Loughborough University
Browse
AIAA-2012-2775-980.pdf (26.35 MB)

CFD based study of unconventional aeroengine exhaust systems

Download (26.35 MB)
conference contribution
posted on 2012-08-30, 09:10 authored by Tim Coates, Gary J. Page
The effect of upstream duct curvature on the exhaust plume of a jet engine is cur- rently undocumented. Here, three different upstream curvatures are simulated using CFD to investigate the effect of upstream duct curvature on the over-expanded exhaust plume emanating from a rectangular nozzle of aspect ratio 5.8:1 at a nozzle pressure ratio of 2.5 and Reynolds number of 7.61 × 105. Due to the lack of available experimental data for curved ducts connected to high speed jets, the initial work was to validate the methodol- ogy for separate S-bend and rectangular nozzle high speed jet cases. These showed that RANS methods were poor for predicting secondary flows in the S-bend and for predicting mixing and potential core length in the rectangular jet. However, LES did show signifi- cant improvements for the rectangular jet and correctly predicts the shear layer mixing. Calculations were carried out using an unstructured, median-dual CFD solver with pre- dominantly hexahedral elements containing approximately 65.5−67.5 million nodes. For the combined S-bend and nozzle cases it was seen that increasing upstream duct curvature re- duces the potential core length and increases losses in the upstream duct. Transverse total pressure gradients were also observed at the nozzle exit plane in both k-ǫ and WALE LES turbulence models, however to a significantly smaller degree in the latter. The upstream duct curvature was also seen to have an impact on the shock cell development, altering both number and location.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Citation

COATES, T.D. and PAGE, G.J., 2012. CFD based study of unconventional aeroengine exhaust systems. 30th AIAA Applied Aerodynamics Conference, New Orleans, 2012, AIAA 2012-2775 27 pp.

Publisher

Published by the American Institute of Aeronautics and Astronautics, Inc. © the author(s)

Version

  • VoR (Version of Record)

Publication date

2012

Notes

This paper was presented at the 30th AIAA Applied Aerodynamics Conference 25 - 28 June 2012, New Orleans, Louisiana.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC