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Abstract: 

The paper presents the solution of an elastohydrodynamic point contact condition 

using inlet and outlet lubricant entrainment with partial counter-flow. The inlet and 

outlet boundaries are determined using potential flow analysis for the pure rolling of 

contiguous surfaces. This shows that Swift-Stieber boundary conditions best 

conform to the observed partial counter-flow at the inlet conjunction, satisfying the 

compatibility condition. For the outlet region the same is true when Prandtl-Hopkins 

boundary conditions are employed. Using these boundary conditions, the predictions 

conform closely to the measured pressure distribution using a deposited pressure 

sensitive micro-transducer in a ball-to-flat race contact. Furthermore, the predicted 

conjunctional shape closely conforms to the often observed characteristic key-hole 

conjunction observed through optical interferometry. The combined numerical-

experimental analysis with realistic boundary conditions described here has not 

hitherto been reported in literature. 
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Nomenclature: 

  : Contact semi-major half-width 

  : Contact semi-minor half-width 

  : Applied load 

  : Dimensionless film thickness 
    

  
 

  : Film thickness 

   : Central film thickness 

          : Local central film thickness 

  : Speed ratio 

  : Ellipticity ratio 

  : Dimensionless pressure      ⁄  

     : Maximum Hertzian pressure 

  : Pressure 

    : Equivalent radius of contact along the direction of minor axis of elliptical footprint 

    : Equivalent radius of contact along the direction of major axis of elliptical footprint 

           : Local radius of curvature   

  : Contact profile of the equivalent solid 

  : Speed of entraining motion 
     

 
 

  : Calculated load 

  : Direction/distance of entraining motion 

  : Dimensionless direction/distance of entraining motion   ⁄  

  : Direction/distance of side leakage 

  : Dimensionless direction/distance of side leakage   ⁄  

Greek symbols 

  : Lubricant pressure-viscosity coefficient 

  : Deflection  



   : Load error tolerance 

   : Pressure error tolerance  

   : Inlet viscosity 

  : Viscosity     

 ̅ : Dimensionless viscosity (   ⁄ ) 

  : Position angle  

  : Stribeck oil film parameter 

  : Transformed dimensionless direction of side leakage 

   : Inlet density  

  : Density  

 ̅ : Dimensionless density (   ⁄ ) 

  : Damping factor for load balance 

  : Composite surface roughness 

  : Shear stress 

  : Transformed direction of entraining motion 

  : Under-relaxation factor 

Subscripts: 

  : Current analysis 

  : Exit 

  : Fully flooded  

  : Inlet 

 

 

 

 

 

 



 

1. Introduction 

The concentrated contact of highly stressed load bearing conjunctions such as ball 

and rolling element bearings or cam-follower pairs and gears is subject to an 

elastohydrodynamic regime of lubrication. Understanding of the elastohydrodynamic 

phenomenon has evolved significantly since the pioneering paper by Grubin [1], 

based on the work of Ertel [2]. Ertel and Grubin postulated the piezo-viscous action 

of the lubricant at the inlet nib to a contact obeying localised classical Hertzian 

deformation. A parallel film conjunction was assumed with the contact pressure 

profile closely following the elliptical Hertzian pressure distribution for an infinite line 

contact.  Dowson and Higginson [3] provided the first numerical solution for this case 

and noted a secondary pressure peak at the exit constriction. Later, Archard and Kirk 

[4], Archard and Cowking [5] and Cameron and Gohar [6] extended the numerical 

solution to the case of a point contact under pure rolling motion. Validity of the 

numerical predictions was confirmed by optical interferometric studies, pioneered by 

Gohar and Cameron [7]   

However, many conjunctions such as those of balls in their raceway grooves are 

subject to combined rolling and sliding motion and have an elliptical footprint owing 

to the slight conformance of the mating solids. Solutions include those by Chittenden 

et al [8] and Jalali-Vahid et al [9,10]. The latter showed agreement between their 

numerical predictions and the optical interferometric studies of Thorp and Gohar [11] 

for elliptical point contacts of ball-raceway grooves and angled entraining flow of 

lubricant into the contact conjunction. The initial line contact analysis by Dowson and 

Higginson [3] ignored side leakage of the lubricant in finite line contacts such as in 

rollers to raceway contacts in rolling element bearings. Later works by Mostofi and 

Gohar [12] and Kushwaha et al [13] included the two dimensional solution of a roller-

raceway contact, having a footprint resembling a dog-bone or a dumbbell [14]. These 

contact footprint shapes were reported earlier by Hartnett and Kannel [15], and 

Johns and Gohar [16] among others. Mostofi and Gohar [12] and Kushwaha et al [13] 

showed good agreement between elastohydrodynamic finite line contact predictions 

and the interferometric studies of Wymer and Cameron [17].  

