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Abstract—In this paper, we propose a technique for the joint
tracking and labeling of multiple extended targets. To achieve
multiple extended target tracking using this technique, models for
the target measurement rate, kinematic component, and target
extension are defined and jointly propagated in time under the
generalized labeled multi-Bernoulli filter framework. In particu-
lar, we developed a Poisson mixture variational Bayesian model
to simultaneously estimate the measurement rate of multiple ex-
tended targets and extended target extension was modeled using
B-splines. We evaluated our proposed method with various per-
formance metrics. Results demonstrate the effectiveness of our
approach.

Index Terms—Multitarget tracking, extended target tracking,
B-splines, variational Bayesian, Poisson mixture, random finite
sets, RFS, labeled random finite sets, LMB, GLMB Bernoulli filter.

I. INTRODUCTION

IN MULTI-TARGET tracking (MTT), the aim is to jointly es-
timate the number and state of multiple targets present within

a tracking volume while maintaining target tracks/history (data
association). This problem becomes even more challenging in
the face of missed detections, false alarms and noisy or cor-
rupted observations/measurements. The MTT problem can be
addressed under a Bayesian formulation where models are used
to relate unobserved states to measurements. A common repre-
sentation of such models is to assume that one target produces
one measurement per time step, e.g., see [1] and [2]. This is often
referred to as the standard measurement or point target model.

However, with the increasing advances in sensor technology,
the proliferation of high-resolution sensors (e.g., video cameras,
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phased array radars, ground or marine radar and laser range sen-
sors) in recent years, size of the targets, or proximity between
targets and sensor, can be such that the targets occupy multiple
resolution cells of the sensor giving rise to more than one mea-
surement per time step. Such targets are termed extended targets
(ET). Therefore, the point target assumption does no longer hold
in such scenarios. Scenarios where ETs may appear include us-
ing marine or ground radar to track sufficiently close ships or
aeroplanes, using automotive radar for vehicle tracking or using
laser range sensors for person tracking [3]. Besides, modern ap-
plications require extensive and detailed physical information
about targets to achieve tasks including target detection, track-
ing, classification, recognition and identification. In such cases,
the idea of ET becomes even more appealing and useful. Ad-
ditionally, applications that require tracking a group of closely
spaced targets in formation can benefit from the ET formula-
tion [4]. This is because the knowledge of the size, shape, and
orientation of the group formation can be crucial in practical
applications where recognition and classification are of impor-
tance [4]. Hence, target extension model and other information
(e.g., kinematics) for ETs are required for tracking application.

When considering ET measurement models, two main aspects
are usually required and these are i) a model to describe the
number of measurements generated by each ET; ii) a model to
capture the target’s spatial distribution. These two components
however depend very much on the type of ET being tracked. For
instance, a target (e.g., radar target) can generate measurements
from different scatter points. Another target type may generate
just a few observations around a scatter point [5]. In any case,
we can consider the observations from an ET to be such that the
detections are geometrically structured.

As for modelling the number of measurements generated by
an ET, the authors in [6] and [7] proposed one such model where
the number of ET measurements are modelled as an inhomo-
geneous Poisson distribution characterized by a rate parameter.
Knowledge on the distribution of measurements and acquiring
a good estimate of the measurement rate parameter especially
in the case of spatially close extended targets are important to
improve performance [8]. The work in [9] proposed a recursive
Bayesian method with exponential forgetting factor to estimate
the measurement rate. This method requires choosing an appro-
priate window size for the forgetting factor as this is application
dependant.

With regards to modelling the target extent (i.e., shape and
size) of an ET, this is possible even in the absence of a specific
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target structure. This can be achieved for example by methods
including: i) assuming some general parametric shape such as
an ellipse or a rectangle (see e.g., [4], [10]–[19]) or ii) assuming
an arbitrary shape for the ET (see e.g., [20]–[27]). For the first
approach mentioned (i.e., assuming a general parametric shape),
the most common technique used is the random matrix method
proposed in [10] where the ET extension was modelled as a
symmetric positive definite matrix (i.e., the ET is assumed to be
elliptical). This method has been applied in various scenarios
in both LIDAR and marine radar tracking (see e.g., [28] and
[29]). However, this method has limitations as its performance
depends inherently on the elliptic shape assumption.

As for the approaches in [20]–[27], the ET shape is assumed
to be arbitrary and the techniques used for the target exten-
sion can be summarized as star-convex based, Gaussian process
based, multiple sub-ellipse based, extension deformation based
and measurement generating points based. It is worth mention-
ing here that these methods were presented (for the most part)
for single ET tracking. The star-convex method or its alternative,
the Gaussian process model provides a systematic way to model
different target shapes from ellipses [17] to arbitrary star-convex
shapes [26]. However not all arbitrary shapes fit into the defi-
nition of star-convex shapes (where a set is called star-convex
if each line segment from the center to any point is fully con-
tained in the set). The multiple sub-ellipse based method [20],
[24] models the extension of arbitrary ET shapes using multiple
sub-objects (ellipses). These methods usually assume the num-
ber of sub-objects to be known. Choosing a suitable number of
sub-ellipses may be a challenge especially when dealing with
ETs whose true extension is not known or group targets whose
formation change dynamically. The method in [22], involved
estimating the shape of an ET using the PHD filter. The authors
considered an augmented state representation of an extended
target that consisted of linear and non-linear components. A
spline was used to represent the measurement generating points
on the boundary of a rectangle. The PHD filter was then applied
for jointly estimating this target state. As for the extension de-
formation based approach, the authors in [21] considered an ET
to have a reference extension with control points on its bound-
ary and a deformed extension. Then some of the control points
were aimed to be moved from the reference extension to the
deformed extension. The authors assumed both the reference
extension and the control points to be known. However, in prac-
tical applications where an ET has varying scattering points
possibly due to sensor to target geometry, the number of control
points can change.

Once the ET measurement model has been defined, a multi-
object tracker can be implemented together with the ET mea-
surement model to perform state and target number estimation
under the Bayesian formulation. To achieve MTT in general, a
number of algorithms have been proposed and used. The most
widely applied methods are the global nearest neighbour (GNN)
[2], [30], the joint probabilistic data association (JPDA) filter
[2], multiple hypothesis tracking (MHT) [30], [31] and random
finite set (RFS) based multi-target filters [32].

The GNN, JPDA and MHT techniques essentially rely on the
same principle in that they basically keep multiple instances of

single target filters for all possible objects. In other words, they
require data association followed by single target filtering [33].
The RFS based methods however possess a desirable charac-
teristic of avoiding data association and focus on filtering by
seeking optimal and suboptimal estimates of the multi-target
state [33].

Techniques for achieving ET MTT include use of the prob-
ability hypothesis density (PHD) filter (see e.g., [16], [28],
[34]–[37]) and its cardinalized version the cardinalized-PHD
(CPHD) filter (see e.g., [3], [38], [39]). The PHD filter recur-
sively estimates the first order moment (intensity function) of a
random finite set [32] while the CPHD filter, in addition to esti-
mating the PHD of an RFS, estimates a truncated cardinality dis-
tribution. It provides a better cardinality estimate as compared
to the PHD filter [40]. The cardinality-balanced multi-target
multi-Bernoulli (CB-MeMBer) filter was proposed specifically
to address the pronounced bias in the cardinality estimate of
the MeMBer filter [32], [41]. The CB-MeMBer filter which
is a recursion that propagates (approximately) the multi-target
posterior density and is based on the assumption that every
multi-target posterior is a multi-target multi-Bernoulli process
is also RFS based and has been used in ET MTT (see e.g., [42],
[43]). However, the PHD, CPHD and CB-MeMBer filters do not
formally estimate target trajectories (i.e., perform data associa-
tion) in their basic forms. A post processing step is required to
achieve this. To alleviate this problem, the generalised labelled
multi-Bernoulli (GLMB) filter [44] and it computationally effi-
cient version the labelled multi-Bernoulli (LMB) filter [45] were
proposed, all under the RFS framework. Both filters can in ad-
dition to recursively estimating the target state and the number
of targets, provide track association histories (data association).
Both filters have been used to achieve ET MTT [5] and [46].

It is therefore desirable to have an ET multi-target tracker
capable of incorporating models of measurement rate and target
extent into a tracker that can estimate extended target states,
number of targets and maintain track association in order to
achieve improved tracking performance. Recently, the authors
in [5] and [46] proposed a method to achieve this through a
recursive Bayesian rate estimator to compute the measurement
rate of each target individually and sequentially. The authors
used the random matrix approach to model the target extent and
formulated expressions for achieving ET MTT under the frame-
work of GLMB and LMB. This approach requires pre-setting a
window size to perform the measurement rate estimation based
on the rate estimation method proposed in [9]. The authors in
[9] noted that the choice of the window size affects how fast
or slow the estimated rate by their method changes to the true
rate parameter. This requirement may mean parameter tuning
to obtain the right window size in some applications. The ET
extension model in this approach is restrictive in that not all ET
can be modelled using the elliptical shape.

In this paper, we propose a multiple ET tracking technique us-
ing the framework of labelled random finite set. We refer to this
technique as the ET generalised labelled multi-Bernoulli spline
(ET-GLMB-S) filter. In our approach, we model the measure-
ment rate of the ETs as a Poisson mixture and we use a Pois-
son mixture variational Bayesian (PMVB) to simultaneously
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estimate the measurement rate of all ETs present. Based on [6],
we model the target extent as a diffuse model of the measurement
generating process such that the target extent is represented by
a spatial probability distribution instead of modelling explicit
measurement sources. We use B-splines to model this spatial
probability distribution. We then employ our PMVB and spline
approaches to the modified GLMB filter of [44] to achieve joint
recursive estimate of ET state estimate, number of target and
targets label tracking.

The main contributions of this paper in contrast with method
proposed in [5], [46] are listed as follows. Firstly, we use a vari-
ational Bayesian based method to simultaneously estimate the
measurement rate of targets present. Use of VB avoids explicitly
pre-setting a window size and converges to the true rate param-
eter given the number of detections. This has the advantage of
maximizing an explicit objective, and fast convergence in most
cases. Secondly, we derive the lower bound for our variational
Bayesian method to aid in monitoring convergence. Third, we
use B-splines to model the target extent which will allow for
more accurate modelling of targets with arbitrary extensions
rather than the restrictive elliptical model of [5], [46]. Lastly,
we describe the prediction and likelihood update equations for
target extension under the B-spline model.

The remainder of the paper is organized as follows. In
Section II, we provide some background information as well
as define some notations and definitions used in the paper.
Section III presents some background information on B-Splines.
We introduce the proposed ET-GLMB-S filter along with
related derivations in Section IV. We describe and derive
our simultaneous measurement rate estimator, the PMVB in
Section V. Section VI contains simulation results highlighting
the performance of our proposed technique followed by con-
cluding remarks in Section VII.

II. BACKGROUND AND PRELIMINARIES

A. Multi-Target Bayes Filter

In Bayesian multi-target estimation, the aim is to recursively
estimate at each time k (using two stages known as prediction
and update) the state of multi-targets Xk ⊂ X. With an RFS
formulation, both the multi-target states Xk and multi-target
observations Zk ⊂ Z are modelled as RFS. A framework for
dealing with RFSs is known as finite sets statistics (FISST)
[32] which is based on the notion of integration/density that is
consistent with point process theory [47].

In the prediction stage, the multi-target state at time k − 1 is
assumed to be distributed according to the density ζk−1(·|Z1:k1),
with Z1:k−1 denoting an array of finite sets of measurements re-
ceived up to and including time k − 1. The multi-target predic-
tion to time k given k − 1 is given by the Chapman-Kolmogorov
equation

ζk |k−1(Xk |Z1:k−1) =
∫
fk |k−1(Xk |X)ζk−1(X|Z1:k−1)δX,

(1)

where fk |k−1(·|·) is the multi-target transition kernel, and the
integral is the set integral [32],

∫
f(X)δX =

∞∑
i=0

1
i!

∫
Xi

f({x1 , . . . , xi})d(x1 , . . . , xi) (2)

At time k, a new set of observations Zk is available and mod-
elled by a multi-target likelihood function gk (Zk |Xk ). Thus the
update stage involves computing the multi-target posterior at
time k given by Bayes rule

ζk (Xk |Z1:k ) =
gk (Zk |Xk )ζk |k−1(Xk |Z1:k−1)∫
gk (Zk |X)ζk |k−1(X|Z1:k−1)δX

. (3)

Both (1) and (3) above collectively form the multi-target Bayes
filter. However, computing the exact multi-target posterior (i.e.,
(3)) is in general numerically intractable, and therefore approx-
imations are required in order to derive practical algorithms
[32]. One of such approximations is the RFS-based multi-object
filters.

Earlier works on tractable RFS-based algorithms include the
probability hypothesis density (PHD) filter [32], which propa-
gates only the first moment of an RFS; the cardinalized PHD
(CPHD) filter [48] which jointly propagates the probability dis-
tribution of the number of targets and the first order moment;
the multi-target multi-Bernoulli (MeMBer) filter [32] and its
cardinality-balanced version, the CMeMBer filter [41] which
both propagate the multi-target posterior density. Although, both
the (C)PHD and the (C)MeMBer RFS approaches do not require
explicit data association, they do not maintain target labels over
time (i.e., they instead perform multi-object filtering by pro-
viding a set of unlabelled point estimates at each time step as
opposed to tracking). As a result of this, post-processing is re-
quired in applications to produce the tracks.

Recently, [44] and [49] propose the generalised labelled
multi-Bernoulli (GLMB) filter which is an idea based on
labelled-RFS to address the problem. In their approach, they
assign distinct labels to each element of the target set, so that
trajectory history of each object can be naturally identified,
without the need for post-processing. The GLMB filter in [44]
and [49] was for solving the multi-object tracking problem un-
der the standard point-detection likelihood model (i.e., when
targets generate at most one measurement per time step.) Fur-
thermore, the works in [5] and [46] proposed a generalization of
this idea to enable the GLMB filter to handle extended targets.
In the subsequent sections, we propose an improved technique
for handling extended targets based on this generalization un-
der the labelled-RFS framework. Before proceeding to this, we
introduce some definitions, notations and concepts as regards to
labelled random finite sets.

B. Labeled Random Finite Sets

Notation 1: We use bold upper case letter (X) and bold
lower case letter (x) to denote labelled sets and labelled vectors
respectively. We adopt regular upper case letter (X) and regular
lower case letter (x) for unlabelled sets and unlabelled vectors
respectively.
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Notation 2: For a real-valued function h, its multi-object
exponential is

hX �
∏
x∈X

h(x) (4)

with h∅ = 1 by convention and the elements in set X can be of
any type e.g., sets, scalars or vectors so long as the function h(·)
accepts such arguments.

Notation 3: The generalized Kronecker delta function, and
the set inclusion function are respectively defined as

δY (X) =
{

1, if X = Y
0, otherwise,

1Y (X) =
{

1, if X ⊆ Y
0, otherwise,

(5)

where both, X and Y can be of any type e.g., sets, scalars or
vectors.

Definition 1: An RFS can be defined as a finite-set-valued
random variable. The FISST notion of integration/density is
used to characterize RFSs [32]. In an RFS, the number of points
is random; the points themselves are random and unordered as
opposed to a random vector.

