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Abstract

Citrus canker, a bacterial disease of citrus tree leaves, causes significant dam-
age to citrus production worldwide. Effective and fast disease detection meth-
ods must be undertaken to minimize the losses of citrus canker infection. In
this paper, we present a new approach based on global features and zone-
based local features to detect citrus canker from leaf images collected in field
which is more difficult than the leaf images captured in labs. Firstly, an im-
proved AdaBoost algorithm is used to select the most significant features of
citrus lesions for the segmentation of the lesions from their background. Then
a canker lesion descriptor is proposed which combines both color and local
texture distribution of canker lesion zones suggested by plant phytopathol-
ogists. A two-level hierarchical detection structure is developed to identify
canker lesions. Thirdly, we evaluate the proposed method and its comparison
with other approaches, and the experimental results show that the proposed
approach achieves similar classification accuracy as human experts.

Keywords:

Citrus canker detection, Zone-based texture distribution, Classification,
Hierarchical detection, Feature learning, Hue-intensity-saturation.

1. Introduction1

Citrus canker is a disease which gets worldwide concern as its potentially2

hazardous threat to citriculture. This disease can affect all types of citrus3
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crops, including oranges, sour oranges, grapefruit, tangerines, lemons and4

limes and presently it occurs in over thirty countries in Asia, Pacific and5

Indian Ocean islands, South America, Middle East and USA (Polek, 2007).6

This disease is caused by the bacterium Xanthomonas axonopodis pv7

citri (Xac) (Vernière et al., 2003). The infection of citrus canker results8

in defoliation, die-back, premature leaf and fruit drop and at last the trees9

will produce no fruits at all. Citrus canker is highly contagious and can be10

spread rapidly by wind, rain, landscaping equipment, people work in field,11

moving infected or exposed plants or plant parts. Moreover, citrus canker12

is difficult to eradicate. Once it is introduced into an area, elimination of13

inoculum by removal and destruction of infected and exposed trees is the14

most accepted practice to quarantine the disease and stop further spread15

(Gottwald et al., 2001; Gottwald and Timmer, 1995). For example, U.S.16

Department of Agriculture established a regulation – the “1900-ft rule”. The17

regulation requires the removal and destruction of diseased citrus trees and18

of all citrus trees within a 1900-ft radius. In United States, over 12 million19

US dollars per year are dedicated to citrus canker control program.20

At present, there is no effective method to eradicate citrus canker, and the21

basic strategy is to reduce the effect of infection and to prevent the spread.22

Detecting citrus canker at the early stage is the key to control this disease.23

So far different technologies have been used to identify citrus canker, such as24

plant physiology, biochemistry, serological techniques, molecular biology and25

detection methods based on information technology (Gambley et al., 2009;26

Golmohammadi et al., 2007).27

The most accurate methods of citrus canker identification are serological28

techniques, and molecular biology (for examples, enzyme-linked immunosor-29

bent assay, protein profiles as determined by electrophoretic techniques and30

DNA analysis methods) (Park and Young, 2006; Park et al., 2006). These31

methods have to be carried out in laboratory and some of them are costly32

and time consuming, and they are mainly used by quarantine bureaus to33

confirm the disease.34

The widely used method to identify canker in field is by plant phy-35

topathologists’ visual observation of each suspicious tree (Gottwald et al.,36

2002; Das, 2003). It is based on the fact that citrus canker is mainly a37

leaf-spotting disease. Leaf lesions become visible about 7 to 10 days after38

infection. As the lesions age, they change appearance in different phases,39

and they are easy to be confused with other citrus diseases, such as citrus40

scab disease. Identification of citrus canker needs experienced experts, oth-41
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erwise the misjudgment can lose the best opportunity to prevent the spread42

