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Abstract 

Integration of the bone into the implant is highly desirable for the long-term performance of the 

implant. The development of a bone-implant interface is influenced by the surface morphology and 

roughness, surface wettability and porosity of the implants. This study characterises such important 

properties of a hydroxyapatite based biocomposite structure fabricated by selective laser sintering 

with a comparison of a moulded specimen. The sintered specimens exhibited a rougher surface with 

open surface pores and a highly interconnected internal porous structure. It was shown that powder 

particles characteristics used in the selective laser sintering provided a more influential means to 

modify the surface morphology and the features of internal pores than laser parameter variation. The 

correlation of wettability and porous structure shows that although surface open pores could help cell 

ingrowth and bone regeneration, they resulted in a poorer wettability of the materials which may not 

encourage initial cell attachment and adhesion. The potential solution to improve the wettability and 

cell anchorage is discussed.   

Keywords: Selective laser sintering, hydroxyapatite, surface roughness, wettability, porosity, 

biocomposite structure 
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1. Introduction 

Customised implants provide the potential to improve bone defect repair methods and enhance the 

longevity of the implants by providing a more secure interlock due to exact geometry (Mercuri et al. 

1995). Customized implants should be the first choice for the reconstruction of complex orbital 

fractures based on the good aesthetic and functional results, with significantly reduced operating 

times and morbidity in all cases (Hoffman et al. 1998) and more efficient surgery with a minimum 

adjustment (Ono et al. 1997) by utilizing a used pre-formed custom-made hydroxyapatite implants.   

Integration of the bone into the implant is highly desirable characteristic for long-term performance 

and is influenced by the surface morphology and roughness, surface wettability and porosity of the 

implants. The alternations in surface morphology and roughness have been used to influence cell and 

tissue responses to implants (Puleo & Nanci 1999) and the rough surface provides mechanical 

interlocking (Fujimori 1995). The wettability generally presents the difference in surface chemistry 

and was shown to be one of the important factors for attachment differentiation of primary bovine 

osteoblasts (Meyer et al. 1993) and the protein adsorption and cell proliferation on the bio-inert 

ceramic (Hao & Lawrence 2004; Hao et al. 2004; Hao et al. 2005a; Hao et al. 2005d) and 

biocompatible metals (Hao et al. 2005b; Hao et al. 2005c). Recently, particular attention was paid to 

the synthesis of bioceramics with porous morphology to allow the ingrowth of bone tissue which 

further increases the mechanical fixation and integrity of the implant at the implantation site 

(Schnettler et al. 2003).  

Medical applications and research in Rapid Manufacturing (RM), referring an additive layer-by-layer 

manufacturing process to produce an object, are driven by an individual’s unique requirements of 

shape & functionality. Selective laser sintering (SLS) is an RM technique which operates by 

sequentially sintering a powdered material using heat supplied by selective exposure to a laser. Coole 

et al (Coole et al. 2005) showed that this process can be applied as an accurate method to directly 

make bone replacement materials using hydroxyapatite (HA) and poly-L-lactide (PLLA) polymer 

composite for the production of bespoke patient prosthesis. SLS was also investigated to produce 

bone scaffolds using polycaprolactone (PCL) (Williams et al. 2005), HA/polyetheretherketone 

(PEEK) (Tan et al. 2003) and HA/polyvinyl alcohol (PVA) (Chua et al. 2004).  

Previous research has shown that SLS technique is capable of directly fabricating a clinical grade HA 

and high density polyethylene (HDPE) biocomposite (Hao et al. 2006b). Relatively high HA volume 

ratio (40 vol %) in HA-HDPE composites in the previous study resulted in insufficient mechanical 

properties to analyse the internal porous structure and pore interconnectivity. This study has used SLS 

to build HA-HDPE with 20 HA vol % content with acceptable mechanical properties and 
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characterised and analysed the internal pore structure, surface roughness and morphology and surface 

wettability of the products, all of which could effect the integration of implant with existing bone.      

2. Methods 

2.1 Material preparation and moulded specimen  

The HDPE (Rigidex HD5226EA) was supplied in pellet form by BP Chemicals Ltd and synthetic HA 

particles (P218R, Plasma Biotal Ltd., UK) were used as the filler material for preparing 20 vol% HA-

HDPE composites. The HA particles had a median size (d0.5) of 3.80 µm. The mixture of HA and 

HDPE, at 20 vol% HA, was compounded in a twin screw extruder (Betol BTS40L, Betol, Luton, UK) 

to produce composites. The extruded composite was subsequently pelletized in a Betol pelletizer and 

then powderized in an ultra centrifuge mill (Retsch powderizer, Germany) using a sieve of 0.120 mm 

aperture size. The resultant particles were then sieved using sieves with aperture size of 105 µm and 

powders with particle size (PS) of 0 < PS < 105 µm and  105 µm < PS were obtained. For comparison, 

full dense materials were compression moulded by hot press machine at 215 oC (Bradley & Turton 

Ltd, England) and moulded plates were then cut into required dimensions.  

2.2 SLS experimental systems and processing 

A bespoke experimental system for the sintering of polymer / ceramic biomaterials incorporates an 

experimental powder bed chamber and a CO2 laser system (Synrad, Ltd, USA) described in previous 

work (Hao et al.). The rectangular specimens with 3 × 21 mm dimension were built up with six SLS 

sintered layers with 0.15 mm layer thickness.  Three different laser powers at fixed laser scanning 

speed of 3.6 m s-1 is used, while other processing conditions were kept constant with 128 °C powder 

bed temperature and 63 µm laser scanning spacing.  

2.3 Characterisation 

The surface roughness (Ra) of the HA-HDPE was measured by a Talysurf 4 (Taylor Hobson, 

England). The surface morphologies of specimens were examined using a scanning electron 

microscope (SEM) (LEO 440, UK). Advancing contact angle measurements were measured by the 

sessile drop method using contact angle instrument (OCA20, Dataphysics Instruments GmbH) for the 

moulded specimen and laser sintered specimens. The tested liquids used were water, diiodomethane 

and simulated body fluid (SBF) (Kokubo et al. 1990). The cross-sections of the specimens were 

prepared by penetrating and mounting the cross-sectioned specimens using red resin (Epocolour, 

Buehler UK). The specimens were clipped and submerged and infiltrated in a vacuum condition. The 
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mounted specimens were set overnight and then polished to obtain the required cross sections for 

optical microscopy analysis. The images of the cross-section specimen were processed to contrast the 

sintered composite and the filled resin under ImageJ software (ImageJ 1.34S, USA) and the 

percentage of pores in the cross-section were calculated. Mean values were derived from eight 

measurements from the cross-sectional images for the specimens sintered at each parameter. The 

porosity of the specimens is also obtained by weight and volume measurement.     

3. Results  

The primary difference among two kinds of HA-HDPE composite powders is their particle size and 

shape (See Figure 1). The large particle powderS exhibit very irregular morphology, while, the small 

particle powders are less irregular and certain portion of them look relatively spherical.   

As shown in  

 

 

Table 1, the Ra of laser sintered specimens is greater than the moulded specimen. The laser power 

variation generated minor differences in Ra. A lower Ra value appears on the specimens sintered with 

small particles compared with those with large particles for the same laser power is used. 

The moulded specimen exhibits a flat and smooth surface without any void or pores and the typical 

surface morphologies of the laser sintered specimens are rough and have a lot of pores (see Figure 2). 

When the small particles were used (Figure 2 (b), (d), (f)), the particles present on the surface fused 

significantly and boundaries between particles became largely indistinguishable. Some pores with 

typical size less than 100 µm were distributed among the fused particles on these specimens’ surface. 

The change of laser power did not result in considerable difference in the degree of particles’ fusion 

and the size and morphology of the surface pores. When the larger particles were used Figure 2(c), (e), 

(g), the particles exhibited contact networking and fused partially together. A few incidences of 

contact networking were observed between the particles and some individual particles could still be 

identified on the surface of the specimens sintered at the laser power of 3.6 W. The degree of contact 

networking and fusion increased with the laser power. A number of pores among the contacted 

particles were observed and some pores were larger than 100 µm.     

The cross-sectional images exhibit the internal structure of the laser sintered HA-HDPE specimens 

using different laser powers and particles (see Figure 2. ). The lighter colour area is the pores which 

were penetrated by the resin. The fact that the resin filled in all the pores implies that the pores inside 



                                    Characterisation of selective laser sintered hydroxyapatite based biocomposite structure 

 6

the specimens are interconnected as any closed pores would not be infiltrated by resin. Some pore 

areas are connected with others and these porous structures are generally irregular in shape and vary 

in size. The area of the occupied by the pores ranges from 23.2 to 39.3 % as calculated using image J 

software and the porosity determined by the fraction of weight by volume ranges form 45.4 to 54.3 % 

(see Figure 3. ). Comparing the specimens sintered at the same laser settings at 3.6, 4.8 and 6.0 W, the 

size of the pores and the area they occupy in the specimens sintered with large particles are generally 

larger than those with small particles. At 3.6 W power, the maximum value of the connected pore 

channel width estimated by intercept method is approximately 70 µm for the specimen sintered with 

small particles and 150 µm for the specimen sintered with large particles (Figure 2. (a)(b)). When the 

same particles were used, the size of the pores and the area they occupied in the specimens decreased 

with increased laser power.     

