

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Bad News on Decision Problems for Patterns

Dominik D. Freydenberger⋆1 and Daniel Reidenbach2

1 Institut für Informatik, Goethe-Universität, Postfach 111932,
D-60054 Frankfurt am Main, Germany
freydenberger@em.uni-frankfurt.de

2 Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

D.Reidenbach@lboro.ac.uk

Abstract. We study the inclusion problem for pattern languages, which
is shown to be undecidable by Jiang et al. (J. Comput. System Sci. 50,
1995). More precisely, Jiang et al. demonstrate that there is no effective
procedure deciding the inclusion for the class of all pattern languages
over all alphabets. Most applications of pattern languages, however, con-
sider classes over fixed alphabets, and therefore it is practically more
relevant to ask for the existence of alphabet-specific decision procedures.
Our first main result states that, for all but very particular cases, this
version of the inclusion problem is also undecidable. The second main
part of our paper disproves the prevalent conjecture on the inclusion
of so-called similar E-pattern languages, and it explains the devastat-
ing consequences of this result for the intensive previous research on the
most prominent open decision problem for pattern languages, namely
the equivalence problem for general E-pattern languages.

1 Introduction

A pattern – a finite string that consists of variables and of terminal symbols (or:
letters) – is a compact and natural device to define a formal language. It gen-
erates a word by a substitution of all variables with arbitrary words of terminal
symbols (taken from a fixed alphabet Σ) and, hence, its language is the set of
all words under such substitutions. More formally, a pattern language thus is
the (typically infinite) set of all images of the pattern under terminal-preserving
morphisms, i. e. morphisms which map each terminal symbol onto itself. For ex-
ample, if we consider the pattern α := x1 ax2 b x1 (where the symbols x1 and x2

are variables and a and b are terminal symbols) then the language generated by
α exactly contains those words which consist of an arbitrary prefix u, followed
by the letter a, an arbitrary word v, the letter b and a suffix which equals u
again. Consequently, the pattern language of α includes, amongst others, the
words w1 := a a b b b a, w2 := a b a b a b a b and w3 := a a a b a a, and it does not
cover the words w4 := b a, w5 := b a b b b a and w6 := a b b a. It is a well-known
fact that pattern languages in general are not context-free.

⋆ Corresponding author.

Basically, two types of pattern languages are considered in literature: NE -
pattern languages and E -pattern languages. The definition of the former was
introduced by Angluin [1], and it disallows that variables are substituted with
the empty word (hence, “NE” is short for “nonerasing”). The latter kind of
pattern languages additionally consider those substitutions which map one ore
more variables onto the empty word (so “E” stands for “erasing” or “extended”);
this definition goes back to Shinohara [25]. Thus, in our above example, the
word w3 is contained in the E-pattern language of α, but not in its NE-pattern
language. Surprisingly, this small difference in the definitions leads to significant
differences in the characteristics of the resulting (classes of) languages.

As a consequence of their simple definition, which comprises nothing but
finite strings and (a particular type of) morphisms, pattern languages show nu-
merous connections to other fundamental topics in computer science and discrete
mathematics, including classical ones such as (un-)avoidable patterns (cf. Jiang
et al. [8]), word equations (cf. Mateescu, Salomaa [12], Karhumäki et al. [10]) and
equality sets (and, thus, the Post Correspondence Problem, cf. Reidenbach [18])
as well as emerging ones such as extended regular expressions (cf. Câmpeanu
et al. [3]) and the ambiguity of morphisms (cf. Freydenberger et al. [6], Rei-
denbach [18]). In terms of the basic decision problems, pattern languages show a
wide range of behaviors: trivial (linear time) decidability (e. g., the equivalence of
NE-pattern languages), NP-completeness (e. g., the membership in NE- and E-
pattern languages) and undecidability (e. g., the inclusion of NE- and E-pattern
languages); furthermore, the decidability of quite a number of these problems is
still open (e. g., the equivalence problem for E-pattern languages). Surveys on
these topics are provided by, e. g., Mateescu and Salomaa [13] and Salomaa [23].

Among the established properties (and even among all results on pattern
languages), the proof for the undecidability of the inclusion problem by Jiang,
Salomaa, Salomaa and Yu [9] is considered to be one of the most notable achieve-
ments, and this is mainly due to the very hard proof, which answers a long-
standing open question, and the fact that the result remarkably contrasts with
the trivial decidability of the equivalence problem for NE-pattern languages.
Furthermore, the inclusion problem is of vital importance for the main field of
application of pattern languages, namely inductive inference. Inductive inference
of pattern languages – which deals with an approach to the important problem
of computing a pattern that is common to a given set of strings – is a both clas-
sical and active area of research in learning theory; a survey is provided by Ng
and Shinohara [16]. It is closely connected to the inclusion problem for pattern
languages since, according to the celebrated characterization by Angluin [2], the
inferrability of any indexable class of languages largely depends on the inclusion
relation between the languages in the class. Consequently, many (both classical
and recent) papers on inductive inference of classes of pattern languages nearly
exclusively deal with questions related to the inclusion problem for these classes
(see, e. g., Mukouchi [15], Reidenbach [19, 21], Luo [11]).

