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Abstract

Benchmarking is an every-day task in computational chemistry, yet making mean-

ingful comparisons between different methods is non-trivial. Benchmark studies often

focus on the most obvious quantities such as energy differences. But to gain insight, it

is desirable to explain the discrepancies between theoretical methods in terms of un-

derlying wave functions and, consequently, physically relevant quantities. We present a

new strategy of benchmarking excited-state calculations, which goes beyond excitation

energies and oscillator strengths and involves the analysis of exciton properties based

on the one-particle transition density matrix. By using this approach, we compare the
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performance of many-body excited-state methods (equation-of-motion coupled-cluster

and algebraic diagrammatic construction) and time-dependent density functional the-

ory. The selected examples illustrate the utility of different exciton descriptors in

assigning state character and explaining the discrepancies among different methods.

The examples include Rydberg, valence, and charge-transfer states as well as delocal-

ized excitonic states in large conjugated systems and states with substantial doubly

excited character.

1 Introduction

One important task in quantum chemistry1 is proper benchmarking of approximate com-

putational methods against high-level, highly accurate ones.2–11 Such benchmark studies

are motivated by the limited applicability of highly accurate methods to large systems due

to unfavorable computational scaling of many-body theories leading to high computational

demands.1 The necessity to employ computationally more efficient but less reliable meth-

ods12–14 together with limited experimental data undermine the credibility of computational

protocols. In benchmarking excited-state calculations, the main (and often only) criterion is

the excitation energy. While the excitation energy is certainly very important, the character

of the underlying states should also be correctly described by approximate methods. Yet, the

analysis of the underlying wave functions is often omitted, because comparing orbitals and

amplitudes systematically and quantitatively is a non-trivial task.15 But exactly these details

are crucial for understanding the differences in the physical description of excited states and

can be a decisive factor in determining the domains of applicability of approximate models.

In this contribution, we benchmark excited-state calculations by exploiting the concept

of excitons, i.e., correlated electron-hole pairs.16 The key quantity in the analysis is the

one-particle transition density matrix,17 which affords a concise description of an electronic
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transition between the ground Φ0 and electronically excited ΦI state:

γ0Ipq = 〈Φ0|p̂†q̂|ΦI〉 ≡ γpq, (1)

γI0pq = 〈ΦI |p̂†q̂|Φ0〉 (2)

where p̂† and q̂ are the creation and annihilation operators corresponding to φp and φq

molecular orbitals.18 In the case of the configuration interaction singles (CIS) or similarly in

Kohn-Sham time-dependent DFT (TDDFT), γI0pq is equal to the wave function amplitudes,

γI0pq = δpaδqiC
a
i , where, Ca

i is a CIS coefficient corresponding to Φa
i , a Slater determinant in

which an electron is excited from occupied orbital i to virtual orbital a. Thus, in the case

of CIS/TDDFT wave functions/densities, the individual elements of γI0 correspond to the

weights of the electronic transitions between the respective molecular orbitals. Eq. (1) ex-

tends this simple molecular orbital picture of electronic transitions to general correlated wave

functions:19,20 γI0 gives a map of one-electron transitions representing the changes between

ΦI and Φ0, which can be formulated as a linear combination of one-electron excitations:

|ΦI〉 =
∑
pq

γI0pq p̂
†q̂|Φ0〉+ higher excitations. (3)

Using γpq, one can describe the transition density, ρtr:

ρtr(r) =
∑
pq

γpqφp(r)φq(r), (4)

where φp and φq denote molecular orbitals. Plotting γ0Ipq in spatial representation visualizes

the exciton, i.e., the change in electronic distribution between the initial and final states.19–21

The transition density matrix, expressed in coordinate space, can be interpreted as exciton

wave function:16,19,20

χexc(rh, re) =
∑
pq

γpqφp(rh)φq(re), (5)
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where rh and re denote hole and electron (particle) coordinates, as per eq. (3). Obviously,

ρtr(r) = χexc(r, r).

Using natural transition orbitals (NTOs),22–25 the exciton can be represented in a very

compact form:

χexc(rh, re) =
∑
K

σKψ
h
K(rh)ψe

K(re). (6)

Here, orbitals ψh
K(rh) and ψe

K(re) (representing hole and electron (particle) states) are ob-

tained by singular value decomposition (SVD) of the transition density matrix:

γ0I = VΣUT , (7)

ψh
K(r) =

∑
q

UqKφq(r),

ψe
K(r) =

∑
q

VqKφq(r), (8)

and indexK marks the NTO pair corresponding to the singular value σK . This representation

of the electronic transitions removes the arbitrariness associated with a specific choice of

molecular orbitals and describes the exciton in the most compact form. Orbital choice affects

the wave function amplitudes (and, consequently, the resulting transition density matrices),

such that a wave function with a single non-zero amplitude in one basis can be transformed

into a wave function with multiple amplitudes with similar weights in another basis. SVD

procedure produces the essential description of the transition, independent of orbital choice.

Usually, only a small number of singular values are substantial, so eq. (6) represents the

exciton wave function by using a (very) small number of terms. Using χexc, one can also

compute a variety of exciton properties, which can serve as a basis for detailed analyses of

excited states.16,19,20,26

The exciton-based analysis of the electronic transitions provides insight into the character

of excited electronic states16,19,20,26 and offers several advantages for benchmarking:

1. It is independent from the method-dependent MO picture.
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2. It can be applied to any excited-state ansatz giving access to the one-particle transition

density matrix.

3. It enables explicit benchmarking of electron-hole correlation phenomena, which are

directly related to the physical description of excited states and crucial for the perfor-

mance of quantum-chemical methods.

4. It facilitates state character assignment, as different types of excited states can be

distinguished by the features that are easy to identify (for example, Rydberg states

possess large electron sizes, charge-transfer states have large separations between the

centroids of holes and electrons).

5. It affords detailed benchmarking of different methods, even when experimental data is

absent.

While reduced density matrices and NTOs have been used in electronic structure for quite

some time,22–25 using them to compute properties of excitons is relatively new.16,19,20,26 Com-

plementary to our approach, there exists a variety of descriptors based on orbital over-

laps,27,28 changes in the density matrix or29,30 in the electron density.31 While these descrip-

tors have been successfully employed for assessing the accuracy of TDDFT calculations,32,33

they have not yet been generalized to higher-level ab initio methods. Recently, one of us has

introduced an alternative approach for comparing many-electron wave functions by calcu-

lating overlaps,34 quantifying variations in wave functions with respect to a reference wave

function.

In the following, we illustrate that focusing on exciton properties opens a new route

for a simple yet detailed benchmarking of excited states. In the methodology section, we

briefly review the key equations and main features of the employed density analysis tools.

We then proceed to a carefully chosen set of molecules that feature various types of excited

states (results section). These systems, shown in Fig. 1, are formaldehyde, the push-pull

system 4-(N,N -dimethylamino)benzonitrile (DMABN), all-trans octatetraene as a represen-
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tative for multiply excited states, hexa(thiophene) (6T) as a large conjugated system with

delocalized ππ∗ excited states, and magnesium porphyrin (MgP) as large, biologically rele-

vant compound. Two families of ab initio methods are compared: the equation-of-motion

coupled-cluster singles doubles (EOM-CCSD)35–39 and the algebraic-diagrammatic construc-

tion for the polarization propagator (ADC(n))40–42 methods. In selected cases, we also em-

ploy time-dependent density functional theory12,43,44 in combination with a few, commonly

used exchange-correlation functionals.

Figure 1: Molecules investigated in this work: (a) formaldehyde, (b) 4-(N,N -
dimethylamino)benzonitrile (DMABN), (c) all-trans octatetraene, (d) hexa(thiophene) (6T),
and (e) magnesium porphyrin (MgP).