Elastohydrodynamic pressure distribution was shown to follow the Hertzian pressure 

profile except for the inlet hydrodynamic trail and a secondary pressure peak near 

the exit constriction. The minimum film thickness occured in the close vicinity of this 

pressure peak. For point contact geometry, interferograms of the contact revealed a 

“horse-shoe” shape constriction at the exit as early as the 1960s [7]. This has since 

been confirmed by others, such as Foord et al [18] and Thorp and Gohar [11].  

The measurement of pressure in elastohydrodynamic conjunctions received a boost 

through the deposition of thin films of pressure sensitive bulk manganin by 

Bridgeman [19] who used it for high-pressure vessel applications. Kannel et al [20] 



made the first miniature manganin transducer in the form of a thin strip to measure 

elastohydrodynamic line contact pressures in the rolling contact of cylinders. Kannel 

[21] made comparisons between numerically predicted pressure profiles and those 

measured by a manganin transducer for line contact conditions. Although good 

agreement was obtained, the magnitude of the secondary pressure peak was found 

to be much smaller than that predicted numerically. The reason for this anomaly was 

the width of the device which affected the measurement resolution. Other 

investigators such as Hamilton and Moore [22], Bartz and Ehlert [23] and Safa et al 

[24] further miniaturised the transducer to improve its resolving power. However, the 

theoretical predictions still showed much larger pressure spikes than those 

measured under the same conditions. The prediction of the magnitude of the 

pressure spike is was important because  the spike induced a sub-surface stress 

field of its own, which was superimposed upon that predicted for the equivalent 

Hertzian point [25] and line [26] contact conditions.  

The deviation between predictions and measurements resulted from miniaturised 

transducer width (resolution), and interval width in the discretised numerical 

procedure. Al-Samieh and Rahnejat [27] showed that the monitored pressure spike 

could be predicted accurately once these issues were adequately addressed. Their 

predictions agreed well with the measured pressure distributions for a ball bearing 

falling freely upon an oily glass plate upon which Safa and Gohar [28] had fabricated 

a manganin micro-transducer. Therefore, numerical elastohydrodynamic solvers 

could now predict elastohydrodynamic conjunctions fairly satisfactorily. 

A miniature manganin pressure transducer (described later) was sputter-etched 

through a laser cut molybdenum foil onto the glass race of a three ball interferometric 

rig by Johns-Rahnejat [29] to study pressure distribution under circular point contact 

conditions. Fine positioning of the active element of the transducer in the path of the 

traversing balls enabled the acquisition of cross-sectional elastohydrodynamic 

pressure profiles in the direction of entraining motion. Assembling these pressure 

traces yielded a three dimensional contact pressure distribution in an isobaric form 

(Johns-Rahnejat and Gohar [30]). Miniaturisation of the device enabled good 

resolution of in the region of the secondary pressure peak (pip) just prior to the exit 

boundary. The authors used the result of partial counter flow analysis expounded by 

Tipei [31] to establish the inlet and outlet flow boundaries. The outlet boundary was 

compared with the interferograms of the oil film contours under identical load and 

kinematic conditions and revealed remarkable conformance of experimentally 

obtained wake flow boundaries with those of Tipei [31]. An expected conclusion of 

this work was that bearings usually run under starved conditions where much of the 

flow, entrained from an inlet meniscus, is diverted onto the shoulders of the contact 

through side leakage. Also, the inlet meniscus was found to curve inwards in accord 

with observations in practice and underpinned by the characteristic Young-Laplace 

equation.           



There could still be significant deviation between numerical predictions and the 

actual conditions in practice on account of the assumed boundary conditions. 

