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Abstract. Multi-layer models of sparse coding (deep dictionary learning) and di-
mensionality reduction (PCANet) have shown promise as unsupervised learning
models for image classification tasks. However, the pure implementations of these
models have limited generalisation capabilities and high computational cost. This
work introduces the Deep Hebbian Network (DHN), which combines the advan-
tages of sparse coding, dimensionality reduction, and convolutional neural net-
works for learning features from images. Unlike in other deep neural networks,
in this model, both the learning rules and neural architectures are derived from
cost-function minimizations. Moreover, the DHN model can be trained online
due to its Hebbian components. Different configurations of the DHN have been
tested on scene and image classification tasks. Experiments show that the DHN
model can automatically discover highly discriminative features directly from
image pixels without using any data augmentation or semi-labeling.

Keywords: Sparse coding, Dimensionality reduction, Hebbian/anti-Hebbian learn-
ing, MultiDimensional Scaling, Biologically plausible learning rules.

1 Introduction
When applied to supervised learning tasks, deep neural networks trained using back-
propagation dominate the field of machine learning in terms of performances on bench-
marks. However, such networks often under-perform standard techniques when the
number of labelled data available is relatively small. Unsupervised learning, on the
contrary, enables the development of algorithms able to adapt to a variety of different
unlabeled data sets. For unsupervised learning, a variety of algorithms and principles
exist, one of which is the Hebbian principle, stating that in human learning, the connec-
tions between two neurons are strengthened when simultaneously activated. Despite the
apparent vagueness of this principle, the authors of [20] argue in their work that if rigor-
ously expressed, this principle could be the key to major advances in machine learning.
We explicitly express here two important aspects of Hebbian learning that will be used
in this work: 1) to be Hebbian, a learning rule should employ only the local information
contained in the activities of pre-synaptic and post-synaptic neurons; 2) such learning
rules should depend only on the correlation between the activities of these neurons.
These two properties of the Hebbian principle are also part of the more general concept
of local learning presented in [2].
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The work presented here focuses on two unsupervised learning methods, namely,
sparse coding and dimensionality reduction. In addition to being powerful statistical
learning models, those methods also proved successful at modelling biological signal
processing [12, 9]. In this work we have made use of a novel approach [16, 15] that
implements both sparse coding and dimensionality reduction by means of a unique
principle called similarity matching. The minimization of the cost-functions associated,
based on Classical Multidimensional Scaling (CMDS) [8], led to trainable neural net-
works using Hebbian/anti-Hebbian rules.

The work presented here is motivated by two main goals. The first goal is to im-
plement a network for online learning using only feed-forward and lateral connections.
The second is to demonstrate that the proposed architecture successfully combines Con-
volutional Neural Networks (CNN) structure, PCANet [5] and deep sparse coding. In
particular, the intent of this work was not to outperform neural networks trained on
back-propagation but to evaluate a novel bio-inspired online unsupervised model per-
forming feature extraction for image classification. To achieve these two goals, this
study introduces a new type of network called Deep Hebbian Network (DHN) that com-
bines, within one architecture, stages of overcomplete sparse coding and dimensionality
reduction based on the similarity matching principle. The performance of the DHN is
evaluated on indoor scene classification (MIT-67) and image classification (CIFAR-10)
tasks.

2 Similarity Matching: a Unifying Framework for Building
Efficient Deep Hebbian Networks

The rules implemented in the proposed model derive from adaptations of CMDS. CMDS
generates a set of coordinates in a different Euclidean space where the solution is
an optimal embedding minimizing the changes to the distances between data points
[8]. The formulation of CMDS is given as follows: for a set of inputs xt ∈ Rn for
t ∈ {1, . . . , T}, the concatenation of the inputs defines an input matrix X ∈ Rn×T .
The output matrix Y of embeddings is an element of Rm×T . The objective function of
CMDS is:

Y ∗ = argmin
Y ∈C

‖X ′X − Y ′Y ‖2F . (1)

where F is the Frobenius norm,X ′X is the Gram matrix of the inputs, which combines
the information of similarity and norm of the vectors, and the space C encodes the
constraints, which depend on the problem to solve. Classically, this method has been
used to accomplish dimensionality reduction, and m < n. However, it can be adapted
to achieve sparse coding. This work focuses on two online versions of CMDS, which
leads to non-trivial neural implementations and Hebbian learning rules.