2 Methodology

In this section, we briefly review the key features of the analysis suite, libwfa, for the

manuscript to be self-contained. Detailed further information can be found in Refs. 16,26,45–

49 and references therein; these papers explain various methodological aspects and also

highlight special applications.
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2.1 Transition density and exciton wave function

The central quantity in our analysis is the exciton wave function χexc, which is identified

with the one-particle transition density matrix between the ground (Φ0) and an excited (ΦI)

state expressed in coordinate space. It is explicitly given as

χexc(rh, re) =

∫
...

∫
Φ0(rh, r2, ..., rN)ΦI(re, r2, ..., rN)dr2...drN , (9)

where N is the number of electrons and ri are the spatial-spin coordinates. Using the

second-quantization definition of the transition density matrix (eq. (1)) allows one to ex-

press χexc(rh, re) in terms of molecular orbitals (eq. (5)). Importantly, χexc contains all

essential information needed to compute any one-electron interstate property. For example,

the transition dipole moment is simply

〈Φ0|µ̂|ΦI〉 =

∫
χexc(r, r)rdr =

∑
pq

γpqµpq = tr[γµ], (10)

where µpq = 〈φp|µ̂|φq〉. Or, using NTOs:

〈Φ0|µ̂|ΦI〉 =
∑
K

σK〈ψh
K |µ̂|ψe

K〉. (11)

This representation allows one to express matrix elements between many-electron wave func-

tions in terms of the matrix elements between orbitals, illuminating physical significance of

excitons and NTOs through their relationship to the observables.

The exciton wave function can be further analyzed by calculating its expectation value

with respect to an operator of interest:

〈Ô〉exc =
〈χexc|Ô|χexc〉
〈χexc|χexc〉

. (12)
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The denominator in eq. (12) is the squared norm of the exciton wave function

Ω ≡ 〈χexc|χexc〉 =
∑
pq

γ2pq = ||γ||2. (13)

As per eq. (13), Ω quantifies the amount of single excitation character of the Φ0 → ΦI tran-

sition and provides an upper bound to the interstate matrix elements.19,50,51 Being orbital-

invariant, this quantity is ideal for comparing the single excitation character among different

methods, in contrast to wave function amplitudes.

2.2 Exciton descriptors

Exciton wave function can be characterized by computing its spatial and statistical properties

according to eq. (12). To do so, one first computes the multipole moments of the exciton

wave function and then combines them to obtain quantities of interest. Multipole moments

can be evaluated according to:

〈
xkhx

l
e

〉
exc

=
1

Ω
tr
(
γI0M(k)

x γ0IM(l)
x

)
(14)

where M
(k)
x denotes the k-order multipole matrix for coordinate x, whose components are

given as:

M (k)
x,pq =

∫
φp(r)x

kφq(r)dr. (15)

The above equations can also be formulated in the basis of atomic orbitals. By combining

different multipole moments to compute physically meaningful exciton descriptors, we exploit

their interpretive power in the context of excited-state analysis. In the following, we discuss

selected descriptors available in Q-Chem52,53 and highlight their capabilities.

To illustrate exciton descriptors suitable to quantify the amount of charge-transfer char-

acter, consider the vectorial distance between the centroids of electron and hole distributions
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Figure 2: (a) Vectorial electron-hole distance dh→e,(b) exciton size dexc (rms electron-hole
distance), (c) electron size σe (rms deviation from the centroid of the electron density), (d)
negative electron-hole correlation Reh < 0, i.e., dynamical charge avoidance, and (e) positive
electron-hole correlation Reh > 0, i.e., joint electron-hole motion as bound exciton.

given as

dh→e =
1

Ω
|〈χexc|rh − re|χexc〉| ≡ |〈rh − re〉exc|, (16)

shown in Fig. 2(a). This quantity can be interpreted as an average distance between hole

and electron (particle). A complementary measure is the exciton size that quantifies the

root-mean-square electron-hole separation shown in Fig. 2(b)

dexc =
√
〈|rh − re|2〉exc. (17)

This formulation takes into account the sizes of electron (σe) and hole (σh) distribution as

well as their covariance (COV) (explicit expressions for these quantities are given below),

and allows one to express the exciton size as

dexc =
√
d2h→e + σ2

h + σ2
e − 2× COV(rh, re). (18)
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While dh→e quantifiespermanent charge-transfer character, the exciton size allows one to also

characterize charge-resonance (or dynamic charge transfer).16,54 In analogy to the exciton

size, the electron and hole sizes are defined as

σh =
√
〈r2h〉exc − 〈rh〉2exc, (19)

quantifying the root-mean-square deviation of the hole or electron distribution with respect

to their centroids shown in Fig. 2(c). These quantities are particularly useful for distinguish-

ing between different types of excited states, e.g., Rydberg states, core-excited states,55 etc.

The compactness of electron and hole distributions is also related to correlation phenom-

ena.56

Let us now discuss the statistical properties of the exciton wave function. The two

following descriptors quantify linear correlation between electron and hole, i.e., the covariance

and the correlation coefficient

COV(rh, re) = 〈rh · re〉exc − 〈rh〉exc · 〈re〉exc. (20)

The electron-hole correlation coefficient is simply the covariance normalized by the product

of electron and hole sizes

Reh =
COV(rh, re)

σhσe
. (21)

A positive value of Reh identifies a bound exciton, because a change in hole position induces a

change in electron position in the same direction, i.e., they move together in a correlated way.

Conversely, a negative value indicates that electron and hole avoid each other in space, i.e.,

that they are anti-correlated. A correlation coefficient of zero corresponds to independent

electron and hole quasi-particles (a situation typical for small molecules). We note that all

exciton descriptors can be expressed in terms of NTOs,22–24 similarly to eq. (11). A detailed

discussion of this relation can be found in Ref. 26.
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3 Computational details

All calculations were performed with the Q-Chem52,53 electronic structure package. NTOs

were visualized using Jmol.

Formaldehyde. The geometry was optimized at the RI-MP(2)/cc-pVTZ level of the-

ory yielding C2v symmetry. Excited-state calculations were carried out with the ADC40–42

method for the polarization propagator at the second and third order of perturbation theory

as well as with the EOM-CCSD method for excitation energies (EOM-EE-CCSD).35–37,57

ADC(2) and ADC(3) were used in their standard variants in combination with the Ahlrichs’

SV(P) and SVP basis sets, and in the Resolution-of-Identity approximation58 (RI) in com-

bination with Ahlrichs’ SV,59 SV(P) and SVP, and Dunning’s cc-pVDZ, cc-pVTZ, aug-cc-

pVDZ, and aug-cc-pVTZ basis sets.60,61 EOM-CCSD was used in its canonical variant (no

RI) for all basis sets.

DMABN. Six structures were considered: the fully relaxed, ground-state geometry (GS)

optimized at the RIMP(2)/cc-pVDZ level of theory and five excited-state geometries, LE,

CT0, CT45, CT90, CTP, optimized with RI-ADC(2)/cc-pVDZ. The LE and CTP structures

were fully relaxed. For the CT geometries, constrained optimization was carried out with

the twisting angle between the benzene ring and the dimethylamino group constrained to 0◦

(CT0), 45◦ (CT45), and 90◦ (CT90). All optimizations were carried out in vacuum. Further

details can be found in Ref. 62. Excited-state calculations were performed using the canoni-

cal variants of ADC(2)/cc-pVDZ, ADC(3)/cc-pVDZ and EOM-CCSD/cc-pVDZ in vacuum.