Numerical analyses often assume fully flooded inlet boundaries and exit constrictions 

based upon Swift-Stieber film rupture conditions beyond the Hertzian domain. More 

representative analyses have included inlet boundaries based upon demarcation 

lines for just fully flooded conditions, determined numerically (Hamrock and Dowson 

[32]) or experimentally using interferometric studies (Wedeven et al [33]). However, 

these were not based on any quantitative free surface lubricant flow analysis such as 

that underlying Prandtl-Hopkins zero reverse flow boundaries.  

It is essential to determine the correct inlet and outlet boundary conditions as these 

affect the resulting pressure distribution and lubricant film thickness.  This constitutes 

the main focus of the current study, which includes the determination of the inlet 

meniscus and outlet wake flow boundaries based on Tipei’s counter-flow analysis. It 

is also important to gauge the validity of the determined boundary conditions, which 

result in the observed characteristic “key hole” shape contact. This is achieved by 

comparison of predictions with  the interferogram of lubricant film contour as well as 

the isobaric pressure plot obtained through the use of a miniature manganin 

pressure transducer, previously reported in [30] and described in more detail in this 

paper. The results show good agreement between measurements and predictions, 

indicating the formation of complex inlet and outlet boundaries. The inlet to the 

conjunction follows the Prandtl-Hopkins zero reverse flow boundary, with the outlet 

boundary forming along the characteristic wake flow beyond the contact shoulders. 

The wake flow extends inwards to the exit constriction, where predictions confirm the 

Swift-Stieber boundary beyond the high pressure Hertzian contact region. 

The results also show that the inlet meniscus is actually formed inside the starvation 

demarcation boundary found through usual numerical analysis or deduced from 

optical interferometric studies of partially lubricated conjunctions. This finding 

indicates that elastohydrodynamic conjunctions are often starved even under 

nominally pure rolling conditions as has often been surmised but not fundamentally 

determined. This finding has been a repercussion of the analysis with the use of 

correct boundary conditions,  rather than its primary objective.  

2. Experimental set up and the thin film pressure transducer 

Figure 1(a) shows a three ball machine. It comprises a flat driven lower race made of 

EN31 steel (1% C, 1.4% Cr), lapped to a finish of 0.1µm and a toughened optical 

crown glass stationary top race of 0.08µm Ra, intervened by a driven steel cage, 

containing three equi-pitched (at 120 spacing) 25.4 mm diameter ball bearings of 

sphericity of 0.1µm and surface roughness of 0.05µm Ra. The cage pockets are 

lined with PTFE to prevent the balls from being scratched when they are centrifugally 

loaded against the cage pocket rims at high speed. Figure 1(b) shows the velocity 

distribution. The glass race is fitted into a collar and loaded upon the rotating balls by 

a lever loading arrangement and an air bearing (figure 1(a)). Three small 



circumferential plastic screws, equally spaced around the rim of the collar, enable 

fractional horizontal movement of the glass race. This enables precision positioning 

of the transducer’s active element with respect to the track of the balls. Therefore, 

cross-sectional pressure distributions under given load-speed combinations can be 

acquired through a series of experiments.    

A miniature manganin pressure transducer is fabricated onto the stationary glass 

race by RF sputtering at a frequency of 13.56 MHz in a vacuum chamber at 710 Torr. 

The dimensions of the transducer are shown in figure 2. The active element is a 

rectangular strip of fine width (10 µm), which is suitable to resolve the 

elastohydrodynamic pressure spike at the exit constriction of the conjunction of any 

of the balls traversing the transducer.  

Manganin (84% Cu, 12% Mn and 4% Ni) is a piezo-resistive compound with very low 

temperature sensitivity  410 / C and surface stress sensitivity. Its pressure 

coefficient is linear over a very wide range of pressures. For the thin film transducer, 

the pressure coefficient is 1.5x10-2 m2/GN.  The manganin pressure transducer is 

unsuitable for rapid transient pressure variations and unsuitable for use with 

electrically conducting surfaces [34, 35]. Therefore, it is deposited on a layer of 

refractory material such as alumina. Depletion of lubricant film can also cause a 

short circuit when the transducer directly contacts the ball. 

