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Abstract 

The control of batch crystallizers is an intensively investigated topic as suitable crystallizer 

operation can reduce considerably the downstream operation costs and produce crystals of desired 

properties (size, shape, purity etc.). Nevertheless, the control of crystallizers is still challenging. In 

this work the development of a fixed batch time full population balance model based adaptive 

predictive control system for cooling batch crystallizers is presented. The model equations are 

solved by the high resolution finite volume algorithm involving fine discretization, which provides 

a high fidelity, accurate solution.  A physically relevant crystal size distribution (CSD) to chord 

length distribution (CLD) transformation is also developed making possible the direct, real-time 

application of the focused beam reflectance measurement (FBRM) probe in the control system. 

The measured CLD and concentration values are processed by the growing horizon estimator 

(GHE), whose roles are to estimate the un-measurable system states (CSD) and to re-adjust the 

kinetic parameters providing an adaptive feature for the control system.  A repeated sequential 

optimization algorithm is developed for the nonlinear model predictive control (NMPC) 

optimization, enabling the reduction of sampling time to the order of minutes for the one-day long 

batch. According to the simulation results the strategy is highly robust to parametric plant-model 

mismatch and significant concentration measurement noise, providing very good control of the 

desired CLD. 
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Introduction 

Numerous macroscopic properties of crystalline materials of industrial interests, such as the 

adsorption capacity, dissolution rate, porosity, mechanical properties etc. depend on the crystal 

size distribution (CSD) 1. The CSD also influences the downstream operations, such as filtration, 

granulation, centrifugation, transportation etc. 2. Consequently, the good crystallizer operation 

might lead to simultaneous product quality improvement and operational cost reduction. The non-

linear characteristics of nucleation and growth, as well as their sensitivity to system setup, require 

the application of advanced control strategies to batch crystallizers: the classical and still widely 

used operation mode of these systems 3. 

The quick spread of process analytical technologies (PAT) made possible the real time tracking 

of solid phase: the focused beam reflectance measurement (FBRM) records the chord length 

distribution (CLD), a fingerprint of crystals population. The particle vision and measurement 

(PVM) captures in situ images in real time, which are processed by the means of image analysis. 

The solute concentration is tracked with on-line spectroscopic methods, such as the Raman, 

infrared (IR) or UV/Vis, depending on the properties of dissolved materials and the solvent 4. 

Numerous control strategies applied to batch crystallizers are based on PAT tools. The direct 

nucleation control (DNC) is a model free control, which is based on the maintenance of the FBRM 

count (approximately proportional to crystal number) between the predefined limits by repeated 

heating-cooling stages 5. The crystal number is linked directly to the mean crystal size; thus the 

DNC controls the mean size through the FBRM count. Another state-of-the-art model free control 

strategy is the supersaturation control (SSC). Its principle is to keep the concentration in the 

metastable zone to minimize nucleation and favor crystal growth.6 Combined techniques, such as 
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in-situ seed generation by DNC then switching to SSC have also been applied.6,7 The advantages 

of these model free control methods are that these require minimal preliminary system information 

and ensure satisfactory control. However, when it comes to constraint satisfaction and optimal 

operation, these model free techniques can hardly compete with the predictive power of model 

based controllers.8 

The population balance models (PBMs), introduced by Hulburt and Katz 9 are widely used to 

describe and simulate crystallization processes 10. The PB equation (PBE) is a hyperbolic partial 

differential equation (PDE). Its numerical solution is difficult as it tends to produce numerical 

diffusion and oscillation 11. Finding analytical solutions is possible only in limited cases, which 

are seldom practically relevant. Numerous numerical methods have been proposed for the solution 

of PBE’s, all with advantages and disadvantages. From the process control point of view the 

solution has to be fast enough to be applicable in real time optimization and detailed enough to 

provide the required information (for example, whole CSD or mean size) 12. In order to use the 

(distributional) CLD in the model based control, the calculation of CSD is required, thus the 

numerically very efficient moment based methods 13 are not applicable. The high resolution finite 

volume method (HR-FVM) is an efficient algorithm to compute the CSD without significant 

numerical diffusion and/or oscillations 14. The solution speed can be improved to meet the real 

time applicability with efficient implementations 15. 

The overwhelming majority of real time controllers and process optimizations involve moment 

based PBE solution 8,16–18 because of its decreased computational expense and high accuracy. More 

recent work employs machine learning to reduce the computational costs.19 However, these 

operate on mean crystal properties, not on the actual CSD. Among of full PBM based strategies 

the open loop control is most widely discussed and applied.20–22 A feedback concentration control 
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system tracking the pre-computed optimal concentration trajectory based on a 2D full PBM was 

recently published.23 Only a few papers deal with full PBM based real time control 24, where the 

authors concluded that the critical point in real time applicability is the proper mesh coarseness, 

which is the result of a trade-off between accuracy and computational burden. In the same work it 

was also presented that the structural model-plant mismatches (PMM) (i.e. errors related to 

discretization coarseness) can be effectively eliminated by output error correction. Nevertheless, 

the paper does not deal with parametric PMM, which raises special control problems. 

Regardless of model complexity, for robust NMPC performance, state estimation is required 25. 

State estimators of various internal structure and working principle have been developed, including 

the stochastic Kalman filter family,26,27 Luenberger observers,17,28 and moving horizon state 

estimators (MHE).24,29 The MHE is an optimization based method involving the non-linear process 

model and, in contrary to the other estimators, it uses measurements gathered over a certain time 

interval for the observer correction.25  

In order to utilize the FBRM provided CLD, the CSDCLD transformation needs to be carried 

out. Numerous papers have focused on the calculation of CSD from measured CLD data 30–34, as 

the CSD is physically relevant and it is often the controlled quantity. The problem with these 

approaches is that none of those are exact due to the CLD multiplicity (the same chord length 

might be coming from more particles, depending on particle size, shape and spatial orientation). 

As the backward CLDCSD transformation is often carried out by optimization, this step might 

be time consuming. 