Definition 2: A labelled RFS X with state space X and dis-
crete label space L, is an RFS on X × L, such that the labels
within each realization are always distinct. That is, if L(X) is
the set of unique labels in X , and the distinct label indicator
function is defined as

Δ(X) =

{
1, if |L(X)| = |X|
0, if |L(X)| �= |X|, (6)

a labelled RFS X always satisfies Δ(X) = 1 [44], [49].
Definition 3: A generalized labelled multi-Bernoulli

(GLMB) RFS is a labelled RFS with state space X and discrete
label space L, and is distributed according to [44], [49]

ζ(X) = Δ(X)
∑
c∈C

w(c)(L(X))[p(c)(·)]X , (7)

where C is a discrete index set, and w(c)(L) and p(c)(x, �)
satisfy the following

∑
L⊆L

∑
c∈C

w(c)(L) = 1, (8a)

∫
x∈X

p(c)(x, �)dx = 1. (8b)

Definition 4: A labelled multi-Bernoulli (LMB) RFS is a
cheaper approximation of the GLMB RFS. The LMB is a la-
belled RFS having a state space X and a discrete label space L,
which is distributed according to [45]

ζ(X) = Δ(X)w(L(X))[p(·)]X , (9a)

where

w(L) =
∏
�∈L

(
1 − r(�)

)∏
�∈L

1L (�)r(�)

1 − r(�) , (9b)

p(x, �) = p(�)(x), (9c)

with x ∈ X denoting e.g., a target state, p(�)(·) and r(�) denoting
the probability density and existence probability respectively of
the track corresponding to label � ∈ L.

III. B-SPLINES

In this section, we give a brief background on B-spline. For
more details, refer to [50]–[52]. A B-spline is a piecewise poly-
nomial function which can be used to represent a curve. Any
arbitrary geometrical, numerical or statistical function can be
described by the B-spline transformation [53]. One can control
the shape of any curve by adjusting the locations of the control
points. This movement can be on the entire curve in which case
there is a global effect or on certain part of the curve (i.e., which
will have a local effect) [54]. A key benefit of using B-spline
is its local controllability. That is to say, by applying appropri-
ate control point movements, a curve can be controlled locally.
This feature is useful when approximating/modelling target ex-
tension from the multiple (and stochastic) measurements gen-
erated by the target. This feature is also useful in spline filter
implementation [53].

Mathematically, a one-dimensional p-th order B-spline curve
S(s) of degree p− 1 of a curve parameter s can be defined as:

S(s) =
np∑
i=1

PiBi,p,t(s) 2 ≤ p ≤ np, (10)

where Pi is the i-th control point, np denotes the total num-
ber of control points and t denotes a knot vector consisting
of non-decreasing sequence of real valued numbers, where
t = {t1 , . . . , tr}, i.e., ti ≤ ti+1 , i = 1, . . . , τ . The knot vector
t relates the variable x to the control points [50]–[52]. The to-
tal number of knots is always greater than the total number of
control points [50]. Adding or removing knots using appropriate
control point movement can exactly replicate the function/curve,
which is suitable for implementing filtering algorithms using
splines [55], [56]. Also, a higher-order (three or more) B-spline
curve tends to be smooth and maintains the continuity of the
curve. The continuity of the B-spline curve enables continuous
state estimation [55], [56]. The i-th B-spline basis functions of
a variable s are denoted by Bi,p,t(s) and defined as [50]–[52]:

Bi,1(s) =

{
1 if ti ≤ s < ti+1 ,

0 otherwise.
(11)

Bi,p(s) =
s− ti

ti+p−1 − ti
Bi,p−1(s) +

ti+p − s

ti+p − ti+1
Bi+1,p−1(s)

(12)

where variables ti denote knot elements; Bi,p(s) is non-zero in
the interval [ti , ti+p ]. The basis function Bi,p(s) can have the
form 0/0, in which case it assumes 0/0 = 0 [52]. Furthermore,

np∑
i=1

Bi,p(s) = 1 (13)

for any value of the parameter s. The basis functions are poly-
nomials of degree p− 1 [50], [52]. Moreover, a B-spline curve
can be open, clamped or closed. An open B-spline curve is
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Fig. 1. Plots showing different constructions of B-splines. The control points are indicated by circles and numbered on the plots.

formed if the knot vector does not have any particular struc-
ture, hence the generated curve will not touch the first and
last legs of the control polyline (see Fig. 1(a)). A B-spline is
clamped when the curve is tangent to the first and the last legs
of the control polyline (see Fig. 1(b)). This is achieved by re-
peating the first knot and the last knot p+ 1 times (i.e., of
multiplicity p+ 1). A closed B-spline can be formed by repeat-
ing some knots and control points. In this case, the start and
the end of the generated curve join together forming a closed
loop (see Fig. 1(c)). This can be obtained by first designing a
uniform knot sequence and then wrapping the first p and the
last p control points. More specifically let P1 = Pnp −p+1 ,P1 =
Pnp −p+2 , ...,Pp−2 = Pn−1 and Pp−1 = Pnp . Furthermore, uni-
dimensional splines can be extended to multidimensional
splines by using tensor product spline construction, see [50].
A spline subspace Bij ,pj ,tj (sj ) is defined for each dimen-
sion where sj denotes the variable in the j-th dimension.
Thus, the spline representation of a multidimensional function
S(s1 , . . . , sm ) is given as

S(s1 , . . . , sm )

=
np∑
i1

. . .

np∑
im

Pi1 ,...,im Bi1 ,p1 ,t1 (s1) · · · Bim , pm , tm (sm). (14)

The construction of the multidimensional spline polynomials
above can be done by solving a corresponding set of linear equa-
tions [54], [55]. Moreover, the B-spline approach has been used
in target tracking applications [53]–[56] in a continuous state
space primarily because no special assumption on the noises is
required, and it is able to accurately approximate arbitrary prob-
ability density or probability hypothesis density surfaces [54].
In most tracking algorithms, during the update stage, the states
are updated, but in B-spline-based target tracking only the knots
are updated [53], [55], [56].

IV. MULTIPLE EXTENDED TARGET TRACKING WITH

LABELLED RFS AND B-SPLINES

A. Problem Formulation

Consider an ET with scattering points along its boundary and
within its body such that it generates measurements along its
boundary and within its body. Let the labelled set of extended
targets at time k be denoted by:

Xk = {(x, �)i,k}|X|
i=1 � {xi,k}|X|

i=1 (15)

where � ∈ L(X) and L(X) is a set of unique labels in X .
xi is the labelled augmented state of the i-th target composed
of the kinematic state, extension state and measurement rate
parameter; we henceforth use (x, �) and x interchangeably.

The set of observations received at time k is denoted

Zk = {zj,k}Mk

j=1 , (16)

whereMk is the total number of measurements obtained at time
k. The cumulative measurement sequence up to and including
time k is Z1:k : Z1 , Z2 , . . . , Zk . Note that the set Z includes
both target originated measurements and measurements due to
clutter. Each target, when present can generate one or more
measurements. The measurements due to clutter are assumed
to be Poisson distributed in number with rate parameter γ and
having spatial distribution c(·). These clutter measurements are
modelled as being uniformly distributed over the tracking scene.
The goal at each time k is to estimate the labelled set of extended
targets Xk given a set of corrupted observations Zk .

B. Extended Target Observation Model

Here, we present the extended target observation model sim-
ilar to [5] and [46]. At a given observation time, let the labelled
RFS of multiple extended targets be X = {x1 , ..., xn}. Hence
we assume that a particular target x ∈ X has probability of
pD (x) of being detected or misdetected with the probability
1 − pD (x). Furthermore, we assume that if the extended tar-
get x is detected, it generates a set of measurements D with
likelihood g′(D|x). Let D = {D1 , ...,Dd} be the set of target
detections. Then the set D is distributed according to (see [32]):

gD(D|X) =
∑

D1 
···
Dd = |X|
g̃(D1 |x1) · · · g̃(D|X||x|X|), (17)

where g̃(D|xi) is an RFS distribution defined by

g̃(D|xi) ∝
{

1 − pD (x) if D = ∅,
pD (x)g′(D|xi) otherwise.