At a given load the ball cage and the race are driven in accord with figure 1(b) in 

order to achieve pure rolling motion of the ball-lower race contact and thus attain, as 

far as possible, a circular point contact condition. The true speeds of the lower race 

and cage are measured using photo-sensors to detect the difference in reflected light 

from black and white stripes fabricated on their rims. 

 

 



 

Figure 1: The Experimental set up  

 



 

Figure 2: The manganin pressure micro-transducer 

 

3. Measurement of elastohydrodynamic pressures  

Figure 3(a) shows a series of pressure traces obtained from various point contact 

cross-sections in the direction of entraining motion,   
 

 
, where a  is the radius of 

the Hertzian circle (rolling direction of a ball traversing the transducer’s active 

element). These pressure traces are obtained at various contact cross-sections;   
 

 
. Then, the outlet to these pressure traces is set at the exit wake flow boundary 

calculated by Tipei [31] (figure 3(b)). Therefore, the locus of the inlet meniscus is 

obtained as the zero pressure isobar in figure 4. 
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(a)- Acquired pressure traces at various contact cross-sections 

 

(b)- Calibrated and positioned pressure traces with respect to the outlet wake boundary 

 



Figure 3: Cross-sectional measured pressure distributions  

 

 

Figure 4: The constructed measured isobaric pressure plot 

Key: Pressures in GPa: a=0.71, b=0.7, c=0.53, d=0.32, e=0.26, f=0.088, g=0.053, h=0   

 

This inlet boundary is therefore obtained by reconstruction of the zero pressure 

isobar of a series of experimentally obtained pressure trace cross-sections. The inlet 

meniscus is quite different from the inlet boundaries usually assumed in numerical 

analyses as noted by Tipei [31].   

 

4. Determination of inlet and outlet boundaries 

The main problem in any numerical analysis of the elastohydrodynamic lubrication 

(EHL) problem is the determination of the true computational domain boundaries.  

This case has been investigated by Wedeven et al [33]. The balance between the 

rate at which oil is entrained into the contact zone and that at which it leaks out of the 

contact edges determines the inlet boundary position according to Pemberton et al 

[36]. However, the computation domain is generally simplified to a rectangular area 

[37,38], particularly with the usually assumed fully flooded inlet. It is also quite 

difficult to consider a computation domain of the form as that represented by, for 

example, the zero pressure isobar in figure 4.   



It is, nevertheless, important to determine the appropriate inlet boundary condition as 

this affects the entrainment flow into the contact and hence the film thickness. Tipei 

[31] investigated the inlet and outlet boundaries of the domain in hydrodynamic 

contacts (figure 5). He found that in the inlet zone (inset to the figure), there are swirl 

flows, where some reverse flow (counter flow) occurs at the inlet as is also noted in 

the experimental observations [39].  This means that only a fraction of inlet lubricant 

flow is admitted into the contact domain.  Considering the potential flows in the inlet 

region  1 2 3, ,Q Q Q in figure 5(b), the compatibility condition yields [31]: 
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where: 
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and ( )f k  depends on the pressure gradient.  At the inlet point A in figure 5, 
i

dp
k

d
 , 

thus for the aforementioned inlet flow rates  1 2 3, ,Q Q Q : 
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The values of ( )f k for usually encountered cases of k  are listed in table 1. 

 



 

Figure 5: Flow through contact carried by the solid surfaces 

 

 

Table.1: calculated values for   

       

0 4 

0.5 7.8 

1 32/2 

 

Tipei [31] used the Swift-Stieber condition at the inlet, since the Prandtl-Hopkins 

boundary conditions do not allow the observed swirl flow there, thus:  
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This inlet boundary is shown in figure 4 as the calculated inlet meniscus, which 

closely follows the experimentally obtained zero pressure isobar in the central region 

of the contact domain.  

The experimental observations suggest that the separation point at the outlet (film 

rupture point) is better described by the generation of negative velocities in the 

lubricant film. Thus, Tipei [31] argued that Prandtl-Hopkins conditions are best suited 

for the outlet boundary: 
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Where: 
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The resulting outlet boundary is the one used to lay the exit constrictions of the 

pressure traces of figure 3 on, hence forming the isobaric pressure plot of figure 4. 

This calculated exit boundary closely follows the experimentally obtained wake flow 

boundary under the same condition in the interferogram of figure 6.  

