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Abstract 

Table tennis playing involves complex spatial movement of the racket and human body. 

It takes much effort for the novice players to better mimic expert players. The evaluation 

of motion patterns during table tennis training, which is usually achieved by coaches, 

is important for novice trainees to improve faster. However, traditional coaching relies 

heavily on coaches’ qualitative observation and subjective evaluation. While past 

literature shows considerable potential in applying biomechanical analysis and 

classification for motion pattern assessment to improve novice table tennis players, 

little published work was found on table tennis biomechanics. To attempt to overcome 

the problems and fill the gaps, this research aims to quantify the movement of table 

tennis strokes, to identify the motion pattern differences between experts and novices, 

and to develop a model for automatic evaluation of the motion quality for an individual. 

Firstly, a novel method for comprehensive quantification and measurement of the 

kinematic motion of racket and human body is proposed. In addition, a novel method 

based on racket centre velocity profile is proposed to segment and normalize the motion 

data. Secondly, a controlled experiment was conducted to collect motion data of expert 

and novice players during forehand strokes. Statistical analysis was performed to 

determine the motion differences between the expert and the novice groups. The experts 

exhibited significantly different motion patterns with faster racket centre velocity and 

smaller racket plane angle, different standing posture and joint angular velocity etc. 

Lastly, a support vector machine (SVM) classification technique which was employed 

to build a model for motion pattern evaluation is addressed. The model development 

was based on experimental data with different feature selection methods and SVM 

kernels to achieve the best performance (F1 score) through cross-validated and Nelder-

Mead method. Results showed that the SVM classification model exhibited good 

performance with an average model performance above 90% in distinguishing the 

stroke motion between expert and novice players. 

This research helps to better understand the biomechanical mechanisms of table tennis 

strokes, which ultimately benefits the improvement of novice players. The phase 

segmentation and normalization methods for table tennis strokes are novel, 

unambiguous and straightforward to apply. The quantitative comparison identified the 

comprehensive differences in motion between experts and novice players for racket and 
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human body in continuous phase time, which is a novel contribution to the academic 

literature. The proposed classification model shows potential in the application of SVM 

to table tennis biomechanics and can be exploited for automatic coaching. 
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Chapter 1 Introduction 

1.1 Background 

Table tennis is one of the most popular sports in the world. There are over 300 

million table tennis participants worldwide, making it stand out in the list of the 

highest participation sports, as is reported by the International Sports Federation 

(ISF). Good motion patterns are essential for table tennis players to achieve good 

performance. Trainees in professional teams, for example, are instructed to repeat 

prescribed movement hundreds of times to construct stable motion patterns and 

develop so-called dynamic stereotype (Pavlov, 1927) for selected techniques. Good 

motion patterns can help the players keep continuity of hitting, improve overall 

appearance, and further strengthen, energize and revitalize the body. On the other 

hand, bad motion patterns may prevent further skill improvement because of 

interference between old and new learning, which is known as negative transfer 

(Singley, 1989). 

However, trainees do not receive clear or timely feedback on the quality of their 

technical practice without a personal coach, and therefore they do not know how to 

improve accordingly. Though the fundamental knowledge and instructions may be 

available in some books, they lack sufficient details and are not effective enough. 

In fact, most novice and amateur players remain in a low-skill level and have 

difficulty in improving their table tennis skill without good assessment and 

instructions. 

Coaches make great contributions to the improvement of players’ techniques. They 

evaluate the trainees’ motion patterns by observing and recalling good ones from 

their experience, and provide specific feedback to trainees to rectify their wrong 
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motion patterns. This requires the coaches to continuously observe and assess the 

players. However, such professionals may not always be available and hiring a 

coach can be costly. On the other hand, the fast flying table tennis ball prevents the 

coach from accurately observing and noticing all the detailed critical events which 

are required for a complete understanding or interpretation of performance (Franks 

& Miller, 1986). This may lead to low-quality instructions. Other factors, such as 

subjectivity and fatigue, more importantly the skill level and experience of the coach, 

may also affect the quality of coaching. 

1.2 Motivation 

Performance analysis (O'Donoghue, 2009) in sports helps develop an understanding 

of sports to enhance sports performance. Biomechanical research provides 

knowledge on the basic kinematic and kinetic features of specific athletic 

movements for performance enhancement, and has been used in a lot of sports-

related research. Current biomechanical research on table tennis is limited without 

complete quantitative descriptions of the whole successive phases of table tennis 

strokes. In addition, most existing studies only focused on racket motion, and 

revealed little information on body segment biomechanics (Anglin & Wyss, 2000). 

The implementation of biomechanical analysis may help table tennis players better 

understand their motion patterns. 

The integration of artificial intelligence techniques into the development of modern 

sports information systems enables a prompt and automatic evaluation of sport-

specific parameters, thereby allowing the establishment of computer-based feedback 

and interventions (Baca et al., 2009). Unlike human, a computer system or algorithm 

is able to process a huge amount of data in a short time for objective and timely 

assessment of motion quality. The application of techniques in sports biomechanical 
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analysis has received little attention (R Bartlett, 2006), but has the potential in 

solving the problem since reviewed work (i.e. Section 2.3.2) presented good model 

performance in sports biomechanics. 

The investigation on table tennis playing has found that very few reviewed 

biomechanical analysis work has been done on table tennis. This research aims to 

study the motion of racket and racket arm for the most basic forehand stroke by 

applying the methods of biomechanical analysis and model development in order to 

give better assessment of table tennis motion patterns. 

1.3 Objectives and scope 

This research has three major objectives: 

1) To quantify the movement of table tennis forehand strokes. 

2) To identify the differences in motion patterns between novice and expert players. 

3) To further build a model for automatic evaluation of the motion quality of table 

tennis players for an individual. 

The scope of the work includes different stages: 

 Determination of the variables for quantification of the kinematic motion of 

racket and human body. Finding a method to measure data and calculate these 

kinematic variables from experiment with different phases distinguished 

between the beginning and the end of a stroke. 

 Design an experiment and recruit table tennis players, including experts and 

novices, and collect their movement data of forehand strokes. Process the 
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experimental data with proposed method, and use statistical analysis to 

determine the differences between experts and novices. 

 Develop a model for automatic evaluation of player motion quality for 

individuals. Tuning the settings and parameters of the model, and validate the 

model performance using available data from previous stages.  
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Chapter 2 A review of the state and art of racket sports 

biomechanics 

2.1 Biomechanics in racket sports 

2.1.1 Table tennis training and basic strokes 

Technical practice is essential for table tennis trainees, especially low-level players. 

During technical practice, the feeding of balls is fixed or with certain variations so 

that players focus on improving their strokes and build so-called dynamic stereotype 

(Pavlov, 1927), which is a type of integral activity by the cerebrum of higher animals 

and man and manifested by a fixed succession of conditioned reflexes. 

Multi-ball is a frequently used training method for table tennis technical practice. 

During multi-ball training, the feeder continuously sends the balls to the trainees, 

and the trainee repeats a specific technique multiple times in a short period. The 

feeder can be either a player, a coach, or even a robot. The robot is a useful aid for 

improving strokes and footwork, especially if a human feeder is not available. 

Training robots are available on the market and can provide precise control of the 

feeding parameters (e.g. angle and speed) of table tennis balls. 

Beginners are recommended to start with the “big six”, which includes the four basic 

striking techniques, plus serve and serve return. The four basic skills of strokes are 

forehand counterhit, backhand counterhit, forehand push, backhand push (Lee, 

2001). Among the strokes, forehand counterhit is used to return any long balls and 

to hit high balls, and is the foundation of all forehand topspin strokes; backhand 

counterhit is similar to forehand counterhit but the reverse side of the racket is used, 

and is used to return top-spin balls as the foundation of all backhand topspin strokes.  

This thesis focuses on the technical practice of the basic forehand stroke, as an 
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example study for the biomechanics of table tennis strokes. 

2.1.2 Different phases in a stroke 

Ballistic sports movement can be biomechanically subdivided into different phases. 

Roger Bartlett (2007) presented a general viewpoint of three phases: preparation 

phase, action phase and recovery phase. Mülling and Peters (2009) divided a table 

tennis stroke cycle into awaiting stage, preparation stage, hitting stage, finishing 

stage. Alexander and Honish (2009) segmented the cycle into preparatory movement, 

backswing phase, force producing phase, critical instant and follow-through. There 

are other examples that are not included here. Despite the fact that different phases 

or names of phases are used in different research studies, they actually referred to 

similar partial movements. A general decomposition into four phases was chosen for 

this thesis: preparatory phase, backswing phase, forward swing phase, and follow-

through phase, as illustrated in Figure 2-1. 

 

Figure 2-1 Phases of forehands (up) and backhands (down) (Ebrahim, 2010) 
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A complete table tennis stroke goes through all the four phases, and each involves a 

series of complex motions, especially the racket arm (the arm that controls the racket 

and intercepts the ball). The motions of racket and human body in different phases 

are qualitatively understandable through Figure 2-1. However, quantification is 

essential for further analysis on motion data in order to get a deeper understanding 

of the stroke, which can help players improve their performance. 

2.1.3 Performance analysis 

Performance analysis of sports, which is the investigation of actual sports in training 

or competition, aims to understand the complexities and dynamic nature of sports. 

Two different disciplines are connected with analysis and improvement of players’ 

movement performance in racket sports— biomechanical analysis and notational 

analysis (Hughes & Bartlett, 2002). 

Biomechanical analysis is the study of structures and functions of biological 

systems by means of “methods of mechanics”. The laws of mechanics are applied 

in order to gain a greater understanding of athletic performance through 

mathematical modeling, computer simulation and measurement. Biomechanical 

analysis includes both kinematic (e.g. motions of bodies with respect to time, 

displacement, velocity, and speed of movement either in a straight line or in a rotary 

direction) and kinetic (e.g. forces associated with motion, including forces causing 

motion and forces resulting from motion) assessments trying to identify mechanical 

characteristics of performance. 

Notational analysis (O'Donoghue, 2009) collects data like positions, actions, time 

and outcomes that can quantify critical events in a game. Notational systems such 

as Labanotation provide rich descriptions of the kinematic and also non-kinematic 

features of body movement (Foroud & Whishaw, 2006). These qualitative or 
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quantitative features can be further used to evaluate movement, tactical and 

technical performance (Ivan et al., 2011; Lees, 2003). Notational analysis can be 

used in evaluation or application of tactical analysis, technical analysis, movement 

analysis, development of a database and modeling, and educational use with 

coaches and players (Nevill et al., 2008). 

Both biomechanical analysis and notational analysis involve the measurement of 

performers’ movement based on “performance indicators”. Systematic observation 

techniques are used by both methods, with a concern for data validity and reliability, 

and strong theoretical links with other sports science (particularly the dynamical 

system approach of ecological motor control) (R Bartlett, 2001). Both 

biomechanical analysis and notational analysis emphasize feedback to coaches and 

performers, and may assist the coaches by helping them understand the 

characteristics of certain sports or players. Yet there are many differences between 

them. Biomechanical analysis studies fine details of performance in individual 

sports thus involves technique analysis; while notational analysis usually uses gross 

tactical and technical indicators and is applied to team sports analysis, concerned 

mainly with strategies and tactics. Performance indicators for notational analysis 

and biomechanical analysis are also different: biomechanical analysts focus on 

kinematic and kinetic parameters; in contrast, notational analysts use match, tactical 

and technical performance indicators. Biomechanical analysis identifies 

performance indicators that relate to good and bad techniques; notational analysis 

identifies performance indicators that relate to good and bad team performance like 

tactics (Hughes & Franks, 2004). 

According to the above reviews of characteristic differences between biomechanical 

analysis and notational analysis, this research, however, focuses on the technical 

skills of table tennis players therefore the biomechanical variables are studied. The 
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discipline of tactical indicators is not to be considered though may also contribute 

to the performance of players in the progressive training. Specifically, this thesis 

involves only the kinematic variables for the biomechanical analysis since the 

human body only interacts with the ground, with the kinematic movement of human 

body doing the major contribution to the movement of racket, and subsequently the 

table tennis ball, directly. The measurement of forces on the feet, on the other hand, 

requires additional equipment (e.g. force plate) which involves kinetic and inverse 

kinematic calculation including estimated mass of body segments and/or kinematics 

of lower limb, which may introduce additional errors. Therefore, the force 

measurement of feet is not applied in this thesis to simplify the study.  

2.1.4 Arm motion in racket sports 

To apply biomechanical analysis, the definitions of the kinematic movement of 

human body should be defined unambiguously. The human arm includes different 

segments and joints (Figure 2-2 left), making it a complex subject in biomechanical 

analysis. Among these segments and joints, the shoulder is one of the most complex 

joints since it has a structure of three bones (clavicle, scapula and humerus), and a 

combination of 30 muscles, 5 joints and many tendons and ligaments (Figure 2-2 

right).  

It is an onerous task to describe the motion of these bones considering their shapes 

and anatomical positions. Another difficulty lies in the measurement for the shoulder 

motion. It is hard to track the scapula and clavicle rotation using traditional marker-

based method because of the large amount of under-skin movement and relatively 

small geometrical shape of the clavicle. Current available methods use magnetic 

markers and related apparatus to measure acromion, scapula ridge or appropriate 

landmarks with a scapulohumeral regression equation (Anglin & Wyss, 2000). 

These methods were quite complex to use. 
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Figure 2-2 Structure of arm (left) and shoulder complex (right) 

Most of the papers reviewed in biomechanics (e.g. citations in this thesis), however, 

did not include detailed definitions for the clavicle and scapula, but instead they 

simplified the motions of shoulder complex as relative movement of humerus with 

respect to the thorax. Existing researchers tended to put more effort on the motion 

of the entire arm during specific motion rather than the clavicle and scapula bones. 

Only in pathology and rehabilitation research it is confirmed that the shoulder 

component is very important. The simplification is also easy to understand clinically 

and accessible in daily living activities (Anglin & Wyss, 2000). The simplification 

also avoids complex measurement of clavicle and scapula, therefore is adopted in 

this research. 

However, different researchers (e.g. Anglin & Wyss, 2000; Cheung et al., 2009; 

Sprigings et al., 1994; etc) have used different terms to describe arm movement 

without a unified definition especially for the shoulder motion, for example: flexion, 

abduction/adduction, horizontal abduction/adduction (Sprigings et al., 1994), 

vertical abduction/adduction etc. The different terminologies made it difficult to 

perform quantitative comparison between different studies. It is mainly due to the 
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difficulty in describing three-dimensional movement with many DOFs since there 

are multiple methods (e.g. vector-based methods, Cardan angles) and reference 

systems (e.g. sagittal plane, coronal plane, or any axis). Although none of them is 

wrong, there is no explicit conclusion that one is definitely the best. 

Among the multiple methods applied to quantify arm motion including the shoulder, 

some are oversimplified as they only considered limited segments or did not involve 

enough DOFs. For example, some models were planar (e.g. Van Gheluwe et al. 

(1987)), some just included two segments (e.g. Putnam (1993), some ignored certain 

DOFs (e.g. Feltner (1989) assuming velocity around the longitudinal axis of each 

segment as zero). These relatively early research did not have the modern motion 

capture systems that most researcher use today. 

Sprigings et al. (1994) used a three-dimensional computation method for capturing 

and calculating arm motions in their work, which included segment rotations about 

all the DOFs. It was also used by other researchers in similar racket sports studies 

(Elliott et al., 1995; Iino et al., 2008; X. Liu et al., 2009; Rodrigues et al., 2002). 

This was a vector-based method for the anatomical rotation of the upper arm, lower 

arm, and hand. Two marker points were located at each articulation (Figure 2-3). 

The movement of these marker points was captured by optical motion capture 

system. The centre of each segment and corresponding vectors were calculated from 

the marker points. The coordinate system of each body segment was then established 

based on vector arithmetic. Particularly, this model made calculation of the rotations 

around longitudinal axis possible. However, there are also some concerns about this 

method as vectors are sensitive to the directions (X. Liu et al., 2009). The errors may 

lead to negative vectors, which totally inverse the vectors and cause mistakes in 

calculating angular velocities. 
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Figure 2-3 Three-dimensional model for arm motion calculation (Sprigings et al., 1994) 

The International Society of Biomechanics (ISB) also provided recommended 

definitions of joint coordination systems and motions for human body (G. Wu et al., 

2005). It provides fine details regarding the definitions for human body segments 

with the bony landmarks, and uses the sequences of Cardan angles to describe the 

rotation of joints. ISB included all the possible motions, even those rarely reported 

DOFs (e.g. the change of the carrying angle of elbow joint, which is the angle 

between the longitudinal axis of the ulna and the plane perpendicular to the 

flexion/extension axis). This method is relatively new and provides standards for 

unambiguous definitions compared to others. 

Therefore, a typical human arm kinematic model with fine details would be 

established for motion analysis of table tennis players with the definitions according 

to ISB recommendation (G. Wu et al., 2005). Particularly, the simplification of 

shoulder motion may be adopted, which means movement of the humerus with 

respect to the thorax will be studied without more details of clavicle and scapula. 

This is because measurement of the clavicle and scapula requires additional complex 

equipment and no research revealed they were indispensable. In addition, the 

simplification is common in current racket sport research. 
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2.2 Motion patterns in racket sports 

This section is organized according to different types and subjects of measures, 

including phase duration, racket motion, human body motion, and variability. 

Previous work and analytical methods on both table tennis and other racket sports 

were reviewed in the current section. 

2.2.1 Phase duration 

Phase time duration is the time spent during each phase of a table tennis stroke. 

