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Abstract 

In response to persistent DNA damage, induction into cell senescence promotes an immunogenic 

program which facilitates immune clearance of these damaged cells.  Under physiological conditions, 

senescent cells can activate both innate and adaptive immune responses, functioning to maintain 

tissue homeostasis.  However, likely owing to ageing of the immune system, a failure to eliminate 

senescent cells is thought to contribute to their accumulation in tissues with age.  As a consequence, 

senescent cells contribute towards ageing and age-related diseases.  Furthermore, induction of cell 

senescence in immune cells has also been reported, a process which can be both beneficial and 

detrimental, depending on the biological setting.  In addition to activating an immune response, 

senescent cells have also been reported to promote immunosuppression in pathological contexts.  As 

such, mechanisms associated with senescent cell-immune cell interactions appear complex.  In this 

review, we provide an overview of the research focused on senescence immunosurviellance, including 

a discussion on the mechanisms by which macrophages may recognise senescent cells.  Senescence 

immunotherapy strategies as an alternative to senolytics for the removal of senescent cells will also 

be discussed.    

 

 

Key Words: senescence, macrophages, immunosurviellance, ageing, immunotherapy 

 

 

*Corresponding author 

Dr. Dominick Burton 

Loughborough University, Wolfson School, Epinal Way 

LE11 3TU, Loughborough, UK 

d.burton@lboro.ac.uk 

 

 



Introduction 

 

Clear definitions concerning the biological differences between “cell ageing” and “cell senescence” 

are often lacking and not well defined.   To those unfamiliar with the subject of cellular senescence, 

such terminology can lead to confusion.  We have attempted to briefly clarify such differences.  

Cellular ageing results from stochastic processes as a result of gradual accumulating damage over 

time, whereas cellular senescence is a programmed change in cell state associated with permanent 

growth inhibition.  Aged cells maintain their normal function, albeit at a decreased capacity, whereas 

senescent cells acquire new functions (Figure 1).   

In cultures of actively dividing cells, senescence can be abruptly induced in a matter of days.  However, 

in many tissues and organs which consist primarily of quiescent cells (reversible growth arrest) 

senescence induction can only occur once cells re-enter the cell cycle.   The senescent state is often 

mediated by a persistent DNA damage response (DDR) (Burton and Faragher, 2015; d’Adda di Fagagna, 

2008), induced by stress induced stimuli such as telomere dysfunction, oncogene activation, oxidative 

stress, cell-cell fusion and chemotherapeutic drugs (Chuprin et al., 2013; Di Micco et al., 2006; Ewald 

et al., 2010; Toussaint et al., 2002; Victorelli and Passos, 2017).  “Induction” of senescence therefor 

refers to the programmed responses which occur following a DDR triggered by a stress induced stimuli.  

In addition to permanent growth arrest, the senescent state is accompanied by several additional 

phenotypic changes which make them distinct from their non-senescent counterparts (Table 1).  

Although a senescence-like response has been reported in post-mitotic cells such as neurons (Jurk et 

al., 2012), this review will focus on cell senescence in growth-competent cells. 

Probably the most widely researched aspect of the senescent phenotype to date is the altered 

secretory response, referred to as the senescence-messaging secretome, senescence-associated 

secretory phenotype or the senescence-associated secretome (Campisi and d’Adda di Fagagna, 2007; 

Kuilman and Peeper, 2009; Malaquin et al., 2016).  Here we refer to this response simply as the 

“senescent secretome”.  The senescent program is often accompanied with transcriptional changes 

linked to an altered secretome, consisting of pro-inflammatory cytokines, growth factors and 

proteases which appear to mimic inflammatory wound repair processes (Coppé et al., 2008; Shelton 

et al., 1999).  In fact, senescent cells have been shown to be important in wound healing, tissue 

plasticity and tissue regeneration (Demaria et al., 2014; Mosteiro et al., 2016; Ritschka et al., 2017), 

suggesting that such a secretome is likely physiologically important for such processes.  However, to 

date, the senescent secretome has more often been considered from a pathological perspective, with 

emphasis being placed on the damaging effects of chronic inflammation in age-related diseases and 



cancer.  In recent years there has been a surge of review articles focused on the role of cell senescence 

in ageing and disease, a subject beyond the scope of this review (Burton and Krizhanovsky, 2014; 

Childs et al., 2015; Muñoz-Espín and Serrano, 2014; van Deursen, 2014).   

With the understanding that senescent cells can be beneficial in the short term, a process that appears 

to be regulated by immune processes, the concept of the senescent secretome as pathological can be 

reframed to instead reflect its immunogenic properties, in other words, a secretome that modulates 

an immune response.  Whether a senescent cell is beneficial or detrimental likely depends on how 

long senescent cells persist within tissues.   

