Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine

This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers (<75 mg · day−1) were randomly assigned to ingest caffeine (1.5–3.0 mg · kg−1day−1; titrated) or placebo for 28 days. Groups were matched for age, body mass, V̇O2peak and Wmax (P > 0.05). Before supplementation, all participants completed one V̇O2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg−1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V̇O2peak test was completed on day 21 before a final, acute 3 mg · kg−1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V̇O2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen’s d effect size [ES] = 0.49; P = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; P = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; P = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; P > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all P > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion.