Combined effects of long-term sitting and whole-body vibration on discomfort onset for vehicle occupants

Occupants of automobiles experience discomfort after long drives, irrespective of how well designed a seat might be. Previous studies of discomfort during driving have focused either on the seat shape and materials (“static” properties), long-term discomfort (“fatigue” properties), or dynamics (“vibration” properties). These factors have previously not been considered together. This paper reports three studies with objectives to define and test a model for describing long-term discomfort from vibration. Study 1 was an independent measures laboratory trial using an automobile seat, which lasted 80 minutes; Study 2 was a repeated measures laboratory trial using a rail passenger seat, which lasted 60 minutes; Study 3 was a repeated measures field trial in a people carrier automobile, which involved 70 minutes of travelling. The findings showed that discomfort accrues with time but that more discomfort is experienced when subjects are also exposed to whole-body vibration. Exposure to whole-body vibration accelerates development of discomfort. The relationship between the reported discomfort, the vibration magnitude, and the exposure time can be described using a multifactorial linear model. It is concluded that ignoring parts of the multi-factorial model (i.e., static, dynamic, or temporal factors) will compromise understanding of discomfort in context.