Editorial Manager(tm) for Knee Surgery, Sports Traumatology, Arthroscopy Manuscript Draft

Manuscript Number: KSST-D-11-00184R2

Title: Biomechanical techniques to evaluate tibial rotation. A systematic review.

Article Type: Review Paper

Corresponding Author: Daniel Tik-Pui Fong, PhD

Corresponding Author's Institution: The Chinese University of Hong Kong

First Author: Mak-Ham Lam

Order of Authors: Mak-Ham Lam; Daniel Tik-Pui Fong, PhD; Patrick Shu-Hang Yung; Kai-Ming Chan

Abstract: Purpose: This article systematically reviewed the biomechanical techniques to quantify tibial rotation, for an overview of how to choose suitable technique for specific clinical application. Methods: A systematic search was conducted and finally 110 articles were included in this study. The articles were categorized by the conditions of how the knee was examined: external load application, physical examination and dynamic task.

Results: The results showed that two thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed a cadaveric model. The common techniques used included direct displacement measurement, motion sensor, optical tracking system and universal force moment sensor. Intra-operative navigation system was used to document tibial rotation when the knee was examined by clinical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers was frequently used although this technique is less accurate due to the skin movement when compared with radiographic measurement. Conclusion: This study reports various biomechanical measurement techniques to quantify tibial rotation in the literatures. To choose a suitable measurement technique for a specific clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long time functional stability assessment. Attention should also be paid on the study's purpose, whether to employ a cadaveric model and the way of stress applied to the knee. Level of Evidence: IV

Response to Reviewers: Please see attachement.

<u>Title Page</u>

Title:	Biomechanical techniques to evaluate tibial rotation. A systematic					
	review.					
Authors:	Mak-Ham LAM ¹ , Daniel Tik-Pui FONG ¹ , Patrick Shu-Hang YUNG ^{1,2} ,					
	Kai-Ming CHAN ^{1,2}					
Institutions: ¹ Department of Orthopaedics and Traumatology, Prince of W						
	Hospital, Faculty of Medicine, The Chinese University of Hong Ko					
	Hong Kong, China					
² The Hong Kong Jockey Club Sports Medicine and Health So						
	Centre, Faculty of Medicine, The Chinese University of Hong Kong,					
Hong Kong, China						

There are no sources of funding used to assist in the preparation of this manuscript. There are no potential conflicts of interest the authors may have that are relevant to the contents of this manuscript.

Name and address for correspondence on printed articles

Name:	Daniel Tik-Pui FONG
Address:	Department of Orthopaedics and Traumatology, Prince of Wales
	Hospital, Faculty of Medicine, The Chinese University of Hong Kong,
	Hong Kong, China.
Telephone:	(852) 2632 3535
Facsimile:	(852) 2646 3020
E-Mail:	dfong@ort.cuhk.edu.hk

ABSTRACT

Purpose: This article systematically reviewed the biomechanical techniques to quantify tibial rotation, for an overview of how to choose suitable technique for specific clinical application.

Methods: A systematic search was conducted and finally 110 articles were included in this study. The articles were categorized by the conditions of how the knee was examined: external load application, physical examination and dynamic task.

Results: The results showed that two thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed a cadaveric model. The common techniques used included direct displacement measurement, motion sensor, optical tracking system and universal force moment sensor. Intra-operative navigation system was used to document tibial rotation when the knee was examined by clinical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers was frequently used although this technique is less accurate due to the skin movement when compared with radiographic measurement.

Conclusion: This study reports various biomechanical measurement techniques to quantify tibial rotation in the literatures. To choose a suitable measurement technique for a specific clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long time functional stability assessment. Attention should also be paid on the study's purpose, whether to employ a cadaveric model and the way of stress applied to the knee.

Level of Evidence: Level IV

Keywords: Kinematics, methodology, stability, laxity

 1 ABSTRACT

Purpose: This article systematically reviewed the biomechanical techniques to quantify tibial rotation, for an overview of how to choose suitable technique for specific clinical application.

5 Methods: A systematic search was conducted and finally 111 articles were included
6 in this study. The articles were categorized by the conditions of how the knee was
7 examined: external load application, physical examination and dynamic task.

Results: The results showed that two thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed a cadaveric model. The common techniques used included direct displacement measurement, motion sensor, optical tracking system and universal force moment sensor. Intra-operative navigation system was used to document tibial rotation when the knee was examined by clinical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers was frequently used although this technique is less accurate due to the skin movement when compared with radiographic measurement.

Conclusion: This study reports various biomechanical measurement techniques to 18 quantify tibial rotation in the literatures. To choose a suitable measurement technique 19 for a specific clinical application, it is suggested to quantify the effectiveness of a new 20 designed surgical technique by using a cadaveric model before applying to living 21 human subjects for intra-operative evaluation or long time functional stability 22 assessment. Attention should also be paid on the study's purpose, whether to employ a 23 cadaveric model and the way of stress applied to the knee.

- 24 Level of Evidence: Level IV
- 25 Keywords: Kinematics, methodology, stability, laxity

27 INTRODUCTION

The knee is the most commonly injured body site during sports, accounting for roughly 40% of all sports injuries [75]. Traumatic knee injury such as ligament tear may lead to knee instability, prohibiting athletes from returning to sports, and resulting in early retirement [85] or even premature end to sport career [65]. In clinical practice, knee laxity evaluations are based on physical examination performed by trained physician. Force or torque is manually applied to the knee joint to see if there is any abnormal motion when compared with the intact side. However, clinical examination has a few limitations [73], including inability to produce sufficient magnitude of force to simulate physical activity and subjective grading from physician due to varying experience.

In the literature, there are various studies to assess knee laxity and stability. Besides clinical examination, self-reported outcome questionnaire is often used in clinical research. Other passive knee laxity assessments include stressed magnetic resonance imaging [99] and objective clinical devices [115]. These assessments involve a controlled stress to the knee joint in a specific direction followed by an objective biomechanical rating for the corresponding laxity. On the other hand, dynamic movement is directly performed so that knee stability would be monitored during a specific motion. For example, previous studies have suggested that abnormal joint kinematics during dynamic movements after anterior cruciate ligament (ACL) reconstruction would contribute to long-term joint degeneration [95,112].

50 It has been reported that excessive tibial rotation is found in ACL deficient and 51 reconstructed knees and this abnormal motion leads to a shift in functional load over 52 cartilage areas, resulting in osteoarthritis [7,109]. The restoration of knee rotational

stability is recently being emphasized because anatomic double-bundle ACL reconstruction has been suggested to restore rotational stability better than single-bundle ACL reconstruction [34]. The pivot shift test and the dial test are often employed by clinicians to measure knee rotational stability. However, due to the limitations aforementioned, these clinical examinations cannot provide a reliable assessment and objective evaluation for patients with ligamentous injury.

In view of the various methodologies in the literature, biomechanics plays an important role to objectively quantify knee rotational laxity and stability when compared with clinical examinations. However, there are no guidelines in the literatures regarding which measurement technique is suitable for specific clinical application. This information should be added so that orthopaedic specialists and sport biomechanists are able to choose the most suitable technique for solving clinical problems in relation to knee structure, injury diagnosis and effect of ligament reconstruction. This study aimed to systematically review the biomechanical techniques to quantify tibial rotation and provided an overview for choosing biomechanical technique for specific clinical application. Tibial rotation was defined as the relative movement of the femur and the tibia in the transverse plane.

72 MATERIALS AND METHODS

A systematic literature search was conducted based on the guidelines by Wright et al. [128]. A search in MEDLINE (from 1966) was conducted during the last week of December in 2010. The search keyword was (knee OR tibial OR tibia) AND (rotation OR rotational OR rotatory OR pivot OR pivoting) AND (biomechanics OR biomechanical OR kinematics OR displacement) AND (stability OR laxity), which appeared in the title, abstract or keyword fields. After duplicates were removed, the initial total number of articles in the database was 532. The title and abstract of each entry was read to identify non-relevant articles. Non-English articles, animal studies and non-related articles were excluded. After this trimming, the number of appropriate articles was reduced to 190. Online and library searches for the full text of these articles were conducted. A hand search was conducted to identify articles not captured in the above searches. Only full text of two articles could not be retrieved, and the final number of articles with full text was 188.