An optical micrograph of an advanced sessile drop of water (see Figure 5) reveals that there is 

obvious difference in the value of θ using water between the moulded and sintered specimen. The 

water θ is 85.2 °C for the moulded specimen, indicating that it is wettable by water. Water did not wet 

the sintered specimen with θ of 122.3 °C. With all the test liquids used the sintered specimens 

experienced a signification increase in θ compared with the moulded specimens (see Table 2). For the 

sintered specimens fabricated at same laser power, θ is greater on the specimens sintered with large 

particles than those with small particles. For the specimens sintered with the same particles, the 

increase in laser power did not include a constant change in θ for all the test liquids.  

4. Discussion 

4.1. The effect of the laser power and particle sizes 

Laser sintered specimens had rougher surfaces than the moulded specimens. This difference is likely 

to be due to the interaction time between the laser beam and powder particles being too short and the 

melted or partially melted powder particles were not able to flow and flatten the surface. Due to the 

very irregular morphology exhibited by the large particles, the use of these particles resulted in the 

rougher surface compared those with small particles. The laser power did not present a constant 

relationship with surface roughness on account of the large irregularity of the particles used. This 

indicates that the particles’ size play a more important role in surface roughness than the laser 

parameters. The rougher surface of the laser sintered specimens should better provide mechanical 

interlocking in implant applications. Surface roughness could mediate the cell adhesion. Dalby et al 

(Dalby et al. 2000) have found that the surface topographies of HA-HDPE effects significantly on cell 
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attachment and subsequent cellular behaviour in relation to proliferation and faster and greater cell 

attachment was shown on the optimized topography following polishing and roughening.   

The degree of the particles’ fusion could be influenced by the laser parameter and different particles. 

The specimens sintered with small particles exhibited more particle fusion compared with those 

sintered with large particles. This is likely to be due to finer powder particles resulting in the higher 

sintering activity and greater densification and agree with previous study that the smaller iron powder 

particles experience greater densification due to the increased sintering activity (Simchi 2004). The 

number of pores and size of pores on the specimens sintered with large particles are larger than those 

on the specimens sintered with small particles. This may be because the interfacial space among the 

small particles was much smaller and the degree of the fusion and densification of these particles 

were larger compared large particles. The increased heat energy induced by increasing laser power 

resulted in the enhancement of the particle contact network and greater fusion with larger particles 

(see Figure 3). But, the change in laser power did not bring about a marked difference in the surface 

porosity and morphology of specimens sintered with small particles. These results show that the effect 

of the particle size on the pore size and morphology is greater than the laser power. Hence, the surface 

morphology and pore size can be modified by using different particles, and a subsequent biological 

response may be mediated by these controlled porous structures. The surface porosity may provide 

the necessary topology for cell ingrowth into implant and may also facilitate an initial anchoring of 

the implant within the newly formed bone. This was demonstrated on the laser-textured and surface 

blasted Ti6Al4V alloy implants preferentially used the pores to anchor the implant (Gotz et al. 2004). 

Implants need to possess an open-pore geometry with a highly porous surface and interconnected 

internal porous microstructure that allows cell in-growth and reorganization and provides the 

necessary space for neovascularization from the surrounding tissues in vivo. The porosity and degree 

of pore interconnectivity directly affect the diffusion of physiological nutrients and gases and the 

removal of metabolic waste and by-products from cells that have grown in the implant (Leong et al. 

2003).  The deliberate and controlled porosity would further mean that even if the initial implant 

strength and toughness were below that required for long-term use, the ingrown bone would increase 

the strength of the bone-implant composite by a factor of 3 or 4 (Hing et al. 2004). The internal pores 

are highly connected in the laser sintered specimens. This may be partly due to the fact that the 

powders are subjected to low compaction forces during their deposition to produce the new layers. 

