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Abstract 

This thesis develops a new approach to fault tree analysis, namely the Binary Decision 

Diagram (BDD) method. Conventional qualitative fault tree analysis techniques such 

as the "top-down" or "bottom-up" approaches are now so well developed that further 

refinement is unlikely to result in vast improvements in terms of their computational 
capability. The BDD method has exhibited potential gains to be made in terms of 

speed and efficiency in determining the minimal cut sets. Further, the nature of the 
binary decision diagram is such that it is more suited to Boolean manipulation. The 

BDD method has been programmed and successfully applied to a number of 
benchmark fault trees. 

The analysis capabilities of the technique have been extended such that all quantitative 
fault tree top event parameters, which can be determined by conventional Kinetic Tree 

Theory, can now be derived directly from the BDD. Parameters such as the top event 

probability, frequency of occurrence and expected number of occurrences can be 

calculated exactly using this method, removing the need for the approximations 

previously required. 

Thus the BDD method is proven to have advantages in terms of both accuracy and 

efficiency. Initiator/enabler event analysis and importance measures have been 

incorporated to extend this method into a full analysis procedure. 
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Notation 

C. Minimal cut set i 

dt Infinitesimally small interval 

du Infinitesimally small interval 

f (t) Failure probability density function 
G. (q) Criticality function for component i (Birnbaums measure of importance) 

g(t) Repair probability density function 
Ii Importance measure for component i 

nc Number of minimal cut sets 
P Probability; probability of an event 
Q"' (t) System unavailability 
QAV Average unavailability 
Q(t) Unavailability function 

qj Component unavailability 

t Time; aggregate system life 
to Initial time, start time 

ti Smallest ordered age at failure 

v(t) Unconditional repair intensity 

w(t) Unconditional failure intensity 

Constant failure rate 
Constant repair rate 

(t) Conditional failure intensity 

µ(t) Conditional repair intensity 

r Mean time to failure (MTTF) 

IC Mean time to repair (MTTR) 
8 Test or inspection interval 
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CHAPTER 1 

INTRODUCTION TO FAULT TREE ANALYSIS 

1.1 Introduction 

Reliability engineering techniques are extremely important for industrial safety systems 

which are designed to protect against hazardous events. If the safety features of an 
industrial system fail the consequences may be catastrophic, as in the case of the Piper 

Alpha disaster in 1988 which caused 167 deaths. Reliability is also an important factor 

affecting the economic viability of industrial processes. 

The most common technique used for system reliability assessment is fault tree 

analysis. Fault tree analysis is a formal deductive procedure for determining 

combinations of component failures and human errors that could result in the 

occurrence of a specified undesired system failure mode. The undesired system failure 
is referred to as the 'top event' and the fault tree represents how this top event can be 

caused by individual or combined lower level events. Once constructed the fault tree 
diagram can be analysed to yield reliability parameters concerning the system failure. 

The fault tree provides a diagrammatic description of the way in which a system can 
fail in a specific mode. The importance of the fault tree for safety system analysis is 

that it yields a complete description of the various causes of the system failure. Hence 

the engineers can identify and rectify any problem areas in the design. 

1.1.1 Background 

Fault tree analysis was first developed by H. A. Watson 1961-62 at Bell Telephone 

Laboratories during a study of the launch control system of the Minuteman, 

Intercontinental ballistic missile. 

The quantification techniques known as Kinetic Tree Theory was supplied nearly ten 

years later by Vesely (1). Initiator and enabler event theory was then developed by 

Dunglinson and Lambert (2) and importance measures were supplied by Birnbaum (3) 

and Barlow and Proschan (4). Industries which have made extensive use of fault tree 

analysis include the nuclear industry, power generation industries, the chemical process 
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industry and aerospace industry. Guidelines to construct the fault tree in a methodical 
manner have been developed by Hass] et al. (5) (Nuclear Regulatory Commission). 

A full description of fault tree analysis can be found in Andrews and Moss (6) and 
Henley and Kumamoto (7). 

1.2 General Description of the Fault Tree Analysis Method 

1.2.1 Fault Tree Symbols and Construction 

Fault tree analysis is a deductive logic approach used to identify the causal 
relationships leading to a specific system failure mode. The initial step in the fault tree 

analysis of a system is to identify the system failure mode of concern. This becomes 

the top event of the fault tree. One system may have many different failure modes that 

need to be analysed, in this case a separate fault tree is required for each one. The top 

event of the fault tree is developed by branches leading down from this event to other 

sub-events which represent its possible causes. These sub-events are continually 

redefined in terms of lower resolution events until the branches are terminated with 

component failures. The terminating events in the development are classified as basic 

events. 

Each fault tree is built up from gates and events, the gates link the events together 

Y depending on their causal relationships. The main two types of gates used are the 
'AND' and 'OR' gate. Other gate types exist (6) but these only reduce the size of the 
fault tree diagram and have to be expressed in terms of 'AND', 'OR' and 'NOT' logic 

prior to the analysis. The minimal set of gates to represent all logic operators which 

are used in the fault tree analysis methods described in this thesis are shown in table 
1.1. 

Also a restricted minimal set of the event type symbols used in the fault tree analysis 

are shown in table 1.2. Again a more detailed list of symbols in general use can be 

found in reference (6). Basic events, represented by a circle, indicate the limit of 

resolution of the fault tree. For a quantitative analysis it is these events for which data 

are required. 



Gate Symbol Gate Type Causal Relation 

AND Gate Output event occurs if all 
input events occur 

simultaneously 

OR Gate Output event occurs if at 
least one of the input 

events occur 

m-out-of-n Gate (Vote Output event occurs if at 
Gate) least m-out-of-n input 

m events occur 

n inputs 

NOT Gate Output event occurs if the 
input event does not 

Table 1.1 Common Gate Symbols and Types 

Event Symbol Meaning of Symbol 

Intermediate event further developed by 

a gate 

Basic event 

Table 1.2 Common Event Symbols 



The OR gate, the AND gate and the NOT gate combine events in exactly the same 
way as the Boolean operations of 'disjunction', 'conjunction' and 'negation'. There is 

therefore a one-to-one correspondence between Boolean algebraic expressions and the 
fault tree structure. 

Once the system has been defined and a particular system failure mode selected as the 
top event, the fault tree is developed by determining the immediate, necessary and 
sufficient causes for its occurrence. 

Fault tree analysis occurs in two stages, a qualitative stage and a quantitative stage, 
both are discussed below. 

1.3 Qualitative Results of Fault Tree Analysis 

Each unique way that system failure can occur is a system failure mode and will 
involve the failure of individual components or combinations of components. When 

system failure modes are defined in terms of component failures only, the system is 

referred to as a coherent system. A fault tree where basic events represent component 
failure and which contains only AND and OR logic gates is called a coherent fault tree 

and the system failure modes are defined by the concept of a cut set. 

A cut set is a collection of basic events such that if they all occur the top event also 

occurs. 

A minimal cut set is the smallest combination of component failures, which if they all 

occur will cause the top event to occur. 

The dual concept of a cut set in the success space is called a path set. This is a 

collection of basic events in which, providing each failure event does not occur, the top 

event will not occur (i. e. a list of components whose functioning ensures successful 

system operation for the particular top event considered). 

Implicant sets are combinations of both failure and success events that cause the top 

event and prime implicants are implicants where this combination is minimal. 



A system which has failure modes involving both failure and success events is referred 
to as a non-coherent system. Non-coherent fault trees are fault trees that contain 
AND, OR and NOT logic gates. 

1.3.1 Minimal Cut Sets of Coherent Fault Trees 

Once a fault tree has been constructed a qualitative assessment which produces 

minimal cut sets can be performed. The conventional approach to obtain the minimal 

cut sets is to take the Boolean logic expression for the top event and transform it into 

disjunctive normal form (sum of products form). One way of doing this is to use a 
"top-down" approach, which is demonstrated by its application to the fault tree shown 
in figure 1.1. 

To obtain the sum of products form for the top event in figure 1.1, the inputs to the 

gates in the fault tree are represented as logic equations. The dot or product is used to 

represent AND gates whilst the sum is used to represent OR gates. 

The top-down approach starts with the top event and expands this event by 

substituting in the Boolean variables appearing lower down in the tree. Boolean 

Figure 1.1 Example Fault Tree for the Calculation of the Minimal Cut Sets 



variables are assigned to represent the occurrence of each basic event. Then the laws 
of Boolean algebra given below are used to remove redundancies in the expressions. 

1. Commutative Laws 
A+B=B+A, A. B=B. A 

2. Associative Laws 
(A+B)+C=A+(B+C), (A. B). C=A. (B. C) 

3. Distributive Laws 
A+(B. C)=(A+B). (A+C), A. (B+C)=A. B+A. C 

4. Identities 

A+O=A, A. 1=A 

5. Idempotent Laws 
A+A=A, A. A=A 

6. Absorption Laws 
A+A. B=A, A. (A+B)=A 

7. Complementation 
A=1-A, A. A=O, (A)=A 

8. De Morgans Laws 

(A+B)=A. B, (A. B)=A+B 

To find the minimal cut sets for the example fault tree in figure 1.1 begin at the top 

gate called Top. Top is an OR gate with two inputs, G1 and G2, therefore Top can be 

expressed as G1 +G2. Next dealing with gate GI which is an AND gate with inputs 
G3, A and D, Top can now be expressed as G3. A. D+G2. G2 is then represented in 

terms of its inputs to give B. G4, therefore Top becomes G3. A. D+B. G4. Continuing in 

this way and substituting in the inputs for gates G3 and G4 completes the expression 
for the top gate defined in terms of basic events. 

Top= (B +C) .A. D+B . (C+D ) 



Expanding according to the distributive laws and then applying the absorption law 

gives: 

Top=B. A. D+C. A. D+B. C+B. D 

=C. A. D+B. C+B. D 
(1.1) 
(1.2) 

Expression (1.1) provides the "Boolean Indicated Cut Sets" (BICS) of the fault tree. 
The BICS are simply the cut sets of the fault tree expressed in sum of products form. 
Expression (1.2) is the minimal disjunctive form of the logic equation, each term of 

which is a minimal cut set. For this example fault tree there are three minimal cut sets, 
one of order three (containing three basic events) and two of order two (containing 

two basic events). The minimal cut sets are { C, A, D}, { B, C} and { B, D}. Other 

commonly applied methods of deriving the minimal cut sets are based on "bottom-up" 

manipulations of the fault tree. A bottom-up approach starts at the last level or basic 

event level of the fault tree and proceeds up through the tree, substituting each gate in 

terms of its basic event inputs, until the top gate is reached. 

1.3.2 Prime Implicants of Non-Coherent Fault Trees 

Obtaining the prime implicants of non-coherent fault trees requires some additional 

work. Consider the non-coherent fault tree illustrated in figure 1.2. Initially it can be 

converted to an equivalent fault tree shown in figure 1.3 by using De Morgans Laws. 

The NOT gate or NOT operator has been removed by allowing the complementing of 
basic events. In this way the NOT operator has been "pushed down" the fault tree to 

complement the basic events. 

By using the same top-down procedure as for coherent fault trees, the sum of products 

expression for the top event of the non-coherent fault tree shown in figure 1.3 can be 

obtained as follows: 

Top=G 1 +G2 
=G3. G4+A. B 

=(A. C). (D+E)+A. B 

Top=A. C. D+A. C. E+A. B (1.3) 



1Top 

Figure 1.2 Example Non-Coherent Fault Tree 

Now comes the additional work to obtain all the prime implicants. Within expression 

(1.3) there may be "hidden" prime implicants. These are revealed by techniques such 

as the consensus theorem (15). 
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The consensus theorem is as follows: 

Given two fundamental conjunctions (products) VI and V2. If there is precisely one 
literal p which occurs negated in one of 4,1 and ty2 and un-negated in the other, then 

the fundamental conjunction obtained from y'l. yg2 by deleting p and p and omitting 

repetitions of any other literals is called the consensus of VI and VV2, e. g. the 

consensus of A. B. C and A. B. D is A. C. D. 

Applying the above theorem to the expression (1.3): 

the consensus of A. C. D+A. B is B. C. D 

the consensus of A. C. E+A. B is B. C. E 

Therefore the 'full' Boolean expression of (1.3) will be: 

Top= A. C. D+A. C. E+A. B+B. C. D+B. C. E 

which provides the five prime implicants of the non-coherent fault tree shown in figure 

1.3. 

1.4 Quantitative Results of Fault Tree Analysis 

1.4.1 Probability of Top Event Occurrence 

The method used in Kinetic Tree Theory to calculate the probability of the top event 

utilises the previously determined minimal cut sets. 

If a fault tree has nc minimal cut sets C1, i=1......... nc then the top event exists if at 

least one minimal cut set exists. 

i. e. 
TOP= Cl + C2 +....... +Cnc 

nc 
=u ci (1.4) 

i=l 

nc 

since P(Top) = P(UC; ) this gives: 
, _I 



nc nc i-1 

P(Top)=jP(Ci)-jP(Ci nCj)+...... (-1)'c-1P(C, nC2n.... Cnc (1.5) 
i=1 j=l 

This expansion is known as the inclusion-exclusion expansion. The full evaluation of 
each term in the inclusion-exclusion expansion for calculating the probability of the top 

event is not practical for fault trees with many minimal cut sets. Therefore 

approximations that produce acceptably accurate results are required. The inclusion- 

exclusion expansion adds successive odd numbered terms and subtracts successive 
even numbered terms, where each term is numerically less significant than the 

proceeding term. Therefore truncating the series at an odd numbered term will provide 

an upper bound and truncating the series after an even numbered term will provide a 
lower bound for the exact probability. 

Upper and Lower Bounds for System Unavailability 

Consider the first two terms in the inclusion-exclusion expansion. This gives: 

nc nc i-1 nc 
P`Ci) P`Ci ncj><Q 

`t>CP(Ci 
(1.6) 

i=1 i=1 j=l 

Lower bound Exact Upper bound 

The upper bound for the top event probability used here is known as the "Rare Event 

Approximation" since it is itself accurate if the component failure events are rare. 

Minimal Cut Set Upper Bound 

A more accurate upper bound is the "Minimal Cut Set Upper Bound" which is 

developed as follows: 

P(system failure)=P(at least one minimal cut set occurs) 

=1-P(no minimal cut sets occur) 

since 

nc 

P(no minimal cut sets occur)_fl P(minimal cut set i does not occur) 
i=l 



(equality being when no event appears in more than one minimal cut set in which case 
the minimal cut sets are independent). 

Therefore: 

nc 

P(system failure)<_1-[J P(minimal cut set i does not occur) 
i=l 

i. e. 

nc 

QSY, (t) ý 1-fl(1- P(Ci )) (1.7) 

It can be shown that: 

nc nc 

Q, 
w 

(t):! ý 1-H(1-PP(Ci) (1.8) 
=t t=t 

Exact Min Cut Set Rare Event 
Upper bound Approximation 

1.4.2 Unconditional System Failure Intensity 

The reliability of a system (or component) is defined as the probability that the system 
operates (functions under stated conditions for a stated period of time), Ansell and 
Phillips (8). For some systems it is the unreliability which is required for the top event 
i. e., the probability it will not work continuously over a given time period. An upper 
bound for this is the expected number of top event occurrences W(0, t): 

1 

W (0, t) = 
5w(t)dt 

0 
(1.9) 

where w. (t) is the system unconditional failure intensity at time t, i. e. the probability 

that the top event occurs at t per unit time. 

wsys (t) _ G; (q). w; (t) (1.10) 

where G. (q) is the criticality function for each component and q is a function of the 

component failure probabilities. 
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The criticality function Gi (q) is defined as the probability that the system is in a 
critical state with respect to component i and that the failure of component i will then 
cause the system to go from the working to the failed state, i. e., the probability that the 
system fails only if component i fails. Therefore: 

G; (q) = Q(11, q)-Q(0,, q) 

where: 

Q (1, 
, q) - is the probability function of system failure with q; = 1. 

Q(O;, q) - is the probability function of system failure with q; = 0. 

q; is the unavailability of component i. 

1.4.3 Importance Measures 

(1.11) 

An importance analysis is a sensitivity analysis which can be used to identify weak 
areas of the system design. For each component or minimal cut set its importance is a 
numerical value which signifies the role that it plays in either causing or contributing to 
the occurrence of the top event. 

Importance measures can be categorised in two ways: 

1. Deterministic 

2. Probabilistic 

Deterministic Measures 

Deterministic measures assess the importance of a component to the system operation 

without considering the components probability of failure. One such measure is the 

structural measure of importance which is defined for a component i in a system of n 

components as: 

I= number of critical system states for component i 

total number of states for the (n - 1) remaining components 

12 



A critical state for component i is a state for the remaining n-1 components such that 
failure of component i causes the system to go from a working to a failed state. 

Probabilistic Measures 

These importance measures consider the component's probability of failure together 
with its structural contribution to failure. The most commonly used probabilistic 
measures for importance assessment are listed below: 

1. Birnbaums Measure of Importance 
Birnbaums measure of importance is also known as the criticality function. The 
criticality function G; (q) has been previously defined in equation (1.11). 

2. Criticality Measure of Importance 
This importance measure is defined as the probability that the system is in a critical 
state for component i and i has failed given that the system has failed. 

Ici = 
G. (q)9, (t) (1.12) 

Q, S(t) 

3. Fussell-Vesely Measure of Importance 
This measure is defined for each basic event i as the probability of the union of the 

minimal cut sets containing i given that the system has failed. 

P(Uck ) 
IFV, = 

k/iek (1.13) 
Q,, (t) 

4. Fussell-Vesely Measure of Minimal Cut Set Importance 
The previously defined importance measures ranked component failures in order of 
their contribution to the top event. This measure provides a similar function except 
that the minimal cut sets are themselves ranked. This importance measure is defined 

simply as the probability of occurrence of minimal cut set j given that the system has 

failed. 

P(C; ) 

Q,, (t) 
(1.14) 

1 ^. 



1.5 Objectives of the Project 

The majority of the methods developed to perform fault tree analysis work directly 

with the system fault tree structure. Whilst this type of logic diagram is very good to 
represent the system failure logic it is not necessarily the most efficient way to 
manipulate the resulting Boolean equation. 

The task of obtaining the minimal cut sets of a fault tree can become computationally 
intensive if the logic equations produce many cut sets. If a large sum of product 

expression is obtained then applying the reduction rules can take a long time on a 

computer due to the number of comparisons that are needed to make the expression 

minimal. Also storing all the logical expressions for each gate in the tree can make 

extensive demands on memory space. 

This thesis is concerned with the development of a fault tree analysis technique which 

will improve upon the efficiency of the minimal cut set algorithms previously 
developed. Its requirement will be to find the various causes of system failure as 

quickly as possible, with minimum memory requirements. The technique must also be 

capable of extension to derive the probability of occurrence of the top event, if possible 
improving on the accuracy of the approximate quantification method used in Kinetic 

Tree Theory. 

The objectives of the work programme were to: 

1. Review existing fault tree analysis algorithms for both minimal cut set evaluation 

and system failure probability quantification. 

2. Identify the deficiencies of the current methods and also the features each method 

possesses which would be of benefit should these be retained in any future 

developed technique. 

3. Determine a method which should address the deficiencies identified in (2) and 

retain all the desired features. The method will be formulated in a manner for 

efficient computer implementation. 

4. Thoroughly investigate the application of a proposed fault tree analysis method 

manually and deduce what information can be obtained concerning the fault tree 
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when applying this technique. Revising the particular details and efficiency of the 
algorithm as required. 

5. Develop the computer implementation of the proposed algorithm to qualitatively 
and quantitatively analyse the fault tree. Initially this method will be limited to 
minimal cut set derivation and top event probability. 

6. Extend the algorithm to calculate all top event reliability parameters available from 
traditional fault tree analysis methods. 

7. Extend the method to evaluate component and minimal cut set importance 

measures and initiator/enabler event theory. 

8. Improve the efficiency and accuracy of the fault tree analysis code by developing 

any features which require further research. 

9. Test the new features of the method by comparison with a large number of 
benchmark fault trees also analysed by a state of the art commercial fault tree 

analysis code which employs traditional Kinetic Tree Theory. 

10. Investigate the potential of developing certain other aspects of the method to 
improve the efficiency of the technique even further. In addition, consider 
alternative applications of the proposed method, which may benefit other areas of 
research. 
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CHAPTER 2 

METHODS FOR QUALITATIVE FAULT TREE ANALYSIS 

2.1 Introduction 

This chapter describes the methods which have been developed to perform a 
qualitative analysis of fault trees. This type of analysis will produce the minimal 
combinations of events which when they occur together will cause the fault tree top 

event. For coherent systems these failure combinations correspond to the minimal cut 
sets and for non-coherent fault trees, prime implicants. Methods for determining these 
two sets of information are described in separate sections below. 

2.2 Minimal Cut Set Evaluation for Coherent Fault Trees 

Qualitative fault tree analysis for coherent systems requires the determination of the 

minimal cut sets of a fault tree, i. e. the smallest combination of basic event failures that 

will result in system failure. The conventional approach to obtain the minimal cut sets 
is to produce a disjunctive normal form for the top event of the fault tree, as discussed 

in Chapter 1. One of the first approaches of doing this is to use a bottom-up 

procedure such as that of Semanderes (19). 

Semanderes' paper presents a computer program called ELRAFT (Efficient Logic 

Reduction Analysis of Fault Trees), which obtains the minimal cut sets of a fault tree. 
The three steps of the algorithm are: 

1. Union the input events to a gate if the gate is an OR. 

2. Intersect the input events if the gate is an AND. 

3. Start from the last level of the fault tree and evaluate every gate in that level in 

terms of basic events before proceeding up to the next level. Continue this 

process until the top event is expressed solely in terms of basic events. 

Redundancies are eliminated in the following way: 

1. In a particular intersection, a basic event can appear only once and 
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2. A particular intersection of basic events is unique and is not a subset of another 
intersection of events. 

The attractive feature of the paper is the utilisation of prime numbers to reduce 
computer storage. This involves implementing the property of prime numbers as 
stated by the unique factorisation theorem. 

Unique Factorisation Theorem - Every natural number greater than 1 can be 

expressed as a product of prime factors in one and only one way, apart from the order 
in which the factors are written. 

By assigning a prime number to each basic event, a particular combination of basic 

events can be expressed uniquely as a single number. This single number is equal to 
the product of prime numbers corresponding to the basic events in the combination. 
Then, by factoring any given single number into its prime factors, the basic events 
which make up the combination can be determined. Refer to figure 2.1 which is used 
to illustrate the method. 

For the fault tree shown in figure 2.1 assign the following prime numbers to each basic 

event, X I=2, X2=3, X3=5. Next apply the bottom-up algorithm utilising the given 
prime numbers: 

G1=X1nX2-2x3=6 
G2=X 1 nX2nX3=2x3x5=30 
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Top=X 1 r-)X2uX 1 nX2nX3=[6] x[30] 

However 6 is a factor of 30, thus 30 is dropped and Top=6=2x3=X 1 nX2. This 
indicates that the fault tree has one minimal cut set of order two which is (X1, X2). 

Semanderes states that the existing program is designed to handle fault trees which use 
only AND and OR logic gates. However the paper states it could be extended to 
handle other types of logic gates. 

The method of Fussell and Vesely (20), to obtain the minimal cut sets, starts at the top 
event of the fault tree and proceeds to primary events in a step by step process. This 

technique is popularly known as 'MOCUS' and is a top-down algorithm. The key 

points to consider when analysing the fault tree are; AND gates increase the size of the 

cut sets while OR gates increase the number of cut sets. The Boolean Indicated Cut 

Sets (BICS) first need to be obtained (defined in Chapter 1), these are then minimised 
to give the minimal cut sets. It is important to note that the BICS will be precisely the 
minimal cut sets if the primary events are all independent. To obtain the BICS each 
gate in the fault tree is randomly associated with a label w and each primary event with 
a label 0. (Here I believe it would be better to standardise the procedure. Rather than 

randomly name the gates and basic events, name the gates consecutively as they appear 
in the tree, from the top down and left to right on each level. Then label the primary 

events consecutively in the same way). 

The method develops a matrix as the BICS are constructed. The matrix will hold the 
labels given to the gates and basic events in the fault tree. It is stressed that this 

method is not limited to fault trees with primary events appearing only once. 

The matrix is constructed as follows: 

1. Start with the gate representing the top event, this gate label is entered as the Ist 

element in the 1st row, 1st column of the matrix. 
2. Expand the gate according to whether or not it is an AND gate or an OR gate. 

If it is an AND gate expand it by replacing the gate label by the first input to the 

gate, followed by the remaining inputs to that gate. Place these labels on the same 

row in separate columns of the matrix. 
If it is an OR gate expand it again by replacing the gate by the first input to the 

gate, followed by the remaining inputs to that gate. However place these input 

labels directly below each other on separate rows of the matrix. Duplicate all 
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other elements in the initial row, where the gate was found, for each of the new 
rows. 

3. Repeat step 2 for each gate label found in the matrix. The aim is to eliminate all 
the gates in the matrix and finish with only primary events. 

When all the entries in the matrix are primary events the BICS have been determined, 

they are simply the rows of the matrix. Next, a search procedure is employed to 

eliminate redundancies in the matrix and determine the minimal cut sets. The fault tree 
in figure 2.2 is used to illustrate the procedure, each gate and basic event in the fault 

tree has been assigned an integer for computation purposes. The matrix formulation is 

shown in table 2.1. 

To obtain the BICS the elements in the columns, in the final array, are selected 

together to correspond with ANDing and each row then corresponds to a BIC, 

therefore the BICS are: 

4.4 + 4.6 + 5.4 + 5.6 

The following reduction rules are then applied to obtain the minimal cut sets: 

(1) X. X=X 

(2) X+X. Y=X 
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As a result 4.4=4, which makes both 4.6 and 5.4 redundant, leaving the expression: 

4+5.6 

1 ) Top 
(2 3) Top is an AND gate with 

inputs G1 and G2. 
4 3 G1 is an OR gate with basic 
5 3 event inputs X1 and X2. 

Expand vertically duplicating 

other columns. 
4 4 G2 is an OR gate with basic 
4 6 event inputs XI and X3. 
5 4 Expand vertically duplicating 
5 6 all other columns. 

Table 2.1 Matrix Formulation to Obtain Minimal Cut Sets 

Therefore the minimal cut sets for the fault tree in figure 2.2 are: 

(1) {4} i. e. (Xl} 
(2) {5.6} i. e. (X2, X3) 

The results of the paper by Benjiamin, Bowen and Schenk in 1976 (28) are very 

promising, however the description given of the minimal cut set method is not well 

explained. A new algorithm is proposed for efficiently generating the minimal cut sets 

of a fault tree which contains repeated basic events. It is stated that the algorithm 

substantially reduces both execution time and storage requirements when programmed 

and compared to alternative methods such as that of MOCUS. The savings are 

accomplished by recognising and recursively reducing the influence of the repeated 

events. 

The algorithm proceeds in essentially three steps. First, the fault tree containing 

repeated events is reduced. A reduced fault tree is obtained by eliminating repeated 

events which are inputs to OR gates. These repeated events are eliminated by 

assigning each of them with a 'partner'. This partner depends on the other inputs to 

that gate and also on the output of that gate. This step can substantially reduce the 

complexity of a fault tree, containing many repeated events, and is given in detail in the 
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paper. In step two, the cut sets of the reduced tree are then obtained by a conventional 
technique such as MOCUS. These cut sets are referred to as the Group 1 cut sets. 
Finally, the Group 1 cut sets are then further processed to yield the Group 2 cut sets. 
The cut sets of Group 2 are obtained from Group 1 by reinserting the previously 
eliminated repeated events. As the cut sets of Group 2 are generated they are 
compared with the cut sets of Group 1 and any non-minimal cut sets are eliminated. 
When all non-minimal cut sets have been eliminated the cut sets of Group 1 and Group 
2 are the desired result. 

Fault tree examples are not provided which cover all the cases that may be 

encountered during the algorithm, as a result those parts of the algorithm are less clear. 
I feel that the complexity of the computation of this method may outweigh its 

effectiveness. Also, the nature of the algorithm suggests that it would not be effective 
for all types of fault trees which contain repeated events, it would only be suitable for 

fault trees which contain repeated events which are inputs to OR gates. Such an 

example fault tree is given in the paper. Applying the algorithm to this fault tree 

produces a gain in computational efficiency over conventional techniques. Using the 

proposed algorithm 66 cut sets were generated, of which 23 were discarded, and by 

the MOCUS method 169 were generated, of which 126 were discarded. 

Wheeler et al. (29) use 'Bit Manipulation' to obtain the minimal cut sets of fault trees 
based upon the binary coding of events. The method uses a bottom-up algorithm and 
deals with fault trees containing arbitrary AND and OR logic and independent basic 

events. The authors state that their procedure will generate minimal cut sets and top 

event existence probability in an exact algebraic manner. 

Firstly, to obtain the minimal cut sets, three types of logical redundancy must be 

identified and eliminated. 

1. Redundant Factors (A. A=A) 

2. Subset Redundancy (A+A. B=A) 

3. Term Redundancy (A. B+B. A=A. B) 

The minimal cut sets are obtained by a bottom-up sequential substitution procedure, 

similar to that of Semanderes (19), but at each substitution stage redundant factors are 

automatically eliminated using bit manipulation. The initial ordering of input 

information for coding requires that gates having only primary event inputs be listed 

first and that the remaining gates follow with a listing of their input gates. Each 
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primary event is assigned a single 1 in a unique position in a sequence of binary digits 
e. g. 

A-X100000 

B-010000 
C-4001000 

D->000100 

Each individual cut set is then represented by the presence of the appropriate events 
e. g. 

AB-110000 

By using this coding, space required for the storage of intermediate results is 

minimised. In general, for a tree containing N primary events, any cut set representing 

any combination of these events requires a maximum of N bits for its storage. This is 

contrasted with word representation of events in which provision for the storage of N 

words is required. For a first order cut set the saving is in the ratio of bits per word 
depending on the computer used - for example, 36 (Honeywell) or 32 (IBM) to 1. The 

output of an AND gate is the bit by bit logical sum of the inputs which can be obtained 

with the intrinsic OR function supplied by FORTRAN. The output of an OR gate is 

the list of non-duplicated inputs. 

With all the cut sets in binary word form, a simple logical test will identify redundant 

relationships among them. In addition to the OR operation , the Exclusive OR (EOR) 

operation can be used to compare the word bits (i. e. one or more bit positions of the 

words being compared must be different to be non-redundant). For the remaining 

types of redundancy (subset and term duplication) the following logic can be used. 

For each cut set, beginning with the most dominant (i. e. the fewest primary event 
factors), use the selected cut set as a reference and test all others against it. For each 

pair, generate the logical OR combination and then the FOR combination of that result 

and the test cut set. If the result is zero, then the test term is redundant and is 

eliminated. To illustrate, let the first reference term be {A) and the test cut set be (A, 

B) (which is a redundant subset of A): 
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Reference (A) 1000 
Operation 

Test (AB) 1100 
Result 1100 
Operation 

Test (AB) 1100 
Result 0000 Therefore AB is redundant 

From this example it can be seen that testing a duplicate term such as AC against the 
reference term AC will also give a zero result. For other terms, which are neither a 
duplicate or a subset of the reference term, a result other than zero will be obtained, 
for example. 

Reference (A) 1000 
Operation OR 
Test (CD) 0011 

Result 1011 
Operation FOR 
Test (CD) 0011 

Result 1000 Therefore CD is not redundant 

The actual FORTRAN implementation uses the following logic for the task of 

comparing every term to all other terms: 

(1) If "OR(TERM 1, TERM2). EQ. TERM 1" is true, TERM 1 is redundant. 

If the above test is false then: 

(2) If "OR(TERM1, TERM2). EQ. TERM2" is true, TERM2 is redundant. 

If neither test is true, no redundancy is detected. 

By use of this logic, sorting of terms is avoided and testing is more efficient. Applying 

this procedure to all the cut sets for the top event results in the final minimal cut sets 
for the fault tree. The procedure has been implemented in a program called 
FAULTRAN. The data in table 2.2 is obtained using FAULTRAN implemented on a 
Honeywell 635 computer. 

OR 

FOR 
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Number of 
Events 

Number of 
Gates 

Number of 
Cut Sets 

Number of 
Minimal Cut 

Sets 

Execution 
Time (Sec. ) 

17 21 256 112 4 

34 43 512 224 16 

51 64 768 335 40 

68 85 1024 448 60 

Table 2.2 Results of Four Example Fault Trees for FAULTRAN 

Unfortunately the efficiency of neither the algorithm nor the program has been formally 

compared to alternatives. The authors state differences in computer processing 

speeds, types of computation performed, output provided and other factors make the 

comparison difficult. A limitation of this method may be that for large numbers of 
basic events the binary bits allocated to each event used by the computer program may 

be difficult to organise. 

Rasmuson and Marshall (30) feel that computer implementation of algorithms that 

determine minimal cut sets for logic models prove less efficient than is desirable. 

Therefore, they produced an alternative method for determining the minimal cut sets of 

a fault tree, which makes more efficient use of computer memory. The gates of the 

fault tree are resolved in a deterministic manner, which provides a good standardised 

procedure. However, this deterministic method may be a disadvantage as more sorting 

is required to find the relevant gates. They state that the use of dynamic storage makes 

the program more flexible. Similar to Fussell and Vesely (20) they stress that the main 

goal of a fault tree algorithm is to obtain the minimal cut sets as quickly as possible, in 

the smallest amount of main core memory, without having to go to external devices. 

They believe that the efficient use of the main computer memory is the most important 

requirement for an efficient algorithm on contemporary computers. However, main 

core memory may not be so important on modern day computers where memory is 

cheap and available in larger quantities. The method proposed by Rasmuson and 

Marshall is called FATRAM (FAult Tree Reduction AlgorithM) and it is a top-down 

algorithm like MOCUS. The computer core requirements are minimised by careful 

selection of the gates to be resolved: 

1. AND gates and OR gates with gate inputs are resolved first. 

2. OR gates with only basic event inputs are resolved last. 
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The steps of the algorithm are: 

1. Resolution begins with the top event. If the top event is an AND gate, all inputs are 
listed as one set. If it is an OR gate, inputs are listed as separate sets (same as 
MOCUS). 

2. Iterate until all OR gates with gate inputs and all AND gates are resolved. OR 
gates with only basic event inputs are not resolved at this time. 

3. Remove any non-minimal cut sets. 
4. Process any repeated basic events remaining in the unresolved OR gates. For each 

repeated event do the following: 

a) The repeated event replaces all unresolved gates of which it is an input, to form 

new sets. 
b) These new sets are added to the collection. 
c) This event is removed as an input from the appropriate gates. 
d) Non-minimal cut sets are removed using the usual laws, i. e. X. X=X and 

X+X. Y=X. 

5. Resolve the remaining OR gates. All sets are minimal cut sets. 

Rasmuson and Marshall also discuss a 'weeding process', which is more commonly 
referred to as culling. Culling reduces computation by only evaluating the most 
important minimal cut sets, usually those up to a certain order (which is determined by 

the user), all other minimal cut sets are ignored. The justification for doing this is that 

cut sets of a high order tend to have a low probability of occurrence, and therefore do 

not make a significant contribution to the top event probability. The weeding process 
can be applied as the gates are resolved. 

The paper by Rasmuson and Marshall compares FATRAM with MOCUS, the results 

of which are quite impressive. An example fault tree with 25 gates and 36 basic events 
(1 repeated), took 7.36s to evaluate 1,184 minimal cut sets and used 8,288 core 
(words) with MOCUS. However, FATRAM took 0.547s and used 112 core (words), 

clearly showing that FATRAM is more effective than MOCUS for this fault tree. To 

illustrate this method the minimal cut sets for the fault tree in figure 2.3 are 
determined. 
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1) The Top Event is an AND gate, therefore all the inputs are listed as one set i. e. 
{G1, G2}. 

2) GI is an AND gate with basic event input XI and gate input G3, thus G1 is 

resolved to give {X1, G3, G2). 

3) Both G3 and G2 are OR gates, but G3 has only basic event inputs therefore it is 

not yet resolved. Resolving G2, which has inputs X2, X5 and G4, each input 

creates new sets giving {X1, G3, X2), {X1, G3, X5 1, {X1, G3, G4). 

4) G4 is an AND gate with inputs X4 and G5. Resolving produces {X1, G3, X2), 

{X1, G3, X5), ( X1, G3, X4, G5). 

5) The remaining gates, G3 and G5, are both OR gates with only basic event inputs. 

If any non-minimal cut sets existed they would be removed now. Repeated events 

are now handled. Basic event X2 is repeated and it is an input to G3. Therefore 

anywhere G3 occurs it is replaced by X2 and these additional sets added, i. e. 

existing already are {X1, G3, X21, (X 1, G3, X5) (X l, G3, X4, G5) and the 

additional ones are {X1, X2, X2) ( X1, X2, X5) {X1, X2, X4, G5). In {X1, X2, 

1) klrý 
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X2 } the redundant event X2 is removed giving [X 1, X21. Next, using step 4(c) of 
the algorithm G3 is altered by removing X2 to give an OR gate with only 2 inputs 
X3 and X8. 

6) Non-minimal cut sets are deleted to give: {X1, G3, X5), (XI, G3, X4, G5), (XI, 
X2). 

7) Basic event input X3 is also a repeated event, it is an input to G3 and G5. Replace 
G3 and G5 in the sets by X3, creating additional sets to obtain {X1, G3, X5), {X1, 
G3, X4, G5}, {X1, X2}, {Xl, X3, X5}, {X1, X3, X4, X3}. The set {XI, X3, X4, 
X3) is reduced to {X1, X3, X4 1. The gate definitions into which X3 is an input 

are altered like before. Thus, G3 has only one input X8, and G5 has inputs X6 and 
X7. 

8) As there are no non-minimal cut sets and all repeated events have been handled, 
then the remaining OR gates, G3 and G5, are resolved. All the minimal cut sets 
have now been obtained: 

1) {X1, X8, X5) 

4) {X1, X2) 

2) {X1, X8, X4, X6} 3) (Xl, X8, X4, X7) 
5) {X1, X3, X5} 6) 1 X1, X3, X4). 

A criticism of this paper may be that if a small simple fault tree is being analysed this 

method takes longer than MOCUS, however there is an advantage when it comes to 

analysing larger trees using a computer. 