The full text of each of the 188 retrieved articles was read to determine the inclusion and exclusion criteria in the systematic review. To be included in the systematic review, three criteria must be fulfilled: (1) the study must employ human, either cadaver specimen or living subject, (2) the study must explore tibial rotation, measuring the relative movement of femur and tibia in the transverse plane as a dependent parameter to quantify the knee rotational laxity and stability, (3) the study must not involve total knee arthroplasty or the prescription of knee prosthesis, since the knee anatomy is greatly altered in these studies. Current concepts, reviews, case reports, computerized models such as finite element model and studies without detailed description of the measuring technique were excluded. After the screening process, the final number of articles included in the analysis was 111.

99 The included biomechanical techniques in these 111 selected articles were categorized 100 by the conditions of how the knee was examined: (1) external load application – when 101 the knee was under a certain rotational load in a controlled manner; (2) physical 102 examination – when the knee was being clinically examined by an orthopaedic 103 specialist, a physiotherapist or a biomechanist; (3) dynamic task – when the patient 104 was performing a specific dynamic movement. The techniques to quantify tibial rotation in each category were summarized followed by the discussion of these biomechanical techniques.

RESULT

All 111 included articles were divided into three categories: external load application (67%), physical examination (14%) and dynamic task (19%). Over 60% of all the articles employed a cadaveric model. While various measurement techniques were used in external load application category, intra-operative navigation and optical motion analysis system were commonly used in physical examination and dynamic task categories, respectively.

Of the 110 included articles, 74 articles (67%) were classified as external load application. Of these, 61 studies (82%) used human cadaver for the testing subjects and the rest (13 studies) used living human. The techniques included direct displacement measurement, magnetic sensing, optical tracking system, navigation system, radiographic measurement and universal force moment sensor.

In physical examination category, fifteen studies (14%) were included. All studies were conducted after 2002. The three major techniques for measuring tibial rotation when an examiner performed clinical tests were goniometer, electromagnetic sensing and intra-operative navigation. These techniques were tested on both cadaver specimens and living human subjects.

The last category, dynamic task, included twenty two studies (19%) and all were published after 2000 except two from the 1980s. In earlier years, the electrogoniometer was used for measuring knee rotational displacement during

treadmill running [23,62]. Before roentgen stereophotogrammetric analysis (RSA) was applied on living human who performed dynamic task in 2001, there were about 10 years of vacuity where no journal papers were published specifically investigating on knee rotational stability during dynamic task. All the biomechanical techniques discussed were summarized in Table 1.

DISCUSSION

The most important finding was that two thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed cadaveric model. This kind of study design enhances a well controlled laboratory setting for accurate comparison. Secondly, intra-operative navigation system has been commonly used to quantify tibial rotation when the knee is examined by physical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers has been frequently employed although this technique is less accurate due to the skin movement when compared with RSA technique.

External load application

In the cadaveric studies, both the femur and tibia were mounted in fixation systems, which provided three to six degrees of freedom (DOF) including primary motion (flexion-extension) and secondary motion (anterior-posterior translation, internal-external rotation and abduction-adduction) [28] for free movement under certain testing conditions. Most of the mounting systems were self designed. A few studies have been reported recruit living human subjects to as [11,54,55,57,59,74,86,90,105-107,110,115]. These studies employed a self-customized fixation system, in which hip rotation was controlled by fixation of thigh segment while external load was applied to the knee joint.

The external load applied on the testing specimens includes isolated external internal rotation torque [2], valgus varus torque [74], anterior tibial load [47], muscle load [69] and increased graft tension [12]. These specific loads provide controlled stress to the knee joint. However, due to the experimental nature, it is not ethical to apply load to living human subjects, explaining why over 80% of the external load application studies were based on cadaveric models. Still, there was one study recruiting living humans as subjects where load was applied until the subjects reached their limit of comfort [90]. The amount of load should be carefully designed before employing to living human subjects. In regards to the amount of torque applied, over 50% of the cadaveric studies used 5Nm while other studies varied from as low as 1.5Nm to as high as 20Nm. The torque was much lower when applied to living subjects, ranging from 1.5Nm to 10Nm with 4 out of 13 studies using 5Nm as the testing torque.

Among the four techniques used in studies with external load application, magnetic sensing was reported to have highest accuracy with 0.15 degree [88] followed by radiographic measurement with 0.2 degree and reproducibility with 1.4 degrees [59]. Since most of the included studies employed cadavers, measuring tools such as magnetic sensor or pin marker could be directly attached or implanted to bone, which guarantees in a high accuracy measurement. There is always a concern that skin motion artifact exists when measuring knee rotation on living human subjects. Skin artifact would be a considerable error if load was applied to living human with magnetic sensors attached on the skin since there is muscle movement during load application. Not taking the ethical problem into account, RSA with bony marker implantation would be considered the best technique for measuring tibial rotation on living human subjects.

Physical examination

Physical examination is one of the most feasible and practical ways to evaluate knee rotational stability in orthopaedic clinics. The main problem, its subjective and discontinuous rating, has limited its application to research area. Different from an experimental laboratory, the operation theatre is not an ideal place to provide controlled load of application due to instrument size and hygiene concern. In view of the measurement tool, intra-operative navigation system would be the most suitable technique inside the operation theatre. Since the torque should be applied manually by the tester, it is suggested that all physical examinations should be performed by one tester and reliability test should be conducted to ensure good consistency across studies.

Intra-operative navigation system provides immediate evaluation of surgical treatment while the registration requires an extra 10-minute time in addition to original surgical procedures [78]. The extra time is considered acceptable as it provides a more reliable clinical result and an objective way to quantify knee kinematics [92]. Moreover, this technique has a good repeatability [78] and a comparable result with mechanical testing devices (KT1000 and goniometer) [60]. Therefore, it would be useful for evaluation and comparison of different reconstruction methods in the field of orthopaedics.

Despite the fact that there are a number of advantages as discussed above, more attention should be paid to the drawbacks. One should keep in mind that the procedure is invasive and may cause extra wounds in the thigh and shank of the subjects. To accurately locate the relative movement, transmitters with markers need to be screwed

into the femur and tibia. The invasive procedure would result in additional bone loss and surgical scars to patients. To minimize the invasive effect, an alternative procedure would be to attach magnetic sensors on the skin with plastic braces [128]. However, validation between two techniques should be established before its application to living human.

Dynamic task

Compared with the cadaveric study which is of limited clinical utility [34], dynamic task provides important information of knee stability of the intact [114], injured [48] or reconstructed [14] knees. In early years, techniques involving external fixation structure attached to subjects' limb would highly affect the gait pattern [23]. Optical motion analysis and radiographic measurement have therefore become the most frequently adopted techniques to measure knee rotational stability.

When comparing the drawbacks of the two techniques, RSA obviously involves invasive procedures and radiation exposure [13,14,55]. Although the amount of exposure has been reported to be similar to a single clinical knee computerized tomography scan [112], the controversial issue of implanting bony markers through arthroscopic surgery is another difficulty for subject recruitment. On the other hand, error due to skin movement when applying optical motion analysis with reflective skin marker has also been claimed [113]. A point cluster method was developed in 1998 to tackle the problem [6]. This method aims to minimize the effects of skin motion artifact by employing an overabundance of markers on each segment. The limitation of computational complexity [5] has become the major technical challenge to orthopaedic specialists while biomechanists are advised to understand the principle in order to achieve high accuracy result.

Motion analysis with skin marker technique is non-invasive, practical and applicable not only in research laboratory settings but also in orthopaedic clinics. The system consists of two or more high-speed cameras and a few spherical markers. Commercialized software system also includes auto-digitizing and kinematics calculation. Nevertheless, results of knee internal and external rotation from different marker-set protocols are poorly correlated [31]. For example, Thambyah et al.[114] used 17 skin markers while Georgoulis et al. [36] adopted the model with 15 skin markers developed by Vaughan [120]. Self-compiled programs for calculating knee kinematics are furthermore not standardized and comparison between studies with different marker-set protocols would be highly difficult if not impossible.