Existing research showed a negative correlation between skill level and forward 

swing phase duration in table tennis playing, as reviewed by Ebrahim (2010): 

complete novices (239 ± 38.3 ms), low-skill players (165 ± 52.2 ms), highly skilled 

players (150 ± 47.6 ms), elite players (139 ± 11.7 ms). Investigation into duration of 

downswing phase (i.e. backswing) was conducted. Early work of Tyldesley and 

Whiting (1975) reported remarkably constant downswing time for a variety of shots 

in experts’ forehand drive. Such consistency is clearly different between expert 

performers and novice performers (Bootsma et al., 1986; Tyldesley & Whiting, 

1975). Later Bootsma (1988) claimed that variability existed. Ebrahim (2010) 

reported in his study the downswing phase of movement took from 89-284 ms for 

loop and 67-151 ms in smash, which were comparable to 128-164 ms (Tyldesley & 

Whiting, 1975) and 92-179 ms (Bootsma, 1988). Ebrahim (2010)’s work did not 

support the constant downswing time hypotheses and the simple proportional 

duration model. From the reviews on previous studies, it is more convincing that 

variability may exist on all the four phases. Note that the durations, however, did not 

have an unambiguous definition for their exact moments for phase starting and phase 

ending, therefore it is not clear if their data can be compared to others’ work. 
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2.2.2 Racket motion 

Moment of ball-racket contact 

The critical moment of ball-racket contact was commonly studied in table tennis 

biomechanics research. The critical moment is when the ball velocity changes from 

positive to negative. Researchers concluded that racket speed reached its maximum 

value at the moment of impact (Bootsma & Van Wieringen, 1990; Ramanantsoa & 

Durey, 1994; Sheppard & Li, 2007). In some research (e.g. Sørensen et al., 2001), 

ball-racket contact time was directly defined from raw acceleration data as the 

moment when acceleration changes from positive to negative. The intrinsic 

mechanics of such coincidence may lie in how human motor control and 

coordination work. Queries may be raised that existence of human motion variability 

cannot make the overlap mathematical truth. In fact, examination on figure reported 

by Bootsma and Van Wieringen (1990) showed a small time gap of approximate 10 

ms between contact and peak velocity (Figure 2-4). This visually gap was ignored 

by the author because it is comparable to errors like the motion capture system 

resolution. Such small gap between contact and peak velocity time is common in 

racket sports. For example, the average peak velocity of the centre of the racket head 

was recorded with a mean just 0.005 s prior to impact at tennis serve (Elliott et al., 

1995). 

 

Figure 2-4 Contact and peak velocity with tiny time gap but concluded coincident by the author 

(Bootsma & Van Wieringen, 1990) 
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Research on racket motion 

Racket motion was importantly concerned in reviewed research studies because 

players intermittently control and adjust their rackets movement to hit the oncoming 

balls (Allen, 1996). The movement of the racket directly affects the trajectory of the 

ball. In addition, the effectiveness of the stroke technique may also be represented 

by racket motion by the ratio of the striking speed to the amplitude of movement 

(Barchukova & Voronov, 1998). Bootsma and Van Wieringen (1990) studied the 

direction of travel of the racket at the moment of ball-racket contact on the 

transversal plane, although no statistical comparison was performed. The authors 

reported that the variability in the direction of travel of racket decreased during a 

stroke. Sheppard and Li (2007) compared kinematics of the racket during the time 

period around ball-racket contact in forward swing between expert and novice 

players. In their study, they found that the racket movement differed significantly 

between the two groups. Compared to novice players, expert players showed greater 

velocity, more rightward direction and more downward orientation. 

2.2.3 Human body movement 

To precisely control the racket, motions are transferred through the whole body 

segment in the kinematic chain to the hand. In fact, the racket is considered as an 

acquired body part, namely an extension of the player’s body (Aldrich, 1937). Little 

reviewed work attempted to provide mechanisms of biomechanical construction of 

a full table tennis strokes. Ramanantsoa and Durey (1994) tried to build a stroke 

construction model for table tennis by applying Bernstein’s theory (Bernstein, 1967) 

and reported some interesting results that expert players performed better by 

reducing their DOFs during movement. Only one participant was involved in the 

experiment and there was no quantitative comparison between different levels of 

players. Therefore, this section reviews motion patterns and analytical methods in 
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other racket sports. 

Joint angular displacement and angular velocity 

Joint angular displacement and angular rotation are the most basic movement. Iino 

et al. (2008) reported some data of joint angular velocities of the upper limb rotation 

during table tennis backhands against topspin and backspin. However, since the 

author focused on the contribution of the upper limb, there was no comparison on 

the joint angular velocity data. This was the same as another work of Iino and Kojima 

(2009), which also included some joint angular velocity data, but aimed to compare 

the contribution pattern of joint rotations. Their definitions of arm motion have been 

reviewed in the previous section (Section 2.1.4). However, the inconsistency of 

definitions (especially shoulder, Section 2.1.4) and measurement across different 

research made the reported data of angular displacement less meaningful. 

Range of motion 

Range of motion (ROM) refers to the movement of a joint from full flexion to full 

extension, or the existing amount of motion around a joint (Günal et al., 1996). It is 

expressed in degrees of joint angle. Each joint has an established ROM. Therapists 

often prescribe specific range of motion exercises of each joint. Research on injuries 

rehabilitation shows interest in ROM, because injuries of soft tissues surrounding a 

joint may reduce ROM. ROM is closely related to flexibility, which can be improved 

by exercises. Skilled athletes are characterized by a larger range of motion in their 

shots in most sports (Alexander & Honish, 2009). For example, skilled players show 

greater forward trunk flexion, which helps to keep balance, helps the trunk to rotate 

in muscle level, and increases racket head speed. Skilled players also have longer 

backswings and longer follow-throughs, which make the shots more powerful 

(Alexander & Honish, 2009). However, work of Alexander and Honish (2009) has 

only qualitative conclusion without quantitative and experimental support. 
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Joint motion contribution to racket speed 

In racket sports, the spatial motion of racket is an important factor contributing to 

success of play. Producing racket speed relies both on the angular velocity of 

segment’s axis rotation and the spatial position of racket with respect to segments. 

The contribution pattern studies the effectiveness and importance of human body 

segments in producing racket speed. It is represented as the ratio of the partial speed 

of the racket caused by each joint/segment motion to the total racket speed. For 

example, the elbow internal rotation and wrist flexion both lead to the forward 

movement of the racket, and they do different contributions. A typical method 

(Sprigings et al., 1994) including modeling arm and calculation of contribution 

pattern was reviewed in the arm motion analysis method section (Section 2.1.4). 

Related findings in other racket sports like badminton, squash, and tennis are 

described below. 

In badminton, the linear velocity of racket head during smash was significantly 

contributed by the wrist compared to the elbow and shoulder joints (Rambely & 

Osman, 2008; Tsai et al., 2000). In addition, the rotational contribution of the wrist 

is much larger than the translational component (Kwan et al., 2011). With a more 

detailed model (Sprigings et al., 1994) regarding separate contributions in terms of 

different rotational DOFs of joints, X. Liu et al. (2009) reported that in badminton 

overhead smashes, internal rotation of upper arm is the most important, followed by 

internal rotation of forearm and hand flexion. Their conclusions are similar to 

previous research by Gowitzke and Waddell (1991) who reported that during power 

strokes in badminton, world class players used pronation of forearm and lateral 

rotation of upper arm to produce high speed. 

In squash forehand drive, Elliott et al. (1996a) reported that internal rotation of the 

upper arm at the shoulder joint, hand flexion at the wrist joint and forearm pronation 
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at the radioulnar joint made the major contribution to the mean racket-head speed at 

ball-racket impact. Forearm pronation at the radioulnar joint and extension at the 

elbow joint both played a significant role in generating racket velocity in the period 

prior to moment of impact. 

In tennis serve, the internal rotation of upper arm was the major contributor to racket 

head velocity, followed by flexion of wrist and horizontal adduction, according to 

different researchers (Elliott et al., 1995; Sprigings et al., 1994; Tanabe & Ito, 2007). 

Although forearm pronation had the highest angular velocity, it was only reported 

as making a fourth contribution due to the position of the racket with respect to axis 

of rotation (Sprigings et al., 1994). Elliott et al. (1995) also included the contribution 

of lower body and trunk apart from upper arm, forearm and hand, as his results 

showed that shoulder and lower limb ranked fourth in contribution. In their 

experiment, forearm extension at the elbow joint played a negative role and reduced 

the forward velocity of the centre of the racket at impact. Tanabe and Ito (2007) 

concluded with the same order of upper arm internal rotation first and wrist flexion 

second, although the calculated percentages were different from Elliott et al. (1995). 

Tanabe and Ito (2007) also researched on slow serve and found movements like 

forearm pronation/supination might have different functions between fast and slow 

serves. 

Limited work has been done in table tennis. Iino et al. (2008) did such work in 

comparison between topspin backhands against coming balls with topspin and 

backspin. The upper arm external rotation, wrist dorsiflexion and elbow extension 

were the largest contributors to the racket velocity for both activities. With an in-

depth analysis by decomposing the velocity into forward and upward components, 

they concluded that elbow extension contributed most in forward direction and 

upper arm external rotation contributed most in upward direction. This was true for 
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both against topspin and against backspin without significant difference, although 

their contribution percentage values differed. Wrist dorsiflexion had the largest 

angular velocity, followed by upper arm external rotation and elbow extension. Neal 

(1991) built a model of three-linked system of arm, forearm, and hand/racket. 

However, his result showed equivocal evidence for the summation of speed principle. 

Sequencing of joint motions 

Sequencing concerns the timing of movement of multi-segment open-linked 

kinematic chain. Human body segments are assumed to be actuated in certain 

sequence during a complex motion so that the best performance is achieved. 

Sequencing is also interpreted as a time accumulation of contribution history to 

distal end speed. For instance, the linear velocities of proximal segment may not 

provide large kinematic contribution to the final speed of the most distal end, but 

their motion histories make the achievement of speed possible (Putnam, 1993). 

Therefore, it is essential to study the sequencing pattern of arm movement. 

One principle of optimal partial momenta coordination argues that the angular speed 

of all segments should simultaneously reach to maximum to achieve maximal speed 

at the distal terminal (Van Gheluwe & Hebbelinck, 1985). Although this is observed 

in some movements such as the volley and forehand ground stroke in tennis, most 

throwing or striking actions typically do not match this principle(Putnam, 1993). 

Another principle of proximal-to-distal sequencing raised more interest among 

researchers. Quite a lot of studies reported the proximal-to-distal sequencing in 

throwing and kicking movements. For example, it was reported that in javelin 

showing, the velocities of all segments of elite players showed a proximal to distal 

order of reaching of their maximum values (Campos et al., 2004; H. Liu et al., 2010). 

The most influential principle underlying the description of proximal-to-distal 
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sequencing in sports movement is the summation of speed principle (Bunn, 1972). 

According to this principle, each segment starts its motion at the instant of greatest 

speed of the preceding segment and reaches a maximum speed greater than that of 

its predecessor. Thus the speed of distal end is built up by summing up all the speeds 

of individual segments by sequence of proximal to distal, although the mechanical 

interpretation of how it is achieved in not mentioned by this principle. 

Sequences are often described in terms of the linear velocities of the segment 

endpoints, joint angular velocities or segment angular velocities (Putnam, 1993). 

Linear velocities of segment endpoints provide a clear description of the 

instantaneous contribution to distal end speed. However, the linear velocity of one 

segment terminal alone has a limited value. Joint angular velocity and segment 

angular velocity both present intuitive description of segment movement and 

provide a clear description of proximal-to-distal sequencing. 

Research on different racket sports shows different conclusions. In underarm power 

strokes in badminton, elite players were reported to combine hip and trunk rotation 

with shoulder flexion at first (Gowitzke & Waddell, 1991). When the rackets were 

approximately opposite the side of the players, they laterally rotate shoulder and 

supinate forearm while they were still driving their hand forward. This action 

biomechanically help players produce the maximum speed (Gowitzke & Waddell, 

1991). In squash forehand drive, trunk and upper limb were synchronized within 

200ms or less to produce high speed (Elliott et al., 1996a). In baseball, internal 

rotation of upper arm happened late but its peak velocity was synchronized 

approximately with the ball-racket contact (Sakurai et al., 1993). In tennis, the peak 

angular velocity occurred very late in the forward swing sequence (approximately 

10ms prior to impact) together with palmar and ulnar flexion of the hand and later 

than other movements about the shoulder and elbow joints. This sequencing was 
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generally common across flat, topspin and topspin lob forehand ground strokes 

(Elliott et al., 1996b). 

Other methods 

There were several other approaches to describe the coordination between limbs 

(interlimb coupling) or between segments within a limb (intersegmental or interjoint 

coupling) (Tepavac & Field-Fote, 2001), as presented in the literature (e.g. Glazier 

et al., 2003; Hamill et al., 2000; Lees, 2002; Wheat & Glazier, 2005). A review of 

several methods will be introduced, and some of their advantages and disadvantages 

are highlighted in Table 2-1 (Wheat & Glazier, 2005). 

Variable-variable plots is a qualitative method to analyze the motion of one joint 

relative to the motion of another joint (angle-angle plot) or the angle of one joint 

relative to the angular velocity of that joint (phase-plane plot)(Glazier et al., 2003). 

The angle-angle plots illustrate the spatial and spatial coupling, and the phase-plane 

plots illustrate the spatial and temporal coupling. Variable-variable plots display the 

relationship between two variables graphically. However, they do not formally 

quantify the coordination. Coordination can only be quantified by the subsequent 

implementation of other analysis techniques such as continuous relative phase 

analysis, cross-correlation and vector coding. 

Continuous relative phase (CRF) between two joints are defined as the difference 

between the respective phase angles of each segment (Hamill et al., 2000). At first, 

the time series data of the displacement and velocity data are normalized to construct 

a phase-plane portrait (normalized angular velocity versus normalized angular 

displacement) for each joint. Then the phase angle can be obtained by calculating 

the four-quadrant arctangent phase angle from a phase-plane plot of each joint. The 

continuous relative phase is calculated by subtraction of the phase angles of the two 
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joints. Continuous relative phase can show the relationship (in-phase or anti-phase) 

between a pair of joints and its relative amount. 

Cross-correlation is a generalization of standard linear correlation (Wheat & Glazier, 

2005). It introduces the time lags between data sets and calculating the 

corresponding correlation coefficients to obtain an indication of the type of 

relationship between body segments (in-phase or anti-phase), the degree of linkage 

between body segments, and the stability of coordination patterns when applied to 

repeated trials (Temprado et al., 1997). However, the cross-correlation is based on 

the assumption that linear relationship exists between two sets of kinematic time-

series data. Therefore, it may lose efficacy when used in determining the degree of 

linkage between body segments that have a nonlinear relationship (Sidaway et al., 

1995). 

Vector coding is based on the chain-encoding technique, which involves using a 

superimposed grid to transform the data curve from an angle-angle plot or a position-

time plot into a chain of digits (Wheat & Glazier, 2005). Each of the digital elements 

that comprise the chain is given a weighting based on the direction of the line formed 

by the frame-to-frame interval between two successive data points. The chain of 

digital elements can then be cross-correlated with a chain of digital elements 

obtained from another angle-angle plot or position-time plot to obtain a recognition 

coefficient, which is the peak value of the cross-correlation function. The 

recognition coefficient can then be interpreted in much the same way as the cross-

correlation coefficient outlined previously. 

Table 2-1 Advantages and disadvantages of several methods for measuring coupling 

 Advantage Disadvantage 

Variable-

variable plots  

Show straightforward info Qualitative rather than quantitative 

 

Continuous Include temporal information Assume the two oscillating segments 
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relative phase More sensitive measurement of 

coordination variability; continuous 

measurement throughout the entire 

movement 

are of a one-to-one frequency ratio and 

they exhibit a sinusoidal time history; 

hard to relate to conceptually 

Cross-

correlation 

No normalization procedure needed if 

data are linear; provide only one 

measure per movement cycle 

Assume the linearity exists between 

segments or joints; hard to distinguish 

between phase lag and phase lead 

Vector coding Provide only spatial information 

therefore limit the sensitivity to 

variability 

Data converted from ratio scale to the 

nominal scale, may lose important info 

and limit types of statistical methods 

that can be applied; data points need to 

be equally spaced 

These different approaches were used by different researchers. For example, Glazier 

et al. (2003) reviewed work on fast bowling, which integrates many throwing, 

kicking and striking activities. Lees (2003) reviewed work on racket sports focusing 

mainly on tennis. However, no such work has been done on table tennis. Though 

these methods help analysis in providing different insights, they raise additional 

complexity when analyzing the relationship among a lot of variables. The lack of 

previous research makes it difficult to apply the complex methods without 

comparable work. This thesis, therefore, will select the basic motion patterns which 

are also easy for the table tennis players to understand and apply adjustment to 

improve their skills, like phase duration, angular displacement, etc. 

2.2.4 Variability of motion patterns 

Movement variability 

Variability are ubiquitous in all animal movements, including human in sports. Even 

elites athlete were unable to produce invariant motion patterns after many years of 

practice (Davids et al., 2003). However, sports research has not shown a great deal 

of interest in movement variability until recent years. 
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Quantification of variability 

Variability can be qualitatively assessed by inspecting plots of repeat trials. To 

further quantify the variability, several approaches are available as tabulated in Table 

2-2. In the table, the first three techniques are non-normalized methods and the last 

two techniques are normalized by sample mean. All the techniques are similar but 

have differences with each other: for certain trial size, the magnitude of the 

variability is fixed for n≤3(RMSD<s<95%CI), n=4(RMSD<95%<s) and n≥5 

(95%CI<RMSD<s); for normalized techniques, RMSD provides a smaller value for 

variability than %CV for all trial sizes (Mullineaux, 2000; Mullineaux et al., 2001). 

Mullineaux (2000) pointed out that normalized techniques might only be used when 

the means were similar, otherwise it might be misleading. In our studies, the typical 

sample standard deviation will be used, and others may be alternative techniques 

according to experimental data. 

Table 2-2 Statistics used for quantifying variability of repeat trials (Mullineaux, 2000) 

Statistic Abbr. Equation 

sample standard deviation s √∑ (𝑥̅ − 𝑥𝑖)
2/(𝑛 − 1)

𝑛

𝑖=1
 

root mean square difference RMSD √∑ (𝑥𝑐 − 𝑥𝑖)
2/𝑛

𝑛

𝑖=1
 

95% confidence intervals 95%CI 1.96s/√𝑛 

percentage coefficient of variation %CV 100s/𝑥̅ 

percentage RMSD %RMSD 
100RMSD

√∑ (𝑥𝑐)
2/𝑛𝑛

𝑖=1

 

Equation: mean ( x ); variable (xi); sample or trial size (n); criterion value (xc) 

Role of variability 

Interestingly, variability receives different views from different motor control 

paradigms (R Bartlett et al., 2007): cognitive motor control theorists traditionally 
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consider variability as undesirable system noises or error; on the other hand, 

ecological motor control specialists consider variability as functional in human 

movement on dynamic system perspective. 

From the point of view of cognitive motor control theorist, variability is simply 

considered to play a redundant role and must be eliminated. Therefore in their 

opinion, skill learning is the process of reducing variability because the learner 

freezes unwanted degrees of freedom (DOF) in the kinematic chain (R Bartlett et al., 

2007). 

In dynamic system theory, the variability plays functional roles. Not until recently 

did sports biomechanists explore functional roles of variability. One point of view 

suggested that variability in movement is necessary for change in the coordination, 

such as from walking to running or vice versa (DeLeo et al., 2004). The second point 

argues that variability in movement provide a broader distribution of stress among 

different tissues, potentially reducing the cumulative load on internal structures of 

the body. Furthermore, some experimental evidence exists to support the 

“variability-overuse injury hypothesis” (James, 2004). A third opinion is that 

variability is seen as coordination change and it gives flexibility to effective 

adaptation to environmental change. This motor control group sees skill learning and 

practice as an exploration of the “perceptual-motor workplace”. In a multi-DOF 

kinematic chain, variability is greatest for individual because movements that are 

practiced many times allow the individual to relax the DOFs involved to find more 

flexible solutions to the task (R Bartlett, 2013). 

Contradictions may occur while different explanations on the role of variability are 

applied. An example lies in the debate on whether high speed may lead to large 

variability during arm motions. Harris and Wolpert (1998) supported that high speed 
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will lead to bigger final position variability. The noise in the neural control signal 

was assumed independent of the control signal, and increased with the mean level 

of the signal. Since moving as rapidly as possible required large control signals, it 

would increase the error thus increase the variability in the final position. As the 

resulting inaccuracy of movement may lead to task failure or require further 

corrective movements, moving very fast becomes counterproductive. On the other 

hand, another perspective argued that high speed would lead to smaller variability. 

According to impulse-variability principle (Schmidt et al., 1985), the variability in 

impulses leaded to variability in trajectories. The execution of a maximal or near 

maximal velocity movement would tend naturally to be more consistent than a lower 

velocity drive (Bootsma & Van Wieringen, 1990), therefore less variability was 

supposed to be found in a high-speed motion. An experiment reported by Bootsma 

(1988) seems to support latter one by stating that execution of an attacking forehand 

drive in table tennis with a lower velocity was associated with an increase in 

movement time variability. 

2.3 Model development and classification 

2.3.1 Expert system and machine learning 

The integration of machine-aided intelligence into the development of modern sport 

information systems enables a prompt and automatic evaluation of sport-specific 

parameter values, thereby allowing the establishment of computer-based feedback 

and intervention routines (Baca et al., 2009). Two terms are reviewed for the systems 

which make decisions analogous to human: the expert system and machine learning 

system. 

Expert system (Buchanan et al., 1983), as a branch of the artificial intelligence (AI), 

is a computer system that uses reasoning capabilities to reach conclusions or to 
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perform analytical tasks that emulates the decision-making ability of a human expert. 

The development of computing capability has enhanced the applicability from data 

measurement to AI-based modeling techniques for automatic evaluation purpose. An 

expert system is typically made up of two major components, the knowledge base 

and the inference engine (Waterman, 1986). The knowledge base contains specific 

knowledge in a domain. The inference engine is an expert system shell which makes 

use of knowledge base in order to draw conclusion. 

The idea of expert system can be easily applied into sports application. For instance, 

H. Zhang et al. (2011) utilized computer-aided game analysis to compute technique 

and tactic indexes into winning probability for net sports prediction. Xiao et al. (2006) 

proposed an outlook idea of applying the living creature feedback to the technique 

training of table tennis. The test data was converted into signal hints of sound and 

light directly to the athlete so that the athlete can make the reaction right away after 

receiving a signal, and then can adjust the range, strength, speed of motion more 

easily. 

Machine learning is a type of AI with the study and design of intelligent agent (Poole 

et al., 1998). Machine learning involves the construction of algorithms that can learn 

from existing data and make predictions therefore exhibited human-like intelligence. 

Machine learning includes both supervised learning and unsupervised learning for 

the cases that labels of data are known and unknown respectively. Classification is 

a type of supervised machine learning. With a set of data of different categories, the 

classification identifies a new observation with the categories. 

Many classification algorithms are available (Han et al., 2006; Kotsiantis et al., 

2007), for example, the decision trees, the artificial neural networks (ANN), the naïve 

byes, the k-nearest neighbors (kNN), the support vector machine (SVM) and so on. 
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Kotsiantis et al. (2007) gave a comparison of these classification algorithms (Table 

2-3). As can be seen from the table, SVM has an overall good performance. For this 

reason, the SVM was used in this thesis as a representative example for the classifiers. 

SVM and related methodologies were reviewed in the following section (Section 

2.3.3). 

Table 2-3 Comparing classification algorithms (Kotsiantis et al., 2007) 

 

Note: **** stars represent the best and * star the worst performance 

The expert system and machine learning techniques share the same goal to achieve 

human-like targets. Expert systems was some of the first truly successful forms of AI 

software (Russell et al., 2003). Some expert systems may be carefully constructed 

by specific rules for decision making, and the rules are designed based on the 

knowledge of human experts. Machine learning is more of referring to the 

algorithms that do with learning from data to construct the rules, therefore able to 

make decisions based on training data. 
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Despite the fact that AI has raised much interest in research or application to solve 

real problems, the application of AI in sports biomechanics was little (R Bartlett, 

2006). The biggest problem with applying AI in sports may be because of the high 

complexity of sports performance. The performance for a specific sport may not be 

well defined, and multiple factors may contribute to a good performance. Therefore, 

it may take plenty of time and efforts to seek and quantify the factors. Lapham and 

Bartlett (1995) pointed out that AI application on sport performance analysis lacked 

advantage when compared to AI application in gait analysis, which was a confined 

expert domain with commonplace laboratory-based automatic marker tracking 

system and abundant data. In addition, research into sport performance may not be 

well funded because coaches and sports scientists are expensive. 

In summary, this thesis attempts to overcome the problem by utilizing AI on the 

model development. The SVM classification technique was selected and related 

work were specifically reviewed in the following section. 

2.3.2 Related work in sports biomechanics 

The implementation of AI in sports area can help with the development of systems 

and models for better performance. With a review of table-tennis-related systems, 

two main types of work on system development exist as corresponding to two 

different performance analysis methods (Section 2.1.1): the first type involves the 

application of notational analysis, which generally focuses on tactics and teamwork 

to improve players’ performance; the second type regards robot table tennis, which 

focuses on trajectory generation and movement adaptation of anthropomorphic arm. 

The notational systems get source data from, for example, video camera to retrieve 

tactical related information therefore predicts the competition results. However, the 

notational analysis does not analyze details into biomechanical analysis. These 

systems are quite different from the proposed system which could perform 
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biomechanical motion pattern analysis, for table tennis strokes. Currently there is no 

existing papers or market products which can directly assess table tennis players’ 

biomechanical movement patterns. Therefore, in this section, some examples of 

related works on other sports that tried to perform assessment from biomechanical 

perspective are reviewed. 

J. Wu and Wang (2008) investigated a combination of PCA (Principal component 

analysis) with SVM to classify the reaction force of gait patterns between 30 young 

and 30 elderly participants, with the results showing that the accuracy was on 

average 90%. Fukuchi et al. (2011) utilized SVM on 31 kinematic data of the lower 

extremity of 17 young and 17 elderly during running to distinguish different age 

groups. The results show different accuracies of different kernel methods with the 

linear kernel performing the best. The performance rate can be up to 100% with the 

forward feature selection algorithm. Begg and Kamruzzaman (2005) applied the 

SVM with six different kernel functions (linear, polynomial, radial basis, exponential 

radial basis, multi-layer perceptron and spline) on the data of basic temporal/spatial, 

kinetic and kinematic during a gait in order to classify 12 young participants and 12 

elderly participants. The overall accuracy was 91.7%. Therefore, the SVM 

demonstrated considerable potential on the biomechanical features and presented 

good performance, it could provide an effective tool for similar biomechanical 

classification in other applications. 

In addition, the AI based system will also increase its power by connecting with an 

automated motion capture system. The idea of a tracking system has appeared in a 

lot of research. The researchers built powerful or convenient systems for collecting 

better measurement of biomechanical variables. For example, Ahmadi et al. (2009) 

used gyroscope sensors to measure the peak angular velocity of internal upper arm 

rotation, wrist flexion, and shoulder rotation for skill assessment and acquisition of 
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a tennis player during the first serve. Davey et al. (2008) used a platform of the tri-

axial accelerometer at the sacrum to record swimming motion to retrieve the 

information of wall push-off, stroke type and stroke count metrics. Guggenmos 

(2007) proposed a snowboarding assistant for beginners, which used force sensitive 

resistors, bend sensors, 3D accelerometers, and gyroscopes to diagnose weight 

distribution, knee flexion, trunk inclination and counter-rotation. Ghasemzadeh et al. 

(2009) described a system that analyze the golf driver swing using a body sensor 

network of accelerometers and gyroscopes. The sensors listed in the examples are 

quite light and portable, and measured the interested biomechanical variables, 

thereafter can be input into the AI system for data processing for objective and 

quantitative assessments. 

2.3.3 Support vector machine and related techniques 

This section reviews and lists the key concepts regarding the SVM and related 

techniques that is a potential tool for solving the problems in the current research, as 

to be applied in Chapter 5 of this thesis. 

2.3.3.1 Support vector machine 

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is a supervised learning 

model for classification or regression purpose developed from the statistical learning 

theory. SVM constructs a hyperplane in a high or infinite dimensional space and 

maps data to the hyperplane in order to maximize the margin to classify samples 

(Figure 2-5). SVM is widely used in many fields and it generally performs better 

than other classifiers (Table 2-3). 
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Figure 2-5 Support Vector Machine illustration in hyperspace x1-x2 

The development of a SVM is to find the maximum margin in hyperspace, which can 

be simplified into a mathematical optimization problem as shown in Equation (2-1). 

Note the latter part of the target function is introduced for allowing misclassification. 

The C is the weight for slack variables: when C increases the optimization attempts 

to make a stricter separation between classes; on the other hand, less weight on C 

means misclassification is less important. Specifically, a binary SVM has two classes, 

noted as 𝑦𝑖 where 𝑦𝑖 ∈ {−1,+1}. The data input are vectors noted 𝑥𝑖 where 𝑥𝑖 ∈

𝑅𝑝, 𝑖 = 1,2, … , 𝑁. 

min
𝜔,𝑏,𝜁

1

2
𝜔𝑇𝜔 + 𝐶∑𝜁𝑖

2

𝑁

𝑖=1

 

subject to 𝑦𝑖(𝜔
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜁𝑖 

𝜁𝑖 ≥0, i = 1,2…N 

(2-1) 

where ω is the weight vector, b is the intercept term, ζ𝑖 are the slack variables. C is capacity 

constant, ϕ𝑇(𝑥𝑖)ϕ(𝑥𝑗) = 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function. 

The common kernel functions include linear kernel, polynomial kernel and Radial 

Basis Function (RBF) kernel, as listed in Table 2-4. The linear kernel is the simplest 
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one which maintains the features in linear space; the polynomial kernel and RBF 

kernel transform features to a higher dimension to attain better ability of classifying 

complex features. RBF is a relatively more common kernel. In general, all the 

kennels may have an additional coefficient parameter: the kernel scale K. Therefore, 

a SVM classifier with a determined kernel has two unknown parameters: C and K. 

Changing these two parameters may change the model performance therefore a 

better set of their values should be determined. 

Table 2-4 Common SVM kernel functions 

Kernel Math expression 

Linear kernel K(x1,x2)=K*x1′x2 

Polynomial kernel K(x1,x2)=K*(1+x1′x2)p 

RBF kernel K(x1,x2)=K*exp(-|x1-x2|2) 

The architecture of the SVM is illustrated in Figure 2-6. For any input vector x, the 

SVM produces the prediction result by calculation using the kernel functions. When 

the actual classes are known (e.g. training and testing) for input data, the results y 

are used to compare with the actual results to tuning parameters (e.g. 𝜔, 𝑏, 𝜁 during 

training) and evaluate the classifier (e.g. testing); when the class label is unknown 

(i.e. application of trained SVM), the SVM gives prediction result. 
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Figure 2-6 Architecture of Support Vector Machine (Ruiz-Gonzalez et al., 2014) 

2.3.3.2 Confusion matrix and model performance 

A confusion matrix (Kohavi & Provost, 1998) contains the information about actual 

and predicted classifications which are output from a classification. The confusion 

matrix contains the basic information of true positive, false positive, false negative 

and true negative (Table 2-5). Then performance of a classifier, including accuracy, 

precision, recall and F1 score etc., is calculated based on the confusion matrix. 

Table 2-5 Confusion matrix for a two class classifier 

  Actual 

  Actual positive Actual negative  

Predicted 

Predicted 

positive 

 

True Positive (TP) 

 

 

False Positive (FP) 

 

Positive predictive value 

(PPV) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Precision 

Predicted 

Negative 

 

False Negative (FN) 

 

 

True Negative (TN) 

 

 

  

True positive rate 

(TPR) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Recall 
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The accuracy is the proportion of the total number of predictions that were correct: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-2) 

The precision is the proportion of the predicted positive cases that were correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2-3) 

The recall, aka sensitivity, is the proportion of positive cases that were correctly 

identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2-4) 

F1 score (Powers, 2011) is the harmonic mean of precision and recall. It is calculated 

as: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2-5) 

The accuracy, precision and recall each on its own may not be adequate to measure 

the performance. For example, accuracy may still be good when the number of 

negative cases is much greater than the number of positive cases and all the cases 

are predicted as negative (Kubat et al., 1998). F1 score combines both precision and 

recall therefore is a better way to measure the overall performance of the model. 

Therefore, F1 score is generally better than others to represent the model 

performance. 

2.3.3.3 Cross-validation 

Cross-validation is a model assessment technique used to evaluate a machine 

learning algorithm’s performance in making predictions on new datasets that it has 

not been trained on. This is done by partitioning a dataset and using a subset to train 

the algorithm and the remaining data for testing. Cross-validation does not use all of 

the data to build a model therefore prevents overfitting during training. Common 
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cross-validation techniques include k-fold, leave-one-out and repeated random 

subsampling etc. 

The k-fold cross-validation partitions data into k randomly chosen subsets (or folds) 

of roughly equal size. One subset is used to validate the model trained using the 

remaining subsets. This process is repeated k times such that each subset is used 

exactly once for validation. The leave-one-out cross-validation is a special case of 

k-fold by using one observation as the validation set and the remaining observations 

as the training set. This is repeated for all the observations to segment the original 

sample for validation set of one observation and a training set. The repeated random 

subsampling cross-validation performs Monte Carlo Repetitions of randomly 

partitioning data and aggregating results over all the runs. 

2.3.3.4 Nelder-Mead Method 

The Nelder–Mead method (Nelder & Mead, 1965) is a commonly applied numerical 

algorithm used to find the minimum or maximum objective function in a high-

dimensional space. It is one of the best known algorithms for multidimensional 

unconstrained optimization without derivatives (Singer & Nelder, 2009). Nelder-

Mead method is simplex-based by searching for the better objective function values 

gradually. In addition, it requires only one or two function evaluations at each step. 

For a two-dimensional case, an initial set of 3 points are used as seeds and during 

each step of iteration the worst point is replaced with a better point. The step 

sequences in one iteration is shown in Figure 2-7. 

http://scholarpedia.org/article/Optimization
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Figure 2-7 Illustration of the sequence of steps in one iteration of the Nelder-Mead method for 2 

dimensions (Gavin, 2013) 

2.3.3.5 Principal component analysis 

The Principal component analysis (PCA) (Jolliffe, 2005) is discussed here as a 

feature selection method. PCA uses orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables. The components with higher variances can be selected as 

principal components. The equations for PCA are listed in Equation (2-6). 

𝑤(1) = arg max
‖𝑤‖=1

{
𝑤𝑇𝑋𝑇𝑋𝑤

𝑤𝑇𝑤
} 

𝑋̂𝑘−1 = 𝑋 −∑𝑋𝑤(𝑛)𝑤(𝑛)
𝑇

𝑘=1

𝑛=1

 

𝑤(𝑘) = arg max
‖𝑤‖=1

{
𝑤𝑇𝑋̂𝑘−1

𝑇 𝑋̂𝑘−1𝑤

𝑤𝑇𝑤
} 

𝑇 = 𝑋𝑊 

(2-6) 

where X is the matrix of dataset with each column as a feature, w(k) is the kth component or the 

eigenvector of XTX. T is the full principal components decomposition of X. W is the matrix whose 

columns are w(k). 
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2.4 Summary 

This chapter reviewed literature related to the proposed research objectives. Section 

2.1 focused on the basic biomechanics of basic strokes and phases, biomechanical 

analysis and arm motion analysis. Section 2.2 reviewed the motion patterns in racket 

sports, including the previous work results and analytical methods for motion 

quantification. Section 2.3 reviewed model development and classification, which 

included machine learning techniques, related work and SVM-related concepts. 

According to the literature review above, some key scientific knowledge is missing. 

Firstly, the quantification of table tennis basic strokes was essential for a better 

investigation of players’ motion, but was not comprehensively conducted. There 

were no unambiguous quantification methods for table tennis stroke motion, 

especially for the arm motion and different phases. 

Secondly, the motion pattern differences between expert and novice players need to 

be quantitatively investigated therefore for performance improvement of novice 

players. However, most existing studies only focused on the motion of the racket on 

limited moments, and revealed little about human body segment biomechanics. 

