
Beetroot juice ingestion during prolonged moderate-intensity exercise 

attenuates progressive rise in O2 uptake  

 

Original Article 

 

Rachel Tan, Lee J. Wylie, Christopher Thompson, Jamie R. Blackwell, Stephen J. Bailey, Anni 

Vanhatalo, & Andrew M. Jones 

 

Affiliations: Sports and Health Sciences, College of Life and Environmental Sciences, St Luke’s 

Campus, University of Exeter, Heavitree Road, Exeter, UK 

 

Running head: Dietary nitrate and prolonged exercise 

 

 

Corresponding Author: 

Andrew M. Jones, Ph.D. 

St. Luke’s Campus, University of Exeter 

Heavitree Road  

Exeter, Devon, EX1 2LU, UK 

Tel: 01392 722886; Fax: 01392 264726 

E-mail: a.m.jones@exeter.ac.uk 

 

  



 

Abstract 

 

Nitrate-rich beetroot juice (BR) supplementation increases biomarkers of nitric oxide 

bioavailability with implications for the physiological responses to exercise. We hypothesized 

that BR supplementation before and during prolonged moderate-intensity exercise would: 

maintain an elevated plasma nitrite concentration ([NO2
-]), attenuate the expected progressive 

increase in 𝑉̇𝑉O2 over time, and improve performance in a subsequent time trial (TT). In a double-

blind, randomized, crossover design, 12 males completed 2-h of moderate-intensity cycle 

exercise followed by a 100 kJ TT in three conditions: 1) BR before and 1-h into exercise 

(BR+BR); 2) BR before and placebo (PL) 1-h into exercise (BR+PL); and 3) PL before and 1-h 

into exercise (PL+PL). During the 2-h moderate-intensity exercise bout, plasma [NO2
-] declined 

by ~17% in BR+PL but increased by ~8% in BR+BR such that, at 2-h, plasma [NO2
-] was 

greater in BR+BR than both BR+PL and PL+PL (P<0.05). 𝑉̇𝑉O2 was not different between 

conditions over the first 90 min of exercise, but was lower at 120 min in BR+BR (1.73 ± 0.24 

L·min-1) compared to BR+PL (1.80 ± 0.21 L·min-1; P=0.08) and PL+PL (1.83 ± 0.27 L·min-1; 

P<0.01). The decline in muscle [glycogen] over the 2-h exercise bout was attenuated in BR+BR 

(~28% decline) compared to BR+PL (~44% decline) and PL+PL (~44% decline; n = 9, P<0.05). 

TT performance was not different between conditions (P>0.05). BR supplementation before and 

during prolonged moderate-intensity exercise attenuated the progressive rise in 𝑉̇𝑉O2 over time 

and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT 

performance.  
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Introduction 

 

Nitric oxide (NO) is recognized as a ubiquitous signaling molecule fundamental to regulating 

many physiological functions including vasodilation (14), skeletal muscle contraction (49), 

mitochondrial respiration (8), and glucose uptake (3). In humans, NO bioavailability can be 

increased through exogenous consumption of inorganic nitrate (NO3
-) which can be reduced to 

nitrite (NO2
-) by bacterial NO3

- reductases in the oral cavity and further reduced into NO and 

other reactive nitrogen species under appropriate physiological conditions (39). In addition to 

reducing resting blood pressure (54), dietary NO3
- supplementation has been reported to reduce 

the O2 cost of exercise (2, 38, 53) and to enhance skeletal muscle contractile function (22, 24, 

55), effects which might be expected to result in improved exercise performance.  

 

Several studies indicate that NO3
- supplementation can enhance short duration (<30 min) 

exercise performance (1, 2, 11, 35, 48). However, the efficacy of NO3
- supplementation in 

improving longer duration exercise performance is less clear (6, 11, 12, 34, 57). This disparity in 

the efficacy of NO3
- supplementation in shorter vs. longer endurance exercise may be related to 

the metabolism of NO3
- and NO2

- during exercise. The pre-exercise elevation in plasma [NO2
-] 

following NO3
- supplementation has been shown to be associated with the magnitude of 

performance enhancement during long duration cycling (57). However, following NO3
- 

supplementation, plasma [NO2
-] declines over the course of short duration moderate- and severe-

intensity exercise (32, 50), as well as during repeated sprints (51, 52, 59). Indeed, this decline in 

plasma [NO2
-] with time during exercise, which may reflect the use of nitrite as a ‘substrate’ for 

NO production, is correlated with enhanced high-intensity exercise performance following NO3
- 

supplementation (52, 59). It is possible, therefore, that long duration endurance exercise results 

in a progressive, and perhaps substantial, depletion of plasma [NO2
-] such that the potential 

benefits of NO3
- supplementation on performance later in exercise are no longer elicited (12, 57). 

Ingesting NO3
- during longer duration exercise might maintain plasma [NO2

-] at an elevated level 

and provide the potential for performance to be improved.  

 

During prolonged, constant-work-rate exercise, an upward drift in pulmonary O2 uptake (𝑉̇𝑉O2) is 

typically observed (9, 25). The O2 cost of such exercise may increase with time due to a shift in 



 

substrate utilization towards fat oxidation, a progressive recruitment of type II muscle fibers, or a 

decline in skeletal muscle mitochondrial and/or contractile efficiency (29). Muscle glycogen 

depletion during prolonged exercise may also contribute to the loss of efficiency over time (43). 

Dietary NO3
- supplementation has the potential to lower O2 demand during prolonged exercise 

(2, 27). Specifically, NO3
- supplementation has been reported to enhance the mitochondrial P/O 

ratio (37; cf. 55) and to reduce the ATP cost of muscle force production (1). In animal studies, 

NO3
- supplementation has been reported to improve intracellular calcium (Ca2+) handling and 

increase force production at low frequencies of contraction in type II muscle fibers (24) and to 

lead to preferential blood flow (and O2) distribution to type II muscle (15, 16). Given that: 1) 

fatigue development and the progressive increase in 𝑉̇𝑉O2 during prolonged exercise may be 

related, at least in part, to the recruitment of type II muscle fibers (33); and that 2) NO3
- 

supplementation positively impacts muscles comprised predominantly of type II fibers (28); it is 

possible that ingesting NO3
- during as well as before such exercise may be better than pre-

exercise NO3
- ingestion alone in limiting fatigue development, minimizing 𝑉̇𝑉O2 and enhancing 

performance. 

 

Another mechanism by which NO3
- supplementation might potentially alter the O2 cost of 

exercise is via effects on carbohydrate metabolism. NO has been shown to play an important role 

in regulating skeletal muscle glucose uptake (3). Wylie et al. (59) reported lower blood [glucose] 

during high-intensity intermittent exercise following NO3
- supplementation, which might suggest 

enhanced skeletal muscle glucose uptake; however, this was not confirmed during longer 

duration moderate-intensity exercise (6). It therefore remains unclear whether dietary NO3
- 

supplementation before, and especially during, prolonged exercise can affect carbohydrate 

metabolism or muscle glycogen utilization. A lower metabolic cost of exercise as reflected by a 

lower 𝑉̇𝑉O2 and/or increased muscle glucose uptake from the blood might reduce muscle 

glycogen utilization during prolonged exercise and enhance endurance performance.     

 

The purpose of the present study was, therefore, to investigate whether ingestion of NO3
--rich 

beetroot juice (BR) before, and also during, 2 h of moderate-intensity cycle exercise influences 

physiological responses and improves performance in a subsequent target-work (100 kJ) cycling 

performance test relative to a placebo condition. We hypothesized that BR supplementation 



 

before and during 2-h moderate-intensity exercise would: 1) preserve an elevated plasma [NO2
-]; 

2) attenuate the expected progressive increase in 𝑉̇𝑉O2 with time; 3) reduce muscle glycogen 

depletion; and, therefore, 4) improve TT performance. 

 

Methods 

 

Subjects  

Twelve recreationally-active males (mean ± SD: age 21 ± 1 years, body mass 78 ± 11 kg, height 

1.77 ± 0.07 m, 𝑉̇𝑉O2peak, 45 ± 4 mL·kg-1min-1) volunteered to participate in this study, nine of 

whom volunteered for invasive measurements (muscle biopsies and blood sampling). The 

protocol, risks, and benefits of participating were explained prior to obtaining written informed 

consent. This study was approved by the Institutional Research Ethics Committee and conformed 

to the code of ethics of the Declaration of Helsinki.  

 

Experimental overview 

Subjects reported to the laboratory on 5 separate occasions over a 5-week period. On the first 

visit, subjects completed a ramp incremental exercise test for the determination of 𝑉̇𝑉O2peak and 

gas exchange threshold (GET). During the second visit, subjects were familiarized to the 

exercise testing procedures, including completion of a moderate-intensity exercise bout (at a 

work rate of 80% of the GET) for 30 min before completing a target-work (100 kJ) cycling 

performance test designed to simulate a 4-km TT. 

 

For the duration of the study, subjects were asked to avoid consuming NO3
--rich foods such as 

spinach, rocket (arugula), kale, and beetroot, and to refrain from taking any other dietary 

supplements or using antibacterial mouthwash as the latter affects the commensal bacteria in the 

oral cavity, resulting in the inhibition of NO3
- reduction into NO2

- (21). In a double-blind, 

randomized, crossover design, subjects were assigned to receive dietary supplementation for 3 

days. On day 3 of each supplementation period (See Supplementation), subjects reported to the 

laboratory to complete the experimental protocol. Experimental visits were performed at the 

same time of day (± 2-h). Subjects recorded their activity and diet during the 24-h prior to the 

first experimental visit and were asked to repeat these for subsequent visits. Subjects were also 



 

instructed to arrive at the laboratory following a 10-h overnight fast, having avoided strenuous 

exercise and alcohol in the 24-h preceding, and caffeine in the 8-h preceding, each experimental 

visit. The subjects were provided with a standardized breakfast consisting of 2 porridge oats 

sachets (Quaker Oats Ltd, Leicester, UK; containing 54 g of oats, 200 kcal, 4.2 g fat, 31.8 g 

carbohydrate, 5.6 g fibre, 6.0 g protein) mixed with 180 mL of water, 1-h prior to exercising. 

 

Supplementation 

Subjects were randomly assigned to three 3-day supplementation periods in which they 

consumed 2 x 70 mL doses per day of either NO3
--rich BR: (~6.2 mmol NO3

- per 70 mL; Beet it, 

James White Drinks Ltd., Ipswich, UK) or a NO3
--depleted placebo (PL: ~0.04 mmol NO3

- per 

70 mL; Beet it, James White Drinks Ltd., Ipswich, UK) separated by a 5-day wash-out period. 

The three supplementation conditions were: 1) BR supplementation both before and at 1-h into 

exercise (BR+BR); 2) BR supplementation before and PL at 1-h into exercise (BR+PL); and 3) 

PL before and at 1-h into exercise (PL+PL). Each 70 mL beverage contained 72 kcal energy and 

15.4 g of carbohydrate. On the first two days of each supplementation period, subjects consumed 

one 70 mL beverage in the morning and one in the evening, whereas on the experimental day, 

subjects consumed 2 x 70 mL of their allocated beverage in the morning 2.5-h prior to the 

exercise and 1 x 70 mL of their allocated beverage at 1-h into exercise. This 3-day protocol was 

chosen to simulate the approach to supplementation that an athlete might take prior to 

competition with the time frame for supplement ingestion on the final morning selected because 

peak plasma [NO2
-] occurs ~2-3-h following NO3

- intake (54, 59).    

 

Exercise procedures 

All exercise tests were performed on an electronically-braked cycle ergometer (Lode Excalibur 

Sport, Groningen, The Netherlands). On the first visit, subjects completed a ramp incremental 

test, involving 3 min of baseline cycling at 20 W, after which the work rate was increased by 30 

W/min until task failure. Task failure was recorded once the pedal rate fell by >10 rpm below the 

target cadence. The self-selected cadence (70-90 rpm) and seat height and handle bar 

configuration were recorded and reproduced on subsequent visits. Breath-by-breath pulmonary 

gas exchange data were collected continuously during the incremental test and averaged over 10-

s periods. 𝑉̇𝑉O2peak and GET were determined as previously described (53). Heart rate (HR) was 



 

measured during all tests using short-range radio telemetry (Polar S610, Polar Electro, Kempele, 

Finland). 

 

During the experimental visits, subjects performed baseline cycling at 20 W for 3 min. Following 

this, subjects completed 2-h of cycling at 80% GET (91 ± 24 W) at their self-selected cadence. A 

1-min rest period followed the end of the 2-h bout during which a muscle biopsy was obtained 

(see Muscle Biopsy). The 100 kJ TT commenced immediately after the 1-min period. Subjects 

were provided with a 5-s countdown prior to the commencement of all cycling trials. The 

resistance on the pedals during the TT was set for each individual using the linear mode of the 

Lode ergometer so that the subject would attain the power output associated with GET plus 65% 

of the difference between GET and peak power output (65%Δ) on reaching a cadence of 90 rpm 

(35). Subjects were deprived of visual performance cues and did not receive notification on 

elapsed time but they received consistent verbal encouragement for each TT and were informed 

when 75, 50, 25 and 10 kJ of work remained to be completed. Pulmonary gas exchange was 

measured for discrete 6-min time periods (from 0-6 min, 27-33 min, 60-66 min, 87-93 min, and 

114-120 min) during the 2-h exercise bout (the first 2 min of each period was not used in 

analysis), and continuously during the TT.    

 

Measurements 

Muscle biopsy 

Skeletal muscle samples were obtained from two incisions made in the m. vastus lateralis under 

local anesthesia (1% lidocaine) using the percutaneous Bergström needle biopsy technique with 

suction (5). Muscle samples were obtained at rest (10 min prior to the start of the 2-h moderate-

intensity exercise bout), within 15 s of the completion of the 2-h exercise bout and within 15 s of 

the completion of the TT. Muscle samples were immediately snap-frozen in liquid nitrogen 

before being stored at -80°C for subsequent analysis.  

 

Muscle metabolites 

Muscle samples were freeze-dried and dissected to remove visible fat, blood, and connective 

tissue using forceps. 200 µL of 3 M perchloric acid was added to ~2 mg dry weight (DW) of 

muscle tissue. Samples were incubated on ice for 30 min, then centrifuged for 3 min at 4000 



 

rpm. 170 µL of supernatant was transferred over to a fresh microcentrifuge tube, and 255 µL of 

cooled 2 M potassium hydrogen carbonate (KHCO3) was added. This was centrifuged, and the 

supernatant was analyzed for [PCr], [ATP], and [lactate] by fluorometric assays as described by 

Black et al. (7).  

 

Muscle glycogen 

~ 1 mg DW  muscle tissue was hydrolysed in 500 µL of 1 M hydrochloric acid at 100 °C for 3-h 

to release glycosyl units, and immediately measured using an automated glucose analyzer (YSI 

2900 Biochemistry Analyzer, Yellow Springs Instruments, Yellow Springs, OH). The precision 

of this method of analysis within this physiological range (0.05 to 0.55 mmol/L) was checked by 

measuring the glucose concentration across a range of solutions made up using glucose diluted in 

hydrochloric acid; the measured vs. expected values lay on the line of identity with an R2 of 0.99.  