Calculating solvent effects, a state-specific polarizable continuum model (IEF-PCM)63 was

employed in combination with standard ADC(2)/SS -PCM/cc-pVDZ available in Q-Chem

5.0. The solvents cyclohexane (cHex, ε = 1.89, n2 = 1.88) and acetonitrile (MeCN, ε = 36.7,

n2 = 1.81) were employed (information about specific input parameters can be found in Ref.

62).
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Hexa(thiophene). The ground-state geometry was first optimized using the ωB97/SV(P)

level of theory and then symmetrized using IQmol (the symmetrization resulted in very small

changes in total energy). Excited-state geometry of the S1 state was optimized using CAM-

B3LYP/cc-pVDZ. Excited-state calculations for vertical excitations were carried out at the

RI-ADC(2), RI-EOM-CCSD (with core electrons frozen), and CIS ab initio levels of theory,

and at the full-time-dependent density functional theory12,43,44 (TDDFT) and Tamm-Dancoff

approximation64 (TDA) levels employing BLYP, B3LYP, CAM-B3LYP exchange-correlation

functionals. The three functionals feature different amounts of non-local orbital exchange:

the BLYP functional (0 % of exact exchange) is a representative of local generalized-gradient-

approximation-type (local GGA) functionals, the B3LYP functional is a global hybrid func-

tional (21 % of exact exchange),65,66 and CAM-B3LYP is a long-range corrected method

(19 − 65 % of exact exchange).67 All calculations were performed using Ahlrichs’ SV(P)

basis set. In addition, RI-EOM-CCSD calculations with aug-cc-pVDZ were carried out.

All-trans octatetraene. The ground-state geometry was optimized using CCSD(T)/cc-

pVTZ level of theory yielding C2h symmetry. We note that high level of theory is essential to

correctly describe the electronic structure of the ground state and to obtain accurate carbon-

carbon distances for the conjugated system.68 Excited-state calculations were carried out

with RI-ADC(2), RI-ADC(3), RI-EOM-CCSD, as well as with TD-DFT/TDA using BLYP,

B3LYP, and CAM-B3LYP xc-functionals employing Dunning’s cc-pVTZ basis.

Magnesium(II)porphyrin. The ground-state geometry was optimized with RIMP(2)/TZVP,

followed by IQmol symmetrization. Excited-state calculations were performed with RI-

ADC(2)/SV(P), RI-EOM-CCSD/SV(P), RI-EOM-CCSD/cc-pVDZ, RI-EOM-CCSD/cc-pVTZ,

ADC(3)/SV(P), and CIS/SV(P) as well as with TDDFT/TDA employing BLYP, B3LYP,

and CAM-B3LYP as xc-functionals with Ahlrichs’ SV(P) and TZVP basis sets.

Cartesian coordinates for all structures are given in SI. We note that Q-Chem does not

follow the standard Mulliken convention69 for molecular orientation, such that the labels of

some irreps are flipped.70 All raw numbers shown in figures are given in SI.
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4 Results and discussion

We now proceed to examine different types of excited states, focusing on exciton descriptors

that deliver information relevant to each case. We illustrate which descriptors can aid the

benchmark procedure and how they can inform us about methodological aspects.

4.1 Valence and Rydberg states in formaldehyde

A popular benchmark molecule,71,72 formaldehyde demonstrates the utility of exciton de-

scriptors in distinguishing Rydberg and locally excited states.15 Rydberg states have rela-

tively small hole sizes σh and large electron sizes σe. In contrast, electron and hole sizes of

locally excited states are rather similar. Table 1 shows excitation energies, term labels, and

Table 1: Excited states of formaldehyde: irreducible representations, characters and excita-
tion energies (eV).

cc-pVTZ aug-cc-pVTZ
state charactera exp.a ADC(3) ADC(2) EOM-CCSD ADC(3) ADC(2) EOM-CCSD
11A2 n→ π∗ 4.1 3.92 4.01 4.07 3.90 3.92 4.02
11B1 n→ 3s 7.13 8.77 7.66 8.35 7.63 6.52 7.24
21B1 n→ 3p 7.98 10.53 9.94 9.36 8.46 7.54 8.12
21A1 n→ 3p 8.14 (9.23)b 9.37 9.82 8.62 7.49 8.22
11B2 σ → π∗ 9.0 9.20 9.29 10.28 9.18 9.18 9.30
31A1 π → π∗ 10.7 (9.81)b 10.22 (10.57)c 9.06 (9.48)d 9.68

aExperimental data and state assignment is from Ref. 71.
bSubstantial state mixing and double excitation character.

cState has 53% Rydberg character and 30% π → π∗.
dState has 64% Rydberg character and 25% π → π∗.

state characters for six singlet excited states of formaldehyde.71 The experimental values are

compared with the computational results obtained with ADC(3), ADC(2) and EOM-CCSD

in combination with the cc-pVTZ and aug-cc-pVTZ basis sets. As expected, the cc-pVTZ

basis is not sufficient for describing Rydberg states, leading to large errors in excitation en-

ergies. The results improve considerably in the aug-cc-pVTZ basis set: the state ordering is

correct in almost all cases and the errors against the experimental values are much smaller.

Using specialized basis sets74 for the description of Rydberg states may further improve the

results, however, for the purpose of this study the obtained results suffice. Using this initial
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assessment of the accuracy of the methods, we now proceed to detailed analysis based on

exciton descriptors.

Figure 3: Excited states in formaldehyde. (a) Excitation energies (∆E, eV), (b) electron size
(σe, Å), and (c) single excitation character (Ω) of the first two excited states of each irrep
calculated by ADC(3) with different basis sets. The legend in (a) applies to all diagrams.
The inset of the formaldehyde structure in (b) shows the size of the molecule.

Fig. 3 shows the ADC(3) results for the first two singlet excited states of each irrep. Two

14



states are highlighted in red, 11A2 and 21A2, which we discuss in more detail below. Fig. 3(a)

shows the changes in excitation energies with respect to the basis sets. The following hier-

archy of basis sets is considered (from left to right): first, the polarization of the second-row

atoms is included; second, basis is extended from double-ζ to triple-ζ; third, diffuse functions

are included (for both double-ζ and triple-ζ bases). While the excitation energies remain

constant for almost all states for the first five basis sets (with a few exceptions), significant

changes occur upon the augmentation. This is expected because diffuse functions are manda-

tory for the correct description of Rydberg states.15 Although more compact valence states

do not require diffuse functions, they can mix and interact with Rydberg states, especially

when density of states is high,15 as it happens around 9 eV in formaldehyde. Consequently,

locally excited states in this energy range also become stabilized in the augmented basis sets

(black, dotted lines). This example illustrates that the dependence of excitation energy on

the basis set is not sufficient for distinguishing Rydberg and valence states. Here, the utility

of exciton analysis becomes obvious.

Fig. 3(b) and Fig. S1(b) in SI illustrate the effect of the basis set on the excited-state wave

functions by considering electron and hole sizes (eq. (19)). While the hole sizes (Fig. S1(b)

in SI) vary between 1.0 and 1.3 Å (and only two excited states show a noticeable increase

of ∼0.2 Å upon the inclusion of diffuse functions), the electron sizes change dramatically for

the Rydberg states (Fig. 3(b)). This behavior can be contrasted with almost constant values

of σe of the locally excited states (11A2, 11B2, 31A1). Thus, σe is a key descriptor able to

differentiate between valence and Rydberg states.