Unfortunately, from this rather practical point of view, the inclusion problem
for E- and for NE-pattern languages as understood and successfully tackled by

Jiang et al. [9] is not very significant, since they prove that there is no single
procedure which, for every terminal alphabet Σ and for every pair of patterns,
decides on the inclusion between the languages over Σ generated by these pat-
terns. Hence, slightly more formally, Jiang et al. [9] demonstrate that the inclu-
sion problem is undecidable for (a technical subclass of) the class of all pattern
languages over all alphabets, and the requirement for any decision procedure to
handle pattern languages over various alphabets is extensively utilized in the
proof. Contrary to this, in inductive inference of pattern languages – and virtu-
ally every other field of application of pattern languages known to the authors –
one always considers a class of pattern languages over a fixed alphabet. Conse-
quently, it seems practically more relevant to investigate the problem of whether,
for any alphabet Σ, there exists a procedure deciding the inclusion problem for
the class of (E/NE-)pattern languages over this alphabet Σ.

In the present paper we study and answer this question (or rather: these
infinitely many questions). Our considerations reveal that, for every finite al-
phabet Σ with at least two letters, the inclusion problem is undecidable for the
full classes of E-pattern languages over Σ. Furthermore, with regard to the class
of NE-pattern languages over any Σ, we prove the equivalent result, but our
reasoning does not cover binary and ternary alphabets. Although we thus have
the same outcome as Jiang et al. [9] for their variant of the inclusion problem,
the proof for our much stronger statement considerably differs from their argu-
mentation; consequently, it suggests that there is no straightforward way from
the well-established result to ours. Moreover, we feel that our insights (and our
uniform reasoning for all alphabet sizes) are a little surprising, since the inferra-
bility of classes of pattern languages is known to be discontinuous depending on
the alphabet size and the question of whether NE- or E-pattern languages are
considered (cf. Reidenbach [21]). The second main part of our paper addresses
the other major topic in [9]: we discuss the extensibility of a positive decid-
ability result given in [9] on the inclusion problem for the class of terminal-free
E-pattern languages (generated by those patterns that consist of variables only)
to classes of so-called similar E-pattern languages. This question is intensively
discussed in literature (e. g. by Ohlebusch, Ukkonen [17]) as it is of major impor-
tance for the still unresolved equivalence problem for the full class of E-pattern
languages. We demonstrate that, in contrast to the prevalent conjecture, the
inclusion of similar E-pattern languages does not show an analogous behavior
to that of terminal-free E-pattern languages, and we explain the fatal impact of
this insight on the previous research dealing with the equivalence problem.

2 Preliminaries

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0}. The symbol ∞ stands for infinity.
For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of
all nonempty strings over A, and A∗ := A+ ∪ {λ}. For the concatenation of two
strings w1, w2 we write w1 ·w2 or simply w1w2. We say that a string v ∈ A∗ is a

factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ
(or u2 = λ), then v is a prefix of w (or a suffix, respectively). The notation |x|
stands for the size of a set x or the length of a string x. For any w ∈ Σ∗ and any
n ∈ N0, w

n denotes the n-fold concatenation of w, with w0 := λ. Furthermore,
we use · and the regular operations ∗ and + on sets and strings in the usual way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ with h(vw) =
h(v)h(w) for all v, w ∈ A∗. Given morphisms f : A∗ → B∗ and g : B∗ → C∗ (for
alphabets A, B, C), their composition g ◦ f is defined as g ◦ f(w) := g(f(w)) for
all w ∈ A∗. A morphism h : A∗ → B∗ is nonerasing if h(a) 6= λ for all a ∈ A.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ ∩ X = ∅. Unless specified
differently, we assume X = {xi | i ∈ N}, with xi 6= xj for all i 6= j. A pattern is a
string overΣ∪X , a terminal-free pattern is a string overX and a word is a string
over Σ. The set of all patterns overΣ∪X is denoted by PatΣ, the set of terminal-
free patterns by Pattf . For any pattern α, we refer to the set of variables in α as
var(α) and to the set of terminal symbols as term(α). Two patterns α, β ∈ PatΣ
are similar if their factors over Σ are identical and occur in the same order in the
patterns. More formally, α, β are similar if α = α0u1α1u2 . . . αn−1unαn and β =
β0u1β1u2 . . . βn−1unβn for some n ∈ N0, αi, βi ∈ X+ for each i ∈ {1, . . . , n− 1},
α0, β0, αn, βn ∈ X∗ and uj ∈ Σ+ for each j ∈ {1, . . . , n}.