 

Blood analysis 

Venous blood was sampled at baseline, 30, 60, 90 and 120 min during the 2-h moderate-intensity 

exercise bout, and immediately following the completion of the TT. All blood samples were 

obtained from a cannula (Insyte-WTM Becton-Dickinson, Madrid, Spain) that was inserted in the 

subject’s antecubital vein, and were drawn into 6 mL lithium-heparin vacutainers (Becton-

Dickinson, New Jersey, USA). For blood [lactate] and [glucose] analysis, 200 µL of blood was 

immediately hemolyzed into 200 µL of cold Triton X-100 buffer solution (Triton X-100, 

Amresco, Salon, OH) and then measured using an automated glucose and lactate analyzer (YSI 

2300, Yellow Springs Instruments, Yellow Springs, OH). The remaining whole blood samples 

were centrifuged within 2 min of collection at 4000 rpm and 4°C for 10 min and then the plasma 

was immediately extracted and frozen at -80°C. Before the analysis of plasma [NO3
-] and [NO2

-], 

samples were deproteinized using cold ethanol precipitation. Specifically, thawed samples were 

centrifuged at 14000 g for 10 min, before 200 µL of sample was added to 400 µL of chilled 

ethanol and incubated on ice for 30 min. After further centrifugation at 14000 g for 10 min, the 

supernatant was removed for the subsequent determination of [NO3
-] and [NO2

-] via gas phase 

chemiluminescence as described by Wylie et al. (59). 

 

Statistical Analysis 



 

A two-way (condition x time) repeated measures analysis of variance (ANOVA) was used to 

analyze differences in physiological and performance responses during the 2-h moderate-

intensity exercise bout and the TT. Significant main and interaction effects were further explored 

using Fisher’s Least Significant Difference test. In addition, one-way repeated measures 

ANOVAs were used to determine physiological and performance differences in the mean and 

change values from pre- to post- 2h moderate exercise, and post-TT. The relationship between 

𝑉̇𝑉O2 and muscle [glycogen] was explored using the Pearson product moment correlation 

coefficient. Statistical significance was accepted at P≤0.05. Results are presented as mean ± SD 

unless otherwise stated.  

 

Results 

 

All subjects reported consuming all servings of each supplement at the correct times and 

confirmed that they had maintained their exercise and dietary habits prior to each testing visit. 

There were no reports of gastrointestinal distress or discomfort following the ingestion of BR or 

PL either before or during exercise.  

 

Plasma [NO3
-] and [NO2

-] 

There was an interaction effect (condition x time) (P<0.01), main effect of time (P<0.01), and 

main effect of condition (P<0.01) for plasma [NO3
-] (Fig. 1A). At baseline, plasma [NO3

-] was 

significantly elevated in BR+BR (315 ± 57 µM; P<0.01) and BR+PL (302 ± 88 µM; P<0.01) 

compared to PL+PL (16 ± 7 µM). Plasma [NO3
-] in BR+BR and BR+PL were elevated at all 

time points compared to PL+PL. In PL+PL, plasma [NO3
-] was unchanged throughout exercise. 

In BR+PL, plasma [NO3
-] was unchanged from baseline to 90 min (P>0.05). However, 

compared to baseline, plasma [NO3
-] in BR+PL decreased by ~16% at 120 min (254 ± 56 µM, 

P<0.05). In BR+BR, plasma [NO3
-] was unchanged from baseline to 60 min (317 ± 52 µM; 

P>0.05) but then increased by ~41% at 90 min (448 ± 51 µM, P<0.0001) and remained elevated 

until 120 min (463 ± 70 µM, P>0.05). Plasma [NO3
-] was significantly elevated at 90 min, 120 

min, and post-TT in BR+BR compared to BR+PL (P<0.01). 

 

There was an interaction effect (condition x time) (P<0.05) and main effect of condition 



 

(P<0.01) for plasma [NO2
-] (Fig. 1B). At baseline, plasma [NO2

-] was significantly greater in 

BR+BR (482 ± 211 nM; P<0.01) and BR+PL (484 ± 188 nM; P<0.01) compared to PL+PL (203 

± 63 nM), with no significant difference between BR+BR and BR+PL. Plasma [NO2
-] was 

unchanged throughout exercise in PL+PL. In BR+PL, plasma [NO2
-] tended to decrease by 

~17% from baseline to 120 min (P=0.07). In contrast, in BR+BR, plasma [NO2
-] increased by 

~8% from baseline to 120 min. Plasma [NO2
-] tended to be elevated at 90 min in BR+BR (491 ± 

157 nM) compared to BR+PL (405 ± 188 nM, P=0.09), and was significantly elevated at 120 

min in BR+BR (519 ± 152 nM) compared to BR+PL (400 ± 158 nM, P<0.05). Plasma [NO2
-] 

fell significantly (by ~35%) from 120 min to post-TT in BR+BR (P<0.001), BR+PL (P<0.01) 

and PL+PL (P<0.05).  

 

Pulmonary gas exchange during prolonged moderate-intensity exercise 

𝑉̇𝑉O2 measured at baseline was not different between conditions (P>0.05). There was a main 

effect of time (P<0.01) and an interaction effect (condition x time) for 𝑉̇𝑉O2 (P<0.05; Fig. 2A). 

Post hoc analyses revealed that the change in 𝑉̇𝑉O2 from 30 min to 120 min (P<0.05) was lower 

in BR+BR compared to PL+PL (P<0.05) and tended to be lower compared to BR+PL (P=0.07, 

Fig. 2B); there was no difference between BR+PL and PL+PL (P>0.05). At 120 min, 𝑉̇𝑉O2 was 

lower in BR+BR compared to PL+PL (P<0.01), and tended to be lower than BR+PL (P=0.08); 

(P>0.05). There was a main effect of time on RER (P<0.01), with RER declining from ~0.93 at 

30 min to ~0.89 at 120 min, but no effect of condition and no interaction (P>0.05). Mean RER 

was not significantly different between conditions at 30 min (PL+PL: 0.93 ± 0.04 vs. BR+PL: 

0.92 ± 0.04 vs. BR+BR: 0.93 ± 0.03), 60 min (PL+PL: 0.90 ± 0.03 vs. BR+PL: 0.89 ± 0.02 vs. 