Thirdly, the application of AI techniques into sports biomechanics has considerable 

potential but there is no reported application in table tennis. Therefore, it is a 

challenge to apply AI classification technique to achieve the automatic assessment 

of players’ motion patterns. 

To fill in the gaps and overcome the problems to achieve the assessment of players’ 

motion patterns, Chapter 3 to Chapter 5 below describe the work carried out to 

achieve the specific research objectives. 
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Chapter 3 A novel kinematic model for table tennis strokes 

3.1 Quantification of stroke motion 

3.1.1 Definitions for the model 

A global coordinate system is defined with its origin O in the centre of the table 

tennis table’s short edge, with its x-axis pointing to the opponent’s side, y-axis 

pointing upward and z-axis pointing rightward (Figure 3-1). The racket centre has 

three translational DOFs (𝑅𝐶𝑥 , 𝑅𝐶𝑦  and 𝑅𝐶𝑧 ) with respect to the origin O; the 

racket plane, which is the plane parallel to the racket surface, has three rotational 

DOFs (𝑅𝑅𝑥𝑦, 𝑅𝑅𝑦𝑧 and 𝑅𝑅𝑥𝑧) with respect to each of the global planes (plane x-

y, y-z, x-z respectively). These notations to describe the movement of the racket are 

tabulated in Table 3-1. 

RC

(RCX, RCy, RCz)

plane x-z

x

z

RRxy

p
la

n
e 

y-
z

y

O

Global coordinate system

RC: racket centre

RR: racket rotation  

Figure 3-1 Global coordinate system and racket motion 
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 Table 3-1 Motion of the racket in each DOF 

Racket DOF Notation Displacement of each DOF 

Racket centre 

(translational) 
3 

𝑅𝐶𝑥 

𝑅𝐶𝑦 

𝑅𝐶𝑧 

displacement along x-axis of the global system 

displacement along y-axis of the global system 

displacement along z-axis of the global system 

Racket 

(rotational) *  
3 

𝑅𝑅𝑥𝑦 

𝑅𝑅𝑦𝑧 

𝑅𝑅𝑥𝑧 

angle between racket plane and the global x-y plane 

angle between racket plane and the global y-z plane 

angle between racket plane and the global x-z plane 

Note: * angles between the racket plane and the respective global planes range within 0°~180° 

The human trunk and upper limb function as a multi-segment open-linked kinematic 

chain to transfer the motion to the racket. Their complex motion patterns are the 

consequence of the high DOFs of the human body in 3D space. To quantitatively 

describe the movement of human body, the definitions of ISB (G. Wu et al., 2005) 

were followed. The rotational DOFs for each segment and joint are illustrated in 

Figure 3-2. In the model, the trunk has three rotational DOFs. The upper limb has 7 

DOFs with 3, 2, 2 DOFs for the shoulder, elbow and wrist joints respectively. In 

addition, the trunk centre has three translational DOFs, as tabulated in Table 3-2. 

According to ISB, each of the local joint coordinate system (JCS) is defined precisely 

using bone landmarks thereafter the relationship between two adjacent JCS was 

calculated (i.e. a rotation matrix), which is further converted into three sequential 

rotational angles (Euler angles) to describe segment/joint rotations. For example, the 

motion of the elbow joint is the relative movement of the lower arm coordinate 

system with reference to the upper arm coordinate system. This relationship matrix 

is converted to three Euler angles in Z-X-Y order: the first rotation is defined as 

flexion/extension, the second is defined as abduction/adduction of the radius, and 

the third is pronation/supination. Since the second rotation is negligible and usually 
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considered in rehabilitation studies only, the elbow is assumed to have 2 DOFs 

(Table 3-2) in the current research. The detailed definitions for each of the human 

rotational DOFs are listed in Appendix A. All of these rotations have a value of zero 

when the person is in the anatomical reference position. 

T
S

E

W

T:  trunk

S:  shoulder joint

E:  elbow joint

W: wrist joint

Spe

Se

Sie

Eps

Eie

Wru

Wfe

Tll

Tfe

Taa

 

Figure 3-2 Rotational movement of human trunk and upper limb 

Table 3-2 Motion definition of the human kinematic model in each DOF 

Segments/Joints DOF Notation Each DOF Range of motion* 

Trunk centre 

(translational) 

3 

𝑇𝐶𝑥 

𝑇𝐶𝑦 

𝑇𝐶𝑧 

forward (+) /backward (-) 

upward (+) /downward (-) 

leftward (-) /rightward (+) 

- 

- 

- 
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Trunk 

(rotational) 

3 

𝑇𝑓𝑒  

𝑇𝑙𝑙  

𝑇𝑎𝑎 

flexion (-) /extension (+) 

lateral left (-) /right (+) 

axial rotation right (-) /left (+) 

- 

- 

- 

Shoulder joint 3 

𝑆𝑝𝑒 

𝑆𝑒 

𝑆𝑖𝑒  

plane of elevation (-/+) 

elevation (-) 

internal (+) /external (-) rotation 

-45.5° ~ +140.7° 

-180.0° ~ -0.0° 

-180.0° ~ +180.0° 

Elbow joint 2 

𝐸𝑓𝑒  

𝐸𝑝𝑠 

flexion (+) /hyperextension (-) 

pronation (+) /supination (-) 

-0.6 °~ +142.9° 

+7.9 °~ +165.8° 

Wrist joint 2 

𝑊𝑓𝑒 

𝑊𝑟𝑢 

flexion (+) / extension (-) 

radial (-) /ulnar (+) deviation 

-74.9° ~ +76.4° 

-21.5° ~ +36.0° 

Note: * normal amplitude of active motion of human joints (Boone & Azen, 1979); shoulder data 

is partly missing (due to different definitions of the coordinate system) therefore is estimated. 

3.1.2 Measurement and calculations for the model 

To capture the kinematics of the human body and racket with an optical motion 

capture system (which will be used during the experiment as described in the next 

chapter), the placements of reflective markers are shown in Figure 3-3 and also 

tabulated in Table 3-3. 
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Figure 3-3 Marker placement 

Table 3-3 Marker placement 

Marker No. Marker location Abbr. 

1 Left ASIS (Anterior Superior Iliac Spines) ASISL 

2 Right ASIS ASISR 

3 Left PSIS (Posterior Superior Iliac Spines) PSISL 

4 Right PSIS PSISR 

5 Jugular Notch where clavicles meet the sternum IJ 

6 Xiphoid process of the Sternum PX 

7 Spinous process of the 7th cervical vertebrae C7 

8 Spinous process of the 8th thoracic vertebrae T8 

9 Left acromion GHL 

10 Right acromion GH 
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11 Right lateral epicondyles of humerus EL 

12 Right medial epicondyles of humerus EM 

13 Right styloid processes of radius WR 

14 Right styloid processes of ulna WU 

15 3rd metacarpophalangeal (MCP) joint H 

16 Racket left 90° edge RL 

17 Racket head RH 

18 Racket right 45° edge RHR 

19 Racket right 90° edge RR 

Among the markers 16-19 on the racket, the marker 16 (RL) and 19 (RR) are used 

to calculate racket centre and its related translational movement; with the additional 

marker 17 (RH), the vector normal to the racket plane can be obtained therefore for 

racket rotational movement calculation. The marker 18 (RHR) is only used to help 

shape an asymmetrical distribution in order to make the racket easily identifiable by 

the motion capture system. 

The markers 1-15 are attached on the bony landmarks (Table 3-3) to ensure that the 

related definitions of the JCS are identical to those defined by ISB. The markers 1-4 

are not used in the current study but only as an extension for potential future work 

(inclusion of the investigation of lower trunk motion). Specifically, the maker 10 

(SR) is attached to the acromion to estimate the centre of humeral head centre. An 

offset of equivalent size of the radius of the upper arm was applied to SR parallel to 

the sagittal plane of trunk, in order to compensate the distance from humeral head 

centre to marker centre. Similarly, to estimate the metacarpophalangeal joint centre 

from marker 15 (H), the H is offset by half of the thickness of the hand. For the 

definitions of the humerus JCS, the ISB alternative method was used: the z-axis of 

the upper arm coordinate system is derived from the vector normal to the plane made 
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up of GH, the midpoint of the line between EL and EM and the midpoint of the line 

between WR and WU (Figure 3-4). Note that some coordinate systems are 

translationally shifted in Figure 3-4 (compared to Appendix A) to make them easier 

to understand , which do not change any rotational relationship. This alternative 

method is preferred due to the high error sensitivity in the direction connecting EL 

and EM (i.e. the other method), due to the relatively short distance between EL and 

EM. The trunk centre is simplified as the centre of 4 markers: IJ, PX, C7 and T8. 

The rest can be found in Appendix A. 
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Figure 3-4 Joint coordinate systems for angle calculation 

3.2 Phase segmentation and normalization 

3.2.1 Phase segmentation based on racket centre velocity profile 

There are 4 phases in a table tennis forehand cycle: preparatory (PR), backswing 

(BS), forward swing (FS) and follow-through (FT), as illustrated in Figure 3-5. The 

critical septal moments between the phases are marked as T0, T2, T3 and T4 

respectively. 
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Figure 3-5 Phases during a forehand stroke 

To identify the phases of a stroke, a direct method by using displacement profile may 

be taken into consideration. For example, to find out T2, a maximum backward point 

(i.e. along the global -y axis) on the displacement trajectory may indicate this phase 

time, or a more reasonable vertex on the trajectory curve between T0 and T3, which 

better adapts to curved shapes in different directions. However, individual 

differences may exist and prevent easy identification of curve vertices. An example 

of such cases (2 experts and 2 novices) from the preliminary experiment is shown in 

Figure 3-6. Whenever the magnitude of curvature is small (e.g. large radiuses at 

backswing end of expert 1 and follow-through end of novice 1 in Figure 3-6), it is 

hard to find out the curve vertex, which leads to less accuracy in determining the 

phases. Therefore, another method based on racket centre velocity profile (Z. Zhang 

et al., 2016) is preferred . 
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small curvature

 

Figure 3-6 Example of distinct trajectories of racket centre between experts and novices 

Interestingly, the velocity profiles of the racket centre of different people show 

similar patterns according to our motion capture, therefore the profiles are utilized 

for phase identification. The general shape and process of identification is illustrated 

in Figure 3-7: the Ts are first identified from the racket velocity curve, with the 

phases then readily retrieved. Note that there is an additional T1 which is also marked 

in Figure 3-5. With the curve of the racket velocity— the resultant speed of forward 

and leftward velocity of the racket centre (i.e. projected velocity on the ground floor 

plane, as the motion relative to this plane is of the most interest), the Ts can be 

determined from the time points with velocity values at local maximum or minimum. 

In other words, all the Ts are generally located where the acceleration is zero. This 

method identifies the phases using only the information of racket centre velocity, 

and the processing is unambiguous and much more straightforward than the 
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displacement-based identification method. 

 

Figure 3-7 A typical example of racket centre resultant velocity profile 

The velocity-based method identifies the Ts which are different from those identified 

from displacement profiles on the trajectory curve. For example, the captured 

samples show that T2 may have a bias up to 0.02s between velocity profile and vertex 

method from displacement profile (when the vertex is identifiable). The gap is quite 

short in time yet considerable in the short phases. However, the situations of 

misidentification or failure of identification from the displacement profile may result 

in errors times or tens of times (e.g. 0.1s) of the gap. Therefore, the velocity-based 

method shows advantages in minimizing the identification errors. According to the 

data from the preliminary experiment, however, T0, where the player (and therefore 

the racket) starts to move from a relatively stationary pose, was generally 

challenging to identify reliably. This can be seen by inspection of the typical example 

data shown in Figure 3-7. A common solution to this is to set a speed threshold value. 

Whenever the backswing speed exceeds that value (e.g. like toe-off event in gait), 
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then that point is regarded as the beginning of PBS. However, such a value is 

generally somewhat arbitrarily defined and may therefore affect T0 in turn to a 

significant extent (Z. Zhang et al., 2016). This bias may be especially large when it 

comes to a racket sport like table tennis, because the phases are all relatively short 

in time. In fact, Figure 3-7 shows two parts under the backswing phase: T0 - T1 and 

T1 - T2, where the T1 is defined as the moment with the maximum backswing speed. 

Since T0 is not sufficiently reliably identified from the velocity data, the duration T1 

to T2 was used for the definition and alias for the backswing phase PBS in the 

remainder of this thesis. 

 

Figure 3-8 Easily identifiable phases time from racket velocity profile 

The prominent T3 is coincident with or very close to the moment when the racket 

and ball come into contact, as supported by previous research (Bootsma & Van 

Wieringen, 1990; Ramanantsoa & Durey, 1994; Sheppard & Li, 2007). It is quite 

convenient and fast to identify T3 based on racket velocity profiles (Figure 3-8) as 

compared to the method based on the table tennis ball, which requires an extra 
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motion capture device (e.g. high speed camera).  

In addition, an experiment (Figure 3-9) was conducted to investigate and verify the 

coincidence of maximum racket speed and racket-ball contact moment for T3 for 

participants of different skill levels under the experimental setting of this thesis. 

Based on the data of several participants (2 experts and 2 novices, 15+ strokes for 

each) by high speed camera, the left and right edge (RA and RB) of the racket and 

the centre of the ball (RC) are highlighted for all the captured frames. The position 

data of the racket edges and ball center were retrieved frame by frame, and their 

velocities were calculated as the first derivative of the position data. The 

displacement and velocity curves were aligned above the axis of time. The results 

show that the maximum speed of the racket centre generally occurs within 30 ms 

after the racket-ball contact. This is relatively negligible considering the errors and 

the duration of the phases. An example of one captured stroke is shown in Figure 

3-10. 

RA

RB

RC
Ball

 

Figure 3-9 High speed camera experiment 
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Figure 3-10 Results of high speed camera experiment 

Therefore, the method based on racket centre velocity profile would be applicable 

for the unambiguous segmentation of the important phases PBS (T1 to T2), PFS (T2 to 

T3) and PFT (T3 to T4). 

3.2.2 Piecewise normalization 

Each stroke of each player may have different time duration, which make analysis 

difficult on the time series data (e.g. trunk rotation during forward swing). Therefore, 

the piecewise alignment normalizes movement data based on the phases, in order 

for easier comparison between different strokes of different players. The detailed 

steps are explained below. 

After the various phases (i.e. T1, T2 and T3 for PBS, PFS and PFT) of a stroke are 

identified, all the displacement and velocity variables are aligned by assigning new 

time labels: each original time series data keep their values unchanged but the 
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respective time labels Tbefore are replaced by Tafter based on Equation (3-1). PPR is not 

of interest and therefore not presented. 

𝑇𝑎𝑓𝑡𝑒𝑟 =

{
  
 

  
 
𝑇𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑇1
𝑇2 − 𝑇1

+ 1, 𝑇1 ≤ 𝑇𝑏𝑒𝑓𝑜𝑟𝑒 ≤ 𝑇2

𝑇𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑇2
𝑇3 − 𝑇2

+ 2, 𝑇2 ≤ 𝑇𝑏𝑒𝑓𝑜𝑟𝑒 ≤ 𝑇3

𝑇𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑇3
𝑇4 − 𝑇3

+ 3, 𝑇3 ≤ 𝑇𝑏𝑒𝑓𝑜𝑟𝑒 ≤ 𝑇4

 (3-1) 

The normalized data is based on aligned phase time 1−4, where T1 to T4 are aligned 

to phase time 1 to 4 respectively. In other words, the segmentation of phases is not 

changed but the data is aligned within each phase. Missing data can be interpolated 

where the respective phase time T is not measured. Figure 3-11 is included to 

illustrate the phase alignment. Since every stroke has a different total duration, all 

the strokes were aligned to the moment of racket-ball contact (i.e. to maximum 

velocity) as shown in Figure 3-11a; once phase aligned, the curves were completely 

aligned over T1 to T4 as shown in Figure 3-11b. 

 

 Figure 3-11 Racket centre velocity before (a) and after (b) alignment for two participants 
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3.2.3 Visualization for the normalized kinematic model 

The collected kinematic data can be visualized (Figure 3-12) to assist the analysis 

of the strokes. The position of the human body in the figure is reconstructed 

reversely using the data of the kinematic model (e.g. displacement of the trunk and 

angular displacement of joint angles). 

 

Figure 3-12 Visualized kinematic (right) model from collected data 

The visualized 3D animation takes advantage of the multi-angle viewports as 

compared to the recorded video resources. The stroke data can be displayed either 

partly or in multiple phases to highlight the motion of specific segments or joints. In 

addition, the introduction of the phase segmentation and piecewise normalization 

makes it possible to display multiple strokes of the same figure for visual comparison. 

Other beneficial information can also be added to the figure to aid understanding, 

such as the direction of the racket, or tabulated values of certain joint angular 

velocity, etc. 

3.3 Summary 

This chapter described the work of the quantification of the kinematic model for 
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racket and human body during a forehand stroke, and the phase segmentation and 

normalization methods for these time series variables. The definitions of the 

variables on different DOF were based on ISB recommendation. The measurement 

and calculation methods for these variables were also proposed. The quantification 

is comprehensive and unambiguous. The novel racket center velocity profile was 

used to segment phases, which presents smaller errors and is more straightforward 

than using displacement. The normalized variables can be aligned and visualized to 

assist data analysis. These methodologies is the basis for data processing and 

quantified comparison in the subsequent chapters. 
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Chapter 4 Motion pattern differences between expert and 

novice table tennis players 

4.1 Experiment design 

4.1.1 Participants 

A sample of 20 table tennis players (10 experts and 10 novices) were recruited as 

participants for the experiment. These participants were male and right-handed 

shakehand-grip table tennis players. None of them had any current or recent 

musculoskeletal disorders or other medical conditions. The 10 experts were higher-

level players recruited from professional teams or clubs. They had received training 

from coaches from they were beginners. The 10 novices were beginners recruited 

from the general university population. The inclusion criteria for the novice were 

that they play table tennis less than one hour per week and had never received formal 

training from coaches or other professionals. The protocol was approved by NTU 

IRB (Institutional Review Board) before the experiment began. The sample size was 

more than previous study (e.g. 9 advanced vs. 8 intermediate players by Iino and 

Kojima (2011)) and power was preliminarily checked by using data of several 

participants with power analysis (power = 0.8). 

