteers were asked to stand for five seconds at 

random positions in the area being monitored. Also the number of volunteers increased as the 

test progressed. The maximum number of volunteers in tests was five and each test was 

repeated five times with a random selection of volunteers. 

 

4.2. Gate Camera 

 This scenario simulates the gate camera for counting. Volunteers were asked to enter the 

scene from one side and leave on the opposite side. Thirty tests were conducted, with each 
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test repeated five times with a random selection of volunteers. Two special conditions, i.e. one 

person standing within the gate for a certain period of time and one person stopping and 

returning to where he/she entered from, were included in these tests. 

 

4.3. Elevator camera (dynamic) 

This scenario simulates the actual elevator surveillance camera. The volunteers in this 

scenario were allowed to leave and enter the scene but only from one side which is the 

elevator door. The maximum number of volunteers in the tests was ten. During a test 

volunteers were given specific instructions when to enter or leave the scene. It also simulates 

peak times as well as off-peak times during the day. As in the previous scenarios all 

volunteers were selected randomly for each test to maintain the validity of the final result. 

5. Image processing strategy 

The visual system used is lower cost than traditional CCTV cameras, around 1/10th of the 

cost. The low cost CMOS sensor used by the visual system also develops a noise factor, 

which presents a major issue to be considered during the visual analysis. Thus images with 

simple subtraction with respect to the reference scene do not provide a consistent image in our 

case which can be thresholded. 

The visual analysis carried out is very similar to that done by Schofield et al [4] except that 

the equipment used is low cost. The thermal imaging analysis is also done separately. The 

results of each analysis are then further compared to increase the accuracy of the system. 

These showed that the system can be developed to be capable of counting in a smoked filled 

room and other emergency situations, which is not the case with conventional visual counting 

systems. In the following sections both visual and infrared data are analysed separately and 

then the combined results are discussed. 
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5.1. Visual Analysis 

The visual analysis uses the background identification technique employed by Schofield et al 

[4]. This system avoids any standard approach which fails to take light variations into 

account, hence it is independent of light intensities in the image. Thus this process is chosen 

for visual analysis for the development of our system with some modifications, for example 

we do not require location information in an image as it is not necessary in the proposed 

application. The visual counting system developed should have the following characteristics:  

Accuracy Approximately 10% 

Error Maximum of +/-1 error in 4 to 10 people in a 

scene 

Lighting conditions Adaptable to any indoor lighting conditions 

Adaptability Most scenes in indoor buildings 

Table 1.  Design guidelines for the visual counting system 

The accuracy is measured by the comparison of simulation data and the training set for that 

particular experiment.  

5.1.1. Stage 1a: Pre-Processing 

The pre-processing stage for visual analysis consists of resizing and thresholding. The initial 

image acquired from the experiment is 288x288 pixels. This is then reduced to 72x72 pixels. 

The reduction in resolution allows faster processing and a faster counting rate with negligible 

degradation in the thresholding result. For example, for the initial image of 288x288 pixels 

thresholding takes about 4.5 seconds using a fast processing speed while 72x72 pixels takes 

only about 2.5 seconds using MatLAB. This will improve significantly after final 

development of the system using a programming language such as C or C++. 

Following resizing a reference image from each experiment is taken. Reference images are 

merely background images with no people in the scene. These reference images are 

thresholded not by the constant greyscale value but by applying adaptive local thresholding. 
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The neighbouring pixel will allow the intensity of pixels to be compared with each other. If 

the comparison of these pixels is high, up to a certain value set by another variable’ thα ’, the 

pixel is turned black otherwise white. Thus it can be mathematically expressed as: 
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Here ’ thα ’ is the global thresholding value of the image being processed. To calculate this 

value 1/3rd pixel values of images are randomly selected. The difference of intensities of these 

pixels is taken from their diagonal neighbour. Here two constants ‘c’ and ‘d’ are introduced in 

the thresholding value of ’ thα ’. After summing all of the intensity difference values the final 

value is multiplied by a constant ‘c’, which is less than 1. The value acquired is then added to 

the constant value of ‘d’. The thresholding expression is mathematically expressed as: 

( ) ( ) [ ], 1, 1d c           6th k l k lq qα − −= + −∑  

 

The optimal values of ‘c’ and ‘d’ are found by experimenting with the visual images taken 

during the experiment.  