Zipf in his 1984 paper (31) provides a brief description of three different methods used 
by other authors to obtain the minimal cut sets of a fault tree. Two of the methods are 
analytical, one is a bottom-up algorithm and the other one is a top-down algorithm. 
The third method uses simulation. The author then proposes a new analytical 
algorithm, for the evaluation of the minimal cut sets, based on the findings of the three 

methods. 

The simulation method uses Monte-Carlo Simulation which computes the most 

probable minimal cut sets of a fault tree. Zipf has implemented the algorithm in the 
CRESSC program, part of the code package RALLY by Güldner et al. (32). Since 

simulation reflects the actual failure events of the system, it can be assumed that those 

minimal cut sets which make the largest contribution to the average unavailability are 

obtained very quickly. The following advantages are given for the simulation method 

when comparing it to analytical programs: 
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1) A simulation program is relatively simple to develop. 
2) In a simulation program, the possibility of a restart can be achieved easily, i. e. it is 

possible to continue the program at the point of interruption without the loss of 
any data. 

Additionally Zipf states that the processing times, in comparison to the analytical 
programs, are shorter for the simulation program. This is contradictory to the general 
experience of simulation programs and to the later findings of this paper, hence this 
statement is questionable. 

The disadvantages of a simulation program are also given as: 

1) There is no guarantee that all the important minimal cut sets will be obtained. 
2) For low failure probabilities (<10-5) of a highly redundant system, an estimate of 

the error due to the non-considered minimal cut sets is difficult to achieve 

The description given of the top-down algorithm is the same as that of MOCUS and in 

addition a cut-off procedure is also discussed. A cut-off algorithm recognises and 
eliminates unimportant cut sets during substitution. The easiest cut-off method is to 

eliminate minimal cut sets whose size (number of events) is greater than some pre 
specified number, n. However a more precise approach is to calculate the significance 
of a minimal cut set using the failure probability of the components of this set. The 

great advantage of this algorithm is that only the important cut sets have to be 

developed completely. Further an approximation of the error caused by the cut-off 

procedure can be obtained. 

The bottom-up algorithm described by Zipf is the one implemented in the SALP-3 
(Astolfi et al. (9)) and SALP-MP (Astolfi et al. (55)) programs. On comparing the 
three methods, the author found the analytical methods to be more efficient than the 

simulation method, i. e. took shorter computation time on a computer to calculate the 

essential minimal cut sets. The final part of the paper gives the basic ideas of a new 
analytical algorithm which is a combination of the two analytical algorithms described 

with some additional improvements. The basic ideas of this new algorithm are: 

1) Modularisation of the fault tree and a special fault tree optimisation for the 

algorithm (the author does not clarify on this modularisation or the optimisation 

procedure). 
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2) Convert the fault tree to an alternating AND-OR sequence of gates, i. e. each AND 

gate has only OR gates as inputs and vice versa. 
3) Generate a subroutine representing the Boolean logic of the fault tree. 
4) Determine a cut-off level for the top event, ýa. 

5) Calculate the (maximum) unavailability of each gate. 
6) Use a top-down algorithm as discussed earlier (MOCUS), where all gates of an 

undeveloped set are replaced by their inputs. 
7) Eliminating all (undeveloped) cut sets which have an assigned value lower than cut 

off level ýa. 

8) If a gate is replaced by one or more components, we use the Boolean subroutine to 
decide whether the components of that undeveloped set are already a cut set. 

As this 'new' approach has not been fully developed by Zipf its efficiency cannot be 

compared with other methods. 

Liminios and Ziani (10) state, like many other fault tree researchers, that the main goal 

of a fault tree algorithm is to obtain the minimal cut sets as efficiently as possible. 
Their method for cut set reduction is based on the partition of the cut sets into two 
families; those with repeated events and others (everything else). The algorithm has 

been implemented as a computer program which has been used in conjunction with 
MOCUS. An advantage of the method by Liminios and Ziani is that it can be 

combined with other reduction algorithms. In techniques, such as MOCUS, it has been 

recognised that deleting non-minimal cut sets is a time consuming task. Further, when 

a fault tree does not contain repeated events, no reduction is required. Therefore the 

minimal cut sets are obtained by a simple development of the top event Boolean 

function. The Liminios and Ziani approach deals with fault trees that contain repeated 

events. It improves the MOCUS top-down algorithm by obtaining all the minimal cut 

sets faster. The improvement is based on reducing the number of set comparisons 

required to find the minimal cut sets. The assumption is that the real system has been 

modelled by a coherent fault tree. 

A summary of the algorithm is given below: 

1) Evaluate the cut sets using MOCUS. 

2) Split the cut sets into two families, K1 and K2. 

K1 is the family of cut sets containing repeated events and K2 is the family of all 

other cut sets, i. e. the cut sets containing no repeated events. 
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K2 is already minimal but KI is not, therefore reduce K1 using the Boolean 

properties: X. X=X and X+X. Y=X. K1 is now minimal and is called K I*. 
3) Combine the two families, i. e. K1 *uK2, which gives all the minimal cut sets of the 

fault tree. 

A small example is given in reference (10) where 36 cut sets are obtained for a fault 

tree, using MOCUS, 20 of these cut sets belong to KI and 16 belong to K2. 
Therefore the minimal number of comparisons in the K1 family is the sum of an 
arithmetic progression of the first n-1 natural numbers, where n is the number of cut 
sets in K1. Therefore 190 comparisons are made, whereas 630 comparisons would be 

needed if the cut sets were not split into two families. Additionally the algorithm can 
be used with FATRAM (30) and with the algorithm of Benjiamin et al. (28) to increase 

their efficiency. 

This algorithm is very useful when combined with a conventional fault tree analysis 
technique such as MOCUS. It can clearly reduce the number of comparisons that need 

to be made simply by finding the repeated events in the fault tree. 

2.3 Modules of Coherent Fault Trees 

In order to simplify the fault tree analysis process, research has been undertaken into 

reducing the complexity of the fault tree by the use of modules. Modules can enable 

the fault tree to be 'decomposed' or reduced into a more manageable form. Chatterjee 

1975 (59) presents in his paper an algorithm to obtain the 'finest modular fault tree 

representation' which is an equivalent representation of a given fault tree in terms of 

modular trees. The method determines whether or not the system is decomposable and 

requires of the order of n steps for a tree with n basic events. Chatterjee defines a 

module as a set of components which behave as a 'super component', i. e., knowledge 

of the state of the super components will determine the state of the system. Using this 

definition a single component and the whole system are always modules. Additionally 

in the paper any other module of a system is called a proper module and a system that 

does not have a proper module is called a prime system (i. e. non-decomposable). 

The finest modular representation for a fault tree is an equivalent tree with the 

following properties: 

1. All subtrees are independent. 
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2. The logic function associated with each gate is either a) non-decomposable, b) 
AND with no inputs from an AND gate immediately below it, or c) OR with no 
inputs from an OR gate immediately below it. 

Note that point (2) implies that connecting gates with the same logic are coalesced. 

The algorithm to modularise the fault tree and obtain the minimal cut sets is described 
as follows: 

Consider any AND or OR gate. The non-replicated basic event inputs to that gate 
form a module. Condense these to form a super component and proceed. The super 
component is henceforth considered as a basic event. Continue this process until no 
further condensation is possible. 

To illustrate the method by Chatterjee consider the gate GI in figure 2.4. Assume this 
gate has been taken from a larger fault tree where basic events X1, X2 and X3 are not 
replicated but X4 is repeated elsewhere in the fault tree. As X1, X2 and X3 are not 
repeated then [XI, X2, X3) forms a modular set. Therefore the corresponding 
module is condensed to a super component, say S, and the tree re-drawn as shown in 
figure 2.5. 

When further identification of modules is not possible in the fault tree, the minimal cut 
sets for each module are determined by a method such as MOCUS. The minimal cut 

sets of the modularised fault tree can then be determined and expanded into the 

minimal cut sets of the original system. 

n, 

Figure 2.4 An Example Gate which can be Modularised 
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Figure 2.5 Modularised Gate 
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The "FAUNET" modularisation approach of Platz and Olsen (44) occurs in 3 stages: 

Stage 1 Contraction 

Subsequent gates of the same type are contracted to form a single gate. The tree 

structure then becomes an alternating sequence of OR and AND gates. 

Stage 2 Factorise 

Identification of primitive factors: - pairs of basic events which will always occur 

together in the same gate type. Replace with a complex event. 

Stage 3 Extraction 

Searches for structures: 

G1 C, 1 

RESTRUCTURE 

121323 

G1 G1 

121323 
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The above 3 stages are repeated until the fault tree cannot be reduced any further. The 

minimal cut sets of the modularised fault tree are then evaluated in terms of complex 

events. Finally these complex events need to be expanded back in terms of the original 
basic events using a MOCUS type approach. The technique of Platz and Olsen is a 

good methodical approach to modularising the fault tree which can reduce both 

memory and time requirements. 

Rosenthal (46) in 1980 also deals with decomposition methods for fault tree analysis. 
He defines a module of a fault tree as a set of at least two events which has only one 

output to the rest of the tree and no input to the rest of the tree. Rosenthal states that 

the single output event of a module is called a module top and proper modules, if there 

are any, can be used to split the analysis problem effectively into disjoint pairs. Once a 

module has been analysed, either by calculating the probability of the module or 

computing the cut sets, a reduced system can be defined in which the module is treated 

as a basic event. 

The cut sets of each module can be enumerated separately from the cut sets of the 

reduced system. The analyst is then presented with a list of cut sets composed of 

higher level events plus elaboration of each module event in terms of lower level 

events. 

In addition to using modules to decompose the fault tree Rosenthal describes the use 

of a 'split candidate'. A 'split candidate' is an output event such that some but not all of 

its input events can be grouped together to create a 'super component'. 

The decomposition method of Rosenthal is best described by the use of an example. 

By this method the fault tree in figure 2.6 can be reduced to the fault tree in figure 2.7. 

In this example gate G2 is a candidate for splitting. 
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Figure 2.6 

where: 

M1 (module 1) is an AND gate and has gate inputs G4 and G5 

SC 1 (super component 1) is an AND gate and has gate inputs G6 and G7 
M2 (module 2) is an OR gate and has basic event inputs X7 and X8 

Completing the analysis of the reduced fault tree illustrated in figure 2.7 using a top- 
down approach such as MOCUS one obtains: 
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Figure 2.6 Example Fault Tree which can be Modularised 

Figure 2.7 The Decomposed Fault Tree of 



Top=M 1+G2+M2 

=Ml+(SCl. M2)+M2 

Top=M 1+M2 (note redundancies have been eliminated) 

where 
Ml-G4. G5 

=(Xl+X2). (X2+X3) 
M 1=X 1. X3+X2 (redundancies have been eliminated) 
M2=X7+X8 

Therefore the minimal cut sets of the original fault tree shown in figure 2.6 are: 

(1) {X1, X3} 

(2) (X2} 

(3) { X7 } 
(4) {X8 ) 

It can be seen that as a result of modularising the fault tree the analysis process has 
been simplified. In this example redundancies were eliminated at the super component 
level which eradicates the need to substitute all the gates in terms of basic events. 

2.4 Minimal Cut Set Evaluation for Non-Coherent Fault Trees 

When fault tree structures feature working states i. e., NOT failed states, then they may 
be non-coherent. The qualitative analysis of this type of fault tree produces prime 
implicants. The methods which can be used to address this type of problem are 
described in this section. 

Nelsons method (11) was initially developed to manipulate logic functions to obtain all 
the prime implicants. This method was then applied to non-coherent fault trees by 

performing the operation d(d(F)), where d(F) corresponds to the dual of the Boolean 

expression F, for the top event of the fault tree. The method can be described more 
formally in the following two steps. 

Step 1: Complement F to give F, expand F into disjunctive normal form (sum-of- 

products), drop zero products (p. p =0), repeated literals (p. p =p) and 

subsuming products (p+p. q=p), and call the result -0. 
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Step 2: Complement to give 0, expand 0 into disjunctive normal form, drop zero 
products, repeated literals and subsuming products and call the result O. 

Nelson proved that 0 is the sum of all, and only, the prime implicants of F. To 

illustrate the method refer to the non-coherent fault tree shown in figure 2.8. 

Figure 2.8 Non-coherent Fault Tree Example 

The top event Boolean expression can be obtained in a top-down manner: 

Top=G 1 +G2 

=G3. G4+X 1. X2 

=(X1+X3). (X4. X5)+X1. X2 

using De Morgans Laws 

=(X1. X3). (X4+X5)+X1. X2 

=X1. X3. X4+X1. X3. X5+X1. X2 (2.1) 
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Taking the dual of the top event expression: 

d(Top)=X1. X3. X4+X1. X3. X5+X1. X2 

=(X1. X3. X4). (X1. X3. X5+X1. X2) 

=(X1+X3+X4). ((Xl. X3. X5). (X 1. X2)) 

=(X 1 +X3+X4). (X 1+X3+ X5). (X1+X2) 

=(X1+X3+X4. X5). (X1 + X2) 

=(X1. X3+X1. X4. X5+X1. X2+X2. X3+X2. X4. X5) 

Again taking the dual of d(Top), i. e. d(d(Top))=Top: 

d(d(Top))=(X1. X3+X1. X4. X5+X1. X2+X2. X3+X2. X4. X5) 

=(X1. X3+X1. X4. X5). (Xl. X2+X2. X3+X2. X4. X5) 

=(X1. X3). (Xl. X4. X5). (X1. X2+X2. X3). (X2. X4. X5) 

=(X1+X3). (X1+X4+X5). (X1. X2). (X2. X3). (X2+X4+X5) 

=(X1+X3). (X1+X4+X5). (X1+X2). (X2+X3). (X2+X4+X5) 

=(X1+X3. X4+X3. X5). (X1. X3+X2). (X2+X4+X5) 

=(X1. X2+X1. X3. X4+X3. X4. X2+X3. X1. X5+X2. X3. X5). (X2+X4+X5) 

=X1. X2+X1. X3. X4+X2. X3. X4+X1. X3. X5+X2. X3. X5 

Therefore the full set of prime implicants of Top are: 

(1) {Xl, X2}, (2) {Xl, X3, X4), (3) {X2, X3, X4}, (4) {Xl, X3, X5}, 

(5) (X2, X3, X5). 

In this way the extra prime implicants {X2, X 3, X 41 and (X2, X 3, X 5) are obtained, 

these were excluded in the original top-down expression (2.1) 

Bennetts (12) proposes an algorithm which is given in two parts. The first part deals 

with the algorithm for generating a near-minimal disjunctive normal form from a 

description of the fault tree and discusses its computer implementation. The second 

part involves the necessary modification to this expression if it is to be interpreted as a 

probability relationship. The discussion here is concerned with the qualitative fault tree 

analysis method outlined in part one of Bennetts paper. The quantification technique 

shown in part two is described in Chapter 3. 

Bennetts states that the basic strategy of the qualitative algorithm is: 'to derive an 

algebraic description of the output as a function of the inputs using a reverse Polish 
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notation and then, to "unpack" this expression into its equivalent disjunctive normal 
form'. A table is given (reproduced here in table 2.3) which is referred to as a library' 

that gives standard gate types together with their individual reverse Polish functions. 

Number of Basic 
Event Inputs 

Gate Type Reverse Polish 
Notation 

1 input INVERT z=x1 
2 inputs AND Z=XIX2 AND(2) 

2 inputs OR Z=XIX2 OR(2) 

2inputs NAND Z=XIX2OR(2) 
2 inputs NOR Z= XIX2 AND (2 ) 

3 inputs AND Z= XIX2X3 AND(3) 

3 inputs OR Z= XIX2X3 OR(3) 

3 inputs NAND Z=X1X2X3OR(3) 

3 inuts NOR Z=XIX2X3AND(3) 

2 inputs XOR Z= XIX2 AND(2) 

X1X2AND(2)OR(2) 

Table 2.3 'Library' of Reverse Polish Functions 

As can be seen from table 2.3, NAND and NOR gates have been re-configured using 
De Morgans Laws and an INVERT gate is simply eliminated by complimenting its 

input. Using the INVERT gate allows the tree structure to be defined in terms of 

AND and OR gates only, which simplifies the procedure. Also the number in brackets 

indicates how many preceding terms or literals are to be ANDed or ORed together. 

The complete reverse Polish expression for the fault tree is derived by a bottom-up 

procedure. The algorithm works from the primary outputs, (i. e. those gates at the 

bottom of the tree with only basic event inputs) with successive substitution for gate 

inputs appearing higher up the tree. The procedure ends when all gates are expressed 

in terms of basic events. As an example consider the fault tree shown in figure 2.9. 

The reverse Polish expression for the fault tree in figure 2.9 is constructed in the 

following fashion: 

G3=X2X3 OR(2) 

G1=X1G3 AND(2)=X1X2X3 OR(2) AND(2) 

G2=X2X4 OR(2) 
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Top=G 1 G2 AND(2) 

Top=X 1 X2X3 OR(2) AND(2) X2X4 OR(2) AND(2) 

Figure 2.9 Example Fault Tree 

This expression can be unpacked to yield a corresponding disjunctive normal form. To 
do this, the expression is read from left to right and when an operator is reached it acts 
on the number of preceding terms specified in the brackets. The OR operator applies 
the Boolean operation of disjunction (sum) to the preceding terms while the AND 

operator applies the Boolean operation of conjunction (product) to the preceding 
terms. Unpacking Top gives: 

Top=X1X2X3 OR(2) AND(2) X2X4 OR(2) AND(2) 

The first OR operator gives (X2+X3) 
The first AND operator gives X1. (X2+X3) = X1. X2+X1. X3 

The second OR operator gives (X2+X4) 

The second and last AND operator gives 
(X 1. X2+X 1. X3). (X2+X4)=X 1. X2+X 1. X3. X4 

Top=X 1. X2+X 1. X3. X4 
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Note that intermediate results involving the AND operator are always converted into 

their equivalent disjunctive normal form (in the programmed version of the algorithm, 
this process is carried out by a routine known as MULTIPLY). An important aspect 
of this process is that all intermediate and final expressions are subjected to a search to 

eliminate various forms of logical redundancy. To do this the following rules are 

applied: 

Rule 1: X+X. Y =X 
Rule 2: X. Y+X. Y = X. Y 
Rule 3: X. Y+X. Y=X 

The programmed algorithm contains a routine (referred to as ORCHEK) that 

exhaustively applies these identities to the terms in a disjunctive normal form 

expression. In a reverse Polish expression adjacent operators of the same type can be 

reduced to a single operator with a suitable composite index, i. The general form of 
this index for n repeated operators is: 

n 
i= (ý i . )-(n-1) 

j=1 J 
(2.2) 

By applying equation (2.2), the overall length of the reverse Polish expression is 

reduced and also the number of operator evaluations in the unpacking process is 

reduced. Bennetts used list processing programming techniques and bit manipulative 
facilities which enabled a very compact storage system for the Boolean data. It is 

stated that this reduced core store and was instrumental in increasing the execution 

speed. The remainder of part one of the paper describes in detail the overall algorithm 

and the routines ORCHEK and MULTIPLY. 

I feel that two important aspects of this technique are, NOT gates do not need to be 

"pushed down" the tree using De Morgans Laws and XOR gates can be readily 

converted using the library of reverse Polish expressions. Also I believe it is worth 

mentioning that there is no unique reverse Polish expression for a certain fault tree. 

Subtle differences may be found depending on which gate inputs are written down first 

(i. e. the left most ones first or the right most ones first). Again consider the fault tree 

shown in figure 2.9, it is also possible to obtain the expression: 

Top=G2G 1 AND(2)=X2X4 OR(2) G3X 1 AND(2) AND(2) 

=X2X4 OR(2) G3X 1 AND(3) (using general index formula) 

nn 



=X2X4 OR(2) X2X3 OR(2) X1 AND(3) 
First operator gives (X2+X4) 

Second operator gives (X2+X3) 
Third operator gives (X2+X4). (X2+X3). X 1=X 1. X2+X I. X3. X4 

However it is important to note that the same resulting disjunctive normal form is 

obtained when the expression is unpacked. 

Hulme and Worrell (14) proposed a prime implicant algorithm with factoring, which 
proves more efficient than Nelsons (11) algorithm, to find the prime implicants of a 
Boolean function. The algorithm consists solely of Boolean formula manipulation and 
is identical to Nelsons algorithm, with the addition of factoring just prior to each 
complementation. The prime implicant algorithm with factoring is: 

Step 1: Factor anywhere possible in F, complement, expand into disjunctive normal 
form, drop zero products (p. p =0), repeated literals (p. p=p) and subsuming 

products (p+p. q=p), and call the result ý' . 
Step 2: Factor anywhere possible in -0', complement, expand into disjunctive normal 

form, drop zero products, repeated literals and subsuming products, and call 
the result 01. 

Hulme and Worrell prove that 01 is equal to the logical disjunction of all, and only, the 

prime implicants of F. The advantage of factoring before taking each complement is 

that the ensuing expansion yields fewer terms. This not only saves time during the 

expansion, but it also reduces the time required to check for zero products, repeated 
literals and subsuming products. To illustrate the difference between the algorithms of 
Nelson, and Hulme and Worrell consider the following example: 

F ='a. b+bE. d+df 

Following Nelsons algorithm, complement F to give: 

F =(a+ b). (b+c+d). (d+c) 

Expand into a disjunction of twelve terms and simplify to form: 

= ab. d+a. c + b. c 
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Repeating this same sequence for complementing gives: 

1=(a+ b+d). (a+ c). (b+c) 

Expand into a disjunction of twelve terms and simplify to give the prime implicant sum: 

0 =a. b+a. c+b. c+d. c 

Next consider Hulme and Worrell's algorithm with factoring, F is first factored into: 

F=a. b+(b. d+d). c 

Complementing gives: 

F =(a+ b). ((b+d). d+c) 

Expand into a disjunction of only six terms and simplify to form: 

=a. b. d+a. c+b. c 

Notice the saving in the number of terms when expanding F, due simply to factoring a 
single literal from two terms of F. Notice also that 0' =0. Moving on to step 2, 
factoring gives: 

ý1 = a(b. d+c)+b. c 

Complementing: 

ý1 = (a + (b + d)c)(b + c) 

Expand into a disjunction of six terms and simplify to give: 

O' = a. b+a. c+b. c+d. c 

Again there has been a significant saving in the computational effort. 

Hulme and Worrell provide a proof of the prime implicant algorithm with factoring in 

their paper. 
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In the same year as Bennetts published his work (1975) reference (12), Worrell (13) 
developed the Set Equation Transformation System (SETS) which generates set 
equations directly, or by logical combination of other set equations through a process 
of substitution. It also reduces set equations by the application of set identities. The 

operations allowed in an equation are the set operations of intersection, union, and 
complement, which correspond to the Boolean operations of conjunction, disjunction, 

and negation respectively. Since the processing that can be accomplished using SETS 
is valid for any Boolean algebra, the system is useful for processing the logic equations 
derived from fault trees. Hence the cut sets or implicants of a fault tree can be 

expressed as a set equation, then after reduction by the application of set identities, the 

minimal cut sets or prime implicants can be obtained. The SETS algorithm is similar to 
that of MOCUS, although in addition to AND and OR gates it can deal with XOR and 

special gates. Special gates are defined as those gates that allow the use of 

complemented events and they also provide a way that any logical combination can be 

specified. When a special gate is used in a fault tree, a Boolean equation is given as 
the definition of the gate. The equation defines the logical combination of the input 

events that will produce the output event of the gate. 

In the SETS algorithm, AND gates use the operation of intersection on their inputs, 

i. e. for the inputs X1, X2 . ................ Xn the representation of the AND gate will be 

X 1(l X2 (l ................ ... 
(l Xn. OR gates use the union operation, i. e. 

X1U X2 U 
..................... 

U Xn. While for two inputs, Xl and X2, to an XOR gate 
the output event is given by (X1nX2)U(X1nX2). 

When the fault tree structure is input to the program using the SETS method each gate 
is assigned a set representation of its inputs. This equation can contain intermediate or 

basic events, e. g. the set representation or equation of an OR gate G1, with gate inputs 

G2, G3 and basic event input X1 will be: 

G1= G2UG3UX1 

Once all the gates have been dealt with in this way, the top event equation is then 

considered and a substitution procedure is initiated. Each intermediate event is 

substituted by the equation which defines that gate. This process continues until the 

top event set equation consists only of basic events. The resulting equation should be 

a "union of intersections" expression with each of the intersection terms corresponding 
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to the implicants of the fault tree. Once the top event equation has been formed a few 

reduction rules are applied to the expression, these are: 

(1) Pf P=P 
(2) Pf P=0 
(3) PUPE Q=P 

Having applied the above reduction rules the resulting expression is composed of a 

union of the sets which represent the prime implicants of the fault tree. It is important 

to note that when an equation is monoform in all of its variables, (i. e. if the literal X1 

occurs in the equation, then the literal X1 does not occur, or vice versa), then the 

prime implicants of the related function can be determined by applying the identities 
P (l P =P and P U(P (l Q) =P to the top event equation. The result is a union of all 

the prime implicants of the function. If the equation is not monoform in all its variables 

more complicated techniques must be used to determine the prime implicants, such as 

the technique of Hulme and Worrell (14). To illustrate the method consider the fault 

tree in figure 2.10. 

Top =G2nX 1 nG3 
G2= X2uX3 

G3= G4nX4 
G4= X1 uX3 

Substituting and expanding the gates in Top gives: 

Top=(X2uX3)nX 1 n(G4nX4) 

=(X2uX3)nX 1 n((X 1 uX3)nX4) 

=(X2uX3)nX 1 n(X 1 nX4uX3nX4) 

=(X2nX 1 uX3nX 1)n(X 1 nX4uX3nX4) 

=(X2nX 1 nX 1 nX4uX2nX 1 nX3nX4uX3nX l nX 1 nX4uX3nX 1 nX3nX4) 

Applying the reduction rules to this expression gives: 

=(X2nX 1 nX4uX3nX 1 nX4) 

Therefore this fault tree has two minimal cut sets which are (XI, X2, X41 and (XI, 

X3, X4). 
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Figure 2.10 Example Fault Tree 

Although this method is quite simplistic and easy to understand, an obvious 
disadvantage lies in the substitution and expansion procedure followed by the 

application of the reduction rules to the expression for the top event. When the fault 

tree has a large number of cut sets and repeated events this stage may take extensive 

computation time, therefore it may be more advantageous to expand and apply the 

reduction rules at each gate of the fault tree rather than at the top event stage. 

The algorithm of Astolfi et al. (21) developed in 1978 simultaneously uses qualitative 

and quantitative information about the fault tree during the analysis. The algorithm has 

two main steps which are: 

1) search for the most important minimal cut sets. 
2) compute the availability and reliability for the minimal cut sets and top event. 

The first stage of the fault tree analysis employs various algorithms which are used in 

the generation of the minimal cut sets. These algorithms: 

1) Simplify the fault tree. 
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2) Use a cut-off criteria. 
3) Evaluate the error introduced by the cut-off. 
4) Order the cut sets in importance. 

5) Optimise the analysis by reducing the number of cut sets to be minimised. 
6) Lastly analyse the NOT operators. 

Astolfi et al. have called their technique the "prior sensitivity analysis" method, which 

means that the significant minimal cut sets are produced without determining all others 
(i. e. a numerical cut-off is utilised). This method may cause problems when dealing 

with prime implicants as certain prime implicants could be neglected due to their order 

even though they are significant. A list processing technique, similar to that used by 

Bennetts (12), is employed to store and handle the fault tree information. The fault 

tree is simplified using the following basic steps: 

1) A cascade of gates of the same type is replaced by a single gate. Pairing does 

not take place if the descendant gate is repeated. 
2) Gates which have basic event inputs only are replaced by a compound event. 

To illustrate the algorithm first consider fault trees with only AND and OR gates and 

no repeated events. A bottom-up approach is implemented where the probability of 

each gate event is calculated. The probability of an AND gate is taken as the product 

of the probabilities of its descendants. For an OR gate the maximum probability value 

of its descendants is taken. In this way when the top event is reached the resulting 

probability will be the probability of the most important cut set, called Pmax. 

Having established Pmax the tree is then scanned from the top downwards to compute 

more restrictive thresholds for cut-off limits. A threshold probability Llim is first 

assigned to the top gate. If the top gate is an OR gate then Llim is also given to all of 

its descendants and likewise for all OR gates. For an AND gate say GA, with the 

descendants GI......... Gn (these can be gates or basic events), if L(GA) is the cut-off 

level of GA and P(Gj) is the probability of Gj then: 

L(Gi) = 
L(GA) (2.3) 
IIP(Gj) 
j=1 
jai 

If P(Gi)<L(Gi) this gate can be deleted because it cannot contribute significantly to the 

system unavailability. The next step involves further reduction, again using a bottom- 
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up approach. In this step subtrees are replaced by their cut sets. Any cut set is 

neglected if its probability is less than the threshold limit of the gate above it. 

Bounds for the relative error introduced by the cut-off and the choice of the cut-off 
limit are also discussed in the paper. Next, the paper deals with the analysis of AND- 
OR trees with repeated events. A minimisation procedure needs to be applied to these 
trees. The minimisation procedure involves the cancellation of redundant cut sets 
(A. B+A. B=A. B), non-minimal cut sets (A+A. B=A), and of redundant events within 
cut sets (A. A. B=A. B). To do this an efficient algorithm is presented which identifies 

the gates where the cut sets may require minimising. The algorithm is outlined below 

and must be applied to each repeated event (here called A) of the tree. 

1. For each occurrence of A the path (sequence of gates from A towards Top) are 
listed. 

2. The number of times, K, that a gate is crossed by the considered successive paths is 

determined. 

3. The gates with K=1 are deleted. Gates with the same K are also deleted, except 
the first one in the list (the same K means that between the two gates there are no 

repetitions of A). 

Slight modifications are needed for fault trees with repeated events to evaluate the 
bounds for the relative error introduced by the cut-off. 

The last section of the paper extends the methodology to deal with the analysis of fault 

trees containing NOT gates as well as AND and OR gates. Two new problems are 

stated that have to be tackled which are: 

1. The need to cancel prime implicants which are impossible because they contain an 

event and its complement. 
2. The need of enlarging the cut-off criteria in order to handle prime implicants of a 

very high order containing many complement events. 

The method produced for analysing trees of this type avoids the need to determine all 

of the prime implicants. Instead it determines an irredundant form for the top event 

which is not necessarily minimal, but it can be considered near minimal as it contains all 

the "essential prime implicants" common to all the irredundant forms. The "essential 

prime implicants" are those which contribute significantly to the top event occurrence. 

A disjunctive normal form is irredundant if and only if it contains no superfluous 
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disjuncts (see below) or literals (Mendelson (15)). A literal is called biform if, in the 
Boolean function, it appears in two forms, negative and affirmative, monoform if it 

appears in one form only. 

Superfluous disjuncts and literals 

If cp is an implicant and co a sum of products form for the top event, then cp is 

superfluous in 0 +cp when w is logically equivalent to co+cp. 
If a is a literal, cp a product of literals and wa sum of products form for the top event 
then a is superfluous in a. (p+u), if cp+ao is logically equivalent to a. cp+w. 

The methodology uses these definitions plus Shannon's theorem (see Schneeweiss 
(22)) which can be stated as follows. 

A Boolean function f (x) where X= (X, ,X2,......... ,X, .) can be written as: 

f (x) = x;. f (1;, x)+X;. f (O;, x) 

where: 

Xi =1-Xi 
f (11, x) =f (XI.......... Xj- 'l, X1+17............ Xn) (i. e. X. fails) 

f (0i, x) =f (XI.......... X. 
-I 10, Xi+l ý..........., 

Xn) (i. e. Xi works) 

f (1; , x) and f (0i , x) are called the residues of f (x) with respect to X; X. 

The implementation of the method by Astolfi et al. is articulated in two steps, 

expansion and reduction. 

Step 1 Expansion 

This step makes use of Shannon's theorem and of another function, called min(4). The 

minimisation function min(4), applied to the Boolean expression 0, deletes non- 

minimal implicants and applies the identity: 

XY+XYZ = XY+YZ (2.4) 

4R 



The disjunctive normal form for the top event is first expanded with respect to the 

most repeated variable using Shannon's expansion. Then the function min is applied to 

the residues. If the residue contains at least one biform variable, it is further expanded 

and minimised. These operations must be applied until the residues contain only 

monoform events. The recursive application of expansion and minimisation transforms 

a disjunctive normal form into an equivalent Boolean expression containing residues in 

which biform events do not appear. It follows that these residues are now minimal. 

As an example consider a fault tree whose disjunctive normal form for the top event is: 

T=ABC+ACD+BEG+EFG+DEG+AEG+CDE+CEF+ADG+BEG (2.5) 

Applying the function min on T and rearranging gives: 

T=ABC+ACD+BE(G+G)+EFG +DEG+AEG+CDE+CEF+ADG 

= ABC + ACD +BE+ EFG + DE G+ AEG + CDE+ CEF +ADG 

Next expand with respect to the most repeated variable, which here is E and minimise 

the residues: 

T= E[ABC+ACD+O+FG+DG+AG+CD+CF+ADG 

+E[ABC+ACD+B+0+0+0+0+0+ ADG] 

For the first residue, ACD is made redundant by CD and ADG is made redundant by 

DG. For the second residue ABC is made redundant by B. This gives the reduced 

expression for T: 

T= E[ABC+FG+DG+AG+CD+CF]+E[ACD+B+ADG] 

The first residue is then expanded with respect to C and the second one with respect to 

D (both biform variables): 

T= E[C(AB+FG+DG+AG+D+O)+C(O+FG+DG+AG+0+F)] 

+ E[D(AC +B+ O) + D(O +B+ AG)] 

Note D+ DG =D+G for the C residue and FG is made redundant by F for the 

residue. Therefore: 
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T= E[C(AB+FG+D+G+AG)+C(DG+AG+F)] 

+E[D(AC+B)+D(B+AG)] 

Note AG is made redundant by G and G+ FG =G+F for the C residue. Therefore: 

T=E[C(AB+G+F+D)+C(DG+AG+F)]+E[D(AC+B)+D(B+AG)] (2.6) 

T cannot be expanded any further as no more biform variables exist, as a result the 

reduction stage can be executed. 

Step 2 Reduction 

The reduction procedure develops one of the irredundant disjunctive normal forms for 

the top event. This is obtained by analysing expression (2.6) starting from the 

residues. 

Taking 0 (1 E, x) to be the first residue for expression (2.6) with respect to variable E 

and 4(0 E, x) the second then: 

o(lE'x) = C(AB+G+F+D)+C(DG+AG+F) 

4(OE, X) = D(AC+B)+D(B+AG) 

The function reduce[4] is defined as deleting both superfluous literals and superfluous 

prime implicants in the expression 0. First dealing with O(1 E7 X): 

O(1E, X) = ABC+CG+CF+CD+CDG+CAG+CF 

note : 
CF+CF=F 

CG+CGD=CG+GD 

CG+CGA = CG+GA 

Therefore: 

reduce[4 (lE, x)] = ABC+CG+GD+F+CD+GA 

Next using the 'consensus' rule (XK + XJ = XK + XJ + KJ) to the terms 

DG+DC+GC =DG+DC, results in the final reduced form for 0(1E, X): 
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0(lE, x) = ABC+DG+F+CD+AG 

Repeating for 0(0 E, x) gives: 

O(OE, x)=DAC+AGD+B 

So T=E[ABC+DG+F+CD+GA]+E[DAC+ADG+B] 

Now expanding T gives: 

T= ABCE + DGE + FE +CDE+GAE+DACE +ADGE+BE 
note: 
BE + ABCE = BE + ABC 

CDE+ DACE = CDE+ D WC 

DGE+ADGE = DGE+ADG 

Therefore: 

T= ABC+DGE+FE +CDE+GAE+DAC+ADG+ BE 

Again using consensus: 

AGE+ADG+DGE=AGE+ADG 

Finally: 

reduce [T] = ABC + FE +CDE+GAE+DAC+ADG+BE (2.7) 

Which represents one of the irredundant forms of (2.5). If the irredundant form is 

unique, then it is also minimal, and constitutes the outcome of the given algorithm. 
This example illustrates the difficulty of obtaining the prime implicants of a disjunctive 

normal form. The previous extensive steps reduced the ten term expression of (2.5) to 
the seven term expression of (2.7). Therefore if a disjunctive normal form contained 
hundreds of terms then this algorithm would prove extremely computer intensive. 

The top-down algorithm of Kumamoto and Henley (16) obtains the prime implicants 

of a non-coherent fault tree by firstly converting the fault tree to its dual tree. A local 

expression is given for the top event of this dual tree, in terms of its gate and basic 

event inputs, and it is called yf*. The gates are numbered in the tree from the bottom- 
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up in ascending order, left to right. All basic events are listed in an order 
corresponding to a top-down, left-right manner in the tree, with complemented events 

occurring last. Next, a series of operations are performed on yf* concerning the basic 

events in the list. NI* is operated on by considering the result of the local expression 

when each basic event in the list is given the value 0 and its complement is given the 

value 1. Next the basic event is given the value 1 and its complement the value 0. 

To illustrate the method consider a fault tree whose top event is an AND gate with 
inputs G 14 and A. G 14 is an OR gate with gate inputs G 12 and G 13. G 13 is an AND 

gate with inputs B and G 11. G 12 is also an AND gate with inputs B and G 10. G 11 is 

the final limit of resolution for this example, it is an AND gate with inputs D and G9. 

The list of basic events for this fault tree is (A, B, C, D, F, E, G, H, I, 

F, E, G, H, 1): 

yJ*=A. G 14 (2.8) 

Before changing the values of the basic events to either 0 or 1, expand G14 by its local 

expression which is G 12+G 13. 

Therefore: 

yV*=A. G 12+A. G 13 (2.9) 

Next, apply the operation AO which gives the basic event A the value 0: 

AO. yf*=O. G 12+0. G 1 3=0 (2.10) 

The largest gate number, which corresponds to the largest undeveloped gate in the 

fault tree, in yf* is replaced by its local expression (which here is G13) before the 

operation Al is applied. Operation Al gives basic event A the value 1. The local 

expression for G13 is B. G11. 