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for all a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)

∗ → Σ∗ is called a
substitution. The E-pattern language LE,Σ(α) of a pattern α ∈ PatΣ is the set of
all w ∈ Σ∗ such that σ(α) = w for some substitution σ; the NE-pattern language
LNE,Σ(α) is defined in the same way, but restricted to nonerasing substitutions.
The term pattern language refers to any of the definitions introduced above. Two
pattern languages are called similar if they have generating patterns that are
similar. Accordingly, we call a pattern language terminal-free if it is generated
by a terminal-free pattern. We denote the class of all E-pattern languages over
Σ with ePATΣ and the class of all NE-pattern languages over Σ with nePATΣ.

A nondeterministic 2-counter automaton without input (cf. Ibarra [7]) is a
4-tuple A = (Q, δ, q0, F), consisting of a state set Q, a transition relation δ :
Q× {0, 1}2 → Q× {−1, 0,+1}2, the initial state q0 ∈ Q and a set of accepting
states F ⊆ Q. A configuration of A is a triple (q,m1,m2) ∈ Q×N0 ×N0, where
q indicates the state of A and m1 (or m2) denotes the content of the first (or
second, respectively) counter. The relation ⊢A on Q × N0 × N0 is defined by δ
as follows: Let p, q ∈ Q, m1,m2, n1, n2 ∈ N0. Then (p,m1,m2)⊢A(q, n1, n2) iff
there exist c1, c2 ∈ {0, 1} and r1, r2 ∈ {−1, 0,+1} such that (i) ci = 0 if mi = 0
and ci = 1 if mi ≥ 1 for i ∈ {1, 2}, (ii) ni=mi + ri for i ∈ {1, 2} and (iii)
(q, r1, r2) ∈ δ(p, c1, c2). Furthermore, for i ∈ {1, 2}, we assume that ri 6= −1 if
ci = 0. Intuitively, in every state A is only able to check whether the counters
equal zero, change each counter by at most one and switch into a new state.

A computation is a sequence of configurations, and an accepting computa-
tion of A is a sequence C1, . . . , Cn ∈ Q × N0 × N0 (for some n ∈ N0) with
C1 = (q0, 0, 0), Cn ∈ F × N0 × N0 and Ci ⊢ACi+1 for all i ∈ {1, . . . , n− 1}. In

order to encode configurations of A, we assume that Q = {q0, . . . , qs} for some
s ∈ N0 and define a function cod : Q×N0 ×N0 → {0,#}∗ by cod(qi,m1,m2) :=
0i+1#0m1+1#0m2+1 and extend this to an encoding of computations by defin-
ing cod(C1, C2, . . . , Cn) := ## cod(C1)## cod(C2)## . . .##cod(Cn)## for
every n ≥ 1 and every sequence C1, . . . , Cn ∈ Q × N0 × N0. Furthermore, let
VALC(A) := {cod(C1, . . . , Cn) | C1, . . . , Cn is an accepting computation of A},
and INVALC(A) := {0,#}∗\VALC(A). As the emptiness problem for 2-counter
automata with input is undecidable (cf. Minsky [14], Ibarra [7]), it is also unde-
cidable whether a nondeterministic 2-counter automaton without input has an
accepting computation.

3 The inclusion of pattern languages over fixed alphabets

In this section, we discuss the decidability of the inclusion problem for ePATΣ

and nePATΣ . We begin with all non-unary finite alphabets Σ; the special case
|Σ| ∈ {1,∞} is studied separately. Jiang, Salomaa, Salomaa and Yu [9] prove
the undecidability of the general inclusion problem for E-pattern languages:

Theorem 1 (Jiang et al. [9]). There is no total computable function χE

which, for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides
on whether or not LE,Σ(α) ⊆ LE,Σ(β).

Technically, Jiang et al. show that, given a nondeterministic 2-counter au-
tomaton without input A, one can effectively construct an alphabet Σ and pat-
terns αA, βA ∈ PatΣ such that LE,Σ(αA) ⊆ LE,Σ(βA) iff A has an accepting
computation. As this problem is known to be undecidable, the general inclusion
problem for E-pattern languages must also be undecidable.

In their construction, Σ contains one letter for every state of A, and six
further symbols that are used for technical reasons. As limiting the number of
states would lead to a finite number of possible automata (and thus trivial and
inapplicable decidability), one cannot simply fix the number of states in order to
adapt this result to the inclusion problem for ePATΣ with some fixed alphabet
Σ. Thus, as mentioned by Reidenbach [18] and Salomaa [24], there seems to
be no straightforward way from this undecidability result to the undecidability
of the inclusion problem for ePATΣ, especially when Σ is comparatively small.
Nevertheless, our first main theorem states:

Theorem 2. Let Σ be a finite alphabet with |Σ| ≥ 2. Then the inclusion problem
for ePATΣ is undecidable.