Whilst senescent cells secrete factors known to function in the activation, migration, adhesion and 

differentiation of immune cells in other systems, much more research is needed to investigate the 

impact of the senescent secretome on specific immune cell functions.  Some studies have reported a 

correlation between the presence of secretory factors associated with cell senescence and immune 

cell infiltration/localisation within tissues (Kang et al., 2011; Krizhanovsky et al., 2008a; Xue et al., 

2007).  An overview of factors associated with an immunogenic senescent secretome and their 

response within different immune cell types has been reviewed previously (Sagiv and Krizhanovsky, 

2013).   

 

The senescent program: mechanisms initiating an immune response 

 

In the majority of instances, induction of the senescence program is initiated by activation of a DDR 

(d’Adda di Fagagna, 2008).  Such a DDR is known to function in the activation of innate immunity and 

in the development and function of adaptive immunity (Nakad and Schumacher, 2016; Xu, 2006).  A 

DDR during induction of cell senescence appears to be important for inducing an altered secretome 

capable of attracting and activating immune cells.  As later discussed, a DDR has also been shown to 

be important for upregulating the expression of NKG2D ligands found on senescent cells, enabling 

their recognition by immune cells (Sagiv et al., 2016).   

DNA damage can occur within chromatin packed nuclear DNA leading to activation of transcription 

factors and other regulators of cell secretion.  These include, but are not limited to p38MAPK, NFkB, 

HMGB1, BRD4, mTOR and GATA4  (Chien et al., 2011; Davalos et al., 2013; Freund et al., 2011; Herranz 

et al., 2015; Kang et al., 2015; Tasdemir et al., 2016).  In addition to nuclear DNA, increased damage 

to the nucleotide pool has also been shown to induce cell senescence (Rai et al., 2009) and may also 

involve activation of an immune response.    Interestingly, it also appears that DNA damage during 

induction of cell senescence leads to accumulation of damaged DNA in cytoplasmic foci which 



promotes a senescent secretome.  Studies have shown that activation of cyclic GMP-AMP synthase 

(cGAS), a cytosolic DNA sensor, in senescent cells triggers stimulator of interferon genes (STING) which 

play an important role in innate immunity (Dou et al., 2017; Glück et al., 2017; Ng et al., 2017; Yang et 

al., 2017).  Mackenzie et al investigated the mechanisms by which cellular DNA gains access to the 

cytoplasm since it is normally compartmentalised within the nucleus to prevent autoimmunity 

(Mackenzie et al., 2017).   It was reported that cGAS localises to micronuclei arising from genomic 

instability and that breakdown of the micronuclei envelope exposes self-DNA to the cytosol.  

Mechanisms other than a DDR cannot be ruled out.  For example, treatment of tumour cells with 

cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors were shown to not only induce cell cycle arrest 

but to also promote anti-tumour immunity (Goel et al., 2017).  CDK4/6 inhibition activated the 

expression of endogenous retroviral elements which stimulated the production of type III interferons 

leading to enhanced tumour antigen presentation.  Rather than activating a DDR, CDK4/6 inhibitors in 

the context of tumour biology may enhance the susceptibility of such cells to immune checkpoint 

blockades.  However, it should be noted that whilst such cells underwent cell cycle arrest, it does not 

mean that such cells are senescent and instead may have undergone a state of quiescence (Yoshida 

and Diehl, 2015).     

From a therapeutic perspective, a more in depth understanding of the initial molecular mechanisms 

involved in activating an immune response is required.  Such knowledge may one day be utilised to 

therapeutically enhance immune clearance of senescent cells as a strategy to alleviate and prevent 

age-related diseases.   

 

Senescent cells activate an innate immune response 

 

Scientific research focused on immune surveillance of senescent cells is an emerging field.  It has now 

been approximately ten years since the first evidence for such a response was reported.   In that study, 

Xue et al demonstrated that reactivation of p53 in p53-deficient tumours promoted induction of a 

cellular senescence program (Xue et al., 2007).  This was associated with activation of an innate 

immune system as evident by increased expression of transcripts specific to natural killer (NK) cells, 

macrophages and neutrophils.  This immune activation consequently resulted in tumour clearance, 

suggesting that the senescence program functions to prevent cancer development.  It also suggested 

that induction of cell senescence rather than cell death may prove a more effective strategy for 

targeting cancers.   



The following year, Krizhanovsky et al reported another benefit of immune clearance of senescent 

cells: the resolution of liver fibrosis following damage (Krizhanovsky et al., 2008b).  Immune cells such 

as NK cells, macrophages and neutrophils were found to be in proximity to senescent cells in fibrotic 

livers.  In addition, senescent activated stellate cells generated during liver damage were shown to be 

preferentially killed by NK cells both in vitro and in vivo.   In doing so, immune clearance of senescent 

cells prevented excess fibrosis which occurred when cells were unable to enter the senescent state.   

Other than possibly acting as an anti-cancer mechanism, senescent cells until this point were 

frequently considered as only detrimental to the tissue in which they reside.  However, it is now 

apparent that senescent cells could also play beneficial roles and that this is likely dependent upon 

the biological context.  Following on from these findings, a role for cell senescence in other fibrotic 

models were also reported (Fitzner et al., 2012).  In addition, physiological functions for senescent 

cells such as during wound healing, regeneration, embryonic/placental development and skeletal 

bone regulation during late puberty, slowly began to emerge (Chuprin et al., 2013; Demaria et al., 

2014; Li et al., 2017; Muñoz-Espín et al., 2013a; Storer et al., 2013; Yun et al., 2015).  However, the 

possibility that the aforementioned studies are instead reporting non-senescent cells displaying 

biomarkers in common with senescent cells cannot be ruled out.   

Sagiv et al later investigated the mechanisms promoting NK mediated killing of senescent cells.  

Granule exocytosis, but not death-receptor-mediated apoptosis, was shown to be required for NK cell-

mediated killing of senescent cells (Sagiv et al., 2013).  Mice with defects in granule exocytosis 

accumulated senescent stellate cells within the liver following damage leading to increased fibrosis.  

In a follow-up study, Sagiv et al also investigated the mechanisms by which NK cells specifically 

recognise and target senescent cells.  Ligands of an activating Natural Killer (NK) cell receptor (NKG2D), 

MICA and ULBP2 were found to be consistently upregulated following induction of replicative 

senescence, oncogene-induced senescence, etoposide-induced senescence and were found to be 

required for efficient NK-mediated cytotoxicity towards senescent cells (Sagiv et al., 2016).  During 

liver fibrosis, senescent activated stellate cells were found to accumulate in mice lacking the NKG2D 

receptor.  Other studies have reported the upregulation of NKG2D ligands following induction of cell 

senescence in tumour cells (Antonangeli et al., 2016; Iannello et al., 2013).   

Whilst mechanistically, NK cells have been the primary focus to date in regard to immune surveillance 

of senescent cells, additional innate immune cells also appear important.  Lujambio et al went on to 

publish findings focused on macrophage responses towards senescent cells.  This study demonstrated 

that p53-expressing senescent stellate cells release factors which promote macrophage polarisation 

towards a tumour-inhibiting M1 state capable of targeting senescent cells in cultures (Lujambio et al., 

2013).  Findings by Hall et al suggest that alginate-encapsulated senescent cells may induce a M2-like 



phenotype in peritoneal macrophages of mice as evident by elevated expression of arginase 1 (Arg1) 

(Hall et al., 2016).  M2 macrophages are also capable of phagocytosis and so have the potential to also 

induce cell death in senescent cells.  In addition, the induction of macrophages into M2a, M2b, and 

M2c subtypes by senescent cells may also occur and so further investigations are required.  Other 

studies have also suggested that macrophages play a role in immune surveillance of senescent cells.  

An earlier study by Hall et al showed that alginate beads containing senescent cells promote 

macrophage recruitment when transplanted into mice (Hall et al., 2016).  Findings from Yun et al, who 

has pioneered cell senescence research within the salamander model, suggests that macrophages are 

important for efficient clearance of senescent cells during salamander limb regeneration (Yun et al., 

2015).  Interestingly, macrophages may also promote induction of cell senescence in tumour cells as 

a possible anti-cancer mechanism (Reimann et al., 2010). 

 

Senescent cells induce an adaptive immune response 

 

In 2011, Kang et al demonstrated that pre-malignant senescent hepatocytes undergo immune-

mediated clearance by CD4+ T cells (Kang et al., 2011).  The presence of major histocompatibility 

complex class II (MHCII) molecules on senescent hepatocytes appeared to be important for direct 

killing of pre-malignant senescent hepatocytes.  However, MHCII expression was not sufficient for 

inducing proliferation of naïve CD4+ T cells.  In addition, killing of pre-malignant senescent hepatocytes 

by CD4+ T cells required the presence of monocytes/macrophages.  Macrophage depletion in mice via 

gadolinium treatment greatly reduced immune surveillance of senescent cells.  An impairment in 

immune clearance of pre-malignant senescent hepatocytes resulted in the development of 

hepatocellular carcinomas.  This study again demonstrated the importance of immune surveillance of 

senescent cells in tumour suppression.  Whilst senescent cells may promote T cell recruitment for 

their clearance, T cells may also induce cell senescence in cancer cells as a mechanism to limit cancer 

progression (Braumüller et al., 2013; Rakhra et al., 2010).    

