Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Carbon nanotube-reinforced poly(4-vinylaniline)/polyaniline bilayer-grafted bacterial cellulose for bioelectronic applications

journal contribution
posted on 2019-05-20, 09:12 authored by Ana M. Rodrigues Rebelo, Yang LiuYang Liu, Changqing Liu, Karl-Herbert Schafer, Monika Saumer, Guang Yang
Microbial cellulose paper treated with polyaniline and carbon nanotubes (PANI/CNTs) can be attractive as potential flexible capacitors in terms of further improvements to the conductivity and thermal resistance. The interactions between PANI and CNTs exhibit new electrochemical features with increased electrical conductivity and enhanced capacity. In this study, PANI/CNTs was incorporated into a flexible poly(4-vinylaniline)-grafted bacterial cellulose (BC/PVAN) nanocomposite substrate for further functionalization and processability. PANI/CNTs coatings with a nanorod-like structure can promote an efficient ion diffusion and charge transfer, with a significant enhancement of the electrical conductivity after CNTs reinforcement of 1 order of magnitude up to (1.0 ± 0.3) × 10−1 S·cm−1 . An escalating improvement of the double charge capacity (∼54 mF) of the grafted BC nanocomposites was also detected through electrochemical analysis. The multilayered electrical coatings also reinforce the thermal resistance, preventing anticipated thermal degradation of the BC substrate. The cell viability and differentiation assays using neural stem cells (SVZ cells) testified to the cytocompatibility of the grafted BC nanocomposites, while inducing neuronal differentiation over 7 days of culture with a neurite that was 77 ± 24.7 μm long. This is promising for meeting the requirements in the construction of high-performance bioelectronic devices that can actively interface biologically, providing a friendly environment for cells while tuning the device performance.

Funding

This research was financially supported by an LU Ph.D. studentship via Mini-CDT on “Intelligent, adaptable electronics for healthcare and wellbeing” and a Marie Curie International Research Staff Exchange Scheme Project of the Seventh European Community Framework Program (grant no. PIRSES-GA-2010-269113), titled “Micro-Multi-Material Manufacture to Enable Multifunctional Miniaturized Devices (M6)”.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

ACS Biomaterials Science & Engineering

Volume

5

Issue

5

Pages

2160–2172

Citation

REBELO, A.M.R. .... et al., 2019. Carbon nanotube-reinforced poly(4-vinylaniline)/polyaniline bilayer-grafted bacterial cellulose for bioelectronic applications. ACS Biomaterials Science & Engineering, 5(5), pp 2160–2172.

Publisher

© American Chemical Society (ACS)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2019-04-17

Publication date

2019-04-17

Copyright date

2019

Notes

This paper is in closed access.

ISSN

2373-9878

eISSN

2373-9878

Language

  • en