The proof of this theorem is rather lengthy and can be found in Section 3.1. It is
in principle based on the construction by Jiang et al.[9], with two key differences.
First, the problem of an unbounded number of states (and therefore the number
of letters necessary to encode these states) is handled by using a unary encoding
instead of special letters to designate the states in configurations; second, the
special control symbols are encoded over a binary alphabet or removed. These
modifications enforce considerable changes to the patterns and the underlying

reasoning. But before we go into these details, we first discuss the immediate
consequences of Theorem 2. In fact, the proof demonstrates a stronger result:

Corollary 1. Let Σ be a finite alphabet with |Σ| ≥ 2. Given two patterns α ∈
PatΣ and β ∈ ({a} ∪X)∗ for some terminal a ∈ Σ, it is in general undecidable
whether LE,Σ(α) ⊆ LE,Σ(β).

This corollary is the alphabet specific version of Jiang et al.’s Corollary 5.1 in [9]
that is used to obtain the following result on the general inclusion problem for
NE-pattern languages :

Theorem 3 (Jiang et al. [9]). There is no total computable function χNE

which, for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides
on whether or not LNE,Σ(α) ⊆ LNE,Σ(β).

In the terminology used in the present paper, the proof of Theorem 3 in [9]
reduces the inclusion problem for ePATΣ (for patterns of a restricted form as
in Corollary 1) to the inclusion problem for nePATΣ∪{⋆,$}, where ⋆ and $ are
two extra letters that are not contained in Σ. Using the same reasoning as Jiang
et al. in their proof of Theorem 3, but when substituting their Corollary 5.1 with
Corollary 1 above, one immediately achieves the following result:

Theorem 4. Let Σ be a finite alphabet with |Σ| ≥ 4. Then the inclusion problem
for nePATΣ is undecidable.

As the construction used in the reduction heavily depends on the two extra
letters, the authors do not see a straightforward way to adapt it to binary or
ternary alphabets. Therefore, the decidability of the inclusion problem for NE-
pattern languages over these alphabets remains open:

Open Problem 1 Let Σ be an alphabet with |Σ| = 2 or |Σ| = 3. Is the inclu-
sion problem for nePATΣ decidable?

We now take a brief look at the special cases of unary and infinite alphabets.
Here we can state that the inclusion of pattern languages is less complex than
in the standard case:

Proposition 1. Let Σ be an alphabet, |Σ| ∈ {1,∞}. Then the inclusion problem
is decidable for ePATΣ and for nePATΣ.

The proof for Proposition 1 is omitted due to space constraints.
Obviously, Proposition 1 implies that the equivalence problem is decidable,

too, for ePATΣ and nePATΣ over unary or infinite alphabets Σ. Furthermore,
with regard to 2 ≤ |Σ| <∞, it is shown by Angluin [1] that two patterns generate
the same NE -pattern language iff they are the same (apart from a renaming of
variables). Thus, the equivalence problem for nePATΣ is trivially decidable for
every Σ, a result which nicely contrasts with the undecidability of the inclusion
problem established above. The equivalence problem for ePATΣ, however, is still
an open problem in case of 2 ≤ |Σ| <∞. In Section 4 we present and discuss a
result that has a significant impact on this widely-discussed topic.

3.1 Proof of Theorem 2

Due to space constraints, the proofs of all lemmas in this section are omitted.
We begin with the case |Σ| = 2, so let Σ := {0,#}. Let A := (Q, δ, q0, F) be a
nondeterministic 2-counter automaton; w. l. o. g. let Q := {q0, . . . , qs} for some
s ∈ N0. Our goal is to construct patterns αA, βA ∈ PatΣ such that LE,Σ(αA) ⊆
LE,Σ(βA) iff VALC(A) = ∅. We define αA := vv#4vxvyv#4vuv, where x, y are
distinct variables, v = 0#30 and u = 0##0. Furthermore, for a yet unspecified
µ ∈ N that shall be defined later, let βA := (x1)

2 . . . (xµ)2#4β̂1 . . . β̂µ#4β̈1 . . . β̈µ,

with, for all i ∈ {1, . . . , µ}, β̂i := xi γi xi δi xi and β̈i := xi ηi xi, where x1, . . . , xµ

are distinct variables and all γi, δi, ηi ∈ X∗ are terminal-free patterns. The pat-
terns γi and δi shall be defined later; for now, we only mention:

1. ηi := zi(ẑi)
2zi and zi 6= ẑi for all i ∈ {1, . . . , µ},

2. var(γiδiηi) ∩ var(γjδjηj) = ∅ for all i, j ∈ {1, . . . , µ} with i 6= j,
3. xk /∈ var(γiδiηi) for all i, k ∈ {1, . . . , µ}.