BR+BR: 0.89 ± 0.03), 90 min (PL+PL: 0.91 ± 0.04 vs. BR+PL: 0.90 ± 0.06 vs. BR+BR: 0.91 ± 

0.04) or 120 min (PL+PL: 0.90 ± 0.04 vs. BR+PL: 0.89 ± 0.03 vs. BR+BR: 0.90 ± 0.04). 

Similarly, there was a main effect of time (P<0.05) but no effect of condition or interaction for 

HR or minute ventilation. There was a main effect of time (P<0.05) but no effect of condition or 

interaction for blood [glucose] (P>0.05; Table 1). There was no effect of time or condition and 

no interaction effect for blood [lactate] (P>0.05; Table 1).  

 

Muscle metabolic variables 



 

There was a main effect of time (P<0.01) and a trend for an interaction effect (P=0.06) on 

muscle [glycogen] measured at baseline, 120 min, and post-TT (Fig. 3). At baseline, there was 

no significant difference in muscle [glycogen] between conditions (BR+BR: 383 ± 105 vs. 

BR+PL: 383 ± 144 vs. PL+PL: 412 ± 121 mmol·kg-1 DW, P>0.05). Post hoc tests revealed that 

in all conditions, muscle [glycogen] was significantly lower at 120 min compared to resting 

baseline (P<0.01), and at post-TT compared to 120 min (P<0.01). At 120 min, muscle 

[glycogen] tended to be greater in BR+BR (283 ± 103 mmol·kg-1 DW) compared to BR+PL (215 

± 102 mmol·kg-1 DW; P=0.08) and PL+PL (226 ± 90 mmol·kg-1 DW; P=0.08) There was no 

difference between conditions at post-TT (BR+BR: 161 ± 79 vs. BR+PL: 127 ± 65 vs. PL+PL: 

132 ± 69 mmol·kg-1 DW, P>0.05). The absolute muscle [glycogen] at 120 min was inversely 

correlated with the absolute 𝑉̇𝑉O2 at 120 min (r = -0.71; P<0.01). There was a trend for a main 

effect of condition in the change in muscle [glycogen] from baseline to 120 min (P=0.09), where 

the ~28% decline in BR+BR was significantly less compared to the ~44% decline in PL+PL 

(P<0.05) and tended to be less than the ~44% decline in BR+PL (P=0.07). The change in muscle 

[glycogen] from 120 min to post-TT were not significantly different between conditions 

(P>0.05).  

 

There was a main effect of time on muscle [PCr] (P<0.01; Fig 4A.), [ATP] (P<0.01; Fig. 4B) 

and [lactate] (P<0.01; Fig. 4C). Baseline muscle [PCr] and [ATP] were not different between 

conditions (P>0.05). There was no effect of condition and no interaction for muscle [PCr] or 

[ATP] (P>0.05). Post hoc tests revealed that in all conditions, muscle [PCr] declined from 

baseline to 120 min (P<0.05), and from 120 min to post-TT (P<0.01). The mean [PCr] tended to 

be greater in BR+BR compared to PL+PL (P=0.08) but there was no difference between BR+BR 

and BR+PL or between BR+PL and PL+PL (P>0.05). Muscle [ATP] declined significantly from 

120 min to post-TT in BR+BR (P<0.01) and BR+PL (P<0.05) but not PL+PL. Muscle [lactate] 

was not significantly different between conditions at 120 min but, compared to 120 min, muscle 

[lactate] increased significantly post-TT in all conditions (P<0.01).  

 

TT performance  

TT completion time, mean 𝑉̇𝑉O2 and mean power output during the TT were not significantly 

different between conditions (all P>0.05, Fig. 5). Similarly, maximal HR, blood [lactate] and 



 

blood [glucose] were not different between conditions (P>0.05; Table 1).  

 

Discussion 

 

This is the first study to investigate the effect of BR ingestion during exercise, in addition to pre-

exercise, on the physiological responses to prolonged moderate-intensity exercise, and 

subsequent TT performance. The major novel findings of this study were that, compared to pre-

exercise BR supplementation alone, a ‘top-up’ dose of BR consumed during exercise: 1) 

maintained the elevation of plasma [NO2
-]; 2) better maintained the lowered O2 cost of exercise; 

3) tended to attenuate the fall in muscle [glycogen] over 2-h of moderate-intensity cycling; but, 

4) did not alter simulated 4-km TT performance. Although TT performance was not significantly 

improved, our findings indicate that the ingestion of BR during prolonged exercise, in addition to 

short-term BR supplementation, may attenuate the rise in 𝑉̇𝑉O2 that typically develops during 

such exercise.  