5.1.2. Stage 2a: Background Identification 

The background identification is based on the RAM based neural network creation and 

training of that network. Only background images are trained using this network.  

The thresholded image is divided into 4x4-sections, with 18 sections in each row and 324 

altogether in the 72x72 pixel image. We consider each 4x4-section containing 16 pixels 

divided further into four sections, which are termed sub-sections. These sub-sections, 

containing four pixels each, are then randomly selected, and this selection remains the same 

over the life of a neural network. These randomly selected sub-sections are used as the 
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addresses of RAM. For each 4x4 section created and randomly selected 4 sub-sections create 

a single classifier.  

Training of a RAM based network is done by reading the 4 pixels from each group in a 4x4 

section then outputting 1 to the RAM of that certain address as shown in Figure 5.  For 

example if the value of the 4 randomly selected pixels is 0101 then it outputs 1 to the 

corresponding memory output of that address. Then it starts summing up all values in the 

memory addresses, which are specific for each individual 4 pixel group. Thus for every 

section of the image seen it outputs 1 into the RAM of that section address. It goes on until all 

the background samples are trained for that network. There is no reason to run the samples 

again through the network for a background already seen, as the result will always be the 

same for that particular image. 

To simulate the image using a trained network a thresholded sample of the image is fed into 

the network. The sample image is then divided into the random sections, which are the same 

as that of the trained network. The addresses of sample images are compared with the trained 

network values. If the network has already seen the same section during training it outputs 

‘1’,  if the network hasn’t seen anything like the section it outputs ‘0’. An output image is 

constructed with 1’s as the background and 0’s as the unseen object during the training. After 

inverting the image the unseen objects or people then appear as a cluster of 1’s in that image.  

51 reference samples are used for training of the RAM-based neural network. 

A 5x5 section is scanned over the output image by the neural network. For highest counts 

found in 5x5 sections in the image a count is incremented, and the 3x3 section in the middle is 

set to zero whereas the 16 outside values are halved. This process is continued until a certain 

cut-off value is achieved for the image. An optimized cut-off value is found by comparing the 

result found with the actual result. 
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5.2. Infrared Analysis 

For the development of the low-resolution infrared counting system certain guidelines were 

laid down as follows: 

 

The infrared analysis system developed will be used in conjunction with the visual system but 

can be used as a stand-alone system with very slight modifications. 

Accuracy Approximately 5% 

Error Maximum of +/-1 error in 4 to 10 people in a 

scene  

Adaptability To most indoor building conditions and 

objects in scene (except extreme temperature 

conditions, e.g.  +50OCelsius) 

Lighting Variations Completely insensitive to lighting variations 

in a scene  

Table 2. Design guidelines for the infrared counting system 

 

5.2.1. Stage 1b: Pre-processing 

Infrared data taken from the experiment are taken offline into MATLAB. The raw 

infrared data taken from the experiment is interpolated to find the ‘average body heat’. 

The temperature of a person is generally higher than the background, except in very hot 

areas such as desert, but as this experiment is conducted inside a building we can assume 

a reasonably consistent temperature difference. Average heat of the background image in 

this experiment is found to be: 

opixelsaverageheat 24.3 Celsius
256

∑
= ≅  
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The internal temperature of the IRISYS® infrared camera remains at 32.375 O Celsius. 

Thus the overall body temperature ranges for the duration of our experiment remain 

within: 

Minimum bodytemp = 27 O C 

Maximum bodytemp = 32 O C 

Average δ = 29.5 O C 

 

The ‘average body heat’ calculated from the infrared data is then used as the thresholding 

value for the experiments conducted. This value varies with weather conditions and 

location of the experiment, such as whether it is conducted indoors or outdoors. 

Infrared images of 16x16 pixels are processed using the following equation: 

 

 

 

x is an element of the original matrix of 16x16 elements from the infrared imager, m is an 

element of the thresholded matrix. 