Thus, for every i, the elements of var(γiδiηi) appear nowhere but in these three
factors. LetH be the set of all substitutions σ : (Σ ∪ {x, y})∗ → Σ∗. We interpret
each triple (γi, δi, ηi) as a predicate πi : H → {0, 1} in such a way that σ ∈ H
satisfies πi if there exists a morphism τ : var(γiδiηi)

∗ → Σ∗ with τ(γi) =
σ(x), τ(δi) = σ(y) and τ(ηi) = u – in the terminology of word equations (cf.
Karhumäki et al. [10]), this means that σ satisfies πi iff the system consisting of
the three equations γi = σ(x), δi = σ(y) and ηi = u has a solution τ . Later, we
shall see that LE,Σ(αA)\LE,Σ(βA) exactly contains those σ(αA) for which σ does
not satisfy any of π1 to πµ, and choose these predicates to describe INVALC(A).
The encoding of INVALC(A) shall be handled by π4 to πµ, as each of these
predicates describes a sufficient criterium for membership in INVALC(A). But
at first we need a considerable amount of technical preparations. A substitution
σ is of good form if σ(x) ∈ {0,#}∗, σ(x) does not contain #3 as a factor, and
σ(y) ∈ 0∗. Otherwise, σ is of bad form. The predicates π1 and π2 handle all cases
where σ is of bad form and are defined through γ1 := y1,1(ẑ1)

3y1,2, δ1 := ŷ1,
γ2 := y2, and δ2 := ŷ2,1 ẑ2 ŷ2,2, where y1,1, y1,2, y2, ŷ1, ŷ2,1, ŷ2,2, ẑ1 and ẑ2
are pairwise distinct variables. Recall that ηi = zi(ẑi)

2zi for all i. It is not very
difficult to see that π1 and π2 characterize the morphisms that are of bad form:

Lemma 1. A substitution σ ∈ H is of bad form iff σ satisfies π1 or π2.

This allows us to make the following observation, which serves as the central
part of the construction and is independent from the exact shape of π3 to πµ:

Lemma 2. For every substitution σ ∈ H, σ(αA) ∈ LE,Σ(βA) iff σ satisfies one
of the predicates π1 to πµ.

Thus, we can select predicates π1 to πµ in such a way that LE,Σ(αA)\LE,Σ(βA) =
∅ iff VALC(A) = ∅ by describing INVALC(A) through a disjunction of predicates
on H . The proof of Lemma 2 shows that if σ(αA) = τ(βA) for substitutions σ, τ ,
where σ is of good form, there exists exactly one i (3 ≤ i ≤ µ) s.t. τ(xi) = 0#30.
Due to technical reasons, we need a predicate π3 that, if unsatisfied, sets a lower

bound on the length of σ(y), defined by γ3 := y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4, and
δ3 := ŷ3,1 ŷ3,2 ŷ3,3, where all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise distinct
variables. Clearly, if some σ ∈ H satisfies π3, σ(y) is a concatenation of three
(possibly empty) factors of σ(x). Thus, if σ satisfies none of π1 to π3, σ(y) must
be longer than the three longest non-overlapping sequences of 0s in σ(x). This
allows us to identify a class of predicates definable by a rather simple kind of
expression, which we use to define π4 to πµ in a less technical way.

Let X ′ := {x̂1, x̂2, x̂3} ⊂ X , let G denote the set of those substitutions in H
that are of good form and let R be the set of all substitutions ρ : (Σ ∪X ′)

∗ → Σ∗

for which ρ(0) = 0, ρ(#) = # and ρ(x̂i) ∈ 0∗ for all i ∈ {1, 2, 3}. For patterns
α ∈ (Σ ∪X ′)

∗
, we define R(α) := {ρ(α) | ρ ∈ R}.

Definition 1. A predicate π : G → {0, 1} is called a simple predicate if there
exist a pattern α ∈ (Σ ∪X ′)

∗
and languages L1, L2 ∈ {Σ∗, {λ}} such that σ

satisfies π iff σ(x) ∈ L1 R(α) L2.