of the disease. The lack of experts in this area limits the timely and wide43

identification of the disease.44

As information technologies have been applied in more and more fields,45

new methods are now being investigated to identify citrus disease.46

• Fluorescence spectroscopy: In Brazil, scientists proposed methods47

to detect citrus canker in citrus plants using laser induced fluorescence48

spectroscopy. They developed a new optical technique to detect citrus49

canker with a portable field spectrometer unit and showed that the50

laser induced fluroscence spectroscopy had the potential to be applied51

to citrus plan (Belasque et al., 2008).52

• Hyperspectral imaging: hyperspectral imaging approach was devel-53

oped by (Qin et al., 2009; Lins et al., 2009) to detect canker lesions on54

citrus fruits. They used spectral information divergence classification55

methods to detect the disease and obtained good classification results.56

• Machine vision technology: Pydipati (Pydipati et al., 2006) used57

machine vision technology to identify the citrus canker on citrus leaves.58

All the sample leaves were preprocessed and their images were captured59

by an imaging station under the same angle and light. HIS color space60

and spatial gray-level dependency matrices were used to generate color61

texture features, then SAS stastical analysis were conducted to reduce62

feature set and classify four kind of citrus leaves, which are greasy spot,63

melanose, scab and normal citrus leaves. Dae (Dae et al., 2009) also64

used the similar methods to detect grapefruit peel diseases.65

One limitation of the existing image-based citrus canker detection meth-66

ods is that they are all based on images collected in a highly controlled67

environment under specific conditions. However in real world, it is often the68

planters who first find the symptom of disease in field. In comparison with69

the other two methods mentioned above, machine vision technology has ad-70

vantages in detection citrus canker in field. It needs no specific equipments or71

chemical reagents, and images are easy to capture by digital cameras, mobile72

phones or other equipments and can be transferred by internet.73

The objective of this paper is to present an approach based on computer74

vision to detecting citrus canker. The detection is based on citrus leaf images75

collected in field which is more difficult and challenge than those captured in76

labs. The main contributions of this paper are summarized as follows:77
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• Deal with citrus canker detection from real citrus leaf images captured78

in field rather than from labs.79

• An improved AdaBoost algorithm was developed to segment citrus le-80

sions from background.81

• The whole leaf images were divided into several zones. Then the local82

features of each zone (distribution of color and texture information)83

were extracted and assembled to generate a citrus canker descriptor.84

• A hierarchical and staged detection scheme was formulated to identify85

citrus canker based on images collected under various natural condi-86

tions.87

• Several machine learning methods were investigated to construct the88

classifier and tested on real-world data. Furthermore, the proposed ap-89

proach was also compared with human experts in this area to demon-90

strate the feasibility of machine vision and pattern recognition technol-91

ogy in citrus canker detection.92

The rest of the paper is structured as follows. Section 2 proposes the93

hierarchical citrus canker detection method. Section 3 describes the citrus94

canker lesion descriptor. In this section, LBPH (Local Binary Pattern on95

Hue) features and the combined local feature are presented. Section 4 reports96

the experimental results. Finally section 5 concludes the paper.97

2. Hierarchical Citrus Canker Detection98

To detect citrus canker from the images collected in field is more difficult99

than the images captured in labs, one of the key reasons is because the100

background is sometimes similar to the specific part of a canker lesion. To101

deal with this problem, a hierarchical citrus canker detection algorithm is102

presented. Figure 1 illustrates this detection process including the global103

matching stage, and the local feature extraction and canker detection stage.104

The global matching stage aims to find suspicious citrus disease lesion areas105

from background and the canker detection stage is to identify canker lesions106

from other citrus disease lesions.107

Due to the variety of canker lesions, in the global matching stage, we108

have to find all the possible areas and some of them may be other disease109
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Figure 1: Hierarchical citrus canker detection.(a) global matching based on
window union approach; (b) feature extraction based on zones; (c) canker
detection and output. F1, F2, F3 and F4 are local feature vectors
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infected lesions. To avoid missing the canker lesions and to search quickly, in110

this phase we use a bottom-up method: window union algorithm as shown111

in algorithm 1, for lesion area searching. Firstly the image is searched in112

a small window size and classified by classifier C1 which was used for fast113

judging whether a small area is a part of any kind of disease lesion. Then the114

detected small windows are merged to form bigger areas. Finally the merged115

areas are judged by the classifier named C2 which was trained with larger-size116

image samples than samples used by classifier C1. Classifier C1 and classifier117

C2 use the same training method, but work on different window sizes. After118

the classification of C2, the possible citrus lesion areas were located on the119

image. Figure 2 shows the procedure of global matching.120

Then the merged area was quantized into four zones to extract the com-121

bined local features for canker detection. The whole set of citrus canker122

images was classified into six types by a clustering algorithm according to123

lesion color distribution. In the phase of canker detection, each of the six124

classifiers is trained on its corresponding type of citrus canker lesions (as125

shown in figure 3) and other disease (not citrus canker disease) lesion sample126

set.127

The features used in this training and detection are the combined local128

features, which will be discussed in section 3.2. If the lesion is judged as any129

type of canker lesion described above, it is classified to be canker infected.130

In our approach, a SceBoost algorithm was used to train the above thresh-131

old classifiers, the detailed description of SceBoost algorithm is in section 3.1.132