4.1.2 Experimental setup 

The experiment was conducted indoors. The apparatus and their locations are 

illustrated in Figure 4-1. A standard table tennis table (2.74×1.525×0.76 m) was 

placed in the room. A ball-feeding machine (Robo-Pong, Newgy, USA) was set up 

on side of the table opposite the player. The ball-feeding machine was set to propel 

the balls from the centre of the table edge every 3 seconds to land approximately 

480 mm from the right table edge and 710 mm from the near side table edge, and 
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bounced with a speed of about 4 m/s. A piece of rectangular A5-size white paper was 

located on the ball-feeding machine side of the table, about 380 mm to the left table 

edge and 450 mm to the front table edge, which functions as participants’ hitting 

target. An ordinary video camera was used to record the whole table tennis play 

during the experiment. The participants were provided a standard shakehand-grip 

racket. An optical eight-camera motion capture system (Motion Analysis Eagle 

System, Santa Rosa, CA, USA) was used to capture data at the sampling rates of 100 

Hz. 

Video Camera

Ball feeding machine

Table tennis table

Target Area

Participant

5

6

7

8

1

2

3

4

Motion capture system cameras

Racket

Markers

380

4
5

0

360±80

7
0

0

Ground
lines

480

7
1

0

Feeding

Returning

 

Figure 4-1 Experimental setup 
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4.1.3 Procedure 

The whole experiment took about a maximum of one hour for each participant, 

including 30 minutes of warming up. Each participant’s personal data was collected 

at the beginning. Several anthropometric dimensions including body height and 

weight, sizes of trunk, upper arm, lower arm, and hand, were then measured using 

human body anatomical landmarks for logging purpose. Written consent was sought 

after the procedures had been fully described. Before the experiment, the reflective 

markers were attached onto the racket and participants’ body as described in the 

previous chapter (Section 3.1.2). The participants warmed-up for 30 minutes by 

practicing the forehand counterhit to familiarise with the environment and 

equipment, during which they adjusted their body movement and tried to find their 

preferred speed to hit the ball towards the target as accurately and as quickly as 

possible. During the experiment, participants used the forehand counterhit technique 

with their preferred speed to repeatedly return the balls towards the target while 

standing on the marked ground lines (no restriction on the side standing position) 

without any initial foot movement (Figure 4-1). Motion capture started when 

participants could perform consistently based on the experimenter’s observation and 

lasted for 3 minutes. In other words, a total number of 60 feedings was recorded for 

each participant. 

4.2 Data processing 

4.2.1 Data filtering, reduction and normalization 

The data from the motion capture system were subjected to the low-pass Butterworth 

filter (Butterworth, 1930) of cut-off frequency varying from 9.3-13.9 Hz based on 

the residual analysis (Pezzack et al., 1977). 

By reviewing the recorded video, successful and failed strokes were identified. A 
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failed stroke refers to a stroke when a participant did not successfully return the ball 

to the target. Only the data of successful strokes of each participant were used for 

further analyses (Table 4-1). Here, a stroke accuracy was calculated as the 

percentage of the successful strokes in all strokes for each player. 

Table 4-1 Number of strokes of each participant 

. . . . . . . . . . . . . . . . . . . .

recorded 59 59 59 59 59 60 59 60 59 60 59 59 60 59 60 59 59 59 59 59

hitting target 51 59 53 54 46 46 40 46 39 60 30 36 39 26 39 33 24 30 21 18

final 39 57 48 36 43 26 39 46 39 59 29 34 38 25 38 29 24 26 19 18

Number of stroks of each expert Number of stroks of each novice

 

There were also incomplete data due to failure motion capture (e.g. missing marker 

etc.). To make results more accurate, these strokes were removed rather than 

interpolated by software. Final data of each stroke (Table 4-1) were used to obtain 

the kinematic variables with the method described in Section 3.1, then segmented 

and piecewise-normalized with the method described in Section 3.2. 

4.2.2 Dependent variables 

The dependent variables for the statistical analysis were based on the above-

mentioned processed kinematic variables. They covered the majority of the 

kinematic variables of table tennis basic strokes including motion of the racket and 

the human body as defined in Table 3-1 and Table 3-2 respectively. These variables 

involved all the available DOFs and therefore were able to describe the movement 

of the racket and human trunk and upper arm. Both of the mean of the displacement 

and velocity among different motions for each participant were included. In addition, 

the phase time was also taken into consideration since the normalization removed 

the duration information of time from the original data. The dependent variables 

were defined and categorized as below. 
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1. Phase 

a) Phase durations 

This is the time elapsed during the three considered phases in a stroke—

backswing phase PBS, forward swing phase PFS, and follow-through 

phase PFT. They are calculated as the time intervals between adjacent Ti 

(i =1~4). 

2. Racket motion (refer to Table 3-1) 

a) Racket centre linear movement 

It includes the racket centre displacement and velocity with respect to the 

origin of the global coordinate system. In addition to the racket centre 

velocity in the three directions, RC2D and RC3D are specifically raised for 

investigation in the current chapter. RC2D is the projected racket centre 

velocity on the ground plane (the global plane x-z), which is also the 

resultant velocity of the racket centre in x- and z- directions; RC3D is the 

racket centre velocity in 3D space, which is also the resultant velocity in 

x-, y- and z- directions. 

b) Racket spatial orientation 

Three components of the racket plane orientation with respect to the axis 

planes of the global system are compared under each of the three phases, 

which are time-series variables. 

3. Human motion (refer to Table 3-2) 

a) Translational movement of the trunk centre 

It is the translational movement of the human trunk centre, including the 

displacement and velocity of the trunk centre with respect to the origin of 

the global coordinate system. 

b) Rotational movement of the trunk, shoulder, elbow and wrist 

It is the rotational movement of the trunk, shoulder, elbow and wrist joints. 
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Both angular displacement and angular velocity were investigated. 

4.2.3 Statistical analysis 

The two-sample Student's t-test was used for the comparison between expert and 

novice players with the level of significance set at 0.05. For the time series variables, 

the t-test was performed at 50 equally spaced intervals (e.g. step of 0.02 for PFS, or 

T2, T2.02, T2.04, 。。。, T3) within each phase. Welch's t-test (unequal variances t-test) 

was used instead if two groups of data had significant different variances based on 

Levene's test. This modification was based on the assumption test on preliminary 

data of several participants, which showed that the variances of the data of experts 

and novices were not always the same on different phase time. 

4.2.4 Stroke accuracy 

Results shows that the stroke accuracy for hitting the target of the expert players was 

significantly higher (p < 0.001) than their novice counterparts (83.55 ± 11.92 % 

versus 49.95 ± 12.10 %). 

4.2.5 Kinematic model visualization 

This section describes the visualization of the normalized kinematic model (Section 

3.2.3) of the stroke by applying the player’s segment dimensions and the collected 

kinematic data. Before the reconstruction, the body dimensions of the players were 

obtained through calculation from the markers (and verification from direct 

measurement), as illustrated in Figure 4-2. The t-test comparison was conducted on 

the data. The results are tabulated in Table 4-2. There were no significant differences 

between the body dimensions of experts and novices except the hand height, which 

is the distance from racket centre to the wrist joint along the handle of racket. This 

indicated that the experts held the racket deeper than the novices. 



 

 

61 

Tru
n

k h
eigh

t (h
alf)

Trunk width (half)

U
pp

er
 a

rm
 

le
ng

th

Lo
w

er
 a

rm
 

le
ng

th

Hand height

H
an

d 
w

id
th

TC

S

E

W
RC

 

Figure 4-2 Body dimension illustration 

Table 4-2 Comparison of body dimensions 

 Experts Novices p-value 

Upper Trunk height (half) 78.06±15.78 80.25±16.69 0.77 

Upper trunk width (half) 148.91±12.33 156.18±8.85 0.15 

Upper trunk depth (half) -4.36±8.49 -8.42±12.77 0.41 

Upper arm length 273.69±16.89 283.69±13.64 0.16 

Lower arm hand 232.78±14.60 243.19±14.75 0.13 

Hand height 166.11±10.34 185.88±17.24 0.01
* 

Hand width 38.20±15.96 34.78±19.92 0.68 

Hand depth 35.15±9.69 38.66±12.11 0.48 

The motion data was used to rebuild the kinematic model. Since the body 

dimensions do not differ significantly, it allowed the implementation with unified 
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and averaged body dimensions for each segment, therefore allows the visualization 

of the differences for highlights on motions rather than body dimensions. The 

segment and joint motion were applied to the respective position in the model. It 

was then visualized as a 3D animation to show the group differences during a stroke, 

which allowed investigation from multi-angles in any of the phases. Figure 4-3 

illustrated the different posture of the experts and novices at the moment of racket-

ball contact. The directions of the racket were added and it is apparent from the 

figure that experts were pointing their racket more in the downward direction 

compared to the novices. Since the figure works as an assistive tool, further detailed 

results are listed in the following sections with the statistical analysis. 

Blue: experts
Red : novices

 

Figure 4-3 Visualized comparison of the posture of experts and novices at racket-ball contact 

4.2.6 Phase durations 

The durations of each phase, the backswing phase PBS, the forward swing phase PFS 

and the follow-through phase PFT of each participant are shown in Figure 4-4, as the 
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mean ± variability (standard deviation) for the error bar charts. Student’s t-test was 

performed and the results are tabulated in Table 4-3. The total duration of the three 

phases “PBS + PFS + PFT” is also included in the table. 

 

Figure 4-4 Phase durations for each participant 

Table 4-3 Comparison of mean and variability of durations of phases 

 Phases Experts Novices p-value 

M
ea

n
 

PBS + PFS + PFT 0.68 ± 0.12 0.76 ± 0.14 0.162 

PBS 0.16 ± 0.03 0.14 ± 0.05 0.319 

PFS 0.17 ± 0.04 0.21 ± 0.05 0.053** 

PFT 0.34 ± 0.11 0.41 ± 0.08 0.126 

V
ar

ia
b

il
it

y
 

PBS + PFS + PFT 0.07 ± 0.03 0.12 ± 0.04 0.003* 

PBS 0.02 ± 0.01 0.04 ± 0.02 0.128 

PFS 0.02 ± 0.01 0.04 ± 0.02 0.010* 

PFT 0.03 ± 0.01 0.04 ± 0.02 0.017* 

Note: ∗ indicates significance (p < 0.05); ** indicates marginal significance (0.05 < p < 0.1). 

The duration of each stroke for each participant varied to a different extent; experts 
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also displayed certain variability across different strokes in each of the phases, 

though relatively smaller than those of the novices (Figure 4-4). From Table 4-3, 

there are no significant difference on the total time between experts and novices (p 

= 0.162). There are no significant differences on the duration of backswing phase (p 

= 0.319) and follow-through phase (p = 0.126) though experts spent longer time in 

backswing phase and shorter time in follow-through phase. During the forward 

swing phase, experts spent a little less time as compared to novices by marginal 

significance (p = 0.053). Experts had significantly smaller variability over the 

duration of all phases (p = 0.003), the forward swing phase (p = 0.010) and the 

follow-through phase (p = 0.017). 

4.2.7 Racket motion 

Table 4-4 shows the comparison results of racket motion at the phase time T1, T2, T3 

and T4, and also the phases in between: PBS (T1-2), PFS (T2-3) and PFT (T3-4). The 

variables include the racket centre displacement and velocity linearly in the x-, y- 

and z-directions of the global coordinate system, which are RCx, RCy and RCz 

respectively, and angularly against x-y, y-z and x-z planes of the global coordinate 

system, which are RRxy, RRyz and RRxz respectively. RC2D and RC3D are resultant 

velocity of racket centre projected on horizontal plane and in 3D space respectively. 

The symbols “H, L, O” are used to represent the t-test results from the perspective 

of experts, as noted below the table. These tabulated results were actually processed 

and simplified from the original t-test results: two examples are shown for velocity 

for RCx and RRxz respectively in Figure 4-5. For example, the racket centre velocity 

RCx varies from L to O to H during T2-3 (refer to Table 4-4: L-O-H), which is a 

representation of the change that experts have a significantly lower velocity at T2 but 

increase to no significance, and finally to significantly higher at T3 (refer to Figure 

4-5 a). For convenience, the prefix “D” or “V” is added before a variable to 
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distinguish the displacement and velocity respectively (e.g. DRCx represents the 

displacement of RCx and VRCx represents the velocity of RCx). 

Table 4-4 Comparison of different variables of racket motion on different phase time 

1 1-2 2 2-3 3 3-4 4

RCx O O O O O O O

RCy L L L L-O O O-H-O O

RCz L L L L-O O O-L L

RCx L L L L-O-H H H-O-L-O H

RCy O O-H H H-O-H H H-O O

RCz O O H H-O O L-O O

RC2D H H H H H H-O O

RC3D H H H H H H-O O

RRxy O O O O-L-O O O-H-O O

RRyz O O-H H H-O O O-H-O O

RRxz O H H H H H-O O

RRxy O O-L L L-O-H H H-O O

RRyz O O O O-L-O O O-H-O O

RRxz O O O O-L-O O O-L L

Centre displacement

(D)

Centre velocity

(V)

Angular displacement

(D)

Angular velocity

(V)

Phase time
Variables

 

Note: “H”: experts significantly higher; “L”: experts significantly lower; “O”: no significant 

difference; “-”: tendency of change within a phase 

 

Figure 4-5 Comparison result of a) racket centre velocity RCx and b) racket angular velocity RRxz 
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The racket motion data was also visualized for better understanding the Table 4-4 by 

implementing the kinematic model, as pictorially shown in Figure 4-6. The racket 

centre trajectory for the expert group and novice group during T1 to T4 are displayed 

in the plan view (global -y direction, Figure 4-6 a), side view (global -z direction, 

Figure 4-6 b), front view (global x direction, Figure 4-6 c) and 3D view (Figure 4-6 

d). The racket centre velocity is added for T1 to T4 respectively, where the arrows 

represent the directions and the length represent the magnitudes of the velocity. The 

solid black bars in a-c are projected racket plane at T1 to T4 as corresponding to the 

racket angular displacement respectively. 

 The descriptions of the results are mainly based on Table 4-4, therefore not all the 

shared results, which could be identified from Figure 4-6, are highlighted. On the 

other hand, Figure 4-6 is less quantitative without information of variability: for 

example, DRCx presents difference in Figure 4-6 but no significance in Table 4-4. 

There were little difference in the location of the racket when the participant hit the 

balls (DRCx, DRCy, DRCz at phase time T3) from Table 4-4. This can be visually seen 

from Figure 4-6 as the rackets are quite close at T3, and would of course be expected 

for a consistent ball feeding machine. However, it can be observed that experts 

generally moved their racket more downward (DRCy at phase T1-2) and leftward 

(DRCz at phase T1-2) during backswing, and had a larger range of movement (DRCz 

at phase T1-2) when they ended their stroke. Experts also generally had much faster 

backswings (VRCx at T1-2 of experts is smaller because of the negative sign, also the 

velocity can be seen from Figure 4-6) and produced much higher speed in the 

forward (VRCx at T3) and upward (VRCy at T3) directions at ball-racket contact. There 

was, however, little difference in the leftward (VRCz at T3) direction at the contact 

moment. The resultant velocities of the experts were significantly higher than the 

novices during almost all the phases as shown in the table (VRC2D and VRC3D). 
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Figure 4-6 Visualized racket centre trajectory with velocity and racket orientation for T1-T4 

Regarding the spatial direction of their rackets, the experts exhibited more 

downward facing of the racket face (DRRxz at T1-2) during the backswing and the 

forward swing phases. In the angular speed of the racket direction against x-y plane 

experts had lower angular speed at the beginning of forward swing but higher at the 

end, which indicted that expert rotated their racket with more strength (positive 

angular acceleration). 
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4.2.8 Human motion 

The results for human motion are shown in  

Table 4-5. The variables include trunk centre linear movement in the x-, y- and z-

directions of the global coordinate system, which are TCx, TCy and TCz respectively; 

the trunk rotational movement Tfe, Tll, and Taa; shoulder joint rotational movement 

Spe, Se and Sie; elbow joint rotational movement Efe and Eps; and wrist joint rotational 

movement Wfe and Wru. Both of their displacement (including angular displacement) 

and velocity (including angular velocity) were compared. The symbols “H, L, O” 

are again used to represent the t-test results from perspective of experts, as noted 

below the table.  

From the displacement results of  

Table 4-5, the trunk centre of the experts were more forward (DTCx), downward 

(DTCy) and leftward (DTCz) compared to the novices during almost all the phase 

time. There was no significant difference in the angle of trunk flexion (DTfe), but 

experts tilted their trunk more in the lateral right direction (DTll) and axial left 

direction (DTaa) in the backswing and forward swing phase. Experts had their 

shoulder directing more forward (DSpe at phase T1-2) during the backswing and 

downward (DSe at phase T2-3) during the forward swing. Experts had more pronation 

(DEps) during the backswing and part of forward swing. The wrist of experts had 

more flexion (DWfe) and ulnar deviation (DWru) compared to the novices. 
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Table 4-5 Comparison of different variables of human motion at different phase time 

1 1-2 2 2-3 3 3-4 4

TCx H H H H H H-O O

TCy L L L L L L L

TCz L L L L L L L

Tfe O O O O O O O

Tl l H H H H-O O O O

Taa L L L L L L-O O

Spe H H H H-O O O O

Se O L L L L L-O O

Sie O O-L L L-O O O O

Efe O O O O O O-H H

Eps H H H H-O O O O

W fe H H H H H H H

Wru H H H H H O O

TCx O O O O L L-O O

TCy O O O O-H H H-O O

TCz O O-L L L-O O O O

Tfe H H-O O O-L L L-O O

Tl l H H-O O O-L L L-O O

Taa L L-O O O-H H H-O O

Spe O O O O-L-O O O O

Se O O-L L L-O O O-H H

Sie L L-O O O-H H H-O-L L

Efe L L-O O O-H H H-O-L L

Eps H H H O-L L L-O O

W fe H H-O O O-H-O O O-L L

Wru O O O O-L L L-O O

Displacement

(D)

Velocity

(V)

Variables
Phase time

 

Note: “H”: experts significantly higher; “L”: experts significantly lower; “O”: no significant 

difference; “-”: tendency of change within a phase 

The velocities present details on the difference of how fast the participants moved 

their body segments and joints. They displayed overall more complex patterns 

compared to displacement, as more ‘-’ are seen on velocity from  

Table 4-5. On the other hand, the fact that velocities of experts changed more rapidly 
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than the novices indicated the experts had larger acceleration (including angular 

acceleration) than the novices. Note that the symbols “H, L, O” include the 

information of the sign of the values of the velocities, which means a smaller 

negative value may have a larger magnitude. Therefore, the displacement results and 

the range of motion (Table 3-2) and visualized kinematic model could also be taken 

into consideration together with the velocities. The racket-ball contact (phase time 

T3) is highlighted here. At this moment, the trunk centre of the experts had a larger 

tendency of moving backward (VTCx) and upward (VTCy). In addition, the trunk had 

smaller velocity of extension (VTfe) and lateral right rotation (VTll), but significantly 

larger axial rotation to left (VTaa). The experts had faster velocities in shoulder 

internal rotation (VSie) and elbow flexion (VEfe), but slower elbow pronation (VEps) 

and wrist ulnar deviation velocities (VWru). 