Therefore: 

y'*=A. G 12+A. B. G 11 (2.11) 

Applying A 1: 

AI. W*=1. G12+1. B. G11 (2.12) 
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Expanding G12 into B. G 10: 

Al 
. yr*=1. B. G 10+1. B. G 11 

Applying BO: 
(2.13) 

BO. A l . yf*=O. G 10+O. G 11 =0 (2.14) 

Expanding G 11 into D. G9: 

Al 
. yf*=B. G 10+B. D. G9 (2.15) 

Applying B 1: 

B 1. A l 
. V*=1. G 10+ 1. D. G9 (2.16) 

Continue in this manner, expanding the gates when either a0 or 1 results or both 

operations of a basic event have been considered, until all the basic events in the list 
have been dealt with. To obtain the prime implicants consider the operations that give 

a zero result and pick out the basic events on the left hand side having a zero 
superscript. Therefore equations (2.10) and (2.14) give A and B respectively. Each 

set of literals obtained in this way is a candidate of a prime implicant. By then 

removing redundant implicants, a complete set of the prime implicants is obtained. 
The method is attractive as it avoids large sum of products expressions for the top 

event of a fault tree. 

The algorithm of Nakashima and Hattori (17) aims to improve the conventional 
bottom-up algorithm of Bennetts (12) by obtaining the minimal cut sets more quickly. 
The improvement is based on reducing the number of checks for redundant terms in 

the logical product of two reduced disjunctive normal forms. Therefore the algorithm 
is applied at each AND gate of the fault tree. Five model assumptions are made in the 

paper concerning the features of fault trees to which the method can be applied. These 

are: 

1) Mutually exclusive primary events are allowed to appear, i. e. the Boolean function 

for the top event need not be coherent. 
2) The same event can appear in several branches. 
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3) No complemented intermediate events can appear at any gate, i. e. only OR and 
AND gates are allowed. If logic gates such as NOT, XOR, NAND appear in the 
fault tree, then the algorithm can be applied after transforming it into an equivalent 
fault tree containing only OR and AND gates by using inversion operations 

represented by De Morgans Laws. 

The algorithm begins with primary events and is repeatedly applied progressing up the 
tree structure, until reaching the top event. The process expands the logical product 
(for AND gates) or sum (for OR gates) of reduced disjunctive normal forms for the 
two intermediate events and yields an equivalent reduced disjunctive normal form. 

This is achieved using the distribution rule and then discarding redundant terms by 

applying the idempotence (X+X=X) and the absorption (X+X. Y=X) rules. The 

algorithm is called ANCHEK and to illustrate the algorithms application consider the 

process of obtaining a disjunctive normal form for the top event, T of a fault tree from 

the logical product of its sub-events Ti and T2. Let the set of minimal cut sets of Ti 

and T2 be C1 and C2 respectively. Each primary event appearing in the reduced 
disjunctive normal forms of Ti and T2 is classified as either a common primary event 
(event that appears in both TI and T2) or a non-common primary event. The 

algorithm for obtaining C, the set of minimal cut sets of T, is based on the following 

principles. 

Firstly let cE Cl O C2, where Cl O C2 is the whole set of unions of an element of Cl 

and an element of C2 for two sets Cl, C2 each element of which is a set of primary 

events. 

1) If c contains non-common primary events, then c is always an element of C. Thus it 

is not necessary to check c at all. 
2) If c contains at least one common primary event, then only elements of a subset of 

C1u C2 are required to check c. 

The detailed algorithm is given in the paper as a set of four explicit steps. Steps 1 and 
2 are executed using the bit manipulation technique of Wheeler et al. (29) Nakashima 

and Hattori have constructed a computer program called BUP-CUTS (Bottom-UP 

algorithm for enumerating minimal CUT Sets of fault trees) written in FORTRAN. 

The program uses the ANCHEK algorithm, instead of the MULTIPLY and ORCHEK 

algorithms given by Bennetts (12), to transform the logical product of two reduced 

disjunctive normal forms into an equivalent reduced disjunctive normal form. The 

other parts of the program follow Bennetts' algorithm in principle. The paper 
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compares the presented algorithm (BUP-CUTS) with that of Bennetts (BEN-CUTS) 
for four fault tree examples. The improvement in the time to obtain the minimal cut 
sets can be seen in table 2.4. 

Fault Tree Number of Computation Computation 
Example Minimal Cut Sets Time (Secs) BUP- Time (Secs) BEN- 

CUTS CUTS 
1 256 0.5 11.7 
2 90 17.3 26.9 
3 357 39.7 150 
4 457 4.5 118 

Table 2.4 Comparison of Two Techniques 

Worrell et al. (18) discuss the prime implicant algorithm proposed by Henley and 
Kumamoto (16) and show that the same results can be obtained by using a simple 

prime implicant algorithm such as SETS by Worrell (13). The authors define a simple 

prime implicant algorithm as a method that does not use consensus for finding the 

prime implicants of non-coherent fault trees, i. e. write down a Boolean expression for 

the top event of the fault tree and expand it into a disjunctive normal form while also 

simplifying the result by dropping repeated literals, zero products, and subsuming. It is 

stated that this method does not generally work on non-coherent fault trees, however 

there are cases when it does work. 

The important issue of the paper by Worrell et al. is the problem of deciding when the 

simple prime implicant algorithm will deliver a complete set of prime implicants. A 

'partial' result is offered which shows that it will work for certain non-coherent trees 

(as well as for coherent trees) whose top events have Boolean formulae of a special 

type. The following theorem is given: 

Theorem If (but not "only if") a Boolean formula F has a dual d(F) which contains no 

zero products, then the simple prime implicant algorithm applied to F will 

produce the prime implicants of F. 

The intuitive proof of this theorem is found in Hulme and Worrell (14). Lastly Worrell 

et al. state a useful corollary to their results; that when a dual formula d(F) has zero 

products and these are eliminated to form a new formula d(H) equivalent to d(F), then 

the simple prime implicant algorithm applied to H will produce all the prime implicants 

of H and F. The benefits that this theorem would give in executing a program is not 
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discussed in the paper. Finding the dual of the Boolean formula may take as long as 
actually expanding the formula, using consensus and then eliminating redundancies to 
find the prime implicants. 

2.5 Modules of Non-Coherent Fault Trees 

Locks (49) in 1981 has shown that the non-coherent fault tree discussed in the paper 
by Kumamoto and Henley (16) can also be modularised. Locks states that modules are 
formed by combining certain neighbouring components that have the same mutual 
logical dependence. If a method such as MOCUS (20) is then used to generate an 

expression for the top event in terms of these modules, the prime implicants can be 

obtained by a systematic application of the consensus theorem which has been 

previously discussed. 

The modularising process of Wilson in 1985 (50) obtains modules from the Boolean 

indicator expression (a sum of the logical products of the basic events) of a fault tree. 
The method is based on the following consideration: 

Let Xi, Xj be two basic events for which; 

(1) All Boolean indicators of the fault tree which include X. also include Xj. 

(2) For each Boolean indicator of the form Xi. P in the fault tree (where P includes 

neither Xi nor Xj) there also exists a Boolean indicator of the form X 7. P in the 

fault tree. 

then X; . Xj can be replaced by y; (where y; is a basic event representing the product 

of basic events). In each Boolean indicator which includes Xi. X j, the Boolean 

indicator Xi. P is replaced by yi. P and the Boolean indicator X,. P is deleted from the 

fault tree (note (Ti +Xj)P= Xi. Xf. P= yi. P). 

The X. or Xj can be un-negated or negated variables and so modularisation involves 

consideration of each of the pairs, Xi. X j, Xi . Xj , X; . X, or Xi .X1. 

Therefore the modularisation by Wilson replaces two basic events by one. Additionally 

the process of modularisation can be repeated for all possible pairings of basic events 

including basic events of type y; . 
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Unfortunately the method by Wilson can become tedious for large fault trees because a 
Boolean indicator expression necessitates an expansion procedure for the entire fault 

tree. Further, it is not clear in the paper how creating modules in this way can simplify 

the analysis process of the fault tree. 

In 1989 Kohda et al. (40) developed a very sophisticated method of identifying all 

possible modules of a fault tree. The procedure is called the KHIC method (Kohda, 

Henley, Inoue Comprehensive method) and for its purposes a module of a fault tree is 

defined as: 

A subtree composed of a least two events which have no inputs from the rest 

of the tree and no outputs to the rest except from its output event. 

In addition Kohda et al. state that there are two kinds of modules; 

(1) those whose output events are expressed by gate events. 

(2) those whose output events are not expressed by gate events. 

The latter are logical OR or AND combinations of basic events and modules. The 

output of the program by Kohda et al. is a hierarchical decomposition of the fault tree 

into modules. The order in which modules are identified corresponds to both the 

hierarchy established when the gates are numbered, and the order in which the modules 

are analysed. 

Based on the closeness of events below a gate event, the KHIC method examines all 

gate events which can become modules in ascending order of their hierarchical levels. 

Note that the nearer to the top event of a gate, the higher its hierarchical level. The 

method can also be applied to coherent fault trees. Khoda et al. demonstrate that by 

modular decomposition, 100-fold reductions in computer time are obtained for a 70 

gate, 67 basic events problem. 

2.6 Discussion 

To give an indication as to how some of the algorithms discussed in this chapter have 

been implemented on a computer, Randall Willie in 1978 (47) published an extensive 
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report on 'Computer-Aided Fault Tree Analysis'. In this report Willie describes the 

computer implementation of a top-down method (called MSDOWN), a bottom-up 

approach (called MSUP), the Nelson (11) method and a factoring approach. 
Additionally, the author of this thesis has successfully programmed a top-down and a 
bottom-up approach (48), to analyse fault trees for use on a PC, which are both 

available for reference. The computer implementation of these algorithms exhibits the 

extensive memory and processing speed problems that may be experienced when 

analysing complex systems. 

Thus, with many commercial packages now available on PC's there is a commercial 

advantage to be gained in the development of an efficient algorithm to determine 

minimal cut sets or prime implicants. Indeed the possession of a 'fast' algorithm is a 

major selling point for these codes as it is an ambition to move the application of these 

codes into "real time" analysis. As such over the last decade publications describing 

new techniques have reduced and the fine details of the more successful methods are 

not in the public domain. 

Extensive discussions have been held with the authors of some of the most popular 

codes and they confirmed that the approaches they have adopted are based on 

relatively minor refinements to the algorithms described above. 

2.7 Summary 

1) Most of the minimal cut set algorithms discussed in this chapter are based on 
Boolean Reduction methods which are inefficient for large fault trees. A complex 

system may produce hundreds of thousands of minimal cut sets and the 

determination of these cut sets can be a very time consuming process. The 

algorithms are not complex but are required to perform a vast number of event 

comparisons to reach the minimal form (i. e., the need to apply the Boolean 

reduction laws). Repeated events within each cut set, repeated cut sets and non- 

minimal cut sets all need to be removed. This requires comparison of events within 

each cut set and each cut set with every other cut set. 

2) The algorithms described in many of the papers seem designed for special test case 

fault trees and do not yield the same efficiency for general fault tree analysis 

purposes. 
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3) Most of the improvements in the conventional techniques are concerned with 
reducing the influence of repeated basic events within the fault tree. Although 
savings can be made in the number of set comparisons that are needed to produce 
the minimal cut sets, it is not clear how much computer utilisation is required to 
eliminate the influence of the repeated events. Indeed in some cases the sorting 
procedures that are needed would appear to increase computer CPU times. 

4) The improvements in computer utilisation for some of the given algorithms is 
related more to the improvements in computer processing capabilities over the 
years rather than being attributed to a marked difference in the algorithms. 

5) Order cut-off procedures can leave out important minimal cut sets and therefore 
vital information about the system under study is lost. 

6) Some of the non-coherent approaches require De Morgans Laws to be applied to 
the fault tree before the algorithms are executed, which would increase CPU time. 
The algorithms that are then applied to these trees are similar to those for coherent 
fault trees and therefore the same problems will be encountered for non-coherent 
algorithms as for coherent algorithms. These two features reduce the efficiency of 
the analysis process for non-coherent fault trees. 

7) Modularising the fault tree can substantially reduce the analysis process and this 
technique is valuable when used in conjunction with conventional methods. 
However certain fault trees do not lend themselves to modularising and therefore 
their existing structure cannot be simplified in this way. 

8) Current commercial packages are based on the methods described above. 
However due to commercial confidentiality the refinements made to improve the 

efficiency of the algorithms are not in the public domain. Discussions with the 

authors of the fastest of these codes indicate that the algorithms they use have their 
basis in the published literature. 

9) Computerised methods, such as bottom-up or top-down approaches, to evaluate 

minimal cut sets, are now so well developed that further refinement is unlikely to 

result in vast reductions in computer time. It is felt that substantial improvement in 

computer utilisation will only result from a completely new approach. The use of a 
Binary Decision Diagram for Fault Tree Analysis described in Chapter 4 offers a 

promising alternative whose potential requires investigation. 

cn 



CHAPTER 3 

METHODS FOR QUANTITATIVE FAULT TREE ANALYSIS 

3.1 Introduction 

Fault tree quantification enables not only the probability of the top event to be 

calculated but in addition its failure rate, expected number of occurrences and also 
importance measures which signify the contribution each basic event makes to system 
failure. Due to the large number of failure combinations (minimal cut sets) which 
generally result from a fault tree study it is not possible using conventional techniques 
to calculate these parameters exactly and approximations are required. The accuracy 
of most of the approximations rely on the basic events having a small likelihood of 
occurrence. When this condition is not met it results in large inaccuracies. 

Vesley (1) published a methodology known as "kinetic tree theory" which gives a 
time-dependent methodology for fault tree evaluation. This methodology forms the 
basis for the approach taken in most of the commercial fault tree packages. The 

procedure uses two assumptions, (i) that primary or basic events are independent and 
(ii) that the mode failures (critical paths) of the fault tree are known. In the 

quantification of top event failure characteristics it is necessary to use approximations 

when implementing the kinetic tree theory. Even for moderate sized problems it is not 

a practical proposition to evaluate all the terms in the series expansion which yields the 

top event probability or failure intensity. 

3.2 Component Failure Parameters 

Before considering the quantification of the fault tree as a whole the failure parameters 

of the basic events in the fault tree need to be discussed. For each component failure 

represented by a basic event in the fault tree the failure and repair time distributions 

can be assumed to have the density functions f(t) and g(t) respectively. Integral 

equations utilising these functions can be developed whose solution yields the 

unconditional failure intensity w(t) and the unconditional repair intensity v(t). These 

integral equations are derived in Andrews and Moss (6) and are: 
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r 

w(t) =f (t) +ff (t - u)v(u)du 
0 

1 (3.1) 

v(t) = 
Jg(t-u)w(u)du 

0 

where: 
w(t) is the probability per unit time that a component fails at t given that it was 

working at t=0. 

v(t) is the probability per unit time that a failed component is repaired at t given that it 
was working at t=0. 

Depending on the distributions which definef(t) and g(t) equation (3.1) may be solved 
by Laplace transforms or they may require the use of numerical methods. However 

once w(t) and v(t) are found then q(t), the probability that the component is in the 
failed state at t is obtained from: 

I 

q(t) =f [w(u) - v(u)]du 
0 

(3.2) 

and the expected number of failures W(tl, t2), of a component, over any time period 
(tl, t2) is given by: 

r2 

W(tl, t2) =f w(u)du 
r, 

(3.3) 

Once w(t) and v(t) are available other parameters for the component failure and repair 
process can be determined. 

Conditional failure intensity %, (t): is the probability that a component fails per unit 

time at t given that it was working at time t and working at time zero. The difference 

between this and the unconditional failure intensity w(t) is that ý, is the failure rate 
based on those components which are working at time t, whereas w is based on the 

whole population. 

Conditional repair intensity t(t): is the probability that a component is repaired per 

unit time at t given it is failed at time t and was working at time zero. 
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It can be shown (6) that if a component has a constant failure rate (hazard rate), ?, 

then the probability density function for the failure, f(t), will be: 

f(t)=A, e-' (3.4) 

A useful parameter of a component is its mean time to failure (MTTF) which will be 

represented by r. For the exponential distribution given in (3.4): 

1 
r=- (3.5) 

Therefore if a component has a constant failure rate then the MTTF is simply the 

reciprocal of its failure rate. 

Similarly it can be shown that if the repair rate of a component is constant, µ, then the 

repair density function, g(t), will be: 

g (t) = µe -µ' (3.6) 

As before, the mean time to repair (MTTR), 't, will be the reciprocal of the repair rate: 

1 
i=- 

µ 
(3.7) 

If a component has constant failure and repair rates then the formula given for its 

unavailability, q(t) (equation 3.2) can be solved by Laplace transforms to give: 

+ µ)t]} Q(t) =x {1- exp[-(k x+µ 
(3.8) 

When looking at systems it is common to use the steady-state component 

unavailability, i. e. when the component has been operable for a reasonable period of 

time t -4 oo. In this case: 

q= 

Substituting (3.5) and (3.7) into (3.9) gives: 

(3.9) 
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_i_ 
M7TR 

ti +r MTTR + MTTF 
(3.10) 

There is also a useful relationship between X (t), w(t) and q(t): 

w(t) = ß, (t)[1- q(t)] (3.11) 

Hence if a components unavailability and failure rate are known then its unconditional 
failure intensity w(t) can be easily calculated using (3.11). 

The way in which components or systems are maintained has a large influence over the 

unavailability. If component failure is revealed then equation (3.8) is appropriate. 
When failures are dormant or unrevealed they will only be detected on inspection or 
testing. If a system is inspected every 0 time units its average unavailability is given as: 

qAV=X(e+t) (3.12) 
2 

The equation used to specify its unavailability constitutes the component's 'Model 

Type'. Basic event models are further discussed in Chapter 6. 

3.3 Kinetic Tree Theory 

3.3.1 Top Event Quantification 

Quantification of the fault tree top event probability is generally calculated using the 

component failure/basic event existence probabilities and the minimal cut sets. Here 

the top event probability or unavailability will be known as Q. 
. 
(t). Consider the 

Boolean sum of product expression for the top event of a fault tree: 

Top=C1+C2+ .............. +Cnc 

Where Ci, i=1....... nc are the minimal cut sets of the top event, i. e. product terms. 

If C1=X1. X2........ Xp where Xj, j=1........... p are all independent then the probability of 

each minimal cut set is given by: 

P(C1)=P(X I). P(X2).......... P(Xp) 
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Since the top event exists when at least one of the minimal cut sets exist, the top event 
probability, QEXACP (see Henley and Kumamoto (7)) is given by: 

nc nc i-I 

QEcT = P(Top) _ P(C'i) - P(Ci n C1)+... 
i=1 i=2 j=1 (3.13) 

+... (-1)nc-1P(CI nC2r) ... nC, e) 

This is commonly known as the inclusion-exclusion formula which has already been 

mentioned in Chapter I. To illustrate the calculation of the top event probability, 
consider the example fault tree in figure 3.1. 

The fault tree in figure 3.1 has the top event Boolean expression: 

Top=X 1. X2+X 1. X3 

Therefore the minimal cut sets for this fault tree are C1=X1. X2 and C2=X1. X3. 

Let the probability of each independent basic event be 0.04 and use equation (3.13) to 

obtain the top event probability: 

P(Top)=P(C 1)+P(C2)-P(C 1 nC2) 
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=P(X 1. X2)+P(X 1. X3)-P(X 1. X2. X 1. X3) 

note P(X 1. X 1)=P(X 1) 

=P(X 1). P(X2)+P(X 1). P(X3)-P(X 1). P(X2). P(X3) 

=(0.04)(0.04)+(0.04)(0.04)-(0.04)(0.04)(0.04) 
P(Top)=0.003136 

Clearly if the fault tree has many minimal cut sets then evaluating the top event 

probability from equation (3.13) will require extensive calculations. For all but the 

most simple fault tree structure the evaluation of each term in the expansion is not a 

practical proposition. Upper bound approximations are therefore frequently used to 

obtain the system failure probability. Wheeler et al. (29) also recognised the need to 

use approximations for the top event probability. One such approximation is the Rare 
Event estimation, PRE(Top), which takes only the first term in equation (3.13): 

nc 

PRE (Top) _ P(Ci) (3.14) 

For the fault tree in figure 3.1 this would give: 

PRE (Top)=P(X1). P(X2)+P(X1). P(X3) 

PRE (Top)=0.0032 

The reason for using this is that the higher order terms in (3.13) of simultaneous 

minimal cut set occurrence will have a relatively small probability if the failure of each 

basic event is rare and therefore will only provide a small correction to (3.14). 

Another approximation method is the Minimal Cut Set Upper Bound (MCSUB). This 

approximation is a more accurate upper bound and requires very little additional effort 

in its calculation: 

nc 

PMCSUB(Top)=1-ý(1-P(C; )) 

For the fault tree in figure 3.1 this gives: 

PMCSUB (Top)=1-(1-P(X1). P(X2))(1-P(X1). P(X3)) 

=1- -(1 
PMCSUB (Top) =0.003197 

(3.15) 
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These approximations bear out the relationship: 

nc nc 
QEXACT ý 1- JJ (1- P(Ci )) <_ P(Ci ) (3.16) 

1=1 i=1 

Exact<_Minimal Cut Set Upper Bound<_Rare Event 

The problem of using the approximation occurs when basic event failures are not rare. 

3.3.2 Structure Functions 

The full expansion (3.13) can be obtained by first producing the structure function for 

the top event and then taking its expectation. The structure function O(x) for the top 

event of a fault tree with minimal cut sets Ci, i=1......... nc is: 

nc 

$(x) = 1-fl(1-Pi) 

where Pi is the structure function of each minimal cut set. 

For the fault tree illustrated in figure 3.1 the structure function is: 

O(x)=1-( 1-X 1. X2)(1-X 1. X3) 

(3.17) 

In the case that each Ci is statistically independent then the probability of the top event 

equals the expectation of the structure function i. e. P(Top)=E[O(x)]=4[E(x)] and it is 

easy to obtain the exact top event probability: 

E[O(x)] _ ýi. P(ý(x) = i) 

= 0. P(p(x) = 0)+1. P(p(x) =1) 

= P(O(x) =1) 
= P(Top) 

Unfortunately this situation is rare since basic events are commonly shared by more 

than one minimal cut set. In this situation a full expansion of the logic equation is 

required and all powers of the indicator variables reduced (Xin=Xi) prior to taking the 

expectation. This provides the full series expansion given as equation (3.13). An 
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alternative and more efficient way of doing this is to use Shannon's theorem (22) which 
has been described in Chapter 2. 

The structure function for the top event is first expanded or pivoted with respect to the 

most repeated variable using Shannon's expansion. This is continued until no repeated 

events occur in the residues. The expectation can then be taken to give the top event 

probability. 

To illustrate consider again the structure function for the top event, Top, of the fault 

tree in figure 3.1. 

O(x)=1-(1-X1. X2)(1-X1. X3) 

The expectation cannot be taken without first expanding because X1 is repeated. 
Therefore pivot about X1, this gives: 

O(x)=X1[1-(1-X2)(1-X3)]+(1-X1)[0] 

=X1[1-(1-X2)(1-X3)] 

Now there are no repeated events so take the expectation. 

P(Top)=E[O(x)]=E[X1][1-(1-E[X2])(1-E[X3])] 

=P(X1)(1-(1-P(X2))(1-P(X3))) 

which gives the exact probability, this equation being identical to the equation obtained 

by (3.13). 

3.3.3 Unconditional Failure Intensity 

The unconditional failure intensity of a minimal cut set, wc. (t), the expected number 

of times the minimal cut set occurs per unit time at t, is defined as: 

nn 
wc, (t) _ (wi (t) tq (t)} 

i=1 jet 
j=1 

(3.18) 
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To illustrate, let C1=Xl. X2. X3 be a minimal cut set of a fault tree. Then the 
unconditional failure intensity of C1, wc, (t) will be: 

wC, (t) = wX1 (t)gX2 (t)gX3 (t) + wX2 (r)QX1 (t)QX3 (t) + wX3 (t)QX1 (t )QX2 (t ) 

The system unconditional failure intensity, w, (t), is defined as the probability that the 

top event occurs at t per unit time. This parameter is important for the quantitative 
analysis of a fault tree, as we can determine the 'expected number of top event 
occurrences' by integrating w, (t) with respect to t. Therefore w (t)dt is the 

probability that the top event occurs in the time interval [t, t+dt). For the top event to 

occur between t and t+dt all the minimal cut sets must not exist at t then one or more 

occur during t to t+dt. More than one minimal cut set can occur in a small time 

element dt since component failure events can be common to more than one minimal 

cut set. Therefore: 

nc 

wi(t)=P[AUO1 
i=l 

where: 
nc 

A is the event that all minimal cut sets do not exist at time t, A= flu1. 

ui denotes the ith minimal cut set does not exist at t. 
RC 

1J0; is the event that one or more Ci occur in time t to t+dt. 
i=1 

Since P(A)=1-P(A), equation (3.19) can be written as: 

nc nc 
_ 

AC 

P[AUO ]= P[U8; ]- P[AU6; ] 
i=l i=l i=l 

where: 
nc 

A means at least one minimal cut set exists at t, i. e. A= U-ui 

ui denotes the ith minimal cut set does exist at t. 

From equation (3.20) equation (3.19) can be expressed as: 

nc nc 

wSYS(t)dt= P[UOi]-P[AU6; ] 
i=l i=l 

(3.19) 

(3.20) 

(3.21) 
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The first term on the right hand side of expression (3.21) is the contribution from the 
occurrence of at least one minimal cut set and the second term is the correction 
contribution provided by minimal cut sets occurring while other minimal cut sets 
already exist (i. e. system already failed). These two terms can be denoted by w, ('ý), (t) 
and w; Y, (t) respectively, so: 

w (t)dt =w (t)dt - w(', )(t)dt (3.22) So SO SY 

Expanding the first term, the occurrence of at least one minimal cut set, gives the 
following series expansion: 

nc nc i-I 

w('s(t)dt=1P(6i)-Y, IP (0, n0)+.. 
i-1 i=2 j=1 (3.23) 

+.... (-1)nc-1 P(9, n02n.... nonc) 

nc 

where P(O) is the sum of the probabilities that minimal cut set i fails in t to t+dt, 

note that this is different than equation (3.13) where the failures exist at time t (note, 
P(6, ) = wc, (t)dt). All other terms in equation (3.23) involve the simultaneous 

occurrence of two or more minimal cut sets. Since only one basic event can fail in the 

small time interval dt the simultaneous occurrence of more than one minimal cut set in 

t to t+dt must result from the failure of a component common to all failed minimal cut 

sets. For the general term which requires m minimal cut sets to occur in t to t+dt 

which have k common basic events: 

if k=0, P(O, n..... nOm)=0 
(3.24) 

if k>0, P(6, n..... nOm) = WA (t, B, ,....., Bk )dtHQA (B) 

where: 
WA (t, B, ,....., Bk) is the failure intensity for a set which consists of the k common 

components (given by equation 3.18). 
Ii QA (B) is the product of the probabilities of the remaining components. 

The second term of equation (3.22), w (t)dt has a more involved expression: 
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_ 
nc 

w (t)dt = P[AUOL ] 
i=l 

AC 
_ 

nc i-I 

= jP(8i nA)-jjP(8i nO1 nA)+.... (3.25) 
i=2 j=i 

....... +(-1)nc-I P(8, n 62 n..... nOne n A) 

_ 
nc 

Since A= Uuj 
, then each term above can be expanded again, so for a general term in 

(3.25): 

_ 
ne 

P(6, n 82 rn...... n6m n A) _ P(6, n 62 rn...... n6m n uý ) 

nc i-1 

-ýY, P(61 n62n...... nOm nui muj)+.... (3.26) 
i=2 j =i 

.. +(-1)"c-' n P(9, n9Zn.... 8 n mun , u2n.... nu, ý) 

Where 9i means that minimal cut set i occurs in t to t+dt and u; means that minimal 

cut set i exists at t. So for a general term in (3.26): 

P(6, n 62 n....... nom n u, n U2 n...... nuk) = wB (t, B, ,....., B, )dtf QB (B) (3.27) 

where: 
w8 (t, Bl ,....... B, ) is the failure intensity for a set made up of all the component 
failures which are common to all of the minimal cut sets C, , C2 , ......., Cm but are not in 

minimal cut sets u, , u2 , ......., uk . 
11 QB (B) is the product of probabilities of the remaining components. 

Example 

Let the basic events in the fault tree shown in figure 3.1 have the steady state failure 

probabilities and unconditional failure intensities summarised in table 3.1. 

Basic Event qxi Wxi 
xi 0.04 7.2e-6 

X2 0.04 3.4e-5 

X3 0.04 2.9e-7 

Table 3.1 Summary of Reliability Parameters for Basic Events in Figure 3.1 
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To calculate the unconditional failure intensity and expected number of system failures 
for the fault tree shown in figure 3.1 proceed as follows: 

Calculating w. (t)dt from equation 3.23 we get: 

221 

wem'). (t)dt=I P(6; )-I LP(6; n01) 
i=1 i=2 j=1 

(3.28) 

Since for this fault tree C 1=X 1. X2 and C2=X 1. X3 then using equation 3.18 gives: 

2 
P(6') = wc, + WC2 = wx1gx2 + wxzgxl + wX1gX3 + wX39X1 

i-1 

21 
11 P(6; no q .. 6.. d j) = P(8, n 02) -''''x19'X2 X3 
i=t j=i 

Note, using equation (3.24) Xl is common to both Cl and C2. 

Therefore: 

w (t) = wxigx2 + wxagxi + wxl 9x3 + wx3gxl - wx, 9xagx3 SYS 

=(7.2e-6)(0.04)+(3.4e-5)(0.04)+(7.2e-6)(0.04)+(2.9e-7)(0.04)-(7.2e-6)(0.04)2 
w (t)=1.93608e-6 

Next calculating w(2(t)dt: SYS 

221_ 

w (t)dtP(O1 m 
_)-P(O1 

n6j r) A) 
i=1 1=2 j=1 

=P(01 nA)+P(02 nA)-P(01 n62 nA) (3.29) 

Using (3.26) to calculate the first term in (3.29): 

2 
-Ui) 

21 

P(6, n; _) P(81 n-ýýP(6, nu; nur) 
i=1=2=t 

=P(01 nu, )+P(6, nu2)-P(61 nu, nut) (3.30) 

= P(61 n u2) = wxzgxl qx3, (using equation 3.27) 

P(6, r )A) = wx2gx, qx3 
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Note that all other terms in (3.30) are zero as a minimal cut set cannot already exist 
and then occur in time dt. 

Again using (3.26) to evaluate the second term in (3.29): 

221 

P(02 nA)=lP(62 nu; )-ýlP(62 nui nur) 
i=2 j=1 

= P(02 nul)+P(02 nu2)-P(62 nul nu2) (3.31) 
= P(02 n ul) = wx3gx1qx2 

P(02 n A) = wx3gx1qx2 

Note that all other terms in (3.31) are zero. 

For the last term in (3.29) it is obvious that: 

P(01 n02nA)=0 

Therefore: 

w, (2)(t)=P(81 nA)+P(82 r) A) 

= wx2gxlqx3 +wx3gxiqx2 

=(3.4e-5)(0.04)2+(2.9e-7)(0.04)2 
=5.4864e-8 

Finally: 

(2) 
WS, M 

=1.93608e-6-5.4864e-8 
=1.881216e-6 

The expected number of system failures in any time period can then be obtained using 
equation (3.3). 

It is obvious from the previous small example fault tree, that evaluating the system 

unconditional failure intensity is a tedious and time consuming task. This is due to the 
number of series expansion terms that are required in the evaluation of w, ('ý). (t) and 

w (t). Vesely (1) recognised the need for an approximation of wem, (t), similar to the SYS 
approximations for the top event probability. The calculation of w( (t) requires SYS 
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minimal cut sets to exist and occur at the same time. If component failures are rare 
then the series expansion for w; (t) can become negligible and approximated as zero. 
This will leave an upper bound approximation for w (t): 

w (t) = wso (t) (3.32) 

An even simpler upper bound approximation is w$ x 
(t)max where: 

nc 

Wsys (t)max = wsys (t)max =I P(ei) (3.33) 
i=l 

For the previous example wss (t)max would be: 

w, y,. 
(t)max = wX1gX2 + wX2qX1 + wX1'7 X3 

+ wX3`7X1-1.9476e-6 

(this compares to the exact answer of 1.881216e-6) 

3.4 Alternative Approaches 

Other researchers have dealt with the quantification of fault trees, Semanderes (19) 

developed the computer program ELRAFT (Efficient Logic Reduction Analysis of 

Fault Trees), which has been previously mentioned in Chapter 2 as a bottom-up 

algorithm. It was also conceived as a means of using Boolean algebra to calculate 

exact probabilities directly from the logic expression in an economical manner. 

Semanderes recognised the need to eliminate dependencies during the calculation of 

the top event probability. This method will be explained by means of an example. 

Consider the fault tree given in figure 3.2. 
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From set theory and probability theory (23): 

G1=X1nX2 

P(G1) = P(X1). P(X2) 

G2=X1nX2nX3 
P(G2) = P(X 1). P(X 2). P(X 3) 

Top=G1uG2 
P(Top) = P(G1) + P(G2) - P(G1)P(G2) 

= P(X1). P(X2)+P(X1). P(X2). P(X3)- 
P(X 1). P(X 2). P(X 3) 

P(Top)=P(X1). P(X2) 

(3.34) 

It is important to note that redundancies must be eliminated during the calculation, i. e. 
P(X 1. X 1)=P(X 1) otherwise the answer will be incorrect. 

Semanderes has proposed a 'Logical Model' to obtain the probability of a gate event in 

a fault tree. 

The Logical Model 

The probability of a gate event in the fault tree is obtained by: 

1. Determining the possible combinations of basic events which cause the gate event. 
2. Eliminating duplication of events within each combination. 
3. Eliminating any combination which contains within itself some other possible 

combination. 
4. The combinations that are left are for all intents and purposes mutually exclusive 

and the probability of the event is the sum of the probabilities of each combination. 

It can be seen from point (4) that Semanderes employs the Rare Event approximation 
given in (3.14). 

Zipf (31) implements Monte-Carlo Simulation in the CRESSC program for probability 

calculation. This algorithm has two options depending on whether the average (mean) 

top event unavailability or the failure frequency is required. The CRESSC method to 

calculate the average unavailability is: 
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1. Generate a subroutine representing the Boolean logic of the fault tree. 
2. Convert components which have a time-dependent unavailability Uj (t) to the 

average unavailability Pj. 

3. For each component ja (0,1) uniformly distributed random variable Zj is 
Lj 

generated. If <q , then the component j will be considered as failed. It is 
Pi 

stated that q is a parameter which is controlled in the program in such a way that a 
system failure occurs with approximately every other trial. 

4. If system failure occurs then a maximum of two minimal cut sets is taken from the 
simulated failure combination (Zipf does not clarify this step further). 

5. Steps (3) and (4) are repeated until the desired number of minimal cut sets are 

obtained or a pre-defined time limit is reached. If necessary, a restart of the 

program is possible. 
6. The average unavailability of the system is evaluated analytically from the 

determined minimal cut sets. Additionally, the minimal cut sets are arranged 

according to their contribution to the average unavailability. 
7. For control purposes the average unavailability is again calculated by simulating 

the up and down times of the system. 

To obtain the failure frequency of the system, use the failure frequency for P1 in point 

(3) above instead of the average unavailability. Although a simulation program is 

simple to develop, there is no guarantee that all the important minimal cut sets will be 

obtained. Also for low failure probabilities (<10-5) of a highly redundant system, an 

estimate of the error due to the non-considered minimal cut sets is difficult to achieve. 

Part two of the paper by Bennetts (12) deals with interpreting a disjunctive normal 
form as a probability relationship. The algorithm deals with obtaining Boolean 

expressions for non-coherent fault trees, however the method may be applied to 

coherent fault trees. The procedure is based on comparing two terms taken from a 
disjunctive normal form (as generated by Bennetts algorithm) and determining whether 

they are a disjoint pair or not. If they are no further action is required, but if they are 

not modifications must be made. The recognition of disjoint groupings is based on the 

following theorem. 

Theorem : Two conjunctive terms T1 and T2 will represent disjoint groupings if there 

exists at least one literal in T1 such that the same literal occurs in its 

complemented form in T2. 
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The procedure for identifying and modifying non-disjoint pairs can be generalised into 

the following. 

Procedure : Let Ti and Tj be two terms whose relative complement Tk = T jTj is 
defined by the non-empty set ty i, y2,........, ye). This set contains the 
elements that appear in Ti which do not appear in Ti. The procedure by 

which Ti and Tj are converted into a disjoint collection of terms is 
described by the following expansion: 

T,. + Tj =T+y, T + y, y2T; + y, yz y3T +.. . (3.35) 
... +(y, y2...... y, -I y. )Tj +..... +(YIY2..... yn )Tj 

If Ti and Tj have different sizes, it is desirable to order them such that the smaller term 

occurs first, this will lead to a smaller relative complement. The disjunctive normal 
forms generated by the algorithm have already been ordered into ascending order of 

cardinality for reasons of efficiency. This implies that depending on the order of the 

expression, two different but both valid disjoint expressions can be found. To illustrate 

the use of equation (3.35) consider the following expression: 

Z=A+B+C. D+D. E. F 

The steps to obtain a disjoint expression are: 

(1) Take A, B as Ti, Tj respectively 

. ". (Y1, Y2............ Yn}=(A} 

. ". A+B=A+A. B 

(2) Take A. B, C. D as Ti, Tj respectively 

. ". [Y1, Y2,........... Yn i= (A ,B} 

. ". A. B+C. D = A. B+A. E. i9+A. B. C. D 

(A. C. D is made redundant by the A in step (1)) 

(3) Take A. B. C. D, D. E. F as Ti, Tj respectively 

. ". {Y1, Y2............ Yn)={ A, B, C ) 

. ". A. B. C. D+D. E. F=A. D. E. T+A. B. -D. -E. F+A. B. C. D. E. F 

(3.36) 

(A. D. E. F is made redundant by the A in step (1) and A . B. D. E. F by the A. B in 

step (1)) 
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Therefore the disjoint expression for (3.36) is: 

Z =A+ A. B+ A. B. C. D+ A. B. C. D. E. F 

The top event probability can now be calculated by summing the probability of each 
disjoint term in the expression. 