The objective of this study is to develop a shrinking horizon NMPC for the product CSD for 

fixed batch time cooling crystallization processes. The control strategy involves a growing horizon 

estimation (GHE) algorithm, for which the estimation horizon is growing with the actual process 
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time. To deal with parametric model-plant mismatch (PMM) the GHE has the role, next to the 

estimation of un-measurable system states, to improve continuously the model quality by re-

adjusting the kinetic parameters. A real time CSDCLD forward transformation is developed, 

making possible the direct application of FBRM data in the CSD control system. In the NMPC 

calculations an accelerated direct single shooting dynamic optimization strategy is developed and 

applied, which reduces the calculation time to the range of feasible industrial sampling time. To 

avoid structural PMM, fine mesh is applied in the PBM solution. The results indicate that a high 

fidelity population balance model based adaptive model predictive control that uses model 

parameters identified directly using FBRM measurement and a novel efficient forward CSD to 

CLD conversion approach can be applied to batch cooling crystallization processes to directly 

control product consistency based on the target CLD signature. 

 

Mathematical model of the batch cooling crystallization system 

The batch operation is the classical crystallization technique, which is based on the temperature 

dependency of solubility. This is often modeled with a power-law equation: 

𝑐𝑐𝑠𝑠(𝑇𝑇) = 𝑝𝑝1 + 𝑝𝑝2𝑇𝑇 + 𝑝𝑝3𝑇𝑇2 (1) 

where 𝑐𝑐𝑠𝑠 denotes the solubility concentration, T is the temperature and 𝑝𝑝𝑖𝑖 are material and system 

dependent constants.  

The initially high temperature, concentrated solution is cooled. With cooling, the solubility 

decreases and the solution becomes supersaturated. The supersaturation is characterized by the 

relative supersaturation: 

𝜎𝜎 =
𝑐𝑐

𝑐𝑐𝑠𝑠(𝑇𝑇) − 1 (2) 
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where c denotes the actual solute concentration. The supersaturation generates automatically 

spontaneous crystal nucleation. Most often being the governing mechanism in industrial 

crystallizers, in this study secondary nucleation is considered: 

𝐵𝐵(𝜎𝜎,𝑇𝑇) = 𝑘𝑘𝑏𝑏𝜎𝜎𝑏𝑏𝑉𝑉𝐶𝐶
𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐸𝐸𝑏𝑏
𝑅𝑅𝑅𝑅

� (3) 

where 𝑉𝑉𝐶𝐶 is the volume fraction of crystals, R is the gas constant and 𝑘𝑘𝑏𝑏, b, j and 𝐸𝐸𝑏𝑏 are material 

and system specific constants.  

The nuclei and existing crystals are growing in the supersaturated solution with the growth rate: 

𝐺𝐺(𝜎𝜎,𝑇𝑇) = 𝑘𝑘𝐺𝐺𝜎𝜎𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐸𝐸𝑔𝑔
𝑅𝑅𝑅𝑅

� (4) 

where 𝑘𝑘𝑔𝑔, g and 𝐸𝐸𝑔𝑔 are material and system specific constants. A cooling batch crystallizer with 

nucleation and growth sub-processes is illustrated in Figure 1. 

  

Figure 1. Schematic representation of a cooling batch crystallizer with nucleation and growth 

mechanisms.  

For the characterization of the CSD the uni-variate size density function n(L,t)dL, which gives 

the number of crystals within the L and L+dL size domain at t time moment. The variation of CSD 

under the influence of nucleation and growth is governed by the PBE: 

𝜕𝜕𝜕𝜕(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+ 𝐺𝐺(𝜎𝜎,𝑇𝑇)
𝜕𝜕𝜕𝜕(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐵𝐵(𝜎𝜎,𝑇𝑇)𝛿𝛿(𝐿𝐿 − 𝐿𝐿𝑛𝑛) (5) 
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with 𝑛𝑛(𝐿𝐿, 𝑡𝑡) = 𝑛𝑛0(𝐿𝐿) initial condition, where 𝑛𝑛0(𝐿𝐿) represents the seed distribution and 𝐿𝐿𝑛𝑛 is the 

nuclei size. In this study a log-normally distributed seed population is considered. 

Due to the liquid–solid mass transfer a macroscopic mass balance is required for solute 

concentration: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐

1 − 𝑉𝑉𝐶𝐶
�3𝐺𝐺(𝜎𝜎,𝑇𝑇)� 𝐿𝐿2𝑛𝑛(𝐿𝐿, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

0
+ 𝐵𝐵(𝜎𝜎,𝑇𝑇)𝐿𝐿𝑛𝑛3 � (6) 

with 𝑐𝑐(0) = 𝑐𝑐0 = 𝑐𝑐𝑠𝑠(𝑇𝑇0) initial concentration. In Eq.(6) 𝜌𝜌𝑐𝑐 is crystal density and 𝑘𝑘𝑉𝑉 is the 

volume shape factor:  

𝑣𝑣𝑐𝑐 = 𝑘𝑘𝑉𝑉𝐿𝐿3 (7) 

The temperature is a manipulated variable thus energy balance is not required for the model 

closure. The values of process and kinetic parameters are listed in Table 1. The solubility refers to 

L-ascorbic acid and the kinetic parameters are partial results of L-ascorbic acid parameter 

estimation. A detailed study on L-ascorbic acid crystallization and control will be presented 

elsewhere. 

Table 1. Process and kinetic parameters used in the simulation studies. 

Parameter Name Value, U.M. 