Another study also suggests that oncogene-induced senescence (OIS) in primary human melanocytes 

can activate aspects of the adaptive immune response.  van Tuyn et al have shown that during OIS, 

melanocytes express MHC class II antigen presentation molecules which can activate T cell 

proliferation in vitro (van Tuyn et al., 2017).  In vivo, non-proliferating, oncogene expressing 

melanocytes localize to skin-draining lymph nodes where they induce T cell proliferation and an 

antigen presentation gene expression signature.  Senescent melanocytes are thought to form within 



benign melanocytic nevi which are known to persist for decades (Joselow et al., 2017), suggesting that 

immune surveillance mechanisms are not active.  The authors of this study suggest that benign human 

nevi represent a subset of OIS melanocytes that have been selected for downregulation of MHC II via 

evasion of MHC II-mediated immune-editing, providing a possible explanation for their persistence.     

 

Immune surveillance of senescent cells during reproductive processes 

 

In recent years there has been emerging interest in the role of cell senescence during processes 

associated with pregnancy.  In 2013, three papers were published demonstrating a potential role for 

senescent cells in embryonic and placental development (Chuprin et al., 2013; Muñoz-Espín et al., 

2013b; Storer et al., 2013).  Two back-to-back papers published in Cell suggested that senescent-like 

cells function to promote tissue remodelling during embryonic growth and patterning in mice, a 

process which appears to be associated with macrophage clearance (Muñoz-Espín et al., 2013a; Storer 

et al., 2013).  

In a study focused on placental development, fusion-induced cell senescence was reported to function 

in the formation of the syncytiotrophoblast, which serves as the maternal/foetal interface at the 

placenta (Chuprin et al., 2013).  Fusion-induced senescence promoted the upregulation of secretory 

components associated with immune surveillance.  It was suggested that cytokines secreted from 

these senescent cells may function in placental growth during pregnancy, protecting the foetus from 

pathological organisms and facilitating immune cell interaction (Burton and Krizhanovsky, 2014).    

More recently, Egashira et al reported that macrophages contribute towards the clearance of 

senescent cells in the mouse postpartum uterus (Egashira et al., 2017).  Depletion of macrophages in 

the postpartum mice increased the number of senescent cells in the uterus.  In p53-deleted mice, 

uterine senescent cells increased with the authors suggesting that uterine p53 deficiency may affect 

the distribution of a macrophage subpopulation, leading to impaired clearance of senescent cells.  

However, p53-deleted mouse models are often used in studies to prevent cell senescence, so an 

increase in this instance is perplexing and requires further study.  Excessive uterine senescent cells 

were associated with a decrease in second pregnancy success rate in a preterm birth model.  In 

another study, findings by Brighton et al suggest that acute decidual cell senescence governs 

endometrial rejuvenation and remodelling at embryo transplantation (Brighton et al., 2017).  During 

this process, uterine natural killer cells were shown to selectively target and clear senescent decidual 

cells through granule exocytosis.   



Although the senescent programme may play important physiological functions during pregnancy, 

under other contexts it may contribute to pathological processes during pregnancy (reviewed in 

Velarde & Menon 2016; Cox & Redman 2017).  

 

Cellular senescence: immunosuppressive responses 

 

Whilst a number of studies have demonstrated a positive physiological impact by which senescent 

cells promote immune clearance, other studies have suggested that a senescence-mediated immune 

response can also be immunosuppressive and tumour promoting.  In 2014, a study conducted by Di 

Mitri et al demonstrated that senescence induction in PTEN null prostate tumours in mice promoted 

an infiltration of Gr-1+ myeloid cells which protected a fraction of proliferating tumour cells from cell 

senescence, thereby sustaining tumour growth (Di Mitri et al., 2014).  During the same year the 

another study was published reporting that Pten-loss induced cell senescence in tumours promoted 

an immunosuppressive secretome that contributed to tumour growth and chemoresistance (Toso et 

al., 2014).   

Ruhland et al also went on to provide evidence suggesting that senescent cells can establish an 

immunosuppressive microenvironment that drives tumorigenesis (Ruhland et al., 2016).  In this study, 

senescent stromal cells were shown to drive localised increases in suppressive myeloid cells that 

contributed to tumour promotion.  In particular, interleukin-6, a common component of the senescent 

secretome, was responsible for inducing the increase in suppressive myeloid cells and their ability to 

inhibit anti-tumour T cell responses.   