 

Plasma [NO3
-] and [NO2

-] during prolonged moderate-intensity exercise 

It is well established that pre-exercise BR supplementation elevates resting plasma [NO3
-] and 

[NO2
-] (2, 32, 53), and the results of the present study were consistent with these previous 

reports. After reaching peak values at ~2-3 h following ingestion, plasma [NO2
-] then declines 

with time (54, 59) as well as during exercise (32, 52). Assuming that plasma [NO2
-] reflects the 

potential for O2-independent NO synthesis in the vasculature and skeletal muscle (20, 54), a 

decline in plasma [NO2
-] over time and during exercise may impact on the efficacy of BR 

supplementation in long-duration exercise bouts. Changes in plasma [NO2
-] during exercise may 

reflect the utilization of NO2
- to produce NO, conversion of NO2

- to NO3
- or other reactive 

nitrogen species, or transport to other body compartments including skeletal muscle (47). In the 

present study, when BR was only consumed pre-exercise (i.e., in the BR+PL condition), both 

plasma [NO3
-] (by 16%; P<0.05) and [NO2

-] (by 17%; P=0.07) declined from baseline to 120 

min. However, when BR was also consumed at 60 min into exercise (i.e. in the BR+BR 

condition), plasma [NO3
-] was increased above baseline by 41% at 90 min and 120 min and 

plasma [NO2
-] was increased above baseline by 8% at 120 min (Fig. 1). Plasma [NO2

-] was 

therefore significantly greater at 120 min in BR+BR compared to BR+PL. These results indicate 



 

that, following pre-exercise BR supplementation, prolonged moderate-intensity exercise can lead 

to a substantial reduction in plasma [NO3
-] and [NO2

-], but that this decline can be negated by 

BR ingestion during exercise. The results of the present study demonstrate, for the first time, that 

BR ingestion during exercise can lead to relatively rapid changes in plasma [NO3
-] and [NO2

-]. 

The pharmacodynamics and pharmacokinetics of plasma [NO3
-] and [NO2

-] following dietary 

NO3
- ingestion have been described at rest (54, 59) but not during exercise, and further research 

is warranted to determine whether, and to what extent, the NO3
- - NO2

- - NO pathway is 

impacted by exercise and its sequelae (including, for example, changes in metabolic rate, core 

and oral temperature, distribution of cardiac output, and salivary flow rate).  

 

Influence of BR on metabolic responses during prolonged moderate-intensity exercise 

In the present study, 𝑉̇𝑉O2 was not significantly different between conditions until 120 min of 

exercise, at which point it was lower in BR+BR compared to BR+PL and PL+PL. The increase 

in 𝑉̇𝑉O2 as exercise progressed in BR+PL and PL+PL was therefore attenuated in BR+BR (Fig. 

2). An increasing O2 cost of maintaining the same work rate during long-duration exercise may 

be related to an increased O2 cost of mitochondrial ATP production and/or an increased ATP 

cost of force production and could reflect changes over time in substrate utilization, 

mitochondrial function and motor unit recruitment (29).  

 

Dietary NO3
- supplementation has been reported to reduce the O2 cost of exercise in many (1, 2, 

36, 37, 38, 53, 56), though not all (6, 52) studies, but the mechanistic basis for this effect is not 

fully resolved. Larsen et al. (37) reported that NaNO3 supplementation enhanced mitochondrial 

P/O ratio in vitro and found that this was significantly correlated with the reduction in the O2 

cost of cycling in vivo. In contrast, Whitfield et al. (56) reported that, while BR reduced the O2 

cost of exercise, it did not alter indices of mitochondrial efficiency. Another explanation for a 

lower O2 cost of exercise following NO3
- supplementation is a reduced ATP cost of muscle 

contraction. Consistent with this, it has been reported, using 31P magnetic resonance 

spectroscopy, that muscle PCr depletion is reduced during exercise following BR 

supplementation (2, 18). In the present study, muscle [PCr] determined from biopsy samples 

tended to be higher at 120 min of moderate-intensity exercise in BR+BR compared to PL+PL 

(P=0.08). Given that the depletion of PCr during exercise reflects the energy cost of contraction 



 

(31), these results suggest that BR supplementation may have reduced the metabolic cost of force 

production. For the same mitochondrial P/O, a lower ATP requirement at the same power output 

would dictate a lower 𝑉̇𝑉O2 (58).    

 

It has been reported in rodents (24, 26) and in humans (13, 22, 55), that muscle contractile force 

is increased following NO3
- supplementation. However, the mechanism responsible for this effect 

remains to be elucidated given that modifications to key contractile proteins related to 

intracellular Ca2+ handling have been observed in rodents (24) but not humans (55). Whitfield et 

al. (56) reported an increased emission of hydrogen peroxide following BR supplementation, 

suggesting a potential role for redox signaling in augmenting contractile efficiency (17). 

Moreover, at least in rodents, BR supplementation preferentially increases blood flow to (15), 

and increases microvascular O2 pressure surrounding (16), type II muscle fibers, which could 

contribute to enhanced contractile function. It is possible that, collectively, these effects lower 

the O2 cost of long-duration exercise by reducing or delaying the recruitment of motor units that 

are higher in the recruitment hierarchy and that may be less efficient (4, 29).  