Fig 3(c) presents another important property, Ω, which quantifies the amount of single

excitation character in the excited-state wave functions. For a primarily singly excited state,

Ω ≈ 1. We observe that in small (not augmented) basis sets, some states (two 1A1 states and

21A2) show significantly smaller values of Ω at the ADC(3) level of theory, which indicates

substantial doubly excited character. This doubly excited character disappears when diffuse

functions are included, suggesting that this is an artifact of using small basis sets (this is
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similar to a well known phenomenon of valence-space CASSCF overestimating doubly excited

character).

Let us now compare the exciton characters obtained using ADC(2) and EOM-CCSD

wave functions with the aug-cc-pVTZ basis set (the results for the aug-cc-pVDZ basis are

given in SI).

Figure 4: Excited states of formaldehyde. (a) Differences between experimental and com-
puted excitation energies (∆(∆E − exp), eV), and (b) electron sizes (σe, Å) of six excited
states computed at the ADC(3), ADC(2) and EOM-CCSD levels of theory employing the
aug-cc-pVTZ basis set. Root-mean-square deviations (eV) are displayed in legend.

Fig. 4 (a) presents the differences between experimental and computed excitation energies

for the six excited states discussed above including the ADC(2), ADC(3), and EOM-CCSD

levels of theory. The corresponding electron sizes are plotted in Fig. 4 (b). The deviations

from the experimental values can be systematically explained in terms of the state characters.

The ADC(2) method underestimates Rydberg excitation energies by about 0.5 eV, whereas

ADC(3) overestimates energies of these states by 0.5 eV. EOM-CCSD yields the smallest

errors for both valence and Rydberg states. One case that stands out is the 31A1 state for

which all computational methods yield large errors in excitation energies. The electron sizes

indicate that the state has some Rydberg character at the ADC(2) level, while it appears

to be rather local in other methods. The analysis of single excitation character (Fig 3(c))

reveals that this state has some double excitation character. However, it seems that both
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ADC(3) and EOM-CCSD are underestimating the energy of this state.

 Hole Electron
11A2

21A2

87.1%

cutoff 0.05

side view
cutoff 0.04

NTOs

88.9%

Figure 5: Natural transition orbitals of the 11A2(n → π∗) and 21A2(n → Ry(3p)) excited
states of formaldehyde calculated at the ADC(3)/aug-cc-pVTZ level of theory. Singular
values are given in percentage. For the Rydberg states, two different isovalues are used (0.05
and 0.04).

Let us briefly highlight another issue relevant to Rydberg states. Fig. 5 shows NTOs for

the 11A2 (n→ π∗) and 21A2 (n→ Ry(3p)) excited states of formaldehyde. Both states are

well described by a single NTO pair (the respective leading σ2 values are 0.87 and 0.89).

The visualization of the hole orbital is straightforward, however, accurate rendering of the

electron orbital requires some care. While valence-like NTOs (such as π∗ electron orbital of

the 11A2 state) can be adequately visualized using the same isovalues as used for the hole

orbitals, the diffuse Rydberg orbitals need to be rendered using smaller isovalues. When

using the same isovalue as for valence orbitals, the isosurface encloses only a small part of

the electron density of much more diffuse Rydberg orbitals (this can be easily understood by

comparing two normalized gaussians with different exponents, see Fig. S3 in Supplementary

Information), which leads to a misleading picture, as illustrated by the middle row of Fig. 5.

When isovalue is adjusted to a lower value (as in the bottom row of Fig. 5), the true shape of

the Rydberg orbital becomes visible. Using simple exciton descriptors characterizing electron
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sizes informs users about Rydberg character of the state, alerting them that a smaller isovalue

needs to be used for rendering NTOs.

4.2 Charge-transfer states in DMABN

Charge-transfer states present a challenge for many excited-state methods; consequently,

they are often used in benchmark studies, highlighting methodological issues.27,73 We con-

sider 4-(N,N -Dimethylamino)benzonitrile (DMABN), a substituted benzene ring with donor

and acceptor groups in para position, as a representative organic push-pull molecule. The

photochemistry of DMABN is rather complex. This molecule features dual fluorescence in

polar environments,75 where there are two fluorescence peaks, one at 350 nm (3.54 eV) and

another at 475 nm (2.61 eV); the latter peak vanishes in gas phase. The origin of dual

fluorescence and the solvent-dependent vanishing of the second peak has been attributed to

the two singlet excited states that are responsible for the fluorescence. The first state is a

locally excited state (LE) of π → π∗ character localized on the benzene ring. The second

state is a charge-transfer (CT) state, in which an electron is promoted from the electron-

donating dimethylamino group towards the benzonitrile group (cf. Fig. S4 of SI). Note that

none of these states is of pure LE or CT character, but rather feature mixing of different

configurations. These states experience different interactions with a polar solvent and also

exhibit different structural relaxation. Detailed discussion on the role of these states in dual

fluorescence can be found in Ref. 76.

DMABN example illustrates how excited states of LE and CT character can be char-

acterized by exciton descriptors. We used several geometries from Ref. 62 to represent

excited-state relaxation (see Section 3). The LE geometry is the fully-relaxed geometry op-

timized for the LE state. By using the sequence of the CT structures, we investigate the

effect of solvent-dependent structural relaxation by considering a twist of the two methyl

groups with respect to the benzene (these structures with different twisting angles are de-

noted by CT0, CT45, and CT90). The fully relaxed CT state structure has a pyramidalized
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dimethylamin group (denoted CTP).

Figure 6: Lowest LE and CT states of DMABN at different geometries at the ADC(3)/cc-
pVDZ, ADC(2)/cc-pVDZ, and EOM-CCSD/cc-pVDZ levels of theory. (a) Relative excita-
tion energies (Erel, eV). (b) Distances between electron and hole charge centers (dh→e, Å).
Legend in (a) also applies to (b). (c) Relative energies (Erel, eV) of the ground (GS) and
excited states (LE, CT) calculated at the ADC(2)/cc-pVDZ level of theory in combination
with PCM.62 (d) Solvent effects on electron-hole separation dh→e. Legend in (c) also applies
to (d).

Fig. 6 presents the results for the lowest LE and CT states of DMABN at different ge-

ometries computed at the ADC(3)/cc-pVDZ, ADC(2)/cc-pVDZ, and EOM-CCSD/cc-pVDZ

levels of theory. Fig. 6 (a) shows that the LE state is the lowest at the ground-state geom-
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etry for all three methods. While ADC(2) and ADC(3) values are on top of each other

(4.49 eV and 4.47 eV, respectively), the EOM-CCSD excitation energy is slightly higher

(4.65 eV). For the CT state, the spread in excitation energies is larger: at the ADC(2) level,

it lies only 0.26 eV above the LE state, whereas the gap is larger (≈0.5 eV) for ADC(3) and

EOM-CCSD (the respective excitation energies are 4.94 and 5.15 eV). At the LE geometry

(Fig. 6 (a), left side), the LE state is strongly stabilized, while the energy of the CT state is

slightly blue-shifted. At the CT geometries (right side of Fig. 6 (a)), the excitation energy

of the LE state slightly increases. These trends are observed at all levels of theory. At the

CT90 geometry, the LE excitation energy computed by ADC(2) jumps up to 5.57 eV, in

sharp contrast to ADC(3) and EOM-CCSD. At all levels of theory, the CT state exhibits a

gradual stabilization along the twisting coordinate. The stabilization is most pronounced at

the ADC(2) level. At the CT45 geometry, the excitation energies for the LE and CT states

are almost degenerate at the ADC(3) and EOM-CCSD levels. Increasing the angle disrupts

the conjugation between the benzene ring and the lone pair orbital at the nitrogen atom,

leading to further stabilization of the CT state and destabilization of the LE state.