Inagaki and Henley (24) have extended the methodology of Vesely, to obtain the 

probability of the top event and unconditional failure intensity, for non-coherent fault 

trees. In the paper they stress an important issue concerning non-coherent systems, "It 
is shown that repair and maintenance policies for non-coherent systems must be 

carefully formulated since, for example, component repair can lead to system failure. " 

One of the assumptions for their method is that repair of the component brings it to its 

like new condition. Also all the prime implicants have been determined by use of the 

top-down algorithm of Kumamoto and Henley (16). 

For non-coherent systems, all prime implicants are not needed to quantify the top 

event, usually it is sufficient to use a coherent approximation. Chu and Apostolakis 

(25) have devised a 'minimal expression' approach, but this can lose important 

information regarding prime implicants which are deleted from the top event 

representation. Inagaki and Henley avoid this approach in their methodology. Instead 

they calculate the top event probability at time t using the inclusion-exclusion formula 

given in equation (3.13). However prime implicants are used in place of the minimal 

cut sets. The difference when using prime implicants is that, in the expansion 

procedure the probability of prime implicants that have got mutually exclusive basic 

events may occur (i. e. X1 and Xl may reside in the same intersection). When this 

happens the probability will be zero. 

Evaluation of w (t) for a non-coherent system is slightly more involved than Vesely's 

method for coherent systems. The procedure is best described by use of an example, 

the following notation is needed. 

Xj (t) -conditional failure intensity 

µj (t)-conditional repair intensity 

wj (t) -unconditional failure intensity 
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vj (t) -unconditional repair intensity 

w. (t) Also note that Xj (t) _ 
q; (t) 

Let a non-coherent system have the following three prime implicants. 

(1) {X1, X2) 

(2) (X1, X3} 

(3) [X2, X3) 

First calculating wl (t) from equation (3.23): 

33 i-1 

W(l) (t)dt = Prei >- Prei 0j) . ..... +(_1)2 Pie, il n 82 e3 

i=i i=2 i=i 

= P(01)+P(02)+P(03)-[P(01 n02 )+ 
F(O X 03) + P(02 X 03)1+ P(01 net n O3 ) 

=wc, dt+wC2dt+wc, dt-[wx1gxz9x3dt+wx2q lq dt+0]+0 

Cancel dt from both sides 

wes (t) = wx1gx2 + wx2gxl + wx, gx3 
+ WX3gX1 + WX2gX3 + VX3QX2 - WX1gX2qX3 

- wX2gX1qX3 

Next calculating w (t) using equation (3.25): 

3_3 i-1 

w (t)dt = P(Oi n A) -II P(Oi n 6i n A)+.... 
SYS i-1 ; -Z -, 

(3.37) 

....... +(-1)2 P(6, n 62 n 83 n A) 

=P(6, nA)+P(02 nA)+P(83 nA) 

-[P(01 nO2 nA)+P(6, n63 nA)+P(02 n63 nA)) 

+P(01n62n63nA) 

P(01 nA)=P(8, nu, )+P(6, nu2)+P(6, nu3) 

-[P(6, nu, nU2)+P(6, nu, nu3)+P(6, nu2 nu3)] 

+P(01 nu, nU2 nu3 ) 
= 0+wX2QX1QX3 + %i'x, gX2qX3 -[0+0+0]+0 
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P(02 n A) = P(02 n u, ) + P(62 n u2) + P(62 r) 

-[P(82 nu, nut)+P(02 nu, nu3)+P(82 nut nu3)] 

+P(02nu, nu2nu3) 
= wx3gxjqx2 +0+ wx3gxiqx2 - [0 + wx39xlgx2 +01+0 

Here it is important to explain the calculation of P(02 n u3) and P(02 n u, n u3 
For P(02 n u3) there are two possible ways in which this can happen: 

(1) The basic events X2, X3 and X3 must exist at time t and X1 occurs in [t, t+dt). 
(2) X1, X2 and X3 must exist at time t and X3 must occur in [t, t+dt). 
Here (1) cannot happen since X3 and X3 cannot exist at the same time. In case (2) 

the probability of occurrence of X3 in [t, t+dt) should be a conditional probability, i. e. 
Xx39 because X3 exists at t. Thus: 

P(02 (-1143 ý_ XX3gX1QX2qX3 = wX3gX1qX2 

Note (%, 
X3 = 

wx3 
) 

qX3 

By a similar argument: 

P(02 n u, n u3) = wx3gxiqx2 

Moving on: 

P(03 nA)=P(03 nu, )+P(63 nut)+P(63 nu3) 

-[P(03 nu, nut)+P(93 nu, nu3)+P(03 nut nu3)] 

+P(03 nu, nut nu3) 

- wXggx, qX2 +ýtX3gX2qX1qX3 +0-[Mx3QX2gxiqX3 +0+011+0 

Here the calculation of P(03 n u2) and P(03 n ul n u2 ), requires the conditional 

repair of X3, i. e. µX3, because X3 exists at t. This shows an important characteristic 

of non-coherent systems. Prime implicant (3) ceases to exist when X3 is repaired, 

however prime implicant (2) is created by this repair action, thus the top event 

continues to exist. 

The remaining four terms in equation (3.37) are zero, as the prime implicants involved 

cannot exist and occur at the same time. 
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This gives: 

ww(t)=w; W(t)-w;, (t) 

_ [wx19x2 + wx2gx1 + wx1gx3 
+ wX3gX1 + wX2gX3 + vX3gX2 

- wx1Qx2Qx3 - wx2gx19x3 ] 

- [wx2gx1qx3 + wxlgx2qX3 + wx3gx1qx2 + vx3Qx1gx2 I 

The remainder of the paper discusses the necessary modifications to the theorem of 
Bennetts, to recognise disjointness in the Boolean expression, if wý, s 

(t) is to be 

calculated. 

Chu and Apostolakis (1980) (25) discuss in their paper methods for probabilistic 
analysis of non-coherent fault trees. The paper gives a very useful result which is that 

effort can be saved in the calculation of the top event, of a non-coherent fault tree, by 

first creating modules. Modules are individual subtrees of the fault tree which do not 

share common events. The NOT gates in the fault tree must be pushed to the bottom 

level i. e. to negate primary events, using De Morgans Laws. These modules can then 
be used to create more accurate upper and lower bounds for the top event probability. 
The purpose of the paper is to investigate the applicability of several well known 

methods, for the probabilistic analysis of coherent fault trees, to the analysis of non- 

coherent fault trees. The following methods are discussed: 

(1) Inclusion-Exclusion Method 

(2) Min-Max Bounds 

(3) Minimal Cut Set Upper and Minimal Path Set Lower Bounds 

Inclusion-Exclusion Method 

Equation (3.13) given by Vesely is used for the inclusion-exclusion calculation, with 

the minimal cut sets (Ci) replaced by prime implicants (ýi) to give: 

nc nc i-1 

P(Top) = P(hi) -II P(ýi ni )+... 
(3.38) i= j=l 2 i-i 

+... (-1)n`-1 P(ýý ný2n... nunc1 
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However in evaluating the products of prime implicants, conflicting literals must be 
deleted (XiXi = 0) and the idempotent law must be applied (XiXi = Xi). As the 
calculation of (3.38) can be formidable for large systems, the following inclusion- 

exclusion bounds are given: 

An odd number of terms gives an upper bound (3.39) 
An even number of terms gives a lower bound (3.40) 

Q, 
YS 

(t) <_ P(ý) (3.41) 

It can be seen that equation (3.41) constitutes the Rare Event approximation given in 

(3.14). Although the Rare Event approximation can be a very good approximation to 
Q, (t) for coherent systems, especially when the probabilities of primary inputs are 

less than 0.10, a general statement as to how good this bound is for non-coherent 

systems cannot be made. Therefore one must proceed to evaluate other bounds, i. e. 
those of (3.39) and (3.40) in order to satisfactorily bracket Qmm,. (t). 

Min-Max Bounds 

The min-max lower bound for the top event probability is calculated as: 

max{fJP(FX1)} (3.42) 

The min-max upper bound employs the minimal path sets i1i of the fault tree: 

min{(1- JJ(l - P(Xi ))} (3.43) 
I iE1l 

Chu and Apostolakis call Ký the prime implicates, where (K 1- [J(1- Xi) ). 
`Elji 

The minimal path sets of a fault tree can be found by evaluating the prime implicants of 

the dual of the fault tree. 

As an example consider the small fault tree shown in figure 3.3. 

R1 



Top 

G1 G2 

X6 X7 X6 X7 

Figure 3.3 Small Non-Coherent Fault Tree 

The prime implicants of the fault tree in figure 3.3 are X 6. X7 and 2=X6. X7 

and the minimal path sets are 11, =X6. X7 and 12=X6. X 7. Let P(X6)=0.5 and 

P(X7)=0.7. To find the min-max lower bounds, we first determine the probabilities of 

the prime implicants. 

P(ý1) = (0.5)(0.3) = 0.15 

P(AZ) = (0.5)(0.7) = 0.35 

The maximum of these probabilities, 0.35, is the min-max lower bound. 

Similarly, the probabilities of the prime implicates are calculated. 

P(K1) =1- (1- P(X6))(1- P(X7)) 

=1-(1-0.5)(1-0.7) = 0.85 
P(K2) =1- (1- P(X 6))(1- P(X 7)) 

=1-(1-0.5)(1-0.3)=0.65 

The minimum of these probabilities, 0.65, is the min-max upper bound. 

The following inequalities are always true. 

max{[JP(KX. )}_Q (t)<_min{(1-[1(1-P(Xi))) (3.44) 
J IESj 

` SYS 
J iET/ 
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Obviously the best min-max bounds are obtained when all the prime implicants and 
prime implicates are known. 

Minimal Cut Set Upper and Minimal Path Set Lower Bounds 

For coherent structure functions the minimal cut set upper and minimal path set lower 

bounds are: 

mn 

H K< <Q (t) ý ýýj (3.45) 

However Chu and Apostolakis show that these bounds do not hold for non-coherent 

structure functions. Therefore one must be careful in the choice of bounds or 

approximations to be used for the quantitative analysis of a non-coherent fault tree. 

Until now most of the researchers have been concerned with the probability of the top 

event occurrence or system failure, however Locks (26) wanted to estimate the 

reliability, R, of a coherent system. In the paper three different ways to estimate the 

reliability are compared, these are: 

(1) Recursive disjoint products 
(2) Recursive inclusion-exclusion 

(3) Minimal cut set approximation based on partial information 

Recursive Disjoint Products 

The recursive disjoint products approach, as given by Abraham (27), builds the system 

reliability function for R by accumulating the probabilities of the m minimal path sets, 

Ti, one minimal path set at a time. Let Rj denote the probability accumulated at step j, 

the recursive formula is: 

0 
j= 

Rj 
-1 

+ P(1; n 7l, n... nfl j-1) 
(3.46) 

by De Morgans Laws, both Rj and Rß_1 are polynomials with all terms disjoint. Hence 

the accumulated probability is the sum of the probabilities of the terms. 
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Recursive Inclusion-Exclusion 

Instead of accumulating the probabilities of disjoint terms as in the disjoint products 
approach, the polynomial has alternating plus and minus signs: 

j-1 
R. =Rj-1 +Pj -P(1lj nur1) 

i=l 
(3.47) 

With the inclusion-exclusion method an upper limit of the number of terms is 2m-1 

where m is the number of minimal path sets. However the actual number of terms is 

usually a tiny fraction of this upper limit because of cancellation. 

To illustrate the disjoint products method and inclusion-exclusion approach consider a 
fault tree which has the three minimal path sets, { a, b 1, { a, c}, { a, d}. 

First calculating disjoint products: 

R, = Ro + P(il) =0+ P(a)P(b) = P(a)P(b) 

R2 = R, +P(rtz nm ) 

= R, +P(acnab)= R, +P(acn(aub)) 

R2 = R1 + P(a)P(b)P(c) 
R3 = R2 +P(113 nTI I X112) 

=R2+P(adnabnac) 

= R2 +P(adn(avb)n(auc)) 

= R2 + P(abd n (a u c)) 
R3 = R2 +P(a)P(b)P(c)P(d) 

The final disjoint sum for the reliability is: 

R= P(a)P(b) + P(a)P(b)P(c) + P(a)P(b)P(c)P(d) 

The recursive build-up of the system reliability function by the inclusion-exclusion 

method is: 

R, =Ro+P, -P(1t1 null0)=P(a)P(b) 
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R2 = R, +PZ -P(riz (-ý rl, ) 

= Rl + P(a)P(c) - P(ac n ab) 
R2 = R, + P(a)P(c) - P(a)P(b)P(c) 
R3 = R2 + P3 - P('93 r (111 u 112 )) 

= R2+ P(a)P(d) - P(ad nabuad nac) 

= R2 + P(a)P(d) - P(abd uacd) 

= R2 + P(a)P(d) - 
[P(a)P(b)P(d) + P(a)P(c)P(d) - P(a)P(b)P(c)P(d)] 

The final inclusion-exclusion system reliability function is: 

R= P(a)P(b) + P(a)P(c) + P(a)P(d) 

- P(a)P(b) p(c) - P(a)P(b)P(d) + P(a)P(b)P(c)P(d) 

Locks states that it is desirable to use the disjoint products approach over the 
inclusion-exclusion method, as the disjoint products approach results in a smaller 

polynomial. 

Minimal Cut Set Approximation 

A variety of minimal cut set approximations can be used to estimate system reliability. 
The primary justification for approximating is that with high reliability, the probability 

of failure is small relative to the probability of success. The only problem with the 
Rare Event approximation P(C; ) is that all the minimal cut sets are needed. 

If only a subset of the minimal cut sets are known and the components are highly 

reliable, an upper bound can be obtained, using the most important minimal cut sets. 
The common aspect of all importance schemes is that if only the information relevant 

to the most important minimal cut sets is used, enough failure probability is accounted 
for to provide an accurate bound. Since the components are highly reliable, the most 
important minimal cut sets often have the smallest number of components. Locks 

shows that it is not always necessary to use exact methods such as the inclusion- 

exclusion method or the disjoint products approach with full information, when 

excellent approximations can be obtained with the important minimal cut sets and 

partial information. 
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3.5 Importance Measures 

A very useful piece of information which can be derived from a fault tree study is the 
importance measure for each component or each minimal cut set. An importance 

analysis is a sensitivity analysis which identifies weak areas of the system and can be 

very valuable if used at the system design stage. For each component its importance 

signifies the role that it plays in either causing or contributing to the occurrence of the 

top event. In general a numerical value is assigned to each basic event which allows it 

to be ranked along with other failure events according to the extent of its contribution 
to the occurrence of the top event. 

Probabilistic importance measures can be categorised in two ways: (i) those which are 

appropriate for system availability assessment (top event probability) and (ii) those 

which are concerned with system reliability assessment (expected number of top event 

occurrences). 

The most commonly used importance measures are described below. 

(i) Top Event Probability 

Birnbaum Measure of Component Importance 

The Birnbaum measure of importance (Ib) was first introduced back in 1969 (3). 

This measure is defined as the rate at which the system failure probability improves as 

the failure probability of component i improves. Birnbaums measure of importance is 

also known as the criticality function, G. (q), which can be expressed in two ways: 

(i) G; (q)=Q(1� q)-Q(O1, q) (3.48) 

where Q(q) is the probability that the system fails expressed as a function of the 

component failure probabilities where: 

Q(1i, q) = (g1,.... qi-1,1, gi+1...... q� ) 
Q(0� q) =(l,.... qi-1, O, 

`1i+1,...., 
q ) 

(ii) G; (q) = aQ(q) / aq, (3.49) 
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This is defining the criticality function as a partial derivative which is the same as the 
first expression. 

To illustrate, let Q(q) for a system be Q(q) = gx, qx2 +gx1qx3 -gx1qx2qx3, using 
(3.48): 

Q(ix> > q) = q2 + qx3 - gx2qx3 
Q(Ox>>q)=0 

Gx1(q) = Q(11 
> q) - Q(Ox> 

> q) =ci2 + qx3 - gx2qx3 

Criticality Measure of Component Importance 

The criticality measure of importance (Ic) is "The probability that the system is in a 
state at time t in which component i is critical and that component i has failed at 
time t conditional on system failure at time t. " 

Ic; = 
G; (q)q; (t) 

(3.50) QSyS (t) 

It can be seen from equation (3.50) that the criticality measure of importance for a 

component i, is the product of its criticality function and unavailability divided by the 

system unavailability. 

Fussell-Vesely Measure of Component Importance 

This measure of Importance is usually close in numerical value to the Criticality 

Measure. The Fussell-Vesely Importance (IFV) is calculated as the probability of the 

Union of the Minimal Cut Sets which contain event i divided by the top event 
occurrence probability. 'FV therefore gives the probability that when the system fails, 

component i contributed to the failure. 

P(UCk ) 
I k/iek 

FV 

QS, S (t ) 
(3.51) 

Consider the minimal cut sets of a fault tree to be (1) {X1. X2 }, (2) {X1. X3 }. 

Therefore I F,, X, 
will be: 
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IFVX2 
= 

P(X1. X2) 
P(X1. X2)+P(X1. X3)-P(X1. X2. X3) 

(ii) Top Event Expected Number of Occurrences 

The two component importance measures given in this category indicate the 
contribution made to the expected number of occurrences of the top event. These 

measures are appropriate for interval reliability assessments in which the order of 
occurrence of component failure events is of concern. Hence the two measures rank 
separately those events which are initiators and those which are enablers (these are 
further discussed in Chapter 7). Both measures were developed by Barlow and 
Proschan (4). 

Barlow-Proschan Measure of Initiator Importance 

If components fail sequentially in time and only one component failure event can occur 
in a vanishingly small time element dt then one event must have caused the system 
failure - the initiating event. The Barlow-Proschan Initiator importance BPI1 is the 

conditional probability that initiating event i caused the failure, given that the system 
fails prior to time t. 

JG, (q) wi (t)dt 

BPI1 
W(0, t) 

(3.52) 

Therefore the Barlow-Proschan measure of initiator importance requires the criticality 
function, component unconditional failure intensity and the expected number of top 

event occurrences for its evaluation. 

Barlow-Proschan Measure of Enabler Importance 

This importance measure (BPEi) assesses the contribution of an enabling component i 

when initiating event j causes the system failure. The failure of enabler i is only then a 

factor when enabler i and initiator j both occur in the same minimal cut set (C). 

j'{Q(1 
�q) - Q(1, �O j, q))gi (t)wj (t)dt 

Jo 
i*j 

BPEi = &.. JEC (3.53) 
W(O, t) 
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The calculation of this importance measure is a bit more involved than the others, 
because of the calculation of Q(11 ,lj, q) and Q(1 l, 0j, q) . 

3.6 Summary 

Having reviewed the literature the following points summarise the current techniques 
available to quantify fault trees: 

(1) The primary limitation of the "Kinetic Tree Theory" by Vesely is the assumption 
that all the minimal cut sets of the fault tree are known. For some complex fault 

trees obtaining all the minimal cut sets can be a formidable task. 

(2) The inclusion-exclusion formula for the probability calculation is a very computer 
intensive calculation. For all but the simplest of systems this is not possible to 
compute even on modem high-speed digital computers. Acceptably accurate 

approximations are required. 

(3) The Rare Event approximation and the Minimal Cut Set Upper Bound are only 

suitable to use if the failure of each basic event is rare. If this is not the case these 

approximations may result in large inaccuracies. 

(4) The structure function technique to evaluate the top event probability can save on 

effort if each minimal cut set is independent, in this case the Minimal Cut Set 

Upper Bound is exact. However this is rare and a checking procedure would be 

required to determine whether the minimal cut sets are independent, which would 

increase computation. 

(5) Applying Shannon's decomposition to the structure function is difficult to program 

and the choice of the pivoting variable is sometimes difficult to establish in order to 

increase efficiency. 

(6) The various techniques such as structure functions and Shannon's decomposition 

serve more as an alternative method rather than an improved method to calculate 

the top event unavailability. 
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(7) If calculating the top event probability requires a total number of calculations of the 
order of N, calculating the unconditional failure intensity for a system requires of 
the order of N2 calculations. The calculation of the unconditional failure intensity 

again requires approximations and these will require the same assumptions and 
have the same limitations as listed for the top event unavailability. 

(8) Importance measures are extremely useful pieces of information from a fault tree 
study but can only be accurately evaluated if Qm (t) and all the minimal cut sets 

are known. 

(9) Since Kinetic Tree Theory was first developed in the early 1970's its efforts have 

concentrated on making minor modifications to the established method to improve 

accuracy and efficiency. As such research into quantitative fault tree analysis 

suffers from the same limitations as that for qualitative analysis and no new method 

has been proposed which produces dramatic improvements. 
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CHAPTER 4 

BINARY DECISION DIAGRAMS 

4.1 Introduction 

Chapters 2 and 3 have described and discussed the various methods developed to 
qualitatively and quantitatively analyse fault trees. These techniques are not without 
their limitations. If, because of the complexity of the system under study, the fault tree 
is large then finding the causes of failure, termed minimal cut sets, can require an 

extensive computer processing capability. To then quantify top event parameters 

usually means resorting to approximations. Tackling these problems to improve 

computational efficiency and accuracy has been the main concern over the years for 

many fault tree researchers. Semanderes (19), Fussell and Vesely (20), Bennetts (12) 

and Benjiamin et al. (28), have all addressed these issues. New techniques are usually 
developed by modifying and extending the established, conventional approaches such 

as MOCUS (20). However these 'bottom-up' or 'top-down' approaches are now so 

well developed that further refinement is unlikely to result in significant reductions in 

computation time or increases in accuracy. Therefore it is felt that substantial 
improvement in computer utilisation will only result from a completely new approach. 

Recent papers by Akers (33), Bryant (34) and more importantly Rauzy (35) have 

indicated that an alternative approach to fault tree analysis which utilises Binary 

Decision Diagrams has the potential to provide a faster means of analysing fault trees. 

Binary Decision Diagrams were first introduced by Lee (36) to represent switching 

circuits. Rather than analysing the fault tree directly as with conventional approaches, 

this new approach first converts the fault tree to a binary decision diagram, from which 

the minimal cut sets are obtained. This diagram specifies the failure logic equation in a 

form which is easier to manipulate than a fault tree. This chapter describes the use of a 

Binary Decision Diagram (BDD) for fault tree analysis and some ways in which it can 

be efficiently implemented on a computer. 

4.2 Description of the Binary Decision Diagram 

A BDD is a directed acyclic graph as can be seen from the example illustrated in figure 

4.1. All paths through the BDD start at the root vertex and terminate in one of two 
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em-final vertex 
terminal vertex 

Figure 4.1 Example BDD 

states, either a1 state which corresponds to system failure, or a0 state which 
corresponds to system success. All the paths terminating in aI state give the cut sets 
of the fault tree. A BDD is composed of terminal and non-terminal vertices or nodes, 
which are connected by branches. Terminal vertices have the value 0 or 1 and non- 
terminal vertices correspond to the basic events of the fault tree. Each vertex has a0 
exit branch which represents the basic event non-occurrence (works) and a1 exit 
branch which represents basic event occurrence (fails). 

All the left hand branches leaving each vertex are the 1 branches and all the right hand 
branches are the 0 branches. Notice that in figure 4.1 node X3 is shared by the right 
branch of XI and the right branch of X2, the importance of this "sub-node sharing" 
will be discussed later. 

Every path starts from the root vertex, and proceeds down through the diagram to the 

terminal vertices. Only the vertices that he on a1 branch on the way to a terminal 1 

vertex are included in a path. The paths through a BDD, constructed for a particular 
fault tree, correspond to the cut sets of that fault tree. For example the paths, or cut 

sets, of the BDD shown in figure 4.1 are : 

(1) X1. X2 

(2) X 1. X3. X4 

(3) X3. X4 
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4.3 Constructing the Binary Decision Diagram Using Structure Functions 

The BDD can be constructed from the structure function (defined in section 3.3.2) 

which is represented by the fault tree. This is achieved by successively substituting the 

value 1 (fails) and then the value 0 (works) for each node encountered in the BDD. To 

illustrate, consider the simple fault tree in figure 4.2. 

The minimal cut sets for this fault tree are: 

(1) {X1, X2, X3} 

(2) (X3, X41 

Therefore its structure function, O(x) is: 

O(x)=1-(1-X1. X2. X3)(1-X3. X4) (4.1) 

We need to know the order in which to consider the basic events in the structure 

function before we can assign values of 0 and 1 to their indicator variable. Here a top- 

down, left-right ordering of basic events would give. 

X1<X2<X3<X4 (4.2) 

oz 

Figure 4.2 Example Fault Tree 



which will yield the BDD shown in figure 4.3 (figure 4.3a with the Boolean equations 
to show its development from the structure function and its simplified form in figure 
4.3b). Using this ordering node XI is drawn first, along with its 1 and 0 branches. 
The structure functions or residues, resulting when X1=1 and when X1=0 are 
substituted into the original structure function, are indicated on its left and right 
branches respectively. Next node X2 is considered and its 1 and 0 branches drawn, 

again the residue structure functions are attached to these branches when X2 is given 
the value 1 and then the value 0. This process is continued for the other basic events 
until terminal 1/0 vertices are reached. 

Figure 4.3a. BDD with Boolean Equations 
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4.4 Reducing the Binary Decision Diagram Structure 

Friedman and Supowit (37) stated that a tree representing a function of n variables can 
have a maximum of 2n+1-1 nodes, however they recognised that a BDD can be 

reduced in size by two 'collapsing' operations which are: 

(1) If the two sons of a node a are equivalent, then delete node a and direct all of its 
incoming edges to its left son. 

(2) If nodes a and b are equivalent, then delete node b and direct all of its incoming 

edges to a. 

where a 'son' of a node is simply the node attached to either its 1 or 0 branch, e. g. in 

figure 4.3b F2 and F4 are the sons of node Fl. 

The above 'collapsing' operations have been applied to figure 4.3a to create the 

simplified BDD in figure 4.3b. Notice that the repeated X3 structure in figure 4.3a has 

been 'collapsed' to the shared sub-node F4 in figure 4.3b. 

Fl 

X1 Root Vertex 

10 

F2 
X2 

10 

F3 

X3 X3 F4 
010 

00 

Terminal 1 Vertex X4 F5 
10 

10 

Figure 4.3b. BDD for the Fault Tree Shown in Figure 4.2 
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To obtain the cut sets of the fault tree the paths through the BDD are traced from the 
top or root vertex to a terminal 1 vertex. Remember only the basic events that he on a 
1 branch (indicating the failure of that basic event) on the way to a terminal 1 vertex 
are included in a path. Therefore the paths through the BDD which correspond to the 
cut sets of the fault tree are: 

(1) X 1. X2. X3 

(2) X 1. X3. X4 

(3) X3. X4 

Clearly the resulting BDD for this basic event ordering is not minimal, i. e. the paths 
through the BDD result in at least one redundant cut set. For this example cut set (2) 

above is redundant. To obtain only the minimal cut sets the BDD needs to undergo a 

minimisation procedure, whose details are given in section 4.6. 

This method of BDD construction requires the availability of the structure function. 

The structure function is rarely available in a fault tree study and therefore an 

alternative approach is required to convert the fault tree structure to its equivalent 
binary decision diagram to obtain the minimal cut sets. 

4.5 Constructing the Binary Decision Diagram Using an 'ite' Procedure 

The BDD method developed by Rauzy (35) first converts the fault tree to a binary 

decision diagram which encodes an If-Then-Else (ite) structure. An attractive feature 

of the BDD method is that the ite structure derives from Shannon's formula (Chapter 

2, section 2.3), such that if f(x) is the Boolean function for the fault tree top event then 

by pivoting about any variable X1 the Shannon formula can be written as: 

f(x) = X1. f1+Xl. f2 (4.3) 

where fl and f2 are Boolean functions with X 1=1 and X 1=0 respectively and are of 

one order less than f. The corresponding ite structure is ite(X1, fl, f2), where X1 is 

the Boolean variable and fl and f2 are logic functions. This means if X1 fails then 

consider function fl else consider function f2. Therefore in the BDD fl is represented 

by the structure lying below the 1 branch of X1 and f2, is represented by the structure 

lying below the 0 branch. The diagram for this is the one given in figure 4.4. 
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Once the basic events in the fault tree have been given an ordering, the following 

procedure is then used to construct the BDD from the fault tree. Rauzy uses a top- 
down ordering i. e., the basic events which are placed higher up the tree are listed first 

and are regarded as being "less than" those lower down the tree. Note that in the 
following procedures <op> corresponds to a Boolean operation of the logic gates in 

the fault tree, so if the gate is an AND gate <op> will be the dot or product symbol (), 

and if the gate is an OR gate <op> will be the sum symbol (+). 

Procedure 

(1) Assign each basic event, Xi in the fault tree the ite structure ite(Xi, 1,0), (Xi can 

either fail -1 branch or work -0 branch). 

(2) If x<y; 
Let J=ite(x, F1, F2) and H=ite(y, G1, G2) then 
J<op>H=ite(x, Fl <op>H, F2<op>H) 

(3) If x=y; 
i. e., J=ite(x, F1, F2) and H=ite(x, G 1, G2) then 

J<op>H=ite(x, F1<op>G1, F2<op>G2) 

(4) If F is a k/n vote gate with inputs FI....... Fn, i. e. F=at-least(k, Fl......... Fn), then F 

is rewritten implicitly as (F 1 nat-least(k- 1, F2......... Fn))uat-least(k, F2........ Fn). 

These are used in conjunction with the following identities to produce the simplest ite 

structure for each gate: 

1<op>H=1 if <op> is an OR gate 
1 <op>H=H if <op> is an AND gate 
O<op>H=H if <op> is an OR gate 
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O<op>H=O if <op> is an AND gate 

To illustrate the application of this method consider the fault tree shown in figure 4.5. 

Using an ordering of X1<X2<X3 for the fault tree in figure 4.5 the ite structure for the 
top event is obtained as follows: 

Working from the bottom to the top of the tree and applying the procedure defined 

above we get: 

G1=ite(X2,1,0)+ite(X3,1,0) 

=ite(X2,1+ite(X3,1,0), 0+ite(X3,1,0)) 

=ite(X2,1, ite(X3,1,0)) 

Top=G 1. X 1 

=ite(X2,1, ite(X3,1,0)). ite(X1,1,0) 

=ite(X1, l. ite(X2,1, ite(X3,1,0)), 0. ite(X2,1, ite(X3,1,0))) 

Top=ite(X1, ite(X2,1, ite(X3,1,0)), 0) 

To construct the BDD each ite structure in Top is successively broken down into its 

left and right branches. The root node of Top is the variable X1, the structure ite(X2, 

1, ite(X3,1,0)) will lie below the I branch of XI and the 0 branch of XI will 
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terminate in a0 end vertex. Next the ite structure ite(X2,1, ite(X3,1,0)) is broken 
down into its left and right branches. The resulting BDD is the one shown in figure 
4.6. 

Next, the paths through the BDD are obtained these being: 

(1) X1. X2 

(2) X1. X3 

which correspond to the minimal cut sets of the fault tree. 

To illustrate the ite calculation of a vote gate refer to the fault tree shown in figure 4.7. 

Calculating the ite structure for GI, using the ordering X1<X2<X3: 

G 1=at-least(2, X 1, X2, X3) 

=(X 1 nat-least(1, X2, X 3))uat-least(2, X2, X3) 

=(X ln[(X2nat-least(O, X3))uat-least(1, X3))]uat-least(2, X2, X3) 

=(X 1 n[X2uX3])u(X2nX3) 

changing r)-4., u-+ and giving the ite property to the basic events: 

G 1=ite(X 1,1,0). [ite(X2,1,0)+ite(X3,1,0)]+[ite(X2,1,0). ite(X3,1,0)) 
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dealing with square brackets first: 

=ite(X1,1,0). ite(X2,1, ite(X3,1,0))+ite(X2, ite(X3,1,0), 0) 

=ite(X1, ite(X2,1, ite(X3,1,0)), 0)+ite(X2, ite(X3,1,0), 0) 

=ite(X1, ite(X2,1, ite(X3,1,0))+ite(X2, ite(X3,1,0), 0), ite(X2, ite(X3,1,0), 
0)) 

G1=ite(X1, ite(X2,1, ite(X3,1,0)), ite(X2, ite(X3,1,0), 0)) 

And the corresponding BDD is given in figure 4.8. 

Therefore the paths in the BDD in figure 4.8 for the 2/3 vote gate are: 
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(1) X1. X2 

(2) X 1. X3 

(3) X2. X3 

which correspond to the minimal cut sets of the vote gate. 

The most interesting property of BDD's is that, given a Boolean function f (and a total 

order < on variables), there exists one and only one BDD associated with f, this is 

proved by Bryant (34). The representation is therefore canonical. 

4.6 Minimising Procedure 

A problem occurs with some fault trees which is that the BDD produces cut sets which 

are not minimal. In such a situation there is little advantage to be gained in converting 
to a BDD structure unless some minimal form of the BDD can be derived which 

encodes only the minimal cut sets. To encode only the minimal cut sets the BDD 

needs to undergo a minimising procedure. The BDD shown in figure 4.3b is 

constructed using the structure function for the fault tree given in figure 4.2, this BDD 

is non-minimal because of the redundant cut set {X1, X3, X4 1. The BDD for this fault 

tree shall be constructed again, using the ite procedure, and then used to illustrate the 

minimisation algorithm. The BDD resulting from the ite development will be the same 

as that produced using a structure function 

demonstrate the minimisation process. 

However it is needed in its ite format to 

A top-down ordering of basic events would give: 

X1 <X2<X3<X4 (4.4) 

Gates G2 and G1 can be resolved in a bottom-up procedure since they have only basic 

events as inputs. 

G2=ite(X3,1,0). ite(X4,1,0) 

=ite(X3,1. ite(X4,1,0), 0. ite(X4,1,0)) 

=ite(X3, ite(X4,1,0), 0) 

G 1=ite(X 1,1,0). ite(X2,1,0). ite(X3,1,0) 

101 



=ite(X1, l. ite(X2,1,0), 0. ite(X2,1,0)). ite(X3,1,0) 

=ite(X1, ite(X2,1,0), 0). ite(X3,1,0) 

=ite(X1, ite(X2,1,0). ite(X3,1,0), 0. ite(X3,1,0)) 

=ite(X1, ite(X2,1. ite(X3,1,0), 0. ite(X3,1,0)), 0) 

=ite(X1, ite(X2, ite(X3,1,0), 0), 0) 

With both inputs to the top event gate defined Top can now be evaluated. 

Top=G 1 +G2 

=ite(X1, ite(X2, ite(X3,1,0), 0), 0)+ite(X3, ite(X4,1,0), 0) 

=ite(X1, ite(X2, ite(X3,1,0), 0)+ite(X3, ite(X4,1,0), 0), 
O+ite(X3, ite(X4,1,0), 0)) 

=ite(X1, ite(X2, ite(X3,1,0)+ite(X3, ite(X4,1,0), 0), 
0+ite(X3, ite(X4,1,0), 0)), ite(X3, ite(X4,1,0), 0) 

=ite(X1, ite(X2, ite(X3, l+ite(X4,1,0), 0+0), ite(X3, ite(X4,1, 
0), 0)), ite(X3, ite(X4,1,0), 0) 

Top=ite(X 1, ite(X2, ite(X3,1,0), ite(X3, ite(X4,1,0), 0)), ite(X3, 
ite(X4,1,0), 0)) 

This top event ite structure represents the BDD shown in figure 4.9, which is the same 
as figure 4.3b. Notice that the node or vertex labelled F4, is shared by the right branch 

of node F2 and also the right branch of node Fl. This sub-node sharing reduces 

memory requirements when implementing this analysis procedure on a computer. It 

also improves efficiency by eliminating the need to evaluate ite structures that have 

been previously calculated. 

The cut sets obtained from this BDD are: 

(1) X 1. X2. X3 
(2) X 1. X3. X4 
(3) X3. X4 

Boolean Reduction Laws, as described in Chapter 1, could then be applied to these cut 

sets to produce the minimal cut sets, however this process increases computation time 

and memory requirements which destroys the aim of the BDD technique. 
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X1 Root Vertex 
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F2 
X2 
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100 
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Terminal 1 Vertex X4 F5 

0 

10 

Figure 4.9 BDD for Fault Tree Shown in Figure 4.2 

From the unminimised BDD obtained directly from the application of the ite operation, 

the minimisation algorithm of Rauzy (35) creates a new BDD that defines exactly the 

minimal cut sets of the fault tree. For example, consider a general node in a BDD. If 

the output of this node represents the function F where F=ite(x, G, H), let b be a 

minimal solution of G which is not a minimal solution of H, then clearly the 

intersection of 5 and x will be a minimal solution of F. Also, the set of all the minimal 

solutions of F, Solm; n(F), will include the minimal solutions of H so: 

Solm; n(F)={6} 
(4.5) 

where: 

6-[{S}nx]v[solm 
ýL1 ý] (4.6) 

Rauzy has defined a 'without' operator, without(Gmjn, H) which removes from G,, 
, all 

the paths included in a path of H. To demonstrate this algorithm it is applied to the 

BDD shown in figure 4.9. Consider the nodes in a top-down order. For the root 

vertex node Fl, tracing the path on the 0 branch leads to node F4, which corresponds 

to H. This F4 node is also included in a path from the 1 branch of Fl which passes 
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through the 0 branch of F2. To establish the minimal solutions of F1 we need to 
formulate Gmi, 

, 
i. e. the minimal solutions of F2. In this case the solutions of F2 are 

minimal, therefore we remove from F2 all the paths that are included in a path of F4. 
This is performed by removing F4 from the 0 branch of F2 and replacing it by a 
terminal 0 vertex (refer to figure 4.10). The application of this minimising procedure 
to all other nodes in the BDD produces no other alterations. The BDD shown in 
figure 4.10 therefore is in its minimised form. Rauzy failed to recognise in his paper 
that to increase the efficiency when applying the minimisation procedure the following 

two results can be applied: 

(1) without(F, F)= f} 

(2) ite(x, F, F)=F 

Details of the coded version of this algorithm with the slight modification suggested 

are given in Chapter 5. 

Fl 

X1 Root Vertex 

10 

F2 

10 
X2 

X3 F4 

F3 X3 010 

100 
X4 F5 

p10 

Terminal 1 Vertex 10 

Figure 4.10 Minimal Form of the BDD 

Tracing the paths through the minimised BDD we obtain the minimal cut sets: 

(1) X 1. X2. X3 

(2) X3. X4 
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4.7 Influence of Ordering Schemes for Basic Events 

The ite structure can only be obtained once the basic event inputs have been given an 
ordering. Usually a 'top-down' ordering procedure is employed where the basic events 
occurring higher up in the tree structure are 'less than', i. e. considered prior to those 

occurring lower down the tree. 