 

In the present study, we found that muscle glycogen declined by ~28% over 120 min of exercise 

in BR+BR, compared to ~44% decline in both BR+PL and PL+PL (Fig. 3). This tendency for 

muscle glycogen sparing could be reflective of a reduction in overall metabolic demand (from 

mitochondrial and/or contractile efficiency improvements), and therefore a lower absolute 

requirement for carbohydrate oxidation. This is supported by the existence of a significant 

negative correlation between the absolute 𝑉̇𝑉O2 and muscle [glycogen] measured at 120 min of 

exercise. It has been reported that muscle glycogen content is positively correlated with 

sarcoplasmic reticulum Ca2+ release rate, which may affect skeletal muscle contractile function 

(43). The tendency for muscle glycogen sparing in the BR+BR condition of the present study 

suggests a possible new mechanism by which dietary NO3
- might enhance efficiency during 

long-duration exercise, with implications for exercise performance in such events, and is worthy 

of further investigation.  

 

There was no difference in RER or blood [glucose] between conditions in the present study. In 

some previous studies, RER has been observed to be slightly (1, 37) or significantly (59) higher 



 

following NO3
- compared to PL supplementation, although most studies have not found 

significant differences in RER (2, 6, 12, 53, 56). Wylie et al. (60) reported a lower blood 

[glucose] during high-intensity intermittent exercise following BR compared to PL 

supplementation and suggested that this may be due to an increased skeletal muscle glucose 

uptake. It is possible that this effect is intensity-dependent given that other studies have reported 

no effect of BR on glucose handling during moderate-intensity exercise (6, 12). Given that we 

did not observe differences between conditions in blood [glucose] or RER, the sparing of muscle 

glycogen in BR+BR would appear to be related to a reduced overall muscle metabolic demand as 

reflected in the lower O2 cost of exercise. Alternatively, the tendency for muscle [PCr] to be 

somewhat better maintained during exercise in BR+BR compared to PL+PL, which is consistent 

with the lower 𝑉̇𝑉O2 in BR+BR (1), indicates that muscle energy charge may have been higher 

when BR was ingested such that the stimulation of glycogenolysis was reduced (23). In contrast 

to our findings, Betteridge et al. (6) reported no effect of pre-exercise BR supplementation on 

muscle [glycogen] (or 𝑉̇𝑉O2) during 60 min of moderate-intensity cycling. The reason for this 

difference is unclear but, in addition to the longer exercise duration and the inclusion of BR 

ingestion during as well as pre-exercise, our subjects consumed 12.4 mmol NO3
- per day for 3 

days whereas the subjects in the study of Betteridge et al. (6) consumed an acute 8 mmol dose of 

NO3
- 2.5 hours pre-exercise. The dose and duration of NO3

- supplementation is one factor that is 

likely to influence efficacy (27) since it may influence NO3
- and NO2

- storage in skeletal muscle 

as well as blood (44, 47, 61). Recent studies indicate that rat (47) and human (44) skeletal muscle 

has high [NO3
-] relative to the blood, that the muscle NO3

- store decreases substantially during 

exercise in rats (46) and that muscle [NO3
-] can be modulated by dietary NO3

- content (19, 44).         

 

Influence of BR on metabolic responses and performance during TT exercise 

Plasma [NO2
-] declined markedly during the TT (Fig. 1B). This greater rate of decline in plasma 

[NO2
-] from 120 min to post-TT is in contrast to the more gradual decline in plasma [NO2

-] 

observed from baseline to 120 min in the BR+PL condition, which may suggest an exercise-

intensity dependency of plasma [NO2
-] dynamics. Indeed, previous research has reported 

significant reductions in plasma [NO2
-] following high-intensity exercise of shorter duration (32, 

50, 52, 60). It is possible that the greater degree of hypoxia and acidosis that would be expected 

to develop in skeletal muscle during high-intensity exercise, such as TT, compared to moderate-



 

intensity exercise, facilitates or dictates a greater reduction of NO2
- to NO (42). Moreover, a 

greater recruitment of type II muscle fibers, which have a lower microvascular O2 pressure 

compared to type I fibers (16), during higher intensity exercise may also result in a greater 

reduction of NO2
- to NO.  

 

It is perhaps surprising that, despite evidence that the metabolic cost of the initial long-duration 

exercise bout was reduced in BR+BR (i.e. lower end-exercise 𝑉̇𝑉O2 and trends for a sparing of 

muscle [PCr] and [glycogen]), subsequent simulated 4-km TT performance was not different 

between the three conditions. Our results are consistent, in part, with those of Christensen et al. 

(12) who reported that performance in a 400-kcal cycle TT, which began after a 2-h moderate-

intensity ‘pre-load’, was not significantly altered by BR compared to PL in elite cyclists (18.3 vs. 

18.6 min, respectively). The influence of NO3
- supplementation on TT performance is 

controversial (10, 11, 12, 34,  35, 41, 45,  50, 57) and whether or not NO3
- ingestion is 

performance-enhancing appears to depend on factors such as subject training status, the dose and 

duration of NO3
- supplementation, and the intensity,  duration, and modality of exercise (27). 

Positive effects of NO3
- supplementation are more likely to be exhibited in tests of exercise 

capacity rather than TT efforts (40). When observed, the ergogenic effect of NO3
- 

supplementation on TT performance, while relatively small (~2%; 10, 35, 45, 50), may be 

meaningful in terms of competitive performance. However, as is the case for the majority of 

putative nutritional ergogenic aids, the magnitude of this effect is within the sensitivity of most 

laboratory tests (30) and may be obscured by intrinsic variability in performance as well as 

subject motivation. It is possible that the apparently positive effects of BR on some physiological 

variables during prolonged exercise that we found were simply too small to impact on TT 

performance. However, it is also possible that a greater exercise pre-load, resulting in greater 

glycogen depletion, and/or the inclusion of a longer duration TT, or a higher-sensitivity test of 

exercise capacity (40), might have enabled the detection of a beneficial effects of BR on exercise 

performance. Administering the top-up dose of BR earlier than 60 min and/or increasing the 

duration of the moderate-intensity exercise bout might have enabled plasma [NO2
-] to reach a 

higher value prior to the TT and perhaps resulted in a performance benefit.  