To rationalize the differences between the different levels of theory, we take a closer look at

the excited-state properties. In the context of CT states, the vectorial electron-hole distance

is the key property. For the LE state, we expect the vectorial distance between the electron

and hole distribution dh→e (eq. (16)) to be close to zero, since the relevant orbitals reside in

the same part of the molecule, despite being delocalized (which is the case for the π orbitals

of the benzene ring). In contrast, CT states involve transitions between orbitals located at

different parts of the molecule. Consequently, dh→e should reflect the distances between the

parts of the molecule involved in charge transfer. The data presented in Fig. 6 (b) shows that

at the GS geometry, the LE and CT states differ in dh→e by at least 0.6 Å for EOM-CCSD

and by more than 0.8 Å for the ADC methods. At the LE optimized geometry and along

the twisting coordinate, the charge separation moderately increases for the LE state and is

strongly enhanced for the twisted structures (CT45 and CT90) at all levels of theory. The
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dh→e values reveal major changes in the state character for the LE state, which rationalize

the trends in ADC(2) excitation energies. For the CT45 geometry, dh→e of the LE state is

as large as 1.41 Å which is rather typical for a CT state. At the CT90 geometry, dh→e drops

to almost zero. Obviously, the twist of the dimethylamin group beyond 45 degrees breaks

the conjugation, and, as a consequence, the LE state localizes on the benzene ring. This

effect can also be visualized using NTOs, which are presented in Fig. S4 in the SI for three

geometries using the EOM-CCSD wave functions.

We note that the dh→e values increase in the following sequence: ADC(3) < EOM-CCSD

< ADC(2). To our knowledge, no systematic analysis of this trend has been reported so far,

yet there have been a couple of studies with similar findings suggesting that ADC(2) tends

to overestimate charge transfer character.62,77,78

To understand solvent effects on excitation energies and exciton properties, we recalcu-

lated the dh→e values of the LE and CT states employing a polarizable continuum model

(PCM). Fig. 6 (c) shows the results for two solvents, acetonitrile (MeCN), an example of

polar solvent, and cyclo-hexane (cHex), a non-polar solvent. Fig. 6 (c) shows the relative

energies for the ground and excited states with respect to the ground-state energy at the GS

geometry, which is set to zero for each model. At the GS geometry, the CT state is stronger

stabilized by the solvents than the LE state. At the CT optimized geometries, the ground

state is strongly destabilized and its energy rises up by more than 2 eV for the CTP geom-

etry in MeCN. At the same time, the CT energy decreases at the CT-optimized geometries,

as shown in the right hand side of Fig. 6 (c), and the stabilization is more pronounced in

the polar solvent, just as expected. The LE state is slightly destabilized, with only minor

influence of the environment for the smaller twisting angles. In contrast, at the CT90 and

CTP geometries there are significant changes: the excitation energies steeply increase and

the solvent effects become more pronounced. Comparing these trends with the changes in

dh→e presented in Fig. 6 (d), it is rather interesting that the effects generally follow the trend

in relative energies but that the magnitude of change in dh→e does not correlate linearly with
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the solvent-induced shifts. While the dh→e values of the CT state show a constant shift when

going from vacuum to cHex and to MeCN, irrespectively of the geometry, the LE state shows

a very different trend. At the GS geometry, the shifts in dh→e are almost equal to the ones

of the CT state at this geometry. In contrast, the shifts are more than twice as large for the

LE, CT0, and CT45 geometries. The dramatic drop in dh→e at the CT90 geometry, which

is attributed to the break in conjugation, is accompanied by a vanishing solvent-induced

shift in dh→e. The solvent-dependent changes in excitation energies of the LE state at the

CT90 and CTP geometries are driven by the changes in the ground-state energies at these

geometries rather than by changes in the excited-state character.

In conclusion, using DMABN, we demonstrated how the dh→e values of the LE and CT

states are affected by electronic structure method and by solvent models. Comparing these

values with the trends in relative energies revealed the origin of the sovatochromic effects.

This example highlights the utility of dh→e in identifying and quantifying CT character.

4.3 Delocalized ππ∗ states in hexa-thiophene

To illustrate how exciton descriptors work in extended systems, we consider the hexa(thio-

phene) oligomer (6T) as an example of a large π-conjugated system in which electron-hole

correlation effects become important.45,46,79–82 The key question is then how to trace and

quantify these effects with simple excited-state descriptors. The theoretical description

of transitions with charge-resonance character, as those giving rise to bright states in or-

ganic photovoltaic materials, is affected by the same methodological shortcomings as charge-

transfer states,83–85 although the origin of the problem is obscured by the absence of per-

manent charge separation.86–88 Two descriptors are relevant is this case: the exciton size

and the linear electron-hole correlation. While the former allows to determine the type and

character of the exciton, the latter shows whether the electron-hole correlation effects are

correctly described by different quantum-chemical methods.45,46

Below we consider the first singlet (S1, 11Bu) and triplet (T1, 13Bu) excited states. The
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Figure 7: Excited states of hexa(thiophene). (a) and (d) Excitation energies (∆E, eV), (b)
and (e) exciton sizes (dexc, Å), and (c) and (f) correlation coefficients (Reh) of the first singlet
(S1, 11Bu) and triplet (T1, 13Bu) states calculated at various levels of theory employing the
SV(P) basis set. The legend in (a) applies to all plots in this figure, CAM denotes CAM-
B3LYP. Experimental spectrum recorded in dioxane.89,90
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11Bu state is the lowest singlet excited state and carries large oscillator strength. Fig. 7

presents an analysis of the states in terms of excitation energies as well as exciton descriptors

using Reh and dexc.

In terms of excitation energies (shown in Fig. 7(a)), ADC(2) and EOM-CCSD appear

to significantly overestimate the excitation energy of S1, by 0.54 eV and 0.82 eV, respec-

tively (the experimental value is 2.85 eV). Let us briefly discuss several factors contributing

to this rather large discrepancy. First, the experimental spectrum was recorded in diox-

ane, which has a refractive index of 1.42 and stabilizes excited states, thus lowering exci-

tation energies relative to gas phase. Second, uncertainties of the geometry used in calcu-

lations may contribute to the observed discrepancies. We used geometry optimized with

ωB97/SV(P). Reoptimizing the structure and calculating vertical excitation energies with

CAM-B3LYP/cc-pVDZ yields 3.05 eV, which is a significant improvement; similar effect

is expected for ADC(2) and EOM-CCSD. Third, using a more appropriate basis, such as

aug-cc-pVTZ, should lead to additional lowering of excitation energy by 0.1−0.2 eV.45,91

While 6T is too large for EOM-CCSD calculations with a triple-zeta basis, we carried out

EOM-CCSD calculations with aug-cc-pVDZ basis and obtained excitation energy of 3.38 eV

(thus, reducing the error down to 0.53 eV). Fourth, the effect of higher excitations is im-

portant. Although the bright Bu state is a singly excited state, doubly and triply excited

determinants are important for dynamical correlation. States with large charge-resonance

character (such as singlet ππ∗ states in conjugated systems) are known to require accurate

account of dynamic correlation, e.g., for these states the errors of EOM-CCSD are often close

to 0.3 eV and systematic, leading to overestimation of excitation energies (cf. Ref. 91). The

importance of dynamic correlation is clearly seen by comparing CIS to ADC(2) and EOM-

CCSD: Including doubly excited determinants yields better excitation energies. Finally, we

note that for unambiguous comparison between the experimental absorption spectra and

theoretical results one needs to compute the vibrational envelope (Franck-Condon factors).

Such calculations are costly and are outside of the scope of this work. Previous studies have
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shown that the absorption band maxima in polyatomic molecules is often closer to adiabatic

(00) transitions rather than to vertical energy difference.92–94 Thus, the account of structural

relaxation can lead to additional red shift in the computed energies.