With increased laser power and the amount of energy, the pore size and porous area decreased in the 

specimens when the same particles were used due to the higher degree of particle fusion. Previous 

studies also revealed that the porosity of polymeric matrix drug delivery decreased as laser power 

increased (Leong et al. 2001). The pore size and porous area also depend on the particles’ 
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morphology. The specimens sintered with large particles present less compaction and thus higher 

porosity compared with those with small particles when the same laser power was used. The 

formation of internal pores is influenced by the compact density and space among the particles which 

are determined by the characteristics of the powder particles and powder lay down process. The 

internal pores fabricated in this study are irregular and homogeneous because the particles used are 

largely irregular. The size of pores in the specimens fabricated in this study was generally in a range 

from 10 to 200 µm. Such pores present a micro-environment which effect individual cells (10 µm), 

functional subunits (100 µm) (Liu Tsang & Bhatia 2004), nutrient provision and vascularisation (200 

– 500 µm) (Xiong et al. 2001). The fact that the connected pore channel width in the sintered with 

large particles was much larger than those with small particles at 3.6 W power indicates that the size 

of powder particles play an important role in determining the feature of internal pores. This is likely 

to be because particles’ size effects the packing density of the layered powders and predominantly 

determines the internal space existing among the particles. These results indicate that the size and 

channel width of pores can be controlled by varying the size and characteristics of powder particles. 

Some studies recommend the minimum pore size for a tissue scaffold is 100 µm for bone tissue 

regeneration (Karageorgiou & Kaplan 2005) and high porosity and interconnectivity is needed for 

tissue scaffold (Leong et al. 2003). The result suggests that the use of large particles in SLS enable the 

production of specimens which could have large proportion of optimum sized pores to encourage 

bone tissue ingrowth. However, it is necessary to be aware that the degree of inter-particulate 

sintering and mechanical strength can be deteriorated with increased powder particle size. The 

balance between the porosity and mechanical properties of specimens needs to be considered to 

choose the proper powder particle topology. The results reveal that the SLS process may provide 

multiple means to control the internal structure of HA-HDPE composite material by varying the 

process parameters and the powder particle topology.  

4.2. Wettability and correlation with porous structure 

The apparent contact angles for all the test liquids on the laser sintered specimens are higher 

than the moulded specimen, indicating a poorer wettability of sintered specimens compared 

with the moulded specimen. The surface roughness and open pore surface of the sintered 

specimen may be the factors governing the modification of wettability of the sintered 

specimens. Generally, the wettability of a surface is associated with its roughness for a 

certain material. Wenzel’s equation (Wenzel 1936) shows that high roughness will enhance 

both hydrophobicity of hydrophobic surface and hydrophilicity of hydrophilic surfaces. The sintered 

specimens exhibited higher surface roughness than the moulded specimen. This can contribute to the 
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enhanced SBF θ on the sintered specimens compared with moulded specimens. However, other two 

test liquids of water and diiodomethane did not present this agreement. The θ of these liquids were 

lower than 90° for the moulded specimen, indicating the material was wettable by these liquids. 

However, θ still increased for the sintered rougher specimens, implying the wettability decreased. 

Hence, surface roughness could not be the predominant factor governing the change in wettability.    

The presence of the pores in the sintered specimens could be the primary reason for the difference 

between the θ  on sintered specimens and moulded specimen. This can be proved by using Cassie and 

Baxter equation (Cassie & Baxter 1944), which for a solid having two different types of areas takes 

the form  

2211 coscoscos θθθ ff +=                      (1) 

where θ is the apparent contact angle observed on the porous solid surface, θ1 and θ2 are the contact 

angles corresponding to the type 1 and 2 areas, respectively, and f1 and f2 are the fractional areas of 

type 1 and 2 areas, respectively. For the porous solid with f1 being the fractional area of a flat surface 

of a given contact angle θ1 and f2 the fractional area of void, θ2 would be 180°. Taking into account 

that f1 = 1- f2, Equation (1) can be rewritten as follows 

                                              212 cos)1(cos ff −−= θθ                             (2) 

Equation (2) predicts the poorer wettability, i.e. θ > θ1, for a non-wetted porous surface, for which the 

liquid does not penetrate the pores. In this case, θ1 is for the moulded specimen and θ is for the porous 

laser sintered specimens. The fractional area of void (pore) plays a significant and predominant role in 

reducing the apparent wettability of the sintered specimens. The higher the surface porosity, the lower 

the wettability is. A linear relationship was found for the θ and the pore volume fraction for the water, 

diiodomethane and SBF test liquids (see Figure 5. ). This may explain the finding that the specimens 

sintered with large particles, which exhibited higher surface porosity, have a lower wettability than 

the specimens with small particles. The larger the θ1 is, the larger difference between θ and θ1. This 

explains that there are considerable differences in the θ  for the water and SBF liquids between the 

sintered and moulded specimen, whereas, only a slight difference for diiodomethane.  