2.1 Hebbian/anti-Hebbian Learning for Similarity Matching

To achieve dimensionality reduction and sparse coding, two different sets of constraints
are considered for building the DHN. First, let us assume that the outputs are con-
strained to be non-negative and of dimension greater than the input dimension, and
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(m > n) i.e. C = {Y ∈ Rm×T
+ |m > n} . Such constraints correspond to a sparse

coding model [16], which optimal solution will be noted Y ∗SC . Second, if the input di-
mension is greater than the output dimension, (n > m) and C = {Y ∈ Rm×T |m < n},
it corresponds to a dimensionality reduction model [15], which optimal solution will be
noted Y ∗DR. In particular, these two optimization problems can be expressed as:

Y ∗SC = argmin
Y ∈Rm×T

+ , m>n

‖X ′X − Y ′Y ‖2F , Y ∗DR = argmin
Y ∈Rm×T , m<n

‖X ′X − Y ′Y ‖2F .(2)

Online learning versions of the problems in Eq.2 are expressed as:

(yTSC)
∗ = argmin

yT∈Rm
+ , m>n

‖X ′X − Y ′Y ‖2F , (yTDR)
∗ = argmin

yT∈Rm, m<n

‖X ′X − Y ′Y ‖2F ,(3)

where the inputs are considered as a sequence. When a new element, xT , is presented to
the model, an output, yT , is generated while keeping the previous yts unchanged. The
components of the solutions of Eq.3 found in [16, 15] using coordinate descent are:

(yTi,SC)
∗ = max

(
WT

i x
T −MT

i y
T , 0

)
, (yTi,DR)

∗ =WT
i x

T −MT
i y

T (4)

with WT
ij =

T−1∑
t=1

ytix
t
j

T−1∑
t=1

(yti)
2

; MT
ij =

T−1∑
t=1

ytiy
t
j

T−1∑
t=1

(yti)
2

1i 6=j ∀i ∈ {1, . . . ,m}. (5)

WT and MT can be found using recursive formulations:

WT
ij =WT−1

ij +

(
yT−1i (xT−1j −WT−1

ij yT−1i )

/
Ŷ T
i

)
(6)

MT
ij 6=i =MT−1

ij +

(
yT−1i (yT−1j −MT−1

ij yT−1i )

/
Ŷ T
i

)
(7)

Ŷ T
i = Ŷ T−1

i + (yT−1i )2 . (8)

The matricesWT andMT are sequentially updated using only the relationship between
xT−1 and yT−1, which are analogous to pre and post-synaptic activities, thus satisfy-
ing the Hebbian principle. The learning dynamic of MT is called anti-Hebbian since
the connections between neurons are reduced when activated simultaneously. In both
cases the weight matrices WT and MT can be interpreted respectively as feed-forward
synaptic connections and lateral synaptic inhibitory connections (Fig.1). The main dif-
ference between the two models is in the use of a rectified linear unit (ReLU) on the
sparse coding problem.

3 Deep Hebbian Network

A DHN is defined here as a combination of three basic layers: a Sparse Coding Layer
(SCL), a Depth Pooling Layer (DPL), and a Spatial Pooling Layer (SPL). The different
layers can be stacked in various manners to construct a variety of DHNs. Fig. 2 shows
a graphical representation of such a network with 2 layers.
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Fig. 1: Network implementing successively sparse coding and dimensionality reduction
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3.1 Feature Extraction by Sparse Coding: Simple Cell Inspiration

The SCL performs the encoding of local patches using competitive learning modeled
by lateral synaptic inhibitions. The choice of layer for extracting features is inspired by
the simple cells of the visual cortex V1. It has been proved that overcomplete sparse
coding reproduces important tuning properties of those cells [12].

As part of the evaluation of the DHN it is important to assess its performance as a
function of the number of SCLs and of the number of neurons in each of those layers.
As in an earlier work [1], the sparse coding layers considered perform overcomplete
representations of the input data with more output neurons than input neurons, (m > n),
as expressed in Eq. 3. Overcompleteness in the SCL was chosen because it may allow
for more flexibility in matching the output structure to the inputs [12].