Our strategy is to include other disease samples we collected in negative sam-133

ple set and take each type of canker lesion samples as positive sample set for134

the corresponding classifier. Then the obtained training sets are used to135

construct the six individual type canker classifiers.136

3. Citrus Canker Lesion Descriptor137

Citrus canker lesions’ appearance can be described by phytopathologists138

as follows (Polek, 2007; Gottwald et al., 2002; Das, 2003): Leaf lesions de-139

velop first on the lower surface as tiny, slightly raised, blister like spots; At140

first they are circular in shape, then may become irregular; As the lesions141

age, they become tan or brown with water-soaked raised margins usually142

surrounded by a chlorotic or yellow halo or ring; At last the lesions change143

to be corky or spongy and the centers may become crater-like, old lesions144

may fall out, creating a shot-hole effect; Lesions’ sizes depend on the cultivar145
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Algorithm 1 Window union algorithm for lesion area detection

Input:

The image, I;
The classifier of small size samples, C1;
The classifier of area size samples, C2;
The set of lesion windows, Q = ∅;
The set of merged windows, P = ∅;
The set of lesion area, R = ∅;
The threshold of merged area Th:

Output:

The set of merged lesion areas, R;
1: preprocess image I;

2: divide I into small windows Wij which are in the same size, I =
m∑
i=1

n∑
j=1

(Wij),

Wij ∩ Wpq = ∅, if i �= p and j �= q, m is the number of lesion windows at
vertical direction and n at horizontal direction;

3: for each Wij , i = 1 · · ·m, j = 1 · · ·n, do

4: extract features of Wij;
5: classify Wij using classifier C1;
6: if Wij is classified to be lesion, then

7: add Wij to Q;
8: end if

9: end for

10: for each window Qi, Qi ∈ Q, do
11: traverse every element in P ,
12: if Qi is adjacent to any area in P , then

13: if area Pk is adjacent to Qi, then

14: add Qi to Pk and update Pk;
15: else

16: add Qi to P as new element;
17: end if

18: end if

19: end for

20: traverse every element in P , if the size of Pk � Th, add Pk to R;
21: return R;
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(a) type 1 (b) type 2 (c) type 3 (d) type 4 (e) type 5 (f) type 6

Figure 3: Examples of six types of citrus canker lesions

and the age of the host tissue at the time of infection. From the description146

we can find that the lesions vary in shape, size and color by the kind of147

citrus cultivar and the infection time. Rule-based citrus canker description148

was infeasible as it is hard to translate all the phytopathologist knowledge149

into digital image feature patterns. Instead, in this paper, machine learning150

algorithms were investigated to select the most significant features of cit-151

rus canker lesions. Two-level features are proposed to describe citrus canker152

lesions: the first level features named global features are extracted for de-153

tecting citrus lesion areas from the image background; and the second level154

features (named combined local features) are constructed from the lesion ar-155

eas which are detected by global features to further identify canker lesions156

from other confusable citrus diseases lesions. The global lesion feature ex-157

traction is detailed in section 3.1 and followed by the description of combined158

local features in section 3.2.159

3.1. Boosted Global Feature Selection160

This first stage of citrus lesion detection from an image collected in field is161

to separate lesion areas from background. Figure 4 shows some examples of162

citrus canker images: image in 4(a) is collected in lab and others are collected163

in field. From figure 4 we can find that it is much more difficult to detect164

canker lesions from images collected in field than from those captured in lab:165

the background often includes grasses, citrus leaves and soil, and some of166

these objects are similar with canker lesions to some degree.167

Because of the complexity of background and the fact that canker le-168

sions have various appearances, it is hard to decide what features are the169

most distinguished ones to represent canker lesions. Several image process170

methods have been used to extract features from canker lesions and back-171

ground, including each component’s mean, standard deviation, variance and172
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(a) (b) (c) (d)

Figure 4: comparison of images captured in field and in lab. (a) Image
captured in lab; (b)(c)(d) images captured in field

correlation coefficient in RGB color space and HIS color space; FFT texture173

features, Gabor features and gray level co-occurrence matrix, gray level dif-174

ference features; the edge amount calculated by Prewitt operators, Canny175

operators and Sobel operators (Zhang, 2008).176

Boosting algorithm (Freund, 1995; Xiao et al., 2003; Li and Zhang, 2004)177

is a statistical method and the motivation of this method is to integrate the178

results of a set of weak classifiers sequentially and vote them to form a more179

efficient and strong classifier using a weighted voting scheme. It was firstly180

proposed in (Kearns and Valiant, 1989), and (Freund and Schapire, 1997)181

presented Adaboost algorithm which has become a representative boosting182

algorithm.183

In this study, our previously developed Adaboost algorithm, SceBoost, is184

used to select the most significant features and for constructing classifiers in185

algorithm 1. The selected features are combined into a global feature vector,186

which is tested to be efficient in detecting lesion areas from complicated187

natural background. we improve the original AdaBoost algorithm by using188

both adaptive symmetric cross entropy threshold and classification error to189

select a weak classifier at each range. The weak classifiers in our algorithm190

are linear classifiers using perception approach (Zhang et al., 2007). We can191

define the symmetric cross entropy of two weak classifiers hi and hj as:192

SCE(hi : hj) =
N∑
k=1

|hk
i − hk

j | · (
wi

k

wj
k
)
wi

k

· (
wj

k

wi
k
)
wj

k

(1)