4.3 Discussion 

4.3.1 Summary and highlights 

It is generally known that the movement of experts are faster, more precise, and more 

consistent than novices. In the current experiment, they were verified from the 

significant differences of their stroke accuracy, racket centre speed at T3 and racket 

centre variability. Different from the past work which only studied limited moments 

(e.g. the racket-ball contact moment) and placed little work on human motion, in 

this chapter the controlled experiment and quantitative analysis presented results on 

the detailed motion pattern differences for the racket, upper arm and trunk in each 

continuous and unambiguous phase time. The motion of experts and novices 

displayed distinct patterns in the specific phase time and phases. 

The experts had slightly different allocation of time spent for each phase of a stroke: 

they have longer backswing, and shorter forward swing and follow-through in 
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general. The forward swing contribute significantly to their racket centre speed at 

ball contact. The racket speed of experts was significantly faster during the 

backswing and forward swing. The experts have larger range of backswing (Figure 

4-6) therefore has a longer acceleration path during the forward swing to generate a 

faster velocity at racket-ball contact (T3). They put their racket face more downward 

(DRRxz) and rotated the racket faster along the global z-axis (VRRxy at T3). The 

standing position of the experts was a little different from the novices: the experts 

were more forward (DTCx) and leftward (DTCz); the experts may have squatted for 

shorter action time as their trunks were lower (DTCy). No significant differences 

were found on the elbow flexion angles (DEfe), but larger range of movements was 

at least seen in the trunk lateral left rotation (DTll), shoulder plane of elevation (DSpe) 

and internal rotation (DSie), and elbow supination (DEps). Most of the rotational 

speeds play significant roles in the contribution to the racket velocity based on their 

differences, including the trunk rotations, shoulder internal rotation, elbow rotations 

and wrist radial flexion. The shoulder plane of elevation (VSpe), elevation (VSe) and 

elbow flexion (VEfe), however, did not differ between the experts and novices at ball-

racket contact (T3). 

4.3.2 For the novice players 

From the novice players’ perspective, an approach to improving their performance 

is to help them avoid common errors by mimicking the movement of expert players. 

To move the racket according to the experts’ pattern as the ultimate target, it is indeed 

the resultant movement of the kinematic chain from the trunk to the shoulder, elbow, 

wrist and finally the racket. The coordination of the segments and joints is essential 

to improve the overall performance. The kinematic model shows visually the 

differences between experts and novices, thus providing a good tool for novice 

players. Based on the results of the analysis, some discussions on the posture and 
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speed are given. 

Firstly, novice players will need to pay careful attention to the body and racket 

position during a stroke. They need to squat a little to move the centre of mass lower 

(i.e. DTCy), and also stand a little back and left with reference to the ball. These may 

give them a little more extra time to react and get ready to return the ball. The trunk 

may rotate more axially clockwise during the backswing, which can help them 

obtain a better range of motion during the forward swing. The elbow can be higher 

and its pronation needs to be smaller. The wrist flexion should be smaller. The racket 

should have smaller angle against the x-z (i.e. horizontal) plane. 

Secondly, novice players should swing their racket a bit faster according to the 

comparison. However, they may have reached their maximum otherwise their 

accuracy may be reduced. In fact, this can be solved partly through the adjustment 

of the posture as described above. The larger range of motion of certain joint may 

help them have larger trajectory of acceleration, therefore improving their speed. 

The speed of trunk rotation, shoulder internal rotation, elbow rotation and wrist 

rotation are also important. 

4.3.3 Further to individual 

The statistical analysis has good practice in the investigating the overall motion 

pattern differences between novices and experts. The results were generated based 

on the analysis upon the two groups of data. This can provide an overall assessment 

on the entire novice group. However, the results may not necessarily be true for each 

individual novice for an individual assessment, since each individual pattern within 

the novice group may differ from each other. 

There are several concerns if the t-test is to be applied for a further evaluation on an 
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individual sample. Though both the data of a group of experts and a group of novices 

(Figure 4-7) is obtained from the experiment, a one-sample t-test can only be 

performed on the data of one particular novice and of the group of experts. In other 

words, the distribution of the actual data of the novice group cannot be used therefore 

is assumed unknown. The one-sample t-test is actually “deformed” since the original 

sample (i.e. experts) is now fixed but the one novice data is unknown. The t-test is 

able to indicate the significance of whether the novice data is statistically the same 

or different from the expert data. However, the novice data may still belong to (e.g. 

novice 2 in Figure 4-7) or beyond (e.g. novice 3 in Figure 4-7) the novice group if 

there is no significant difference for one-sample t-test. This is because only the data 

of the expert group is involved in the one-sample t-test, but the information of the 

novice group, which exists but assumed unknown, is not used. On the other hand, 

the intervals of confidence for the experts are in fact different, though both levels of 

significance are set to 0.05 for the one-sample t-test and two-sample t-test. An 

illustration is given in Figure 4-7. Under the condition that the data of experts 

(assume known and fixed) and novices (assume unknown) are normal-distributed 

and with equal variance, the two-sample t-test may have a larger confidence interval: 

the new one-sample t-test may lead to an inconsistent result of significance (e.g. 

novice 1 in Figure 4-7) compared to the two-sample t-test which was already applied 

in this chapter. In addition, there may be other problems on the combination of each 

result, which is from the comparison of each single pattern. Therefore, the Student’s 

t-test is not appropriate for use with individual novice players. 



 

 

74 

novice 1

novice 2

novice 3

two-sample 
t-test

confidence interval

one-sample 
t-test

Assume data of experts and 

novices follow normal distribution 

 

Figure 4-7 Comparison of an individual novice with an expert group 

To make it convenient to apply the existing knowledge to any new individual player, 

a better and more convenient tool, the classification technique, is proposed. The 

classifier can be trained using existing data and then the classifier is used to classify 

new data, in the sense that the new data is compared with the existing data, therefore 

can be utilized to evaluate the motion of any new players. This is discussed in the 

next chapter. 
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Chapter 5 Classification model for automatic identification of 

motion quality 

5.1 Overview of model development 

In the previous chapter, the significant differences in motion pattern data of experts 

and novices were identified. This chapter steps further to utilize the data to develop 

a classification model, which has the ability to automatically identify the quality of 

motion patterns for an individual by classifying them into a novice or an expert. The 

model was created from and optimized for the dataset which was collected as 

described in the previous chapter. A potential application of the model is its ability 

to classify any new table tennis forward stroke motion data which is not part of the 

data set in the current research. 

The flowchart in Figure 5-1 shows the development and optimization of the model. 

The model was designed to use a binary Support Vector Machine (SVM) classifier 

with Nelder-Mead method to optimize parameters C and K in order to achieve the 

highest model performance (F1 score), which was evaluated by cross-validation. 

Different sub-datasets were to be produced for the SVM classifier input by using 

different feature selection methods on the raw dataset. The proper SVM kernel was 

also to be selected. The selection of the best performing model would also result in 

good combinations of features that used fewer variables while maintaining good 

model performance. 
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Figure 5-1 Development and optimization of the classification model 

The raw data was the kinematic variables collected from the experiment as described 

in the previous chapter. The data subset was retrieved from the raw data by selecting 

different combination of the variables under the condition of p-threshold and either 

presence or absence of the Principal Component Analysis (PCA). The performance 
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of different SVM kernels (linear, polynomial, and RBF) was also to be investigated. 

For cross-validation, adjusted folds were used such that all the data was partitioned 

into the equal number of subsets to the number of participants to avoid over-fitting. 

In other words, there were 20 subsets for the existing data of 20 participants. Each 

subset contained exactly all the data of one participant. The training set and 

validation set were input into the SVM classifier. Then the performance F1 score of 

the classifier were calculated based on the 20 subsets. Nelder–Mead method was 

used to determine the best F1 score under the two-dimensional space constructed by 

SVM constraint C and kernel scale K. 

5.2 Datasets and methodology for model development and 

optimization 

5.2.1 Raw dataset 

The processed data from the previous chapter, including those displacement and 

velocity data of the racket (refer to Table 3-1), trunk, shoulder, elbow and wrist (refer 

to Table 3-2) of final stroke data (Table 4-1), were the raw dataset for the model 

development. All of these variables were normalized time-series variables from 

phase time T1 to T4. The different DOFs under each segment and joint were not 

separated but combined as one set (e.g. displacement of RCx, RCy and RCz was 

regarded as one set of features), though each DOF was regarded as one feature for 

the SVM. At each phase time, these data were formed in matrix such that each row 

was one observation of stroke and each column was one feature. There were 20 

observations for 20 participants. To reduce the computational resources, a gap of T0.1 

was selected such that only data at 10 equal distributed phase time (e.g. T1, T1.1, 

T1.2, …T1.9, T2 for PBS) were used within each phase. 

For brevity, the abbreviation letters (Table 5-1) were used to represent the feature 
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sets and their combinations. For example, “(RC)V” represented the velocity data of 

racket centre; “(RC+RR)(D+V)” represented both displacement and velocity 

(including angular displacement and velocity) data of the racket centre translational 

and racket rotational motion; if a sub-dataset included all of the raw dataset, then it 

should be noted as “(RC+RR+TC+T+S+E+W)(D+V)”, or “(ALL)(D+V)” for short 

specifically. 

Table 5-1 Motion Abbr. for SVM input 

Motion subjects or types Abbr. 

Racket centre translational motion RC 

Racket rotational motion RR 

Trunk centre translational motion TC 

Trunk rotational motion T 

Shoulder joint rotational motion S 

Elbow joint rotational motion E 

Wrist joint rotational motion W 

Motion of all above subjects ALL=(RC+RR+TC+T+S+E+W) 

Displacement or angular displacement D 

Velocity or angular velocity V 

5.2.2 Feature selection 

Feature selection reduces the dimension of raw features, there would be multiple 

choices for features by combining or transforming the combination. In the current 

study, three strategies were applied to generate sub-datasets for the classification 

model. 

The first method involved simple extractions to get a diverse range of feature 

combinations from the raw data set. The combinations were manually selected based 
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on the different physical segments and quantities, as tabulated in Table 5-2. 

Table 5-2 Basic feature combinations 

Category Displacement Velocity Displacement + Velocity 

All ALL (ALL)D (ALL)V (ALL)(D+V) 

Racket 

RC (RC)D (RC)V RC(D+V) 

RR (RR)D (RR)V RR(D+V) 

RC+RR (RC+RR)D (RC+RR)V (RR+RR)(D+V) 

Human 

TC (TC)D (TC)V TC(D+V) 

T (T)D (T)V T(D+V) 

S (S)D (S)V S(D+V) 

E (E)D (E)V E(D+V) 

W (W)D (W)V W(D+V) 

TC+T (TC+T)D (TC+T)V (TC+T)(D+V) 

T+S (T+S)D (T+S)V (T+S)(D+V) 

S+E (S+E)D (S+E)V (S+E)(D+V) 

E+W (E+W)D (E+W)V (T+W)(D+V) 

T+S+E+W (T+S+E+W)D (T+S+E+W)V (T+S+E+W)(D+V) 

TC+T+S+E+W (TC+T+S+E+W)D (TC+T+S+E+W)V (TC+T+S+E+W)(D+V) 

The second method implemented PCA, which orthogonally transformed the original 

features into linearly uncorrelated components and the principal components were 

selected. A standardization was applied before using the PCA so that each feature 

was centred to mean 0 and scaled to the standard deviation 1. To determine the 

number of principal components to reserve, a threshold of 90% was set such that at 

least 90% and just above 90% of principal components were selected. This method 

was applied to each sub-dataset in Table 5-2. 

An additional trial was inspired by the Student’s t-test, such that a p-threshold was 
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set to filter the data by the significance. In other words, for a specific p-threshold, 

the Student’s t-test was applied on the data with level of significance (type I error) 

equal to p, and only significant variables on each moment were selected for 

generating data subset. This p-threshold values were sampled from 0 to 1 manually. 

Specifically, when p=1, all the data was chosen; when p=0.05, it was exactly the 

same significant variables as those of results of the previous chapter were chosen. 

5.2.3 SVM and cross-validation 

The data subsets were input into the SVM and evaluated using cross-validation. The 

basics of the SVM and cross-validation have been discussed in Section 2.3.2. 

Specifically, the data of 20 participants were partitioned into a training set and a 

validation set, which contained the data of 19 participants and 1 participant 

respectively (Figure 5-2). Each set contained the features (i.e. selected variable sets) 

and their class labels (i.e. expert or novice). Given any values for the parameters —

the kernel scale K and capacity constraint C (i.e. penalty for misclassification), the 

training set was used to train the supervised SVM, which was a process of optimizing 

the internal parameters (for details refer to Equation (2-1)). Then the testing set went 

through the trained SVM and compared the results with their class labels. This 

resulted in a confusion matrix, which indicated how the predictions matched the 

actual results (i.e. the number of true positive, false positive, false negative, and true 

negative). 

The sampling was repeated N (N=20) times to produce different combinations of 

data of training sets and testing sets (Figure 5-3). Each combination applied the SVM 

and their output confusion matrices were combined together to calculate the 

precision, accuracy, recall and further the F1 score (Section 2.3.2). This in fact 

covered all the combinations of training and testing datasets therefore the F1 score 

reliably represented the model performance. 
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Figure 5-2 Architecture of training and testing of the SVM classifier 
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Figure 5-3 Architecture of the cross-validation 

5.2.4 Tuning SVM parameters C and K 

For the SVM classifier, the larger capacity constraint C means larger penalty on 

misclassification, which may theoretically lead to better model performance. On the 

other hand, it may have a possibility to over-train the model and it will also increase 
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the training time. In addition to the cross-validation which was used to avoid over-

training, the Nelder-Mead method was also used to search for an approximate C as 

well as K. 

An example for the kernel “RBF” is illustrated here. To apply the Nelder-Mead 

method, both of C and K were converted into log scale to make their range into the 

whole real numbers. The objective function was formulated by the model 

performance through cross-validation, which was calculated through numerical 

computation based on a selected dataset (Equation (5-1), Figure 5-3). Then the 

Nelder-Mead was used to determine the best combination of C and K to maximize 

the objective function. 

max
𝐶,𝐾

𝐹1 {∑{𝐶𝑜𝑛𝑀𝑎𝑡[𝑆𝑉𝑀𝐶,𝐾(𝑇𝑟𝑎𝑖𝑛𝑖 , 𝑇𝑒𝑠𝑡𝑖)]}

𝑁

𝑖=1

} (5-1) 

Where the function F1 calculates the F1 score, 𝐶𝑜𝑛𝑀𝑎𝑡  calculate the confusion matrix, the 

SVM are the classifier trained by training set 𝑇𝑟𝑎𝑖𝑛𝑖  and vaulted by testing set 𝑇𝑒𝑠𝑡𝑖 under the 

parameters C and K. N is the number of 𝑆𝑉𝑀  that Cross-Validation validates on, and N=20 in 

current study. 

Figure 5-4 shows the objective function in terms of C and K for the “ALL(D+V)” 

data set. From the distribution of F1 score, it reaches maximum with quite a large 

range of C and K. The maximum F1 score can be easily searched without too much 

concern of the local maxima problem if the initial seeds are properly selected. In 

fact, even a local maximum is rather close to the global optimum (also appears when 

infinite C with proper K). This is true for other sub-dataset based on sampled testings. 

Upon these tests, a pair of initial values C=e^2 and K=e^2 were selected for 

parameter tuning for all the sub-datasets. 
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Figure 5-4 F1 score with respect to C and K at phase time T3 for the raw data set (RBF kernel) 

5.3 Preliminary settings for SVM and results 

To reduce the time and resources on the computation, some prior experiments were 

conducted in advance in order to optimize part of the model settings. The prior 

experiments here included the effects of different choices of SVM kernels and the p-

threshold. These two experiments were conducted on the raw dataset only. 

5.3.1 Effects of different SVM kernels 

To make sure that a proper kernel was selected for the SVM classifier, the raw data 

was applied SVM with different kernels. Figure 5-5 shows the model performance 

of the linear, RBF and polynomial (with an order of 3) kernels for the “ALL(D+V)” 

data respectively. 
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Figure 5-5 Comparison of different kernel for the raw data 

Each of the kernels was able to give a relatively good performance on the all the 

phase time with the F1 score of over 80% or even over 90%. However, the linear 

kernel does not seem to be able to better fit the existing datasets and presented the 

worst performance. The polynomial kernel gives better F1 scores for the first half 

phase (around T1.4 - T2.7) but performed worse over the second half phase (around 

T2.7 – T3.8) compared to the RBF kernel. Though a better determination of the kernel 

depends on the empirical experience on the data, the RBF kernel is the most widely 

used (Shanks & John, 1994). Since the subset of data varied, and RBF kernel had 

comparable performance on the raw data set, this study used the RBF kernel as the 

SVM kernel. 