From a slightly different point of view, the elements of X ′ can be understood
as numerical parameters describing (concatenational) powers of 0, with substi-
tutions ρ ∈ R acting as assignments. For example, if σ ∈ G satisfies a simple
predicate π iff σ(x) ∈ Σ∗R(#x̂1#x̂20#x̂1), we can also write that σ satisfies π
iff σ(x) has a suffix of the form #0m#0n0#0m (with m,n ∈ N0), which could
also be written as #0m#0∗0#0m, as n occurs only once in this expression. Using
π3, our construction is able to express all simple predicates:

Lemma 3. For every simple predicate πS over n variables with n ≤ 3, there
exists a predicate π defined by terminal-free patterns γ, δ, η such that for all
substitutions σ ∈ G:

1. if σ satisfies πS, then σ also satisfies π or π3,
2. if σ satisfies π, then σ also satisfies πS.

Roughly speaking, if σ does not satisfy π3, then σ(y) (which is in 0∗, due to
σ ∈ G) is long enough to provide building blocks for simple predicates using
variables from X ′.

Our next goal is a set of predicates that (if unsatisfied) forces σ(x) into a basic
shape common to all elements of VALC(A). We say that a word w ∈ {0,#}∗ is

of good structure if w ∈ (##0+#0+#0+)
+

##. Otherwise, w is of bad structure.
Recall that due to the definition of cod, all elements of VALC(A) are of good
structure, thus being of bad structure is a sufficient criterion for belonging to
INVALC(A). In order to cover the morphisms σ where σ(x) is of bad structure,
we define predicates π4 to π13 through simple predicates as follows:

π4 : σ(x) = λ, π9 : σ(x) ends on 0,

π5 : σ(x) = #, π10 : σ(x) ends on 0#,

π6 : σ(x) = ##, π11 : σ(x) contains a factor ##0∗##,

π7 : σ(x) begins with 0, π12 : σ(x) contains a factor ##0∗#0∗##,

π8 : σ(x) begins with #0, π13 : σ(x) contains a factor ##0∗#0∗#0∗#0.

Due to Lemma 3, the predicates π1 to π13 do not strictly give rise to a char-
acterization of substitutions with images that are of bad structure, as there are
σ ∈ G where σ(x) is of good structure, but π3 is satisfied due to σ(y) being too
short. But this problem can be avoided by choosing σ(y) long enough to leave
π3 unsatisfied, and the following holds:

Lemma 4. A word w ∈ Σ∗ is of good structure iff there exists a substitution
σ ∈ H with σ(x) = w such that σ satisfies none of the predicates π1 to π13.

For every w of good structure, there exist uniquely determined n, i1, j1, k1, . . . ,
in, jn, kn ∈ N1 such that w = ##0i1#0j1#0k1## . . .##0in#0jn#0kn##.
Thus, if σ ∈ H does not satisfy any of π1 to π13, σ(x) can be understood as an

encoding of a sequence T1, . . . , Tn of triples Ti ∈ (N1)
3
, and for every sequence

of that form, there is a σ ∈ H such that σ(x) encodes a sequence of triples of
positive integers, and σ does not satisfy any of π1 to π13.

In the encoding of computations that is defined by cod, ## is always a
border between the encodings of configurations, whereas single # separate the
elements of configurations. As we encode every state qi with 0i+1, the predicate
π14, which is to be satisfied whenever σ(x) contains a factor ##00s+1, handles
all encoded triples (i, j, k) with i > s + 1. If σ does not satisfy this simple
predicate (in addition to the previous ones), there is a computation C1, . . . , Cn

of A with cod(C1, . . . , Cn) = σ(x).

All that remains is to choose an appropriate set of predicates that describe
all cases where C1 is not the initial configuration, Cn is not an accepting config-
uration, or there are configurations Ci, Ci+1 such that Ci ⊢ACi+1 does not hold
(thus, the exact value of µ depends on the number of invalid transitions in A).
As this construction is rather lengthy, but similar to the approach of Jiang et
al. [9], we abstain from giving a detailed description of the predicates π15 to πµ.

Now, if there is a substitution σ that does not satisfy any of π1 to πµ, then
σ(x) = cod(C1, . . . , Cn) for a computation C1, . . . , Cn, where C1 is the initial
and Cn a final configuration, and for all i ∈ {1, . . . , n− 1}, Ci ⊢ACi+1. Thus, if
σ(αA) /∈ LE,Σ(βA), then σ(x) ∈ VALC(A), which means that A has an accepting
computation.

Conversely, if there is some accepting computation C1, . . . , Cn of A, we can
define σ through σ(x) := cod(C1, . . . , Cn), and choose σ(y) to be an appropri-
ately long sequence from 0∗. Then σ does not satisfy any of the predicates π1 to
πµ defined above, thus σ(αA) /∈ LE,Σ(βA), and LE,Σ(αA) 6⊆ LE,Σ(βA).

We conclude that A has an accepting computation iff LE,Σ(αA) is not a
subset of LE,Σ(βA). Therefore, any algorithm deciding the inclusion problem for
ePATΣ can be used to decide whether a nondeterministic 2-counter automata
without input has an accepting computation. As this problem is known to be
undecidable, the inclusion problem for ePATΣ is also undecidable.