Ordering of basic events in the fault tree is very important as it determines the size of 
the resulting BDD (refs. 33-35) and hence the number of cut sets. 

To illustrate the importance of component ordering consider the fault tree in figure 

4.11. The BDD for this fault tree with the conventional ordering XI<X2<X3<X4 is 

given in figure 4.12 and as a comparison the reverse ordering X4<X3<X2<X1, for the 

same fault tree, gives the BDD in figure 4.13. 

Figure 4.11 Example Fault Tree with Repeated Event X2 
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Clearly the first ordering creates a much smaller BDD, it has 4 nodes compared to the 
7 nodes of figure 4.13 (here node X2 is shared by both X3 nodes). Figure 4.13 gives 3 

non-minimal cut sets whereas figure 4.12 creates only minimal cut sets. 
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Figure 4.12 BDD for Ordering X1<X2<X3<X4 

Figure 4.13 BDD for Ordering X4<X3<X2<X 1 



Although the top down ordering produces a minimal BDD for this example (in figure 
4.11) which yields only minimal cut sets, this is not always the case. Obviously if a 
redundant BDD is obtained then it is necessary to perform some kind of minimising 
procedure to obtain only the minimal cut sets. This results in greater computation 
time. Therefore it would be more beneficial to produce a minimal or at least a 'near' 

minimal BDD from the fault tree thus reducing the computation time spent minimising 
the resulting cut sets. 

Friedman and Supowit (37) researched the size of the BDD for a given Boolean 

function and identified that the size of the BDD for a given function is extremely 

sensitive to the choice of an ordering on the variables. They present an algorithm for 

finding the optimal ordering with time complexity O(n23n) where n is the given 

number of variables in the BDD. Unfortunately this algorithm could not be applied to 

a fault tree directly, as initially the Boolean function for the fault tree needs to be 

determined. This in itself may pose a formidable problem since generally the Boolean 

function is established in terms of the minimal cut sets. Butler et al. (38) also 

addressed the problem of finding a 'good' variable ordering for large electronic circuits. 
They looked at a depth-first and a breadth-first traversal of the circuit to order the 

variables. The procedure is to order outputs from the logic node with the most inputs 

reaching it to the one with the least and select outputs from which to traverse in 

descending order from this list. The findings showed that neither traversal is 

dependably superior, although the depth-first based heuristics required less total BDD 

nodes for more circuits than breadth-first. However breadth-first is advisable as an 

alternative ordering heuristic. 

Chevalier et al. (39) stated that there does not seem to exist a heuristic capable of 

ordering the variables systematically to lead to a minimal BDD. Of all the ordering 

schemes investigated (these ordering schemes are not illustrated in reference (39)) they 

considered that a 'depth-left-first' ordering of the basic events in the fault tree was the 

best. 

4.8 Modularising 

Improvements in terms of computational efficiency can be made for the more complex 

fault trees by modularising the fault tree before the analysis takes place. Increased 

efficiency is achieved by modularisation of a fault tree whatever the analysis technique 
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which is employed. Khoda et al. (40) define a module of a fault tree as having no 
inputs which appear elsewhere in the tree and no outputs to the rest of the tree except 
from its output event. For example consider the fault tree in figure 4.14. Modules 

which have the required properties are gates G2, G3 and Top. Here gates G2 and G3 

do not have inputs which appear as inputs to any other gates in the fault tree and Top 

is called module Top as it too fulfils the definition of a module. G1 is not a module 
because it has the repeated gate G3 as an input. 

Figure 4.14 A Fault Tree which can be Modularised 

The modularised fault tree is shown in figure 4.15. By then using the BDD method to 

analyse this tree in terms of the modules, the modularised BDD in figure 4.16 is 

obtained (using the top-down, left-right ordering M2<M 1 <X1). 
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The modularised BDD results in the path: 

(1) M2. M1 

Notice that the basic event X1 has been omitted by this process. 

The resulting BDD for the ite computation M2. M1 is given in Figure 4.17, from which 

the following minimal cut sets are obtained (using the top-down, left-right ordering 
X4<X5<X2<X3): 
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Figure 4.15 Modularised Fault Tree 

Figure 4.16 Modularised BDD 



(1) X4. X2. X3 
(2) X5. X2. X3 

Without modularisation this fault tree would have resulted in a redundant BDD with 
13 nodes, as opposed to the 4 nodes of figure 4.17. Therefore modularising can 
provide an efficient means of analysing the whole fault tree. 

4.9 Binary Decision Diagrams and Non-Coherent Fault Trees 

The 'Group Aralia' (41), (a group composed of researchers from two laboratories of 
Bordeaux University and a research team called ISdF (French Institute for System 

Dependability) whose members are from several major French companies) have 

undertaken extensive research into the construction of a BDD which encodes the prime 
implicants of a non-coherent fault tree. The algorithm they use is based on the one 

proposed by Madre and Coudert (42) in 1992. In the methodology proposed by 

Madre and Coudert fault trees are essentially considered as Boolean formulae. 

For example consider the non-coherent fault tree illustrated in figure 4.18. This fault 

tree has the prime implicants: 
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(1) {a, b} 
(2) {�c) 

(3) lb, cl 

These prime implicants may be obtained using the techniques described in Chapter 2, 
section 2.3. As discussed in this section all prime implicants are often not obtained. 
The reason being that classical approaches fail to handle large size non-decomposable 
fault trees (i. e. fault trees which cannot be modularised) because they cannot avoid 
combinatorial explosions in both execution time and memory requirements. In these 
circumstances only the most important prime implicants are evaluated. The application 
of the BDD technique to non-coherent fault trees overcomes these problems. 

It has been shown in section 4.3 that by applying Shannon's decomposition recursively, 

one can rewrite any Boolean function into an equivalent one that has an If-Then-Else 

(ite) structure. For example: 

f (xl.......... xn) = (x1 of (1, x2......... xn)) u (xl of (O, x2.......... xn)) 

ite(xl, f (1, x2......... xn), f (0, x2........... xn)) 

For the fault tree presented in figure 4.18: 

g1= ((a n b) u (a n c)) 

= ite(a, b, c) 

Figure 4.18 Example Non-Coherent Fault Tree 



This representation of a logic function is employed in the 'Decomposition Theorem' 
which forms the basis of the algorithm by Group Aralia to compute the prime 
implicants. 

Decomposition Theorem 

Let f (xl ............. xn) be a Boolean function. Then, the set of prime implicants of 
f (x ............. xn) denoted Prime (f (x I........... xn)) is the union of the three 
following sets. 

(1) The set Prime (f (I........ xn) nf (0......... xn)) 

(2) The set {x 1} ©6 where O is such that x1 is intersected with each member of 6, 
and 6 is a product in Prime(f (I........ xn)) that does not belong to 
Prime (f (1, ...... , xn) nf (0, 

....... , xn) ), i. e. x1 and prime implicants of 
f (I........ xn) that are not already contained in f (xl, x2....... xn). 

(3) The set of products Ix 1) O6 where 6 is a product in Prime(f (0........ xn)) that 
does not belong to Prime(f (I........ xn) nf (0......... xn)), i. e. xl and prime 
implicants of f (0........ xn) that are not already contained in f (xl, x2....... xn). 

The decomposition theorem gives an inductive principle to compute prime implicants. 

For the given example: 

g1(a, b, c) _ (anb)u(anc) =ite(a, ite(b, 1,0), ite(c, 1,0)) 

gl(1, b, c) = ite(b, 1,0) =b 
g1(0, b, c) = ite(c, 1,0) =c 
g1(1, b, c) ng1(0, b, c) = ite(b, 1,0) n ite(c, 1,0) 

= ite(b, ite(c, 1,0), 0) 

=bnc 

It is clear that Prime(b) = {{b)), Prime(s) = {{c}} and Prime(b n c) = {{b, c}}. Thus 

Prime(ite(a, ite(b, 1,0), ite(c, 1,0))) =UuVuW where 

U- is the set of products (a)(& 6 where (Y is in {{b}} and not in {{b, c}}. Thus, 

U= {{a, b}} 
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V- is the set of products {a} ®6 where (T is in {{c}} and not in {{b, c}}. Thus, 
V= {{Q, c}} 

W- is Prime(b n c) _ {{b, c}} 

Finally, Prime(g1) = {{a, b), {a, c}, {b, c}}. 

The remainder of the paper by Group Aralia proceeds to describe the computation of 
the set of prime implicants of a given formula by means of a BDD. The resulting BDD 

encodes implicitly this set without representing each of its elements. The principle of 
the algorithm is to use the decomposition theorem in order to compute inductively the 
Boolean function encoding the set of prime implicants of the formula under study. The 

primary concern of this thesis is the application of the BDD method to coherent fault 

trees therefore a full description of the prime implicant algorithm will be omitted here. 

However it is important to stress that the BDD method is applicable to both coherent 

and non-coherent fault trees. 

4.10 Summary 

(1) Initial work indicates the great potential of the BDD method to overcome some of 

the disadvantages of conventional fault tree analysis to produce the minimal cut 

sets. 

(2) For it to fulfil its potential the BDD method must be capable of evaluating the full 

range of top event parameters and component importance measures available in the 

alternative conventional fault tree analysis method. Little work has been carried 

out on the use of the BDD for fault tree quantification. 

(3) It appears the efficiency of the BDD method is totally dependent upon the ordering 

of the basic events. Work is required to try to give guidelines on how the ordering 

should be performed for efficiency. 

(4) The claims of other workers for improved efficiency needs to be investigated over 

the whole fault tree qualitative and quantitative analysis process. In order to carry 

out this task, benchmark test cases need to be identified and tested against 

conventional analysis techniques for both accuracy and computational effort 

required. 
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CHAPTER 5 

IMPLEMENTATION OF THE BINARY DECISION DIAGRAM METHOD 
FOR MINIMAL CUT SET EVALUATION 

5.1 Introduction 

The computational method for constructing the BDD for a particular fault tree and 
producing the minimal cut sets has been implemented in a program called BADD 
LBinary Algorithm for Decision Diagrams). BADD is composed of several subroutines 

which shall be discussed in detail in the sections which follow. 

This chapter deals with the step-by-step computation that is required to convert the 
fault tree to a BDD structure. In addition it describes the minimisation algorithm of 
this BDD structure if it is to encode the minimal cut sets of the original fault tree. The 

minimal cut sets are then evaluated by tracing the paths through the minimal BDD. 

Further, the BDD technique is compared and contrasted to a conventional fault tree 

analysis technique (top-down approach) and several benchmark fault trees are 

evaluated. 

The last section of this chapter discusses a new ordering scheme for the basic events in 

the fault tree to enable a more efficient construction of the BDD. 

5.2 Computational Method for Binary Decision Diagram Analysis - BADD 

The following sections describe in detail the computational method of the program 

called BADD. 

5.2.1 Input for BADD 

When BADD is executed it prompts the user for the name of the fault tree structure 

input file, *. ats, where * is a name of up to eight characters in length. This data file 

contains the logic equations which relate gates to their inputs and the gate logic type. 

The data file may be constructed by the user (the format is given in Appendix I) or 
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alternatively the graphics on the software package called FAULTREE+ (43) can be 

used. BADD has been developed in such a way so as to allow both pieces of software 
to be used in conjunction which each other. The fault tree can be drawn using the 

conventional symbols for the logic gates and the basic events in FAULTREE+. Once 

the fault tree has been drawn, FAULTREE+ automatically creates the *. ats file for this 

tree which can be read directly into the BADD code. To illustrate the nature of the 
data file refer to the fault tree called fatram taken from ref. (30) and reproduced here 

in figure 5.1. The data file for this tree is given in figure 5.2. 

Figure 5.1 fatram Fault Tree 

Top AND 2 0 GI G2 

GI AND 1 1 G3 A 

G2 OR 1 2 G4 EB 

G3 OR 0 3 C HB 

G4 AND 1 1 G5 D 

G5 OR 0 3 G CF 

Figure 5.2 Data File Called fatram. ats 
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The contents of each column in figure 5.2 are described below: 

column 1- gate name 
column 2- gate type, i. e. AND, OR, VOTE 

column 3- number of gate inputs to gate in column 1 
column 4- number of basic event inputs to gate in column 1 
column 5...... 13 - names of the gate inputs and basic event inputs (up to nine inputs 
allowed) 

A subroutine called Input reads in the *. ats file and converts all the gate and event 
names to unique integers. Additionally it stores the information for later use. It also 
assigns the following integers to each gate type: 

OR-1 

AND-2 
VOTE-3 

This provides an efficient means of storing the fault tree structure within the code. 

5.2.2 Information about the Fault Tree 

Next a subroutine called Repevent obtains some important information about the fault 

tree. It identifies which gate is the top event (as the top gate may not necessarily he in 

row 1 column 1 of the *. ats file). It checks for circular logic, i. e. an event cannot 

provide a cause to itself. Additionally it checks that the fault tree is not disjoint (has 

more than one top event). It also assigns an integer to each event according to the rule 
that 1 represents the identified top gate, the integer 2 represents an intermediate event 
(gate) and lastly 0 represents a basic event. This integer is called the events 'ecode'. 

Lastly the number of occurrences of each event in the fault tree is calculated, so the 

number of repeated events is known. The difficulty of calculating repeated events 

occurs when there are many repeated gates within the fault tree. In this case 

consideration needs to be given to the inputs of these repeated gates, as these inputs 

are now repeated structures themselves and so on. 

The problem of repeated events is tackled in Repevent by a one dimensional array, 

whose initial elements are the first sons or gate inputs of the top event. Next, the 
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inputs to the first son are added to the end of the array and the same procedure is 
applied to the second son. A pointer moves downwards through the array and deals 
with each gate whose inputs need to be added to the end of the array. This process 
terminates when all the gate events have had their inputs added to the array. 

To illustrate this method refer to the array development in figure 5.3 for fatram. The 
next gate whose inputs have to be added to the end of the array is indicated by *. For 
each event in this one dimensional array a counter is incremented each time it occurs, 
this will give the total number of occurrences of each event in the fault tree. 

1G1 

G2 

G3 

A 
GI G4 

GI 
G2 E 

Gl* G2* 
G3* B 

G2 G3 
A 

..... etc ....... -C 

A 
G4 H 

EB 

B G5 

D 

G 

C 

F 

Figure 5.3 Array Development for Repeated Events in 

fatram 

From the final array in figure 5.3 it can be seen that basic events B and C occur twice 

and all other events occur once. 

5.2.3 Ordering the Basic Events in the Fault Tree 

A subroutine called Ordering deals with the ordering of the basic events in the fault 

tree. The ordering of the basic events is performed by a top-down, left-right manner 

previously discussed in Chapter 4, section 4.7. If other orderings are required for the 

basic events a program called ORDER which is described in Chapter 8 may be 
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employed. The top-down, left-right ordering of the basic events in the fault tree shown 
in figure 5.1 will give: 

A<E<B<C<H<D<G<F 

Note that if repeated events have been previously encountered and placed in the 
ordering then they are ignored when subsequently encountered. Each basic event is 

assigned a number for the purposes of ordering. This number is called the basic events 
'index', with the indexes starting at 1 (for the basic event to be considered first) and 
increasing to represent the position of the event within the ordering, therefore for the 
basic events in the ordering above: 

A-l, E-2, B-3, C-4, H-5, D-6, G-7, F-8 

Additionally this subroutine allocates each basic event Xi with index j the ite structure 
ite(j, -1,0), i. e. the basic event can either fail or work (for computational purposes -1 
indicates a terminal 1 vertex to differentiate from the index 1). The ite structure for 

each basic event is placed in an ite table at a position corresponding to the index of the 
basic event. Therefore basic event C will be stored in row 4 of the ite table with 

structure ite(4, -1,0). 

5.2.4 Re-configuring the Fault Tree 

The computation of the ite structure for intermediate gate events involves the 

operation on two ite structures (this is illustrated later in the algorithm called 

Compute). Therefore for ease of computation the fault tree is converted to a 'binary' 

fault tree, i. e. each gate has only two inputs. The subroutine that accomplishes this 

operation is called Binary. Binary simply searches through the fault tree for the gates 

that have more than two inputs (i. e. 1....... n where n>2). When such a gate is found a 

new gate NGi (with the same logical operation as the original gate) is created with 

original gate inputs 2....... n provided as inputs to this new gate. The original gate is 

now defined as having input event I together with the newly defined gate NGi. This 

search is performed recursively until no more gates exist with more than two inputs. 

The only gates whose inputs remain unchanged when Binary is executed are the 

VOTE gates. When a vote gate is encountered its inputs are left untouched and the 

computation of its ite structure is dealt with by a subroutine called Vote gate which is 
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described later. To illustrate this re-configuring of the fault tree refer to figure 5.4 
which shows the 'binary' tree of fatram. 

Figure 5.4 Re-configured 'Binary' fat ram Tree 

5.2.5 Computing the ite Structure of Each Gate 

Essentially BADD employs the ite (If-Then-Else) procedure for producing the BDD. 

It performs a step-by-step process through the fault tree, calculating the ite structure 
for each gate event. This process proceeds from the bottom gates (those fully defined 

by basic event inputs only) up through the fault tree, evaluating the ite structure of 

each gate until the top gate is reached. The ite structure of each gate is such that it is 

composed only of the basic events in the fault tree. 
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Computation(<op>, F, G) 
if (F=1) 

if <op>='OR' 

return I 

else if <op> =AND' 
return G 

else if (G=1) 
if <op>='OR' 

return 1 

else if <op>='AND' 

return F 

else if (F=0) 

if <op>='OR' 

return G 

else if <op> ='AND' 
return 0 

else if (G=0) 

if <op>='OR' 

return F 

else if <op> ='AND' 
return 0 

else if computation-table has entry ((<op>, F, G), R} 

return R 

else if F=ite(x, Fl, F2) and G=ite(y, GI, G2) 

if x<y 
Uf- Computation(<op>, F1, G) 

VF- Computation(<op>, F2, G) 

if U= V return U 

else RE- find-or-add to ite table ite(x, U, V) 

return R 

ifX=y 
U- Computation(<op>, F1, G1) 

V<-- Computation(< op >, F2, G2) 

if U= V return U 

else R- find-or-add to ite table ite(x, U, V) 

return R 

Figure 5.5 BADD's Main Algorithm Called Compute 
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The main algorithm, for evaluating the resulting ite structure of two ite structures F 
and G together with the operation <op>, is shown in pseudo-code form in figure 5.5. 
This algorithm corresponds to the subroutine Compute in the code BADD which can 
be seen in reference (48). 

The results of any computation are stored in a computation table and this table is 
consulted for each subsequent computation. In this way a result is readily available if 
the computation has been previously completed and no computation is repeated. 
Before a result is placed in the ite table another subroutine is executed called Remove. 
Each time an ite structure has been completed, Remove is called to check whether 
ite(x, U, U) has occurred in which case the node U is returned. 

The subroutine which enables the computation of the ite structure of each gate in the 
fault tree is called Search. This subroutine searches the binary fault tree for gate 
events whose ite structure has yet to be calculated. The calculation of the gate ite 

expression is then completed by the main subroutine Compute. Once the ite structure 
has been evaluated for a particular gate, the gate is given an index, in much the same 
way as the basic events are given an index. The gates index corresponds to the 

position in the ite table where the gate ite structure is stored. The flow chart in figure 

5.6 exhibits the actions carried out by the subroutine Search. Search is executed until 

all of the gates in the fault tree have been indexed. If a VOTE gate is found subroutine 
Votegate is called which is based on procedure (4) in Chapter 4, section 4.5. Votegate 

includes subroutine Compute in the calculation of the ite structure of a VOTE gate. 

The ite table which holds the nodes of the BDD provides an ordered triple. This 

means that each node is represented by three values, the first value indicates the basic 

event for this node, the second value gives the position in the ite table for the 1 branch 

node and the third value indicates the position of the 0 branch node in the ite table. If 

a fault tree has n basic events and m gates (after it has been converted to the 'binary' 

tree) then the first n rows in the ite table represent these basic events and the next m 

rows represent the gates. As a result the n+mth row will represent the node of the top 

gate, all rows after the n+mth row correspond to intermediate calculations. Note that 

only a proportion of the addresses in the ite table will be used in the construction of 

the BDD. To illustrate the nature of the resulting ite table for a particular fault tree the 

ite table for the fatram fault tree is shown in table 5.1. To then draw the BDD from 

the ite table a pointer is used to indicate the position of the top gate ite structure in the 

table, this is the root node, the 1 and 0 branches are then drawn using their respective 

positions in the table. The position of the top node for the fatram fault tree in the ite 
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table is 17 and the BDD for this fault tree is pictured in figure 5.7. The index for each 
basic event of a node in the BDD has been converted back to the name (letter) for that 
basic event. Further, the position in the ite table of each node is included in figure 5.7. 

Figure 5.6 Flow Chart Illustrating Subroutine Search 

5.2.6 Minimising the Top Event ite Structure 

Once the top event ite structure has been evaluated, there is no guarantee that the 

resulting BDD will be minimum i. e. will produce the minimal cut sets. The form of the 

BDD generated at this stage needs to be retained for the fault tree quantification as 

described in Chapters 6 and 7. To produce the qualitative results a minimising 

procedure needs to be executed. The programmed version of the minimising algorithm 

is based on the algorithm by Rauzy (35). The subroutine Minsol and Without are 
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employed in this minimising process. The algorithms for these two subroutines can be 
found in figures 5.8 and 5.9 respectively. 

Row Number Basic Event 1 Branch Position 0 Branch Position 
Value 

1 1 -1 0 
2 2 -1 0 
3 3 -1 0 
4 4 -1 0 
5 5 -1 0 
6 6 -1 0 
7 7 -1 0 
8 8 -1 0 
9 4 -1 8 
10 4 -1 18 
11 4 6 19 

12 3 -1 5 
13 3 -1 20 
14 2 -1 3 

15 2 -1 21 

16 1 13 0 
17 1 22 0 

18 7 -1 8 

19 6 18 0 

20 4 -1 5 
21 3 -1 11 

22 2 13 23 

23 3 -1 24 

24 4 6 25 

25 5 19 0 

Table 5.1 Ite Table for fatram 

Next, Minsol is executed with the starting point being the position of the top node in 

the ite table. A tracking pointer is used to indicate which branch of each node is being 

dealt with. Referring back to Chapter 4 equation (4.6) it is shown that a subset of the 

total set of solutions of the BDD is [{b) n x] where the set (Ö) constitutes the minimal 

solutions of the 1 branch of the top node (with basic event x) which are not included 
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on the 0 branch of the top node. Therefore the minimal solutions of the 1 branches are 
dealt with first, followed by the 0 branches. 

Figure 5.7 BDD for fatram 

Looking at the Minsol algorithm in figure 5.8, it is shown that if a node is a terminal 

node then it is automatically minimal. However if the node is non-terminal and the 

result has not been found in the computation table we need to continue to track 
through the BDD, i. e. increase the level of computation (level 1 corresponds to the top 

node). For each node at a particular level, information about this node must be stored 
in an array, here called inform, and available for later use. Seven pieces of information 
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for each node F, where F=ite(x, G, H), are stored. This information is illustrated in 
figure 5.10. 

Minsol(F) 

if (F=0 or F=1) return F 

else if computation table has entry {(Minsol, F), R} 

return R 

else F=ite(x, G, H) 

K- Minsol(G) 

UE- Witlwut(K, H) 

V*- Minsol(H) 

if (U=V) return U 

RF-- find-or-add to ite-table (x, U, V) 

insert-in-comnputation-table {(Minsol, F), R) 

return R 

Figure 5.8 Algorithm for Computing Minimal Solutions - Subroutine Minsol 

Without(F, G)= 
if (F=0) return 0 

else if (G=1) return 0 

else if (G=0) return F 

else if (F=1) return I 

else if computation table has entry ((Without, F, G), R) 

return R 

else F=ite(x, Fl, F2) G=ite(y, GI, G2) 

if (x<y) U<- Without(F1, G) 
VF- Without(F2, G) 

RE- find-or-add to ite-table (x, U, V) 

insert- in -computation- table [(Without, F, G), R} 

return R 

else if (x>y) 

return Without (F, G2) 

else x=y 
UF-- Without(F1, G1) 

VF- Without(F2, G2) 
R(- find-or-add to ite-table (x, U, V) 

insert-in-computation-table {(Without, F, G), R} 

return R 

r,:; Cl ýA , °r, hm for Computing l 1ithout(F, G) 



inform(level, 1)=position of F in ite table 
inform(level, 2)=index of basic event of node F, i. e. index of x 
inform(level, 3)=position of 1 branch of F in ite table, i. e. G 
inform(level, 4)=position of 0 branch of F in ite table, i. e. H 
inform(level, 5)=Minsol(G) 

inform(level, 6)=Minsol(H) 

inform(level, 7)=Without(Minsol(G), H) 

Figure 5.10 Information Stored for Each Level of Computation in Subroutine Minsol 

The nature of the algorithm is such that if all the seven pieces of information are not 
known for a particular level, then the algorithm increments a level to deal with the next 

node. When a level can be fully completed the algorithm backtracks i. e. moves back 

up the branch it has just come from to the previous level and fills in the missing 

information for that node. If both branches of the node at this level have been dealt 

with then the code backtracks I level again. However if both branches have not been 

considered the tracking pointer moves to the 0 branch and the algorithm continues. 

The algorithm terminates when the level reaches 1 representing the top node and both 

branches of the top node have been dealt with. The minimum structure of F will be: 

ite(x, inform(level, 7), inform(level, 6)) 

Subroutine Without deals with the ite structures passed through from subroutine 

Minsol, which are Minsol(G) and H (i. e. inform(level, 5) and inform(level, 4) 

respectively). Without then calculates the ite structure for Without(Minsol(G), H) and 

passes the result back to subroutine Minsol to be placed into inform(level, 7). 

Referring to figure 5.9 which deals with the computation of Without(F, G), we see that 

if F and G are terminal vertices then the result can be readily returned to Minsol 

without further computation. However if F and G are both non-terminal vertices and 

the result has not been found in the computation table then further processing is 

required. Three different cases have to be dealt with which depend on the ordering of 

the basic events for the nodes F and G as shown in figure 5.9. 

Similar to subroutine Minsol we have to deal with levels of computation for each 

operation, each level in subroutine Without is called wlevel. Again seven pieces of 
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information need to be stored in an array called winfo and available for later use. This 
information is illustrated in figure 5.11. 

winfo(wlevel, 1)=F 

winfo(wlevel, 2)=G 

winfo(wlevel, 3)=basic event of node F 

winfo(wlevel, 4)=basic event of node G 

winfo(wlevel, 5)=position of resulting 1 branch of Without(F, G) in ite table 

winfo(wlevel, 6)=position of resulting 0 branch of Without(F, G) in ite table 

winfo(wlevel, 7)=position in ite table of the resulting structure Without(F, G) 

Figure 5.11 Information Stored for Each Level of Computation in Subroutine Without 

Once all the information for a level of computation has been obtained the algorithm 
backtracks to the previous level of computation and fills the missing results into the 

winfo array. The algorithm returns to Minsol when the level of computation equals I 

and all the information for that level has been completed. 

The ite table after the minimising procedure for fatram is illustrated in table 5.2. 

Notice the extra ite calculation in row 26 which eliminates the redundant path (A, E, 

B} from the original non-minimal BDD shown in figure 5.7. 

This ite table can now be used to draw the minimal BDD for fatram which is 

displayed in figure 5.12. Again the top event ite is found in row 17 of table 5.2. 

5.2.7 Finding the Solutions or Minimal Cut Sets of the Binary Decision 

Diagram 

After the BDD has been minimised a path tracing algorithm is needed to obtain the 

minimal cut sets of the fault tree. Remember paths commence at the root node or 

vertex of the BDD and finish at a terminal 1 vertex. The Solutions algorithm is given 

in figure 5.13, again this is based on the algorithm by Rauzy. The solutions of the 

BDD will be referred to as ß and the algorithm will be executed with 6=O (empty set). 

Solutions is executed with the starting point being the position of the top node in the 

ite table. A tracking pointer deals with the left and right branch of each node. The left 

branches (1 branches) are dealt with first. 
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The nature of the algorithm is such that the BDD is initially traced from the root node 

and travels along the 1 branches of each node encountered until it reaches a terminal 1 

vertex. As each node has been passed through on the 1 branch the basic events of 
these nodes are all included in this particular solution of the BDD. 

Row Number Basic Event 
Value 

1 Branch Position 0 Branch Position 

1 1 -1 0 

2 2 -1 0 

3 3 -1 0 

4 4 -1 0 

5 5 -1 0 

6 6 -1 0 

7 7 -1 0 

8 8 -1 0 

9 4 -1 8 

10 4 -1 18 

11 4 6 19 

12 3 -1 5 

13 3 -1 20 

14 2 -1 3 

15 2 -1 21 

16 1 13 0 

17 1 22 0 

18 7 -1 8 

19 6 18 0 

20 4 -1 5 

21 3 -1 11 

22 2 13 23 

23 3 -1 24 

24 4 6 25 

25 5 19 0 

26 3 0 20 

Table 5.2 Minimal ite Table for fatram 
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Figure 5.12 Minimal BDD for fatram Fault Tree 

Solutions(F, (Y)=- 
if (F=0) return 0 

else if (F=1) return 1 (7) 
else F=ite(x, Fl, F2) 

SE- Solutions(F1, (y u{ x) ) 

T<- Solutions(F2, (7) 

return SuT 

Figure 5.13 Solutions Algorithm which Obtains the Minimal Cut Sets 
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Once a terminal 1 vertex has been encountered the algorithm writes this path off as a 
minimal cut set and develops the next minimal cut set which starts off as being identical 
to the original. The algorithm then backtracks to the previous node and the tracking 
pointer deals with the 0 branch of this node. As the path is now going through on the 
0 branch the basic event for this node is removed from the minimal cut set. The 

algorithm deals with the next node encountered in the same way as the root node at the 
start and the process continues. 

Solutions terminates when both branches of the top node have been dealt with. The 

minimal cut sets obtained from the minimal BDD of the fatram fault tree are: 

(1) {A, E, C) 

(2) (A, E, H) 
(3) {A, B} 
(4) { A, C, D) 
(5) { A, H, D, G) 
(6) 1 A, H, D, F) 

These are in complete agreement with an assessment of the original fault tree using 
FAULTREE+. 

5.2.8 Output of BADD 

BADD writes the results of the computation to an output file called *. out where * is 

the same name as used to specify the *. ats file. This output file provides the following 

information: 

1. Name of the top event of the fault tree. 
2. Number of basic events. 
3. Number of gate events. 
4. Number of occurrences of each event in the fault tree. 
5. Ordering of the basic events. 
6. Number of ite calculations required before minimising, after minimising and the 

difference between the two. This difference gives the number of extra ite 

calculations required to make the BDD minimum. These ite calculations can be 

taken directly from the computation table if the result exists. 
7. The size of the computation table. 
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8. Both the non-minimal and minimal ite tables are provided, if requested by the user 
when BADD is executed, and the position of the top event in the minimal table is 
given, therefore the BDD can be drawn if desired. 

9. The minimal cut sets are listed for the fault tree. 
10. Lastly the number of non-repeated nodes and total number of nodes in the BDD 

are both given. 

5.3 Comparing the Binary Decision Diagram Technique with a Conventional 
Approach 

To test the efficiency of the BDD method, ten example fault trees were analysed using 
the BADD program and the results compared to the analysis using a conventional fault 

tree analysis package (FAULTREE+ (43)). A top-down, left-right, ordering of the 
basic events was used for the BDD analysis. The results are given in table 5.3 along 
with a summary of each fault tree. Both of the codes run on a Sun workstation and the 

execution time is given in seconds. Note that the times given for the BDD analysis 
include the conversion of the fault tree to the BDD. 

Tree No. of 

gates 

No. of 
basic 

events 

No. of 

minimal 

cut sets 

BDD 

Time (s) 

FAULT 

REE+ 

Time (s) 

% 

Improve 

ment 
1 19 19 27 0.5 1.0 50 

2 17 11 43 0.5 1.0 50 

3 29 61 7,471 0.2 1.0 80 

4 60 57 11,934 0.6 - - 
5 19 19 63 0.6 0.9 33 

6 21 21 75 0.5 0.8 38 

7 58 57 36,990 0.6 1.5 60 

8 70 68 4,892 0.8 1.1 27 

9 21 40 416 0.2 0.9 78 

10 26 16 20 0.5 1.0 50 

Table 5.3 Ten Example Fault Trees BDD v FAULTREE+ 

It is evident from the results in table 5.3 that the BDD method is very efficient in terms 

of computation time, even for trees that have a large number of minimal cut sets as in 

tree 7. The analysis of fault tree 4 could not be executed in a reasonable time using the 

conventional approach, it took in excess of 4hrs to obtain all the minimal cut sets. 
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5.4 Variable Ordering Scheme 

BDD's produced using a simple "top-down, left-right" ordering of the variables are 
frequently inefficient since they produce a large number of non-minimal cut sets and 
therefore require the minimisation algorithm. An alternative ordering scheme is 

presented here which focuses on those basic events which are repeated in the fault tree 
structure. It is the repeated events which cause the problem of non-minimal cut sets 
(10), and it has been found that considering these events first simplifies the resulting 
BDD structure and therefore makes it more optimal (Sinnamon and Andrews (56)). 

A study of fifteen example fault trees indicates that using more restrictive event 
ordering produces a minimal BDD for thirteen out of the fifteen fault trees, whereas 
the top-down, left-right ordering results in a redundant BDD. This restrictive ordering 
has been called 'new' ordering, and it is employed when the fault tree contains repeated 

events. A summary of the fifteen example fault trees is given in table 5.4 below. The 

results were compared to the cut sets obtained using a manual conventional fault tree 

analysis technique (bottom-up approach) without the application of the Boolean 

Reduction Laws. 

Fault Tree Gates Basic 

Events 

Repeated 

Events 

Cut Sets 

using 
bottom-up 

Minimal 

Cut Sets 

from BDD 

1 6 8 1 5 2 

2 3 7 1 3 1 

3 3 7 2 5 3 

4 4 8 2 4 2 

5 3 4 1 2 2 

6 5 6 1 4 3 

7 4 8 2 4 3 

8 6 10 2 14 6 

9 5 9 1 19 15 

10 4 5 1 4 2 

11 3 4 1 4 2 

12 6 9 2 6 3 

13 3 4 1 2 1 

*14 4 7 1 3 3 

*15 9 17 3 17 8 

Table 5.4 Summary of Fifteen Example Fault Trees 
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Relatively small fault trees were chosen to emphasise that even for small fault trees 
savings can be made using the new ordering. Trees 14 and 15 did not produce the 
absolute minimal BDD, however from the investigation of these trees the new ordering 
appears to produce the most minimal BDD when compared to any other ordering. 

The new ordering technique considers the gate events in a top down ordering similar 
to the top-down, left-right approach. However at each gate the basic event inputs are 
listed with the repeated events first (i. e., they are 'less than' the other inputs to that 
gate). If the gate has more than one repeated event as an input then the most repeated 
event is placed first, if they occur the same number of times then the events are taken 
in gate list order to break the tie. Also if an event has been ordered due to its 

occurrence higher up the tree then it is ignored for the ordering as an input to the 
lower gates. 

To illustrate the advantages of new ordering, consider the simple fault tree in figure 

5.14. 

Top-down, left-right ordering would give X1 <X3<X2 

are then: 

The ite structure calculations 
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Figure 5.14 Example Fault Tree with Repeated Event X3 



G2=X3+X2 

=ite(X3,1,0)+ite(X2,1,0) 

=ite(X3,1, ite(X2,1,0)) 

G1=X1+X3 

=ite(X1,1,0)+ite(X3,1,0) 
=ite(X1,1, ite(X3,1,0)) 

Top=G 1. G2 

=ite(X1,1, ite(X3,1,0)). ite(X3,1, ite(X2,1,0)) 

=ite(X1, ite(X3,1, ite(X2,1,0)), ite(X3,1,0). ite(X3,1, ite(X2,1,0))) 

Top=ite(X1, ite(X3,1, ite(X2,1,0)), ite(X3,1,0)) 

The BDD for Top resulting from this ordering is given in figure 5.15. 

5.14 

The paths through the BDD in figure 5.15 and hence cut sets are: 

(1) X1. X3 

(2) Xl. X2 

(3) X3 

Therefore cut set {X1, X3) is redundant which leaves the minimal cut sets: 
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(1) {X1, X2} 
(2) (X3} 

Now using the new ordering one obtains X3<X 1 <X2. Note that GI has the repeated 
event input X3 so it is placed before X1 in the ordering. 

The ite structure for this ordering is calculated below: 

G2=X3+X2 

=ite(X3,1,0)+ite(X2,1,0) 
=ite(X3,1, ite(X2,1,0)) 

G1=X1+X3 

=ite(X1,1,0)+ite(X3,1,0) 
=ite(X3,1, ite(X 1,1,0)) 

Top=G I. G2 

=ite(X3,1, ite(X1,1,0)). ite(X3,1, ite(X2,1,0)) 

=ite(X3,1, ite(X1,1,0). ite(X2,1,0)) 

Top=ite(X3,1, ite(X1, ite(X2,1,0), 0)) 

The BDD for this new ordering is given in figure 5.16. 

X3<X l <X2 
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The paths through the BDD in figure 5.16 are: 

(1) X3 
(2) X 1. X2 

Therefore the new ordering gives only the minimal cut sets (X3) and {X1, X2). 

As the trees increase in size the new ordering becomes more beneficial in terms of 
eliminating redundant cut sets. This is demonstrated for the case of the slightly larger 
fault tree presented in figure 5.17. 

The BDD for the ordering X1 <X2<X3<X4<X5<X6<X7<X8 produces eighteen cut 

sets of which fifteen are minimal. However using the new ordering 

X2<X1<X3<X4<X5<X6<X7<X8 directly gives the fifteen minimal cut sets. 

Bryant (34) recognised the problem of computing an ordering that minimises the size 

of the BDD and stated that for some trees it may not be possible to produce a minimal 

BDD whatever the ordering. Although it is shown here that using the new ordering 
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scheme, computation time can be reduced by creating a near minimal BDD. Further 

ordering schemes are discussed in depth in Chapter 8. 