𝑝𝑝1 Solubility constant  0.1416, g g-1 

𝑝𝑝2 Solubility constant  3.37 10-3, g g-1 oC-1 

𝑝𝑝3 Solubility constant  4.02 10-5, g g-1 oC-2 

𝑘𝑘𝑏𝑏 Nucleation rate constant 1.24 1017, # m-3s-1 

b Nucleation rate supersaturation exponent 1.377, - 

j Nucleation rate volume fraction exponent 0.980, - 

𝐸𝐸𝑏𝑏 Nucleation activation energy 39760, J mol-1 K-1 

𝑘𝑘𝑔𝑔 Growth rate constant 11266, µm s-1 
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g Growth rate supersaturation exponent 0.565, - 

𝐸𝐸𝑔𝑔 Growth activation energy 34939, J mol-1 K-1 

𝜌𝜌𝑐𝑐 Crystal density 1650 kb m-3 

𝑘𝑘𝑉𝑉 Volume shape factor 1, - 

𝑇𝑇𝑖𝑖𝑖𝑖 Initial temperature 34.5, oC 

𝑚𝑚 Mean of (seed) log-normal distribution 20, µm 

𝑣𝑣 Variance of (seed) log-normal distribution 10, µm 

𝑉𝑉𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Seed volume fraction 4.89 10-4, - 

𝐿𝐿𝑛𝑛 Nucleon size 10-6 m 

 

The model equations were solved by using an efficient implementation of a fully discretized 

HR-FVM, whose description, due to brevity, is not repeated here 35. The in-house developed crysiv 

MatLab based toolbox was used to solve the model equations, implemented as compiled serial C 

.mex function 15. Based on the results of preliminary experiments in the model solution the 0-1000 

µm size domain was chosen. The uniformly distributed mesh with N = 1000 elements ensured 

accurate model solution. 

According to the model Eqs.(1)-(7) the product CSD depends on initial conditions, the vector of 

kinetic parameters and the applied temperature profile: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓(𝑇𝑇0,𝑛𝑛0,𝐾𝐾𝐾𝐾,𝑇𝑇(𝑡𝑡)), (8) 

where the vector of kinetic parameters (KP) is defined as: 

𝐾𝐾𝐾𝐾 = �𝑘𝑘𝑏𝑏 ,𝑏𝑏, 𝑗𝑗,𝐸𝐸𝑏𝑏 ,𝑘𝑘𝑔𝑔,𝑔𝑔,𝐸𝐸𝑔𝑔� (9) 

Under given conditions KP is constant but might be sensitive to system setup (e.g. crystallizer 

shape, volume, etc.), impurities and operational conditions (e.g. stirrer type and revolution speed, 

hydrodynamic conditions etc.). In this study KP is not considered constant, but it is re-estimated 
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during the process, which also incorporates the effects of disturbances, and provides an adaptive 

feature of the control algorithm, providing very high robustness to the feedback control approach. 

  

FBRM soft sensor model forward transformation of crystal size distribution to chord 

length distribution  

The mathematical model presented in the previous section enables the calculation of the evolution 

of the CSD and solute concentration. There are numerous PAT tools to track the solute 

concentration (e.g. spectroscopic techniques based on ATR-IR, UV-VIS, Raman) but the CSD is 

difficult to be measured with on-line techniques. The CLD provided by the FBRM is related to the 

CSD, although it does not reflect the true CSD. As a consequence, a transformation is required 

between these distributional quantities.  

The measuring principle of FBRM is presented in Figure 2. The probe emits a rotating laser 

beam. During the rotation the beam intersects with the particles during which the laser beam is 

reflected back into the probe’s detector. The intersection time is recorded and in the knowledge of 

laser rotation speed the intersection length, the so-called chord length (CL) is calculated. The 

typical number of intersections, often referred as FBRM counts, is in order of thousands per 

second. From the individually measured CLs, a CL distribution (CLD) can be constructed 

n(CL,t)dCL, which gives the number of CLs within the CL,CL+dCL domain at t time moment. 
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Figure 2. Working principle of the FBRM and the construction of CLD. 

Here a straightforward CSDCLD transformation is developed. According to Figure 3, the 2D 

projection of a particle (detectable by the FBRM) can give a variety of CLs, depending on how the 

particle is intersected by the beam. In this context a CLD can be constructed for each 2D projection 

of the same cube (or any other regular shape). 

 

Figure 3. Schematic representation of the projection-based CLD simulation 

The basic idea of the proposed projection based CLD calculation is: 

• Take a random orientation of the cubic particle, 

• Create the 2D projection of cubic particle taking into consideration the assumed spatial 

orientation, 

• Put the 2D projection into a rectangle, 

• From the possible “cuts” calculate the CLD{proj} of this projection, 

• Repeat the calculation for all possible projections and average the results. 

 

The CLD simulation of a single particle (or mono-disperse particle population) can be carried 

out by this method. Assuming that the cube is projected into horizontal plane, two angles are 

required to define unambiguously its spatial orientation: the relative angle to the horizontal (α) and 
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to one of the vertical (β) planes. If both α and β goes from 0º to 90º, taking into consideration the 

cube shape, all possible spatial orientations are covered. In the algorithm these two angles are 

varied and for each {α,β} projection the CLD{α,β} is simulated. After all CLD{α,β} are computed 

based on the individual projections, these are averaged, which results in the most probable CLD 

of mono-disperse particle population of L size.  

In these simulations both angles were varied with an increment of 3º. Thus, the angles are 

considered to be uniform random variables. The explanation of this choice is that since the crystals 

are stout, there is no reason why they would follow any organized trajectory with preferred 

orientation that would require the use of a non-uniform distribution. Using this discretization in 

the angles the variations in the final CLD were negligible, thus the 3º value is used for improving 

the simulation speed. The simulated CLD of the cubic particle having L linear size, CLDL
 is given 

by 

𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿 =
∑ CLD{j},𝑖𝑖
𝑃𝑃
𝑗𝑗=1

∑ ∑ CLD{j},𝑖𝑖
𝑀𝑀
𝑖𝑖=1

𝑃𝑃
𝑗𝑗=1

 (10) 

In Eq.(10) P is the number of individual CLD{α,β} and M denotes the number of discrete CL size 

bins. In this study logarithmic CL scale is adopted with [1…1000] µm domain and 90 bins. The 

simulation is implemented as compiled serial C .mex function involving single precision floating 

point operations.  

All CLDLs are pre-computed for each discrete particle size used in the HR-FVM solution of the 

PBE. The most probable CLD corresponding to the simulated CSD is computed in real time as the 

normalized weighted sum of the individual CLDLs: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝐴𝐴𝐿𝐿𝑛𝑛𝐿𝐿CLDL,𝑖𝑖
𝑁𝑁
𝑗𝑗=1

∑ ∑ CLDL,𝑖𝑖
𝑀𝑀
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

 (11) 
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where N denotes the HR-FVM mesh size, 𝑛𝑛𝐿𝐿 stands for the number of crystals with size L and 𝐴𝐴𝐿𝐿 

is the most probable projection area of the particle. With 𝐴𝐴𝐿𝐿, the transformation takes into 

consideration that the bigger crystals are captured with higher probability. The execution time of 

Eq. (11), implemented as compiled serial C .mex function is in order of milliseconds. The 

simulated CLD given by Eq.(11) should be compared to normalized measured CLD.  

For comparing purposes, the CLD simulation of spherical crystals has also been carried out, 

which is significantly easier since every 2D projection is a circle with the same diameter. This 

CLD transformation has already been carried out and analyzed in the literature,36 thus, for brevity, 

the description will not be repeated here. 

To illustrate the  CSDCLD transformation approach, a CSD is assumed as the sum of two log-

normal distributions, and the CLD is simulated based on the aforementioned method, assuming 

both spherical and cubic shapes. Together with the original CSD and simulated CLDs, the volume 

based CSD is also represented in Figure 4, as this is used often for the characterization of the 

particle population. It can be observed that the simulated CLD for cubic crystals correlates very 

well with the volume based CSD, for which the CLD was simulated. This might be because there 

are many CLs in a cube that are longer than the actual edge length. It can also be seen that assuming 

cubic shape for the same CSD generates significantly larger CLs than the spherical shape. The 

reason for this is that the largest diagonal of the cube is 𝐿𝐿√3, which inherently generates offset 

between the CLD estimated based on cubic and spherical shapes.  
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Figure 4. Crystal size distributions (CSD) and the corresponding simulated chord length 

distributions (CLD).  

 

Figure 5 evaluates the performance of the CSD to CLD transformation by comparing its results 

with the experimental CLD of a known CSD. The ceramic bead particles, reported in literature, 

have nearly ideal spherical shape and the CSD was calculated by image analysis.33 The simulated 

CLD agrees acceptably with the measured CLD reported in literature.33 This justifies the 

application of the proposed transformation for process control purposes, which also relies on the 

auto-corrective feature provided by the feedback measurement. 
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Figure 5. Comparison of CLD transformation with experimental data available from literature for 

spherical particles. 

The applied forward CSDCSD transformation might not be reliable for two situations: 

• For dense suspensions with high crystals concentration (i.e. intensive nucleation) the fine 

particles might overlap and higher apparent CLs might be measured than expected.  

• For the largest crystals of which size is comparable with the beam rotation diameter (8 

mm),37 the approximation of CL with a straight line might introduce distortions.  

The first effect is an interaction effect, which increases the apparent CL especially in the low CL 

domain. The second effect results from a modelling simplification for very large crystals, which 

are outside of the interest of general CSD control problems.  

In this work cubic shape is assumed, for which the CLD calculation is computationally more 

expensive. 

Open loop temperature optimization  

The open loop model based control consists of the pre-calculation of the optimal temperature 

profile, which is tracked by a regular PI(D) controller. For the optimization a target CSD is required 

within the achievable domain. The target CSD is generated by simulating a ten-day long batch, 

applying linear cooling between the initial and final (T = 20 oC) temperatures. This leads to a 

conservative target CLD, which requires the controller to find an optimal profile that 

avoids/minimizes nucleation, while maintaining yield, when the duration of the batch is decreased.  

In the optimization the batch time is evenly divided into K discrete intervals, generating the 

vector of discrete time moments between the initial (𝑡𝑡0 = 0) and final (𝑡𝑡 = 𝑡𝑡𝐾𝐾) time moments: 

(𝑡𝑡𝑣𝑣 = [0, 𝑡𝑡1, … , 𝑡𝑡𝐾𝐾]). This defines the optimization horizon, which is extended with an additional 

time interval, required for system equilibration (𝑡𝑡𝐾𝐾+1 = 𝑡𝑡𝐾𝐾 + 𝑡𝑡𝑒𝑒𝑒𝑒). The temperature profile vector 
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(𝑇𝑇𝑣𝑣) is the vector that contains the temperatures corresponding to tv time moments. During the 

equilibration period (𝑡𝑡𝐾𝐾 < 𝑡𝑡 < 𝑡𝑡𝐾𝐾+1) the last temperature is kept constant (𝑇𝑇𝐾𝐾+1 = 𝑇𝑇𝑘𝑘). 

Then, the temperature profile optimization is carried out subject to a sum-square error based 

objective function: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇𝑉𝑉) = ��𝐷𝐷𝑖𝑖,𝑠𝑠𝑖𝑖𝑖𝑖 − 𝐷𝐷𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟�
2

𝑈𝑈

𝑖𝑖=1

 (12) 

In this optimization the 24 hours batch time is divided to K = 400 intervals thus 𝑇𝑇𝑉𝑉 is a vector 

of 400 elements. D denotes the distributional data (CSD or CLD) based on which the temperature 

profile optimization is carried out. U stands for the number of discrete bins in D. The optimization 

is carried out subject to the following constraints: 

18 ≤ 𝑇𝑇𝐾𝐾 ≤ 24 oC 

0.01 ≤ 𝑐𝑐𝑟𝑟 ≤ 0.5  oC/min 

𝑡𝑡𝑒𝑒𝑒𝑒 = 7200 s 

(13) 

where 𝑐𝑐𝑟𝑟 is the cooling rate. The constrained optimization was carried out in MatLab environment 

using the patternsearch built-in optimization function, which uses the pattern search algorithm 38. 