In the same year, Eggert et al reported that senescence-associated immune responses can both 

promote tumour suppression and tumour progression depending on the context (Eggert et al., 2016).  

The CCL2-CCR2 axis was shown to mediate myeloid cell accumulation in mice livers following induction 

of senescent cells, which acted as tumour suppressive in the early stages of liver tumorigenesis.  

However, when senescent cells are present in later phases of tumour development, the combination 

of senescent cells and tumour cells instead promotes tumour progression.  The senescent secretome 

in this instance promoted the growth of liver cancer by inhibiting NK cell function through the 

accumulation of immunosuppressive immature myeloid cells.   

Whilst much more research is required to determine the mechanisms promoting an 

immunosuppressive phenotype in senescent cells, it is likely dependent upon the genetic background 

of the cells, the mode of senescence induction and whether senescent cells have persisted and 



undergone changes that may be attributed to a chronic response rather than a beneficial acute 

response.  Experimentally underexplored is the concept of acute and chronic cell senescence.  Acute 

senescence, referring to the early activation of the senescence program for a limited time-frame is 

likely beneficial, functioning in physiological processes.  However, if senescent cells are not removed, 

they may develop a chronic phenotype associated with persistent inflammation which promotes age-

related inflammatory diseases.  In the cancer microenvironment, chronic inflammation can promote 

an immunosuppressive environment (Wang and DuBois, 2015), a process that likely extends to a 

senescence microenvironment.   

 

Cell senescence of immune cells 

 

Cell senescence of immune cells should not be confused with immunosenescence, the ageing of the 

immune system, which although may include induction of cell senescence, also includes an array of 

age-related changes unrelated to cell senescence.  It is also important to note that the term 

“senescent” is often used interchangeable with “aged” by immunologists discussing immune cell 

ageing (see figure 1 for our definition of the terminology).  The absence of separation regarding 

genuine mechanisms of immune cell ageing with those of the cell senescent program can lead to 

confusion.  An awareness of immune cell senescence is important because such changes likely impact 

their response towards senescent cells of non-immune origin.  

T cells: The majority of research to date focused on immune cell senescence has been undertaken on 

T cells.  Like cell senescence in non-immune cells, T cell senescence is associated with irreversible 

growth arrest and a pro-inflammatory secretome that can contribute towards ageing and age-related 

diseases (Chou and Effros, 2013).  However, the possibility that the senescence program may also be 

utilised by T cells during physiological immune responses cannot be ruled out. 

Regulatory T cells (Tregs) play a role in regulating or suppressing other cells of the immune system.  Ye 

et al has demonstrated that one way in which Tregs appear to promote immune suppression is 

through the induction of cell senescence in responder naïve and effector T cells (Ye et al., 2012).  In 

addition, Montes et al reported that soluble factors from tumours can induce human T cells to develop 

a senescent-like phenotype that is also associated with the suppression of responder T cell 

proliferation (Montes et al., 2008).  Such an immunosuppressive response likely functions in both 

physiological and pathological processes depending on the biological context.  For example, Tregs 

have been shown to beneficial through facilitating cutaneous wound healing (Nosbaum et al., 2016), 



but can also be detrimental by promoting tumour development (Beyer and Schultze, 2006).  Cancer 

can be considered as a persistent wound healing response (Schäfer and Werner, 2008), which may 

explain the role of immune cells in both these contexts.  Ramello et al went on to demonstrate that 

senescent T cells also promote the secretion of pro-inflammatory cytokines and angiogenic factors by 

human monocytes/macrophages (Ramello et al., 2014).  

Natural Killer cells: In addition to T cells, benefits of NK cell senescence have been reported.  

Rajagopalan and Long have provided evidence to suggest that induction of NK cell senescence by 

CD158d functions to reprogram NK cells in order to promote vascular remodelling during pregnancy 

(Rajagopalan and Long, 2012).  CD158d, a receptor for soluble HLA-G (produced by foetal trophoblast 

cells during early pregnancy) was shown to trigger a DDR in NK cells leading to the appearance of 

biomarkers associated with cell senescence, including p21 expression and a senescent secretome.  

This senescent secretome promoted vascular remodelling and angiogenesis, indicating that NK cell 

senescence in this instance is beneficial for favouring reproduction.  However, tissue remodelling and 

angiogenesis mediated by a senescent secretome in other contexts can be detrimental (Oubaha et al., 

2016). 