The advantage of using this simple restriction on ordering becomes more obvious 

when comparing the BDD analysis using this ordering to a bottom-up fault tree 

analysis approach (56). A bottom-up method is used to obtain the minimal cut sets of 

the fault tree shown in figure 5.18. 

Figure 5.18 Fault Tree with Repeated Events X2 and X3 

G5=X7+X3+X6 

G4=G5. X4 

=(X7+X3+X6). X4 

=X7. X4+X3. X4+X6. X4 

G 1=G4+X5+X2 

=X7. X4+X3. X4+X6. X4+X5+X2 
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G3=X3+X8+X2 

G2=G3. X 1 

=(X3+X8+X2). X1 

=X3. X1+X8. X1+X2. X1 

Top=G2. G 1 

=(X3. X 1 +X8. X 1 +X2. X 1). (X7. X4+X3. X4+X6. X4+X5+X2) 

Top=X3. X 1 . X7. X4+X3. X 1. X3. X4+X3. X 1. X6. X4+X3. X 1. X5+X3. X 1. X2+ 
X8 Xl 

. X7. X4+X8. X 1. X3. X4+X8. X I. X6. X4+X8. X 1. X5+X8. X 1. X2+ 
X2. X I. X7. X4+X2. X I. X3. X4+X2. X I. X6. X4+X2. X 1. X5+X2. X 1. X2 

Eliminating redundancies from the top event expression leaves the following six 
minimal cut sets: 

(1) {X1, X3, X4} 

(2) {X1, X3, X5} 

(3) {X1, X8, X4, X7} 

(4) {X1, X4, X6, X8} 

(5) {X1, X8, X5} 

(6) {X1, X2} 

Comparing this approach with the BDD method, the ordering 
X1<X2<X5<X3<X8<X4<X7<X6 on variables directly produces the six minimal cut 
sets. Therefore in this case time is not wasted in computing and eliminating the seven 

redundant cut sets that were obtained with the bottom-up method. 

5.5 Summary 

1. The efficiency of the BDD technique to analyse the fault tree has shown promising 

results. It can analyse a fault tree with more than thirty thousand minimal cut sets 
in 0.6 seconds. 

2. The BDD technique has been shown to obtain results in a faster computation time 

than a state of the art commercial fault tree analysis package. 
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3. Converting the fault tree to the BDD in the first instance causes no increase in 

computation time provided a good ordering of basic events is chosen. This 
demonstrates that further work on ordering schemes needs to be undertaken to 

select a good ordering for the basic events each time, Chapter 8 deals with this 
further work. 

4. The nature of the BDD structure is such that it lends itself better to Boolean 

manipulation, i. e. minimising the BDD structure to obtain the minimal cut sets is 

more efficient than applying Boolean Reductions Laws to cut sets obtained using 

conventional fault tree analysis methods. 

5. A BDD may be constructed which encodes the minimal cut sets directly without 

the need to apply the minimisation algorithm. This may be achieved by applying a 

'new' ordering scheme which gives repeated events priority. 
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CHAPTER 6 

TOP EVENT QUANTIFICATION USING THE BINARY DECISION 
DIAGRAM 

6.1 Introduction 

The fault tree diagram defines the causes of the system failure mode or "top event" in 
terms of the component failures and human errors, represented by basic events. By 

providing information which enables the probability of each basic event to be 

calculated the fault tree can then be quantified to yield reliability parameters for the 

system. 

This chapter deals with calculating the top event probability, its failure rate and 
expected number of occurrences through the use of the binary decision diagram. In the 

quantification of the top event failure characteristics it is necessary to use 

approximations when implementing Kinetic Tree Theory (discussed in Chapter 3). 

Even for moderate sized problems it is not possible to evaluate all terms in the series 

expansions which yield the top event probability and failure intensity. The 

approximations that can be applied usually rely on the basic events having a small 
likelihood of occurrence. When this condition is not met it can result in large 

inaccuracies. These difficulties can be overcome by employing the Binary Decision 

Diagram (BDD) approach. Since the BDD method converts the fault tree diagram into 

a format which encodes Shannon's decomposition it allows the exact failure probability 

to be determined in a very efficient calculation procedure. 

6.2 Top Event Probability 

Quantification of the fault tree top event probability is generally calculated using the 

component failure/basic event existence probabilities and the minimal cut sets. Since 

the top event exists when at least one of the minimal cut sets exist, the top event 

probability is given by: 

nc nc ; -1 

P(Top) P(C; ) -II P(C; n CC)+... +... (-1)nc-ý P(CI n C2 n.... fCnc ) 
1=1 ; =2 j=1 
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where C; 
, i=1,.... nc are the minimal cut sets of the top event. 

For all but the most simple fault tree structure the evaluation of each term in the 

expansion is not a practical proposition. For example, if a fault tree has 100,000 

minimal cut sets, the first term in the series expansion will have 100,000 individual 

elements, the second term will consist of about 5x109 elements, the third term 1.67x 

1014 elements etc.., therefore resulting in a tedious and formidable calculation. Upper 

bound approximations are therefore frequently used to obtain the system failure 

probability. However these approximations can, under certain circumstances, lead to 
large errors in the calculation of the top event probability. Errors can result if the 
failure events are not rare, which is often the case when human error events are 
included in the fault tree. In this situation the neglected terms in the approximation 

may cause a significant truncation error. In addition, errors may occur when the fault 

tree contains 'conditional' events which are used with an inhibit gate (6). The inhibit 

gate is probabilistic and is determined by the conditional event. This conditional event 

may have a high probability of occurrence. 

A feature of the binary decision diagram structure is that the exact top event 

probability can be calculated and approximations are not necessary. 

A binary decision diagram encodes an ite structure, as shown in section 4.5, derived 

from Shannon's formula (22), such that if f (x) is the Boolean function for the top 

event of a fault tree then the Shannon formula can be written as: 

f ýX) = Xi 
.F 

(X1 
9X21... 9Xi-191, 

Xi+19..., Xn 

fXi. FZ(x1'X2,... Xi-1'0, xi+1'... Xn 
(6.1) 

and the corresponding ite structure for equation (6.1) is ite (x; , F, , 
F2) . 

When a 

Boolean function is expressed in this form, the probability of the top event is obtained 

by taking the expectation of each term which results in: 

E[f(x)]=QS)s(q) 
E[F(x)]=Q'�, (qý,... qý-ý lýq+t,... qn) 
E[F2 (x)] = Qs, s (g1,... qi-� 0, qº+1,... qn ) 

E[f (x)] = q; . E[F, (x)] + (1- q, ). E[F2 (x)] 

where q; = E[x; ], the probability that event i has occurred. 
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This means that each path through the BDD to a terminal 1 vertex is mutually 
exclusive or disjoint, therefore to obtain the probability of occurrence of the top event 
(Qsys (t)) the sum of the probabilities of the disjoint paths through the BDD is 

calculated (Sinnamon and Andrews (51)). For probability calculations the unminimised 
BDD is used to find the disjoint paths. The probability of the disjoint paths are 
obtained from the BDD by taking the probability of all events including both the 0 
branches and the 1 branches in the paths ending in a terminal 1 state. Schneeweiss (52) 

uses a similar approach to the BDD method to obtain an expression for the top event 
which was is in the form of disjoint products. Calculation of the top event probability 
was then obtained by summing the probabilities of these events. Schneeweiss called 
this approach the Decision Tree Method. 

The reason that the unminimised BDD is used for the probability calculation of the top 

event is that the minimisation algorithm alters the structure function and therefore its 

expected value, this is further discussed in Chapter 7. 

To illustrate the calculation of the top event probability refer to the fault tree in figure 

6.1. The BDD for this fault tree, using a top-down, left-right ordering of basic events, 
X1 <X2<X3<X4, is the one shown in figure 6.2. The detailed ite calculation for this 

example can be seen in Ref. (53). 
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ite(X4,1,0)), ite(X3,1,0)), 0) 

The disjoint paths through the BDD in figure 6.2 are: 

(1) X 1. X2. X3 
(2) X 1. X2. X3. X4 
(3) X I. X2. X3 

Before continuing with the calculation of QSys (t) the basic events need to be assigned 

probabilities. Component failure data for this example are given in table 6.1. 
Probabilities contained in the table are steady-state probabilities (see section 6.3). The 

values in table 6.1 are again used later for further calculations. 

Basic Event A, " w"=? (1-q") 

xi 0.01 1.0x 10-6 9.9x 10-7 

X2 0.02 4.0x 10-6 3.92x 10-6 

X3 0.03 2.0x 10-4 1.94x 10-4 

X4 0.04 3. OEx 10-5 2.88x 10-5 

Table 6.1 Basic Event Data 
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where: 

qi - Unavailability of component i. 
ki - Conditional failure intensity of component i. 

wi - Unconditional failure intensity of component i. 

Qsys is obtained by summing the probabilities of the disjoint paths through the BDD 

giving: 

Qsl, 
S = P(X1. X2. X3+X1. X2. X3. X4+X1. X2. X3) 

= qx1 " qx2 " qx3 + qxl" qx2 . (1 - qx3 )" qx4 + 9x1 " (1- qx2 )" qx3 

=(0.01)(0.02)(0.03)+(0.01)(0.02)(1-0.03)(0.04)+(0.01)(1-0.02)(0.03) 
QS,, 

S =3.0776x 10-4 

A computational method to calculate the probability of the top event using the BDD 
has been implemented in a computer program called QUANT. QUANT employs the 
algorithm used by Rauzy (35) which can be seen in Figure 6.3. 

The subroutine which performs this probability calculation is called Qsolutions. 
Qsolutions is very similar to the subroutine called Solutions discussed in section 5.2.7, 

with the exception that Qsolutions is applied to the original unminimised BDD and the 
0 branches are also included in each path to a terminal 1 vertex. 

probability(F)- 
If (F=0) return 0 

else if (F=1) return 1 

else if (computation-table has entry [<probability, F, - >, R}) 

return R 

else if (F=ite(x, G, H)) 

Rý p(x). probability(G)+(1 p(x)). probability(H) 
insert-in-computation-table ((<probability, F, - >, RI) 

return R 

Figure 6.3 Algorithm for computing probability(F) 
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6.3 Basic Event Model Types 

The various mathematical expressions that are available to calculate the component 
unavailability constitute the components 'Model Type'. The quantification program, 
QUANT allows four different model types which are discussed below. These model 
types are those commonly available in commercial fault tree packages. The particular 
model type and its failure and repair parameters for each basic event are stored in an 
input file called *. aqd. The *. aqd file must be compatible with the *. ats file for the 
fault tree which is to be analysed. This means that the events for which the data is 

specified in the *. aqd file must be consistent with the basic events appearing in the 
fault tree structure defined in the *. ats file. When QUANT is executed both the *. ats 
and *. aqd files are read into the program. 

Each basic event in the fault tree has two lines of data within the *. aqd file to specify 
its failure and repair characteristics, the first line gives the name of the basic event and 
the model type. The second line gives a list of the failure parameters provided for that 
basic event. The simple *. aqd text file may be constructed by the user (the format is 

given in Appendix II) or it can be developed using the software package FAULTREE+ 

(43). 

6.3.1 Fixed Unavailability and Unconditional Failure Intensity 

This model specifies a constant unavailability (q) for basic event i and a constant 

unconditional failure intensity (w). This is the simplest model type as q; and w; are 

specified there is no calculation necessary. 

6.3.2 Constant Failure and Repair Rate Model 

This model is relevant for components which experience a constant failure rate (X) and 

a constant repair rate (µ) and where the failure event is revealed and repair is instigated 

immediately. When the program QUANT encounters this type of model in the *. aqd 

file it prompts the user to give a specified time point for the analysis. For example if X 

and µ are given per hour then the user would input a time in consistent units. 

The unavailability and unconditional failure intensity for the basic event are calculated 

using the following equations: 

145 



q(t) = 
k 

{1- exp[-(X + µ)t]} 6.2 k+g 

[If a component is non-repairable with constant failure rate specify t=O 
and then q(t) =1- exp(-?, t)] 

w(t) = a, {1- q(t)} 

where: 

q (t) = unavailability at time t. 

w (t) = unconditional failure intensity at time t. 

Steady - State Constant Failure and Repair Rate Model 

(6.3) 

When QUANT is executed it prompts the user to specify whether or not a steady-state 
analysis is desired. If this is the case then as t-3oo. 

q(t) -> X+ (6.4) 

However if a time-dependent, transient analysis is desired then a different program 
needs to be executed. This program is called QUANTIME and it deals with the time 
dependent analysis by initially dividing the time point specified for the analysis into 10 
equal intervals. It then calculates q(t) and w(t) for each component at each time t 
where t= to 9 t, ......... t, o. QUANTIME proceeds to calculate the unavailability of the 

system and also the unconditional system failure intensity at each of these times. The 

reason for dividing the time duration into 10 equal intervals, and doing the 

aforementioned calculations, lies with the evaluation of the expected number of top 

event occurrences using numerical integration which is discussed in section 6.4. 

6.3.3 Mean Time to Failure and Repair Model 

For this model the mathematical expression for component unavailability is also that 

given in equation 6.2. However the parameters specified are the Mean Time to Failure 

(MTTF - r) and the Mean Time to Repair (MTTR - u). As shown in Chapter 3 for 
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constant failure rate r=1 (equation 3.5) and for constant repair rate r=1 (equation 

3.7), therefore by substituting r and ti into equations (6.2) and (6.3) the following 
equations are used to calculate q(t) and w(t) respectively: 

q(t) =1 {1- exp[-(1 + 
1)t}} 

(6.5) 'L+r r ti 

w(t) =1 {1- q(t)} (6.6) 
r 

Steady-State Mean Time To Failure and Repair Model 

If a steady-state analysis is desired then q; will be calculated using: 

_ 
'C 

q' 
i+r 

(6.7) 

and w; will be calculated using equation (6.6). 

6.3.4 Dormant Failure and Periodic Inspection Model 

This model is appropriate for dormant components whose failure remains unrevealed 

until periodic inspection is performed. It produces a mean unavailability and 

unconditional failure intensity from the constant failure rate (X), MTTR (Mean Time 

To Repair) (i) and inspection interval (0). 

The unavailability and unconditional failure intensities for each basic event are given 
by: 

qAV =+e (6.8) 
2 

w=ý, (1-q) (6.9) 
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6.4 Unconditional System Failure Intensity 

For some systems it is the unreliability, F(t) which is required for the top event i. e., 

the probability it will not work continuously over a given time period. An upper bound 

for this is the expected number of top event occurrences W(0, t): 

F(t) <_ W(0, t) 
Availability<_Unreliability! ýExpected number of top event occurrences 

Let P. (t) = P(expected i system failures in [0, t]) 

then F(t) _ Pi (t): 5 i. P 

and W(0, t) =J wS,. S 
(u)du (6.10) 

0 

where ws), s 
(t) is the system unconditional failure intensity: 

wS%, s(t)_ýG; 
(q)"w, (t) (6.11) 

where G, (q) is the criticality function (see Chapter 3, section 3.5) and the summation 

is over each component i. 

The criticality function G; (q) is defined as the probability that the system is in a 

critical state with respect to component i and that the failure of component i will then 

cause the system to go from the working to the failed state, i. e., the probability that the 

system fails only if component i fails. Therefore: 

G; (q) = Q(O, 9q) 

where: 

Q(1; 
, q) - is the probability of system failure with q; (t) =1 

Q (0; , q) - is the probability of system failure with q; (t) =0 

(6.12) 

Since QS,, 
S 
(t) is a linear function in each q; (t) then G; (q), for each basic event can 

also be given by: 
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G; (q) = 
aQsys(t) 
aq; (t) 

(6.13) 

Evaluating each of the two terms Q(1; 
, q) and Q(0; 

, q) for each component could be 

achieved by first substituting q; (t) =1 and then q; (t) = 0, i. e., the probability that 

component i equals 1 and 0 respectively, and re-running the system failure probability 
calculations. This would require the equivalent of 2n evaluations of the top event 

probability where n is the number of components in the system to deduce all terms 
required in the expression for ws), s 

(t) in equation (6.11). 

However a more efficient calculation method can be produced which requires only one 

pass of the BDD. Consider the variable Xi which occurs at least once in the BDD 

(refer to figure 6.4). 

X1 

Node Node b 

1 
,010 

Figure 6.4 Considering Variable Xi 

The following equations can then be used: 

Q(l;, q) =1(Pr, (q)"Po., (q))+Z(q) 
n 

Q(o;, q) = (Prx, (q)"po (q))+Z(q) 
n 

where: 

(6.14) 

(6.15) 

pr (q) - is the probability of the path section from the root node to node xi 

(Probprev). 

pol; (q) - is the probability of the path section from the 1 branch of node xi to a 

terminal 1 node (Probpost 1 branch). 

po ° (q) - is the probability of the path section from the 0 branch of node xi to a 

terminal 1 node (Probpost 0 branch). 
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A' 

Z(q) - 'is the probability of the paths from the root node to the terminal 1 nodes 
which do not go through a node for variable xi. 

n- All nodes for variable xi in the BDD. 

Therefore: 

(6.16) 

A more efficient way to calculate ws,. s 
(t) is to make one pass of the BDD to calculate 

pry, (q), pox; (q) and po ° (q) for each node. With this information each G. (q) can 
be evaluated from equation (6.16) and ws,. s 

(t) formed using equation (6.11). 

The algorithm Probpost to calculate poX; (q) and po°. (q) is given in figure 6.5. For 

each node x; in the BDD, Probpost calculates the sum of the probabilities of all the 

paths ending in a terminal I vertex leading from the 1 branch of the node x; (pot; (q) ). 

Then the algorithm calculates the same value for all paths leading from the 0 branch of 
node xi (po° (q)). The calculation of pr; (q) can be achieved by the algorithm 
Probprev given in figure 6.6. For each node x, Probprev calculates the probability of 
the path section leading from the root vertex to node x,. The criticality function 

G; (q) for each basic event is calculated as shown in figure 6.7. The calculation of 
G, (q) simply requires the values po', (q), po ° (q) and pr ; (q). These algorithms 

have been incorporated into the program QUANT. 

Probpost(F)- 

Do for all F 

F=ite(xi, G, H) 

pox; (q) =prob(G) 

po° (q) =prob(H) 
insert in Probtable, RF- Probtable(xi, po' (q), po° (q) ) 

QE-- p(xi). prob(G)+(1-p(xi)). prob(H) 

insert-in-computation-table ([<prob, F, - >, Q) 

R return 

return Q 

next F 

PrX; (q)[Pox; (q) - Po° (q) 

Figure 6.5 Probpost Algorithm 
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The implementation of these algorithms can be demonstrated by their application to the 

example BDD given in figure 6.2. The He table indicating how the BDD is stored 
within the computer program is given in table 6.2. 

Node Label Variable 1 branch pointer 0 branch pointer 
Fl Xl F2 0 

F2 X2 F3 F4 

F3 X3 1 F5 

F4 X3 1 0 

F5 X4 1 0 

Table 6.2 ite table for the BDD in figure 6.2 

Set Probprev(Fi)=0 for all i 

Probprev(F)= 

start at root vertex, F 

Probprev(F)=1 
Add Probprev(F) to Probtable, i. e., Probtable(xi, pox, (q), 

poxo, (q), pr; (q)) 

Do for all F, root vertex to end vertices 
F=ite(xi, HI, H2) 

if HI =0 or 1 Goto [A] 

Probprev(H1)=Probprev(H1)+p(xi). Probprev(F) 

Add Probprev(H1) to Probtable 

[A] if H2=0 or 1 next F 

Probprev(H2)=Probprev(H2)+(1-p(xi)). Probprev(F) 

Add Probprev(H2) to Probtable 

next F 

Figure 6.6 Probprev Algorithm 

Set G(xi)=0 for all i 

Do for all F 
if F=Probtable(xi, pox; (q), po° (q), pr, (a)) 

G(xi)=G(xi)+ prxi (q)(pox, (q) -po , (q)) 

insert-in-criticality table G(xi) 

next F 

Figure 6.7 Algorithm for calculating the Criticality t, unction v; ky 
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Performing one pass of the BDD to evaluate po,, (q) and po, u. 
(q) for each node using 

Probpost and referring to the probability table, PROBTABLE in figure 6.8, gives: 

Probpost(F5) 

F5=ite(X4,1,0) 

poza (q)=prob(1)=l 

po°4 (q)=prob(0)=0 

R-Probtable(X4,1,0) 
QF--p(X4). p(1)+(1-p(X4)). p(0)=0.04 

Probpost(F4) 
F4=ite(X3,1,0) 

pox3 (q)=prob(1)=l 

po°3 (q)=prob(0)=0 

RF-Probtable(X3,1,0) 
QE--p(X3). p(1)+(1-p(X3)). p(0)=0.03 

Probpost(F3) 

F3=ite(X3,1, F5) 
poI (q)=prob(t)=1 

po °3 (q) =prob(F5)=0.04 
RF--Probtable(X3,1,0.04) 

Q=p(X3). p(1)+(1-p(X3)). (0.04)=0.0688 

Probpost(F2) 

F2=ite(X2, F3, F4) 

poz2 (q)=prob(F3)=0.0688 

po°2 (q)=prob(F4)=0.03 

RE--Probtable(X2,0.0688,0.03) 

Q=p(X2). (0.0688)+(l -p(X2)). (0.03)=0.030776 

Probpost(F 1) 

F1=ite(X 1, F2,0) 

pox2 (q)=prob(F2)=0.030776 

pool (q)=prob(0)=0 

RE--Probtable(X1,0.030776,0) 
Q=p(X 1). (0.030776)+(1-p(X 1)). p(0)=3.0776x 10-4 
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As can be seen the probability of the top event Q (calculated for F1 above) agrees with 
the probability calculated previously using the disjoint paths of the BDD. 

The values of Probpost 1 branch and Probpost 0 branch for each node are entered into 
the node probability table called Probtable shown in figure 6.8. 

Next Probprev (figure 6.6) is calculated and entered into the 5th column of the 
Probtable. 

Probprev Algorithm: 

Probprev(F 1)=Probprev(F2)=Probprev(F3)=Probprev(F4)=Probprev(F5)=0 

Probprev(F 1)=1 

F 1=ite(X 1, F2,0) 
Probprev(F2)=p(X 1). Probprev(F 1) 

=(0.01). (1)=0.01 

H2=0 

F2=ite(X2, F3, F4) 

Probprev(F3)=p(X 2). Probprev(F2) 

=(0.02). (0.01)=2. Ox 10-4 

Probprev(F4)=(1-p(X 2)). Probprev(F2) 

=(1-0.02). (0.01)=9.8x 10-3 

F3=ite(X3,1, F5) 

H1=1 

Probprev(F5)=(1-p(X 3)). Probprev(F3) 

=(1-0.03). (2.0x 10-4)=1.94x 10-4 

F4=ite(X3,1,0) 

H1=1 

H2=0 

F5=ite(X4,1,0) 

H1=1 
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H2=0 

Calculation of the criticality function is then straight forward using the algorithm 
provided in figure 6.7. 

Criticality Algorithm: 

G(X l)=G(X2)=G(X3)=G(X4)=0 

F 1=Probtable(X 1,0.030776,0,1) 
G(X 1)=0+ 1(0.030776-0) 

=0.030776 

F2=Probtable(X2,0.0688,0.03,0.01) 
G(X2)=0+0.01(0.0688-0.03) 

=3.88x 10-4 

F3=Probtable(X3,1,0.04,2.0x10-4) 
G(X3)=0+2.0x 10-4(1-0.04) 

=1.92x 10-4 

F4=Probtable(X3,1,0,9.8x10-3) 
G(X3)=1.92E-4+9.8x10-3(1-0) 

=9.992x10-3 

F5=Probtable(X4,1,0,1.94x10-4) 

G(X4)=1.94x 10-4(1-0) 

=1.94x 10-4 

Since we have calculated the criticality function for each component, the steady-state 
unconditional failure intensity wsys for the example fault tree shown in figure 6.1, can 

now be evaluated using the frequency data from table 6.1 and equation (6.11). 

ws, s = G(X1). wxl +G(X2). wX2 +G(X3). wX3 +G(X4). wx4 

=(0.030776)(9.9x10-7)+(3.88x10-4)(3.92x10-6)+(9.992x10-3)(1.94x10-4)+ 
(1.94x10-4)(2.88x10-5) 

=1.97602x 10-6 
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ProhtahlP 

Node Label Variable 
__post 

1 post 0 Prob rev 
Fl xi 0.030776 0 1 
F2 X2 0.0688 0.03 0.01 
F3 X3 1 0.04 2.0E-4 
F4 X3 1 0 9.8E-3 
F5 X4 1 0 1.94E-4 

where: 

Probtable(i, 1)=Node Label 
Probtable(i, 2)=Basic event of node Fi 

Probtable(i, 3)=Probability of post 1 branch 

Probtable(i, 4)=Probability of post 0 branch 

Probtable(i, 5)=Probability of previous 

Figure 6.8 Probtable Array 

Using equation (6.10) the expected number of top event occurrences in time, t, can be 

obtained. For example if the expected number of failures over a 10 year operating 

period (i. e. 87600 hours) was required then: 

87600 

W(0,87600) =f1.97602 x 10--6dt 
0 

=1.97602 x 10-' x 87600 

= 0.173 

The calculation above for the expected number of top event occurrences was evaluated 
for system steady-state condition. If the system under study has components which 
have a time dependent model type then numerical integration is required to calculate 

W(O, t). 

As previously mentioned in section 6.3.2 and 6.3.3, if the components unavailability 

and unconditional failure intensity are time dependent then these values are calculated 
for the times to, t, ....... t, o. In addition G. (q) is evaluated for each of these times, 

which enables the calculation of wS,. S 
(t) using equation (6.11) for times to, t, ....... t10. 
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The program QUANTIME tackles this integration by utilising the trapezium rule, with 
10 equal step lengths and ordinates to, t, ....... t10, to approximate the expected number 
of top event occurrences. 

6.5 Applications 

The BDD quantification method was benchmarked against a test example fault tree 
called 'Dresden-3' used by Platz and Olsen (44). The structure file (Dresden-3. ats) and 
data file (Dresden-3. aqd) for this tree are both given in Appendix III. For this 

particular fault tree a specially created model type was used for each component, 
where the failure parameters k and ti (?, must be multiplied by 1.0x 10-6) are provided 
for each component. 2 represents the component constant failure rate and 't its Mean 

Time to Repair (MTTR). 

The following 'steady-state' calculations are then used for the model type, to obtain q, 
and w; for each basic event: 

q` ý,. i+l 
(6.17) 

w; =A, (1-qi) (6.18) 

A summary of the quantification results is given in table 6.3. The code QUANT runs 

on a Sun workstation, the execution time is given in seconds. 

Name Dresden-3 

No. of Gates 60 

No. of Basic Events 57 

No. of Minimal Cut Sets 11,934 

Time (s) 0.6 
Q 

Sys 4.70499x 10-7 

wsys 2.88139x10-8 

Table 6.3 BDD Quantification Results for Dresden-3 Fault Tree 

As a comparison, Dresden-3 was analysed using a state-of-the art conventional fault 

tree analysis package (FAULTREE+ (43)), whose results can be seen in table 6.4. 
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No. of Minimal Cut Sets 
Time 
Q 

Sys 

w 
Sys 

11,934 

4hrs 10min 28s 

4.81119E-7 

2.97304E-8 
Table 6.4 FAULTREE+ Quantification of Dresden-3 Fault Tree 

Hence, for this example the BDD method is significantly faster than conventional 
quantification techniques. Also, along with great savings in computation time the 
BDD technique gives exact probability values for QS,, 

S and ws,. r , whereas the 
FAULTREE+ method results in a loss in accuracy of 2.21% and 3.08% respectively 
for these parameters. 

6.6 Accuracy - Comparison with a Conventional Approach 

To compare the accuracy of the BDD technique with the conventional Kinetic Tree 
Theory approach of FAULTREE+, 10 example fault trees were analysed (57), the 
results of which are reproduced here in table 6.5. Some of these benchmark fault trees 
are taken from industry (Railway Industry) and the others are produced as simple 
structures to test different aspects of the analysis code. 

Tree No. of 

Gates 

No. of 

Basic 

Events 

No. of 

Minimal 

Cut Sets 

BDD 
Qsys 

FAULT- 

REE+ 
QSYS 

BDD 

W3 

FAULT- 

REE+ 

w Sys 

1 17 11 43 2.08587x 10-2 2.09883x 10-2 7.52376x 10-6 8.03221x, 0-6 

2 63 32 8,716 4.27226x10-7 4.27248x10-7 2.77792x10-4 2.77835x10 

3 21 40 416 1.31777x10-6 1.31778x10-6 8.99077x10-4 8.99100x10-4 

4 10 10 13 6.80022x 10-2 7.0067x 10-2 1.97366x 104 2.11151 x 10-4 

5 4 6 3 3.39397x10-8 3.4x10-8 2.7419x10-10 2.7474x10-10 

6 4 6 6 7.06927x10-5 7.10911x10-5 3.09498x10-6 3.12839x10-' 

7 3 4 2 3.07760x10-4 3.08x10-4 6.07692x10-7 6.08360x10-7 

8 10 8 10 1.23233x10-5 1.23710x10-5 2.27332x10-7 2.28347x10-7 

9 3 4 2 2.02398x10 -6 2.024x 10-6 1.1392x 10-11 1.1392x 10-11 

10 30 60 7,056 4.37185x 10-7 4.38002x 10-7 3.09211 x 10 3.15744x 104 

Table 6.5 Quantification Results of 10 Example Fault Trees 
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It is evident from the results in table 6.5 that the FAULTREE+ approach results in an 
over estimate for both QS,, 

S and for wsys . This is an average over estimate of 0.5(-7c and 
1.7% respectively. 

6.7 Conclusion 

This chapter develops algorithms which extend the use of the BDD method to 

calculate top event parameters, such as system failure probability, failure intensity and 

expected number of top event occurrences. The added advantage of obtaining these 

parameters directly from the BDD, when compared to the traditional Kinetic Tree 

Theory approach (1), is that the resulting values are exact. Approximations used in 

conventional fault tree analysis are shown to be inadequate for some fault trees. 
Further, the BDD method has proven to be extremely efficient as a means of 

quantification. Only one pass of the BDD structure is required to calculate all 

parameters. 

An additional feature of the BDD method is that it does not require the minimal cut 

sets to be determined prior to the quantification. This reduces computation time and 

memory requirements that would otherwise be needed. 
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CHAPTER 7 

IMPORTANCE MEASURES 

7.1 Introduction 

Component importance measures where introduced in section 3.5 along with the 
equations used for their calculation. The importance of a component indicates its 
relative contribution to the top event probability, QS`. 

S 
(t) or to the expected number of 

top event occurrences, W (O, t) depending on the type of analysis being performed. 
Applying the kinetic tree theory to quantify the fault tree top event to obtain QS,, 

S 
(t) or 

W (O, t), requires the use of approximations. Since these quantities are needed to 
calculate the importance measures, as a result these too will be approximations. 

This chapter describes the use of the binary decision diagram to calculate the 
importance measures for each basic event. The method presented overcomes the need 
to use approximations. Additionally the computer implementation of this method is 
discussed. 

7.2 Importance Measures Concerned with Top Event Probability 

7.2.1 Birnbaum Measure of Component Importance 

As shown in section 3.5 Birnbaums measure of importance (3), also known as the 
criticality function, G; (q) is given by: 

G; (q) = Q(1,, q)- Q(0;, q) (7.1) 

The algorithms which allow the calculation of the criticality function, i. e. Probpost and 
Probprev are discussed in detail in section 6.4. These algorithms are needed for the 
computation of the system unconditional failure intensity, wsy, (t). Thus this 

importance measure is already calculated as a result of evaluating wsys (t) and only the 

initial pass of the BDD structure is required. 
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7.2.2 Criticality Measure of Component Importance 

The criticality measure of importance has been previously defined in Chapter 3 as: 

1c; = 
G, (q)g1(t) 

(7.2) Q3 (t) 

Therefore the calculation of Ic. 
, using the BDD, is straightforward as all the 

parameters in equation (7.2) are known from the system evaluation. 

7.2.3 Fussell-Vesely Measure of Component Importance 

This measure of importance is usually close in numerical value to the criticality 
measure, therefore its calculation is not essential if the criticality measure is available. 
However it is worth mentioning the difficulties encountered when trying to employ the 
BDD structure to calculate this importance measure. 

The Fussell-Vesely importance measure for component i, (1 F,, ) is calculated as the 

probability of the union of the minimal cut sets which contain event i divided by the top 

event occurrence probability, i. e. 

P( UCk) 
ICliECA 

'FV = 
QSys (t ) 

(7.3) 

Therefore 1 Fv, requires the use of the minimal BDD to trace the minimal cut sets that 

contain i. However the minimal BDD cannot be used to evaluate the probability of 

each minimal cut set. Since in forming the minimal BDD the original structure 

function of the fault tree has been altered by the 'without' procedure. The construction 

of the BDD using the structure function and the 'without' procedure has been discussed 

in-depth in Chapter 4, section 4.3 and 4.6 respectively. The altered structure function 

represented by the minimal BDD is no longer in the form of Shannon's decomposition. 

As a result the sum of the probabilities of the disjoint paths through the diagram can 

not be used to form a probability relationship. 

To illustrate this 'altering' of the structure function refer to the fault tree shown in 

figure 7.1, whose unminimised BDD can be seen in figure 7.2 The program BADD 
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discussed in Chapter 5 was used for the construction of the BDD. The following top- 
down, left-right ordering was given to the basic events: 

a<e<b<c<h<d<g<f. 
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Figure 7.1 Example Fault Tree 

Figure 7.2 Unminimised BDD for Example Fault Tree 



The BDD in figure 7.2 could also be constructed using the structure function for the 
fault tree and applying Shannon's decomposition, pivoting about the variables in the 
same order. 

The minimal cut sets obtained using the program BADD for the fault tree shown in 
figure 7.1 are: 

(1) {a, e, c} 
(2) (a, e, h) 

(3) {a, b} 
(4) (a, c, d) 

(5) {a, h, d, g} 
(6) {a, h, d, f} 

When implementing the BDD method for fault tree analysis it is known that the sum of 
the probabilities of the disjoint paths through the BDD equals the probability of the 

union of the minimal cut sets (51), i. e. 

n nc 

I P(di) = P(U C; ) 

where: 

P(di) - is the probability of a disjoint path, d; in the BDD. 

C; - is a minimal cut set of the fault tree. 

n- total number of disjoint paths in the BDD. 

nc - total number of minimal cut sets. 

(7.4) 

Let us now investigate basic event e in the fault tree and the task of obtaining the 

probability of the union of the minimal cut sets containing e from the BDD. 

It can be shown that: 

1 P(dk) , P( UCm) 
k/e¬d rn/eECm 

(7.5) 

i. e., the sum of the probabilities of disjoint paths containing e in the BDD does not 

equal the probability of the union of the minimal cut sets containing e. 

162 



To illustrate, the left-hand-side (L. H. S) of equation (7.5) is developed by the use of the 
BDD in figure 7.2, the sum of the probabilities of the disjoint paths containing e are: 

P(dk) = P(a. e. b)+P(a. e. b. c)+P(a. e. b. c. h) 
kleed& 

= P(a). P(e). P(b) + P(a). P(e). (1- P(b)). P(c) 
+ P(a ). P(e). (1- P(b)). (1- P(c)). P(h) 

P(dk) = P(a). P(e)[P(b) + P(c) - P(b). P(c) 
kleedle 

+ P(h) - P(c). P(h) - P(b). P(h) + P(b). P(c). P(h)] 

Next developing the right-hand-side (R. H. S) of equation (7.5), the probability of the 
union of the minimal cut sets containing e: 

P( UC,,, )=P(a. e. cua. e. h) 
mleECm 

= P(a. e. c) + P(a. e. h) - P(a. e. c. h) 
P( U Cm) = P(a). P(e)[P(c) + P(h) - P(c). P(h)] 

rn/eEC,,, 

Thus it is clear that equality does not hold for equation (7.5). The reason for this 
becomes clear when the BDD is constructed using the structure function, O (X) from 

the minimal cut sets containing e. The structure function for the minimal cut sets { a, e, 
c} and {a, e, h} is O(x) = 1-(1-a. e. c)(l-a. e. h) and the BDD constructed using 

this structure function can be seen in figure 7.3. The disjoint paths in this BDD do not 

correspond to the disjoint paths in the full BDD shown in figure 7.2. Thus the 
probability of the disjoint paths in the full BDD cannot be used to obtain P( U Cm ) 

nd eE C�, 

(the probability of the union of the minimal cut sets containing e). 

There are two possible ways to overcome the problem of computing the numerator in 

equation (7.3): 

n 

(1) Use the upper bound estimation for P( U Ck) as P(Ck ), i. e. the sum of the 
k/iECk k=l 

'Eck 

minimal cut sets containing i. 

(2) If an exact calculation of IF,, is desired; then for each basic event i (which is 

contained in minimal cut sets C, 
, C2 

, ..... , 
Cj) a fault tree could be drawn in a form 

whose top gate is an OR gate which has the AND gate inputs G, , 
G2 

....... 
G. and 
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each of these AND gates have the basic event inputs that constitute mini mal cut 
sets C, 

, 
C2 

, ..... , 
Cj respectively. In this way the sum of the probabilities of the 

disjoint paths of the resulting BDD for this fault tree will equal the probability of 
the union of the minimal cut sets containing component i, i. e. 
Y P(dk) = P( U Cm) and equation (7.3) can be solved. 

kliEdA m/IECm 

To illustrate, basic event e above is contained in minimal cut sets { a, e, c} and [a, e, 
h}. The fault tree whose BDD will give the probability of the union of these minimal 

cut sets is shown in figure 7.4. 
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Figure 7.3 BDD Constructed from Structure 

Function 4(x) =1-(1-a. e. c)(1-a. e. h) 



LTOP1 

DC 

Figure 7.4 Fault Tree for Minimal Cut Sets { a, e, c) and { a, e, h} 

The BDD constructed for the fault tree in figure 7.4 with the ordering of basic events 
a<e<c<h is identical to the BDD in figure 7.3 which was constructed using the 

structure function for the minimal cut sets containing e. 