3.2 Dimensionality Reduction and Pooling: Complex Cells Inspiration

The model in [1] suffered from the fact that the number of neurons exponentially in-
creases with the number of layers. A key idea in the proposed DHN architecture is
to overcome this problem by using dimensionality reduction techniques to reduce the
input sizes of the successive SCLs.

Depth Pooling: The DPL performs an online low-dimensional embedding of the data
using the similarity matching principle. The DPL reduces the number of feature maps
before feeding the following SCL.

The introduction of the DPL is inspired by the work of [9], which showed that
visual spatial pooling can be learned by Principal Components analysis (PCA) based
techniques, reproducing the tuning properties of V1 complex cells. A similar idea, in a
supervised learning setup, can be found in the inception layer proposed by [20], which
includes a dimensionality reduction stage. Other less bio-inspired dimensionality re-
duction models, e.g. autoencoders [21], can also be used.
Spatial Pooling: A standard spatial pooling technique is used in this model to reduce
the width and height of the feature maps produced after convolution. The max-pooling
operation is used after SCL, and no spatial pooling is performed after DPL.
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4 Experiments and Results

The results presented here measure the performance of the DHN on classification tasks.
A multi-class Support Vector Machine (SVM) [7] classifies the pictures using output
vectors obtained by a simple pooling of the feature vectors, Y ∗SC , obtained for the input
images from the trained network. In particular, given an input image, each neuron in
the SCLs produces a new image, called a feature map, which is pooled in quadrants to
form 4 terms of the input vector for the SVM as shown in Fig. 2. The linear SVM has
been widely used when evaluating the efficiency of unsupervised learning model, on the
benchmarks presented below. Although the use of nonlinear classifiers could increase
the accuracy, such increase could not be attributed to the efficiency of the DHN.

4.1 Datasets and Preprocessing

Two datasets are used for evaluating the performance of the features learned by the
DHN. The first dataset was the standard benchmark used for indoor scene recognition,
the MIT Scene Indoor 67 (MIT-67) [18], which contains 67 indoor categories, with a
total of 15620 images. In the following, only 80 images from each class were used for
training, and 20 for testing. The second dataset was the CIFAR-10 [10], which contains
50,000 training and 10,000 test images of 32x32 color images of 10 different classes.

Prior to feeding the DHN, basic preprocessing is performed on the inputs, namely
brightness and contrast normalization, and whitening. Although online versions of such
techniques [15] exist, offline preprocessing is performed in this study to enable a fairer
comparison to other unsupervised learning models. A study on the influence of the
whitening on the performance of single-layer Hebbian networks is proposed in [1].
The images contained in the MIT-67 are of different resolutions. In order to train and
test the DHN on a consistent set of images, the images of the MIT-67 were resized to
100x100x3, size of the smallest image on the dataset.

4.2 Evaluation of DHN

For both datasets, tests were performed on DHNs with up to 5 layers as indicated in the
schema in Fig.2.

Fig. 2: DHN with convolutional architecture trained on the MIT-67 dataset.
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Understanding the impact of the number of neurons in SCLs and DPLs: The re-
sults reported in Fig. 3a clearly shows that the performance of the DHN combining the
features from the 1st and 2nd SCL, noted (Φ1+Φ3), consistently outperforms Φ1 and Φ3

alone, which is also confirmed in Fig. 3b. Fig. 3a shows a monotonic increase of clas-
sification accuracy with the number of neurons in the 2nd SCL, again confirmed in Fig.
3b. However, the influence of the number of neurons in the 1st DPL on the classifica-
tion accuracy is more subtle. It appears in Fig. 3b that there exists an optimal number of
neurons for that layer, which is around 15 neurons. An explanation of this phenomenon
is the fact that DPL learns a low-dimensional linear subspace in which part of the in-
formation might be lost if the dimension is too small. Reciprocally, if the embedding
space is too big, the following SCL is unable to learn an appropriate representation as
in the naive multi-layer sparse coding model proposed in [1].

Fig. 3: Classification accuracy of different 3-layer DHN on the MIT-67 dataset.

