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Summary.  Information on the origin-destination (OD) matrix of a transport network 

is a fundamental requirement in much transportation planning. A relatively 

inexpensive method to update an OD matrix is to draw inference about the OD 

matrix based on a single observation of traffic flows on a specific set of network 

links, where the Bayesian approach is a natural choice to combine the prior 

knowledge about the OD matrix and the current observation of traffic flows. The 

existing approaches of Bayesian modeling of OD matrices include using normal 

approximations to Poisson distributions which leads to the posterior being intractable 

even under some simple special cases, and/or using MCMC simulation which incurs 

extreme demand of computational efforts. In this paper, through the EM algorithm, 

Bayesian inference is reinvestigated for a transport network to estimate the 

population means of traffic flows, reconstruct traffic flows, and predict future traffic 

flows. It is shown that the resultant estimates have very simple forms with minimal 

computational costs incurred.  

 

Keywords: Bayesian statistical modeling; Incomplete data analysis; Multivariate 

negative binomial distribution; Multivariate Poisson distribution; Trip matrix. 
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1.   Introduction 

In this paper we investigate inference about the origin-destination (OD) matrix of a transport 

network. This is an area that is fundamental in transportation research and has received a lot 

of attention in the past two or three decades.  

Consider a transport network consisting of a number of OD nodes connected through 

directed links. An OD matrix consists of traffic counts from all origins to all destinations. 

Historically, trips have been estimated through roadside interviews, number plate surveys, 

etc. (Watling, 1994; Bierlaire and Toint, 1995), which are expensive in terms of manpower 

requirements and disruptions of traffic flows. A relatively inexpensive method is to estimate 

an OD matrix using a single observation of traffic flows on a specific set of network links. 

The advantages of lower costs and being used for several purposes (accident studies, 

maintenance planning, etc.) make it very attractive for inference about OD matrices (Van 

Zuylen and Willumsen, 1980). 

There are three major challenges for inference about an OD matrix from a single 

observation of traffic flows on a specific set of network links. First of all, this is a highly 

underspecified problem, where the number of links on which measurements of traffic 

volumes are made is typically much less than the number of unknown parameters of interest. 

A consequence is that we cannot uniquely determine these unknown parameters based on the 

collected data solely. In addition, inference based on a single observation excludes the use of 

asymptotic methods. This can sometimes cause difficulties, for instance, in calculation of 

posterior variances via the supplemented EM (SEM) algorithm (McLachlan, 1996). 

Secondly, under the commonly-used assumptions in transport research, traffic volumes 

measured on the monitored network links have multivariate Poisson distributions (likelihood) 

and multivariate negative binomial distributions (marginal distributions). These multivariate 

distributions are very complicated and analytically intractable (Johnson et al. 1997). Finally, 

dimensions of transport networks are extremely high in most of applications. Computational 

cost is thus always an issue for the researches in this area. 
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There is an extensive literature regarding inference about OD matrices within the 

transport research area. Zuylen and Willumsen (1980) developed an entropy maximizing 

method to deal with the highly underspecified problem. Maher (1983) considered using a 

Bayesian approach to combine prior information on an OD matrix with current observations 

of traffic flows on monitored links. Cascetta (1984) presented a generalized least squares 

estimator of an OD matrix. In addition, a number of dynamic estimation methods for a special 

type of OD matrices, intersection OD matrices, have been developed, including Cremer and 

Keller (1987), Nihan and Davis (1987), Bell (1991), Sheralli et al. (1997), Li and De Moor 

(1999, 2002), where the major issue is to develop fast algorithms to estimate intersection OD 

matrices for on-line signal control. 

Lo et al. (1996) are the pioneer researchers who recognize the distinction between the 

estimation of population parameters and the reconstruction of traffic flows. More recently, 

Hazelton (2001b) investigated some fundamental issues and clarified some confusion in the 

inference for OD matrices. He clearly defined the following concepts: 

Reconstruction: the aim is to estimate the actual number of trips between each OD pair that 

occurred during the observational period. 

Estimation: the aim is to estimate the expected number of OD trips. 

Prediction: the aim is to estimate future OD traffic flows. 

According to the above definitions, most of the previous researches, except for those of 

the dynamic estimation methods of intersection OD matrices, are about the reconstruction of 

traffic flows. Somewhat surprisingly, Hazelton (2001b) shows that the dissimilarity between 

solutions to a reconstruction problem and an estimation problem is potentially unbounded. 

Hazelton‟s milestone work (2001b) has thus set up a paradigm for investigation of OD 

matrices of transport networks. 

On the other hand, considerable attention has recently been paid to the estimation of OD 

matrices in the statistical literature. Vardi (1996) investigated maximum likelihood 

estimation and considered using the EM algorithm but not in the Bayesian framework. Noting 
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the difficulties of calculating conditional expectations in the EM algorithm, he presented an 

estimation approach based on the method of moments. Tebaldi and West (1998) investigated 

a Bayesian inference using MCMC simulation that combines Metropolis-Hastings steps 

within an overall Gibbs sampling framework. Hazelton (2001a) investigated an application to 

a particular region of Leicester via a Bayesian inference using MCMC. He also noted the 

computational difficulties caused by normal approximations (2001 a, b). 

Many of the researches in the statistical literature discussed the problem in terms of 

“packets” or “messages” transmitted over a communication network. The basic topological 

structure of transport networks is similar to that of communication networks. However, due 

to the rapid development of information technology, multimedia digital signals transmitted 

over a communication network exhibit some important characteristics which are different 

from that of traffic flows over a transport network. First of all, statistical models of traffic 

flows over the two different types of networks are different. Traditionally the statistical 

model of Poisson distribution is used for traffic flows over a transport network. It has been 

recognized in the recent decade, however, traffic flows over a multimedia communication 

network have statistical models other than a Poisson model.  Packets transmitted over a 

multimedia communication network are often highly correlated and have long-range 

dependence (Paxson and Floyd, 1995; Li and Hwang, 1997). Secondly, due to the reason of 

cost, updating an OD matrix of a transport network is typically based on a single observation, 

whilst inference for traffic flows over a multimedia communication network is often based on 

much more number of observations. The difference in sample size may lead to utility of 

different statistical methods, for instance, asymptotic methods. Thirdly, the controllability of 

traffic flows is also different, which may have significant impact on path choice. Over a 

multimedia communication network traffic flows may be controlled by routers, bridges, etc., 

whilst traffic flows over transport networks are almost determined by drivers themselves 

except for some relatively weak restrictions such as speed limits. 
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This paper is concerned with Bayesian inference about an OD matrix. The existing 

Bayesian modeling of OD matrices developed by Hazelton (2001b) is based on the measured 

traffic volumes on monitored links which have intractable multivariate Poisson distributions. 

To deal with this problem, Hazelton (2001b) considered using multivariate normal 

approximations to Poisson distributions but the derived normal approximations were still 

cumbersome for inference. In this paper, instead of drawing inference using traffic counts on 

monitored links, we first base our investigation on unobservable „complete‟ data, and then 

employ the EM algorithm to obtain an estimate of the OD matrix.  

This paper is structured as follows. In section 2 statistical models for inference about an 

OD matrix are introduced. A Bayesian inference using the EM algorithm is investigated in 

section 3. In section 4, we calculate incomplete-data posterior variances and derive 

approximate incomplete-data marginal posterior distributions. Reconstruction and prediction 

of traffic flows are discussed in section 5. An example is examined to illustrate the developed 

method in section 6. Finally, major contributions are summarized in section 7. 

 

2. Statistical models 

Consider a transport network consisting of nodes and directed links which connect nodes. 

Nodes in a transport network may be classified into two categories, origin-destination nodes 

and internal nodes, where origins (destinations) are defined to be the nodes from (to) which 

traffic flows start (travel), and internal nodes are the remaining nodes which are not 

origins/destinations. Origins and destinations may correspond to zones, cities, counties, etc. 

depending on the level of aggregation. Internal nodes are not of direct interest but they play 

an important role in defining paths of a network, where a path from one origin to a 

destination is defined to be a sequence of nodes connected in one direction by links.  

As an example, we consider a particular region RA in Leicester investigated by Hazelton 

(2001a). There are six major OD nodes, i.e. nodes 1, 5, 6, 10, 11, and 14, which are 

associated with major roads and thus of particular interest. Figure 1 shows a simplified form 
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of the road network in region RA where only the major OD nodes are retained and 

renumbered in comparison with Hazelton‟s original network. An example of path is the route 

from origin 1 to destination 5 via nodes 2, 3 and 4 through London road (A6).  

 

INSERT FIGURE 1 HERE 

Figure 1. Abstraction of the road network in region RA of Leicester 

 

In this paper the available data for drawing inference about the OD matrix of a transport 

network is assumed to be a single observation of traffic flows which is collected over a given 

period of time on some pre-selected network links. Suppose that traffic counts are available 

on a set of m network links. Following Hazelton‟s notations (2001b), let 
T

mxx ],...,[ 1x  

denote the single observation on the m monitored links over a given period. In addition, let 

T
cyy ],...,[ 1y  be the unobservable vector of traffic counts on all feasible paths, and 

T
nzz ],...,[ 1z  be the vector of OD counts. Note that in practice vector x is observable, 

whilst both vectors y and z are unobservable.  

We consider two statistical models which are commonly used in the transport literature. 

In the first statistical model, model I, we define an mc path-link incidence matrix, A, for the 

monitored links only, whose (i, j)th element is given by  

 





otherwise     0

path  ofpart  forms link       1 ji
aij , 

and define an nc matrix, B, whose (i, j)th element is given by  

 





otherwise     0

pair  D-O connects path       1 ij
bij , 

where typically m is much less than n, and n is much less than c. Without loss of generality, it 

is assumed that matrix A has a full row rank since redundant rows of A have been removed in 

the stage of design during which a subset of the network links is selected for monitoring. 

In general, we have the following two conservation equations of traffic flows: 
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 Ayx  ,         (1) 

Byz  .          (2) 

Under the commonly-used assumption in transport research (Lo et al. 1996; Hazelton, 2001), 

y1,…,yc are independent Poisson random variables with means c ,...,1  respectively. Then 

according to equation (1), x has a multivariate Poisson distribution with a mean of Aθ , 

where T
c ],...,[ 1 θ . Multivariate Poisson distributions have very cumbersome forms of 

probability mass functions and are hard to deal with analytically. For a comprehensive review 

on multivariate Poisson distributions, see Johnson et al. (1997). 