Therefore, for numerical predictions, the choice of the above calculated inlet and 

outlet conditions would be appropriate to closely replicate the experimental 

measurements. The inlet and outlet boundaries are assumed as shown in the figure. 

It comprises the rear of the Hertzian region and the outlet wake boundary line.                                                                               



 

Figure 6: Photo-micrograph of lubricant film interferogram under the same conditions 

as the isobaric pressure plot of figure 5 

 

5. Numerical model 

 

As in all elastohydrodynamic analyses, Reynolds equation forms the basis for the 

prediction of generated pressures. For the general case of elliptical point contact: 
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where:     
      

 

      
  , with 

zx zyR R R   and ellipticity ratio, 1aK
b

   for circular 

point contact. Also maximum Hertzian pressure is:      
  

     

 

Equation (10) is used with a usual rectangular computation domain [37, 38]. The 

contact domain represented by figure 6 is not suitable for numerical analysis. 

Therefore, co-ordinate transformation is required from the XY domain in figure 6 to 

an equivalent rectangular domain  , where the transformations are: 
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Reynolds equation can now be re-written in terms of this computational domain as: 
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where:   

, , , ,,  ,  ,  1x y x y
x y x y

   
   
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             (13) 

 

The transformation from ,  to the ,x y  domain is obtained from equation (11) for 

the simultaneous solution of Reynolds equation with the gap shape (elastic film 

shape) and the lubricant rheological state equations. 

 

The elastic film shape in the x,y domain is given as: 

 

     0, , ,h x y h s x y x y          (14) 

where the undeformed profile is: 
2 2

( , )
2 2zx zy

x y
s x y

R R
   , where for a ball contacting a 

flat race: 
zx zyR R R   

 

The local contact deflection is obtained through solution of the elasticity potential 

equation [9, 38, 40]: 
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Lubricant rheological state; density and viscosity variations with pressure are given 

by: 

 

For density [3]: 
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For viscosity [41]:  



 

      9
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Z
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Where:    9
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Note that isothemal conditions are assumed for this analysis. 

 

The solution is obtained using the low relaxation effective influence Newton-Raphson 

(EIN) method with Gauss-Seidel iterations. The process is fully described in [10,38]. 

This method is widely used in elastohydrodynamic studies. However, more detailed, 

yet with longer computation times can also be used, such as multi-level, multi-grid 

technique [42, 9]. Another approach is through use of finite element analysis for 

example by Tan et al [43]. Additionally, modified Reynolds equation may be used 

with  boundary conditions suitable for inclusion of cavitaion effect, such as that 

reported by Elrod [44] or the more extensive and computationally complex JFO 

boundary conditions [45, 46]. However, the effect of cavitaion is not taken into 

account in the current study, because the negative pressure values shown in figure 

3(a) have no definitive physical meaning as the micro-transducer readings can only 

be relied on when in compression. The pressure traces are only used to determine 

the position of film rupture (i.e. p=0). Hence, the numerical method used here 

suffices, although the study of cavitation merits further consideration as this also 

affects contact friction.   

 

Two convergence criteria are employed in the iteration process; pressure 

convergence and load balance. 

 

For pressure convergence: 
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where the error tolerance is: 5 410 10p
  

  
 

The subscripts: , ,i j x y  denotes the computational discretised domain and the 

superscript k is the iteration counter for pressure convergence calculations.  

 

If the criterion is not met, then the generated pressures are under-relaxed as:
 

  
1

. , ,  ,k k
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where the under-relaxation factor is typically: 0.01 0.8  

For load-balance: 
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where the error tolerance is: 0.001 0.05w 
 

If the criterion is not met, the initial guess value for the minimum clearance 
0h  is 

adjusted and the entire iteration process is repeated: 

1

0 0

l l F
h h

W



  
  

           (21) 

The superscript l is the iteration counter for the whole process; load balance, 

including the necessary pressure convergence iterations k 

The damping factor for load balance is given as: 0.1 0.1    

6. Numerical Predictions 

Figure 7 shows the predicted isobaric pressure distribution obtained using the 

computational boundaries indicated in figure 6. It is comparable with that 

experimentally measured in figure 4.  