In Figure 6a the optimal temperature profiles are presented. As the higher degree weighted CLD 

is used as the target, the parabolic characteristics of the temperature profile becomes more 

dominant. The Figure 6b presents the target as well as the realized CSD’s. The CSD based 

optimization approached the most the target, the CLD based optimizations leads to more 

significant fine production. In general, the parabolic temperature profiles are known to be the 

optimal for nucleation rate minimization.39 
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a) 

 

b) 

Figure 6. a) The optimal temperature profiles based on CSD and differently weighted CLD b) The 

target and product CSD’s realized by the temperature profiles of Figure 6a). 

According to the results the non-weighted CLD is the best option to use in process control. This 

is because it introduces less distortion in small crystal size range so it reflects the nucleation more 

sensitively. 
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The growing horizon estimation (GHE)  

For an NMPC approach to work robustly in practice state or error estimation is required, which 

calculates the actual values of measurable and un-measurable system states providing the initial 

conditions of the NMPC optimization. Estimation can be performed using a receding (moving) or 

a growing horizon. While for continuous processes only receding horizon estimation can be 

implemented for batch systems both receding horizon estimation (RHE) and GHE is possible. Both  

the RHE and GHE use the non-linear process model thus present increased potential in dealing 

with process non-linearities 25. The main advantage of GHE is that the initial system states (solute 

concentration and CSD) are generally accurate for batch system, and often the states at time zero 

are better known than at any subsequent time steps. For example, in the case of an unseeded batch 

crystallization the moments of the distribution are well known at time zero (all are zero). As a 

consequence, a well-tuned GHE might provide more accurate states for the NMPC optimizations 

than a RHE approach which might be based on measurement or previously estimated initial state 

estimates. Nevertheless, this state estimation is difficult during the primary nucleation, which 

produces crystals that are comparable in size with the detection limit of PAT tools and also has 

negligible impact on the solute concentration. This estimation uncertainty can be moderated by 

fine-tuning the state-estimator and by having good initial kinetic parameters. After the nucleation, 

the reliability of the state estimation increases from iteration to iteration as more and more 

measurement data become available. 

Modifications in operating conditions, system set-up or the presence of impurities can lead to 

variation in the nucleation and/or growth rates, which might lead to considerably different 

macroscopic behavior, thus the system might require substantially different control policy. If these 

changes occur during the crystallization process the model parameters need to be updated and the 
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control policy recalculated for best performance. The GHE re-adjusts the kinetic parameters in 

every sampling time by fitting the model to existing measured data. 

The control system block diagram is presented in Figure 7a. The input of the GHE is the 

measured data, based on which it re-adjusts the kinetic parameters as well as calculates the actual 

system states. Figure 7b shows the general growing/shrinking horizon concept of a batch GHE-

NMPC considering a fixed batch time.  

 

a) 

 

b) 

Figure 7. a) Block diagram of the adaptive/predictive model based control system and b) working 

principle of fixed batch time GHE/NMPC.  
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The GHE uses the same non-linear process model as the NMPC but the nucleation Eq.(3) and 

growth Eq.(4) rates are expressed differently: 

𝐵𝐵(𝜎𝜎,𝑇𝑇) = 10𝑘𝑘𝑏𝑏,𝐺𝐺𝐺𝐺𝐺𝐺𝜎𝜎𝑏𝑏𝑉𝑉𝐶𝐶
𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐸𝐸𝑏𝑏
𝑅𝑅𝑅𝑅

� (14) 

𝐺𝐺(𝜎𝜎,𝑇𝑇) = 10𝑘𝑘𝑔𝑔,𝐺𝐺𝐺𝐺𝐺𝐺𝜎𝜎𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐸𝐸𝑔𝑔
𝑅𝑅𝑅𝑅

� (15) 

The reason for using modified rate equations in parameter readjustment is to improve the 

optimization performance: in Eq.(14)-(15) the rate constants are exponents (as the rest of kinetic 

parameters), which acts like a natural scaling: minor variations in the value of these modified rate 

constants influence substantially stronger the growth rates.    

The modified vector of kinetic parameters takes the form: 

𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑘𝑘𝑏𝑏,𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑏𝑏, 𝑗𝑗,𝐸𝐸𝑏𝑏 ,𝑘𝑘𝑔𝑔,𝐺𝐺𝐺𝐺𝐺𝐺 ,𝑔𝑔,𝐸𝐸𝑔𝑔� (16) 

The GHE uses the following objective function: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝐾𝐾𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺) = ��𝑐𝑐𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠�
2

+ 𝑤𝑤
𝑍𝑍

𝑖𝑖=1

���𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠�
2

𝑍𝑍

𝑖𝑖=1

𝑀𝑀

𝑗𝑗=1

 (17) 

The first part of the objective function minimizes the difference between the simulated and 

measured concentrations, whereas the second part of the objective minimizes the deviation of the 

simulated from the measured CLD. w is a weighting factor; Z denotes the number of discrete time 

moments in which measurement data is available or is used in the state estimation. The 

optimization was carried out by using the fmincon MatLab function with the interior point 

algorithm. 

To improve the GHE calculation time, the maximum number of used estimation points is limited 

to 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚. If the number of available measurements exceeds 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚, instead of switching to a 

RHE approach, a new uniformly distributed time vector is defined in [0, tk] interval with  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 
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data points. Thus, the time step size (∆𝑡𝑡𝑒𝑒) in the estimation horizon is calculated, in the knowledge 

of process sampling time (𝛿𝛿𝛿𝛿) as follows: 

∆𝑡𝑡𝑒𝑒 = �
𝛿𝛿𝛿𝛿, 𝑖𝑖𝑖𝑖𝑡𝑡𝑘𝑘 ≤   𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿𝛿𝛿
𝑡𝑡𝑘𝑘

 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒              

(18) 

If needed the concentrations and CLD data are interpolated from the measured data in the ∆𝑡𝑡𝑒𝑒 

time steps using the measurement data available in 𝛿𝛿𝛿𝛿 time steps. A piecewise cubic Hermite 

interpolation was used by calling the pchip MatLab function. With this approach the advantage of 

the GHE of using the known initial states at the start of the batch is still maintained without 

significant increase in the computational burden due to excessive increase in the number of 

measurement points in the growing horizon. The most important GHE settings and tuning 

parameters are listed in Table 2.  