An alternative statistical model, model II, is based on a proportional assignment matrix 

][ ijpP , where ijp  is the probability of using link j which connects OD pair i, and is 

assumed to be available. The fundamental equations for model II are given by: 

 Pzx  .          (3) 

A commonly-used assumption is that the elements of OD counts nzz ,...,1  are independent 

Poisson variates with menas n ,...,1  respectively. Let 
T

n ],...,[ 1 μ . 

Models I and II are closely related (Hazelton, 2001 a). Throughout this paper, our 

investigation is based on model I. The model II will be discussed very briefly in section 5.3. 

Finally we note that inference for y and θ  is more fundamental than for z and μ  

(Hazelton, 2001 b). This is because from a practical point of view, the former pair define not 

only mean numbers of OD trips, but also the assignment matrix of path choice probabilities 

][ ijpP . Sometimes these probabilities are even of direct interest in themselves. In addition, 

from a statistical point of view, Bayesian statistical inference for z and μ  is relatively 

straightforward based on the inference for y and θ . In the rest of the paper we concentrate on 

the inference for y and θ . 
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3.    Bayesian inference using the EM algorithm 

One of the major problems of drawing inference about an OD matrix from a single 

observation of traffic flows is that typically it is a highly underspecified problem. A Bayesian 

analysis thus provides a nice research framework by specifying prior which amounts to 

introducing extra information based on accumulated knowledge. The major difficulty of 

performing a Bayesian analysis here, as noted by Hazelton (2001b), is that of the very 

complicated likelihood, multivariate Poisson distribution of the collected data x, which is 

analytically intractable. To overcome this problem, instead of using the observed traffic flows 

x, we first base our investigation on unobservable traffic counts y which have very simple 

likelihood, Poisson distributions, and then obtain estimates of unknown parameters through 

the EM algorithm. This can largely simplify the Bayesian inference. Using the terminologies 

of the EM algorithm, vector x is termed incomplete data whilst vector y complete data.  

 

3.1. Complete-data Bayesian inference 

Consider the non-trivial circumstance where matrix A does not have any zero-column. Under 

the model I, traffic counts on all feasible paths are independent Poisson random variables 

with means c ,...,1  respectively. The complete-data likelihood of y1,…,yc, is  

 



c

j

jjyPg
1

);();( θy ,        (4) 

where jj

y

jjj yyP j /)exp();(    are the Poisson probability mass functions with 

parameters j . We further assume that c ,...,1  are independent a priori, each of them 

having a natural conjugate prior distribution, gamma distribution with parameters j  and j : 

 )exp()}(/{),;(
1

jjjjjjjj
jj 





,     (5) 



 

 9 

where )(s  represents the gamma function. The corresponding marginal distributions of jy , 

termed prior predictive distributions, thus are negative binomial distributions ),( jjNB   

(Gelman et al., 1995, p49). Denote densities of ),( jjNB   as ),;( jjjyh  . 

Combining the prior with the likelihood, (4) and (5), gives the posterior density of θ  

which is a product of some gamma distributions: 

 



c

j

jjjp
1

),;()|( yθ 



c

j

jj

y

j yj

1

/)exp(  



c

j

jjjj y
1

)1,;(  . 

Hence, the complete-data posterior distributions of j , )|( jj yp  , are gamma distributions 

)1,;( jjjj y   . The a posteriori most probable estimates of j , j̂ , satisfy 

0/)1,;(  jjjjj dyd  , which yield immediately 

 )1/()1(ˆ
jjjj y   .       (6)  

 

3.2. The EM algorithm 

By application of the EM algorithm for the observed incomplete data x, the M-step results in 

the same equation as equation (6), whilst the E-step involves the calculation of conditional 

expectations, }|{)( x
θ jyE k  for j=1,…,c (McLachlan, 1996), where 

Tk
c

kk ],...,[ )()(
1

)( θ  

denotes the kth iteration of θ . Hence, by the EM algorithm, the (k+1)th iteration is given by 

 )1/()1}|{(ˆ
)(

)1(
jjj

k
j yE k  

x
θ

.      (7) 

Calculation of the conditional expectations }|{)( x
θ jyE k  will be addressed in next sub-

section. After convergence, estimates of j  can be rewritten as 

jjj ba /)1(ˆ  ,        (8) 

with jjj yEa  }|{ xθ  and jjb 1 .  
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For the trivial case where the jth column jA  of  A is a zero-column, the observed traffic 

counts do not provide any information to update the corresponding estimate of j . It thus 

remains unchanged and the equation (8) still holds with jja   and jjb  . 

 

3.3.   The conditional expectations in the E-step 

Iterations of the EM algorithm depend on calculation of the conditional expectations 

}|{ xθ jyE  which are extremely hard to calculate as noted by Vardi (1996). 

Lemma 1. Suppose that yj are independent Poisson random variables with means j  

(j=1,…,c) and ],...,[ 1 cAAA   is an mc matrix with jA  the jth column. Let 
T

cyy ],...,[ 1y  

and T
c ],...,[ 1 θ . Then for a given  m1 vector x, we have 

]|[ xAyθ jyE
)Pr(

)Pr(

xAy

AxAy






j

j . 