The proof for larger (finite) alphabets requires only little changes to the way
the patterns αA and βA are derived from a given automaton A. Thus, we omit
this part of the proof.

This concludes the proof of Theorem 2.

4 The inclusion of similar E-pattern languages

It can be easily observed that the patterns used for establishing the undecid-
ability of the inclusion problem for E-pattern languages are not similar (cf.
Section 2). Hence, our reasoning in Section 3.1 does not answer the question of
whether the inclusion problem is undecidable for these natural subclasses. In this
regard, Jiang et al. [9] demonstrate that for the full class of the simplest similar
E-pattern languages, namely those generated by terminal-free patterns, inclusion
is decidable. This insight directly results from the following characterization:

Theorem 5 (Jiang et al. [9]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
Pattf be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) iff there exists a mor-
phism φ : X∗ → X∗ satisfying φ(β) = α.

Note that the decidability of the inclusion problem for terminal-free NE -pattern
languages is still open.

The problem of the extensibility of Theorem 5 to general similar patterns
(replacing φ : X∗ → X∗ by a terminal-preserving morphism φ : (Σ ∪ X)∗ →
(Σ ∪ X)∗) is not only of intrinsic interest, but it has a major impact on the
so far unresolved equivalence problem for E-pattern languages (see our expla-
nations below). Therefore it has attracted a lot of attention, and it is largely
conjectured in literature (e. g., Dányi, Fülöp [4], Ohlebusch, Ukkonen [17]) that
the inclusion of similar E-pattern languages shows the same property as that
of terminal-free E-pattern languages. Our main result of the present section,
however, demonstrates that, surprisingly, this conjecture is not correct:

Theorem 6. For every finite alphabet Σ, there exist similar patterns α, β ∈
PatΣ such that LE,Σ(α) ⊂ LE,Σ(β) and there is no terminal-preserving mor-
phism φ : (Σ ∪X)∗ → (Σ ∪X)∗ satisfying φ(β) = α.

Due to space constraints, we do not present a proof for Theorem 6, but we merely
give appropriate example patterns for Σ := {a, b, c, d, e}, i. e. |Σ| = 5:

α = x1 ax2 ax3 bx2 bx5 cx2 cx7 d x2 d x9 e x2 e x11,

β = x1 ax2x4 a x3 b x4x6 bx5 cx6x8 cx7 dx8x10 d x9 e x10x2 ex11.

The relevance of Theorem 6 for the research on the equivalence problem for
E-pattern languages follows from a result by Jiang et al. [8] which says that,
for alphabets with at least three letters, two patterns need to be similar if they
generate the same E-pattern language:

Theorem 7 (Jiang et al. [8]). Let Σ be an alphabet, |Σ| ≥ 3, and let α, β ∈
PatΣ. If LE,Σ(α) = LE,Σ(β) then α and β are similar.

Consequently, in literature the inclusion problem for similar E-pattern languages
is mainly understood as a tool for gaining a deeper understanding of the equiva-
lence problem, and the main conjecture by Ohlebusch and Ukkonen [17] expresses
the expectation that the relation between inclusion problem for similar E-pattern
languages and equivalence problem might be equivalent to the relation between
these problems for terminal-free patterns (cf. Theorem 5):

Conjecture 1 (Ohlebusch, Ukkonen [17]). Let Σ be an alphabet, |Σ| ≥ 3, and
let α, β ∈ PatΣ. Then LE,Σ(α) = LE,Σ(β) iff there exist terminal-preserving
morphisms φ, ψ : (Σ ∪X)∗ → (Σ ∪X)∗ satisfying φ(β) = α and ψ(α) = β.

Note that the existence of φ and ψ necessarily implies that α and β are similar.
Ohlebusch and Ukkonen [17] demonstrate that Conjecture 1 holds true for a

variety of rich classes of E-pattern languages. In general, however, the conjecture
is disproved by Reidenbach [20] using very complex counter example patterns.
These patterns are valid for alphabet sizes 3 and 4 only, and their particular
construction seems not to be extendable to larger alphabets. Concerning finite
alphabets Σ with |Σ| ≥ 5, our result in Theorem 6 does not directly contradict
Conjecture 1, since our patterns α, β do not generate identical languages. Thus,
there is still a chance that the conjecture is correct for alphabet sizes greater
than or equal to 5. Nevertheless, as the considerations by Ohlebusch and Ukko-
nen [17] are based on a specific expectation concerning the inclusion of similar
E-pattern languages which Theorem 6 demonstrates to be incorrect, it seems
that the insights given in the present section disprove the very foundations of
their approach to the equivalence problem for the full class of E-pattern lan-
guages. Therefore we feel that the only remaining evidence that still supports
Conjecture 1 for |Σ| ≥ 5 is the lack of known counter-examples.