In recent years, Tashman and coworkers [111,112] have employed the RSA technique to evaluate knee kinematics of human ACL reconstructed knee during treadmill running after the application to canine ACL deficient knee in 2003. Similar to the protocol of biplane radiography generation with a transverse plane computer tomography scan to determine transformations between marker-based and anatomical coordinate systems, the exposure frequency of the RSA technique was highly increased to 250Hz, resulting in sufficient smooth continuous kinematics data during most of the human dynamics movements.

Clinical recommendations

To choose a suitable technique for a specific clinical application, it is recommended that the study's propose should be considered, as well as the experimental setup and the stress applied on the knee. It would be better to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before application to living

human subjects for intra-operative evaluation or long time functional stability assessment. For example, Ho et al. [44] used navigation system to evaluate a double femoral-tunnel posterolateral corncer reconstruction technique on cadaveric model while Ristanis et al. [95] employed motion analysis with skin reflective markers for evaluation of knee rotational stability after ACL reconstruction on living human subjects. For the applied stress, 50% of the cadaveric study used 5Nm rotational torque while Kanamori et al. [56] used a combined 10Nm valgus torque and 10Nm internal rotation torque to simulate pivot shift test. Stair walking, running, single-leg lunge and pivoting movement are also commonly used in dynamic stability assessment.

Limitations and future research direction

The limitation of the present study was that computational technique such as finite element model was excluded. Since this technique does not involve any specimen or subject and is only based on the computational model, it is suggested that this kind of technique should be reviewed separately. Moreover, the other secondary motions of the knee joint were not included in the present study. Currently, the assessments for anterior-posterior translation and abduction-adduction motion mainly rely on clinical examination. Techniques to measure these motions would be useful for objective evaluation of knee joint laxity.

The biomechanical technique for measurement of tibial rotation is well developed in the cadaveric model. Accuracy of most of the techniques is reported to be high as bone to bone information could be obtained directly. There is still room for improvement on the techniques applied on living human, especially in the development of a practical and accurate technique for dynamic tasks. Future studies

should focus on validity between magnetic measurement and radiographic measurement because the non-invasive magnetic sensor would be useful in orthopaedic clinics if it could produce reliable and valid measurements. Moreover, for the optical motion analysis with skin reflective marker, a consensus should be obtained for a standardized market-set protocol for measurement of tibial rotation during dynamic task. This is important since the results of studies using different protocols are unable to be compared by other researchers.

295 CONCLUSION

The biomechanical techniques to measure tibial rotational were summarized, providing an overview of biomechanical measurement techniques. We systematically reviewed the techniques according to the conditions in which the knee is examined: external load application, physical examination and dynamic task. To choose a suitable measurement technique for a specific clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long time functional stability assessment. Attention should also be paid on the study's purpose, whether to employ a cadaveric model and the way of stress applied to the knee.

306 **REFERENCES**

- 307 1. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000)
 308 Importance of the medial meniscus in the anterior cruciate ligament-deficient
 309 knee. J Orthop Res 18:109-115
- 7
8
93102.Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does
play a role in controlling axial rotation in the knee. Knee Surg Sports10
11312Traumatol Arthrosc 5:145-149
- 123133.Anderson CJ, Westerhaus BD, Pietrini SD, Ziegler CG, Wijdicks CA,13314Johansen S, Engebretsen L, Laprade RF (2010) Kinematic impact of15315anteromedial and posterolateral bundle graft fixation angles on double-bundle17316anterior cruciate ligament reconstructions. Am J Sports Med 38:1575-1583
- 18
193174.Anderson K, Wojtys EM, Loubert PV, Miller RE (1992) A biomechanical20
21
22318evaluation of taping and bracing in reducing knee joint translation and rotation.21
22319Am J Sports Med 20:416-421
- 23
24
253205.Andriacchi TP, Alexander EJ (2000) Studies of human locomotion: past,
present and future. J Biomech 33:1217-1224
- 26
27
283226.Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point
cluster method for in vivo motion analysis: applied to a study of knee29
30324kinematics. J Biomech Eng 120:743-749
- 31
32
33
333257.Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S
(2004) A framework for the in vivo pathomechanics of osteoarthritis at the
knee. Ann of Biomed Eng 32:447-457
- 363288.Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2009) A37329comparison of modified Larson and 'anatomic' posterolateral corner39330reconstructions in knees with combined PCL and posterolateral corner40331deficiency. Knee Surg Sports Traumatol Arthrosc 17:305-312
- 42 332 Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2008) 9. 43 333 Control of laxity in knees with combined posterior cruciate ligament and 44 45 posterolateral corner deficiency: comparison of single-bundle versus 334 46 double-bundle posterior cruciate ligament reconstruction combined with 47 335 48 336 modified Larson posterolateral corner reconstruction. Am J Sports Med 49 50 337 36:487-494 51
- 338 10. Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2008) The
 339 role of PCL reconstruction in knees with combined PCL and posterolateral
 340 corner deficiency. Knee Surg Sports Traumatol Arthrosc 16:104-111
- ⁵⁶ 341 11. Baxter MP (1988) Assessment of normal pediatric knee ligament laxity using
 ⁵⁸ 342 the genucom. J Pediatr Orthop 8:546-550
- ³³ 343 12. Brady MF, Bradley MP, Fleming BC, Fadale PD, Hulstyn MJ, Banerjee R
- 61 62 63
- 64
- 65

- (2007) Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med 35:395-403 13. Brandsson S, Karlsson J, Eriksson BI, Karrholm J (2001) Kinematics after tear in the anterior cruciate ligament: dynamic bilateral radiostereometric studies in 11 patients. Acta Orthop Scand 72:372-378 14. Brandsson S, Karlsson J, Sward L, Kartus J, Eriksson BI, Karrholm J (2002) Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med 30:361-367 Brophy RH, Voos JE, Shannon FJ, Granchi CC, Wickiewicz TL, Warren RF, 15. Pearle AD (2008) Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament. Am J Sports Med 36:2196-2203 Bull AM, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and 16. mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 99:219-231 17. Chouliaras V, Ristanis S, Moraiti C, Stergiou N, Georgoulis AD (2007) Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. Am J Sports Med 35:189-196 18. Chouliaras V, Ristanis S, Moraiti C, Tzimas V, Stergiou N, Georgoulis AD (2009) Anterior cruciate ligament reconstruction with a quadrupled hamstrings tendon autograft does not restore tibial rotation to normative levels during landing from a jump and subsequent pivoting. J Sports Med Phys Fit 49:64-70 19. Chun YM, Kim SJ, Kim HS (2008) Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee. J Orthop Res 26:1371-1376 Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using 20. navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59-65 21. Coobs BR, Wijdicks CA, Armitage BM, Spiridonov SI, Westerhaus BD, Johansen S, Engebretsen L, Laprade RF (2010) An in vitro analysis of an anatomical medial knee reconstruction. Am J Sports Med 38:339-347 22. Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sports Med 34:1623-1629