The infrared images after thresholding at average body heat give a distinguishable result 

that can be used for object recognition. But this is true only for small numbers of people 

as when the area under consideration becomes crowded then the algorithm becomes 

unreliable and hence further processing is necessary. 

5.2.2. Stage 2b: Back Propagation Neural Network 

For infrared image counting neural network areas are selected as the images are small, up 

to 16x16 pixels. After thresholding the infrared images are trained on back propagation 

neural networks.  
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The specification for the final network selected is as follows: 

 

Inputs 256 

Hidden Layer 1 

Hidden Layer Neurons 280 

Hidden Layer Function Sigmoid Function 

Output Layer Neurons 1 

Output Layer Function PureLin Function 

Training Performance goal achieved 0.00642496 

Epochs 500 

Learning rate 0.005 

Training Samples 360 

Table 3. Configuration of optimized neural network for Infrared Analysis 

  

Training of the backpropagation neural network is done by using twenty (20) samples from all 

eighteen (18) experiments as fed into the network.  

 

6. Results 

6.1.1. Infrared neural network simulation and results 

The results acquired from the infrared data are plotted in the form of percentage error, with 

the error plot based on the simulation of 200 samples selected from each of 18 experiments. 

The error tends to increase as the number of people counted in the scene increases though 

there is much scatter and the error does not continue to rise as the numbers approach the 

maximum of ten. 
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6.1.2. Visual RAM based neural network simulation and result 

For visual images the system accuracy is within 5% when fewer than six people are in each 

scene.  However as the number of people in each scene increases the error percentage 

increases to around 12%. This is due to people standing very close to each other, as would be 

the case for example at peak time in elevators. To overcome these large errors in the system 

both infrared and visual results are combined. 

6.1.3. Combined results of visual and infrared systems 

It can be seen from the above results that an infrared system is capable of predicting a high 

density of people with high accuracy, whereas a visual system has proved to be more reliable 

for predicting lower densities of people. Therefore, in order to optimize the overall accuracy 

of the system, fusion of results from thermal and visual systems is carried out by taking 

percentage error and shifting the weight of results with less error percentage. As a result, as 

shown in Figure 9, the maximum percentage error has been reduced to 3%, even for scenarios 

containing a high density of people.  A small reduction in density from ten to eight or less 

people in the scene reduces the error to within 1.5 %. 

 

Discussion 

The aim of this research was to assess the potential accuracy and robustness of people-

counting systems using low resolution images.  It has been shown that a combination of visual 

and infrared automated counting systems can be a cost-effective, practical and reliable means 

of counting people who are free to move within a defined area.   

 

Combining the two automated counting methods, visual RAM based system and infrared 

system, has been shown to give significant improvements in accuracy compared with either 

system used singly.  The maximum percentage error of 3% is far more accurate than either the 

visual system or infrared system alone, and remains within this value for more than eight 



 17 

people in the experiment.  The error of 1.5 % for lower numbers is considered to be 

sufficiently accurate for many applications. 

 

Much of the value of this approach lies in its reliability and the capability to function in low 

light or completely dark conditions. Reliable non-contact counting of people will be essential 

to many future safety systems, and it is clearly crucial that counting systems will continue to 

work in emergency situations where power loss or thick smoke are likely to affect visibility.  

The low resolution infrared imager can provide slightly less accurate but very reliable 

counting capability in low or zero light conditions, making it ideally suited to emergency 

situations. 

 

Future improvements are clearly possible with improved resolution and through developments 

in software and the application of artificial neural networks.  In this research the visual image 

processing was carried out using MatLAB, and the thresholding time of 2.5 seconds can be 

much reduced in future by using a programming language such as C++.  All imaging systems, 

whether visual or infrared, will encounter inherent difficulties in accurately counting higher 

numbers of people in close proximity.  Low resolution infrared imaging offers major cost 

advantages and, although accuracy may be improved with higher resolution images, the 

higher resolution devices will be much more expensive for the foreseeable future.  The 

accuracy achieved using only 16 by 16 pixels is considered to be sufficient for many practical 

applications.  This research has assessed the accuracy and potential of the combined imaging 

approach and has demonstrated that the system works successfully in its current form.   