Astrocytes: Biomarkers of cell senescence have also been observed in response to hydrogen peroxide 

treatment in human and rodent astrocytes (Bitto et al., 2010).  Stress-induced astrocytes in culture 

underwent growth arrest, morphological alterations, expressed SA-beta-Gal activity and increased 

p21, p53 and p16 expression. A similar finding was observed for astrocytes following extended cell 

culture.  In a follow-up study, Crowe et al monitored the transcriptional changes associated with 

stress-induced senescence in human astrocytes, reporting that brain-expressed genes, including those 

involved in neuronal development and differentiation, were down-regulated in senescent astrocytes 

(Crowe et al., 2016).  Astrocyte senescence also appears to occur in vivo.  Bhat et al assessed 

biomarkers of cell senescence in astrocytes of brain tissue from aged individuals and patients with 

Alzheimer’s disease (AD) (Bhat et al., 2012).  A significant increase in p16INK4A-positive astrocytes was 

observed in subjects aged 35-50 years and 78-90 years when compared with foetal tissue samples.  In 

culture, it was also shown that beta-amyloid could trigger cell senescence, suggesting that senescent 

astrocytes may increase the risk of sporadic AD.   In another study related to HIV therapy, it was 

reported that highly active antiretroviral therapy (HAART) increases biomarkers associated with cell 

senescence (cell cycle arrest,  SA-Beta-Gal activity, p21 expression) in primary cultures of human 

astrocytes (Cohen et al., 2017).  It was suggested that HAART-induced senescent astrocytes may play 

a role in neurocognitive impairment observed in HIV-infected patients.   



Macrophages:  Evidence for cell senescence in macrophages to date is less convincing.  In response to 

hyperoxia (95% O2), RAW264.7 macrophages have been shown to undergo cell cycle arrest associated 

with increases in p21CIP1 and p53 accumulation, characteristic features of cell senescence (Nyunoya et 

al., 2003).  In another study, acrylamide was shown to induce a senescence-like response in RAW264.7 

and mouse peritoneal macrophages, including cell cycle arrest, altered morphology and SA-Beta-Gal 

activity (Kim et al., 2015).  Progressive telomere shortening and induction of cell cycle arrest has also 

been observed in rat microglia cells, a type of macrophage found in the brain (Flanary and Streit, 

2004).  However, whilst it can be assumed that cell cycle arrest in this instance is related to cell 

senescence, further characterisation is required.  Caldeira et al have shown that after a very short 

period (16 Days) in culture, mouse microglia cells displayed altered morphology and increased SA-

beta-Gal activity typical of senescent cells (Caldeira et al., 2014).  Interestingly, NFkB activity which is 

normally elevated in non-immune senescent cells was decreased in culturally aged microglia cells in 

this instance.  However, analysis of cell cycle does not appear to have been undertaken and since SA-

beta-Gal activity has been observed in culturally aged but growth competent cells (Walters et al., 

2016), it cannot be assumed that such cells are senescent.  Finally, SA-beta-Gal activity and p16INK4A 

expression in macrophages has also been reported to be elevated in ageing mice, with the authors 

suggesting that such cells are a subclass of macrophages rather than being senescent (Hall et al., 2016).  

 

Recognition of senescent cells by macrophages: possible mechanisms 

 

Whilst there is currently little understanding concerning the mechanisms governing macrophage 

mediated recognition of senescent cells, the processes are probably not specific to senescent cells.  

Rather, the more characterised molecular mechanisms associated with macrophage recognition in 

other cell models such as during cancer immunosurveillance and apoptotic cell clearance may also be 

pertinent for senescence surveillance. 

Apoptotic cells have been shown to preferentially express specific cell surface antigens which can be 

recognised by naturally occurring antibodies (IgMs) that enable phagocytosis by macrophages.  As 

such, it can be speculated that senescent cells may also express specific cell surface antigens which 

would not only provide insights into the mechanisms mediating immune clearance, but would also 

provide a means to specifically identify senescent cells in tissues.  In a study focused on identifying 

antibodies which specifically target senescent cells, researchers identified the IgM clone 9H4 which 

recognises an oxidised form of membrane-bound vimentin (malondialdehyde (MDA) -modified 



vimentin) expressed on the surface of senescent human fibroblasts (Frescas et al., 2017).  Whilst not 

the focus of the study, the authors speculate that MDA-modified vimentin may serve as an “eat me” 

signal leading to phagocytosis by macrophages (Figure 2).   

Senescent cells commonly display higher levels of ROS, likely owing to changes in cell metabolism 

and/or the presence of dysfunctional mitochondria, which can lead to the oxidation of phospholipids 

(Ademowo et al., 2017).  During apoptosis, oxidatively modified lipids on the surface of cell 

membranes can function as pattern recognition ligands promoting macrophage recognition and 

phagocytosis via the scavenger receptor CD36 (Hazen, 2008), RAGE (Friggeri et al., 2011) and other 

class I and class II scavenger receptors (Canton et al., 2013).  Macrophage CD36 binds to and 

internalises oxidised phospholipids and lipoproteins (Silverstein and Febbraio, 2009).  Whether CD36 

plays a role in the senescence surveillance by macrophages has yet to be determined (Figure 2).  The 

naturally occurring antibody E06 is also known to specifically recognise oxidised phospholipids, 

functioning as an “eat me” signal for macrophages.  Whilst this occurs during apoptosis, it raises the 

possibility that it may also function as a mechanism promoting senescence immunosurveillance by 

macrophages.  However, Frescas et al (2017) claim that E06 failed to recognise senescent cells, but 

this may depend on how long cells have been senescent and so further research is required.   

Surface expression of CD47 acts as a “don’t eat me” signal, sending inhibitory signals through SIRPα, 

a receptor expressed on the surface of macrophage, ensuring that healthy cells are not inappropriately 

phagocytosed. Therefore, the downregulation of CD47 would be required for macrophages to target 

damaged “self” cells (Liu et al., 2017).  One study has demonstrated that induction of tumour cell 

senescence via c-Myc inactivation leads to the downregulation of CD47 which consequently promoted 

tumour regression (Casey et al., 2016).  Whether CD47 downregulation in this instance is a specific 

response to c-Myc inactivation or activation of the senescence program is unclear.  However, it would 

make biological sense to downregulate CD47 during cell senescence to enable removal of damaged 

“self” cells, but further research is required (Figure 2).  In addition to CD47 in this study, the 

downregulation of programmed death-ligand 1 (PD-L1), a protein thought to play a role in immune 

suppression (Kleinovink et al, 2017), was also observed upon c-Myc inactivation-induced senescence.   

Modified cell surface glycan’s are also potential senescence antigens that can be recognised by the C-

type lectin receptor (CLR) family (Figure 2).  One of the CLRs exclusively expressed by macrophages is 

the macrophage galactose-type lectin (MGL) (van Kooyk et al., 2015).  N- and O-glycan surface protein 

modifications have been associated with senescent fibroblasts with an observed senescence-

associated decrease in sialylation and increase in galactose exposure (Itakura et al., 2016).  The 



expression of  the α-2,6-sialyltransferase I (ST6Gal I), which transfers sialic acid to galactose residues 

of N-glycans has also been shown to decrease during in vitro cell ageing (Tadokoro et al., 2006). 

 

Beyond Senolytics: immunotherapy targeting senescent cells 

 

Immunotherapeutic strategies already in development for combating cancer may one day be 

repurposed for targeting senescent cells for the alleviation of age-related diseases (see Figure 3).  

Discussed in detail elsewhere (Burton and Krizhanovsky, 2014; Childs et al., 2015; Muñoz-Espín and 

Serrano, 2014; van Deursen, 2014), such age-related diseases include diabetes, Alzheimer’s, 

pulmonary fibrosis, cardiovascular disease and osteoporosis.  In addition, identifying further molecular 

changes associated with senescent cells, especially cell-type specific alterations, would be 

advantageous for developing therapeutic approaches for targeting senescent cells.  However, since 

senescent cells can also be beneficial, the elimination of acute senescent cells could be problematic.  

Therefore, the identification of therapeutic targets specific to chronic senescent which are absent in 

acute senescent cells would be highly desirable.  

A recent study identified the expression of CD26/dipeptidyl peptidase 4 (DPP4) on the membrane 

surface of senescent fibroblasts which have undergone replicative senescence (Kim et al, 2017). This 

study assessed the potential use of DPP4 as a membrane target for promoting antibody-dependent 

cell-mediated cytotoxicity (ADCC) against senescent cells.  ADCC is a natural mechanism of cell-

mediated immune defence involving the activation NK cells by antibodies which has been adapted to 

promote NK cell-mediated ADCC in cancer immunotherapy (Wang et al., 2015).  Kim et al 

demonstrated that targeting DPP4 via an ADCC assay in vitro preferentially sensitised senescent, but 

not proliferating cells to cytotoxicity by NK cells.  These finding highlight a potential 

immunotherapeutic strategy for targeting senescent cells.   

As stated previously, one of the mechanisms by which NK cells specifically recognise and kill senescent 

cells is via the surface expression of NKG2D ligands (Sagiv et al., 2016).  Since many tumour cells also 

express NKG2D ligands, such ligands have been suggested to be a useful target for immunotherapeutic 

approaches in cancer (Spear et al., 2013), and so could be adapted for senescent cell clearance.  For 

example, the use of engineered immune cells such as chimeric antigen receptor (CAR) T cells to target 

specific molecules on cancer cells has great potential as an anti-cancer therapy (Yu et al., 2017).  As 

such, it may be possible to target senescent cells by engineering T cells to express a NKG2D CAR which 

recognise NKG2D ligands on the surface of senescent cells.   