Czerniecki JM, Lippert F, Olerud JE (1988) A biomechanical evaluation of 23. tibiofemoral rotation in anterior cruciate deficient knees during walking and running. Am J Sports Med 16:327-331 24. Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 б degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis.[see comment]. Am J Sports Med 34:1240-1246 25. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Traumatol Surg 129:353-358 26. Draganich LF, Reider B, Ling M, Samuelson M (1990) An in vitro study of an intraarticular and extraarticular reconstruction in the anterior cruciate ligament deficient knee. Am J Sports Med 18:262-266 27. Draganich LF, Reider B, Miller PR (1989) An in vitro study of the Muller anterolateral femorotibial ligament tenodesis in the anterior cruciate ligament deficient knee. Am J Sports Med 17:357-362 28. Dyrby CO, Andriacchi TP (2004) Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res 22:794-800 29. Engebretsen L, Lew WD, Lewis JL, Hunter RE, Benum P (1990) Anterolateral rotatory instability of the knee. Cadaver study of extraarticular patellar-tendon transposition. Acta Orthop Scand 61:225-230 30. Feeley BT, Muller MS, Allen AA, Granchi CC, Pearle AD (2009) Biomechanical comparison of medial collateral ligament reconstructions using computer-assisted navigation. Am J Sports Med 37:1123-1130 31. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, Crenna P, Leardini A (2008) Quantitative comparison of five current protocols in gait analysis. Gait Posture 28:207-216 32. Ferrari DA, Wilson DR, Hayes WC (2003) The effect of release of the popliteus and quadriceps force on rotation of the knee. Clin Orthop Relat Res 412:225-233 33. Fornalski S, McGarry MH, Csintalan RP, Fithian DC, Lee TQ (2008) Biomechanical and anatomical assessment after knee hyperextension injury. Am J Sports Med 36:80-84 34. Fu FH, Zelle BA (2007) Rotational instability of the knee: editorial comment. Clin Orthop Relat Res 454:3-4 Gaasbeek RD, Welsing RT, Verdonschot N, Rijnberg WJ, van Loon CJ, van 35. Kampen A (2005) Accuracy and initial stability of open- and closed-wedge high tibial osteotomy: a cadaveric RSA study. Knee Surg Sports Traumatol

	420		Arthrosc 13:689-694
1 2	421	36.	Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N
3	422		(2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate
4 5	423		ligament-deficient and reconstructed knee during walking. Am J Sports Med
6 7	424		31:75-79
8	425	37.	Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial
9 10	426		rotation is not restored after ACL reconstruction with a hamstring graft. Clin
11 12	427		Orthop Relat Res 454:89-94
13	428	38.	Gollehon DL, Torzilli PA, Warren RF (1987) The role of the posterolateral and
14 15	429		cruciate ligaments in the stability of the human knee. A biomechanical study. J
16	430		Bone Joint Surg Am 69:233-242
18	431	39.	Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L
19 20	432		(2009) Medial knee injury: Part 1, static function of the individual components
20 21	433		of the main medial knee structures. Am J Sports Med 37:1762-1770
22 23	434	40.	Gupte CM, Bull AM, Thomas RD, Amis AA (2003) The meniscofemoral
24	435		ligaments: secondary restraints to the posterior drawer. Analysis of
25 26	436		anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient
27	437		knee. J Bone Joint Surg Br 85:765-773
20 29	438	41.	Hagemeister N, Duval N, Yahia L, Krudwig W, Witzel U, de Guise JA (2002)
30 31	439		Comparison of two methods for reconstruction of the posterior cruciate
32	440		ligament using a computer based method: quantitative evaluation of laxity,
33 34	441		three-dimensional kinematics and ligament deformation measurement in
35	442		cadaver knees. Knee 9:291-299
36 37	443	42.	Hagemeister N, Duval N, Yahia L, Krudwig W, Witzel U, de Guise JA (2003)
38 39	444		Computer based method for the three-dimensional kinematic analysis of
40	445		combined posterior cruciate ligament and postero-lateral complex
41 42	446		reconstructions on cadaver knees. Knee 10:249-256
43	447	43.	Herbort M, Lenschow S, Fu FH, Petersen W, Zantop T (2010) ACL mismatch
44 45	448		reconstructions: influence of different tunnel placement strategies in
46 47	449		single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports
48	450		Traumatol Arthrosc 18:1551-1558
49 50	451	44.	Ho EP, Lam MH, Chung MM, Fong DT, Law BK, Yung PS, Chan WY, Chan
51	452		KM (2010) Comparison of 2 surgical techniques for reconstructing
5∠ 53	453		posterolateral corner of the knee: a cadaveric study evaluated by navigation
54 55	454		system. Arthroscopy 27:89-96
56	455	45.	Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S
57 58	456		(2010) Rotational and translational laxity after computer-navigated single- and
59	457		double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports
60 61			
62 63			
64			
65			

	458		Traumatol Arthrosc 18:1201-1207
1 2	459	46.	Hofmann AA, Wyatt RW, Bourne MH, Daniels AU (1984) Knee stability in
3	460		orthotic knee braces. Am J Sports Med 12:371-374
4 5	461	47.	Hoher J, Harner CD, Vogrin TM, Baek GH, Carlin GJ, Woo SL (1998) In situ
6 7	462		forces in the posterolateral structures of the knee under posterior tibial loading
8	463		in the intact and posterior cruciate ligament-deficient knee. J Orthop Res
9 10	464		16:675-681
11	465	48.	Houck J, Yack HJ (2001) Giving way event during a combined stepping and
12 13	466		crossover cutting task in an individual with anterior cruciate ligament
14 15	467		deficiency. J Orthop Sports Phys Ther 31:481-489
16	468	49.	Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL (2006) Differences in
17 18	469		torsional joint stiffness of the knee between genders: a human cadaveric study.
19	470		Am J Sports Med 34:765-770
20 21	471	50.	Isberg J, Faxen E, Laxdal G, Eriksson BI, Karrholm J, Karlsson J (in press)
22	472		Will early reconstruction prevent abnormal kinematics after ACL injury?
24	473		Two-year follow-up using dynamic radiostereometry in 14 patients operated
25 26	474		with hamstring autografts. Knee Surg Sports Traumatol Arthrosc.
27	475		Doi:10.1007/s00167-011-1399-y
28 29	476	51.	Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2008) Intraoperative
30 21	477		biomechanical evaluation of anatomic anterior cruciate ligament
32	478		reconstruction using a navigation system: comparison of hamstring tendon and
33 34	479		bone-patellar tendon-bone graft. Am J Sports Med 36:1903-1912
35	480	52.	Ishibashi Y, Tsuda E, Tazawa K, Sato H, Toh S (2005) Intraoperative
36 37	481		evaluation of the anatomical double-bundle anterior cruciate ligament
38 29	482		reconstruction with the OrthoPilot navigation system. Orthop suppl
40	483		28:s1277-1282
41 42	484	53.	Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation
43	485		evaluation of the pivot-shift phenomenon during double-bundle anterior
44 45	486		cruciate ligament reconstruction: is the posterolateral bundle more important?
46 47	487		Arthroscopy 25:488-495
48	488	54.	Johannsen HV, Lind T, Jakobsen BW, Kroner K (1989) Exercise-induced knee
49 50	489		joint laxity in distance runners. Br J Sports Med 23:165-168
51	490	55.	Jonsson H, Karrholm J (1990) Brace effects on the unstable knee in 21 cases.
52 53	491		A roentgen stereophotogrammetric comparison of three designs. Acta Orthop
54	492		Scand 61:313-318
55 56	493	56.	Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of
57 58	494		axial tibial torque on the function of the anterior cruciate ligament: a
59 60	495		biomechanical study of a simulated pivot shift test. Arthroscopy 18:394-398
61			
62 63			

57. Kanaya A, Ochi M, Deie M, Adachi N, Nishimori M, Nakamae A (2009) Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: lower femoral tunnel placed single-bundle versus double-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 17:907-913 58. Kaneda Y, Moriya H, Takahashi K, Shimada Y, Tamaki T (1997) Experimental study on external tibial rotation of the knee. Am J Sports Med 25:796-800 59. Karrholm J, Elmqvist LG, Selvik G, Hansson LI (1989) Chronic anterolateral instability of the knee. A roentgen stereophotogrammetric evaluation. Am J Sports Med 17:555-563 60. Kendoff D, Meller R, Citak M, Pearle A, Marquardt S, Krettek C, Hufner T (2007) Navigation in ACL reconstruction - comparison with conventional measurement tools. Technol Health Care 15:221-230 61. Kim SJ, Kim HS, Moon HK, Chang WH, Kim SG, Chun YM (2010) A biomechanical comparison of 3 reconstruction techniques for posterolateral instability of the knee in a cadaveric model. Arthroscopy 26:335-341 62. Knutzen KM, Bates BT, Schot P, Hamill J (1987) A biomechanical analysis of two functional knee braces. Med Sci Sports Exercise 19:303-309 63. Kondo E, Merican AM, Yasuda K, Amis AA (2010) Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle. Am J Sports Med 38:1349-1358 64. Krudwig WK, Witzel U, Ullrich K (2002) Posterolateral aspect and stability of the knee joint. II. Posterolateral instability and effect of isolated and combined posterolateral reconstruction on knee stability: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 10:91-95 Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: 65. current recommendations for sports participation. Sports Med 34:269-280 66. Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22:289-293 67. Laprade RF, Engebretsen L, Johansen S, Wentorf FA, Kurtenbach C (2008) The effect of a proximal tibial medial opening wedge osteotomy on posterolateral knee instability: a biomechanical study. Am J Sports Med 36:956-960 LaPrade RF, Johansen S, Wentorf FA, Engebretsen L, Esterberg JL, Tso A 68. (2004) An analysis of an anatomical posterolateral knee reconstruction: an in vitro biomechanical study and development of a surgical technique.[see