Furthermore, our result definitely affects the use of the sophisticated proof
technique introduced by Filè [5] and Jiang et al. [9] for the proof of Theorem 5.
For terminal-free patterns α, β and any alphabet Σ with |Σ| ≥ 2, this technique
constructs a particular substitution τβ such that τβ(α) ∈ LE,Σ(β) if and only
if there is a morphism mapping β onto α. After considerable effort made by
Dányi and Fülöp [4], Ohlebusch and Ukkonen [17] and Reidenbach [20] to extend
this approach to general similar patterns, Theorem 6 demonstrates that such a
substitution τβ does not exist for every pair of such patterns, since, for every
finite alphabet Σ, there are similar patterns α, β such that LE,Σ(β) contains all
words in LE,Σ(α), although there is no terminal-preserving morphism mapping
β onto α. Consequently, Theorem 6 shows that the main tool for tackling the
inclusion problem for terminal-free E-pattern languages – namely our profound
knowledge on the properties of the abovementioned substitution τβ – necessarily
fails if we want to extend it to arbitrary similar patterns, and therefore it seems
that the research on the inclusion problem for similar E-pattern languages (and,
thus, the equivalence problem for general E-pattern languages) needs to start
virtually from scratch again.

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.
2. D. Angluin. Inductive inference of formal languages from positive data. Informa-

tion and Control, 45:117–135, 1980.
3. C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-

sions. Int. J. Found. Comput. Sci., 14:1007–1018, 2003.

4. G. Dányi and Z. Fülöp. A note on the equivalence problem of E-patterns. Infor-

mation Processing Letters, 57:125–128, 1996.
5. G. Filè. The relation of two patterns with comparable language. In Proc. STACS

1988, LNCS 294, pages 184–192, 1988.
6. D.D. Freydenberger, D. Reidenbach, and J.C. Schneider. Unambiguous morphic

images of strings. Int. J. Found. Comput. Sci., 17:601–628, 2006.
7. O. Ibarra. Reversal-bounded multicounter machines and their decision problems.

Journal of the ACM, 25:116–133, 1978.
8. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with

and without erasing. Int. J. Comput. Math., 50:147–163, 1994.
9. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.

Journal of Computer and System Sciences, 50:53–63, 1995.
10. J. Karhumäki, F. Mignosi, and W. Plandowski. The expressibility of languages

and relations by word equations. Journal of the ACM, 47:483–505, 2000.
11. W. Luo. Compute inclusion depth of a pattern. In Proc. COLT 2005, LNAI 3559,

pages 689–690, 2005.
12. A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.

RAIRO Informatique théoretique et Applications, 28:233–253, 1994.
13. A. Mateescu and A. Salomaa. Patterns. In [22], pages 230–242. 1997.
14. Marvin Minsky. Recursive unsolvability of Post’s problem of “Tag” and other

topics in the theory of turing machines. Ann. of Math., 74:437–455, 1961.
15. Y. Mukouchi. Characterization of pattern languages. In Proc. 2nd International

Workshop on Algorithmic Learning Theory, ALT 1991, pages 93–104, 1991.
16. Y.K. Ng and T. Shinohara. Developments from enquiries into the learnability of

the pattern languages from positive data. Theor. Comp. Sci., 397:150–165, 2008.
17. E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern lan-

guages. Theor. Comput. Sci., 186:231–248, 1997.
18. D. Reidenbach. The Ambiguity of Morphisms in Free Monoids and its Impact on

Algorithmic Properties of Pattern Languages. Logos Verlag, Berlin, 2006.
19. D. Reidenbach. A non-learnable class of E-pattern languages. Theor. Comput.

Sci., 350:91–102, 2006.
20. D. Reidenbach. An examination of Ohlebusch and Ukkonen’s conjecture on the

equivalence problem for E-pattern languages. Journal of Automata, Languages and

Combinatorics, 12:407–426, 2007.
21. D. Reidenbach. Discontinuities in pattern inference. Theor. Comput. Sci., 397:166–

193, 2008.
22. G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1. Springer,

Berlin, 1997.
23. K. Salomaa. Patterns. In C. Martin-Vide, V. Mitrana, and G. Păun, editors,

Formal Languages and Applications, number 148 in Studies in Fuzziness and Soft
Computing, pages 367–379. Springer, 2004.

24. K. Salomaa. Patterns. Lecture, 5th PhD School in Formal Languages and Appli-
cations, URV Tarragona, 2006.

25. T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proc. RIMS Symposia on Software Sci. Eng., LNCS 147, pages 115–127, 1982.