Lemma 2 (Vardi, 1996). Under the assumptions of Lemma 1 and for large j ,  a normal 

approximation to the conditional expectation is given by 

]|[ xAyθ jyE )(1
AθxVV  

xxyxj   

where T
jjyx AV   , T

xyyx VV  , and 
T

cxx diag AAV },...,{ 1  . 

The proof of Lemma 1 and further discussion are given in the Appendix. According to 

Lemma 1, the conditional expectation of jy  given xAy   is equal to the unconditional 

expectation of jy , j , multiplied by a ratio of two probabilities. The major advantage of this 

approach is that it guarantees the resulting conditional expectations of Poisson random 

variables being non-negative. In the case where traffic counts are large enough, a normal 

approximation to the joint distribution of yj and x may be applied, resulting in Lemma 2. One 

problem of applying Lemma 2 is that the resultant conditional expectations may be negative 

values, an issue of concern for by Vardi (1996). 
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4. The adjusted marginal posterior distributions 

The EM algorithm does not provide the variances of estimates. When the number of collected 

data is relatively small, asymptotic methods for estimating the variances, such as the 

supplemented EM (SEM) algorithm, are not applicable (McLachlan, 1996). In this section we 

first investigate how to calculate posterior variances and then discuss how to adjust the 

complete-data posterior distributions, )|( jj yp  )1,;( jjjj y   , to derive some 

approximate distributions to incomplete-data marginal posterior distributions )|( xjp  . 

 

4.1. Incomplete-data posterior variances  

To calculate the incomplete-data posterior variances, we apply the following conditional 

variance formula (see, for example, Gelman et al., 1995, p20): 

 ]|)|(var[]|)|[var()|var( xxx jjjjj yEyE       (9) 

Since the complete-data posterior distributions of j  are gamma distributions 

)1,;( jjjj y   , we have  

 )1/()()|( jjjjj yyE  
   

and    2)1/()()|var( jjjjj yy   , 

which yield 

)|var( xj
2}1/{)}|var()|({ jjjj yyE   xx ,    (10) 

where jy   are independent negative binomial random variables with distributions 

),( jjNB  , and vector Ayx   thus has a multivariate negative binomial distribution.  

Denote je  as a vector having the jth entry of one and zeros elsewhere with a suitable 

dimension.  Let 
T

c ],...,[ 1 α  and 
T

c ],...,[ 1 β . Let jjj  /  and 

22 /)1( jjjj    be the expectations and variances of distributions ),( jjNB  . The 

main results are summarized below, where ]|[ xjyE , ]|var[ xjy   and )Pr( xAy   which are 

dependent on the parameters α  and β  are written explicitly as ],;|[ βαxAy jyE ,  
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],;|var[ βαxAy jy  and ),;Pr( βαxAy   respectively. See the Appendix for proof of 

Lemmas 3 and 4.  

Lemma 3. Suppose that yj are independent negative binomial random variables with 

parameters },{ jj   (j=1,…,c) and ],...,[ 1 cAAA   is an mc matrix with Aj the jth column. 

Let T
cyy ],...,[ 1y . Then for a given  m1 vector, x, we have 

(i) ],;|[ βαxAy jyE
),;Pr(

),;Pr(

βαxAy

βeαAxAy






jj

j ; 

(ii) ],;|var[ βαxAy jy ],;|[ βαxAy  jyE ],;|[1{ βeαAxAy jjjyE   

]},;|[ βαxAy  jyE . 

Lemma 4. Under the assumptions of Lemma 3 and for large j , a normal approximation to 

the conditional expectation and conditional variance is given by 

],;|[ βαxAy jyE )(1
AνxUU  

xxyxj ,  

],;|var[ βαxAy jy xyxxyxyy UUUU
1 , 

where T
jjyx AU

2  , T
xyyx UU  , 

T
xx AAΣU    and },...,{ 22

1 cdiag Σ . 

 

4.2. Incomplete-data marginal posterior distributions  

From the results of previous sections, the complete-data posterior distributions, 

)|( jj yp  , are gamma distributions )1,;( jjjj y   . In practice, for the given 

incomplete data x, if we use )1,;( jjjj y    as the resultant posterior distributions 

with yj being replaced by their corresponding conditional expectations }|{ xjyE , this will 

typically exaggerate the precision about j  due to equation (9). To draw inference such as 

construction of Bayesian credible intervals, it is necessary to adjust these complete-data 

posterior distributions. For this end, we consider using ))1(),)|((;( jjjjjj ryEr  x  as 

approximate distributions to incomplete-data marginal posteriors )|( xjp  , where rj are 
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positive scalars which are determined such that the approximate distributions 

))1(),)|((;( jjjjjj ryEr  x  have the same variances as )|var( xj , i.e. the re-scaling 

parameters, rj, satisfy 

})1(/{})|({ 2
jjjj ryE  x

2}1/{)}|var()|({ jjjj yxyE   x , 

which yields )}|var()|(/{})|({ xxx jjjjjj yyEyEr   . The re-scaling thus results 

in inflated variances since 1jr . 