 

Experimental Considerations 



 

Although there was no significant difference in muscle [glycogen] between conditions at 120 

min of exercise, the decline in muscle [glycogen] between resting baseline and 120 min was 

significantly attenuated in BR+BR compared to PL+PL. The changes in muscle [PCr] and 𝑉̇𝑉O2 

during exercise were also significantly smaller in BR+BR compared to PL+PL. Although 

statistical significance was not attained, the changes in muscle [glycogen], muscle [PCr] and 𝑉̇𝑉O2 

over time also tended to be smaller in BR+BR compared to BR+PL. The significant inverse 

correlation across conditions between the absolute 𝑉̇𝑉O2 and the absolute muscle [glycogen] at 

120 min lends confidence to the interpretation that the sparing of muscle glycogen utilization 

was related to changes in oxidative metabolic demand following BR ingestion. However, it 

should be acknowledged that the extent of the sparing of muscle glycogen utilization between 

baseline and 120 min in BR+BR (~100 mmol·kg-1 DW) compared to PL+PL (~186 mmol·kg-1 

DW) and BR+PL (~168 mmol·kg-1 DW) was much greater than would be expected based on the 

comparatively small differences in 𝑉̇𝑉O2 and [PCr] we measured. There is the possibility, 

therefore, that the differences in muscle [glycogen] may have been overestimated in the present 

study. Additional studies are required to investigate the influence of pre- and in-exercise NO3
- 

supplementation on changes in muscle [glycogen] in a larger sample and in trained as well as 

untrained participants.              

 

If a glycogen sparing effect of BR ingestion during exercise can be confirmed, this may have 

important implications not just for single long-endurance events but also for multi-day endurance 

events such as cycle tours and expeditions, wherein muscle [glycogen] may fall progressively 

over consecutive days of exercise. It is also possible that consuming BR during arduous 

endurance training programs might attenuate fatigue development related to glycogen 

availability and enable additional training to be completed.      

 

Conclusion 

A single dose of BR ingested during exercise in addition to pre-exercise BR supplementation 

increased plasma [NO3
-] and preserved an elevated plasma [NO2

-] during prolonged moderate-

intensity exercise. This was associated with an attenuated upward drift in the O2 cost of exercise, 

and a tendency for a sparing of muscle glycogen and PCr, effects which might be expected to 

predispose to enhanced exercise tolerance. In conclusion, BR supplementation during exercise 



 

can modulate plasma [NO3
-] and [NO2

-] dynamics and attenuate the progressive rise in 𝑉̇𝑉O2 

during prolonged moderate-intensity exercise. However, under the conditions of the present 

study, subsequent TT performance was not enhanced by BR supplementation. 
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Figure Legends  

 

Figure 1. Mean ± SE plasma nitrate (panel A) and nitrite (panel B) concentrations over 120 min 

of moderate-intensity cycle exercise and a subsequent 4-km TT following: PL+PL: placebo 

consumed before and during exercise (solid triangle and dotted line); BR+PL: NO3
- -rich 

beetroot juice consumed before and placebo consumed during exercise (open circle and solid 

line); and BR+BR: NO3
- -rich beetroot juice before and during exercise (solid circle and solid 

line), (n = 9). * = significantly different from PL+PL, ** = BR+BR significantly different from 

BR+PL, # = significantly different from 120 min to end of TT in BR+BR,  † = significantly 

different from 60 min to end of TT in BR+PL, ‡ = significantly different from 90 min to TT in 

PL+PL. 

 

Figure 2. Mean ± SE O2 uptake over 120 min of moderate-intensity cycle exercise (panel A) and 

the change in O2 uptake from 30 min to 120 min (panel B) following PL+PL, PL+BR and 

BR+BR. * = significantly different in BR+BR compared to PL+PL. 

 

Figure 3. Mean ± SE muscle [glycogen] at rest (PRE), after 120 min moderate-intensity exercise 

(POST), and after the 4-km time trial (TT), (n = 9). * = significantly different from PRE to 

POST, ** = significantly different from POST to TT. There were no significant differences 

between the three conditions at any discrete time point but the change in muscle [glycogen] was 

significantly less in BR+BR compared to PL+PL (P<0.05; see text for details). 

 

Figure 4.  Mean ± SE muscle [PCr] (panel A), [ATP] (panel b), and [lactate] (panel C) at rest 

(PRE), after 120 min moderate-intensity exercise (POST), and after the 4-km time trial (TT), (n 

= 9). * = significantly different from PRE to POST, ** = significantly different from POST to 

TT. 

 

Figure 5. Mean ± SE O2 uptake (panel A), power output (panel B), and completion time (panel 

C) over the 4-km time trial in PL+PL (black bars), BR+PL (grey bars) and BR+BR (white bars). 

Completion times for individual subjects shown in grey lines. 
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