Where hk
i is the classification result of example Xk by weak classifier193

hi, and wk
i is the weight given to example Xk after the weak classifier hi194

has been selected, N is the number of samples. SCE(hi : hj) represents195

10



the information difference between hi and hj . For two class problem hk
j ∈196

{−1, 1}, we can use the weights to indicate the information of these random197

variables’ distribution. If hk
i was not equal to hk

j , SCE(hi : hj) can indicate198

the different amount of information carried by the two weak classifiers. The199

SCE(hi : hj) value is large with big difference between hk
i and hk

j , and vice200

versa.201

To determine whether a weak classifier hi is redundant or not we can202

calculate S(hi) as:203

S(hi) = max
t

SCE(hi : ht); t = 1, 2, .., T (2)

Where h1, h2, ..., hT are weak classifiers that have been selected at training204

round T . Before hi is selected as the weak classifier for training round T +1,205

S(hi) will be compared with a threshold ATS. If value of S(hi) is less than206

ATS, then hi is deleted from the candidate list. The value of ATS may207

change during learning period, if we can not find a weak classifier that the208

value S(hi) is less than ATS, then ATS is adjusted according to equation 3:209

ATS = ATS ∗ C; 0 < C < 1 (3)

Where C is a coefficient which is selected based on experimental results210

(with different C). It can affect the search granularity and the computing211

time. The SceBoost algorithm is illustrated in algorithm 2, and more details212

can be found in (Zhang et al., 2007).213

3.2. Local Canker Lesion Feature Description214

To distinguish a citrus canker from other leaf diseases cannot be achieved215

easily by global features of the whole image only. As shown in figure 5, other216

disease lesions may have the similar shape or color or texture as canker le-217

sions. Detailed information is needed for further identification. From the218

observations of phytopathologists it can be seen that the canker lesion may219

be divided into several specific zones. The combination of all zones and the220

fusion of different features of each zone can describe the subtle differences be-221

tween canker lesions and lesions caused by other citrus diseases. A combined222

local feature descriptor is proposed in this research based on each zone’s223

features.224
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Algorithm 2 Algorithm SceBoost-part 1/2

0. Input:

Training examples E = (x1, y1), .., (xN , yN )
The maximum number Mmax of weak classifiers to be selected
The initial value of adaptive threshold ATS
The feature vector F = (f1, ..., fm);
The candidate classifiers set Ch;

1. Initialization:

wi = 1/N ; H = φ; h0 = 0;

2. Iteration:

for t = 1, 2, ..., T do

(1)Using wt to produce sample weights distribution Dt on E

Dt =
wt∑N
i=1wi

(4)

(2)On each feature vector fj, j = 1..m, fit the weak classifiers hj,t on Dt ;
(3)Ch=(hj,t, j = 1..m)
(4)For hj,t, j = 1..m, calculate classification error:

εi =
∑
i

w
(i)
t |hj,t(xi)− yi| (5)

(5)
while Ch is nonempty do

Choose hj,t with lowest εj from the candidate classifiers
Calculate :

S(hj,t) = max
k

SCE(hj,t : hk); k = 1, 2, .., t − 1 (6)

if S(hj,t) < ATS then

The classifier hj,t is selected, ht = hj,t, εt = εj
Goto (8)

else

Remove hj,t from Ch
end if

end while

(6) Adjust ATS according to Eq.(3)
(7) Goto (5)
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Algorithm 2 Algorithm SceBoost-part 2/2

(8) Calculate :

βt =
1

2
ln(

1− εt
εt

) (7)

(9)Update weights:

wt+1(i) = wi
tβ

1−|ht(xi)−yi|
t (8)

end for

3. Return the strong hypothesis:

H = sign(
T∑
t=1

βtht(x)), sign is a signum function. (9)

3.2.1. Local Binary Patterns225

Local Binary Pattern (LBP) is a gray-scale texture description which was226

originally introduced by Ojala et al. (Ojala et al., 1996). The LBP operator227

defines a texture T for a central pixel in a local neighborhood area of radius228