The approximate marginal distributions ))1(),)|((;( jjjjjj ryEr  x  are quite 

close to the true incomplete-data marginal posterior distributions )|( xjp   which are 

analytically intractable. They have equal mean and variance. As j  become large, the 

coefficients of skewness for both distributions are asymptotically equivalent to 2/12 
j . In 

addition, both distributions approach to the same normal distribution as j . 

One major advantage of the approximate marginal posterior distributions is that they 

retain the form of conjugate distributions to the complete-data likelihood. In addition, due to 

simplicity, the approximate marginal posterior distributions provide a convenient way for 

drawing Bayesian inference such as construction of Bayesian incredible intervals without 

resorting to simulation methods. 

 

5. Prediction and reconstruction of traffic flows 

5.1. Bayesian prediction of future traffic flows 

Consider the non-trivial case where matrix A does not have any zero-column. For future 

traffic flows, y~ , the complete-data posterior predictive distribution is given by 

 θy|θθyyy dpgg )()|~()|~( . This results in the complete-data posterior predictive 

distribution 


c

j

jjjyh
1

)
~

,~;~(   which is a product of the probability mass functions 
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)
~

,~;~( jjjyh   of distributions )
~

,~( jjNB  . Hence, the complete-data marginal posterior 

predictive distributions are negative binomial distributions )
~

,~( jjNB   with jjj y  ~  

and jj  1
~

. The mode of the marginal posterior predictive distribution is thus at  

    )1/()1(
~

/)1~(~
jjjjjj yy   ,          

where [u] denotes the integer part of u. Given the incomplete data x, the prediction is  

       )1/()1}|{(~
jjjj yEy   x . 

For the trivial case that 0A j  for some j, the corresponding marginal posterior 

predictive distribution is still a negative binomial distribution with un-updated parameters, 

j  and j . In this case, the mode of the marginal posterior predictive distribution is at 

 jjjy  /)1(~  . Therefore, the prediction of future traffic flows may be rewritten in a 

unified form: 

 jjj bay /)1(~  ,        (8) 

where jjj yEa  }|{ x  and jjb  1  if 0A j ; jja   and jjb   otherwise. It 

shares the same form as equation (8) except that traffic counts have to be taken as integers. 

Next we consider posterior predictive variances. Similar to equation (9), the incomplete-

data predictive variances are given by  

],;|)|~(var[],;|)|~[var(),;|~var( βαxβαxβαx jjjjj yyEyyEy  . 

Since jjjj yyE 
~

/~)|~(   and 
2~

/)1
~

(~)|~var( jjjjj yy   , we obtain 

),;|~var( βαxjy 2}1/{)},;|var()2](),;|({[ jjjjj yyE   βαxβαx ,  (11) 

where ),;|var( βαxjy  and ),;|( βαxjyE  may be calculated using Lemmas 3 and 4. In 

comparison with equation (10), it can be seen that posterior predictive variances are larger 

than posterior estimation variances.  
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Since the complete-data marginal posterior predictive distributions, )
~

,~( jjNB  , 

exaggerate the precision of prediction, we rescale the two parameters of )
~

,~( jjNB   to 

derive approximate incomplete-data marginal posterior predictive distributions. Letting 

 )},;|var(),;|(/{}),;|({ βαxβαxβαx jjjjjj yyEyEr     1, 

we approximate posterior marginal predictive distributions )|~( xjyp  by 

)
~

),|~(( jjjj rErNB  x  which have the same means and variances as the true distributions. 

 

5.2. Bayesian inference for reconstruction of traffic flows 

The problem of reconstruction is to estimate the actual number of trips that occurred during 

the observational period. From section 3.1, the marginal distributions of jy   are ),( jjNB   

with densities ),;( jjjyh  . The a priori most probable estimates of the traffic flows jy , 

 jjjy  /)1(ˆ
0  , are obtained by maximizing the marginal distributions. 

For given y, the distribution of x is degenerate, placing probability one on the single 

point Ay, )( Ayx I . The posterior density of y for given x is thus given by 

 



c

j

jjjyhIp
1

),;()()( Ayxx|y .      (12) 

For given observation x, the reconstructed traffic flows can be calculated as the a 

posteriori most probable vector of y, i.e. the solution to the following maximization problem: 

 


c

j

jjjyh
1

),;(max 
y

        (13) 

 subject to  Ay=x        (14) 

Similar to Zuylen and Willumsen (1980), the objective function (13) may be approximated by 

the Stirling‟s formula: 

 



c

j

jjjjjjjj yyyyyJ
1

)]1log()1log()1()log()[(  . 
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Through the Lagrangean equation, )( xAyλ  TJ , where T
m ],...,[ 1 λ  is a vector of 

Lagrangean multipliers, a formal solution is obtained  

 1/)1(ˆ  jjj ty  jj t/)1(   ,      (15) 

where 1)exp()1(  j
T

jjt Aλ . A special case that 0A j  for some j results in 

jjjj yy  /)1(ˆˆ
0  . Note that equation (15) shares the same form as equations (8) and 

(8), jjj bay /)1(ˆ  , where jja  . 1)exp()1(  j
T

jjb Aλ  if 0A j ; jjb   

otherwise. 