	534		comment]. Am J Sports Med 32:1405-1414
1 2	535	69.	Li G, Gill TJ, DeFrate LE, Zayontz S, Glatt V, Zarins B (2002) Biomechanical
3	536		consequences of PCL deficiency in the knee under simulated muscle loads - an
4 5	537		in vitro experimental study. J Orthop Res 20:887-892
6	538	70.	Li G, Papannagari R, Li M, Bingham J, Nha KW, Allred D, Gill T (2008)
8	539		Effect of posterior cruciate ligament deficiency on in vivo translation and
9 10	540		rotation of the knee during weightbearing flexion. Am J Sports Med
11	541		36:474-479
12 13	542	71.	Lie DT, Bull AM, Amis AA (2007) Persistence of the mini pivot shift after
14 15	543		anatomically placed anterior cruciate ligament reconstruction. Clin Orthop
16	544		Relat Res 457:203-209
17 18	545	72.	Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee
19	546		stability and graft function following anterior cruciate ligament reconstruction:
20 21	547		Comparison between 11 o'clock and 10 o'clock femoral tunnel placement.
22 23	548		2002 Richard O'Connor Award paper. Arthroscopy 19:297-304
24	549	73.	Lubowitz JH, Bernardini BJ, Reid JB (2008) Current concepts review:
25 26	550		comprehensive physical examination for instability of the knee. Am J Sports
27	551		Med 36:577-594
28 29	552	74.	Lundberg M, Messner K (1994) Decrease in valgus stiffness after medial knee
30 31	553		ligament injury. A 4-year clinical and mechanical follow-up study in 38
32	554		patients. Acta Orthop Scand 65:615-619
33 34	555	75.	Majewski M, Susanne H, Klaus S (2006) Epidemiology of athletic knee
35	556		injuries: A 10-year study. Knee 13:184-188
36 37	557	76.	Mannel H, Marin F, Claes L, Durselen L (2004) Anterior cruciate ligament
38 39	558		rupture translates the axes of motion within the knee. Clin Biomech
40	559		19:130-135
41 42	560	77.	Markolf KL, Jackson SR, McAllister DR (2010) A comparison of 11 o'clock
43	561		versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed
44 45	562		knee: knee kinematics during a simulated pivot test. Am J Sports Med
46 47	563		38:912-917
48	564	78.	Martelli S, Zaffagnini S, Bignozzi S, Lopomo N, Marcacci M (2007)
49 50	565		Description and validation of a navigation system for intra-operative
51 52	566		evaluation of knee laxity. Comput Aided Surg 12:181-188
52 53	567	79.	Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br
54 55	568		72:816-821
56	569	80.	McCarthy M, Camarda L, Wijdicks CA, Johansen S, Engebretsen L, Laprade
57 58	570		RF (2010) Anatomic posterolateral knee reconstructions require a
59 60	571		popliteofibular ligament reconstruction through a tibial tunnel. Am J Sports
61			
62 63			

_	572		Med 38:1674-1681
1 2	573	81.	Miura K, Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2010)
3	574		Intraoperative comparison of knee laxity between anterior cruciate
4 5	575		ligament-reconstructed knee and contralateral stable knee using navigation
6 7	576		system. Arthroscopy 26:1203-1211
8	577	82.	Morin PM, Reindl R, Harvey EJ, Beckman L, Steffen T (2008) Fibular
9 10	578		fixation as an adjuvant to tibial intramedullary nailing in the treatment of
11	579		combined distal third tibia and fibula fractures: a biomechanical investigation.
13	580		Can J Surg 51:45-50
14 15	581	83.	Mueller CA, Eingartner C, Schreitmueller E, Rupp S, Goldhahn J, Schuler F,
16	582		Weise K, Pfister U, Suedkamp NP (2005) Primary stability of various forms of
17 18	583		osteosynthesis in the treatment of fractures of the proximal tibia. J Bone Joint
19	584		Surg Br 87:426-432
20 21	585	84.	Musahl V, Voos JE, O'Loughlin PF, Choi D, Stueber V, Kendoff D, Pearle AD
22 23	586		(2010) Comparing stability of different single- and double-bundle anterior
24	587		cruciate ligament reconstruction techniques: a cadaveric study using
25 26	588		navigation. Arthroscopy suppl 26:s41-48
27	589	85.	Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate
28 29	590		ligament surgery. Br J Sports Med 39:127-131
30 31	591	86.	Nakamae A, Ochi M, Deie M, Adachi N, Kanaya A, Nishimori M, Nakasa T
32	592		(2010) Biomechanical function of anterior cruciate ligament remnants: how
33 34	593		long do they contribute to knee stability after injury in patients with complete
35	594		tears? Arthroscopy 26:1577-1585
36 37	595	87.	Nau T, Chevalier Y, Hagemeister N, Deguise JA, Duval N (2005) Comparison
38 39	596		of 2 surgical techniques of posterolateral corner reconstruction of the knee.
40	597		Am J Sports Med 33:1838-1845
41 42	598	88.	Nau T, Chevalier Y, Hagemeister N, Duval N, deGuise JA (2005) 3D
43	599		kinematic in-vitro comparison of posterolateral corner reconstruction
44 45	600		techniques in a combined injury model. Knee Surg Sports Traumatol Arthrosc
46 47	601		13:572-580
48	602	89.	Papannagari R, Gill TJ, Defrate LE, Moses JM, Petruska AJ, Li G (2006) In
49 50	603		vivo kinematics of the knee after anterior cruciate ligament reconstruction: a
51	604		clinical and functional evaluation. Am J Sports Med 34:2006-2012
52 53	605	90.	Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee
54 55	606		biomechanical properties in tibial rotation. J Orthop Res 26:937-944
56	607	91.	Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE
57 58	608		(2010) Biomechanical measures during landing and postural stability predict
59	609		second anterior cruciate ligament injury after anterior cruciate ligament
61			
62 63			
53 54 55 56 57 58 59 60 61 62 63	606 607 608 609	91.	biomechanical properties in tibial rotation. J Orthop Res 26:937-944 Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament

-	610		reconstruction and return to sport. Am J Sports Med 38:1968-1978
1 2	611	92.	Plaweski S, Cazal J, Rosell P, Merloz P (2006) Anterior cruciate ligament
3	612		reconstruction using navigation: a comparative study on 60 patients. Am J
4 5	613		Sports Med 34:542-552
6 7	614	93.	Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N, Georgoulis AD
8	615		(2003) The effects of anterior cruciate ligament reconstruction on tibial
9 10	616		rotation during pivoting after descending stairs. Knee Surg Sports Traumatol
11	617		Arthrosc 11:360-365
13	618	94.	Ristanis S, Stergiou N, Patras K, Tsepis E, Moraiti C, Georgoulis AD (2006)
14 15	619		Follow-up evaluation 2 years after ACL reconstruction with bone-patellar
16	620		tendon-bone graft shows that excessive tibial rotation persists. Clin J Sports
17 18	621		Med 16:111-116
19	622	95.	Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD
20 21	623		(2005) Excessive tibial rotation during high-demand activities is not restored
22	624		by anterior cruciate ligament reconstruction. Arthroscopy 21:1323-1329
23 24	625	96.	Ristanis S, Stergiou N, Siarava E, Ntoulia A, Mitsionis G, Georgoulis AD
25 26	626		(2009) Effect of femoral tunnel placement for reconstruction of the anterior
27	627		cruciate ligament on tibial rotation. J Bone Joint Surg Am 91:2151-2158
28 29	628	97.	Robinson JR, Bull AM, Thomas RR, Amis AA (2006) The role of the medial
30 21	629		collateral ligament and posteromedial capsule in controlling knee laxity. Am J
31 32	630		Sports Med 34:1815-1823
33 34	631	98.	Samuelson M, Draganich LF, Zhou X, Krumins P, Reider B (1996) The effects
35	632		of knee reconstruction on combined anterior cruciate ligament and
36 37	633		anterolateral capsular deficiencies. Am J Sports Med 24:492-497
38	634	99.	Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K (2005)
40	635		Comparison of kinematics in the healthy and ACL injured knee using MRI. J
41 42	636		Biomech 38:255-262
43	637	100.	Scopp JM, Jasper LE, Belkoff SM, Moorman CT (2004) The effect of oblique
44 45	638		femoral tunnel placement on rotational constraint of the knee reconstructed
46	639		using patellar tendon autografts. Arthroscopy 20:294-299
48	640	101.	Sekiya JK, Whiddon DR, Zehms CT, Miller MD (2008) A clinically relevant
49 50	641		assessment of posterior cruciate ligament and posterolateral corner injuries.
51	642		Evaluation of isolated and combined deficiency. J Bone Joint Surg Am
52 53	643		90:1621-1627
54	644	102.	Shahane SA, Ibbotson C, Strachan R, Bickerstaff DR (1999) The
55 56	645		popliteofibular ligament. An anatomical study of the posterolateral corner of
57 58	646		the knee. J Bone Joint Surg Br 81:636-642
59	647	103.	Shapiro MS, Markolf KL, Finerman GA, Mitchell PW (1991) The effect of
60 61			
62			
05			

-	648		section of the medial collateral ligament on force generated in the anterior
1 2	649		cruciate ligament. J Bone Joint Surg Am 73:248-256
3	650	104.	Shoemaker SC, Markolf KL (1985) Effects of joint load on the stiffness and
4 5	651		laxity of ligament-deficient knees. An in vitro study of the anterior cruciate
6 7	652		and medial collateral ligaments. J Bone Joint Surg Am 67:136-146
8	653	105.	Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability.
9 10	654		Ligamentous and muscular contributions. J Bone Joint Surg Am 64:208-216
11	655	106.	Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee
13	656		laxity on hip and knee neuromechanics during drop landings. Am J Sports
14 15	657		Med 37:1821-1830
16	658	107.	Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH
17 18	659		(2007) Measurement of varus-valgus and internal-external rotational knee
19 20	660		laxities in vivoPart II: relationship with anterior-posterior and general joint
20 21	661		laxity in males and females. J Orthop Res 25:989-996
22 23	662	108.	Song EK, Seon JK, Park SJ, Hur CI, Lee DS (2009) In vivo laxity of stable
24	663		versus anterior cruciate ligament-injured knees using a navigation system: a
25 26	664		comparative study. Knee Surg Sports Traumatol Arthrosc 17:941-945
27	665	109.	Stergiou N, Ristanis S, Moraiti C, Georgoulis AD (2007) Tibial rotation in
28 29	666		anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a
30 31	667		theoretical proposition for the development of osteoarthritis. Sports Med
32	668		37:601-613
33 34	669	110.	Stoller DW, Markolf KL, Zager SA, Shoemaker SC (1983) The effects of
35	670		exercise, ice, and ultrasonography on torsional laxity of the knee. Clin Orthop
36 37	671		Relat Res 174:172-180
38 39	672	111.	Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal
40	673		rotational knee motion during running after anterior cruciate ligament
41 42	674		reconstruction. Am J Sports Med 32:975-983
43	675	112.	Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic
44 45	676		function of the ACL-reconstructed knee during running. Clin Orthop Relat Res
46 47	677		454:66-73
48	678	113.	Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On
49 50	679		the influence of soft tissue coverage in the determination of bone kinematics
51	680		using skin markers. J Orthop Res 23:726-734
5∠ 53	681	114.	Thambyah A, Thiagarajan P, Goh Cho Hong J (2004) Knee joint moments
54 55	682		during stair climbing of patients with anterior cruciate ligament deficiency.
56	683		Clin Biomech 19:489-496
57 58	684	115.	Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008)
59 60 61 62 63	685		Rotational knee laxity: reliability of a simple measurement device in vivo.

_	686		BMC Musculoskelet Disord 9:35
1 2	687	116.	Tsai AG, Wijdicks CA, Walsh MP, Laprade RF (2010) Comparative kinematic
3	688		evaluation of all-inside single-bundle and double-bundle anterior cruciate
4 5	689		ligament reconstruction: a biomechanical study. Am J Sports Med 38:263-272
6 7	690	117.	Tsarouhas A, Iosifidis M, Kotzamitelos D, Spyropoulos G, Tsatalas T, Giakas
8	691		G (2010) Three-dimensional kinematic and kinetic analysis of knee rotational
9 10	692		stability after single- and double-bundle anterior cruciate ligament
11	693		reconstruction. Arthroscopy 26:885-893
12	694	118.	Ullrich K, Krudwig WK, Witzel U (2002) Posterolateral aspect and stability of
14 15	695		the knee joint. I. Anatomy and function of the popliteus muscle-tendon unit: an
16	696		anatomical and biomechanical study. Knee Surg Sports Traumatol Arthrosc
17 18	697		10:86-90
19	698	119.	Van de Velde SK, Gill TJ, DeFrate LE, Papannagari R, Li G (2008) The effect
20 21	699		of anterior cruciate ligament deficiency and reconstruction on the
22 23	700		patellofemoral joint. Am J Sports Med 36:1150-1159
24	701	120.	Vaughan CL, Davis BL, O'Conner JC (1992) Dynamics of Human Gait.
25 26	702		Human Kinetics Publishers Champaign
27	703	121.	Veltri DM, Deng XH, Torzilli PA, Maynard MJ, Warren RF (1996) The role of
28 29	704		the popliteofibular ligament in stability of the human knee. A biomechanical
30 31	705		study. Am J Sports Med 24:19-27
32	706	122.	Waite JC, Beard DJ, Dodd CA, Murray DW, Gill HS (2005) In vivo
33 34	707		kinematics of the ACL-deficient limb during running and cutting. Knee Surg
35	708		Sports Traumatol Arthrosc 13:377-384
36 37	709	123.	Wascher DC, Grauer JD, Markoff KL (1993) Biceps tendon tenodesis for
38 39	710		posterolateral instability of the knee. An in vitro study. Am J Sports Med
40	711		21:400-406
41 42	712	124.	Whiddon DR, Zehms CT, Miller MD, Quinby JS, Montgomery SL, Sekiya JK
43	713		(2008) Double compared with single-bundle open inlay posterior cruciate
44 45	714		ligament reconstruction in a cadaver model. J Bone Joint Surg Am
46 47	715		90:1820-1829
48	716	125.	Wojtys EM, Goldstein SA, Redfern M, Trier E, Matthews LS (1987) A
49 50	717		biomechanical evaluation of the Lenox Hill knee brace. Clin Orthop Relat Res
51	718		220:179-184
5∠ 53	719	126.	Wojtys EM, Loubert PV, Samson SY, Viviano DM (1990) Use of a knee-brace
54 55	720		for control of tibial translation and rotation. A comparison, in cadavera, of
56	721		available models. J Bone Joint Surg Am 72:1323-1329
57 58	722	127.	Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002)
59	723		The effectiveness of reconstruction of the anterior cruciate ligament with
60 61			
62 63			
64			
65			

hamstrings and patellar tendon . A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907-914 128. Wright RW, Brand RA, Dunn W, Spindler KP (2007) How to write a systematic review. Clin Orthop Relat Res 455:23-29 129. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100-107 130. Yamamoto Y, Hsu WH, Fisk JA, Van Scyoc AH, Miura K, Woo SL (2006) Effect of the iliotibial band on knee biomechanics during a simulated pivot shift test. J Orthop Res 24:967-973 Yamamoto Y, Hsu WH, Woo SL, Van Scyoc AH, Takakura Y, Debski RE 131. (2004) Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med 32:1825-1832 Zaffagnini S, Bruni D, Martelli S, Imakiire N, Marcacci M, Russo A (2008) 132. Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system - an in-vitro biomechanical study. BMC Musculoskelet Disord 9:25 133. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223-227 134. Zehms CT, Whiddon DR, Miller MD, Quinby JS, Montgomery SL, Campbell RB, Sekiya JK (2008) Comparison of a double bundle arthroscopic inlay and open inlay posterior cruciate ligament reconstruction using clinically relevant tools: a cadaveric study. Arthroscopy 24:472-480

GENERAL

This is the first revision of a systematic review concerned with tibial rotation. A lot - and I really mean a lot - of work is still needed.