Table 2. GHE tuning parameters 

Parameter Name Value, U.M. 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum number of time moments  40, - 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Maximum number of optimization iterations  130, - 

𝑤𝑤 Weighting parameter in objective function  10-4, - 

 

To make the parameter estimation more efficient for real-time feasibility the kinetic parameters 

obtained in the previous estimation step are used as the initial guess for the next optimization 

problem. The first GHE problem uses the kinetic parameters obtained from off-line model 

identification performed prior to the control experiment. The decision variables ( 𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅) are 

bounded. Choosing the correct bounds is essential: if the search interval is too narrow the 

identification may fail to identify new set of parameters when larger disturbance or change in 
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process occurs, but too wide intervals might be harmful especially in the first iterations, due to the 

nucleation-generated fine crystals, which are notoriously difficult to measure correctly as they 

have reduced effect on solute concentration and are close or below the detection limit of the PAT 

tool. The applied bounds are listed in Table 3. These can be considered as additional GHE tuning 

parameters. 

  

Table 3. Bounds of decision variables in GHE kinetic parameter re-adjustment 

Parameter Lower bound [% to actual] Upper bound [% to actual] 

𝑘𝑘𝑏𝑏,𝐺𝐺𝐺𝐺𝐺𝐺 -20 +20 

𝑏𝑏 -6 +6 

𝑗𝑗 -2 +2 

𝐸𝐸𝑏𝑏 -8 +8 

𝑘𝑘𝑔𝑔,𝐺𝐺𝐺𝐺𝐺𝐺 -20 +20 

𝑔𝑔 -6 +6 

𝐸𝐸𝑔𝑔 -8 +8 

 

In order to examine the performance of the developed state estimator a test simulation was 

carried out in which it was assumed that the initial parameter estimates in the model differed from 

the actual kinetic parameter of the process (Plant). The parameters in “Plant” and “Model” 

simulation are listed in Table 4. 
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Table 4. The Plant and the (initial) Model parameters 

Parameter Plant Model 

𝑘𝑘𝑏𝑏 1.24 1017, # m-3s-1 9.93 1016, # m-3s-1 

𝑏𝑏 1.377, - 1.65, - 

𝑗𝑗 0.980, - 0.882, - 

𝐸𝐸𝑏𝑏 39760, J mol-1 K-1 33796, J mol-1 K-1 

𝑘𝑘𝑔𝑔 11266, µm s-1 7886, µm s-1 

𝑔𝑔 0.565, - 0.621, - 

𝐸𝐸𝑔𝑔 34939, J mol-1 K-1 40180, J mol-1 K-1 

 

In the temperature profile optimization the objective function Eq.(12) subject to the constraints 

Eq.(13) was applied and the optimization was solved using the pattern search algorithm 

(patternsearch Matlab function) 38.  

Figure 8a presents four temperature profiles. The “Plant optimum” is the optimal temperature 

profile calculated by CSD based optimization with the “Plant parameters”. This strategy operates 

directly on the CSD and the correct kinetic parameters are involved thus it provides the “Optimal” 

solution. However, since the CSD is difficult to measure online and in real time the non-weighted 

CLD (NW CLD) based optimum temperature trajectory was also computed.  The “NW CLD based 

optimum” curve has been calculated involving the “Plant parameters” based on the non-weighted 

CLD. As it can be seen, this curve, similarly to Figure 6a, is above of the CSD based optimal 

temperature profile. This PMM situation is demonstrated by carrying out a CLD based 

optimization involving the “Model parameters”, which is the “NW CLD based model profile”. 

This differs significantly from both the CSD and the CLD based optimal temperature profiles and 

it gives the worst CSD. The “NW CLD based GHE+NMPC” is a control simulation, started with 
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the “Model parameters” but the GHE continuously re-adjusts them, as it was described in the 

previous section. Very good agreement between the NMPC run and the CLD based optimal 

temperature profile can be achieved: these two cooling profiles practically overlap. The results 

indicate the robustness of GHE-NMPC combination against parametric PMM, ensured by the 

efficient state estimation and continuous model improvement. 

 

a) 

 

b) 

Figure 8. The performance of RHE: a) the open loop optimal temperature profiles and the GHE-

NMPC control and b) the corresponding product CSDs. 



 25 

Figure 9 illustrates the time evolution of the CSD during the GHE-NMPC run with temperature 

profile shown in Figure 8a. The optimal temperature profile creates supersaturation that causes a 

steady crystal growth while avoiding nucleation. As the amount of crystal increases the 

supersaturation is depleted faster hence the cooling can be accelerated as the batch progresses.  

 

Figure 9. The dynamic evolution of the CSD during the GHE-NMPC batch. 

According to the Figure 6b and Figure 9, there is an offset between the target and achieved CSDs 

in the CLD based optimization. This is caused by the fact that the CLD based optimum temperature 

is suboptimal for the CSD, which is indirectly controlled through the CLD. A batch-to-batch 

improvement strategy might be applied in which an artificial offset in the CLD target can be re-

estimated after each batch based on end of batch CSD measurement and calculated CSD with the 

PBM. This approach will inherently lead to the reduction of the difference between the target and 

CSD.  

Since both the NMPC and the GHE optimizations require considerable computational time, to 

achieve real time feasibility significant calculation speed-up is required, which can be achieved 
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using a combination of efficient real-time iteration scheme and novel formulation of the GHE-

NMPC approach.  

NMPC development and performance 

The significant calculation time requires the application of accelerated optimization techniques. In 

earlier studies the most common dynamic optimization algorithms have been compared  24,40 and 

it was found that the direct optimization and multiple shooting over-performed the direct single 

shooting in computational time, however, these were more sensitive for premature stops thus in 

this work the direct single shooting method is applied. 