The solution in equation (15) may be further approximated as )exp(ˆˆ
0 j

T
jj yy Aλ  

when j  are large. Let )exp( iih  , the above equation may be rewritten as 

 



m

i

a

jjj
ijhyy

1

0
ˆ         (16) 

which is related to the solution of Zuylen and Willumsen‟s maximizing entropy method. 

In the case that traffic counts are large such that normal approximations to the negative 

binomial distributions may be applied, the objective function in (13) can be written 

approximately as 

 )()(min 1
νyΣνy

y
 T         (17) 

A solution to the problem (17) and (14) is immediately given by  

 ][) ( 1
xAνAAΣΣAνy  TT

       

The problem (17) and (14) provides a nice link with Cascetta‟s generalized least squares 

method, Maher‟s Bayesian method (1983) and Hazelton‟s (2001b) Bayesian method. 

 

5.3. Bayesian inference for a given assignment matrix 

Finally, we discuss Bayesian inference about traffic flows under the framework of model II 

very briefly. Bayesian inference about the mean of z, μ , can be drawn using the EM 

algorithm in a same way as discussed in section 3. Likewise, prediction of future traffic flows 
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can be carried out as section 5.1. Finally, the reconstructed traffic flows can correspondingly 

be approximated as 



m

i

p

jjj
ijhzz

1

0
ˆ  with )exp( iih   as its counterpart of equation (16). 

Note that it has exactly the same form as the Zuylen and Willumsen‟s solution via 

maximizing entropy method. 

 

6.   Example 

To illustrate the developed method, we consider a simple transport network, displayed in 

Figure 2, which was investigated by Hazelton (2001b). It has six nodes with fourteen directed 

links, four of which are OD nodes, i.e. nodes 1, 3, 4, and 6. The total number of the OD pairs 

is twelve. Following Hazelton (2001b), we assume that traffic counts are available on m=8 

links, i.e. links 1, 2, 5, 6, 7, 8, 11, 12. As we can see later, this selection covers a number of 

special cases of interest. For simplicity, we consider fixed routing, assuming that the paths 

connecting nodes 1 and 6, and paths connecting nodes 3 and 4, are through nodes 2 and 5. 

 

INSERT FIGURE 2 HERE 

Figure 2. A simplified network topology 

 

The true OD matrix used to simulate traffic flows in simulation and the prior OD matrix 

for Bayesian analysis are displayed in columns 2 and 3, Table 1, respectively. In each of the 

simulation experiments, a vector of traffic flows, y, is simulated, whose elements are 

outcomes of independent Poisson variables with the means given by column 2, Table 1. A 

single observation x on the set of the monitoring links {1, 2, 5, 6, 7, 8, 11, 12} is calculated 

using equation (1) with the simulated values of y. 

Table 1. Posterior estimates and the associated variances 

OD 

pair 

„True‟ 

parameter 

Prior  

estimate 

Posterior  

estimate 

Prior 

variance 

Complete  

data  

Incomplete  

data  

Scaling 

factor 
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variance variance 

13 783 793 782.74 793.00 391.62 402.80 0.97 

14 677 593 616.00 593.00 308.25 308.25 1.00 

16 137 99 104.26 99.00 52.38 63.59 0.82 

31 429 526 480.44 526.00 240.47 263.72 0.91 

34 524 440 440.00 440.00 440.00 440.00 1.00 

36 104 37 73.50 37.00 37.00 37.00 1.00 

41 225 269 241.00 269.00 120.75 120.75 1.00 

43 701 542 542.00 542.00 542.00 542.00 1.00 

46 30 30 31.24 30.00 15.87 26.96 0.59 

61 104 138 124.56 138.00 62.53 85.84 0.73 

63 132 69 100.50 69.00 50.50 50.50 1.00 

64 81 81 79.44 81.00 39.97 63.16 0.63 

 

6.1. Analysis in one simulation 

The prior distributions for j  are taken as Gamma distributions with parameters j  being 

the prior estimates of j  (column 3, Table 1) and 1j . 

Table 1 displays the results in one simulation where the simulated observation vector x 

is [884, 548, 111, 133, 191, 144, 214, 640]
T
. It can be seen that the posterior estimates do 

improve the prior estimates except for OD pairs 34 and 43. Note that for OD pairs 34 

and 43, this is the completely non-informative situation in the sense that the monitored 

links, {1, 2, 5, 6, 7, 8, 11, 12}, do not form part of the paths associated with the OD pairs 

34 and 43, and thus the collected data, x, do not provide information to update the 

corresponding estimates. It can also be seen that the resultant incomplete-data posterior 

variances lie between the prior variances and complete-data posterior variances, indicating 

the necessity of re-scaling. Note that the re-scaling factor is unity for the OD pairs 14, 

41, 36 and 63 because the collected data x are „complete‟ for inference about the 

corresponding population means of traffic flows.  
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Next, the posterior is explored by using the Metropolis-Hastings algorithm. 

Implementation of the Metropolis-Hastings algorithm is challenging since it is 

computationally expensive for evaluation of posterior kernel, in particular, evaluation of 

mass functions of the multivariate Poisson. The exact method suggested by Tebaldi and West 

(1998) has high computational costs for large means. In this paper we use the method of 

normal approximations to Poisson distributions as suggested by Hazelton (2001a). It largely 

reduces the computational costs in comparison with the method of Tebaldi and West (1998).  