First of all, and I repeat this, you must read and follow "Instructions to Authors". In your cover letter you claim that you have done so. However, it is very obvious that it is not the case. If you for instance look at the Abstract, it is not anywhere close to the journal requirements. If you look at the references, all references are incorrectly formatted. There is more than one error in every single reference. I counted to more than 300 (!!!) errors in your reference list. So please make sure that this is correctly done before you resubmit your work. I know it is cumbersome and I know it is a lot of work to do this but is must be done. You are as corresponding author responsible for this.

I have the following detailed comments.

1. TITLE

Change the title to the following: "Biomechanical techniques to evaluate tibial rotation. A systematic review".

Response: This has been revised in the title page.

2. ABSTRACT

The journal now requires structured abstracts. Therefore the abstract should be reorganized under the following subheadings: Purpose, Methods, Results and Conclusion. This is in the "Instruction to Authors".

Response: This was revised. (line 1-23)

The journal now requires "Level of Evidence". This information should be added at the end of the Abstract. This must be given for all clinical studies. Please read and follow the information found in "Instructions to Authors" for the level of evidence. Response: Level of evidence was added after the abstract. This study is classified as Level IV. (line 24)

At the end of the Abstract, under the last subheading, what is the clinical relevance and usefulness of your work?

Response: This was added. (line 17-23)

"This study reports various biomechanical measurement techniques to quantify tibial rotation in the literatures. To choose a suitable measurement technique for a specific

clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long time functional stability assessment. Attention should also be paid on the study's purpose, whether to employ a cadaveric model and the way of stress applied to the knee.'

3. INTRODUCTION

I still fail to understand what is the research question? What is the problem and what is new? This should really be added to the Introduction in order to make this paper interesting and more reader friendly.

Response: The last paragraph of the introduction was revised. (line 59-69)

'In view of the various methodologies in the literature, biomechanics plays an important role to objectively quantify knee rotational laxity and stability when compared with clinical examinations. However, there are no guidelines in the literatures regarding which measurement technique is suitable for specific clinical application. This information should be added so that orthopaedic specialists and sport biomechanists are able to choose the most suitable technique for solving clinical problems in relation to knee structure, injury diagnosis and effect of ligament reconstruction. This study aimed to systematically review the biomechanical techniques to quantify tibial rotation and provided an overview for choosing biomechanical technique for specific clinical application. Tibial rotation was defined as the relative movement of the femur and the tibia in the transverse plane.'

4. MATERIAL AND METHODS

This section should be called "Materials and Methods" and not "Method" only. <u>Response: This was revised. (line 71)</u>

In the Materials and Methods section you must make sure that the readers understand whether you have followed the rules of how a systematic review should be done. Have you followed either the CONSORT or STROBE guidelines? This must be stated.

Response: Since the CONSORT and STROBE are the quality appraisal guidelines for randomized trials and observational study, it is not appropriate to be stated here. However, in order to the readers to understand that we have followed the rules and procedures of a systematic review, we added a reference (Wright et al) in the first sentence under 'materials and methods'. (line 72-73)

5. RESULTS

The Results section is very short and doesn't give any conclusions. I think you would do a better work of giving a short outline of the most important results.

Response: A paragraph outlining the most important findings was added in the Results. (line 108-113)

^cAll 111 included articles were divided into three categories: external load application (67%), physical examination (14%) and dynamic task (19%). Over 60% of all the articles employed a cadaveric model. While various measurement techniques were used in external load application category, intra-operative navigation and optical motion analysis system were commonly used in physical examination and dynamic task categories, respectively.²

In lines 118 and 119 you claim that RSA studies were applied on living humans first in 2001. This is incorrect. Even in your reference list you have given citations to Jonsson and Kärrholm from 1990. This should be corrected.

Response: The sentence here refers studies using dynamic task. The study by Jonsson and Karrholm in 1990 used living human subjects but the stress applied to the knee was 8Nm rotational torque, so this study was under external load application category. To make it clear in the text, the sentence was revised. (line 130-133)

'Before roentgen stereophotogrammetric analysis (RSA) was applied on living human who performed dynamic task in 2001, there were about 10 years of vacuity where no journal papers were published specifically investigating on knee rotational stability during dynamic task.'

6. DISCUSSION

Please start the Discussion with a short sentence like "The most important finding of the present study was?".

Response: The first paragraph in the Discussion was revised. (line 137-144)

'The most important finding was that two thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed cadaveric model. This kind of study design enhances a well controlled laboratory setting for accurate comparison. Secondly, intra-operative navigation system has been commonly used to quantify tibial rotation when the knee is examined by physical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers has been frequently employed although this technique is less accurate due to the skin movement when compared with RSA technique.'

Limitations of your study must be mentioned and discussed in detail somewhere close to the end of the Discussion section. This is always an important part of every manuscript and is something that will lead to new scientific studies in the future. <u>Response: Two paragraphs regarding study limitations and future research direction</u> were added at the end of the Discussion. (line 271-292)

'The limitation of the present study was that computational technique such as finite element model was excluded. Since this technique does not involve any specimen or subject and is only based on the computational model, it is suggested that this kind of technique should be reviewed separately. Moreover, the other secondary motions of the knee joint were not included in the present study. Currently, the assessments for anterior-posterior translation and abduction-adduction motion mainly rely on clinical examination. Techniques to measure these motions would be useful for objective evaluation of knee joint laxity.

The biomechanical technique for measurement of tibial rotation is well developed in the cadaveric model. Accuracy of most of the techniques is reported to be high as bone to bone information could be obtained directly. There is still room for improvement on the techniques applied on living human, especially in the development of a practical and accurate technique for dynamic tasks. Future studies should focus on validity between magnetic measurement and radiographic measurement because the non-invasive magnetic sensor would be useful in orthopaedic clinics if it could produce reliable and valid measurements. Moreover, for the optical motion analysis with skin reflective marker, a consensus should be obtained for a standardized market-set protocol for measurement of tibial rotation during dynamic task. This is important since the results of studies using different protocols are unable to be compared by other researchers.'

At the end, please mention the clinical relevance of your work. How can this work be useful in the day by day clinical work?

Response: This study provided an overview for orthopaedics specialists to choose a suitable technique for a specific clinical application. An example was illustrated of how the effectiveness of a new designed surgical technique is quantified using biomechanical measurement techniques. This paragraph is under the subheading 'Clinical recommendations' in the Discussion. (line 255-269)

'To choose a suitable technique for a specific clinical application, it is recommended that the study's propose should be considered, as well as the experimental setup and the stress applied on the knee. It would be better to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before application to living human subjects for intra-operative evaluation or long time functional stability assessment. For example, Ho et al. [44] used navigation system to evaluate a double femoral-tunnel posterolateral corncer reconstruction technique on cadaveric model while Ristanis et al. [95] employed motion analysis with skin reflective markers for evaluation of knee rotational stability after ACL reconstruction on living human subjects. For the applied stress, 50% of the cadaveric study used 5Nm rotational torque while Kanamori et al. [56] used a combined 10Nm valgus torque and 10Nm internal rotation torque to simulate pivot shift test. Stair walking, running, single-leg lunge and pivoting movement are also commonly used in dynamic stability assessment.²

Lines 211 onwards: You should reflect the original work being done by Jonsson/Kärrholm and Brandsson et al. Also there is a recent publication in KSSTA by Isberg et al. The last publication is still only Online First published but it should be added to the reference list and to the running text.