(18)

The symbol 
 denotes that the summation is taken over all
mutually disjoint subsets of D, such thatD1 ∪ · · · ∪D|X| = D.
Let the set K, which is independent of the target detections be
a set of clutter observations and modelled as a Poisson RFS
with rate γ and spatial distribution c(·), hence K is distributed
according to:

gK(K) = e−γ [γc(·)]K. (19)
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Given the above, the set of multi-target observations, Z, is the
union of the set of target detections and clutter observations,
i.e., Z = D ∪ K. Moreover, since D and K are independent, the
multi-target likelihood is given by the convolution

g(Z|X) =
∑
D⊂Z

gD(D|X)gK(Z − D) (20a)

=
∑
D⊂Z

gD(D|X)gK(K). (20b)

Furthermore, the multi-target likelihood can be expressed as
a double summation over partitions of Z up to |X| + 1, and
mappings of measurement groups to targets as [5], [46]

g(Z|X) = gK(K)
|X|+1∑
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

[
ψW(Z )(·; θ)

]X
, (21a)

= e−γ [γc(·)]Z
|X|+1∑
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

[
ψW(Z )(·; θ)

]X
,

(21b)

where Pi(Z) partitions Z into exactly i groups, and Θ(W
(Z)) is the set of all one-to-one mappings θ : L(X) →
{0, 1, . . . , |W(Z)|} taking the labels in X to either a group
of measurements in W(Z), or a misdetection. The term
ψW(Z )(x; θ) is denoted as

ψW(Z )(x; θ) =

⎧⎨
⎩

1 − pD (x) θ(�) = 0,
pD (x)g ′(Wθ ( � ) (Z )|x)

[γ c(·)]Wθ ( � ) (Z ) θ(�) > 0,
(22)

where Wθ(�)(Z) is the group of measurements in partition
Pi(Z) that was assigned to label � under the mapping θ, and
g′(D|x) is the likelihood that a single extended target with
labelled state x generates measurement D. From (21b), it is
quickly observed that computing g(Z|X) requires summation
over all partitions of the measurements, Z. This in general,
will be numerically intractable because the sets of measurement
partitions and group-to-target mappings can potentially become
extremely large [5]. We discuss the idea of partitioning the mea-
surement set Z next.

1) Measurement Set Partition: At time k, consider a set of
measurements Zk = {z1,k , z2,k , z3,k} as in Fig. 2. The Figure
shows five possible partitions Pi(Z) of the setZ, with each par-
tition containing non-empty cells W(Z). The index i represents
the i-th partition i.e., Pi(Z). In each partition, say i = 2 (where
there are two sub-groups/cells), the sub-groupings assumes that
measurements in the same sub-group/cell belong to the same
target or a clutter source.

Furthermore, the number of possible partitions grows as the
size of the measurement set increases [8], [28]. Therefore, for
a target tracking method to be computationally tractable, only
a subset of the possible partitions needs to be considered [8],
[28]. In addition, these subset of possible measurement parti-
tions must represent the most likely of all partitions in order to
achieve good tracking performance [8]. To this end, a number
of techniques can be used such as a technique called distance

Fig. 2. Possible partitions of a set of three extended targets. Each black dot
represent measurements. The index i represents the i-th partition. In each par-
tition, say i = 2, the sub-groupings assumes that measurements in the same
sub-group belong to the same target.

partition was suggested by [8] and another technique namely
subpartition algorithm was also proposed in [8] to better handle
the case of spatially close targets. Two other methods for achiev-
ing feasible measurement set partitioning known as the predic-
tive partition and the expectation maximization (EM) partition
were also proposed in [28]. Moreover, the authors in [28] sug-
gests that the distance partitioning, subpartition, prediction par-
tition and EM (for Gaussian mixtures) partition can all be used
together to achieve a feasible set of partition Pi(Z). Instead of
using all three techniques as suggested by [28], we suggest that
using the prediction partition of [28] with a variational Bayesian
(VB) technique (for Gaussian mixtures) (see [57] chap. 10) suf-
fices and offers improved performance in terms of computation.
In the VB partition algorithm, the Gaussian mixture parame-
ters are initialized with the means from the prediction partition
method. These means include the means for both surviving and
new born targets. The number of mixture components is set to
either the maximum number of expected targets or the number
of means from the prediction partition plus one. The extra added
component is to capture the clutter measurements. Furthermore,
using VB has the advantage of not knowing the number of clus-
ters and does not suffer from singularity issues when compared
to EM as highlighted in Chapter 10 of [57]. (see [57] chap. 10
for more details on VB for Gaussian mixtures.)

C. Extended Target State Model

We model the extended target state of the i-th target at time
k with label � as the tuple

xi,k � (λi,k , xi,k ,Xi,k ) (23)

where λi,k is the Poisson measurement rate parameter, xi,k is
the target kinematic state (such as position, velocity, acceler-
ation) and Xi,k denotes the target extension/shape state. We
model density of the rate parameter as a gamma distribution,
the kinematic state as a Gaussian distribution and the extent as
spatial probability distribution characterized by control points
of a B-spline function. This spline is represented in the target
state by the spline control points. Therefore, given the control
points, we know the shape and size of the target. Conceptually,
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the spline model can be used with random distribution models
e.g., Gaussian, Poisson etc. However, given that the measure-
ment model (as will be described in Section IV-C2) is Gaussian
and the spline control points are a function of the measurements,
there is an underlying Gaussian assumption in the pdf of χ used
in our work.

Since only the i-th target is considered, we suppress the sub-
script i and the label � from here on. The distribution of the
extended target state is given by the density in (24). For simplic-
ity, we henceforth adopt the notations for indices as (·)k−1 , (·)k
and (·)+

k to represent (·)k−1|k−1 , (·)k |k−1 and (·)k |k respectively.

p(xk−1 |Z1:k−1) = p(λk−1 |Z1:k−1)p(xk−1 |Xk−1 , Z1:k−1)

× p(Xk−1 |Z1:k−1). (24)

We now describe the prediction and update stages of the ex-
tended target density of (24).

1) Prediction: We now compute the predicted density p
(xk |Z1:k−1) of an extended target. To this end, we solve the
Champan-Kolmogorov equation below:

p(xk |Z1:k−1) =
∫
f(xk |xk−1)p(xk−1 |Z1:k−1)dxk−1 (25)

where f(·|·) denotes the transition density from time k − 1 to k
and p(xk−1 |Z1:k−1) is the extended target density at time k − 1.
Next, let us assume the transition density can be written as

f(xk |xk−1) = f(λk |λk−1)f(xk |xk−1 ,Xk )f(Xk |Xk−1). (26)

This equation assumes independence between the kinematic
state xk−1 and the extent state Xk . This approximation is inher-
ited from [10], where it was noted that this implies restrictions
that can be justified in many practical applications [3], [46]. Re-
laxing this assumption will mean that χk is dependent on xk−1
which is a consideration for future work. Hence, the density of
(25) yields

p(xk |Z1:k−1) =
∫
p(λk−1 |Z1:k−1)f(λk |λk−1)dλk−1

×
∫
p(xk−1 |Xk−1 , Z1:k−1)f(xk |xk−1 ,Xk)dxk−1

×
∫
p(Xk−1 |Z1:k−1)f(Xk |Xk−1)dXk−1 . (27)

To solve for (27), similar to [9], we assume that the density of
the measurement rate can be approximated as∫

p(λk−1 |Z1:k−1)f(λk |λk−1)dλk−1 ≈ GAM(λk ;αk , βk ),

αk =
αk−1

u
, βk =

βk−1

u
, (28)

where GAM(λk ;αk , βk ) means λk is gamma distributed and
governed by parameters αk and βk . The term u > 0 is a scaling
term that ensures prediction such that the expected value of the
rate parameter is retained and its variance is scaled (increased)
by u. In our approach, choosing u such that it is positive suffices
because the rate parameter converges to the true value when the
PMVB is used.

The second line of (27) captures the kinematic component
of the density. The kinematic density p(xk−1 |Xk−1 , Z1:k−1) =
N (xk−1 ;mk−1 , Pk−1 + Σk−1) and under a linear Gaussian dy-
namic model, f(xk |xk−1 ,Xk−1) = N (xk ;Fxk−1 , Q+ Σk−1).
This has a closed form solution given by:
∫

N (xk−1 ;mk−1 , Pk−1 + Σk−1)f(xk |xk−1 ,Xk−1)dxk−1

= N (xk ;mk, Pk + Σk ),

mk = Fmk−1 , Pk = FPk−1F
T̄ +Q. (29)

where Σk−1 denotes the covariance of control points.
The last component on the RHS of (27) (i.e., the last line)

represents the extended target extension component which we
assume to be a spatial probability distribution. We approximate
this as ∫

p(Xk−1 |Z1:k−1)f(Xk |Xk−1)dXk−1

≈ Sk (Xk ; Pk ) � Sk , (30a)

where Sk is a d dimensional B-spline curve of order p, degree
p− 1, having knots t and characterized by control points Pk .
The B-spline curve Sk is given as:

Sk =
Nk∑
j1

Pk,j1 Bi1 ,p,t(sj1 ) · · ·
Nk∑
jd

Pk,jd Bid ,p,t(sd), (30b)

Pk = FPk−1 + wk−1 , (30c)

where the subscript d in (30b) denotes the dimension of the
control points, Pk,jd denotes the vector of control points in the
d-th dimension and Nk is the number of control points; wk−1
is an independent and identically distributed (i.i.d.) Gaussian
noise vector with zero mean and covariance Σk−1 . The B-spline
used here is a closed spline which can be obtained as described
in Section III. The spline has order p = 4 (degree 3). The knot
elements are determined between intervals [a, b] as [52]:

t =

⎧⎪⎨
⎪⎩
t1 , . . . , tp = a

ti+p = a+ i(b−a)
Nk +p−1 for i = 1, . . . , (Nk − p)

tl−p , . . . , tl = b,
(30d)

where l = Nk + p.
The above gives the extended target predicted density

p(xk |Z1:k−1) ≈ ETS(xk ; ξk ) where ξk = (αk , βk ,mk , Pk ,Sk ,
Pk ) is an array containing the predicted parameters which are
defined by (28), (29) and (30a).

2) Update: When the set of measurements Zk is available,
each extended target needs to undergo measurement update us-
ing feasible subsets D of Zk . We now describe the update pro-
cedure of a single extended target having a predicted density
ETS(·) given D. We assume that an extended target, when
present and detected, generates measurements D and each ele-
ment of D is generated according to the measurement model

z̄k = Hxk + vk (31)
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where matrix H is a transformation matrix and vk is an i.i.d.
Gaussian noise vector with mean zero and a covariance Σk ;
where Σk denotes the covariance of the control points.

Given the predicted density, we aim to use Bayes rule to
compute the posterior density

p(x+
k |Z1:k ) =

p(xk |Z1:k−1)g′(D|xk )∫
p(xk |Z1:k−1)g′(D|xk )dxk (32)

We define the single target likelihood term g′(D|xk ) of (32) in
a similar manner to [10], [46] as

g′(D|xk ) = POIS(|D|;λk )
|D |∏
j=1

N (zj ;Hxk ,Σk ) (33)

so that the numerator of (32) is

p(xk |Z1:k−1)g′(D|xk )
= GAM(λk ;αk , βk )N (xk ;mk, Pk + Σk )

× SkPOIS(|D|;λk )
|D |∏
j=1

N (zj ;Hxk ,Σk ). (34)

Note that the use of the spline representation in (34) does not
mean that we take a spline to be a pdf. The spline representation
in (34) rather is the pdf of the extent state, i.e., the pdf of the
spline control points. Rearranging (34) yields

= GAM(λk ;αk , βk )POIS(|D|;λk )

×N (xk ;mk, Pk + Σk )
|D |∏
j=1

N (zj ;Hxk ,Σk )

× Sk (Xk ; Pk ). (35)

where the first line captures the measurement rate component,
the second line is the kinematic component and the last line is the
extension component. From (35), given that the measurement
rate component is independent of the extension and kinematic
components, we can treat them separately.

As for the measurement rate component, we obtain the up-
dated parameters α+

k , β+
k and λ+

k using the Poisson mixture
variational Bayesian (PMVB) technique which is described in
details in Section V. The PMVB is initialized using the pre-
dicted αk , and βk as in (28), the mixture components C and
the number of measurements from the ETs as obtained from the
measurement partitioning technique of Section (IV-B1). The
number of mixture components C can be set to the maximum
expected number of components. Setting such a value for C,
the VB model will not over fit the measurements to this number
but rather converge to the true number of components present
given the measurements. This is one of the advantages of the
VB method over techniques such EM.

For the kinematic components, we have the update parameters
given by the following:

ẑk =
1
|D|

∑
zk ∈D

zk (36a)

m+
k = mk +Kk (ẑk −Hmk ) (36b)

Kk = PkH
T S−1

k (36c)

Sk = HPkH
T +

1
|D| (36d)

P+
k = Pk −KkHPk (36e)

Σ+
k =

1
|D| − 1

∑
zk ∈D

(zk − ẑk )(zk − ẑk )T (36f)

As for the extension component, the number of control points
are given as

N+
k =

{
|D|, if |D| < τ

convx(D), if |D| > τ,
(37)

where convx(D) denotes those elements of D that form the
convex polyline of the set of observations D and τ is a suitable
threshold. We introduced the threshold τ to avoid using all
the elements of D as control points particularly when |D| and
hence λk is large. This heuristic is based on the assumption
that the ET has scattering points along its boundary (and within
the body of the ET for an ET with large rate parameter λk ).
Applying this heuristic especially for a large λk would give the
boundary outline of the ET. The control points are updated as

P+
k =

{
Pk +Kk (D −HPk ), if |Pk | = |D|
(Pk +Kk (Da −HPk )) ∪Db, if |Pk | < |D|

(38)

where Da and Db are such that D = Da ∪Db . This means
the detections D are split into two subsets Da and Db . The
elements of Da are elements in D with high association proba-
bilities to Pk such that |Da | = |Pk |. This is achieved using the
computationally attractive association method proposed in [58].
The control points update in (38) is akin to removal or addition
of control points (and knots) in a B-spline. This translates to
controlling the shape of the closed B-spline curve.

D. ET-GLMB Filter With B-Splines

Based on the proposed state space and measurement likeli-
hood models presented above, we present the ET-GLMB filter
with B-splines (ET-GLMB-S). The proposed ET-GLMB-S has
two main stages (as is common to approximations of the Bayes
multi-object filters), the prediction stage and the update stage.
This is akin to respectively computing (1) and (3) of the Bayes
multi-object filter. Using Notation 1, we rewrite (1) and (3) as:

ζk (Xk |Z1:k−1) =
∫
fk (Xk |X)ζk−1(X|Z1:k−1)δX, (39a)

ζ+
k (Xk |Z1:k ) =

gk (Zk |Xk )ζk (Xk |Z1:k−1)∫
gk (Zk |X)ζk (X|Z1:k−1)δX

. (39b)

For the purpose of our derivation, we use the standard birth/death
model similar to the one in [44] and [46] for the multi-target
dynamics.

1) Prediction: For the prediction step, denote the probability
of target survival and target death from present to next time
as pS (x, �) and qS (x, �) = 1 − pS (x, �) respectively. The birth
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density is an LMB having weight wB (·), single target densities
pB (·, �) and a label space denoted by Bk . Given that the multi-
target posterior is a GLMB of the form (7) with label space
Lk−1 , the predicted multi-target density at the next time step
is the GLMB with label space Lk = Lk−1 ∪ Bk given by (see
e.g., [44], [46])

ζk (X) = Δ(X)
∑
c∈C

w
(c)
k (L(X))

[
p

(c)
k ( · )

]X
(40a)

w
(c)
k (L) = wB (L− L)w(c)

S (L ∩ L), (40b)

p
(c)
k (xk , �) = 1L(�)p(c)

S (x, �) + (1 − 1L(�))pB (xk , �), (40c)

p
(c)
S (xk , �) =

∫
pS (xk , �)f(xk |xk−1 , �)p(c)(xk−1 , �)dxk−1

η
(c)
S (�)

,

(40d)

η
(c)
S (�) =

∫ ∫
pS (xk , �)f(xk | xk−1 , �)

× p(c)(xk−1 , �)dxk−1dxk , (40e)

w
(c)
S (J) =

[
η

(c)
S

]J ∑
I⊆L

1I (J)[qS ]I−J w(c)(I), (40f)

q
(c)
S (�) =

∫
qS (xk , �)p(c)(xk , �)dxk . (40g)

2) Update: The update equations for the ET-GLMB-S filter
is given in (41a)–(41c) shown at the bottom of this page, where

w
(c,θ)
W(Z )(L) =

w(c)(L)
[
η

(c,θ)
W(Z )

]L
∑

c∈C

∑
J⊆L

∑|J |+1
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

w(c)(J)
[
η

(c,θ)
W(Z )

]J ,

p(c,θ)(x, � |W(Z)) =
p(c)(x, �)ψW(Z )(x; θ)

η
(c,θ)
W(Z )(�)

,

η
(c,θ)
W(Z )(�) =

∫
p(c)(x, �)ψW(Z )(x; θ)dx, (42)

with the term ψW(Z )(x; θ) given in (22).
The above prediction and update stages provide the ET-

GLMB-S filter. Notice in both the prediction and update equa-
tions that the sum over c ∈ C is to facilitate the propagation of

multiple hypotheses. These hypotheses involve different set of
track labels which arise due to uncertainty in data association
seen in the update stage of the Bayes multi-target filter [45].
Performing this can allow for a more accurate filtering process
albeit at an increased computational effort. An efficient way will
be to use just a single component (as in the Definition 4 above) to
propagate the uncertainty of a single set of track labels. This can
save on computational time but may sacrifice filtering accuracy.
We call this method as the ET-GLMB-Sr filter.

V. THE VB MODEL FOR POISSON DISTRIBUTED MULTIPLE

EXTENDED TARGET MEASUREMENTS

In this section, we present a technique for jointly estimating
the measurement rate per target for all targets using variational
inference.

A. Context

Multiple extended targets under the measurement model of
[6] and [7] are considered. It is assumed that the target’s prox-
imity to the sensor is such that the detections are geometri-
cally structured. Furthermore, recall that the set of measure-
ments at time k is a union of all target originated measurements
and measurements due to clutter is given by (16). At time k,
the number of measurements generated by the i-th target is a
Poisson distributed random variable with rate parameter λk,i .
The number of measurements due to clutter is assumed to be
Poisson distributed with rate parameter γk . The set of mea-
surements used to update the i-th target at time k is denoted
as Z(i)

k .1 Let Nk = {N1 , N2 , . . . , NJ } be set of the number of

measurements generated per extended target and Ni = |Z(i)
k |.

Using the measurement model of [7], each element of Nk

is Poisson distributed with rate parameter λ(i)
k . We denote

Λk = {λ1 , λ2 , . . . , λJ } to be the set of rate parameters. Our
goal is to jointly estimate at each time k, the measurement rates
parameters which constitute of the elements of set Λk givenZ1:k
for each extended target. To this end, we present in Section V-B
a recursive estimator of Λk using a PMVB technique.

1where Z
(i)
k

≡ W(Z) and W(Z) ∈ P(Z);P(Z)∠Zk . The notation
P(Z)∠Zk denotes the chosen partition of Zk from all most likely feasible
partitions Pi (Z) ∀i (Note that Pi (Z) ∀i includes other data associations with
significant probabilities).

π(X |Z) =
π(X)g(Z |X)∫
π(X)g(Z |X)δX

(41a)

=
Δ(X)gC (Z)

∑
c∈C

∑|L(X)|+1
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

w(c)(L(X))
[
η

(c,θ)
W(Z )( · )

]L(X) [
p(c,θ)(· |W(Z))

]X

gC (Z)
∑

c∈C

∑
L⊆L

∑|L |+1
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

w(c)(L)
[
η

(c,θ)
W(Z )

]L (41b)

π(X |Z) = Δ(X)
∑
c∈C

|X|+1∑
i=1

∑
W(Z )∈Pi (Z )
θ ∈Θ (W(Z ) )

w
(c,θ)
W(Z )(L(X)) ×

[
p(c,θ)(· |W(Z))

]X
. (41c)
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Fig. 3. Graphical model representation of the Poisson mixture model. nj are
observables which are governed by the Poisson distribution parameter λ. The
latent variable yj is a vector with a single component equal to 1 and the rest
equal to 0, indicating cluster assignment of nj . α, β are hyper-parameters of
the Gamma distribution. π indicates the proportional of the components. J and
C denote the number of observations and number of components respectively.

B. Poisson Mixture

In order to develop the PMVB model for our multiple ex-
tended target parameter estimation technique, we derive the
mixture model equations for the Poisson distributed random
variable. Fig. 3 shows the graphical representation of the PMVB
model.

Suppose that the number of extended target measurements,
Zk , of Section V-A are independent and identically distributed
(i.i.d.) and the observations are from a Poisson distribution with
rate parameter λk,i . From here on, we omit the time index sub-
script k for ease of presentation. For each observable variable
nj , we have a corresponding latent variable yj ∈ Y (where
Y = {y1 , y2 , . . . , yJ }) is comprised of 1-of-C binary vector
with elements yjc for c = 1, . . . , C. The likelihood function of
the Poisson distributed n is defined by

p(n|λ) =
λn

n!
e−λ (43)

Then the Poisson finite mixture is defined as:

p(n|λ, π) =
C∑
c=1

πcp(n|λc) (44)

where each Poisson density p(n|λc) is a component of the mix-
ture and has its own rate parameter λc ; C denote total number
of mixture components. πc are the mixing coefficients with
0 ≤ πc ≤ 1 and

∑C
c=1 πc = 1. The conditional distribution of

the latent variables, Y , given the mixing coefficients, π, is de-
fined as:

p(y|π) =
J∏
j=1

C∏
c=1

π
yj c
c . (45)

The conditional distribution of the observation vectors given the
component parameters and latent variables is

p(N|Y,Λ) =
J∏
j=1

C∏
c=1

p(nj |λc)yj c , (46)

To simplify analysis, conjugate priors are used in Bayesian
learning and therefore we choose the Dirichlet distribution for

the mixing coefficients (see Chapter 10 of [57]) as

p(π) = Dir(π|a0) = C(a0)
C∏
c=1

πa0 −1
c , (47)

and a Gamma distribution for the rate parameters [59] as

p(Λ) = Gam(Λ|α, β) =
C∏
c=1

βαλα−1
c e−λc β

Γ(α)
, (48)

where C(a0) is the normalization constant for the Dirichlet
distribution.

C. Variational Distribution

Given that the joint distribution of the observed data, latent
variables and hidden parameters from Section V-B is

p(N, Y, π,Λ) = p(N|Y,Λ)p(Y |π)p(π)p(Λ); (49)

the aim in variational learning is to find a variational distribution,
q(Y, π,Λ), on the latent variables and hidden parameters such
that the variational lower bound L(q) given by

L(q) =
∫ ∫

q(Y, π,Λ)ln
{
p(N, Y, π,Λ)
q(Y, π,Λ)

}
dπdΛ, (50)

is maximized or the Kullback-Leibler (KL) divergence given by

KL(q||p) = −
∫ ∫

q(Y, π,Λ)ln
{
p(Y, π,Λ|N)
q(Y, π,Λ)

}
dπdΛ,

(51)
is minimized. Note that maximizing the lower bound is equiv-
alent to minimizing the KL divergence and the maximum of
the lower bound occurs when the KL divergence vanishes and
this occurs when q(Y, π,Λ) equals the posterior distribution
p(Y |N). q(Y, π,Λ) is optimized in the set of probability distri-
butions where the parameters are independent of each other. We
factorize the variational distribution q(Y, π,Λ) as

q(Y, π,Λ) = q1(Y )q2(π,Λ)

= q1(Y )qπ ,2(π)qΛ ,2(Λ) (52a)

The log of the optimized factors are:

log q1(Y ) = Eq1 [log p(N, Y, π,Λ)] + const1 (52b)

log q2(π,Λ) = Eq2 [log p(N, Y, π,Λ)] + const2 (52c)

where const1 and const2 are normalization constants.

D. The Variational Learning

We recursively calculate (52b) and (52c) to perform the VB
learning. From (52a), the optimal distributions for qπ (·) and
qΛ(·) are given by

qπ (π) = Dir(π|a), (53a)

qΛ(Λ) =
C∏
c=1

Gam(λc |α, β) (53b)
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We compute the expectation step of our VB model using:

log ρjc = ψ0(ac) − ψ0

(
C∑
c

ac

)

+ (ψ0(αc) − log βc)
J∑
j=1

nj − J

(
αc
βc

)
−

J∑
j=1

log(nj !),

(54a)

with

rjc =
ρjc∑C
c=1 ρjc

(54b)

where ψ0(·) is the digamma function (also known as the
polygamma function of order 0) given by ψ0(a) = d

da log Γ(a).
The VB maximization step is computed using:

Nc =
C∑
c=1

rjc , ac = a0 +Nc (55a)

αc = α0 +
J∑
j=1

nj , βc = β0 + J (55b)

E[λc ] =
αc
βc

Var(λc) =
αc
β2
c

(55c)

whereNc denotes the number of measurements generated up to
now by a target with measurement rate λc . After PMVB step,
the updated set of α+

k and β+
k are available as well as the set of

the measurement rate, Λ+
k = {λ1 , . . . , λC } with |N+

k | = |Λ+
k |.

VI. SIMULATION EXAMPLE

In this section, the performance of the proposed ET-
GLMB-S and ET-GLMB-Sr filters are compared to the GLMB
and random matrix based multiple extended target tracker of
[46] which we refer to as the ET-GLMB-E filter. Additionally,
we also compared the our approach with a filter we call the
ET-GLMB-Em filter where we replaced the random matrix in
[46] with the multiple sub-object method in [20].

A. Tracking Setup

We consider two different tracking scenarios. One scenario
has four targets with different measurement rates and the other
scenario has three targets also with different measurement rates.
The dynamics of the target centroid is described using

xk = Fxk−1 + wk , (56)

where xk encapsulates the kinematic components i.e., position
and velocity, wk ∼ N (0, Qk )T̄ is a vector representing the pro-
cess noise. The transition matrix F and the process noise co-
variance matrix Qk are given as

F =
[

1 δt
0 1

]
⊗ Id , Qk = σ2

[
δt4

4
δt3

2
δt3

2 δt2

]
⊗ Σk (57)

with the sample period δt = 1 and the process noise standard
deviation is σ = 2 m/s2 . Furthermore, we set the probability

Fig. 4. Scenario I. True target trajectories (the straight lines) in the x-y plane
with start/end (©/�). The true target shape is shown in black line, our B-spline
method in blue-dotted line, the multi-sub-object method in red-dash-dotted line
and the random matrix method in purple-dashed line. All four targets start from
the origin. The target plots shown are at intervals of 20 time steps.

of target survival to be pS = 0.99. The initial gamma parame-
ters used in the PMVB were set as α = 0.5 and β = 0.5. The
measurement rate threshold was set as τ = 20.

B. Performance Metrics

We evaluate the performance of the proposed filter using filter
run computation time (CT) and a metric based on the optimal
sub-pattern assignment (OSPA) [60]. The OSPA metric used is
similar to the modified (mOSPA) metric proposed in [3]. The
mOSPA penalizes not only the cardinality and state estimations
errors but also the measurement rate and extension errors. The
main difference between our method and that in [3] is that we
modified (45c) in [3] which was given as

d
(cX )
j,i = min

(
cX , ||X(j )

k − X̂
(i)
k |k ||F

)
(58a)

to read

d
(cX )
j,i = min

(
cX ,

1
M

M∑∣∣∣r
(
X (j )
k

)
− r
(
X̂ (i)
k |k
)∣∣∣2
)
. (58b)

From (58a), X denotes the true positive semi-definite ma-
trix capturing the target extension and X̂ is its estimate; || · ||F
denotes the Frobenius norm and the constant cX is chosen so
that it corresponds to the maximum expected error for the target
extension state. From (58b), X denotes the true shape of the
target and X̂ denotes its B-spline estimate; r(·) denotes a radial
function that maps an angle to the radius of an arbitrary shape
from its centroid (from 0 to 2π, M is the number of points
r(·) was evaluated at) and it is convenient for representing and
learning abstract shapes; | · |2 denotes the instantaneous error
and cX is chosen so that it corresponds to the maximum ex-
pected error for the target extension state. For brevity, we only
present the section of the mOSPA metric for extended targets
that differs from the one in [3]. Aside from this modification we
have highlighted, all other aspects of the mOSPA are as in [3].



DANIYAN et al.: BAYESIAN MULTIPLE EXTENDED TARGET TRACKING USING LABELED RANDOM FINITE SETS AND SPLINES 6087

Fig. 5. Scenario I: (a) mOSPA measure against time (b) Number of target estimation error against time. Results shown are for an average clutter rate of 20
Poisson clutter points per scan over 100 MC runs.

C. Scenario I (where λk < τ )

In this scenario, four targets with measurement rates less
than the measurement threshold are tracked in a [−300, 300] ×
[−300, 300] 2D surveillance area. The measurement rates and
the time the targets enter and exit the tracking scene are given
below:

λ
(1)
k = 5, t

(1)
b = 1, t

(1)
d = 70, (59a)

λ
(2)
k = 10, t

(2)
b = 26, t

(2)
d = 80, (59b)

λ
(3)
k = 15, t

(3)
b = 51, t

(3)
d = 90, (59c)

λ
(4)
k = 20, t

(4)
b = 76, t

(4)
d = 100. (59d)

This scenario lasts 100 time steps. The ground truth of the
kinematic state of the targets are shown in Fig. 4. In this scenario,
we considered two sub-objects for the ET-GLMB-Em filter.

In this scenario, we evaluate the performance of the pro-
posed filter against the ET-GLMB-E and ET-GLMB-Em filters
in terms of CT and mOSPA measure. Furthermore, since the
targets enter and exist the scene at different times, we also eval-
uate the cardinality estimates of both filters. We assume that the
clutter distribution is Poisson with uniform intensity. When eval-
uating the mOSPA measure and the cardinality, we considered
a moderate clutter case where the average number of Poisson
clutter points per scan is γk = 50. As for the CT performance
evaluation, we considered three clutter cases. The first clutter
has an average number of γk = 30 clutter points per scan with
pD = 0.8, the second had γk = 50 with pD = 0.9 and the third
case had γk = 100 clutter points per scan with pD = 0.95. The
cardinality estimation is more challenging in the high clutter
case.

The target extent estimate of the ET-GLMB-S filter (blue
dotted line), the ET-GLMB-E (purple dash line) and ET-GLMB-
Em (red dashed-dotted line) filters are shown in Fig. 4. The true
target extent is shown in black line. As observed from the figure,
the ET-GLMB-S filter is able to give a better estimate of the
target extent, shape and orientation when compared to the other
two methods. This improvement in the target extent estimation
is due to our B-spline approach.