Dividing the batch time into K = 400 (yielding a sampling time of 𝛿𝛿𝛿𝛿 = 216 𝑠𝑠) leads to an 

optimization problem with 400 decision variables (which decreases as the batch time evolves). By 

applying the direct single shooting approach this optimization problem would hardly be solvable 

in real time, especially during the first part of the batch, until the number of decision variables 

reduces to a reasonable number. In this work a, computationally more efficient formulation of the 

direct single shooting is developed, based on the division of the original optimization to smaller 

sub-problems by grouping the decision variables. This strategy is referred to as “repeated 

sequential optimization” (RSO). As Figure 10 shows, the basic idea behind the RSO is to reduce 

the number of decision variables initially and solve more, but simpler optimization problems, 

gradually approaching towards the solution that is equivalent to the solution corresponding to the 

full discretization on the time scale according to (𝛿𝛿𝛿𝛿). The first step is the calculation of a crude 

optimal temperature profile, using a fixed number of discretization (𝑛𝑛𝑝𝑝,1). Hence the discretization 

time interval changes as the NMPC progresses during the batch. For the first (coarse) optimization 

stage an equally distributed discretization time is used, recalculated for each NMPC iteration 𝑘𝑘, as 

∆𝑡𝑡1,𝑘𝑘 = max (𝛿𝛿𝛿𝛿, (𝑡𝑡𝐾𝐾 − 𝑡𝑡𝑘𝑘)/𝑛𝑛𝑝𝑝,1). In this example a discretization of 𝑛𝑛𝑝𝑝,1 = 10 was used.   
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In the second step the crude optimal profile from the level 1 optimization is used as the initial 

point for a second optimization, involving more decision variables (but still much less than the 

original problem). In this example the discretization was doubled (𝑛𝑛𝑝𝑝,2 = 20), halving the equally 

distributed time intervals, calculated similarly as before, as ∆𝑡𝑡2,𝑘𝑘 = max (𝛿𝛿𝛿𝛿, (𝑡𝑡𝐾𝐾 − 𝑡𝑡𝑘𝑘)/𝑛𝑛𝑝𝑝,2). As 

the second optimization is started from the close proximity of optimum, despite of increased 

number of decision variables, it converges quickly. The last stage is a third optimization: only the 

first interval of the second (“refined”) profile is divided according to the original sampling time 

(𝛿𝛿𝛿𝛿). Up to 10 intervals with the actual sampling time (𝛿𝛿𝛿𝛿) are used in this example. The rest of the 

first sampling time (∆𝑡𝑡2,𝑘𝑘 − 10𝛿𝛿𝛿𝛿) is lumped in a single decision variable and together with the 

other 𝑛𝑛𝑝𝑝,2 − 1 variables, corresponding to the other optimization time intervals, ∆𝑡𝑡2,𝑘𝑘, is solved in 

the third level optimization.   This optimization also converges quickly due to the existence of a 

good starting point. In each optimization step the initial temperature profile is calculated by 

interpolating the results from the previous step. The first temperature profile is interpolated from 

the optimal profile of the previous NMPC iteration. Piecewise cubic Hermite type interpolations 

are applied, calling the pchip function of Matlab. Note that since the optimization discretization 

intervals are recalculated in each NMPC iteration and are gradually shrinking, when ∆𝑡𝑡2,𝑘𝑘 = 𝛿𝛿𝛿𝛿 

the second optimization stage is practically the same as the third and when ∆𝑡𝑡1,𝑘𝑘 = 𝛿𝛿𝛿𝛿 is reached 

the number of optimization variables starts decreasing in a shrinking horizon approach and the 

three optimization levels practically collapse in the level three optimization problem only.   
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Figure 10. Schematic representation of the working principle of the three-stage repeated sequential 

optimization (RSO) strategy applied in the NMPC optimizations.  

The RSO is a pseudo-warm start strategy, as the initial point is (nearly) optimal but the Jacobian 

needs to be recalculated. Also, the last step of the algorithm puts higher accent on the optimization 

of near-future temperatures, which is particularly useful since only the first temperature is 

implemented in every NMPC iteration. 

The GHE/NMPC simulation, presented in Figure 7a was carried out with the RSO strategy, using 

the tuning parameters and constraints listed in Table 5. The achieved temperature profile is 

practically identical with the profile obtained with the full GHE/NMPC optimization of Figure 7a, 

which means that the RSO does not degrade the control quality. 

Table 5. NMPC constraints and tuning parameters 

Parameter Name Value/property 

𝒏𝒏𝒑𝒑,𝟏𝟏 Number of temperatures in first pre-optimization 10 

𝒏𝒏𝒑𝒑,𝟐𝟐 Number of temperatures in second pre-optimization 20 

𝑨𝑨𝒑𝒑,𝟏𝟏 Algorithm applied in first pre-optimization Interior-point method 
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𝑨𝑨𝒑𝒑,𝟐𝟐 Algorithm applied in second pre-optimization SQP 

𝑨𝑨𝒑𝒑,𝟑𝟑 Algorithm applied in (third) optimization SQP 

𝑵𝑵𝑰𝑰,𝟏𝟏 Maximum iteration in first pre-optimization 30 

𝑵𝑵𝑰𝑰,𝟐𝟐 Maximum iteration in second pre-optimization 60 

𝑵𝑵𝑰𝑰,𝟑𝟑 Maximum iteration in (third) optimization 100 

𝑻𝑻𝑪𝑪,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum cooling rate [oC/min] 0.5 

𝑻𝑻𝑪𝑪,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum cooling rate [oC/min] 0.01 

𝑻𝑻𝑭𝑭,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum final temperature [oC] 24 

𝑻𝑻𝑭𝑭,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum final temperature [oC] 18 

K Number of discrete time moments in total batch time 400 

 

The calculation times for solving the GHE and NMPC problems corresponding to a GHE/NMPC 

simulation are shown in Figure 11. As expected, the GHE calculation time increases with the 

iterations due to expanding estimation horizon. Also, there is a decreasing tendency in the NMPC 

simulation time, but, due to the working principle of RSO this does no shows linear trend. 