Among TDDFT methods, the B3LYP shows the best agreement with experimental ab-

sorption maximum (error of −0.10 eV), CAM-B3LYP result is blue-shifted by 0.35 eV, and

BLYP underestimates the excitation energy by −0.52 eV. We note that blue shift observed

with CAM-B3LYP is consistent with the behavior of wave function methods, whereas seem-

ingly better agreement of BLYP and B3LYP is likely an artifact.

For the T1 state (3Bu), EOM-CCSD and ADC(2) yield very similar results: The EOM-

CCSD excitation energy is 2.29 eV, which is only −0.15 eV below the ADC(2) value of

2.44 eV. In contrast, TDDFT (and CIS) methods yield much smaller values clustered around

1.7 eV.

Figs. 7(b) and (c) show exciton descriptors, revealing a large spread in exciton sizes

and correlation coefficients for the two states. For the S1 state, EOM-CCSD exciton size

is 5 Å, which is similar to the CAM-B3LYP value. B3LYP and BLYP lead to much larger

values of 8 Å and 10 Å, respectively. Comparing these values to the size of the molecule

(22.1 Å) and taking into account that we compute the root-mean-square value of the electron-

hole distribution, we infer that EOM-CCSD, ADC(2), and CAM-B3LYP predict a spatially

confined electron-hole pair, whereas BLYP and B3LYP yield fully delocalized distribution

of electron and hole. The exciton size in T1 is much smaller for all methods, which can be

attributed to the absence of exchange repulsion.

The electron-hole correlation coefficients (Fig. 7(c)) illuminate the observed wide spread

in exciton sizes for the S1 state: While for the ab initio methods and CAM-B3LYP Reh is

positive with values above 0.44, BLYP exhibits a negative electron-hole correlation (−0.29),

and B3LYP shows small positive value (+0.12). A negative value in Reh corresponds to a

dynamical avoidance of the electron and hole in space, which is physically incorrect, because

in molecules they should attract each other. A related study on tetra(thiophene) has shown
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that the excitation energies of the first bright excited state strongly depend on the amount

of non-local exact exchange and that spurious charge-transfer states appear for functionals

without or with low percentage of non-local orbital exchange.95 The same phenomenon is

at play in π-conjugated systems and is related to methodological issues in the description of

excitonic properties.46 Our results therefore show yet another example of misleading error

cancellation, illustrating that seemingly accurate excitation energies produced by B3LYP

correspond to completely wrong description of the exciton.

In the triplet state, all methods yield Reh which is larger compared to the S1 values. The

increase in electron-hole correlation can be rationalized in terms of exchange interaction:

While electron and hole experience a short-range repulsion in the case of singlet excitons, in

triplet excitons Pauli hole screens the Coulomb hole thus allowing the hole and particle to

co-localize in space. This phenomenon, clearly seen in dexc and Reh, is a short-range effect

and largely determined by the response of the Hartree potential. Consequently, it is well

captured by TDDFT with all functionals.

In the context of a debate of the applicability of the TDA approximation in extended

π-systems, Fig. 7(d) compares the S1 excitation energies computed with and without TDA

with BLYP, B3LYP, and CAM-B3LYP. The black box represents the experimental value of

2.85 eV.89,90 While for the BLYP and B3LYP functionals we observe smaller errors when

employing TDA, for CAM-B3LYP the full TDDFT seems to perform better (+0.24 eV versus

+0.35 eV).

4.4 Doubly excited states in octatetraene

All-trans polyenes, prototypical linear conjugated systems, play key roles in many biologi-

cally relevant systems, e.g., in carotenoids. Despite their simple structure, excited states of

polyenes are challenging for theory, due to low-lying doubly excited configurations.51,96,97 A

plethora of studies have investigated different aspects of the excited states of polyenes.68,96–104

We use this system to take a closer look on how to identify doubly, or, more generally, multi-

26



ply excited states, and to compare excited states and their properties computed with different

methods.

In many biologically relevant applications, excited-state calculations are only feasible

using very efficient but approximate TDDFT approach. An intense search for an appropriate

exchange-correlation functional revealed that BLYP yields the experimentally observed state

order, i.e., that the dark Ag state is the lowest excited state for all compounds larger than

hexatriene. For this reason, we included the BLYP functional in the benchmark set, along

with its hybrid counterpart, B3LYP, and a long-range corrected functional, CAM-B3LYP.

It is well known that linear-response TDDFT usually performs poorly for doubly excited

states. It would be interesting to compare these methods with alternative approaches, e.g.

dressed TDDFT or spin-flip TDDFT,105,106 cf. e.g. Ref. 13 and references therein. However,

this is beyond the scope of the present work.

The excited states are classified in terms of their irreducible representation as Ag, Au,

Bg, and Bu and marked with + or − depending on their character, i.e., + denotes ionic

resonance structures and − denotes to neutral (covalent) ones (cf. Ref. 104 and references

therein).

Fig. 8 presents the results for the 21A−g , 11B+
u , and 11B−u excited states of octatetraene.

Fig. 8(a) shows a large spread in the excitation energies computed by different methods.

ADC(3) shows the best agreement with the experimental data,107 with deviations of +0.36

eV and +0.27 eV for 21A−g and for 11B+
u , respectively. ADC(3) is the only ab initio method

that reproduces the experimental state ordering. ADC(2) and EOM-CCSD show substantial

errors for the 21A−g state (+2.39 eV for ADC(2) and +2.54 eV for EOM-CCSD). For the

11B+
u state, the errors are much smaller: +0.24 eV and +0.62 eV for ADC(2) and EOM-

CCSD, respectively. Increasing the basis set up to aug-cc-pVTZ lowers the EOM-CCSD

excitation energies by about 0.1 eV yielding 6.055 and 4.896 eV for the 21A−g and 11B+
u

states, respectively. Thus, even with a larger basis EOM-CCSD still places the dark Ag

state above the bright Bu state vertically.
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Figure 8: Excited states of octatetraene. (a) Excitation energies (∆E, eV), (b) oscillator
strengths (fosc), (c) Ω values (Ω), and (d) squared doubles amplitudes (R2) of the 21A−g , 11B+

u ,
and 21B−u states calculated with ADC(2), ADC(3), EOM-CCSD, BLYP/TDA, B3LYP/TDA,
and CAM-B3LYP/TDA employing the cc-pVTZ basis set. The legend in (a) applies to all
diagrams. Experimental data are from Ref. 107.

Exciton analysis allows us to rationalize these large discrepancies between the methods.

The key quantity here is the amount of single and double (or multiple) excitation character.

Fig. 8(c) and (d) shows two measures, the squared norm of the exciton wave function Ω and

the squared value of the doubles amplitudes R2 in the excited states. An advantage of using

Ω is that the respective values are orbital invariant and well-defined independent from the

computational protocol, which affords a more precise comparison than using R2.

The ADC(3) values clearly indicate a predominant double excitation character in the

21A−g and 21B−u excited states. ADC(2) fails to capture this effect even qualitatively: all three

states have Ω values larger than 0.8, completely missing out differences in state character

and confirming the results of Ref. 108. Despite relatively large errors in excitation energies,

the EOM-CCSD Ω values indicate that EOM-CCSD captures a small difference in excitation
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character, in accordance with the trends observed at the ADC(3) level. The R2 values follow

similar trend as the Ω values.

Given the differences in state characters, it is not surprising that the ADC(3) method,

which describes doubly excited determinants at first order in perturbation theory, performs

much better than ADC(2), which describes these determinants only at zeroth order. In the

EOM-CCSD ansatz, the double excitations are included explicitly, but their primary role

is to describe dynamical correlation for singly excited configurations. Thus, when excited

states have predominantly doubly excited character, there are no higher-level configurations

to correlate these states. An explicit inclusion of double excitations in EOM-CCSD is re-

sponsible for its superiority relative to ADC(2). Further discussion on doubly excited states

can be found in Ref. 97.

Let us now discuss the performance of TDDFT, cf. Fig. 8(a). At the first glance,

BLYP shows the best agreement with the experimental data and the ADC(3) results. While

CAM-B3LYP closely follows ADC(2) and EOM-CCSD, the excitation energies obtained

with B3LYP are almost exactly in between BLYP and CAM-B3LYP for all three states. As

TDDFT only includes singly excited determinants, Ω=1 for all TDDFT states, meaning that

doubly (or multiply) excited character cannot be described.99 To rationalize the differences

and similarities of the computed excited-state wave functions, Fig. 9 shows exciton properties

such as exciton sizes and correlation coefficients. We note that these descriptors only char-

acterize the part of the excited state that is described by single electron transitions, because

they are based on the one-particle transition density matrix. For example, predominantly

doubly excited state 21A−g has Ω=0.2 at the ADC(3) level. This means that only 20% of the

excited state can be described within the exciton model. Consequently, exciton sizes and

correlation coefficients in Fig. 9 are not very meaningful for the 21A−g and 21B−u states.

For the predominantly singly excited state 11B+
u , all wave function based methods are

in good agreement with an exciton size of about 4 Å and a slightly positive correlation

coefficient of +0.1. Among TDDFT methods, CAM-B3LYP shows the best agreement with
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Figure 9: Excited states of octatetraene. (a) Exciton sizes (dexc, Å) and (b) correlation coef-
ficients (Reh) of the 21A−g , 11B+

u , and 21B−u excited states calculated with ADC(2), ADC(3),
EOM-CCSD, BLYP/TDA, B3LYP/TDA, and CAM-B3LYP/TDA employing the cc-pVTZ
basis set. The legend in (a) applies to both diagrams.

these values. In contrast, for BLYP, dexc is much larger (5.21 Å) and Reh is negative (−0.148).

Other states (those with substantial single excitation character) are described consis-

tently by the wave function based methods suggesting the major differences in excitation

energies originates from the doubly or multiply excited determinants. It would be interest-

ing to further characterize this phenomenon, however, more advanced techniques need to be

employed, cf. Ref. 109, which is beyond the scope of this work. Using ADC(3) as a refer-

ence, we observe the best agreement in exciton properties for EOM-CCSD, while ADC(2)

shows the largest discrepancies for the 21A−g state. In contrast to the good agreement in

excitation energies, the exciton sizes obtained with BLYP deviate the most from the ADC(3)

values. We observe a systematic decrease in errors against ADC(3) when going from BLYP
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to B3LYP to CAM-B3LYP, which effectively corresponds to an increase of non-local orbital

exchange.13,46

Fig. 9(b) plots electron-hole correlation coefficient Reh, showing a qualitative agreement

among all wave function based methods. We observe an opposite trend in terms of deviation

from the ADC(3) reference: When the correlation is smaller, then the exciton size increases

with respect to the reference. While for the predominantly doubly excited state, the electron-

hole correlation is negative, i.e., the electron and hole dynamically avoid each other in space,

the positive Reh values for the second and third state are slightly positive.

In summary, we characterized the low-lying excited states of octatetraene in terms of

double excitation character and exciton properties, confirming the findings of Ref. 97. In-

terestingly, in the doubly excited 21A−g state, there is negative correlation between electron

and hole. CAM-B3LYP is the only xc-functional tested here that agrees with the ab initio

methods when it comes to exciton properties, while its performance is rather poor in terms of

excitation energies in contrast to, e.g. BLYP. Ref. 99 has pointed out that excited states in

polyenes require a more accurate treatment of electron correlation than provided by simple

gradient-corrected functionals. Our results confirm this conclusion, suggesting that long-

range corrections are unlikely to compensate the errors for polyenes and related molecules

inherited from the simpler xc-functionals.

4.5 Magnesium(II)porphyrin

Porphyrins are a very important class of molecules present in active centers of biologically

and physiologically relevant molecules. Magnesium(II)porphyrin is a model for chlorophyll,

which has been an object of intense studies ever since its discovery in 1940. Using this

molecule as a representative of a large molecular class with rich photochemistry, we illustrate

how benchmarking and interpretation of the excited states can benefit from exciton analysis.

The excited-state absorption spectrum of magnesium(II)porphyrin (MgP) is rationalized

using a four-orbital model by Gouterman,110–112 which explains the origin of the Q and B
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bands. While drawing a full picture of all relevant excited states is beyond the scope of this

work, we focus on the first bright excited state related to the low-intensity Q band and on

the interpretation of the four doubly degenerate, bright states in comparison to Gouterman’s

model.

Table 2: The first excited Q state of Magnesium(II)porphyrin calculated at various levels of
theory employing Ahlrichs’ SV(P)59 basis set if not stated otherwise.

method ∆E(eV) f Ω dexc σh σe Reh

exp. 2.07a

ADC(3) 1.996 0.008 0.728 4.58 3.50 3.65 0.179
ADC(2) 2.382 0.007 0.757 4.64 3.38 3.67 0.169
EOM-CCSDb 2.344 0.001 0.759 4.58 3.45 3.65 0.167
EOM-CCSDb,c 2.345 0.007 0.736 4.62 3.46 3.64 0.158
EOM-CCSDb,d 2.302 0.007 0.741 4.65 3.49 3.67 0.158
BLYP 2.265 0 1 5.17 3.46 3.70 −0.048
B3LYP 2.388 0.001 1 5.03 3.47 3.68 0.012
CAM-B3LYP 2.423 0.004 1 4.81 3.48 3.65 0.090
CIS 2.432 0.038 1 4.68 3.55 3.67 0.160

a From Ref. 110.
b Symmetrized geometry.

c Dunning’s cc-pVDZ basis set.
d Dunning’s cc-pVTZ basis set.

Let us begin by discussing the benchmark data set for the first bright excited state shown

in Table 2. Comparing the excitation energies obtained with the different computational

methods with the experimental value of 2.07 eV,110 the ADC(3) method shows the best

agreement (excitation energy of 1.996 eV). The second smallest error obtained with BLYP

is already substantially larger, with excitation energy of 2.265 eV. All other methods exhibit

a uniform blue shift of about 0.3 eV (or even +0.4 eV for CAM-B3LYP). It is worth noting

that EOM-CCSD and ADC(2) excitation energies are very close (2.344 eV and 2.382 eV,

respectively) and that B3LYP is almost on top of these values (2.388 eV). For EOM-CCSD,

we also investigated the effects of the basis set. While the value obtained with Dunning’s

double-ζ basis is within 0.001 eV from the value obtained with Ahlrichs’ SV(P) basis, using

triple-ζ basis leads to an improved agreement with the experiment (2.30 eV).

Despite the discrepancies in the excitation energies, the exciton properties of the first
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excited state are consistent among the wave function-based methods (ADC(3), ADC(2),

and EOM-CCSD). This is especially true when comparing ADC(3) and EOM-CCSD. The

Ω values indicate a similar amount of single excitation character (0.75) and other exciton

descriptors are very similar. The ADC(2) descriptors show larger differences, but are never-

theless in a good overall agreement.