Response: Three references from Jonsson and Karrholm, and Brandsson et al. were added in the paragraph. (line 222-223) The article by Isberg was included in the search and under 'dynamic task' category. (Table 1) It was added in the reference list [50] and in the text. (line 470-474)

7. CONCLUSION

I still fail to understand the clinical relevance of your work. This information should be added

Response: The content in the 'clinical recommendation' was summarized and added in the Conclusion. (line 295-304)

'The biomechanical techniques to measure tibial rotational were summarized, providing an overview of biomechanical measurement techniques. We systematically reviewed the techniques according to the conditions in which the knee is examined: external load application, physical examination and dynamic task. To choose a suitable measurement technique for a specific clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long time functional stability assessment. Attention should also be paid on the study's purpose, whether to employ a cadaveric model and the way of stress applied to the knee.'

8. REFERENCES

As I mentioned already I counted to an incredible number of errors in the reference list. The references are in correct order; however, all of them are incorrectly formatted and must be reformatted. Concerning order and format of references, please read and follow "Instructions to Authors" carefully. The references should be in alphabetical order in the reference list and must be organized accordingly in the text body.

Please make sure that your references are updated with recent relevant citations. When it comes to updating your references I have the following suggestions.

1. Ho EP et al Comparisons of 2 surgical techniques... Arthroscopy, 2011; 27: 89-96 2. Zamarra G et al Biomechanical evaluation of using... Knee Surg Sports Traumatol Arthrosc, 2010; 18: 11-19 3. Bedi A et al Transtibial versus anteromedial portal... Arthroscopy, 2011; 27: 380-390 4. Branch TP et al Double-bundle ACL reconstruction... Knee Surg Sports Traumatol Arthrosc, 2011; 19: 432-440 5. Lorbach O et al A non-invasive device to objectively... Knee Surg Sports Traumatol Arthrosc, 2009; 17: 756-762 6. Feeley BT et al Comparison of posterolateral corner... Arthroscopy, 2010; 26: 1088-1095 7. Rossi R et al Evaluation of tibial rotational... Knee Surg Sports Traumatol Arthrosc, 2010; 18: 889-893 8. Lertwanish P et al A Biomechanical Comparison... Arthroscopy, 2011; 27: 672-680 9. Kopf S et al A systematic review of the femoral... Knee Surg Sports Traumatol Arthrosc, 2009; 17: 213-219 10. Casino D et al Intraoperative evaluation of total knee... Knee Surg Sports Traumatol Arthrosc, 2009; 17: 369-373

Besides I also mentioned the work by Isberg et al. This should also be added.

Response: The entire reference list was revised according to the guidelines of 'Instruction to authors'. The reference list is now correctly formatted as follows (showing the first 3 references). (line 305-747)

- Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109-115
- 2. Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5:145-149
- 3. Anderson CJ, Westerhaus BD, Pietrini SD, Ziegler CG, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Kinematic impact of anteromedial and posterolateral bundle graft fixation angles on double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 38:1575-1583

9. TABLES

The tables are more or less in good order. However, concerning RSA you mention under issue 3 "Because of its invasive procedure, this technique has been employed in cadaveric studies". This is not entirely correct, because it has also been employed on living humans. This must be corrected.

<u>Response: The description refers to the studies under 'external load application' only.</u> <u>To make it clear, the sentence has been revised. (Table 1)</u>

'In the external load application category, this technique has been employed in cadaveric studies although some studies applied to living human subjects during dynamic task.'

When all corrections are done, and please make sure that they are properly done this time, you are welcome to resubmit your work.

Category	Biomechanical	Reference	Brief description
	technique		
External load	Direct displacement		1. Most direct way to measure rotational displacement
application	measurement		2. The rotational displacement is presented in a two
	• goniometer	[2,40,46,64,97,100,118,125,126]	dimensional plane, which is perpendicular to the axis
	• electrogoniometer	[11,74,82,103,123]	of tibial rotation and on which the tibial rotation is
	• potentiometer	[4,29,54,77,104,105,110]	quantified after placing the device on the plane.
	• transducer	[26,27,38,66,102,121]	3. One study employed bony pin to define rotational displacement such that the movement was restricted in transverse plane and relative movement between pins was then documented.
	Magnetic sensing		1. In cadaveric studies, sensors are attached directly to
	human cadaverliving human	[3,8-10,16,21,39,71,80,87,88,98,116] [106,107,115]	femur and tibia by nylon posts or giberglass cylinders.
			2. When applying to living human, sensors are attached to skin, for example the subjects' thigh and tibial shaft.
			3. Signal is generated from an external receiver with the help of a computer-assisted program, which provides three dimensional position and orientation of the sensors.
	Optical tracking system		1. Similar principle to magnetic instrument.
	• human cadaver	[19,22,32,33,61,63,67,68,76,79,83]	2. Clusters consisting of 3-4 infrared emitting spherical
	• living human	[90]	markers are rigidly fixed to femur and tibia with metaphyseal bone screws. Infrared camera is used to

 Table 1: A summary of biomechanical techniques for measurement of tibial rotation.

locate three dimensional coordinates of markers that needed to be further digitized to establish an anatomically based coordinate system.

- 3. Tibial rotation is presented after mathematical calculation by the system software or self-complied program.
- 1. Most accurate technique since it provides direct bone to bone information.
- 2. Roentgen stereophotogrammetric analysis has been developed since 1989 for the application in living human. Bi-planar roentgenographic exposure films with 2-4 Hz is collected after inserting 3-6 tantalum markers to femur and tibia. The two dimensional coordinates of the markers are plotted on roentgen films and three dimensional coordinates are computed in relation to laboratory coordinate system. The displacement is then calculated by customized program.
- 3. In the external load application category, this technique has been employed in cadaveric studies although some studies applied to living human subjects during dynamic task.

See below

- 1. Developed since 1996
- 2. Provide 6 DOF knee kinematics and kinetics measurement
- 3. The femur is fixed by a femoral clamp while the tibia is also fixed and connected to the sensor

Radiographic measurement

 Intra-operative navigation
 [30,44,57,84,86]

 Universal force moment
 [1,25,43,49,56,72,127,130,131,133]

 sensor
 [1,25,43,49,56,72,127,130,131,133]

[35,55,58,59]

Physical	Direct displacement	[101,124,134]	See above
examination	measurement		
	(goniometer)		
	Magnetic sensing	[41,42,129]	See above
	Intra-operative navigation	[15,20,45,51-53,81,108,132]	1. Provide an immediate evaluation of surgical outcome
			2. The system consists of 2 transmitters with four markers, 1 calibration pointer and high speed camera.
			3. Procedures include obtaining preoperatively radiographic film for creating virtual bone model, fixation of 2 sets of markers on femur and tibia, and registration through digitizing intra and extra articular landmarks.
			4. Six degree of freedom knee kinematics measurement
			is obtained while clinical test were being performed.
Dynamic task	Direct displacement measurement	[23,62]	See above
	(electrogoniometer)		
	Optical motion analysis with reflective skin	[17,18,28,36,37,48,91,93,94,96,114,117,122]	1. A study of locomotion using continuous photographic technique.
	markers		2. Subjects perform specific motions, which probably would give a rotational stress to the knee.
			3. Skin markers are placed on typical bony landmarks while the three dimensional coordinates of the markers are captured by optical instruments and transformed to global coordinates. Relative displacements between the femoral and tibial reference frames are calculated by computer
			programs.

		4. Mai mai dev	ker-set is critical in which location and number of kers varied. One of the frequently used models eloped by Vaughan consisted of 15 markers on
Dediterrentit	[12 14 24 50 70 90 110]	low	er extremities.
measurement	[13,14,24,50,70,89,119]	1. Inva ster	eophotogrammetric analysis.
		2. Rec sub befo test mod	ent studies have reduced its invasiveness. The ects' knees are magnetic resonance scanned ore their motions are captured by fluoroscopic ing system. The system combines the pre-scanned del and matches the outline of the bones in the
		fluc	roscopic images.