The proposal in the Metropolis-Hastings algorithm is drawn based on a random walk process 

with the current values of parameters plus an innovation which is generated using a normal 

distribution with zero mean and a standard deviation of tuning parameter. For the completely 

non-informative situation we use their prior distributions for simulation, and those that yj are 

completely determined by x we use their posterior distributions, gamma distributions, for the 

simulation. It run for 100 000 iterations and the first 3000 of these were discarded as a burn-

in period. To have approximately independent draws from the target distribution after an 

approximate convergence is reached, we use every 10th simulation draw (Gelman et al., 

1995), from which an approximate posterior is obtained. 

Table 2 displays a comparison between the method developed here and that of the 

MCMC. It can be seen that in general these two methods give quite similar results. 

 

6.2. Analysis for repeated simulations 

Next, simulation is repeated 500 times to have an overall picture about the performance 

of the developed method. The quality of prior information varies via adjusting the parameters 

of the prior distributions. Specifically, the prior distributions of j  are taken as Gamma 

distributions with parameters j = 0*)1( jj    and  j , where *j  and 0j   are 

given by the column 2 and 3,  Table 1, respectively.   is a constant taken as 1, 2, 5, 10, 20, 

and 50 respectively. Clearly, taking the value of  =1 leads to prior estimates 0j  with larger 
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variances, whilst taking the value of  =50 results in prior estimates being almost equal to the 

„true‟ mean values with very small variances. 

The accuracies of estimation, prediction, and reconstruction in terms of average root 

mean square error (RMSE) over 500 simulations are displayed in Table 3. The RMSE is 

defined to be c/||ˆ|| 2ff  ,  where f̂  is an estimate of mean traffic flows, reconstructed 

traffic flows, and predicted future traffic flows respectively, and f is the corresponding true 

values for the problems of estimation, reconstruction, and prediction respectively.  

It can be seen from Table 3 that as the quality of prior information is improved, the 

values of RMSE for estimation decreases. Not surprisingly, the posterior estimates of the 

mean traffic flows have much smaller values of RMSE than the corresponding predicted 

future traffic flows. This can also be seen from equations (10) and (11) that posterior 

predictive variances are larger than posterior estimation variances. 

In addition, Table 3 shows that reconstructed traffic flows have lower values of RMSE 

than predicted future traffic flows. This is because the reconstruction is a problem where the 

reconstructed traffic flows have to satisfy some constraints of the observed traffic flows, thus 

using current information to forecast future values have larger variances.  

Finally, from a point of view of predictivism, predicting new observational outcomes of 

a process has been the principal objective. It can be seen from Table 3 that the accuracy of 

predictions of future traffic flows is improved as the quality of the prior knowledge about the 

OD matrix becomes better. Overall the average prediction errors are relatively low in 

comparison with the magnitudes of the traffic flows. 

 

Table 2. Comparison of posterior means and variances of j  (j=1,…,12)  

using the scaled gamma distributions and MCMC simulation 

 OD 

pair 

Posterior mean  

by scaled gamma 

Posterior mean  

by MCMC 

Posterior variance 

 by scaled gamma 

Posterior variance  

by MCMC 

j=1 13 783.23 782.66 402.80 408.93 
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j=2 14 616.50 616.34 308.25 306.51 

j=3 16 104.75 104.49 63.59 64.30 

j=4 31 480.94 481.72 263.72 268.01 

j=5 34 440.00 439.37 440.00 421.22 

j=6 36 74.00 73.71 37.00 37.74 

j=7 41 241.50 241.07 120.75 118.37 

j=8 43 542.00 541.36 542.00 530.42 

j=9 46 31.74 31.64 26.96 30.58 

j=10 61 125.06 125.07 85.84 83.23 

j=11 63 101.00 100.64 50.50 50.51 

j=12 64 79.94 79.55 63.16 60.65 

 

 

Table 3. Average RMSE over 500 simulations 

 Estimation Reconstruction Prediction 

 =1 58.12 52.78 60.33 

 =2 31.18 27.32 35.69 

 =5 13.48 13.94 21.52 

 =10 7.02 10.68 19.10 

 =20 3.58 10.54 17.86 

 =50 1.45 9.99 17.37 

 

 

7.   Conclusions and discussion  

In this paper we have investigated drawing inference about the OD matrix of a transport 

network from a single observation of traffic flows on a specific set of network links. Besides 

the issue of computational costs, there are two major theoretical challenges: the problem is 

highly underspecified and the likelihood is analytically intractable.  

Through specifying prior to introduce more information, we have performed a Bayesian 

analysis to deal with the highly underspecified problem. On the other hand, to overcome the 
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problem of the analytically intractable likelihood, the EM algorithm has been employed, 

which largely simplifies the Bayesian analysis. Further insights and conclusions have thus 

been obtained and the resulting simple solutions to the reconstruction problem provide nice 

links with most of the well-known existing work in the area of transport research.  

From a point of view of transport research, our major contribution is the development of 

a simple but general approach for estimation of OD matrices which includes many previous 

methods as special cases and has minimal computational cost. Moreover, the neat solutions to 

the problems of estimation, reconstruction, and prediction show that they are very closely 

related. All of these solutions share approximately the same form of updating equations. 