An adaption of cancer vaccines could also be considered for boosting immune clearance of senescent 

cells.   Although a universal biomarker of cell senescence has not been identified, the exposure of 

senescent cell membranes to immune cells may evoke an immune response to antigens not yet 

identified.  In one approach, senescence vaccines would involve the isolation of senescence specific 

antigens (SSAs) which are then exposed to dendritic cells, professional antigen presenting cells.    In 

response to SSA uptake, dendritic cells process and express these antigens on their cell surface which 

can then be recognised by T cells.  T cell interaction with these antigens promotes T cell activation, 

differentiation and ultimately killing of target cells.   

As discussed previously, the senescence program can also be activated in immune cells, which likely 

contributes towards impaired immune function, contributing to senescent cell accumulation.  In 

addition to impaired immune cell function, the persistence of senescent immune cells would likely 

take up valuable immunological space required for expansion of functionally competent immune cells.  

T cells for example undergo rapid expansion in response to antigenic stimuli followed by cell-mediated 

apoptosis (Chou and Effros, 2013), a process that may be prevented if senescent T cells are present.  

As such, another strategy for promoting the elimination of non-immune senescent cells may be the 

removal of senescent immune cells with the anticipation that such an approach would enhance 

immune function.   

One possibility could be to filter the blood of the unwanted senescent immune cells, maybe through 

the use of antibodies linked to magnetic nanoparticles/beads (Chen et al., 2017; Rebo et al., 2010).  

Another strategy may be the use of senolytic drugs to specifically kill senescent immune cells or 

senescent hematopoietic stem cells (HSCs) which give rise to immune cells.  Senolytic targeting of 

senescent HSCs in mice leading to rejuvenation of aged tissue stem cells has already provided 

promising results (Chang et al., 2015).  Rather than eliminating senescent immune cells, it may one 

day be possible to rejuvenate senescent immune cells, reversing their detrimental phenotype to 

improve immune function.  For example, inhibition of p38 signalling in CD8+ T cells which exhibit 

features of cell senescence, increased proliferation, telomerase activity, mitochondria biogenesis and 

fitness (Henson et al., 2014).  Small molecules based on resveratrol have also been reported to rescue 

cells from cell senescence (Latorre et al., 2017). 

The ability of immune cells to migrate and kill target cells can become compromised with age, 

suggesting that therapeutically boosting these responses may be beneficial for promoting senescent 

cell clearance.  One approach that can be adapted within immune cells is the engineering of cells that 

recognise specific components of the senescent secretome.  As proof of principle, Qudrat et al 

generated cells with a chimeric IL-6 receptor (IL6Rchi) that generates a Ca2+ signal in response to IL-6, 



a component of the senescent secretome (Qudrat et al., 2017).  When IL6Rchi was expressed with an 

engineered Ca2+-activated RhoA (CaRQ), it enabled directed migration to IL-6 in cells which normally 

have no such function.  Furthermore, the expression of   vesicular stomatitis virus glycoprotein G 

(VSVG) and herpes simplex virus type 1 thymidine kinase (TK) in these IL-6 seeking cells allowed cell-

cell fusion to occur with target cells and consequently cell death upon administration of ganciclovir, 

an anti-viral drug.   

 

Concluding remarks 

 

Senescent cells can be both beneficial and detrimental.  Therefore, any therapeutic targeting of 

senescent cells needs to take into consideration that such approaches may also be harmful.  This may 

include senescent cell removal during pregnancy or injury.  However, some findings suggest that acute 

senescence mechanisms may be preserved during lifelong removal of senescent cells in naturally aged 

mice, but further research is required (Baker et al., 2016).  Another aspect to consider is the biological 

consequences to mass removal of senescent cells.  Such mass removal may disrupt tissue integrity 

and/or activate a strong pro-inflammatory response depending on the mode of cell death.  Other 

therapeutic strategies in conjunction with senescent cell removal such as implantation of stem cells 

to aid repair may have to be considered (Burton, 2009).  Whilst, there is currently more concern with 

therapeutically eliminating senescent cells once they have appeared, future strategies focused on 

preventing their long-term persistence would be greatly desirable.   
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Figure Legends and Tables 

Figure 1: “cell ageing” compared with “cell senescence” 

Figure 2: Possible mechanisms of senescent cell recognition by macrophages. 

Figure 3: Possible immunotherapies targeting senescent cells. 

Table 1: Phenotypic changes often associated with cell senescence in vitro. 

 