The disjoint paths through the BDD in figure 7.3 are: 

(1) a. e. c 
(2) a. e. c .h 

Therefore the sum of the probabilities of the disjoint paths will be 

P(a). P(e). P(c)+P(a). P(e). P(h)-P(a). P(e). P(c). P(h) which equals the probability of the 

union of the minimal cut sets containing e. 

Obviously if a fault tree has many basic events and many minimal cut sets, this method 

would prove inefficient both in terms of speed and efficiency of calculation, therefore 

the approximation in step (1) may be desirable. 

If a variable has just one occurrence then calculating IF.,, is not a problem, for these 

basic events the following equation can be used. 

IFV = 
Pict ) 
Qt 

S)S 
) 

(7.6) 
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7.2.4 Fussell-Vesely Measure of Minimal Cut Set Importance 

The previously defined importance measures ranked component failures in the order of 
their contribution to the top event. This measure provides a similar function except 
that the minimal cut sets are themselves ranked. The importance measure is defined 

simply as the probability of occurrence of cut set j given that the system has failed: 

P(C; ) 

QSys (t) 

7.3 Initiators and Enablers 

The treatment given in Chapter 6 for the system unconditional failure intensity assumes 
that the order in which the component failure events occur in any minimal cut set is 

unimportant. In some analyses the order of basic event failures is vital to the 

occurrence of the fault tree top event. This is particularly true when the analysis of a 

safety protection system is being carried out. For example, if a hazardous event occurs 

and the protection systems have already failed the outcome will be a dangerous system 
failure. However, if failures occur in a sequence where the hazardous event occurs 

prior to the protection systems failing then a safe shutdown will have resulted. This 

type of situation can be modelled by considering the failures as either initiating or 

enabling events (6,8). 

In the diagram shown in figure 7.5 the order of events are considered. The safety 

systems are shown to be inactive between times to and t1 (safety system fails at to and 

is repaired at t l). During this time period the safety systems are unable to respond to a 

hazardous condition (the initiating event) and the system is in a critical state due to the 

occurrence of enabling events. If the initiating event occurs between to and tj the 

hazardous system failure will happen. However, if the initiating event occurs prior to 

to or after tj the safety systems respond as designed. Therefore the order of 

component failures needs to be considered for an accurate system assessment. 

Initiating and enabling events are formally defined as follows: 

Initiating events perturb system variables and place a demand on control/protection 

systems to respond. 
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Enabling events are inactive control/protection systems which permit initiating events 
to cause the top event. 

Critical system state 

Occurrence of 
enabling events 

Safety system inactive 

Time 
t0 tl 

Initiating event 

Figure 7.5 Initiating Event Window 

The system unconditional failure intensity, ws,, s 
(t) is evaluated for interval reliability by 

restricting the summation in equation (6.11) to be over the initiating events only i. e.: 

ws), 
s 

(t) 
_ 

Gi (q)wi (t) (7.8) 

initiators 

7.4 Importance Measures Concerned with Top Event Reliability 

It has previously been discussed in Chapter 6, section 6.4 that an upper bound for the 

unreliability of a system is the expected number of top event occurrences W(O, t). To 

investigate the contribution of component failures to this quantity it is appropriate to 

use the following importance measures. 

7.4.1 Barlow-Proschan Measure of Initiator Importance 

The Barlow-Proschan Initiator importance, BPI; is the conditional probability that 

initiating event i caused the failure, given that the system fails prior to time t. 

$G; (q)w, (t)dt 

BPI; =° W(O, t) 
(7.9) 
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Therefore the Barlow-Proschan measure of initiator importance requires the criticality 
function, component unconditional failure intensity and the expected number of top 
event occurrences for its evaluation. Since all elements in equation (7.9) can be 

calculated using the BDD, determining this importance measure for each initiator is 

again easily performed. 

7.4.2 Barlow-Proschan Measure of Enabler Importance 

This importance measure (BPE1) assesses the contribution of an enabling component i 

when initiating event j causes the system failure. The failure of enabler i is only then a 
factor when enabler i and initiator j both occur in the same minimal cut set (C). 

r 

{Q(l;, lj, q)-Q(l;, Oj, q)}gi(t)wj(t)dt 
10 
i#j 

BPE; = (7.10) ` 'jEC 
W(0, t) 

The calculation of this importance measure using a BDD is more involved than the 

evaluation of other measures. Essentially its difficulty is due to the evaluation of the 

term: 

Q(l;, l;, q)- Q(1,, O;, q) (7.11) 

from the BDD for each combination of events i and j (where i is the enabler and j the 

initiator) which occur in the same minimal cut set. 

In evaluating this term the minimal BDD must first be scanned for the enabler event i 

and a list formed of every other event which appears in a minimal cut set along with i. 

Any events which can only act as enablers and not initiators are then removed from this 

list to leave only the initiating events j. 

The contribution to BPE; from each initiating event j is then determined and summed 

to obtain the numerator in equation (7.10). The difficulty comes in evaluating equation 

(7.11) from the BDD and two cases must be considered for the ordering of initiating 

event j and enabling event i in the BDD structure. 
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7.4.2.1 Case A: i<j 

In this situation the nodes for the enabling event appear at higher levels than the 
initiating event nodes in the BDD. QSYS (t) is obtained as described in Chapter 6 by the 

summation of the probability of each path leading to a terminal 1 vertex on the BDD. 
These paths can be placed into one of four categories with respect to the initiator and 
enabler events. 

i) paths go through a node xi for which at least one node xj appears directly below it 

at some point in the BDD. 

ii) paths go through a node xi for which xj does not appear directly below it. 
iii) paths go through a node xj for which xi does not appear directly above it. 
iv) paths go through neither a xi node nor a xj node. 

To evaluate equation (7.11) in both terms q; (t) is set to one and for the first term 

qj (t) is set to one and in the second term q1 (t) is set to zero. The paths in categories 

(ii) and (iv) will make no contribution to the difference between these two terms. 

Consider the contribution of the sections of the BDD which are in categories (i) and 
(iii). First of all category (i) (see figure 7.6). 

o 

ÖS' 

Figure 7.6 Section of BDD with i<j 

Qs,,, (t) is the probability of system failure calculated with P(x1) = q; (t) and 

P(x) = qj (t). If we first subtract the contribution from QS,. 
S 
(t) of each section in 

category (i) (a section being all the paths that go through the xi node and at least one 

xj node down to a1 end vertex). This can then be replaced with the contribution that 
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this section will make with q! (t)=1. This will give Q(11, q). If we then remove from 
this the probability of each path through xi on the 1 branch that passes through xj with 
p(x) = qj (t) and replace it with the contribution given when q3 (t) =1 we will have 
Q(1; 11j, q) for this one section in category (i). This process can then be repeated for 

each such category (i) section. This gives: 

Q(1, j, q) = Qs,, 
s 
(t) - {pr(x, )[qx; po' (x, ) + (1- qx, )po° (x1)] 

all x 
for category (i) 

+ pr(x; ) po' (x1 ) 

- 
I, {Pr(x' 

)[4X. 
Po I (x; )+(1-qX. )Po°(x )l (7.12) 

all xi below qxi 
each xi on a 
I branch 

+ 
Pr(xi) 

Pol (x; )}} 
qXi 

where: 
pr(x1)=Probprev of xi, po' (x; )=Probpost 1 branch of x, and po° (x, )=Probpost 0 

branch of x; . The algorithms for Probprev and Probpost have already been given in 

Chapter 6. A similar approach to the second term gives: 

Q(l;, O,, q) = QS, 
S 

(t)- {Pr(x; )[gx, po' (X; )+(1-qx, )po°(xi )] 
allx ; 
for category (i ) 

+Pr(x; )pol(x; ) 

- 
1: {pr(x')ýgX. Po1(x; )+(1-gx)Po°(x; )l (7.13) 

all xi below qX; 

each x; on a 
I branch 

+ 
pr(x') 

Poo (XJ)}} 
qx; 

Taking the difference between equations (7.12) and (7.13) gives us the contribution of 

each term in category (i). 
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[Q(l,, lj, q)-Q(l,, O;, q)] ((, ) _ )- Poo (x j )} 
Pr(xj )[P° 

(x1 
ý 

each x qx, 
below each x 
on aI branch 

Considering the nodes in category (iii). Since they do not go through xi we get: 

[Q(l;, l;, q)-Q(1,, o;, q)1cat(iii) = Q(l;, q)-Q(O;, q) 

_ IPr(x )[Po' (x) - po° (x1)] 
each x 
in cat (iii ) 

and equation (7.11) can be formed by summing equations (7.14) and (7.15). 

7.4.2.2 Case B: j<i 

(7.14) 

(7.15) 

When the initiating event j appears at a higher level in the BDD than enabling event i, it 

becomes a little more complex to evaluate the contributions to equation (7.11) of the 
four categories for the paths which lead to a terminal 1 node: 

i) paths go through a node xj for which node xi appears directly below it at some point 
in the BDD. 

ii) paths go through a node xj for which xi does not appear directly below it. 

iii) paths go through a node xi for which xj does not appear directly above it. 

iv) paths go through neither a xi node nor a xj node. 

This time it is only the sections of the BDD identified for categories (i) and (ii) which 

contribute to Q(1;, 1j, q)- Q(1;, 0j, q). 

Considering first the BDD sections in category (i). To evaluate each of the two terms, 

the approach is similar to that for Case A. Initially the contribution to Q,,, (t) of the 

paths in category (i) are removed. Setting qj (t) =1 the contribution of this section is 

then added back to give Q (1 j, q) for this section. This means the section which is 

added back from the BDD is only that which connects to the 1 branch of the xi - node. 

Tracing the paths on the BDD from the 1 branch of xj to an xi node are then removed 

which extracts the contribution to QS,, 
S 
(t) with P (xj) =1 and P (x; ) = q; (t). These 

paths are then replaced with the contribution made by values P(xj) = P(xi) = I. This 

gives the first term in equation (7.11). 

Replacing the relevant terms with P(xj )=0 gives the second term. So: 
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Q(l;, l;, q)=QS,, 
s(t)- 

{Pr(x; )[gx: Po'(x. )+G-4_ )po°(x. )l wI -., fA 

each x, 
for category (i) 

+pr(xj )po'(xj) 

- {pr(xý)[gx, po'(xi)+(1-qX )poo(x; )] 
each x; below qXi 

each x jon a 
I branch 

+ 
pr(x') 

po' (x; )}} 
qx, 

and 

Q(I, 
10j, q)=QS,, S(t)- 

II pr(xj)[qxjpo'(xj)+ (I -qxj )po, (Xj 
each xi 
for category (i) 

+ pr(xj ) po° (xj ) 

{ pr(x, -) [R'xiPo'(x; )+(1-4X; )Po°(x; )J 
each x; below 

(1 
- qX; ) 

each x, on a 
0 branch 

pr(x. ) 
+ po'(x; )}} 

(1-qX; ) 

Taking the difference between equations (7.16) and (7.17) gives: 

l;, q)-Q(l,, o;, q)= {Pr(x; )[po'(x; )-po°(x; )] 
each node x, 
in category (i) 

(7.16) 

(7.17) 

+ {pr 
(xi)(I-gx')[pol(x, 

)-poo(x; )] (7.18) 
each x; below qxj 
xj on al branch 

each xi below j 
xjona 0branch 
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Thus the contribution provided to equation (7.11) for the nodes on the BDD in 
category (i) can be established. 

For those nodes xj which are in category (ii) and do not occur with any xi nodes on a 
path to a terminal 1 node the contribution to equation (7.11) is given by: 

Q(l,, 1 , q)-Q(1;, O 
, q) = 1pr(x, 

)[po' (x; )-Po0(x; )] (7.19) 
all x, 
category (ii ) 

The equations presented for the Barlow-Proschan enabler importance are based on the 

assumption that the BDD form is such that every node has only one branch leading 

down to it (other than the root vertex). BDD's with repeated structures have been 

encoded to give the most efficient storage representation in which case any node can 
be linked to more than one other higher node in the BDD structure. The repeated 

sections would need to be extracted and explicitly represented in the BDD structure 

when evaluating the Barlow-Proschan enabler importance measure. Otherwise the 

values stored for pr(xi) may not be the ones required for the algorithm. 

To illustrate this problem consider the BDD shown in figure 7.7 which has the 

repeated sub-node F3. The values of Probpost and Probprev for each node is given in 

table 7.1, where q., 1 is the unavailability of component xi. 
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Figure 7.7 BDD with Repeated Sub-node F3 



Node Basic Event of 
Node 

po'(x; ) poo(x1) pr(x1 ) 

Fl X1 
qx2 qx3 + 

(1-gx2)"qx3. q 4 
qx3 "qx4 1 

F2 X2 qx3 qx3 " qx4 1- qx1 
F3 X3 qxa 0 (1-qx1)+ 

q1. (1-q2) 

F4 X3 1 0 qx1 " qx2 
F5 X4 1 0 qx3 «l - qxl ) 

+gxl"(l-4xz)ý 

Table 7.1 Probpost and Probprev Values for Nodes in the BDD 

Let X2, X3 and X4 be enablers and X1 be an initiator and say we wish to find BPEX3. 

The paths of the BDD in figure 7.7 which contain both basic events X1 and X3 are: 

(1) Xl . X2. X3 
(2) X 1. (1-X2). X3. X4 

The X3 in path (1) belongs to the node F4 shown in table 7.1 and the X3 in path (2) 

belongs to the repeated sub-node F3. The problem of the repeated sub-node occurs 
when calculating pr(xi) for the second term of equation (7.18). 

From table 7.1 we see that the value of pr(X3) for the node F3 is equal to 

(1- qX, )+ qX, .0 -qX2) . 
This expression has the extra term (1- qX1) which is not 

required for path (2) and it occurs because of the shared sub-node F3. In the algorithm 
for Probprev the value of Probprev is summed for each occurrence of a node, 
therefore the value of pr(X3) in this case is not the one that is required, as a result of 
F3 occurring twice. The desired value of pr(X3) for path (2) is gX1. (1- qx2 ). 

To enable the correct calculation of pr(xi) for this example, the BDD in figure 7.7 

must be converted to the BDD presented in figure 7.8, where the repeated structure 

has been explicitly represented using the extra nodes F6 and F7. 

When repeated structures occur in the BDD then it may provide a faster solution time 

to change the probabilities of the initiator and enabler first to qj (t) = 1, q; (t) =1 and 

then to qj (t) =0 and q; (t) =1 (given that i and j are in a minimal cut set together) and 

re-evaluate the system failure probability for these conditions to give Q(1; , 
1j , q) and 

Q(l; Ioj, q). 
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Explicitly Represented 

7.5 Computer Implementation of Importance Measures 

The computer implementation of the above importance measures has been achieved by 

the addition of subroutines to the program QUANT (for steady-state analysis) and the 

resulting program has been called IMPORTANCE. For time dependent analysis the 

subroutines have been added to the program QUANTIME and the resulting program is 

named IMPORTIME. 

When a steady-state analysis is undertaken equation (7.9) (Barlow-Proschan Initiator 

Importance) can be replaced by: 

G; (q) w, (7.20) BPI; _ 
wsys 

and equation (7.10) (Barlow-Proschan Enabler Importance) can be replaced by: 

y {Q(1,, li, Q)- Q(1;, Oi, q)}giwi 

i 
i*j 

BPE, = i, l EC (7.21) 
14, 

svs 
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Figure 7.8 Equivalent BDD where Shared Sub-node has been 



If a time dependent analysis is required then the integration in equation (7.9) and 
(7.10) must be evaluated numerically. The program IMPORTIME uses the trapezium 

rule for these integrations and the calculation procedure is dealt with in a similar way 
to that for W(0, t) in section 6.4. 

When the importance codes are executed the user is asked which importance measures 
they require. The Fussell-Vesely measure of component importance is calculated using 
the upper bound approximation described in section 7.2.3. Additionally the Barlow- 

Proschan Measure of Enabler importance is calculated by changing the probabilities of 
the initiator and enabler first to qj (t) =1 and q; (t) =1 and then qj (t) =0 and 

q, (t) =1 and re-evaluating the system failure probability for these conditions to give 
Q(1;, 1j, q) and Q(1,, Oj, q) 

7.6 Applications 

The program called IMPORTANCE has been utilised to obtain top event 

quantification and all the importance measures just described for the example fault tree 

shown in figure 7.9. The steady-state condition is considered for this example fault 

tree which has two initiating events TM and TC and four enabling events R, PG, OP, 

SW. 

OP PG sw 

Figure 7.9 Example Fault Tree 
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The summary information for the fault tree can be seen in table 7.2. The computation 
time given includes conversion to the BDD and calculating all the importance 

measures. 

Name Example 

No. of Gates 4 
No. of Basic Events 6 

No. of Minimal Cut Sets 6 

Time (s) 1.69 
QSys 7.069E-05 
WSy5 6.365E-05 

Table 7.2 Summary Information for Example Fault Tree 

The failure parameters used for the components in the fault tree are shown in table 7.3. 

Component Failure rate per 
hour k 

Unavailability q; Unconditional 
Failure Intensity w, 

TM 5.0E-05 1.2E-03 4.994E-05 

TC 1.0E-04 2.4E-03 9.976E-05 

PG 2.0E-04 4.8E-03 1.9904E-04 

R 1.0E-04 0.188 8.120E-05 

OP 0.1 0.1 0.09 

SW 1.0E-05 2.4E-04 9.998E-06 

Table 7.3 Component Failure Parameters for Example Fault Tree 

Each of the importance measures calculated using the BDD can be seen in table 7.4. 

Component Birnbaums Criticality Fussell- Barlow- Barlow- 

Vesely Proschan Proschan 

Initiator Enabler 

TM 1.961E-02 0.333 0.335 1.538E-02 - 

TC 1.963E-02 0.666 0.670 3.076E-02 - 

PG 6.085E-04 4.132E-02 4.595E-02 - 2.119E-03 

R 3.760E-04 1.0 1.0 - 4.615E-02 

OP 6.729E-04 0.952 0.957 - 4.414E-02 

SW 6.057E-04 2.056E-03 2.298E-03 - 1.059E-04 

Table 7.4 Importance Measures for Components in Example Fault Tree 

177 



Lastly the minimal cut sets are given in table 7.5 along with their respective Fussell- 
Vesely minimal cut set importance measure. 

Minimal Cut Set Fussell-Vesely MCS Importance 
{TM, R, OP} 0.319 
I TM, R, PG J 1.532E-02 
{TM, R, SW) 7.659E-04 
{ TC, R, OP) 0.638 
ITC, R, PG J 3.064E-02 
ITC, R, SW I 1.532E-03 

Table 7.5 Minimal Cut Set Importance Measures 

Using the criticality measure of importance we can rank the components in the 
following order: 

Component Rank 

R1 

OP 2 

TC 3 

TM 4 

PG 5 

SW 6 

Therefore basic event R is the most critical component for the system and SW is the 

least. The figures above agree with the implementation of these approaches in the 

commercial package FAULTREE+, when accounting for the approximate calculation 

procedures of FAULTREE+. 

7.7 Conclusion 

In addition to the methods available to calculate the top event unavailability and 

unconditional failure intensity this chapter has shown that the BDD method for fault 

tree analysis can provide exact calculations for the importance measures of the basic 

events. Thus a full quantitative analysis of the fault tree can be achieved using the 

BDD structure. 
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CHAPTER 8 

VARIABLE ORDERING SCHEMES 

8.1 Introduction 

Chapter 5 discussed the results of analysing BDD's obtained using a top-down, left- 

right ordering of basic events and also the 'new' ordering scheme. The results showed 
that savings can be made on the BDD computation by simply considering the repeated 
events in the fault tree first in the ordering. However it is evident that the conventional 
top-down, left-right ordering or even the new ordering scheme can be totally 
inadequate for certain fault trees. Indeed this is the case for the fault tree referred to as 
HPIS in the paper by Platz and Olsen (44), a summary of the fault tree features can be 

seen in table 8.1. The BDD for this fault tree exploded in size with the conventional 
ordering and could not be analysed in a reasonable time, it took 3hrs 36min CPU time 
on a Sun workstation to determine the full set of minimal cut sets. 

Name HPIS 

No. of gates 81 

No. of basic events 199 

No. of repeated basic events 68 

No. of minimal cut sets 8,179 

Table 8.1 Summary of HPIS Fault Tree 

Table 8.1 clearly shows that the fault tree is not a very large fault tree structure with 
280 events (gates and basic events) and producing just over eight thousand minimal cut 

sets. The problem would appear to occur due to the number of repeated basic events. 
This and other fault tree examples created unacceptable BDD sizes, when using a top- 

down, left-right ordering of basic events. As a result of this further research was 

undertaken into alternative ordering methods. It would be advantageous to try to find 

a universally beneficial ordering effective for all fault trees. However since this is 

unlikely it was hoped to identify features of the fault tree structures which would 

produce efficient BDD's with different ordering schemes. 
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8.2 Depth-First Ordering 

One approach for investigating the basic event ordering was to break the whole 
problem (i. e. the fault tree) into smaller problems (i. e. subtrees) and look at the 
optimum ordering for these subtrees. A subtree of a fault tree is simply a gate event 
other than the top gate. It was found that giving each subtree a top-down, left-right 

ordering, working from the first gate inputs of the top event, gives an improved 

ordering scheme. This type of ordering constitutes a 'depth-first' ordering of basic 

events (Sinnamon and Andrews (45)). To illustrate the depth-first ordering scheme 
refer to the fault tree shown in figure 8.1. 

Subtrees are identified for the fault tree in figure 8.1 which are focused on the top 

event output branches G1 and G2. Subtrees are dealt with in a left-right manner as 

before. The depth-first ordering of the fault tree will first order the subtree GI i. e. 

inputs to the gate event Gl which are B and C, followed by the inputs to gate G3 (D) 
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then G5 (A) and G7 (E, F). Next comes the ordering of the second top event branch 
subtree G2, followed by G4 and lastly G6. Considering G2 adds basic event G to the 
ordering list. G4 does not add any events since A has been previously ordered. For 
the same reason consideration of G6 only adds basic event H to the list. The resulting 
ordering of basic events will therefore be: 

B<C<D<A<E<F<G<H (8.1) 

This depth-first ordering directly produces the minimal form of the BDD without the 
need to minimise its structure. As a comparison the conventional top-down, left-right 
ordering for this fault tree is: 

B<C<G<D<A<H<E<F (8.2) 

This ordering produces a redundant BDD to which the minimisation algorithm has to 
be applied to derive the minimal cut sets. This depth-first ordering scheme (8.1) 

proved fruitful for the HPIS fault tree- which now produced the minimal cut sets in only 
0.94 secs CPU time, rather than over three hours when previously analysed using the 
top-down ordering, the results are shown in table 8.2. 

Name HPIS 

No. of minimal cut sets 8,179 

No. of nodes in BDD 605 

Time (s) 0.94 

Table 8.2 BDD Results for HPIS Fault Tree 

Bouissou (54) considered a similar type of ordering heuristic in his paper and provided 
five fault tree examples. Bouissou stated that this type of ordering gave a good 

average performance. However he stated that this ordering is very sensitive to the 

writing of the fault tree (i. e. it is an arbitrary choice as to the ordering of the top event 
inputs) and can lead to BDD sizes (and CPU times) which differ by orders of 

magnitude. In addition he stated that the major problem with conventional ordering 
heuristics is the lack of theoretically proved properties, which calls for huge test and 

programming efforts. 
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8.3 Priority-Depth-First Ordering 

To take this depth-first approach one step further in order to investigate any additional 
potential benefits which can be gained, one needs to refer back to the construction of 
the BDD using the structure function (Chapter 4, section 4.3). To obtain the smallest, 
most efficient BDD from the structure function those basic events which have the 
greatest influence over the structure function were considered first. Experience shows 
that frequently these basic events he higher up the fault tree, close to the top event, 
hence the reason why a top-down approach is effective. Therefore when applying the 
depth-first ordering it may have some advantage in the numbering order to give 
priority to those subtrees that have basic event inputs only. In this way the basic 

events that occur at higher levels in the tree will be ordered prior to any others. This 

ordering will be referred to as 'priority-depth-first' ordering. To illustrate the 

application of this ordering technique refer to the fault tree in figure 8.2. 

Figure 8.2 Example Fault Tree for 'depth' Orderi ngs 

The gates in this fault tree should be considered in the following order to give a 

priority-depth -first ordering G1, G5, G3, G4, G2, Top, note G5 has basic event inputs 
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only and therefore should be ordered before G3. Subtrees which do not have priority 
are again dealt with in a left-right manner. Therefore the basic event 'priority-depth- 
first' ordering will be: 

C<G<F<E<B<D<A 

This ordering directly produces a minimal BDD with the following minimal cut sets: 

(1) (C, E, A} 

(2) { C, B, A) 
(3) {G, E, A) 

(5) {G, B, A) 
(6) ( F. E, B, D, A) 

whereas the depth-first ordering: 

A<F<E<B<D<C<G 

produces a redundant BDD that needs to be minimised. 

Five example fault trees were analysed using the three different ordering options 

where: 

ordering 1- top-down, left-right ordering 

ordering 2- depth-first ordering 

ordering 3- priority-depth-first ordering 

Table 8.3 provides a summary of each fault tree structure and the results can then be 

seen in table 8.4. Treel and Tree2 were obtained from papers reviewed in the 

literature survey in Chapter 2. Tree3 was created as a simple test case fault tree. 

Tree4 and Tree5 are fault trees from the transport industry. The number of ite 

calculations to construct the original BDD and also those required to produce a 

minimal form for the BDD have been entered in table 8.4. Also entered in this table is 

the difference in these values which is the number of extra ite calculations that are 

needed to make the BDD minimal. The ite calculations correspond to the number of 

AND and OR operations that are needed to create the ite structure for each gate in the 

fault tree. 
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Fault Tree Number of 
Gates 

Number of 
Basic Events 

Number of 
Repeated 

Basic Events 

Number of 
Minimal Cut 

Sets 
Tree 1 60 57 41 11,934 
Tree2 30 34 28 35 
Tree3 3 4 1 2 
Tree4 32 63 0 8,716 
Trees 30 60 0 7,056 

Table 8.3 Summary of Five Example Fault Trees 

Trees and No. of ite No. of ite Difference Time (s) 

orderings calculations calculations 
before after 

minimising miiiimising 
Tree 1 

1 1162 1734 572 2.23 

2* 1439 1802 363 2.34 
3 1644 2081 437 1.51 

Tree2 
1 136 181 45 0.41 

2 284 375 91 0.24 

3* 336 378 42 0.23 

Tree3 

1* 25 26 1 0.12 

2 25 27 2 0.14 

3 25 27 2 0.14 

Tree4 

1 248 382 134 1.12 

2* 315 399 84 1.21 

3 331 458 127 1.16 

Trees 

1 234 354 120 1.00 

2 299 377 78 0.59 

3* 259 334 75 0.56 

Table 8.4 Results of Different Ordering Schemes on Five Example Fault Trees 
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The results show that there are large differences in the number of ite computations 
when different ordering schemes are used for the basic events. Hence great savings 
can be made in terms of computation time and memory requirements when an efficient 
ordering of the basic events can be established. However it is also clear from these 
examples that each tree has an individual variable ordering that will optimise the size of 
its BDD. Here, there is no unique ordering scheme which is 'best' for all five fault trees 
(the'best' ordering for each fault tree has been marked with a *). 

8.4 BDD Size Dependence on Ordering Schemes 

The number of ite calculations for each basic event ordering scheme has been 

discussed in the previous section. The number of computations is however not the 

only important consideration. The size of the resulting BDD, i. e. the number of nodes 
it contains is also an extremely important consideration as far as memory requirements 

are concerned. The ite table may become very large due to the number of ite 

computations and the dimensions of the arrays used for storage cannot be increased 

any further due to memory restrictions within the Sun workstation. Therefore 

extensive investigations have been performed on fifty-one different benchmark fault 

trees and the number of non-repeated nodes produced in the BDD by the three 

different ordering schemes has been compared (ordering 1- top-down left-right, 

ordering 2- depth-first, ordering 3- priority-depth-first). The results can be seen in 

table 8.5. 

Appendix IV provides the summary and information characterising these fifty-one fault 

trees. Many of the trees were obtained from the papers reviewed in Chapter 2 and 

Chapter 3 where they had been used to test other algorithms. Additionally some have 

been obtained directly from industry (nuclear, transport and offshore) because they 

have features which make analysis difficult. The remainder have been constructed to 

have certain features required to test methods as part of the research for this thesis. 

The smallest number of BDD nodes, created by each ordering, is given in bold text in 

table 8.5. 
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Fault ordering 1 ordering 2 ordering 3 
Tree 

Number 
No. of 
Nodes 

Time (s) No. of 
Nodes 

Time (s) No. of 
Nodes 

Time (s) 

1 333 0.45 307 1.05 308 0.65 
2 10 0.14 8 0.67 8 0.58 
3 5 0.14 5 0.53 4 0.56 
4 28 0.12 26 0.61 26 0.57 
5 17 0.15 20 0.59 20 0.55 
6 43 0.16 41 0.60 41 0.57 
7 106 1.12 63 1.58 63 0.53 
8 106 0.90 61 1.26 61 0.58 
9 98 1.04 60 1.43 60 0.52 
10 40 0.16 40 0.52 40 0.60 
11 4 0.13 4 0.59 5 1.54 
12 155 11.40 62 11.00 61 1.34 
13 31 0.58 20 0.61 20 1.38 

14 30 0.45 22 0.50 22 1.45 
15 52 0.64 33 0.77 33 1.28 
16 180 1.49 275 1.65 335 1.37 

17 272 3.71 598 3.55 647 1.37 

18 175 1.73 268 1.67 394 1.75 

19 16 0.64 11 0.62 11 0.62 

20 12 0.47 12 0.66 12 1.52 

21 216 0.61 103 0.51 104 1.40 

22 43 4.90 49 0.67 59 6.42 

23 481 5.15 214 0.87 162 5.65 

24 52 4.86 68 0.68 42 5.19 

25 - - 605 0.94 475 5.05 

26 10 0.65 7 0.55 7 1.31 

27 10 0.47 7 0.58 7 1.42 

28 37 0.58 21 0.48 21 1.30 

29 31 0.65 19 0.57 19 1.40 

30 21 0.52 20 0.60 21 1.45 

31 - - 361 0.64 366 1.58 

32 39 0.61 60 0.57 39 1.57 

33 64 0.57 38 0.67 38 1.59 

34 7 0.61 7 0.54 7 1.55 

35 4 0.52 4 0.55 4 1.28 

36 - - 7290 57 mins - - 
37 6 0.66 6 0.59 6 1.43 

38 1472 1.31 450 1.21 413 1.04 

39 4 0.61 4 0.56 4 1.49 

40 4 0.48 4 0.65 4 1.54 

41 11 0.48 8 0.56 8 1.66 

42 5 0.47 5 0.57 5 1.59 

43 2 0.51 2 0.56 2 1.39 

44 4 0.60 4 0.59 4 1.58 

45 19 0.52 16 0.50 14 1.26 

46 333 5.31 372 0.63 390 1.41 

47 5 0.62 5 0.56 6 

48 8 0.64 7 0.60 8 1.71 

49 6 0.57 6 0.66 6 1.77 

50 7 0.57 7 0.63 7 1.50 

51 14 0.55 13 0.55 12 1.51 

Total & 21 n=48 36 n=48 37 n=48 
average 

time 
- 
x =0.948 x =0.787 

l =1.487 

Table 8.5 The Number of Nodes the BDD has for Three Different Orderings 
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The results in table 8.5 show that ordering 3 (priority-depth-first) created the largest 
number of 'optimum' BDD's, i. e. BDD's that have the smallest number of nodes when 
compared to the other orderings. Since smaller BDD structures require less processing 
to derive the minimal cut sets they can be thought of as being optimum. The totals in 
the columns headed 'No. of Nodes' shows the number of 'optimum' BDD's for that 
particular ordering. However ordering 2 (depth-first) was the only ordering that could 
solve fault tree number 36, the other orderings could not analyse this fault tree because 
of memory restrictions. Taking the forty-eight fault trees that could be analysed by all 
three orderings (i. e. omit trees 25,31 and 36) the average execution times are 0.948s 
for ordering 1,0.787s for ordering 2 and 1.487s for ordering 3. Although the best 
BDD ordering came from ordering 3 the best execution time came from ordering 2. 
This implies that the extra time required for ordering 3 was that needed to search for 
the subtrees which had basic event inputs only and then ordering them accordingly. 
Nevertheless as the average execution times are very small the extra 'searching' time 
can be considered to be unimportant. 

8.5 The 'New' Ordering 

'New' ordering was briefly discussed in Chapter 5 and, from the results produced in 

that chapter, was worth further consideration. New ordering identifies the repeated 
basic events in the fault tree which are given priority in the ordering process. In 

Chapter 5 the new ordering was applied within the basic top-down, left-right ordering 

scheme. Here the new ordering is used in conjunction with all three ordering schemes 
discussed, i. e. top-down, left-right ordering, depth-first ordering and priority-depth- 
first ordering. As a result a total of six different ordering schemes are investigated. 

The number of nodes produced for each BDD using these six ordering schemes is 

given in table 8.6. The table shows clearly that for each of the three different 

orderings, applying the new technique results in more of the BDD's being optimum. 

Again the optimum BDD for each ordering is displayed in bold text. As described 

previously in Chapter 5, gains in computation can be made by simply considering the 

repeated events first in the fault tree for all three orderings. The average execution 

times for the new orderings 1,2 and 3, are 1.615s, 1.569s and 1.6775s respectively 

(again using the forty-nine fault trees that could be analysed by all of the ordering 

schemes). The very small extra CPU time for each new ordering can be attributed to 

the sorting that is required to select the repeated events when ordering the inputs to 

each gate. 
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Fault ordering new ordering new ordering new 
Tree 1 ordering 2 ordering 3 ordering 

Number 1 2 3 
1 333 333 307 307 308 308 
2 10 9 87 8 8 
355 54 4 4 
4 28 27 26 26 26 25 
5 17 17 20 20 20 20 
6 43 42 41 38 41 38 
7 106 106 63 63 63 63 
8 106 106 61 61 61 61 
9 98 98 60 60 60 60 
10 40 40 40 40 40 40 
11 44 44 5 5 
12 155 151 62 61 61 61 
13 31 31 20 20 20 20 
14 30 30 22 22 22 22 
15 52 52 33 33 33 33 
16 180 180 275 275 335 335 
17 272 272 598 598 647 647 
18 175 176 268 268 394 394 
19 16 16 11 11 11 11 
20 12 11 12 10 12 11 
21 216 215 103 103 104 104 
22 43 42 49 48 59 59 
23 481 479 214 212 162 162 

24 52 50 68 66 42 42 
25 -- 605 600 475 473 
26 10 10 77 7 7 

27 10 10 77 7 7 

28 37 37 21 21 21 21 

29 31 31 19 19 19 19 

30 21 21 20 22 21 21 

31 -- 361 355 366 358 

32 39 39 60 60 39 39 
33 64 63 38 37 38 37 

34 76 76 7 7 
35 44 44 4 4 

36 -- 7290 - - - 
37 66 66 6 6 

38 1472 1412 450 428 413 413 

39 44 44 4 4 

40 44 44 4 4 

41 11 11 88 8 8 

42 55 55 5 5 

43 22 22 2 2 

44 44 44 4 4 

45 19 19 16 16 14 14 

46 333 333 372 372 390 390 

47 54 54 6 5 

48 88 77 8 8 

49 66 66 6 6 

50 77 77 7 7 

51 14 14 13 13 12 12 

Total 17 19 27 35 30 ;1 

Table 8.6 The Number of No des the BDD has for Six Differe nt Orderings 
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Number ite 
calculations 
before min 

ite 
calculations 

after min 

differ- 
ence 

1 1479 2194 715 
2 22 22 0 
3 11 13 2 
4 75 102 27 
5 66 123 57 
6 69 87 18 
7 366 450 84 
8 356 436 80 
9 350 428 78 
10 237 276 39 
11 10 10 0 
12 175 175 0 
13 59 60 1 
14 81 82 1 
15 136 148 12 
16 446 709 263 
17 1237 2140 903 
18 1440 1803 363 
19 25 26 1 
20 26 26 0 
21 385 529 144 
22 173 215 42 
23 649 818 169 
24 196 283 87 
25 2763 4385 1622 
26 16 16 0 
27 19 19 0 
28 59 59 0 
29 66 66 0 
30 61 80 19 
31 1299 2359 1060 
32 289 380 91 
33 117 172 55 
34 19 23 4 
35 11 14 3 

36 - - - 
37 13 13 0 
38 1238 2065 827 
39 14 14 0 
40 17 17 0 
41 23 23 0 
42 15 15 0 
43 12 12 0 
44 19 19 0 
45 41 53 12 

46 6494 8674 2180 
47 10 10 0 
48 18 18 0 
49 17 17 0 
50 21 21 0 
51 34 37 3 

Table 8.7 Number of ite Calculations 

needed for New Ordering 
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All the different ordering schemes have been implemented in a program called 
ORDERING. When the program is executed the user is prompted by several 
questions asking which ordering is to be used for the fault tree. 

Although the nodes of the BDD tell us what size it is, it does not give us any indication 

as to whether or not it is minimal. For this purpose we need to know the number of ite 

computations before and after minimisation. On looking at table 8.6 it can be seen that 
new ordering 2 creates the largest number of optimal BDD's when compared to the 
other orderings. The last row in table 8.6 provides the totals for the number of 
optimum BDD's that each ordering creates. The number of ite computations to derive 

the original and minimal BDD's for new ordering 2 is provided in table 8.7, (the fault 

trees whose BDD was directly minimal for this particular ordering can be seen in bold 

text). 

The results in table 8.7 show that new ordering 2 created minimal BDD's in nineteen 

out of the fifty-one fault trees, i. e. 37.25% of the cases. For the thirty-two other fault 

trees it produced the best ordering of the six schemes investigated and it is of course 

not always possible to produce a minimal BDD. Fault tree number 12 is interesting, 

even though the fault tree had 84,424 minimal cut sets, a minimal BDD was 

constructed for this ordering. It is also worth mentioning that fault tree number 36 

could not be analysed using new ordering 2 (ran out of memory on the Sun 

workstation) even though this fault tree could be analysed using ordering 2. Therefore 

in this instance ordering the repeated events first in the fault tree proved a 

disadvantage. 