5.3.2 Effects of different p-threshold 

An experiment was performed to investigate the effects of different p-threshold on 

the model performance. A statistical t-test was applied on the raw dataset by using 

the type I error equal to the specific p-threshold. Only significant features were 

selected as sub-dataset for the classification. The p-threshold was assigned different 

values varying from 0.001 to 1. 
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Experiment results are shown in Figure 5-6 and Figure 5-7. The former shows a 

distribution of the F1 score in terms of different p-threshold (0.001 to 1) and phase 

time (1 to 4) in 3D; the latter projects Figure 5-6 into 2D and the special cases where 

p=0.05 and p=1 are highlighted. From the figures, it can be seen that when the p-

threshold is set to very small (p < 0.03), the F1 score becomes significantly worse. 

On the other hand, there is not much difference when the p-threshold is larger. The 

lines with p=0.05 and p=1 (Figure 5-7) have comparable difference in-between but 

not too much overall. 

 

Figure 5-6 Results of raw data on different p-threshold 
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Figure 5-7 Results of raw data on different p-threshold with p=1 and p=0.05 highlighted 

In fact, the implementation of the p-threshold on data reduced the number of features. 

When the p-threshold was set to very small (e.g. p < 0.03), the feature space was 

significantly shrunken and resulted in too many features of the original dataset were 

removed, including those important features which did contribute to the 

classification. This therefore caused the classifier performance to be unstable 

especially when the original dataset was not large enough. For example, results of 

the motion of individual segments or joints are shown in Figure 5-8. The number of 

features of the original dataset varied from 4 to 6 for these segments or joints. The 

p-threshold of 0.05 caused a lower performance, and a worse case was in some sub-

datasets that their features were totally filtered out (e.g. T(D+V) and S(D+V) in 

Figure 5-8) when passing the threshold therefore caused a failure of classification. 
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Figure 5-8 Results of different segments when p=1 (up) and p=0.05 (down) 

Therefore, the p-threshold might improve the model performance to some extent and 

reduced the number of features. However, it also caused the model to become 

unstable. For this reason, this method was rejected. 

5.4 Results 

5.4.1 PCA on the dataset 

Since 90% of the components were selected for the classification and there was 

multiple phase time during a stroke, the percentage of retained principal components 

were calculated. Note that percentages are not final results (i.e. model performance 

F1 score), yet are tabulated in Table 5-3 for any further discussion. 
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Table 5-3 Percentages of retained the components 

 Category D V D+V 

All ALL 36.8-47.4 38.1-52.4 30.0-40.0 

Racket 

RC 66.7-100.0 40.0-60.0 37.5-62.5 

RR 66.7-100.0 66.7-100.0 50.0-83.3 

RC+RR 50.0-66.7 37.5-75.0 35.7-57.1 

Human 

TC 100.0-100.0 100.0-100.0 66.7-83.3 

T 66.7-100.0 66.7-100.0 66.7-66.7 

S 66.7-100.0 66.7-100.0 50.0-83.3 

E 100.0-100.0 100.0-100.0 75.0-100.0 

W 100.0-100.0 100.0-100.0 75.0-75.0 

TC+T 66.7-83.3 66.7-66.7 50.0-58.3 

T+S 66.7-83.3 66.7-83.3 50.0-58.3 

S+E 60.0-100.0 80.0-80.0 50.0-80.0 

E+W 75.0-75.0 75.0-100.0 62.5-75.0 

T+S+E+W 50.0-70.0 60.0-80.0 45.0-60.0 

TC+T+S+E+W 46.2-61.5 53.8-69.2 42.3-53.8 

5.4.2 Results by using dataset of ALL 

This section shows the performance of “ALL” dataset. Since “ALL(D+V)” had the 

maximum number of features, it was used as a benchmark for the results of the racket 

and human motions in the later sections for convenience. Both sets of results that 

used a basic feature selection and uses PCA are shown in Figure 5-9. 
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Figure 5-9 Results for using ALL dataset without PCA (up) and with PCA (down) 

In addition, the respective values of the accuracy, precision and recall were also 

calculated for “ALL(D+V)” without PCA (Table 5-4) as an example to indicate that 

the accuracy, precision and recall of the model were also holding relative high values 

along with the high F1 scores. 

Table 5-4 Best performance of the model for ALL(D+V) without PCA 

Phase 

time 
ln(K) ln(C) F1 Accuracy Precision Recall 

1 2.0 2.0 97.7 96.0 99.5 97.2 

1.2 2.4 1.9 97.8 96.0 99.8 97.3 

1.4 2.1 2.0 97.7 96.0 99.5 97.2 

1.6 2.0 2.0 96.8 95.9 97.7 96.1 
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1.8 2.5 1.8 95.6 95.8 95.4 94.7 

2 2.0 2.0 91.9 94.6 89.4 90.4 

2.2 2.1 1.8 89.5 92.6 86.6 87.6 

2.4 2.1 2.0 90.2 92.9 87.7 88.5 

2.6 2.0 2.0 93.1 92.7 93.5 91.6 

2.8 2.1 2.0 97.6 96.0 99.3 97.1 

3 1.9 2.1 98.2 96.6 99.8 97.8 

3.2 2.1 2.0 99.0 99.3 98.6 98.7 

3.4 3.0 1.6 98.9 97.7 100.0 98.6 

3.6 2.9 1.5 98.8 98.4 99.3 98.6 

3.8 2.3 1.9 98.9 98.2 99.5 98.6 

4 1.9 2.1 96.2 96.7 95.6 95.4 

5.4.3 Results for all data subset with and without PCA 

Several sample figures are shown below in Figure 5-10, all the results for all data 

subset combinations with and without PCA are shown in Appendix C. For better 

comparison and analysis, they were converted to a score table as discussed in the 

next section (Section 5.4.4). 
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Figure 5-10 Results for some dataset (D+V) (1st), D (2nd) and V (3rd) without PCA 

5.4.4 All the results on a score table 

Based on the results in the previous section (Section 5.4.3), a score table was created 

to filter and better visualize the data by using a “80% - 80%” rule. The baseline was 

set to F1 score 80% such that if the F1 score at a phase time or mean F1 score during 

a phase was less than 80%, it was marked as “×”; otherwise if less than 80% of the 

phase was higher than F1 score 80%, it was marked as “—”; otherwise the score or 

mean score was shown with their actual number. The results are shown in Table 5-5. 

In other words, “×” highlights the worst results, “—” highlights relative good results 

(normally with its values varying a lot), while numbers show filtered good results. 

The higher the number is, the better the model performance is. 
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Table 5-5 F1 score table showing all the results 

1 1—2 2 2—3 3 3—4 4 1 1—2 2 2—3 3 3—4 4
(ALL)D 90 89 86 86 88 97 99 84 87 90 85 87 94 93
(ALL)V 95 93 91 88 95 93 93 94 92 91 89 88 91 92

(ALL)(D+V) 98 96 92 93 98 98 96 98 93 95 93 96 96 96
(RC)D 94 — × × × 90 91 94 — × × × 90 91
(RC)V 85 88 90 87 86 — 85 89 88 89 85 87 83 86

(RC)(D+V) 91 93 90 85 85 91 95 92 92 90 — 82 92 96
(RR)D 81 83 84 83 × × × 82 84 86 84 × × ×
(RR)V 81 83 83 84 82 × × 82 84 86 85 81 × ×

(RR)(D+V) 89 90 87 85 83 82 80 89 91 88 87 83 83 ×
(RC+RR)D 93 91 86 83 × 90 92 90 — 85 — × 90 92
(RC+RR)V 87 89 90 86 83 86 98 89 90 93 88 87 87 97

(RC+RR)(D+V) 92 94 96 87 83 91 96 90 93 92 86 81 90 96
(TC)D 83 87 89 87 86 83 83 82 86 89 88 89 85 83
(TC)V × × × × 84 × × × × × × 84 × ×

(TC)(D+V) 88 89 92 90 87 83 84 87 90 91 91 91 — 86
(T)D 81 85 92 89 81 × × × × × — 81 × ×
(T)V 93 86 81 — 93 87 × 87 83 81 83 94 90 ×

(T)(D+V) 93 93 87 89 97 88 × × × × — 92 87 ×
(S)D × × × × × × × × × 81 × × × ×
(S)V 82 87 86 × × × 86 × × × × × × 86

(S)(D+V) 84 87 81 — 83 — 82 × — × × 88 83 82
(E)D × × × × × 84 89 × × × × × 84 89
(E)V × × × × 87 — × × × × × 87 — ×

(E)(D+V) × × × × 85 87 90 × × 84 84 88 88 90
(W)D × × × × × × × × × × × × × ×
(W)V × × × × 83 × × × × × × 83 × ×

(W)(D+V) 88 — × × 88 × × × × × × 83 — ×
(TC+T)D 86 86 82 90 85 88 86 86 86 82 89 91 93 92
(TC+T)V 95 — × 86 97 90 × 92 83 86 83 90 84 ×

(TC+T)(D+V) 92 91 86 89 88 90 88 91 90 87 91 92 91 88
(T+S)D × — 96 91 82 × × × × × 86 80 × 81
(T+S)V 91 91 92 87 95 93 80 85 85 82 — 93 94 83

(T+S)(D+V) 90 92 93 93 99 92 × × 91 89 89 95 91 83
(S+E)D 82 × 80 × × 88 90 × × 83 × × 87 89
(S+E)V 91 88 82 — 87 83 81 91 — × — 89 × ×

(S+E)(D+V) 86 83 × — 91 91 91 82 85 89 85 88 90 89
(E+W)D 82 — 82 × × 86 91 83 — 81 × × 85 87
(E+W)V × × × × 89 — × × × × × 89 — ×

(E+W)(D+V) × × × — 91 90 91 81 × × — 87 88 90
(T+S+E+W)D 89 86 85 86 85 91 93 × — 87 89 83 91 96
(T+S+E+W)V 95 91 80 86 96 93 84 92 — × 85 92 93 84

(T+S+E+W)(D+V) 94 93 87 91 98 95 90 90 87 87 90 93 94 95
(TC+T+S+E+W)D 82 83 85 89 89 95 95 83 — 84 87 86 90 92
(TC+T+S+E+W)V 97 90 × — 97 93 85 94 — × × 91 91 85

(TC+T+S+E+W)(D+V) 97 94 91 92 94 96 97 96 — 94 90 93 96 95

without PCA with PCA

 

From the table, the SVM classification model was able to classify the existing data 

with relative high performance. When all the raw data “ALL(D+V)” was used, the 

model gave the best scores varying from 92% to 98% without PCA and 93% to 98% 

with PCA. When subset features were selected, the performance overall decreased 

although some may be slightly better than using all of the features. 
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Under the conditions that the racket, segment or joints were fixed for the features, 

using velocity only presented generally higher F1 score than using displacement only. 

However, using both displacement and velocity would gave even better F1 score. 

The reservation of principal components varied a lot depending on the feature 

combinations (Table 5-3). In general, with higher number of features more 

unimportant components could be removed. This is because the larger number of 

features raised higher possibility of containing linearly correlated features. The 

reservation of the principal components could be as high as 100% for some sub-

dataset (e.g. elbow and wrist), which gave an indication that all the dimensions were 

important. In fact, the model performance (Table 5-5) shows that these principal 

components are insufficient and gave bad F1 scores. Overall, the application of PCA 

generally presented comparatively similar performance compared to those without 

PCA. Therefore, the application of PCA may benefit if the data had more features 

(e.g. more kinematic variables involved), since PCA reduces number of features and 

reduce data processing time. 

Besides the fact that the ALL dataset gave good performance, the racket centre 

velocity also presented good performance. However, the F1 score for the racket 

centre displacement could not differentiate the experts from the novices. The racket 

rotations were not able to give good results by just over 80%. When PCA was not 

applied, the trunk centre was in the opposite situation that the displacement was able 

to predict relatively good results but the velocity could not. Displacement and 

velocity of trunk rotation seemed both applicable at most phase time. The shoulder, 

elbow and wrist were not presenting good results. Then a combination of the trunk 

centre motion and trunk rotational motion showed better result in displacement. A 

combination of trunk and shoulder rotations showed better result in velocity. The 

combination of elbow and wrist were not able to predict with a good result. The 
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other combinations in the table (e.g.(T+S+E+W)D ), on the other hand, were able 

to present good model performance. 

5.5 Classification model 

5.5.1 Summary 

The SVM classification technique was applied in order to build the model for 

identifying the motion quality by classifying them into experts or novices. The 

model development included the three different feature selection methods (i.e. a 

diverse subset, PCA and p-threshold), three different SVM kernels (i.e. linear, 

polynomial and RBF) and two different SVM parameters (i.e. C and K) to find out 

the best model performance (i.e. F1 score) through cross-validation and Nelder-

Mead method. Results show that the linear kernel performed the worst on the data, 

the RBF kernel and the polynomial kernel had comparable performances and the 

RBF kernel was selected. The feature selection method of p-threshold did not show 

any advantage due to the relative small size of the data since it may over reduce the 

data dimensions (i.e. number of features). The application of PCA gave similar 

results against SVM without applying PCA when the data dimensions are large, but 

on the other hand may be worse when data size is smaller. Therefore, the model was 

preferred with the RBF kernel and basic feature selection methods (i.e. without PCA) 

for the biomechanical data of table tennis stroke; otherwise the PCA may be 

considered if the higher dimension of data was used. 

Based on the model performance table (Table 5-5), several good features 

combinations were selected (without PCA). They are tabulated in Table 5-6 . The 

average performance upon all the phases was calculated for these 18 combinations. 

Their grand average performance is 90.2%. Therefore, the SVM exhibited good 

performance in distinguishing the biomechanical motion data between expert and 
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novice players. 

Table 5-6 Selected feature combinations 

Selected combinations Average performance (%) 

RC(D+V) 

RR(D+V) 

(RC+RR)(D+V) 

TC(D), TC(D+V) 

T(D+V) 

 (TC+T)D, (TC+T)(D+V) 

(T+S)V, (T+S)(D+V) 

 (T+S+E+W)D, (T+S+E+W)V, (T+S+E+W)(D+V) 

 (TC+T+S+E+W)D, (TC+T+S+E+W)(D+V) 

ALL(D), ALL(V), ALL(D+V) 

5.5.2 Implementation of classification model 

The trained SVM classifiers, in fact, are able to give more information than the binary 

classes (Figure 5-11). A score can be generated for describing how close a new data 

instance is to the two classes (Section 2.3.2). Given the two output of expert (yi = +1) 

and novice (yi = -1), the score can be a number in the range [−1,+1] rather than 

the binary {−1,+1} . A score closer to +1 represents that the data has higher 

possibility belonging to the expert patterns; on the other hand, a smaller score close 

to -1 represents that the data is more like novice patterns. 
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Figure 5-11 Prediction score of trained SVM model 

Then the desired classification model was built as shown in Figure 5-12. The SVMs 

are trained models. When any new data of a player is input into the model, it 

processes the data and gives the prediction scores for the combinations (Table 5-6). 

Each combination is able to give a performance at least over 85% and their average 

performance over 90%, then results can be used for further usage (e.g. generation of 

feedbacks for the novice player). 

 

Figure 5-12 Desired classification model 
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5.5.3 Framework for coaching system 

A potential future application of the classification model is the development of a 

table tennis coaching system, which will be able to monitor and provide feedback to 

novice players like a coach. The SVM model functions as the computational kernel 

of the system to deal with the motion data processing and evaluation. The framework 

of the coaching system is illustrated in Figure 5-13. It can be developed to 

continuously monitor and timely correct motion patterns for novice table tennis 

players, and offer useful information on the status of players’ training progress. 

Motion capture Feedback 
sensor

Trained
classification 

model

Feedback 
generator

Web/mobile 
interface

re
al

-ti
m

e

post

Database

More expert & novice data

 

Figure 5-13 Framework of the coaching system 

The system should be made up of several necessary components: the motion capture 

component, the classification model, the database component, and the feedback 

component. The motion capture component captures the data from the player by 

sensors in real-time and send the data to the classification model. It could be an 

optical motion capture system (e.g. markerless motion capture system) or a portable 
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inertial measure system (e.g. inertial measurement units). The classification model 

processes the data by phase alignment, normalization, feature selection and then 

classifies the data into expert patterns or novice patterns by giving a score. The 

feedback component generates feedback to the player either by real time feedback 

sensor (e.g. LED, voice, vibrators), or the post overview of performances through 

web/mobile interfaces. The database stores the results of training, and allows the 

progressive analysis and feedback to the players. In addition, the database should 

have the ability to include more data of experts and novices, therefore increase or 

update the training dataset of classification model to improve the model performance 

by itself.  
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Chapter 6 Conclusions and contributions 

6.1 Conclusions 

This research applied biomechanical analysis and model development to the 

assessment of the motion patterns of table tennis strokes. The major objectives of 

this thesis are threefold: to quantify the movement of table tennis forehand strokes, 

to identify the different motion patterns between novice and expert players, and to 

develop a model for automatic evaluation of the motion quality for an individual. 

Chapter 3 introduced the kinematic model for the quantification of the motion of 

racket, human trunk, shoulder, elbow, and wrist. The definitions of human body 

motion DOF were based on ISB. The measurement and calculation methods for these 

variables from motion capture were then proposed. The measured variables can be 

segmented and piecewise-normalized with a method based on racket centre velocity 

profile. In addition, the kinematic model can be visualized using normalized 

kinematic variable values to be an assistive tool for data analysis. The methodology 

described in this chapter is the basis for data processing and quantified comparison 

in the subsequent chapters. 

Chapter 4 involved a controlled experiment to capture the motion data (60 forehand 

strokes per person) from 10 expert and 10 novice table tennis players. Successful 

strokes were picked out for data processing based on the kinematic model. Then 

statistical analyses were performed on an exhaustive set of motion pattern variables 

to determine the motion differences between the two groups. The significant 

differences in different phase time were comprehensively addressed. For example, 

the experts represented larger range of racket movement, faster racket centre velocity, 

smaller racket plane angle against horizontal plane, different posture in the majority 

of the joints while not including elbow flexion angle, and joint angle velocity in 
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trunk, shoulder internal rotation, elbow, and wrist radial flexion etc.  