(a) Classification accuracy as a function of the
number of neurons in the 2nd SCL for different
sizes of the 1st DPL (10, 20, and 30 neurons)
and using either only Φ1 or Φ3 or both.
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(b) Classification accuracy as a function of the
number of neurons in the 1st DPL for different
sizes of the 2nd SCL (200 and 800 neurons) and
using either only Φ1 or Φ3 or both.
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Impact of the number of layers: Table 1 shows that the classification accuracy of
a DHN increases when using features from more layers on the MIT-67 dataset. The
features extracted from Φ5 appear beneficial in the MIT-67 but not so in the CIFAR-
10. The highest classification accuracy on the MIT-67, 41.4%, is reached when the
features of the three SCLs are combined (Φ1 + Φ3 + Φ5). For the CIFAR-10 however,
the highest accuracy, 79.1%, is achieved using only the features from the 1st and 2nd

SCL (Φ1 + Φ3).
This discrepancy is likely due to the difference in sizes of the images used, 32x32

pixels and 100x100 pixels. Such results support the utility of using convolutional ar-
chitecture and depth pooling, which enables the DHN to successfully exploit both local
and global discriminative information, which are necessary for addressing scene recog-
nition problems.

Comparison to other models: On the MIT-67, the DHN shows higher accuracy than
the PCANet [5], Deformable Parts models (DPM), Spatial Pyramid Matching (SPM)
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Table 1: Classification accuracy when using features from different layers of the DHN
on the MIT-67 and CIFAR-10. The features extracted by the DHN are used to train a
linear SVM. Φ1 + Φ3 + Φ5 denotes the concatenation of features from the three SCLs.

Features used in the Linear SVM for the Classification
Φ1 (300 neurons) Φ3 (1200 neurons) Φ5 (3200 neurons) Φ1 + Φ3 Φ1 + Φ3 + Φ5

MIT-67 28.5 % 32.4 % 35.1 % 37.8 % 41.4%
CIFAR-10 72.2% 76.6% 61.6% 79.1% 74.5%

[13] and Reconfigurable Models (RBoW) [14], as reported in Table 2. It reaches similar
accuracy to Hierarchical Matching Pursuit trained on RGB images (HMP-RGB) [3].
However, the combined model (DPM+Gist+SPM) [13] and the Multipath-HMP (M-
HMP) [4] still outperform the DHN. Improvements of the architecture of the DHN
inspired by the M-HMP may enable it to capture richer features at different scales.

Although on the CIFAR-10 the performance of the DHN are comparable to the
single-layer Hebbian (SLH) introduced in [1], it does so with half of the neurons used in
the single layer in [1], which increases further its computational and memory efficiency.

Table 2: Evaluation of the DHN against other unsupervised models on (a) MIT-67 and
(b) CIFAR-10.

(a) Classification accuracy on the MIT-67

Algorithm Accuracy

DHN (Φ1 + Φ3 + Φ5) 41.4 %
SPM [13] 34.4 %
PCANet [5] 34.7 %
RBoW [14] 37.9 %
HMP - RGB [3] 41.8 %
DPM+Gist+SPM [13] 43.1 %
M-HMP [4] 51.2 %

(b) Classification accuracy on the CIFAR-10

Algorithm Accuracy

DHN (Φ1 + Φ3) 79.1 %
Sparse RBM 72.4 %
PCANet [5] 78.7 %
Single-layer Hebbian [1] 79.6 %
Multi-layer K-means [6] 82.0 %
TIOMP-1/T [19] 82.2 %
Multi-Layer NOMP [11] 82.9 %

5 Conclusion

This work introduces the first multi-layer Hebbian network, called DHN, which com-
bines sparse coding and dimensionality reduction. It is the first time a Hebbian network
has shown competitive performance at unsupervised features learning for image classi-
fication tasks. When evaluated on indoor scene recognition, the DHN achieves higher
accuracy than many algorithms, e.g. RBoW. Although the model does not reach the
highest accuracy on those benchmarks, it has the major advantage of being trainable
online, making it an excellent candidate for learning from unbounded streams of data.

The power and memory efficiency of the architecture proposed might also prove
particularly useful for mobile and embedded computing. Recent work [17] already ex-
plores potential hardware devices implementing similar principles to those used in the
DHN. Although the DHN proves competitive when compared to unsupervised models,
it does not compare to models using back-propagation. Future work will explore the
introduction of supervision in the form of local learning rules [2] in the DHN.
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