From a statistical point of view, a Bayesian approach using the EM algorithm is 

investigated to draw inference about OD matrices of transport networks. To implement this, a 

simple method is proposed to calculate conditional expectations in the EM algorithm which 

were considered extremely difficult to deal with (Vardi, 1996). In addition, a re-scaling 

method is developed to derive approximate incomplete-data marginal posterior distributions 

which retain conjugate forms to the likelihood of complete data.  

Finally, from a computational point of view, the developed approximate posteriors are 

very competitive in comparison with that of using MCMC simulation, especially for very 

large-scale transport networks in practice. 
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Appendix. Conditional expectations and conditional variances 

To show Lemma 1, we define a set below: 

}  satisfying  integers  enonnegativ  are  ),...,1(|],...,[{)( 1 xAux  cluuuuS l
T

c  

Then according to the definition of expectation we have  

]|[ xAyθ jyE  










)( and
),...,1(  0 0

}Pr{/);();(

xu

xAy

S
clu

c

jl
l

lljjj

l

uPuPu   

Noting the recursion formula );1();( jjjjjj uPuPu   , and letting 1 jj uv  and 

ll uv   (l=1,…,c and lj), we obtain  

]|[ xAyθ jyE  



 



)( and
),...,1(  0 1

}Pr{/);(

j

l
S

clv

c
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llj vP
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xAy  

 

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
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),...,1(  0 1

}Pr{/);(
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)Pr(

j

l
S

clv

j

c

l
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j

j vP

Axv

AxAy
xAy

AxAy
  

Hence, it follows by noting that the sum in the above equation is equal to unity. This 

completes the proof of Lemma 1. 

 

Two special cases for Lemma 1 are:  

(i) the collected data is completely non-informative for inference about j . In this case the 

monitored links do not form part of the jth path, i.e. 0A j . Hence jy  is independent of x. 

We thus obtain 1)Pr(/)Pr(  xAyAxAy j , which yields jjyE  ]|[ xAyθ ; 

(ii) the collected data is „complete‟ for inference about j . In this case one of the monitored 

links, say the kth, does not form part of any path except for the path j, i.e. kj eA  , and the 

kth row of A has the jth entry of one and zeros elsewhere. Hence jy  is the same as the kth 

entry of x, kx , and jy  is independent of the remaining entries of x. We then obtain 
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)Pr(/)Pr( xAyAxAy  j jkkjkj xxyxy /)Pr(/)1Pr(  , which yields 

kj xyE  ]|[ xAyθ . 

In the general situation where the problem cannot be reduced to the above special cases, 

if the volumes of traffic flows are so low such that elements of x are small, calculation may 

be carried out using the exact method discussed in Johnson et al. (1997); otherwise if all of 

the elements of y are large enough such that normal approximations to the joint distributions 

of yj and x can be applied, Lemma 2 may be used to calculate the required conditional 

expectations; finally, for the case where all of the elements of x are large enough but yj are 

not necessarily large,  we apply a normal approximation to the multivariate Poisson 

distribution of x and use simple numerical integration over a unit hypercube, yielding: 

 }2/)()(exp{
||)2(

1
)Pr( 1

2/12/
AθxVAθx

V
xAy  

xx
T

xx
m

    (A1) 

Calculation of ratio of two probabilities in Lemma 1 can be reduced when there are some 

entries of x are „complete‟ as defined in case (ii). In this case the corresponding rows of A 

may be deleted because of independence. 

For the simplest case where an exact probability of multivariate Poisson distribution is 

available (Johnson et al. 1997, pp124), numerical simulations were carried out to evaluate the 

method developed above. For the numerical simulations, the unconditional expectations of 

individual Poisson variates, θ , were taken randomly from a uniform distribution U[50, 150], 

and entries of x were taken as outcomes of normal random variables with both means and 

variances equal to the corresponding entries of Aθ . Then conditional expectations were 

calculated by applying Lemma 1 with exact probabilities and approximate probabilities (A1) 

respectively. The average relative error of conditional expectations between the exact and 

approximate methods over 100 simulation experiments was about 3%.  

 

Next, we consider Lemmas 3 and 4. The proof of Lemma 3 can be completed in a 

similar way to the proof of Lemma 1 by noting the recursion formula 
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),1;1()/(),;(   uhuuh . The proof of Lemma 4 is immediate from normal 

approximations. Calculation of the required probabilities in Lemma 3 can be done in a 

similar way as outlined above. Two special cases are: 

(i) the data is completely non-informative for inference about jy  i.e. 0A j . We have 

],;|[ βαxAy jyE )/( jj   and ],;|var[ βαxAy jy 2/)1( jjj    from Lemma 3; 

(ii) the data is „complete‟ for inference about jy , i.e. kj eA   for some k, and the kth row of 

A has the jth entry of one and zeros elsewhere. We have ],;|[ βαxAy jyE kx  and 

],;|var[ βαxAy jy 0  from Lemma 3. 

The counterpart of equation (A1) for a normal approximation to the multivariate 

negative binomial distribution of x is  

 }2/)()(exp{
||)2(

1
),;Pr( 1

2/12/
AνxUAνx

U
βαxAy  

xx
T

xx
m

. 
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Figure 1. Abstraction of the road network in region RA of Leicester 
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Figure 2. A simplified network topology 

 