Chapter 5 proposed a classification model for the evaluation of motion quality when 

given new data of an individual. The model was built using a binary SVM classifier 

and the raw data set was the normalized data from the preceding experiment in 

Chapter 4. Three different feature selection methods were applied to the raw data 

set, including a diverse subset, PCA and p-threshold. Different SVM kernels (linear, 

polynomial, RBF) were also investigated. With parameter tuning for capacity 

constraint C and kernel scale K by cross-validation and Nelder-Mead method, the 

model was optimized to achieve the best model performance (F1 score). The final 

classification model was built upon selected good feature combinations with RBF 

kernel and without PCA, with the average performance above 90%.  

6.2 Contributions 

The quantification for the variables is comprehensive and unambiguous. The phase 

segmentation and normalization method for the table tennis stroke is novel with 

smaller errors and is more straightforward than displacement-based methods. It 

helped identify the movement within a phase and provide feasible comparison of 

motion between different strokes and/or different players.  

The quantitative comparison and comprehensive differences of racket and human 

body in different phases of a forehand stroke are novel to the academic literature. 

The results provide insights into the mechanisms regarding how experts operate and 

coordinate their body segments to achieve better performance, and how novice 

players could correct their motion patterns by imitating experts.  

The classification model has the potential to be implemented into the framework of 

a coaching system, which gives feedback to trainees and help improve their technical 
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skills. This work is novel and demonstrate the feasibility and potentiality in applying 

the classification technique to table tennis biomechanics. The classification model 

was an attempt to apply classification techniques to table tennis biomechanics, and 

can be applied to automatically evaluate (the data processing also needs no human 

interaction) the motion pattern qualities of table tennis players. 

This research found a way of biomechanically and quantitatively analyze the 

kinematic variables of table tennis strokes. This research has the potential to be 

applied to other racket sports other than table tennis for assistive analysis of sport 

performance, and further to help players improve skills during their technical 

practices. 

6.3 Future work 

Future work to extend the research may be multi-fold. Firstly, the human kinematic 

model in the thesis includes the kinematic chain from upper trunk to racket. The 

lower trunk and legs may also be considered for more comprehensive results. 

Secondly, this thesis focused on the controlled forehand stroke. Other strokes, like 

backhands and forehands under different settings (e.g. ball spin), could be included. 

Thirdly, the motion capture and feedback generator (Figure 5-13) may be designed 

to make a working coaching system for real application, which would need more 

efforts.  
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Appendix A:  Definitions of human motion based on ISB 

In current research, human body segments and joints of interest include trunk, 

shoulder (upper arm), elbow (lower arm), and wrist (hand). The coordinate systems 

and motions of human kinematic model were defined mathematically with reference 

to ISB recommendation (G. Wu et al., 2005). 
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Figure 1 Kinematic model definition: coordinate systems (left) and trunk/joint rotation (right) 

Trunk/Joints 

  T : Thorax centre (incisura jugularis) 

  S : Shoulder joint centre (glenohumeral rotation centre) 

  E : Elbow joint centre (centre of lateral epicondyle and medial epicondyle) 

  W : Wrist joint centre (centre of radial styloid and ulnar styloid) 

 

Definition of trunk/joint coordinate systems 

The coordinate systems were defined for trunk and right arm. All the defined 

rotations have a value of zero under human initial anatomical posture: the human 

stands with his right arm vertical down at the side, and the palm of right hand facing 
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forward (x+ direction of the global coordinate system). Note the descriptions of axis 

directions (e.g. leftward, upward) below are only for reference based on the 

anatomical posture situation. 

1. Trunk 

  XT : perpendicular to frontal plane of human body, pointing to the front of human body 

  YT : perpendicular to transverse plane of human body, pointing to the up of human body 

  ZT : perpendicular to sagittal plane of human body, pointing to the right of human body 

2. Shoulder joint 

  XS : line perpendicular to YS and ZS, pointing forward 

  YS : line connecting S and E, pointing to S 

  ZS : line perpendicular to plane formed by S, E, and W, pointing rightward 

* The above method is used as against the other method described below, which has 

larger errors (both can be found in ISB): 

  XS : line perpendicular to plane formed by S, lateral epicondyle and medial epicondyle, 

pointing forward 

  YS : line connecting S and E, pointing to S 

  ZS : line perpendicular to XS and YS, pointing rightward 

3. Elbow joint 

  XE : line perpendicular to plane formed by E, radial styloid and ulnar styloid, pointing 

forward 

  YE : line connecting E and W, pointing to E 

  ZE : line perpendicular to XE and YE, pointing rightward 

4. Wrist 

  XW : line perpendicular to YW and ZW, pointing forward 

  YW : line parallel to long shaft of the radius to intersect with the ridge of bone between 

the radioscaphoid fossa and the radiolunate fossa, pointing upward  

  ZW : line perpendicular to XW , and in a plane defined by the tip of radial styloid, the base 

of the concavity of the sigmoid notch and the specified origin, pointing rightward 

 

Definition of trunk/joint motions 

1. Trunk 

Displacement and rotation of thorax relative to the global coordinate system (Z-X-Y 
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order) 

  displacement : corresponds to motion with respect to the global coordinate system 

  e1 : axis coincident with z-axis of the global coordinate system (also the initial ZT, which 

is parallel to global z-axis) 

   Tfe — flexion (negative) / extension(positive) 

  e2 : axis coincident with XT 

   Tll — lateral flexion to the right (positive) /lateral flexion to the left (negative) 

  e3 : axis coincident with YT 

   Taa — axial rotation to the left (positive) /axis rotation to the right (negative) 

2. Shoulder joint 

Rotation of humerus relative to thorax (Y-X-Y order) 

  e1 : axis coincident with YT (also Y’T ,which is parallel to YT) 

   Spe — plane of elevation, 0°is abduction. 90°is forward flexion 

  e2 : axis coincident with XS 

   Se — elevation (negative) 

  e3 : axis coincident with YS 

   Sie — internal rotation (positive) /external rotation (negative) 

3. Elbow joint 

Rotation of lower arm relative to upper arm (Z-X-Y order) 

  e1 : axis coincident with ZS (also Z’S ,which is parallel to ZS) 

   Efe — flexion (positive) / hyperextension (negative) 

  e2 : axis coincident with XE 

   Not defined 

  e3 : axis coincident with YE 

   Eps — pronation (positive) / supination (negative) 

4. Wrist joint 

Rotation of hand relative to lower arm (Z-X-Y order) 

  e1 : axis coincident with ZE (also Z’E ,which is parallel to ZE) 

   Wfe — flexion (positive) / extension (negative) 

  e2 : axis coincident with XE 

   Wru — radial deviation (negative) / ulnar deviation (positive) 

  e3 : axis coincident with YE 

   Not defined 



 

 

Appendix B: Motion pattern differences (part) 

Among the large amount of comparison results for Chapter 2, only those at phase time 

T1, T2, T3 and T4 are tabulated here with units m, m/s, ° or °/s for the respective variables. 

Experts Novices p Experts Novices p Experts Novices p Experts Novices p

RCx -0.4 ± 0.1 -0.5 ± 0.2 0.40 -0.7 ± 0.1 -0.6 ± 0.2 0.14 -0.2 ± 0.1 -0.2 ± 0.1 0.86 0.1 ± 0.2 0.1 ± 0.2 0.90

RCy -0.0 ± 0.1 0.1 ± 0.1 0.00 -0.0 ± 0.1 0.1 ± 0.1 0.00 0.2 ± 0.1 0.2 ± 0.0 0.48 0.6 ± 0.1 0.5 ± 0.2 0.28

RCZ 0.2 ± 0.1 0.4 ± 0.1 0.00 0.2 ± 0.1 0.3 ± 0.1 0.00 0.3 ± 0.0 0.4 ± 0.1 0.13 -0.4 ± 0.1 -0.1 ± 0.2 0.00

RRxy 118.7 ± 6.5 109.8 ± 18.2 0.17 86.3 ± 10.4 87.5 ± 12.6 0.83 104.9 ± 7.9 107.8 ± 7.7 0.42 146.3 ± 11.8 136.2 ± 11.3 0.07

RRyz 45.3 ± 9.3 34.7 ± 15.9 0.09 49.4 ± 7.9 30.9 ± 18.0 0.01 29.1 ± 6.5 24.7 ± 5.5 0.12 101.3 ± 16.4 77.7 ± 32.5 0.06

RRxz 120.4 ± 9.0 108.3 ± 16.6 0.06 137.0 ± 7.8 116.1 ± 19.3 0.01 112.5 ± 5.8 102.8 ± 9.2 0.01 114.1 ± 15.4 109.9 ± 17.2 0.57

RCx -2.9 ± 0.7 -1.2 ± 0.8 0.00 -0.3 ± 0.2 0.1 ± 0.2 0.00 6.0 ± 1.1 3.5 ± 1.1 0.00 0.0 ± 0.2 -0.3 ± 0.1 0.00

RCy -0.7 ± 0.4 -0.5 ± 0.7 0.43 0.6 ± 0.2 -0.1 ± 0.2 0.00 3.2 ± 1.2 1.6 ± 0.9 0.00 -0.8 ± 0.4 -0.5 ± 0.3 0.06

RCZ -0.2 ± 0.5 0.1 ± 0.8 0.27 0.3 ± 0.3 -0.1 ± 0.3 0.01 -1.7 ± 1.9 -0.7 ± 1.1 0.17 -0.1 ± 0.1 -0.1 ± 0.3 0.70

RC2D 3.0 ± 0.7 1.4 ± 0.8 0.00 0.6 ± 0.2 0.3 ± 0.2 0.01 6.5 ± 1.4 3.8 ± 1.0 0.00 0.2 ± 0.1 0.4 ± 0.2 0.05

RC3D 3.1 ± 0.8 1.6 ± 0.8 0.00 0.8 ± 0.2 0.4 ± 0.2 0.00 7.3 ± 1.7 4.2 ± 1.1 0.00 0.9 ± 0.4 0.7 ± 0.3 0.25

RRxy -214.3 ± 68.6 -183.0 ± 93.8 0.41 -164.5 ± 42.4 -91.0 ± 67.1 0.01 501.6 ± 81.9 294.3 ± 135.4 0.00 -10.4 ± 39.9 4.1 ± 50.0 0.48

RRyz -83.2 ± 64.2 -110.3 ± 146.7 0.60 53.8 ± 59.1 19.5 ± 43.4 0.16 135.8 ± 190.0 150.2 ± 224.0 0.88 67.7 ± 27.4 68.7 ± 51.3 0.96

RRxz 116.8 ± 55.3 60.5 ± 66.0 0.05 34.0 ± 48.7 22.3 ± 82.3 0.70 -162.2 ± 110.7 -92.8 ± 120.7 0.20 -19.0 ± 40.5 41.4 ± 53.4 0.01

Tx -0.3 ± 0.1 -0.5 ± 0.1 0.01 -0.3 ± 0.1 -0.4 ± 0.1 0.01 -0.3 ± 0.1 -0.4 ± 0.1 0.04 -0.3 ± 0.1 -0.4 ± 0.1 0.09

Ty 0.4 ± 0.1 0.5 ± 0.0 0.00 0.4 ± 0.1 0.5 ± 0.0 0.00 0.4 ± 0.1 0.5 ± 0.0 0.00 0.4 ± 0.1 0.5 ± 0.0 0.00

Tz -0.2 ± 0.1 -0.1 ± 0.0 0.02 -0.2 ± 0.1 -0.1 ± 0.0 0.00 -0.2 ± 0.1 -0.1 ± 0.1 0.00 -0.3 ± 0.1 -0.2 ± 0.1 0.00

Tfe -10.2 ± 7.2 -12.7 ± 9.6 0.52 -9.0 ± 7.4 -14.7 ± 11.6 0.21 -12.6 ± 8.3 -16.2 ± 12.4 0.46 -14.4 ± 9.1 -15.7 ± 10.7 0.77

Tll 22.7 ± 6.5 13.3 ± 7.0 0.01 25.6 ± 7.6 14.7 ± 7.7 0.00 15.3 ± 4.8 9.6 ± 9.9 0.13 -3.0 ± 7.5 0.6 ± 10.8 0.40

Taa -48.4 ± 9.6 -28.9 ± 11.1 0.00 -59.6 ± 9.9 -29.6 ± 11.8 0.00 -34.0 ± 7.7 -16.8 ± 11.8 0.00 14.8 ± 10.8 2.4 ± 16.6 0.06

Spe 19.1 ± 32.1 -7.3 ± 20.4 0.04 14.2 ± 28.3 -13.4 ± 20.8 0.02 53.0 ± 17.3 51.5 ± 15.8 0.84 75.1 ± 12.4 67.2 ± 20.0 0.30

Se -26.9 ± 8.8 -20.2 ± 5.2 0.05 -30.7 ± 7.3 -19.6 ± 6.2 0.00 -44.9 ± 12.8 -30.8 ± 6.2 0.01 -71.1 ± 19.8 -61.3 ± 27.8 0.37

S ie -29.0 ± 37.2 -11.4 ± 20.5 0.21 -52.1 ± 32.4 -16.8 ± 24.5 0.01 -74.3 ± 20.1 -69.9 ± 14.7 0.58 -53.4 ± 9.1 -54.1 ± 17.2 0.90

Efe 63.9 ± 10.4 67.6 ± 16.0 0.56 55.3 ± 13.0 63.1 ± 16.6 0.26 67.7 ± 11.1 61.6 ± 11.6 0.24 92.8 ± 10.7 65.9 ± 18.0 0.00

Eps 115.4 ± 17.5 99.9 ± 15.3 0.05 118.3 ± 25.5 94.7 ± 16.1 0.03 116.3 ± 21.4 99.5 ± 16.4 0.06 108.9 ± 15.3 111.0 ± 17.2 0.78

Wfe -0.2 ± 12.5 -15.5 ± 10.0 0.01 -1.6 ± 16.3 -22.0 ± 11.9 0.00 -0.9 ± 16.1 -24.7 ± 11.2 0.00 2.0 ± 12.8 -16.2 ± 10.6 0.00

Wru 19.4 ± 5.6 10.0 ± 6.8 0 23.7 ± 5.8 14.6 ± 7.6 0.01 23.6 ± 5.5 16.3 ± 7.9 0.03 18.8 ± 5.0 14.1 ± 9.3 0.18

Tx 0.1 ± 0.1 0.2 ± 0.2 0.25 0.2 ± 0.2 0.2 ± 0.1 0.89 -0.1 ± 0.1 0.0 ± 0.1 0.05 -0.0 ± 0.1 -0.1 ± 0.1 0.19

Ty -0.1 ± 0.1 -0.1 ± 0.1 0.28 -0.1 ± 0.1 -0.0 ± 0.1 0.65 0.2 ± 0.1 0.1 ± 0.0 0.04 -0.0 ± 0.1 0.0 ± 0.0 0.36

Tz -0.1 ± 0.1 -0.1 ± 0.1 0.59 -0.3 ± 0.1 -0.2 ± 0.1 0.02 -0.2 ± 0.1 -0.2 ± 0.1 0.12 0.0 ± 0.1 0.0 ± 0.0 0.75

Tfe 18.9 ± 27.2 -16.3 ± 22.3 0.01 -9.7 ± 14.8 -13.1 ± 15.4 0.61 -22.3 ± 28.0 -1.1 ± 9.4 0.04 -4.0 ± 15.9 4.8 ± 13.0 0.19

Tll 44.9 ± 25.9 20.5 ± 12.8 0.02 -17.3 ± 7.1 -5.3 ± 24.8 0.16 -86.5 ± 48.2 -31.4 ± 29.7 0.01 -17.7 ± 22.8 -9.5 ± 10.1 0.32

Taa -129.7 ± 40.9 -18.6 ± 35.3 0.00 27.5 ± 44.1 28.0 ± 24.6 0.98 219.1 ± 60.1 70.2 ± 49.9 0.00 33.9 ± 45.8 2.3 ± 24.0 0.07

Spe -90.0 ± 80.0 -90.5 ± 78.3 0.99 95.0 ± 87.1 69.4 ± 110.5 0.57 283.9 ± 134.5 287.6 ± 128.2 0.95 -36.0 ± 33.8 -54.0 ± 48.3 0.35

Se -12.9 ± 47.8 3.3 ± 20.9 0.34 -33.2 ± 39.2 17.2 ± 16.0 0.00 -202.6 ± 73.7 -206.7 ± 104.9 0.92 102.4 ± 37.3 63.6 ± 27.6 0.02

S ie -90.0 ± 86.9 6.9 ± 67.2 0.01 -219.0 ± 110.0 -111.2 ± 139.8 0.07 83.0 ± 201.3 -135.7 ± 166.5 0.02 11.0 ± 49.6 75.9 ± 52.3 0.01

Efe -105.6 ± 65.1 -45.2 ± 42.1 0.02 -10.8 ± 39.8 -12.2 ± 26.2 0.93 136.0 ± 85.2 -26.3 ± 90.4 0.00 11.2 ± 25.4 47.1 ± 29.1 0.01

Eps 21.2 ± 71.5 -48.4 ± 29.9 0.01 22.8 ± 52.1 -17.2 ± 26.6 0.04 -54.7 ± 90.5 44.8 ± 29.6 0.00 -22.5 ± 20.0 -15.5 ± 45.1 0.66

Wfe 5.5 ± 28.8 -39.0 ± 30.3 0.00 -33.1 ± 56.9 -50.3 ± 32.9 0.42 44.6 ± 44.8 26.9 ± 43.8 0.38 -3.4 ± 16.8 17.3 ± 18.6 0.02

Wru 30.9 ± 13.8 37.3 ± 38.1 0.63 22.3 ± 14.3 25.5 ± 21.8 0.70 -30.5 ± 15.4 4.5 ± 14.6 0.00 -5.8 ± 6.0 -10.3 ± 10.9 0.27
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Appendix C: Classification model performance 
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