R, which is sampled at P points:229

T = t(gc, g0, ..., gP−1) (10)

where, gc corresponds to the gray value of the central pixel, gp is the value230

of its pth neighbor. The neighborhood is thresholded by the value of the231

(a) samples of citrus canker lesions

(b) Samples of other citrus disease lesions

Figure 5: Citrus canker and other diseases lesions
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central pixel and the thresholded pixels in the neighborhood are multiplied232

by a corresponding binomial coefficient weight. LBP is a unique P-bit pattern233

code by multiplying binomial coefficient 2p with each S(gp - gc):234

LBPP,R =
P−1∑
p=0

S(gp − gc)2
p (11)

where:235

S(x) =

{
1 if x ≥ 0
0 if x < 0

By definition, LBP describes the spatial structure of the local texture.236

However, LBP is normally derived from gray images, color texture images237

need to be transformed into gray images before calculating the LBP, there-238

fore the color information is lost. In the following sections, we obtain the239

color-texture information of an image by deriving its LPB based on the Hue240

component.241

3.2.2. Canker Lesion Zone Segmentation242

A whole canker lesion includes several elements such as crater-like areas,243

water-soaked margins etc (Polek, 2007) as shown in figure 5(a). Canker244

lesions change with citrus types and the phase of the disease. Classifying245

canker lesions can be regarded as a multi-class classification problem. A246

new color-texture feature LBPH (LBP on Hue) and a feature combination247

method are proposed in order to describe canker lesions. This canker lesion248

description is based on the spatial structure of the canker lesion areas with249

several color quantized zones. The images of the citrus disease area are firstly250

transformed into HIS(Hue-Intensity-Saturation) color space from RGB. HIS251

color space is more related to human perception mechanism than RGB color252

space. Furthermore images collected in field are always under different light253

conditions, the hue component in HIS color space helps to reduce the effect254

of different lights.255

Our approach is to divide the whole infected area into four zones based on256

the description of plant phytopathologists: the center area, the inner circular257

hue zone, the halo and the leaf background.258

The quantization method is as follows: I is the image for segmentation,259

a global threshold algorithm is applied to find three optimized thresholds260

Ht1, Ht2, Ht3 on hue component of I to segment image I into four zones261

Z1, Z2, Z3, and Z4. They may not be regularly segmented zones in shape, but262
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the pixels with a similar hue value are labeled to be in the same zone. As263

shown in figure 6, after the partition, each zone mainly represents a relatively264

meaningful part of a canker lesion and the distribution of zones reflects the265

spatial structure of a canker lesion.266

Citrus Canker Image (a) (b) (c) (d) 

Figure 6: Citrus Canker zone segmentation; The hue-thresholds used are
0.1797, 0.2900 and 0.4036

3.2.3. Citrus Canker Local Feature Description267

A measurement of the local color-texture feature of each zone can be268

defined as a LBPH descriptor. The proposed LBPH operator combines color269

and texture by simply deriving LBP based on hue component. It has been270

proved to be efficient ( see comparison results in table 1) especially for color271

leaf images under various natural light conditions in field in our research.
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Figure 7: Example of LBPH descriptor. (a) example of 8-neighborhood; (b)
thresholded; (c) weights; h3, h5, h6, h7 > hc; h0, h1, h2, h4 < hc; C = (h3+h5+
h6+h7)/4−(h0+h1+h2+h4)/4; LBPH = (h3∗8+h5∗32+h6∗64+h7∗128)/C

272

In figure 7, an image is firstly converted into HIS color space. For a local273

neighbored area, the central pixel hc and its P neighbors hp, (p = 0, ..., P−1),274
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we can calculate the joint difference texture T by subtracting hc from hp,275

where t(hi−hj) is the difference distribution of color between neighbor pixels276

hi and hj .277

T = t(h0 − hc, ..., hP−1 − hc) (12)

hc − hp =

{
1 if hp > hc

0 if hp ≤ hc
(13)

Let the number of hp(hp > hc) be cu and the number of hp(hp ≤ hc) be278

cl. Then contrast operator C can be calculated as:279

C =
Su

cu
−

Sl

cl
(14)

where Su =
P−1∑
p=0

hp, hp > hc; and Sl =
P−1∑
p=0

hp, hp ≤ hc.280

If cu or cl is zero, Su or Sl is directly set to zero. Also from the defini-281

tion 14, we can infer that C cannot be zero.282

The LBPH value of a central pixel hc is computed as:283

LBPHP =

P−1∑
p=0

s(hp − hc)2
p

C
(15)

where284

s(x) =

{
1 if x > 0
0 if x ≤ 0

3.3. Combined Local Feature285

As shown in figure 6, the segmented zones may represent different parts286

of a canker lesion and the combination of zones can provide the spatial struc-287

ture information of whole lesion. Color or texture vary in these zones, for288

example the texture may be water-soaked or halo. A zone-based combined289

local feature descriptor is proposed to integrate color and texture informa-290

tion. By using the segmentation methods mentioned in section 3.2.2, we291

can get hue-based segmented zones. The distribution of texture in a canker292

lesion can be computed by the mean of LBPH in each zone which is defined293

as formula 16:294
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ZkLBPHP
=

N∑
i=1

M∑
j=1

LBPHP(i,j)