8.6 Variable Ordering Using Repeated Basic Events and Subtree Levels 

From the results of the research into the ordering of the basic events in the fault tree, it 

is clear that great gains in computation can be made if a 'good' ordering scheme can be 

found. Even if a minimal BDD cannot be obtained it is advantageous to produce a 

'near-minimal' diagram. The results show that an ordering scheme that employs a 

depth-first approach is generally a good one. Further, it has been discovered that the 

repeated basic events in the fault tree have a significant influence on the size of the 

BDD. In addition to this, the priority-depth-first ordering scheme shows that by first 

ordering those subtrees which have basic event inputs only, even further gains in 

computational efficiency can be made. Therefore an improved method of ordering the 
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basic events in the fault tree could result from a scheme which incorporates all these 
aspects within a depth-first approach. To investigate this an ordering scheme has been 
developed to deal with fault trees which contain repeated basic events. It is a variable 
ordering technique which considers Repeated Basic Events and S£btree Levels called 
REBESUL. To illustrate the notion used to identify subtree levels refer to subtree G1 
in figure 8.3. The algorithm for REBESUL is based on the following six steps. Each 

step of REBESUL is justified and then explained by the use of an example. 

REBESUL 

(1) Create a list of the repeated events in the fault tree, those with the highest 
number of occurrences are listed first. Repeated events that have an equal 
number of occurrences are placed in the rows between the next highest and 

next lowest. 

(2) For each repeated event in step (1) create a list of the subtrees (first sons of 
the top gate) that contain this repeated event in the order of the highest 

number of different repeated event occurrences within each subtree to the 
lowest. 

(i) If two or more subtrees share the same number of 

repetitions jr oan event, the suhtree with the greatest 

number of levels takes precedence over how many 

repetitions there are in a suhtree. 

(3) Create a list of the levels in the subtree at which the repeated event in step (2) 

occurs. 

(4) Order the gates (depth first) starting with the gate that 'contains' the lowest 

level occurrence (obtained in step (3)) of the repeated event, followed by the 

other gates which 'contain' the next level of occurrence of the repeated event. 

Note that the term 'contains' does not necessarily mean that the repeated event 

is a direct input to the gate, it may be an input a few levels down. List the 

repeated events first when ordering the inputs of each gate. 

(5) If all the repeated events have been dealt with in this suhtree order an Y 

remaining events to gates in the s«htree depth first and goto (6). Otherwise 

goto (3) for the next repeated event obtained in (1). 
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(6) If all subtrees containing repeated events have been dealt with order any 
remaining subtrees depth first. Otherwise order the next subtree containing 
repeated events, i. e. goto (2). 

G1 

G2 
Level 1AB 

Level 2 G3 D 

Level 3 
Gý C 

Level 4GH 

Figure 8.3 Subtree Levels 

8.6.1 Justification for the REBESUL Ordering 

The steps in the ordering have each been given a justification by the use of a heuristic. 

The heuristics produced are based on observations and knowledge gained while 

undertaking the ordering research. 

Step (1) "Create a list of the repeated events in the fault tree, those with the highest 

number of occurrences are listed ferst. Repeated events that have an equat 

number of occurrences are placed in the rows between the next highest and 

next lowest. " 
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Heuristic (1) 

Repeated basic events cause redundancy in the Boolean logic expression for 

the top event of a fault tree. Since without this type of event the cuts sets 
produced are already minimal, they need special consideration for an efficient 
fault tree analysis process. It is has been shown in Chapter 4 that the BDD is 
in the form of Shannon's decomposition. An efficient decomposition of a 
structure function is obtained by pivoting about the most repeated variables 
through to the least repeated within each residue. Therefore to follow the 

rules for efficiency based on Shannon's decomposition to construct the BDD, 

the repeated basic events in the fault tree are listed by the highest number of 

occurrences through to the lowest. This list will form the basis of the 

ordering. 

Step (2) "For each repeated event in step (1) create a list of the subtrees (first sons of 

the top gate) that contain this repeated event in the order of the highest 

number of different repeated event occurrences within each suhtree to the 

lowest. " 

Heuristic (2) 

The subtree with the largest number of different repeated events (including 

the most occurring repeated event) holds more influence over the rest of the 

tree. 

Step (2) (i) "If two or more subtrees share the same number of repetitions for an 

event, the subtree with the greatest number of levels takes precedence over 

how many repetitions there are in a subtree. " 

Heuristic (2) (i) 

Let one subtree of a top event be the basic event r, which has the BDD 

structure ite(r, 1,0), this is obviously a minimal structure. Let a second 

subtree be F which also contains r and many more levels. The most 

efficient ordering for this subtree is depth-first and listing r first when 

ordering the inputs to the (late where it occurs. 
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To demonstrate, let F have the BDD structure ite(x, F1, F2) and let r he 
below Fl. Suppose it is necessary to compute ite(x, F1, F2) <op> ite(r, 1, 
0) (see figure 8.4 for the BDD representation of this operation). 

F 
r 

x 10 
<op> 1r0 

F1 F2 
Yz10 

r 

G1 Ck G2 
1 

Figure 8.4. ite(x, Fl, F2) <op> ite(r, 1,0) 

As F has more levels then x<r in the ordering and ite(x, Fl, F2) <op> ite(r, 

1,0)=ite(x, F1<op>r, F2<op>r). The computation of F2<op>r would lead 

to a minimal structure as all the basic events of F2 have been ordered prior 

to r, and F2 does not contain r. Therefore we must consider whether the 

development of F1 <op>r will lead to an efficient structure. The operation 

F1<op>r would eventually lead to the computation of: 

ite(r, G1, G2) <op> ite(r, 1,0) 

=ite(r, 1 <op>G 1, O<op>G2) 

It is evident that ite(r, 1 <op>G 1, O<op>G2) will be a minimal structure as 

Gl and G2 contain no repeated events. Also all other computations of the 

nodes below F1 and r would be minimal, as again no other nodes in F1 

contain r. 
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It follows that the ordering x<r would be more efficient than having r 
ordered first in the F structure, i. e. let F=ite(r, K1, K2). In this case F, 
which has the most influence over the tree as a whole, has not been ordered 
in the most efficient way because a depth-first approach has not been used 
(this ordering would not be compatible with the computations of the gates 
in the subtree F, unless r occurred on the first level of F). Therefore K1 

and K2 would be two inefficient structures. 

(3)+(4) "Create a list of the levels in the subtree at which the repeated event in step 
(2) occurs. " "Order the gates (depth first) starting with the gate that 
'contains' the lowest level occurrence (obtained in step (3)) of the repeated 

event, followed by the other gates which 'contain' the next level of occurrence 

of the repeated event. Note that the term 'contains' does not necessarily 

mean that the repeated event is a direct input to the gate, it may be an input a 
few levels down. List the repeated events first when ordering the inputs of 

each gate. " 

Heuristic (3) 

This will provide the choice of gates for the depth-first ordering, which has 

proven to be the most desirable ordering. 

Steps (5) and (6) simply deal with any remaining repeated events that require 

ordering and any remaining subtrees that have not been ordered, by redirecting 

the algorithm to previous steps. 

8.6.2 Computation and Examples of REBESUL Event Ordering 

The computation of steps 1-6 of the REBESUL ordering has been achieved through 

the use of eighteen different subroutines. Table 8.8 provides a summary of the action 

of each of these subroutines and the diagram shown in figure 8.5 illustrates the 

relationship between these subroutines, each ellipse represents a subroutine and each 

branch represents the calling of another subroutine within a subroutine. 
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Subroutine Name Summary of Operation. 

I. Repevent Finds number of occurrences of each basic event in 

the fault tree. 

2. Hilorepevent Orders the basic events highest to the lowest number 

of occurrences. 

3. Subtree Obtains the subtrees of the top gate. 

4. Create Provides a list of all the elements below a gate. 

5. Repeatcheck Deals with the subtrees of the top gate. Finds out 

which of the subtrees contains the most repeated 

basic event. If any two contain the most repeated 

event then subroutine Different is called. 

6. Different Counts the number of different repeated basic events 

within each subtree. 

7. Hilosub Orders the subtrecs depending on the number of 

different repeated events. 

8. Levelcount Counts the number of levels in each subtree. 

9. Sortlevel Orders the subtrees depending on the number of 

levels. 

10. Sort Deals with the subtrees in the order depending on 

different repeated events or subtrce levels and calls 

subroutine Levelseurch to search for the repeated 

event in question. 

11. Levelsearch Finds the level of occurrence of the repeated event 

and deals with the gates that need to be ordered 

above or below it. 

12. Checkbe Subroutine that checks if all basic events have been 

ordered. 

13. lordbelow Orders the gates that lie above the repeated event. 

14. Abovebelow The level of occurrence of the repeated event is not a 

level 1 input to the subtrec, therefore the gates above 

it need to be ordered first, this subroutine provides 

the list of such gates. 

15 Rauire even! Provides a 'depth-first array' of in tits to a ate. 
. 

16 i All d Orders the basic event in puts in 'depth-first array'. 
. er n or 

17. Rauzspecord Orders a gate depth-first and gives repeated events 

priority in the ordering. 

18. Above ate 
Orders remaining -arcs in a subtrec. 

Table 8.8 Summary of each of the Subroutines in the REBESUL Ordering 
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Figure 8.5 Diagram Illustrating the Relationship Between the Subroutines of the 
REBESUL Ordering 

The REBESUL ordering has been applied to five fault trees to illustrate the ordering 
technique. 

Wimple I- Two occurrences of one event 

Consider the fault tree structure shown in figure 8.6. It is expressed as an alternating 

gate sequence, has one repeated basic event labelled 'a' which appears as an input to 

the top gate and also as a third level input to subtree Gl. The ordering algorithm 
REBESUL proceeds as follows: 

197 



Ordering Steps 

(1) The only repeated event is a. It occurs twice. 

(2) Both subtree I (G 1) and subtree 2 (basic event a) contain a. 

(i) Subtree 1 takes precedence as it has a greater number of levels than subtree 
2. 

(3) Event a occurs at level three of subtree 1. 

(4) Only GI contains the level of occurrence of event a, via G3. Therefore ordering 

gate G1 depth-first gives: 
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b<c<d<a<e<f 

(5) All basic events have been ordered. 

The BDD for this ordering can be seen in figure 8.7. 

1U 

ac 
10 

ad 
1ý 

ril 0 
a 

1ý 

Figure 8.7 BDD for Fault Tree I 

This is a minimal BDD giving the minimal cut sets: 

(1) {b, a} 
(2) (c, a) 
(3){d, a} 

Example 2- Three occurrences of one event 

The fault tree structure for the second example is illustrated in figure 8.8. It consists 

of eight basic events one of which (a) is repeated three times. 
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Figure 8.8 Example Fault Tree 2 

Ordering Steps 

(1) The only repeated event is a. It occurs three times. 

(2) Both subtree 1 (G 1) and subtree 2 (G5) have the same number of different repeated 

events. 

(i) Subtree 1 has four levels and subtree 2 has three levels, therefore subtree 1 

takes precedence. 

(3) Event a occurs at level three of G 1. 
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(4) Only G1 contains the level of occurrence of a, therefore the depth-first ordering for 
this subtree is: 

b<c<d<a<e<f 

(5) All events have been ordered in this subtree, goto (6). 

(6) The depth-first ordering of the remaining subtree 2 is: 

g<h 

Finally the combined ordering of this fault tree is b<c<d<a<e<f<g<h and it results in 

the BDD in figure 8.9. 

d oý 1 

Figure 8.9 BDD for Fault Tree 2 

This BDD is minimal and it directly provides the minimal cut sets: 

(1) {b, a} 
(2) {b, g} 
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(3) {c, a} 
(4) { c, g) 
(5) {d, a} 
(6) {d, e, f, g} 

Example 3- Three repeated events 

The alternating sequence of AND and OR gates shown in figure 8.10 provides the fault 

tree structure for example 3. 

-Order ng Step 

(1) Event b occurs four times (note G3 occurs twice), event a occurs twice and event 

c occurs twice. 

(2) Subtree 1 (GI) has the most repeated events (three repeated events), G2 has only 

two. 

(3) Event b occurs at level one and at level two of G 1. 

(4) Order the basic events of GI followed by G3: 

?( )) 

Figure 8.10 Example Fault Tree 3 



b<a<c 

(5) Goto (6). 

(6) The ordering for subtree 2 (G2) is: 

d<e 

All basic events have been ordered, giving the combined ordering for fault tree 3 as 
b<a<c<d<e and the resulting BDD is minimal with the minimal cut sets: 

(1) (b) 

(2) (a) 
(3) (c, d) 

(4) (c, e) 

Figure 8.11 Example Fault Tree 4 
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Example 4- Two repeated events with the same number of occurrences 

The fault tree shown in figure 8.11 contains eight different basic events with two of 
these basic events repeated the same number of times. 

Ordering Steps 

(1) Event b occurs twice and event c occurs twice. 

(2) Both subtree I (G2) and subtree 2 (G 1) have the same number of different repeated 

events. 
(i) Subtree 1 has two levels and subtree 2 has three levels, therefore 

subtree 2 takes precedence. 

(3) Event b occurs at level one of G 1. 

(4) The ordering for subtree 2 is: 

b<e<d<c<g<f 

(5) Goto (6). 

(6) The ordering for subtree 1 is: 

a<h 

All the basic events have been ordered and the overall ordering for this fault tree is 

b<e<d<c<g<f<a<h. The BDD for this ordering is minimal and produces the minimal 

cut sets: 

(1) {b, a} 
(2) {e, c, a) 
(3) le, a, h) 
(4) { d, c, a) 
(5) {d, g, a, h) 

(6) (d, f, a, h) 
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Figure 8.12 Example Fault Tree 5 

Example 5- Multiple repeated events 

The fault tree shown in figure 8.12 contains eight basic events with four of these 

events being repeated. 

Ordering tees 

(1) a- occurs three times 
b- occurs two times 

e- occurs two times 

g- occurs two times 
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(2) Subtree 2 (G3) has the highest number of different repeated events (four), therefore 
it is ordered first. Subtree 1 (G2) has three different repeated events. 

(3) Event a occurs at level two and level four of G3. 

(4) G6 contains the lowest level occurrence of a and G5 contains the next level of a 
(here a is an input to G10 which in turn is an input to G8 which in turn is an input 

to G5), therefore take the order of gates, G6, G5, G8, G 10, G9 which provides the 
basic event ordering: 

a<d<f<b<g<h<e 

(5) Goto (6). 

(6) The ordering for subtree 1 provides the last basic event c. 

All basic events have been dealt with and the ordering for the fault tree is 

a<d<f<b<g<h<e<c. Again this ordering produces a minimal BDD and the following 

minimal cut sets. 

(1) {a, d} 

(2) [a, f} 

(3) (a, b) 
(4) (a, g, e) 
(5) {b, g, e) 
(6) If, b, c) 
(7) (b, g, e) 
(8) {b, h, e} 
(9) {b, h, e} 
(10) {b, h, c} 

8.6.3 Efficiency of REBESUL Ordering 

The five previous example fault trees where chosen to illustrate the ordering technique 

as they encountered all the options within the ordering REBESUL, therefore enabling 

clarification of the procedure. 
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Fault 
Tree 

Number 

ordering 
3 

REALS L 
ordering 

1 308 281 
2 8 7 
3 4 4 
4 26 26 
5 20 20 
6 41 38 
7 63 63 
8 61 61 
9 60 60 
10 40 40 
11 5 4 
12 61 62 
13 20 20 
14 22 22 
15 33 33 
16 335 201 
17 647 506 
18 394 252 
19 11 11 
20 12 10 
21 104 122 
22 59 52 
23 162 179 
24 42 42 
25 475 550 
26 7 7 
27 7 7 
28 21 21 
29 19 19 
30 21 21 
31 366 491 
32 39 60 
33 38 46 
34 7 6 
35 4 4 
36 - 8762 
37 6 6 
38 413 501 
39 4 4 
40 4 4 
41 8 8 
42 5 5 
43 2 2 
44 4 4 
45 14 16 
46 390 382 
47 6 4 
48 8 7 
49 6 6 
50 7 7 
51 12 13 

37 41 

Table 8.9 Comparing the 
Number of Nodes for Ordering 

ZEBESUL Ordering 
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Number ºtc. 
calculations 
before min 

ite 
calculations 

after min 

differ- 
ence 

1 1452 2151 699 
2 26 26 0 
3 10 10 0 
4 75 102 27 
5 66 123 57 
6 75 93 18 
7 315 399 84 
8 305 385 80 
9 299 377 78 
10 204 243 39 
11 11 14 3 
12 178 180 2 
13 75 88 13 
14 95 110 15 
15 147 173 26 
16 441 611 170 
17 1268 2051 783 
18 1546 1813 267 
19 34 39 5 
20 27 27 0 
21 562 764 202 
22 193 239 46 
23 859 1058 199 
24 154 197 43 
25 3393 4668 1275 
26 17 17 0 
27 23 23 0 
28 67 67 0 
29 55 55 0 
30 57 77 20 
31 1456 2997 1541 
32 338 430 92 
33 129 207 78 
34 20 24 4 
35 11 14 3 
36 17665 47683 30018 
37 12 12 0 
38 1400 2469 1069 
39 13 13 0 
40 15 15 0 
41 23 23 0 
42 15 15 0 
43 12 12 0 

44 18 18 0 
45 41 53 12 
46 4047 5063 1016 

47 11 11 0 
48 17 17 0 
49 17 17 0 

50 21 21 0 
51 30 30 0 

Table 8.10 The Number of ite Calculations 

Before and After Minimising the BDD for 

7 73ESUL Ordering 
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Moreover they illustrate the efficiency of the ordering scheme as the REBESUL 

ordering directly produced a minimal BDD for each fault tree without the need to 
apply the minimising algorithm. 

Referring back to section 8.3 we saw in table 8.5 that when comparing the orderings of 
the fifty-one benchmark fault trees, ordering 3 (priority-depth-first) provided the 
largest number of optimum BDD's. 

Therefore the nodes of the fifty-one BDD's for ordering 3 have been compared to the 
REBESUL ordering, to illustrate which ordering is more efficient and the results are 

given in table 8.9. 

It is important to note that fault tree 36 could not be analysed with ordering 3 but with 

the REBESUL ordering this fault tree could be successfully analysed obtaining 46,188 

minimal cut sets in 2.49s (CPU time). Additionally the number of ite calculations 

before and after minimising the BDD have been entered in table 8.10 to give an 

indication of how many BDD's are directly minimal. The results show that nineteen 

out of the fifty-one fault trees are minimal. 

8.6.4 Optimum Ordering for Fault Trees with No Repeated Events 

Occurring less frequently are fault trees which have no repeated events. For such fault 

trees the research has shown that a depth-first ordering of the basic events will enable 

an efficient computation of the ite structures for each gate. The reason for this is Mat 

the gates are dealt with in a bottom-up level to level manner and at each level the basic 

events are then compatible with the level of computation. Refer to figure 8.13 for an 

example fault tree. 

The lowest to the highest level, depth-first ordering gives, a<e<f<b<c<d. This 

ordering results in a minimal BDD with the minimal cut sets: 

(1) (a, e, b) 

(2) { a, e, c, d) 

(3) [a, f, b) 

(4) (a, f, c, d) 
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b G3 
cf Level 2 

GD d Level 3 

Figure 8.13 Example Fault Tree with No Repeated Events 

8.7 Summary 

From the investigation on the fifty-one benchmark fault trees there does not appear to 
be a general ordering scheme that will be 'best' for all trees. Bryant (34) recognised the 

problem of computing an ordering that minimises the size of the BDD and stated that 
for some trees it may not be possible to produce a minimal BDD whatever the 

ordering. In this case a "near-minimal" ordering would be required. Out of all the 

orderings considered the REBESUL ordering gave the most promising results in terms 

of efficiency of the BDD analysis. 

To make even further improvements concerning the ordering of the basic events a 

more sophisticated ordering scheme maybe required. One approach could possibly 
involve the use of neural networks, where a 'learning' process could be evoked due to 

pattern recognition between fault trees and their optimal ordering schemes. As a result 

a suitable ordering scheme for each fault tree could be automatically selected based on 

past experiences. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Summary of Work 

After an extensive critical literature review of techniques for fault tree analysis the 
qualitative binary decision diagram method of Rauzy (35) to analyse fault trees was 
considered worthy of further investigation. The successful computer implementation 
of both top-down and bottom-up approaches by the author of this thesis together with 
criticisms in the literature highlighted the limitations of these conventional techniques 
which were therefore not further considered. 

The binary decision diagram (BDD) approach to produce the minimal cut sets of the 
fault tree has been successfully demonstrated by its manual application to example test 
case fault trees. A computer program, BADD has been developed which implements 

this procedure. The program requires an input data file, containing the fault tree 
structure, in the form of the connectivity of the fault tree. If both a qualitative and 
quantitative assessment of the fault tree is required then the program needs an 
additional input file which provides the reliability data for the components in the fault 

tree. 

The computational BDD method was tested against fifty-one benchmark fault trees 

and the results compared to the qualitative analysis using a state of the art commercial 
fault tree analysis package. This comparison illustrated the benefits to be gained in 

terms of speed of computation and memory requirements when the BDD method is 

used. These test results indicated that the BDD method did fulfil its potential 
improvements in qualitative fault tree analysis. However if it is to be considered a 

serious rival to the traditional fault tree analysis techniques it must be capable of 

performing the quantification of all parameters which can be determined by Kinetic 

Tree Theory (1). 

The BDD approach was then extended to perform the quantification of the top event 

occurrence parameters. This included the exact calculation of the probability of the 
top event occurrence, QS, (t) and the system unconditional failure intensity, w, (t). 

The calculation of these parameters using the BDD proved superior to the 

approximations obtained using the kinetic tree theory approach. The results of test 
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case fault trees showed that the BDD method allowed faster and more accurate results 
to be obtained when compared to the kinetic tree theory procedure. 

The use of the BDD structure for quantification purposes was further developed to 
obtain the importance measures concerning the basic events in the fault tree. The 
computational method to calculate these importance measures proved successful and 
illustrated the efficiency of the technique as only one pass of the BDD structure is 

necessary. 

The technique was then further extended to incorporate the initiating and enabling 
event concepts in the top event quantification along with relevant importance 

measures. 

A feature of the BDD method which required yet further investigation was that of the 
ordering used for the basic events in the fault tree. It was shown during the manual 
application of the BDD method that the choice of basic event ordering greatly 
influenced the size of the BDD. Thus it is advantageous to use an ordering scheme 

which reduced the BDD size, as a smaller BDD would increase the speed of the 

analysis and reduce the memory requirements. Therefore six different ordering 

schemes were investigated and successfully programmed with the aim to reduce the 

size of the BDD. These ordering schemes were then applied to the fifty-one 

benchmark fault trees. From the results of the comparison of these ordering schemes 

promising features of the 'best' ordering schemes were retained and these were 
incorporated into the development of a more sophisticated ordering scheme called 
REBESUL which proved more effective than any previous ordering scheme 

considered. 

9.2 Conclusions 

1. The BDD method has been shown to overcome some of the disadvantages of 

conventional fault tree analysis procedures in determining the minimal cut sets. 

The nature of the BDD structure is such that it lends itself to efficient Boolean 

manipulation i. e. minimising the BDD structure to obtain the minimal cut sets 

avoids the vast number of event comparisons required when applying the Boolean 

reduction laws to obtain minimal cut sets using conventional fault tree analysis 

methods. 
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2. The BDD method is capable of evaluating the full range of top event parameters 
and component importance measures. For top event quantification the BDD 
approach does not require the prior determination of the minimal cut sets unlike the 
Kinetic Tree Theory method. This reduces computation time and memory 
requirements. 

3. The application of the BDD approach to benchmark test cases has shown that this 
method improves efficiency over the whole fault tree qualitative and quantitative 
analysis process. 

4. In addition to improved efficiency the BDD method also improves the accuracy of 
quantitative analysis as it enables the calculation of exact values. 

5. Guidelines on how to order the basic events in the fault tree have been established 
and justified to provide a good level of efficiency over a wide range of fault tree 
structures. 

9.3 Other Applications of the Binary Decision Diagram 

Optimal safety system performance can be obtained using the fault tree analysis 
method to determine the availability of each feasible system design. The use of the 
binary decision diagram has been applied to determine the optimal performance of a 
safety system (58) in conjunction with a genetic algorithm. 

During the optimisation phase of the design scheme it is required to derive the system 
failure probability and unconditional failure intensity for a large number of potential 
design variations. To ensure that all designs can be analysed in the most efficient 

manner the fault tree structure representing the High Integrity Protection System 

(HIPS) in the paper by Andrews and Pattison (58) was converted to a binary decision 

diagram using the program BADD described in this thesis. All potential designs were 
incorporated into the fault tree structure using house events. Analysis of the BDD has 

been shown to be much faster than the quantification of the fault tree structure itself. 

213 



9.4 Future Work 

9.4.1 A Different Minimising Process 

The minimising process employed by Rauzy (35) is applied to the BDD once the top 
event ite structure has been computed. However it is evident that redundancies are 
developed as the ite structures are constructed for each gate in the fault tree. This is 
best illustrated by an example, refer to figure 9.1. 

Procedure 

To formulate the ite structure of the fault tree shown in figure 9.1 the following depth- 

first, left-right ordering is used: 

X2<X3<X6<X4<X5<X1<X7<X8 

G6=ite(X3,1,0)+ite(X6,1,0) 

=ite(X3,1, ite(X6,1,0)) 

G4=ite(X4,1,0). ite(X5,1,0) 

=ite(X4, ite(X5,1,0), 0) 

G3=X2. G6 

=ite(X2,1,0). ite(X3,1, ite(X6,1,0)) 

=ite(X2, ite(X3,1, ite(X6,1,0)), 0) 
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G 1=G3+G4 

=ite(X2, ite(X3,1, ite(X6,1,0)), 0)+ite(X4, ite(X5,1,0), 0) 

Following the usual procedure one would obtain the ite structure for G1 as: 

ite(X2, ite(X3,1, ite(X6,1, ite(X4, ite(X5,1,0), 0))), ite(X4, ite(X5,1,0), 0)) 

However the BDD for this gate is non-minimal, refer to figure 9.2. 

The cut sets obtained from figure 9.2 are: 

(1) {X2, X3} 
(2) (X2, X61 
(3) { X2, X4, X5) 

(4) 1 X4, X51 

Here cut set (3) is redundant. This redundancy can be avoided by employing an 

alternative ite construction which involves a different minimising procedure. 

Reconsider the ite formulation of G 1. 

G 1=G3+G4 
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G1=ite(X2, ite(X3,1, ite(X6,1,0)), 0)+ite(X4, ite(X5,1,0), 0) 

Here it is obvious that the resulting right branch (0 branch) of this 'OR' operation will 
be minimal due to the 0 in the ite structure for G3, therefore the left branch (1 branch) 
which results from, ite(X3,1, ite(X6,1,0))+ite(X4, ite(X5,1,0), 0) will clearly be 
non-minimal as ite(X4, ite(X5,1,0), 0) is a solution of the 0 branch. Hence the 
minimal ite for G1 is: 

ite(X2, ite(X3,1, ite(X6,1,0)), ite(X4, ite(X5,1,0), 0)) 

This leads to the following theorem. 

Theorem 1 

If F=ite(x, F 1,0) and G=ite(y, G 1, G2) where x<y then 
F<op>G=ite(x, F1, G) where <op> is the OR operation represented by +. 

Continuing with the ite construction of the right hand side of the fault tree in figure 

9.1: 

G5=ite(X7,1,0). ite(X8,1,0) 

=ite(X7, ite(X8,1,0), 0) 

G 2=X 1 +G5 

=ite(X 1,1,0)+ite(X7, ite(X8,1,0), 0) 

=ite(X1,1, ite(X7, ite(X8,1,0), 0)) 

Lastly: 

Top=G 1. G2 

=ite(X2, ite(X3,1, ite(X6,1,0)), ite(X4, ite(X5,1,0), 0)). ite(X1, 

1, ite(X7, ite(X8,1,0), 0)) 

=ite(X2, B, C) 

where: 

B=ite(X3, ite(X 1,1, ite(X7, ite(X8,1,0), 0)), 

ite(X6, ite(X 1,1, ite(X7, ite(X8,1,0), 0)), 0)) 
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and 

C=ite(X4, ite(X5, ite(Xl, 1, ite(X7, ite(X8,1,0), (»), 0), 0). 

The BDD for Top is illustrated in figure 9.3. 

The BDD in figure 9.3 results in the minimal cut sets: 

(1) {X2, X3, X1 } 
(2) { X2, X3, X7, X8) 
(3) { X2, X6, X 1) 
(4) { X2, X6, X7, X81 
(5) { X4, X5, X 1) 
(6) { X4, X5, X7, X8) 

If the usual ite procedure had been undertaken the resulting BDD would have created 
two redundant cut sets, J X2, X4, X5, X l) and J X2, X4, X5, X7, X8), therefore this 

alternative minimising technique has increased the efficiency of the ite procedure. 

This alternative form of minimising when an OR gate is encountered caters for fault 

trees that have not got any repeated events. Applying this minimising procedure to 
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fault trees containing repeated events results in a loss of some of the minimal cut sets. 
Therefore further research into an alternative form of minimising is required for such 
fault trees. Additionally an alternative form of minimising when an AND gate is 

encountered could be developed. 

For fault trees with repeated events it may prove more beneficial in terms of 
computational efficiency to apply the minimisation procedure of Rauzy to each gate 
structure, during the ite construction before reaching the top event, to simplify the 
overall process. 

9.4.2 Computer Implementation of Modularising the Fault Tree 

It has been demonstrated in section 4.8 that modularising the fault tree before applying 

the BDD technique can reduce the complexity of the problem. Therefore modularising 

the fault tree is a feature which could be incorporated into the BDD program to 

increase efficiency. 

9.4.3 Ordering of the Basic Events using Neural Networks or Genetic 

Algorithms 

It has already been mentioned in Chapter 8 that a feasible approach to creating an 

'optimal' or at least a good ordering scheme for the basic events of each fault tree could 

result from the use of a neural network. One could 'teach' the neural network to 

choose the best ordering for each particular fault tree that needs to be analysed. 

Alternatively, the use of genetic algorithms may be the way forward to determine a 

basic event ordering scheme which will optimise the size of the BDD for a certain fault 

tree. 

9.4.4 Quantification of Non-Coherent Fault Trees 

Group Aralia (41) demonstrated that the BDD technique could be applied to analyse 

non-coherent fault trees. However work on quantifying the fault tree to find, in 

addition to the top event probability, such parameters as the unconditional failure 

intensity and all the component importance measures has yet to be undertaken. This 
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would prove that the BDD technique for analysing fault trees can provide a full 

qualitative and quantitative analysis for both coherent and non-coherent fault trees. 
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APPENDIX I-*. ats File Format 

The fault tree structure file with extension '*. ats' is an ASCII file with the following 
format. 

Each line of the file contains a definition for each gate in the fault tree. The first 10 
columns of a line must contain the name of a gate. The gate name must be left- 
justified and consist of no more than 10 alphanumeric characters. The next 7 columns 
represent the gate type. The type label must be left justified and be one of the 
following options (can be upper or lower case). 

OR 

AND 
VOTEm/n 

VOTE gates are defined in terms of m out of n failures. For example VOTE2/4 
indicates 2 out of 4 input failures will result in the gate failure. 

Columns 18 and 20 are used to indicate the number of gate and event inputs. Up to 9 

gate inputs and 9 events inputs are allowed. The remaining columns in each line are 

used to represent input names (gate and primary event). Names are left-justified in 

groups of 10 columns. 

An example tree structure file is shown below. 

Gate l AND 11 Gate2 XI 

Gate2 VOTE2/4 14Gate3 X2 X3 X4 

Gate3 OR 0 2X2 X4 

Note that all gates named as inputs must themselves be defined in the file. Gates may 
be defined in any order. 
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APPENDIX 11 - *. aqd File Format 

The failure data file with the extension '. aqd' is an ASCII file with the following format. 

Each event and its associated data is defined on two lines. The first line specifies the 
event name and failure model type. The second line specifies the model parameters. 
There are 2 or 3 model parameters depending on the model type. The event name 
must be left-justified on the first 10 columns and the model type indicator in the 11th 

column. The model parameters are specified in free format. 

Valid model type indicators are: 

F: Fixed unavailability and unconditional failure intensity 
R: Constant failure and repair rate 
M: Mean time to failure and repair 
P: Dormant failure with periodic inspection 

The model parameters (in the order required) for each model type are given below. 

F: Unavailability, unconditional failure intensity 

R: Failure rate, repair rate 
M: Mean time to failure, mean time to repair 
P: Failure rate, inspection interval, mean time to repair 

Consider the following example of the definition of an event model in a '. aqd' file: 

X1 R 

0.1,120 

The first line consists of the basic event code X 1' left-justified in the first 10 spaces of 

the line, followed by the model code 'R' in the 11th space. In this example the constant 

failure and repair rate has been chosen. 

The second line indicates the quantitative parameters associated with the model type. 

In our example above the parameters represent failure rate (0.1) and repair rate (120). 

No time units need be specified. Time units are assumed to be consistent. 
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APPENDIX III - Dresden-3. ats File and Dresden-3. aqd File 

1060 and 2 01058 1059 
1058 and 2 01057 1055 
1059 and 2 01053 1045 
1057 and 3 01037 1034 1032 
1055 and 3 01026 1022 1019 
1053 or 2 01052 1051 
1045 or 2 01044 1043 
1044 or 0 249 48 
1043 or 1 11042 47 
1052 or 0 257 56 
1051 or 1 11050 55 
1042 or 2 01041 1040 
1050 or 2 01049 1048 
1049 or 0 254 53 
1048 or 1 11047 52 
1041 or 0 246 45 
1040 or 1 11039 44 
1047 or 2 01057 1046 
1039 or 2 01055 1038 
1046 or 0 250 51 
1038 or 0 243 42 
1037 or 2 01036 1025 
1034 or 2 01033 1020 
1032 or 2 01056 1031 
1036 or 0 241 40 
1025 or 2 11024 1035 29 
1033 or 0 237 36 
1020 or 0 224 23 
1056 and 2 01030 1028 
1031 or 0 235 34 
1024 or 0 228 27 
1035 or 0 239 38 
1030 or 2 01029 1009 
1028 or 2 01027 1017 
1029 or 0 233 32 
1009 or 1 11008 10 
1027 or 0 231 30 
1017 or 1 11015 18 
1015 or 1 11014 16 
1008 or 2 01007 1006 
1014 or 2 01013 1012 
1007 or 0 29 8 
1006 or 0 27 2 
1013 or 0 215 14 
1012 or 1 11005 13 
1005 or 2 01004 1003 
1004 or 0 26 5 
1003 or 2 01002 1001 
1002 or 0 24 3 
1001 or 0 22 1 
1026 or 2 01025 1023 
1022 or 2 01021 1020 
1019 or 2 01054 1018 

1023 or 0 226 25 
1021 or 0 222 21 
1054 and 2 01016 1011 
1018 or 0 220 19 
1016 or 1 11015 17 
1011 or 1 11010 12 
1010 or 1 11009 11 
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APPENDIX III Continued 

1n 
1,10 
2n 
0.1,15 
3n 
9.009,48 
4n 
9.009,48 
5n 
100,334 
6n 
1,5 
7n 
1,10 
8n 
9.009,48 
9n 
9.009,48 
10 n 
1,5 
11 n 
1,5 
12 n 
5,8 
13 n 
1,5 
14 n 
9.009,48 
15 n 
9.009,48 
16 n 
1,5 
17 n 
5,8 
18 n 
1,5 
19 n 
5,8 
20 n 
5,3 
21 n 
5,8 
22 n 
10,3 
23 n 
10,200 
24 n 
1,5 
25 n 
10,3 
26 n 
5,8 
27 n 
9.009,48 
28 n 
9.009,48 
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APPENDIX III Continued 

29 n 
1,5 
30 n 
5,8 
31 n 
10,3 
32 n 
5,8 
33 n 
10,3 
34 n 
5,8 
35 n 
5,3 
36 n 
5,8 
37 n 
10,3 
38 n 
1,70 
39 n 
10,10 
40 n 
5,8 
41 n 
10,3 
42 n 
5,8 
43 n 
10,3 
44 n 
1,5 
45 n 
9.009,48 
46 n 
9.009,48 
47 n 
1,5 
48 n 
5,8 
49 n 
10,3 
50 n 
5,8 
51 n 
10,3 
52 n 
1,5 
53 n 
9.009,48 
54 n 
9.009,48 
55 n 
1,5 
56 n 
5,8 
57 n 
10,3 



APPENDIX IV - Summary of Fifty-one Benchmark Fault Trees 

Fault 
Tree 
Number 

No. of 
Gates 

No. of 
Basic 
Events 

No. of 
Repeated 
Basic 
Events 

No. of 
Minimal 
Cut Sets 

1 79 103 39 3804 
2 6 7 3 7 
3 3 4 1 2 
4 19 16 2 27 
5 14 13 2 9 
6 17 11 7 43 
7 32 63 0 8,716 
8 29 61 0 7,471 
9 30 60 0 7,056 
10 21 40 0 416 
11 3 4 1 3 
12 21 40 4 84,424 
13 19 19 1 63 
14 21 21 1 75 
15 30 32 1 2,100 
16 42 41 21 11,934 
17 58 57 21 36,990 
18 60 57 41 11,934 
19 10 10 1 13 
20 6 8 2 6 
21 30 72 8 255 
22 10 31 2 71 
23 25 61 57 7,777 

24 12 30 4 61 
25 81 199 68 8,179 
26 5 7 0 4 
27 5 7 3 4 
28 11 21 0 36 

29 11 20 1 30 

30 11 20 1 10 
31 70 68 26 4,892 
32 30 34 28 35 
33 26 16 11 20 

34 5 7 1 3 

35 4 5 1 2 

36 122 61 60 46,188 

37 4 6 0 6 

38 58 114 114 35,300 

39 4 5 1 3 

40 5 6 1 3 

41 8 8 1 6 

42 5 5 3 4 

43 7 6 3 2 

44 7 6 3 4 

45 10 10 2 8 

46 153 74 46 340 

47 3 4 1 2 

48 4 6 1 3 

49 3 4 2 4 

50 4 5 3 5 

51 10 8 4 10 
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