Nevertheless, the total calculation time is well under the applied 216 s sampling time. 
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Figure 11. Calculations times for the solution of the GHE and NMPC problems in each control 

interval, obtained with K = 400 (sampling time = 216 s) using the RSO strategy. Calculation times 

obtained on an Intel i7-2600 3.4 GHz CPU, 1333 MHz memory computer. 

The calculation time is comparable with the sampling time thus this delay needs to be included 

into the NMPC algorithm. In the jth time moment the (j+1)th temperature must be readily computed 

since this has to be implemented in that moment to the real process. Due to the significant 

computation time, the calculation of the (j+1)th temperature need to be carried out in the jth - (j-1)th 

time interval and must be finished (or stopped) at the latest when the process reaches the jth 

moment. However, the starting point of this optimization is the jth time moment. As a consequence, 

the initial states of NMPC optimizations are future states, which are supposed to be reached in the 

jth discrete time moment. These future states are estimated by the state estimator through process 

simulation. This strategy requires to find a tradeoff in choosing the best sampling time: applying 

higher sampling time reduces the probability of pre-mature optimization stops, hence the use of 

suboptimal control input, but on the other hand this might lead to less accurate state estimation, 

since the one step-ahead prediction of states may diverge more from the true value during a longer 

sampling period.  

The effects of sampling time on the deviation from optimal NW CLD based temperature profile 

are depicted in Figure 12. According to Figure 11 the maximum calculation time is around 160 s. 

These results confirm that the NMPC performance degrades if too low sampling time is applied, 

due to premature optimization stops, and also deteriorates with too high sampling times because 

of state estimation uncertainties. Of course, while computational restrictions represent a limitation, 

the selected sampling time must be in agreement with the process dynamics 41. Taking into 
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consideration the dynamics of industrial crystallizers 𝛿𝛿𝛿𝛿 = 144 𝑠𝑠 and 𝛿𝛿𝛿𝛿 = 216 𝑠𝑠 sampling times  

appear to be reasonable choices 27. 

 

Figure 12. Performance of constrained GHE/NMPC with the included computational delay: effect 

of sampling time on deviation from the optimal temperature profile. 

The GHE has the inherent property of mitigating the effects of disturbances. Although, if the 

measured signal is very noisy it might be meaningful to reduce the noise before using it in the 

control algorithm. Here an artificial random noise is applied on the “Plant” concentration data – 

that often occurs in real systems, which is then reduced in the NMPC using a first order Savitzky-

Golay filter 42. Based on the results of preliminary simulations, F = 51 frame length was applied 

in the filter. Comparison between the original, noisy and filtered concentrations is presented in 

Figure 13. It should be highlighted that using a proper calibration method and state-of-the-art 

spectroscopy tool, the measured concentration is significantly less noisy, thus it is more reliable 

for feedback control system.43 In this simulation we intentionally oversize the noise to push the 

system towards its limits.  
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Figure 13. Original, noisy and smoothed (Savitzky-Golay filter) concentrations.  

The results presented in Figure 14 indicate that the process behaves similarly with and without 

noise reduction. According to the simulations, the noisy concentration measurement translates to 

some noise in the implemented temperature profile, which, however, from practical aspects is 

negligible. As the figure shows, for noisy measurements the GHE should use more data points 

from the estimation horizon. Otherwise the effects of process noise can translate into poorly 

estimated kinetic constants from the GHE to NMPC, which significantly degrades the overall 

control performance. 
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Figure 14. The control performance under plus-minus 5% random noise in concentration: effects 

of state estimator tuning (𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚) and the concentration smoothing. 

It is remarkable that the last part of temperature profile with 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 = 400 presents 

instabilities. This is explained by the premature optimization stops (see the timings of Figure 15). 

As it was highlighted before, the simulation time increases with the number of time moments in 

which the results are calculated and returned by the simulation function. The GHE calculation time 

increases with 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚. This leads to pre-mature NMPC optimization stops, which translates into 

temperature profile instabilities in the affected domains. 

 

Figure 15. Calculation times with different GHE tuning, K = 400. Intel i7-2600 3.4 GHz CPU, 

1333 MHz memory. 𝑁𝑁𝑒𝑒𝑒𝑒 is 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚. 

Conclusions 

In this work a feasible chord length distribution (CLD) based nonlinear model predictive control 

system (NMPC) was developed and presented involving high accuracy full population balance 

model (PBM) based simulations. A fast CSDCLD transformation has been developed, according 

to which the most probable CLD of individual crystals are calculated based on mapping the 
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possible chord lengths of the cube shaped crystal. For the entire crystal population, the CLD is 

computed as the weighted sum of individual crystal CLDs.  

The parametric plant model mismatch (PMM) is a general problem in NMPC development as 

the crystallization kinetics is system sensitive. In this study a growing horizon estimator (GHE) 

was employed, which provides an adaptive feature for the NMPC system, making it robust against 

PMM. In addition to the estimation of un-measurable system states (initial point of NMCP 

optimization), the GHE also has the role of model parameter re-adjustment. This strategy 

continuously improves the prediction accuracy of the model and it adapts to the process under 

PMM conditions. 

To reduce the computational time an improved direct single shooting dynamic optimization 

algorithm was developed. The proposed repeated sequential optimization (RSO) approach 

improved significantly the calculation time with no effect on control performance. The required 

solution time (GHE+NMPC) is within the range of sampling times that would be suitable to use 

in the case of industrial crystallizers, indicating that the proposed efficient GHE/NMPC with real-

time iteration scheme is ready for implementation in practical setup. 

The GHE-NMPC was tested in simulations under parametric PMM conditions with significant 

concentration measurement noise. According to the results, good GHE tuning is a key for overall 

control system performance, and a well-tuned system is able to provide stable, high quality control 

even under realistic control conditions with practically relevant sampling time and PMM.  
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