Fig. 5(a) depicts the averaged mOSPA measures for the filters
over 100 Monte Carlo (MC) runs for the case where γk = 50.
From the figure, it is observed that the ET-GLMB-S filter out

TABLE I
FILTER PERFORMANCE COMPARISON IN TERMS OF COMPUTATION TIME (CT)

FOR DIFFERENT PROBABILITY OF DETECTION pD AND AVERAGE

NUMBER OF CLUTTER POINTS γk

Fig. 6. Scenario II. In the top figure, the true target shape is shown in black
line, our B-spline method in blue-dotted line, the multi-sub-object method in
red-dash-dotted line and the random matrix method in pink-dashed line. All
targets are simulated. The target plots shown are at intervals of 10 time steps.

performs the other three filters with the ET-GLMB-Em filter of-
fering a similar level of performance to the ET-GLMB-Sr filter.
The improved accuracy of the ET-GLMB-S filter when com-
pared to the ET-GLMB-E filter is due to the proposed B-spline
target extent model approach. The ET-GLMB-Em outperformed
the ET-GLMB-E filter because it uses more the one ellipse to
estimate the target extent and is therefore able to estimate the
target extension better. The ET-GLMB-S filter offers a better
tracking accuracy when compared to the ET-GLMB-Sr filter.
This is because the implementation of the ET-GLMB-S filter in-
cludes multiple hypotheses propagation during the update stage
of the filter. In Fig. 5(b), the cardinality errors of all four filters
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Fig. 7. Scenario II: (a) mOSPA measure against tracking time for γk = 50. (b) mOSPA measure against tracking time for γk = 100. Results shown are averaged
over 100 MC trials.

are shown. This error measures the difference between the esti-
mated and true number of multiple extended targets present to
three decimal place. It can be seen that all four filters are able
to estimate the cardinality of the targets with minimal error.

The results obtained for the CT of the filters for the three clut-
ter rates and the different probability of detections for scenario I
are presented in Table I. These are averaged over 100 MC runs.
From the table, it is observed that the ET-GLMB-S filter and
the ET-GLMB-Em filter have almost comparable CT. These two
filters however take more time to compute when compared to
the ET-GLMB-E filter for the scenario considered under the
different pD and γk settings. This is due mainly to the PMVB
step required by the ET-GLMB-S filter to estimate the mea-
surement rates for the targets as the lower bound computation
in the PMVB step needs to converge in each iteration of the
ET-GLMB-S filter. The ET-GLMB-Sr filter on the other hand
gave the least CT when compared to the other two techniques
despite the computation of the PMVB step. This is because the
uncertainty of only a single set of track labels was propagated
each time.

D. Scenario II (where λk > τ )

For the second scenario, we considered the case where if
λk > τ , only the measurements that constitute of the convex
hull of the targets are used in updating the control points of the
spline. Therefore, in this scenario, we considered three closely
spaced targets that enter and exit the tracking area at the same
time but have different measurement rates. The measurement
rates and the time instants the targets enter and exit the tracking
scene are given below:

λ
(1)
k = 21, t

(1)
b = 1, t

(1)
d = 100, (60a)

λ
(2)
k = 30, t

(2)
b = 1, t

(2)
d = 100, (60b)

λ
(3)
k = 40, t

(3)
b = 1, t

(3)
d = 100. (60c)

This scenario also lasts 100 time steps. The ground truth of
the kinematic state of the targets are shown in the bottom plot of
Fig. 6. The surveillance area is [−1000, 1000] × [−1000, 1000].
In this scenario, we considered three sub-objects for the ET-
GLMB-Em filter.

In this scenario, we highlight the performance of the filters
under high clutter (γk = 100) conditions. We therefore focus
on evaluating only the mOSPA measure and not the cardinality
given that the number of targets are fixed during the entire time.
Particularly, in this scenario, we highlight the performance of
the filters in terms of their ability to track closely spaced targets.
In this scenario, the three targets are in the closest proximity
between time k = 32 and k = 68.

The target extent estimate of the ET-GLMB-S filter (blue
dotted line), the ET-GLMB-E (purple dash line) and ET-GLMB-
Em (red dashed-dotted line) filters are shown in . The true target
extent is shown in black line. As observed from the figure, the
ET-GLMB-S filter is able to give a better estimate of the target
extent, shape and orientation when compared to the other two
methods. This improvement in the target extent estimation is
due to our B-spline approach.

Fig. 7 depicts the averaged mOSPA measures for the filters
over 100 Monte Carlo MC runs for the case of low (Fig. 7(a))
and high (Fig. 7(b)) clutter rates respectively. In both figures,
notice the increase in the estimation error in the ET-GLMB-Sr,
ET-GLMB-Em and the ET-GLMB-E filters particularly during
the times when all three targets are closest. This further high-
lights the drawback of the ET-GLMB-Sr filter where only the
uncertainty of a single set of track labels is propagated during
update of the filter.

Fig. 8 shows measurement rate estimation results obtained
from applying the Bayesian rate estimation (BRE) used in [46]
and our PMVB method to scenario II. In Fig. 8(a), a window size
of 10 was used while a window size of 105 was used in 8(b) (for
both methods). The estimated measurement rates appear to be
noisy when a smaller window size is used for the BRE method
(as observed from Fig. 8(a)). However, when a larger window
size was used for the BRE method for the same problem, the
estimation error reduces (see Fig. 8(b)). The proposed PMVB
method however is less sensitive to the pre-set window size.
Table II shows the root mean squared error (RMSE) computed
for the two window size cases for both methods. It is observed
that the RMSE for the PMVB relatively small for both cases.
However, the RMSE for the BRE varied greatly for the BRE
when different window sizes are used for the same application.

Overall, our proposed ET-GLMB-S filter has been shown to
give improvement in terms of measurement rate and target extent
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Fig. 8. Plot showing Poisson rate parameter estimation results for the three measurement rates of Scenario II.

TABLE II
RMSE RESULT COMPARISON BETWEEN THE BRE AND THE PMVB METHODS

estimation by giving a lower mOSPA measure when compared
to the ET-GLMB-E and the ET-GLMB-Em filters. In addition,
the ET-GLMB-Sr filter allows for an efficient implementation
of the proposed technique as seen by the CT comparison.

VII. CONCLUSION

In this paper, we proposed an algorithm namely the ET-
GLMB-S for the tracking of multiple extended targets in clutter.
The algorithm was based on the labelled random finite sets
framework which estimates multiple targets states and the num-
ber of targets while allowing continuous target tracks (labelling).
The proposed algorithm in addition to estimating extended target
kinematics also jointly estimates target measurement rate and
extension. The main advantage of the proposed algorithms is the
use of variational Bayesian approach to estimate measurement
rates and the B-spline to model target extension. We performed
simulation study to demonstrate the performance improvement
offered by our method.

APPENDIX

VARIATIONAL LOWER BOUND DERIVATION

For the variational mixture of Poissons, the lower bound of
(50) is given by

L =
∑
Y

∫ ∫
q(Y, π,Λ)

p(N, Y, π,Λ)
q(Y, π,Λ)

dπΛ (61a)

= E[log p(N, Y, π,Λ)] − E[log q(Y, π,Λ)] (61b)

where from (61b) above, we have:

E[log p(N, Y, π,Λ)] = E[log p(N|Y,Λ)] + E[log p(Y |π)]

+ E[log p(π)] + E[log p(Λ)] (61c)

and

− E[log q(Y, π,Λ)]

= −E[log q(Y )] − E[log q(π)] − E[log q(Λ)] (61d)

The various terms on the RHS of (61c) are:

E[log p(N|Y,Λ)] =
C∑
c=1

Mc

⎛
⎝E[log λc ]

J∑
j=1

nj

−JE[λc ] −
J∑
j=1

nj !

⎞
⎠ (62a)

E[log p(Y |π)] =
C∑
c=1

J∑
j=1

rjc log π̃c (62b)

E[log p(π)] = log C(a0) + (a0 − 1)
C∑
c=1

log π̃c (62c)

E[log p(Λ)] = α0 log β0 − log Γ(α0)

+
C∑
c=1

(α0 − 1)E[log λc ] − β0E[λc ]

(62d)

where E[log λc ] = (ψ0(αc) − log βc), E[λc ] = αc
βc

and log π̃c
= ψ0(ac) − ψ0(

∑C
c=1 ac). Similarly, the terms on the RHS of

(61d) are:

E[log q(Y )] =
C∑
c=1

M∑
j=1

rjc log rjc (63a)

E[log q(π)] = log C(a) +
C∑
c=1

(ac − 1) log π̃c (63b)

E[log q(Λ)] =
C∑
c=1

(αc −1)ψ0(αc) + log βc − αc − log Γ(αc).

(63c)
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