 

 



 18 

References 

1. J. Marotz, C. Lubbert, and W. Eisenbei, Effective object recognition for automated counting of 
colonies in Petri dishes (automated colony counting). J. Computer Methods and Programs in 
Biomedicine, 2001. 66((2-3)): p. 183-198. 

2. K. Hashimoto, T.C. Kawaguchi, S. Matsueda, K. Morinaka, and N. Yoshiike, People-counting 
system using multisensing application. Sensors and Actuators A: Physical, 1998. 66(1-3): p. 
50-55. 

3. T.W.S. Chow and S.Y. Cho, Industrial neural vision system for underground railway station 
platform surveillance. I Advanced Engineering Informatics, 2002. 16(1): p. 73-83. 

4. A.J. Schofield, T.J. Stonham, and P.A. Mehta, Automated people counting to aid lift control. 
Automation in Construction, 1997. 6((5-6)): p. 437-445. 

5. C. Sacchi, G. Gera, L. Marcenaro, and C.S. Regazzoni, Advanced image-processing tools for 
counting people in tourist site-monitoring applications. J. Signal Processing, 2001. 81(5): p. 
1017-1040. 

6. S.G. Burnay, T.L. Williams, and C.H. Jones, Applications of Thermal Imaging. 1998, Bristol, 
Great Britain: I O P Publishing Ltd. 

7. S. Kato, N. Minobe, and S. Tsugawa, Applications of inter-vehicle communications to driver 
assistance system. JSAE Review, 2003. 24(1): p. 9-15. 

8. G.C. Holst, Common sense approach to thermal Imaging. 2000: SPIE Optical Engineering 
Press. 

9. J.L. Miller, Principles of Infrared Technology: a  practical guide to the state of the art. 1994: 
Van Nostrand Reinhold. 

10. IRISYS: The Affordable Thermal Imager, I.I.S.L. 
11. A. Al-Habaibeh and R. M. Parkin, An autonomous low-cost infrared system for the on-line 

monitoring of manufacturing processes using novelty detection. International Journal of 
Advanced Manufacturing Technology, 2003. 22((3-4)): p. 249-258. 

12. J.A. Anderson, An Introduction to Neural Networks. 1995: The MIT Press. 
13. S. Haykin, Neural Networks: A Comprehensive Foundation,  Second ed. 1999: Prentice Hall. 
14. C. Demant, B. Streicher-Abel, and P. Waszkewitz, Backpropagation training, in Industrial 

Image Processing: Visual Quality Control in Manufacturing. 1999: Springer-Verlag, Telos. 
15. R.C. Gonzalez and R. E. Woods, Object recognition, in Digital Image Processing. 2002: 

Prentice Hall. 
16. N. S. Martinelli and R. Seoane. Automotive night vision system. in SPIE - The International 

Society for Optical Engineering, Proceedings of Thermosense XXI. 1999. 
 
 



 19 

 
 

List of figures 

Figure 1.  Mathematical expressions for the transfer functions. 

Figure 2.  Experimental setup and data acquisition system. 

Figure 3.  Overview of the people-counting system. 

Figure 4.  The scene with no people (upper two images) and the scene containing eight people 

(lower two images). 

Figure 5.  Example of RAM neural network training.  

Figure 6.  The backpropagation  neural network. 

Figure 7.  Infrared image neural network error percentage.  

Figure 8.  Visual RAM based simulation result comparison.  

Figure 9.  Combined percentage error of visual and infrared systems. 

 

 

 



 20 

 

 

Figure 1.  Mathematical expressions for the transfer functions. 
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Figure 2.  Experimental setup and data acquisition system. 
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Figure 3.  Overview of the people-counting system. 
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Figure 4.  The scene with no people (upper two images) and the scene containing eight people 

(lower two images). 
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Figure 5.  Example of RAM neural network training. 
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Figure 6.  The backpropagation  neural network. 
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Figure 7.  Infrared image neural network error percentage.  
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Figure 8.  Visual RAM based simulation result comparison.  
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Figure 9.  Combined percentage error of visual and infrared systems. 
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