Nk

, (P (i, j) ∈ Zk) (16)

where Zk is the mean of LBPH in zone k, Nk is the number of the pixels295

included in this zone. P is the number of the neighbors. N is the row number296

and M is the column number of this image.297

Figure 8 shows an example of LBPH value distribution in each zone.298

The X and Y axes represent pixel position and the vertical axis repre-299

sents the LBPH value. It can be seen that there are obvious differences300

between LBPH value distributions of the zones. To describe the color distri-301

bution we used the mean of hue components of pixels in each zone. Vector302

[ZkLBPHP
, Hmk] is a combined feature which is used as the descriptor of a303

zone Zk. For a lesion area with K zones, the combined local feature descrip-304

tor is [Z1LBPHP
, Hm1, ..., ZK−1LBPHP

, HmK−1], which covers all zones of a305

lesion and provides the structure information(by the sequence of zones), local306

color information and texture information of a lesion.307

4. Experimental Results308

The proposed method has been tested to evaluate its effectiveness 1. All309

the experiments were carried out on a PC, with a Pentium 4 CPU of 3.4GHz310

and 1G RAM. The operating system is Microsoft Windows XP. The program311

was developed in Matlab version 7.0. The performance of different methods312

were evaluated in terms of classification rate.313

The leaf images used in this research were collected from orange plants in314

winter in 2005 and 2006 from Guangdong province, China and in spring in315

2007 from Guangxi province, China. We collaborated with a group of citrus316

phytopathologists from the Citrus Research Institute which is the national317

scientific research center of China for citrus fruits. All the images of citrus318

canker disease and other diseases in this paper were captured in field by the319

citrus phytopathologists from the citrus infected trees and they also provided320

the disease information so we could label each image with its relevant disease.321

Different types of leaves were selected including normal leaves, citrus322

canker infected leaves, leaves infected by black spot of citrus, citrus melanose323

1Some of the citrus canker datasets and source codes are available from this link http:

//www-staff.lboro.ac.uk/~coqm/AdditionaInformationAboutCitrusCanker.htm
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Figure 8: Example of LBPH value distribution in each zone
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and citrus scab disease, they were classified into different diseases by experts.324

The images are at different phases of disease and taken under various envi-325

ronments. The original image size was between 1280×960 to 3456×2304326

and the images were captured by digital camera Sony DSCP92 and Canon327

EOS350D.328

4.1. Training Samples329

The citrus canker samples were selected from more than 500 images from330

which the citrus phytopathologist labeled the canker lesions areas. 1000331

canker samples were then obtained from the above 500 images (there might332

be more than one canker lesions in one image) and the lesions’ length are333

from 60 pixels to 100 pixels, some of the citrus canker samples are shown in334

figure 9.335

Figure 9: Samples of citrus canker lesions

The negative samples for citrus canker detection include normal leaves,336

leaves infected by other diseases and non-citrus leaves. We obtained the337

negative samples by three means: more than 2000 samples were from nor-338

mal citrus leaf images as shown in 10(a); 1400 non-citrus leaf samples were339

searched and downloaded from web as shown in 10(b); 500 other samples340

were other disease lesions on citrus leaves.341

After elimination of some images such as those with low image quality,342

we select 1000 positive citrus canker samples and 2000 negative samples.343

These samples were in different sizes depending on size of each lesion area.344

In the global matching period, the negative sample set includes normal leave345

samples without any lesions. As we need small window size (10×10 in this346

study) images to train the classifier C1 in algorithm 1 at the first level, the347
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(a)

(b)

(c)

Figure 10: Negative samples. (a) Normal citrus leaves; (b) No-citrus leaves;
(c) Other citrus disease lesions

original positive and negative samples were divided into 10×10 sub-images.348

The positive sample set with 7000 samples in 10×10 image size was created by349

the above process. Negative sample set with 10000 samples in the same size350

was simply set up by randomly selecting sub-images from the 2000 negative351

image samples.352

The first level classifier C1 was trained 100 rounds on the training sample353

set of Set10000 -10 which including 4000 positive 10×10 samples and 6000354

negative 10×10 samples. At the second level of global matching, 600 positive355

samples from the above 1000 positive samples and 600 negative samples356

from the 2000 negative samples were randomly selected and normalized to357

120×120 as Set1200 -120 to train the classifier C2.358

4.2. System Testing Samples359

In the experiments, we chose two test sets in which samples are different360

from those in training. One set consists of 200 positive samples covering six361

canker lesion types and 200 negative samples including normal citrus leaves362

(figure 10(a)), non-lesion samples (figure 10(b)) and other citrus disease le-363