Considering differences between the tested TD-DFT methods, the most interesting trend

can be attributed to a gradual increase of exact exchange. In the BLYP functional no non-

local orbital exchange is included, while a constant fraction of 21 % is included for B3LYP,

and a range-separation function admixes non-local orbital exchange between 19 % and 65 %

in CAM-B3LYP. While the best results for the excitation energy appears to be obtained with

BLYP, it is noteworthy that the electron-hole correlation is negative (Reh = −0.048). As

in the case of hexa(thiophene), ADC(3) results suggest that electron-hole correlation should

be positive. Increasing the amount of exact exchange, which corresponds to introducing the

electron-hole attraction in the framework of TDDFT,13,46 improves the description of the

electron-hole correlation yielding positive values of Reh. But while Reh value is improved

when going from BLYP to B3LYP to CAM-B3LYP, the excitation energies become worse,

approaching the typical error of CIS.

As the next step, we analyze the first four doubly degenerate ππ∗ states of MgP employ-

ing TD-DFT and a triple-ζ basis set and attempt to reconstruct Gouterman’s model. The

TDDFT results, experimental data,110 and the ADC(2)/SV(P) reference values are presented

in Table 3 (we report the results for one state from each degenerate pair, as the second state

has identical properties). Following the trends for S1, the results illustrate how difficult it is

to describe excited states of large conjugated systems highlighting a true dilemma. While

BLYP delivers reasonable excitation energies, the negative correlation between hole and elec-

tron reflects a qualitatively wrong description of the corresponding exciton. Adding exact

exchange (as, e.g., in CAM-B3LYP) improves exciton properties yielding the expected posi-

tive electron-hole correlation as in ADC(2), but at the price of increased errors in excitation
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Table 3: Characterization of the four doubly degenerate, bright excited states of
Mg(II)porphyrin in terms of excitation energies (∆E, eV), oscillator strengths (fosc), ex-
citon sizes (dexc (Å)), hole and electron sizes (σh (Å), σe (Å)), and correlation coefficients
(Reh) calculated by CIS and TD-DFT with the BLYP, B3LYP, and CAM-B3LYP functionals
employing Ahlrichs’ TZVP basis set.

method state ∆E (eV) fosc dexc (Å) σh (Å) σe (Å) Reh

exp. Q 2.07a

BLYP S1 2.271 0 5.20 3.47 3.72 −0.046
B3LYP S1 2.393 0 5.05 3.48 3.70 0.011
CAM-B3LYP S1 2.430 0.001 4.83 3.48 3.66 0.088
ADC(2)b 11B2u 2.382 0.007 4.64 3.38 3.67 0.136
CIS S1 2.465 0.020 4.71 3.56 3.68 0.155
exp. B 3.05a

BLYP S3 3.156 0.016 5.55 3.77 3.71 −0.101
B3LYP S4 3.676 0.110 5.14 3.70 3.70 0.038
CAM-B3LYP S3 4.098 1.123 4.65 3.43 3.79 0.172
ADC(2)b 21B2u 3.487 1.357 4.88 3.40 3.76 0.075
CIS S3 4.578 2.698 4.88 3.38 3.80 0.079
exp. N 3.97a

BLYP S10 3.441 0.064 5.47 3.75 3.77 −0.059
B3LYP S8 3.947 0.593 5.04 3.45 3.82 0.042
CAM-B3LYP S7 4.402 0.992 4.93 3.60 3.71 0.092
ADC(2)b 31B2u 3.993 0.007 4.89 3.62 3.68 0.105
CIS S7 5.274 0.323 4.44 3.79 3.80 0.314
BLYP S15 3.973 1.583 5.60 3.72 4.00 −0.052
B3LYP S13 4.340 1.722 5.63 4.05 3.79 −0.031
CAM-B3LYP S12 4.994 0.798 5.28 4.07 3.67 0.072
ADC(2)b 41B2u 4.625 0.478 5.26 4.06 3.66 0.075
CIS S16 6.235 0.729 4.92 3.94 3.66 0.163

a From Ref. 110. b Symmetric structure, SV(P) basis.
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energies, which are overestimated by 0.36− 1.00 eV.
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Figure 10: Gouterman’s model: (a) hole and electron sizes (σh, σe, Å) of four doubly de-
generate excited states calculated at the CAM-B3LYP/TZVP level of theory, (b) Sketch of
orbitals and transitions involved in the absorption spectrum of MgP including the classic
Four-Orbital model (grey), adopted from Ref. 113.

Fig. 10 (a) visualizes the hole and electron sizes of the four bright states computed

with CAM-B3LYP/TZVP. While the electron sizes (red) are nearly the same (with a mean

value of 3.71 ± 0.06 Å, the hole sizes (blue) show larger variation around the mean value

of 3.65 ± 0.29 Å. Nearly constant σe values are consistent with the Four-Orbital model of

Gouterman in which the two degenerate LUMOs act as final orbitals in all bright states.110

At the same time, the variations in σh indicate the different types of initial orbitals. An

inspection of the NTOs shown in Fig. S8 in the Supplementary Information confirms these

observations: All final (electron) orbitals have the same shape with only minor differences

in amplitudes. S1 and S3 contain admixture of the same initial orbitals (50 % and 36 %,

respectively), in agreement with the Four-Orbital model. For the S12 state, the hole orbitals

are localized on the porphyrin ring with amplitudes in the largest possible distance to each

other which results in the largest σh. The metal center does not participate in the NTO

pairs of these states.

Summarizing the MgP results, ADC(3) yields the best agreement with the experimental

value of the S1 excitation energy. The EOM-CCSD excitation energy is blue-shifted by

∼0.25 eV, but the respective exciton properties are in excellent agreement with ADC(3).
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TD-DFT results depend strongly on the amount of exact exchange. Increased fraction of

exact exchange improves exciton description, but leads to larger errors in excitation energies.

The NTO analysis of the four bright states responsible for the visible MgP spectrum confirm

the validity of Gouterman’s model.

5 Summary and conclusion

This work presented a new strategy for benchmarking excited-state calculations that goes

beyond excitation energies by exploiting exciton analyses. By using a comprehensive set

of examples ranging from small to large molecules with different types of excited states,

we illustrated the utility of exciton analyses in benchmarking. The study considered wave

function methods, EOM-CCSD, ADC(2), and ADC(3), as well as TDDFT in combination

with three functionals (BLYP, B3LYP, and CAM-B3LYP).

We illustrated that electron sizes provide a convenient tool for differentiating between

Rydberg and valence excited states, while electron-hole distance allows one to quantify the

amount of charge transfer. Electron-hole correlation illuminates the nature of excitons and

reveals important methodological aspects, such as qualitatively different description of sin-

glets and triplets by TDDFT. The analysis of exciton properties in large conjugated systems

highlights the limitations of energy-based benchmarking: we show that for TDDFT methods

the best agreement in terms of excitation energies corresponds to rather poor (and even qual-

itatively incorrect) exciton description, while improving the exciton description by increasing

the fraction of exact exchange leads to increased errors in excitation energies.

Exciton properties facilitate the assignment of state characters and also deliver impor-

tant information about electron-hole correlation effects, thus establishing a new criterion for

benchmarking. Importantly, the analysis based on density matrix and exciton properties

enables unambiguous comparisons of different many-body wave functions and between wave

function-based and DFT methods. While the focus of this work is on comparisons between
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single-reference methods, we note that recently such analysis of exciton properties has been

implemented114 within the framework of multireference methods, CASSCF and CASPT2,

which will facilitate future comparisons between single- and multi-reference methods.
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Benchmarking is an everyday task in quantum chemistry. The excitation
energy is certainly an important criterion for it, but can hide discrepancy
between the physical description of the underlying states by different
computational protocols. Benchmarking using exciton properties pro-
vides detailed insight into excited–state description, facilitates state
assignment and interpretation of results.
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