 



Figure 7: Predicted isobaric pressure distribution for the same conditions as those of 
measured pressures in figure 4  

Key: Pressures in GPa: a=0.7, b=0.58, c=0.35, d=0.21, e=0.13, f=0.0007, g=0.00005, h=0  

 

Good agreement can be observed between the predictions and the measured results. 

There are some differences, most likely caused by the computational mesh density; 

in this case a grid of , 120X120i j  , which already accounts for a significant 

computation time. There is also a spatial measurement resolution (resolving power 

of the active element of the miniature transducer), determined by its width of 10µm. 

However, good agreement between the predicted and measured results suffices in 

noting the importance of using true boundary conditions in numerical predictive 

simulations. This is demonstrated by the results in figure 8 (a), where the 

“rectangular domain” refers to the usually assumed fully flooded inlet boundary 4-5 

times the Hertzian contact radius ahead of the centre of the contact and an outlet 

boundary based on the Swift-Stieber boundary conditions. Clearly, a thicker lubricant 

film is predicted with the usual approach than with the current analysis. The current 

paper is not primarily concerned with issue of starvation, although this phenomenon 

results as a repercussion of the use of true boundary conditions. More specific 

studies of lubricant film thickness under different levels of starvation have been 

carried out by Qian et al [47] and Damiens et al [48]. There is limitation in applied 

load due to the use of a toughened glass race. The conditions are 

elastohydrodynamic, where the lubricant film thickness is insensitive to load, whilst 

the contact dimensions increase as well as generated pressures. 

The central cuts through the pressure distributions in the direction of entraining 

motion for the measured and predicted pressures are shown in figure 8(b). The 

results of the current analysis conform better to the measured pressure profile than 

that based on a fully flooded inlet.   



 

(a)- Film shape 

 

 

(b)- Pressure profile 

Figure 8: Predicted and measured central film shape and pressure profile in the 

direction of entraining motion 

 



In both cases the regime of lubrication is surmised to be elastohydrodynamic 

because the Stribeck oil film parameter is: 0 3
h




  , with the composite surface 

roughness Ra being, 2 20.05 0.08 0.094 m    (see section 2). Thus, for the 

flooded results: 
0.325

3.5
0.094

f    and for the current analysis: 
0.26

2.8
0.094

c   .  

Nevertheless, with the reduced film thickness in the case of the current analysis 

(fore-shortened inlet boundary), there is increased viscous shear of the lubricant at 

the same speed of entraining motion and lubricant viscosity with the ratio:

0

0

1.25
f fc

f c c

h

h



 
   , where subscripts c and f refer to the current analysis, based on 

the employed boundary conditions and those for the fully flooded inlet respectively. 

Note that viscous friction, 
0

U R

h


   with the assumption of the dominance of Couette 

shear. Therefore, 25% more friction would be expected than that under idealised 

generally assumed fully flooded inlet. This behaviour of friction with starvation has 

been observed experimentally by Ali et al  [49]. 

 

 

7. Concluding remarks    

The paper has developed inlet and outlet boundary conditions using entrainment 

flow with partial counter-flow in pure rolling of contiguous surfaces in circular 

elastohydrodynamic point contact. The results show that the inlet meniscus is 

partially formed inside the starvation demarcation boundary, found through 

experimental work of Wedeven et al [33] and numerical analysis by Hamrock and 

Dowson [32] (figure 7), based on Swift-Stieber exit boundary conditions. Crucially, 

the inlet distance feeding the central Hertzian region of the contact falls within this 

starvation boundary. This region often has a flat thin film thickness as well as the 

minimum exit film shown in figure 8(a). This finding indicates that 

elastohydrodynamic conjunctions are often starved even under nominally pure rolling 

conditions, as has often been surmised but not fundamentally determined. This is a 

repercussion of the application of correct inlet boundary conditions. An important 

repercussion of these findings is that the usual assumption of flooded inlet and exit 

boundary conditions renders a thicker lubricant film thickness than that measured 

through interferometry. This means that a higher viscous friction would be expected 

in practice than that usually predicted.  

The main contribution of this paper is the good conformance of numerical predictions, 

using the analytically established boundary conditions with the experimentally 



measured pressure distribution, an approach not hitherto reported in literature for the 

observed key-hole shaped conjunctions.       
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