It has been mentioned that optimum bone implants need to possess an open-pore geometry with a 

highly porous surface and internal porous microstructure. However, the highly porous surface 

introduces in the poorer wettability to this material. Generally, the hydrophobic surface lack cell 

recognition signals and do not encourage cell attachment. Hence, the sintered specimens with highly 

porous surface might not stimulate the initial cell adhesion. But open surface pores allow the 
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infiltration of protein such as collagen. It  showed that collagen adsorption not only enhances the 

hydrophilicity of the porous scaffold structure, but also enables the polar groups introduced into the 

surfaces which encourage the anchorage of cells (Yang et al. 2002.). Thus, infiltration of collagen and 

other bio-growth factors into surface and internal pores are recommended for the laser sintered 

structures.  

5. Conclusions 

Compared with a mould specimen, laser sintered specimens exhibited a rougher and more open pored 

surface, a highly interconnected internal porous structure and a lower apparent wettability. Both laser 

power and particle size influence the properties of the laser sintered specimen. The specimen sintered 

with large particles showed higher surface roughness and larger and more surface pores than that 

sintered with small particles, whereas the laser power does not present a constant effect on the surface 

morphology. This indicates that the powder particle topology plays a predominant role in surface 

morphology. The laser sintered specimens presented highly interconnected porous structures revealed 

by the cross-sectional analysis. The percentage of the internal porous area increases with the increased 

particle size and the decreases with the increased laser power.  The poorer wettability of the sintered 

specimens resulted from the open pore surface as explained by the Cassie and Baxter equation.  
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(a)                                                                 (b) 

Figure 1.  SEM images of HA/HDPE powders with different sizes (a) 0 < PS < 105 µm, (b) 105 µm < 

PS (marker bars = 100 µm). 
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                                                                       (a) 

   
(b)                                                                    (c) 

   
(d)                                                                    (e) 

     
(f)                                                                        (g) 

Figure 2. SEM surface images of (a) moulded HA-HDPE specimen and laser sintered specimens at 

scanning speed of 3600 mm s-1 at different laser power and particle size (b) 3.6 W,  0 < PS < 105  µm, 

(c) 3.6 W,  105 µm < PS, (d) 4.8 W,  0 < PS < 105  µm, (e) 4.8 W,  105 µm < PS (f) 6.0 W,  0 < PS < 

105  µm; (g) 6.0 W, 105 µm < PS (marker bars = 100 µm). 
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                                         (a)                                                               (b) 

    
                                         (b)                                                              (d) 

    
                                               (e)                                                                (f) 

   Figure 3. Typical optical images of the cross-section of the HA-HDPE specimens at scanning speed 

of 3600 mm s-1 at different laser power and particle size (a) 3.6 W,  0 < PS < 105  µm, (b) 3.6 W,  105 

µm < PS, (c) 4.8 W,  0 < PS < 105  µm, (d) 4.8 W,  105 µm < PS (e) 6.0 W,  0 < PS < 105  µm; (f) 

6.0 W, 105 µm < PS. 
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                                      (a)                                                                     (b) 
Figure 4. The percentage of internal porous area (a) and porosity determined by the fraction of 

weight by volumne of the specimens sintered at different laser power and with different particles 

 
 
 
 

     

                                      (a)                                                                (b) 
 

Figure 5. Contact angle, θ, of water on the moulded HA-HDPE specimen (a) and laser sintered 

specimen (b) at laser power of 6.0 W and particle size of 0 < PS < 105µm. 
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Contact angle vs porosity
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Figure 6.  The relationship between the contact angle and volume fraction of pores in SLS fabricated 

component. 
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Table 1. The surface roughness of the specimens sintered at different laser power and using difference 
particles 

Specimens Surface roughness, Ra (µm) 
Particle Size PS Laser power

0< PS <105 µm 105 µm < PS
3.6 W 12.83 ± 1.82 14.32 ± 1.64 
4.8 W 13.74 ± 1.91 14.56 ± 1.69 
6.0 W 13.61 ± 2.01 14.76 ± 1.09 

Moulded 
specimen 1.61 ± 1.11 

 
 

Table 2. Contact angle of water, diiodomethane, SBF test liquids on the specimens (P1=  0 < PS < 

105µm, P2 = 105 µm < PS).  

Specimens Contact angle (deg) 
Water Diiodomethane SBF Laser power P1 P2 P1 P2 P1 P2 

3.6 W 121 ± 2 136 ± 5 60 ± 3 62 ± 3 129 ±  2 138 ± 2 
4.8 W 120 ± 2 132 ± 3 60 ± 4 64 ± 3 130 ± 1 134 ± 1 
6.0 W 124 ± 3 131 ± 4 61 ± 2 65 ± 3 134 ± 1 140 ± 3 

Moulded 
specimen 86 ± 2 57 ± 1 91 ± 1 
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