sions (including those very similar to real citrus canker lesions and those364

relatively easy to distinguish, see figure 10(c)). The second test set has 891365

randomly selected lesion samples including citrus canker and other citrus dis-366

eases which are very similar to the real citrus canker disease (e.g. blackspot,367

melanose, and citrus scab disease), therefore, it is more difficult to detect368
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the true citrus canker than the first test set. This 891 data set is only used369

to compare the proposed approach with citrus human experts to test the370

system performance under this challenge situation. In the following, Set400371

represents the first test set and Set891 represents the second test set.372

4.3. Comparison of Different Texture Descriptors373

This section reports the experimental results on Set400 using different374

texture descriptors: LBPH feature, original LBP operator and Gabor op-375

erator in the second stage of hierarchical detection procedure, in which the376

classifier C2 were trained using different features on the Set1200 -120 as men-377

tioned in 4.1. Table 1 shows the comparison results of the three texture378

descriptors on Set400 during conducting the hierarchical detection. In the379

figure, “LBPH8” represents the features proposed in section 3.2 at canker380

detection phase; while “Gabor6,8” represents Gabor features on six scales and381

eight directions; and “LBP8” represents the original LBP8,1 operator to de-382

scribe the texture. We can find that the classification performance is 88%383

for LBPH8 and it is higher than the original LBP8 whose classification rate384

is 85.25%. Also LBPH8 obtained a better classification result than Gabor6,8385

which has high-dimension features than LBPH8.386

Table 1: comparison of different texture descriptors

Classification Rate canker non-disease other disease

LBP8 0.8525 0.98 0.64 0.81

LBPH8 0.88 0.975 0.67 0.9

Gabor6,8 0.86 0.975 0.64 0.85

387

4.4. Zone-based Features vs. Whole-image-based Features388

In section 3.2.2 we proposed a color-quantized method to divide a lesion389

area into four zones and extract features from each zone, we keep classifier390

C1 and retrain C2 using Set1200 -120 using two different features. The test391

set is Set400. Table 2 lists the experimental results of zone-based and whole-392

image-based methods in the canker detection using LBPH8 feature descrip-393

tor on Set400 data set. Because it contains some spatial and more detailed394

information than area-based features, the zone-based method provides bet-395

ter results with the same type of features. More importantly, zone-based396
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features have their obvious advantages on distinguishing canker lesions from397

other disease lesions. Especially for the similar diseases identification, the398

zone-based method obtained 90% classification correct rate while the whole-399

image-based method only had 20%.400

Table 2: comparison of zone-based and whole-image-based features

Classification Rate canker non-disease other disease

Zone− based 0.88 0.975 0.67 0.9

Whole− image− based 0.6725 0.895 0.70 0.2

401

4.5. Comparison of Different Classifiers402

Neural Networks such as Radial Basis Network(RBN), Support Vector403

Machine(SVM) and k-nearest neighbors algorithms have been successfully404

exploited in various pattern recognition problems. In this research, we train405

these classifiers on Set1200 -120 at canker detection stage as a single type406

canker classifier and compare their performance with AdaBoost classifier on407

Set400. RBF is used as the kernel function of SVM and the number of408

nearest neighbors is set to be 4 shown as KNN4 in table 3. In this table,409

TPR means true positive rate and FPR means false positive rate. It can be410

seen Adaboost classifier outperformed the other classifiers in this problem on411

both TPR and FPR, and RBN worked better than KNN4 and SVM.412

Table 3: comparison of different classifiers

Classification Rate TPR FPR

AdaBoost 0.88 0.975 0.785

RBN 0.7325 0.88 0.585

KNN4 0.6925 0.92 0.465

SVM 0.63 0.6375 0.6825

413

4.6. Subclasses Classifiers vs. All-against-all Detection414

In section 2, subclasses classifiers are trained for each type of citrus canker415

lesion at canker detection stage and these classifiers are combined to conduct416

the classification task. We selected 600 samples canker lesions which were417

22



divided into six types, and each type canker lesion classifier was trained for 50418

rounds on the set of 100 positive samples and 100 other similar disease lesions419

to train the classifiers. Another strategy is to train an all-against-all classifier420

that covers 600 all types of canker lesions and all types of negative samples.421

The two types of classifiers are all based on AdaBoost and the number of422

samples for training all-against-all classifiers are six times of each subclass423

classifier. Figure 11 shows the classification rate of six-subclass classifiers424

and all-against-all classifier during training. It is shown that the all-against-425

all classifier needed more rounds of training to reach stable classification426

accuracy than subclass classifiers did.427
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Figure 11: Training classification rates comparison of subclass classifiers
vs.all-against-all classifier.

Figure 12 detailed the comparison of TPR and FPR during training be-428

tween two methods. Table 4 compares the experimental results for sub-429

class classifiers and the all-against-all classifier. It can be seen that the430

subclass classifiers can identify the canker lesions more accurately; while the431

all-against-all classifier performs better on non-lesion samples. Considering432
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the harm of the citrus canker, the miss of canker in detection is more dan-433

gerous than the non-lesion, therefore subclass strategy is more reasonable for434

this research.

Table 4: results from subclasses classifier and all-against-all

Classification Rate canker non-disease other disease

Subclasses 0.88 0.975 0.67 0.9

All − againt− all 0.8475 0.83 0.80 0.93

435

4.7. Machine Vision vs. Human Vision436

In our experiments, we chose Set891 (in which each sample’s citrus canker437

type was determined by a plant expert in field) to compare the performance of438

the proposed approach with human experts. We randomly changed the order439

of the Set891 samples and then sent them to other experienced plant experts440

who never saw them before. The experts were required to classify each sample441

image on PC screen. We compared the expert’s classification results with442

the results gained by the proposed approach. We used hierarchical detection443

method, zone-based combined features and AdaBoost classifier as mentioned444

in previous sections. Table 5 shows the comparison results. It can be seen445

that the proposed approach achieves a quite similar result as the experts.446

In this experiment, a few factors might affect the detection success rate447

of human experts. Detecting lesion images on screen is quiet different from448

the way in field. Plant experts use several modalities when working in field449

including vision and touch etc., while in above comparison, only one modal-450

ity, vision, was used. In field, experts make judgments by observing the451

leaves/lesions from different angles. Especially on the late stage of canker452

disease, the lesions’ center bulges on the leaf surface and experts usually ob-453

serve lesions from each side of the leaves and sometimes they will make the454

decision by touching the leaves as well. By discussing with some plant ex-455

perts we found that when experts work in field, the types of lesions are usually456

less than in Set891, they usually need to distinguish one or two diseases at457

one site. The Set891 combines true citrus canker samples and several other458

very similar citrus disease samples to test the performance of the proposed459

approach under this more challenging situation. In this dataset, for some460

citrus leave images, even human experts cannot be quite sure whether it is461

true citrus canker or not by just looking at one image on computer screen.462
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Also in field the experts can check several leaves on the same tree, thus even463

they are not quite sure about one or two lesions they can still make the right464

decision eventually; while on computer screen, they need to make decision465

for each lesion image. When required to judge several hundreds pictures466

on screen, some experts said their emotional instability changed during this467

process and they had different feel from in field. Furthermore, the quality of468

the pictures in datasets varies, partial details of some pictures are not clear.469

All the above factors cause the relative lower success rate of human experts470

on screen than in field.471

The camera-based canker detection system can not replace plant experts472

in field or in dedicated labs. However, the proposed method aims to work473

from a remote place and to quickly obtain an initial detection result. It474

can be used as an early detection/warning system to detect canker disease475

at their very early stage or as a server-based remote pre-detection method476

using images transmitted through internet. Since the citrus plants are widely477

distributed and we do not have enough plant experts, camera-based systems478

can be used to select the suspicious canker samples and then experts can479

make further confirmation/final diagnosis or go to the field to make further480

checks.481

Table 5: machine vision vs. human vision

classification rate

Machine vision 0.8799

Human vision 0.8687

5. Conclusions482

This paper presented an approach to automatically detecting citrus canker483

from citrus leaf images captured in field. A hierarchical detection strategy484

was introduced to segment lesion leaf images captured in field from back-485

ground, which is different from previous research based on images collected486

in a laboratory environment. Then a citrus canker feature descriptor was487

proposed by combining leaf image color and texture information to model488

citrus canker lesions. Local LBPH descriptors were used in order to reveal489

the spatial properties of citrus canker in each lesion zone. A modified Ad-490

aBoost algorithm (SceBoost) which we developed before was used to select491

the most significant features.492
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Different feature operators and classification techniques were evaluated493

and compared based on citrus leaf samples in this research including several494

kinds of citrus diseases and normal citrus leaves in different environments.495

The experimental results demonstrated that the proposed approach leaded496

to a higher classification accuracy than other methods. Meanwhile the ex-497

periment compared the proposed approach with human expert classification,498

and the results showed that the classification accuracy of the proposed ap-499

proach is similar to citrus plant’s experts who examined the image of each500

citrus leaf on computer screen. It proves that the proposed approach in this501

paper has great potential to be applied in real world. Future study will sim-502

ulate the experts’ observation to combine multi-angle images of a citrus leaf503

for identification and extend the proposed approach to other plants’ disease504

detection and quality management.505
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