Szykuła2019_Article_CombinedHydrophilicInteraction.pdf (868.58 kB)
0/0

Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics

Download (868.58 kB)
journal contribution
posted on 25.04.2019 by Katarzyna M. Szykula, Joris Meurs, Matthew Turner, Colin Creaser, Jim Reynolds
Untargeted metabolite profiling of biological samples is a challenge for analytical science due to the high degree of complexity of biofluids. Isobaric species may also not be resolved using mass spectrometry alone. As a result of these factors, many potential biomarkers may not be detected or are masked by co-eluting interferences in conventional LC-MS metabolomic analyses. In this study, a comprehensive liquid chromatography-mass spectrometry workflow incorporating a fast-scanning miniaturised high-field asymmetric waveform ion mobility spectrometry separation (LC-FAIMS-MS) is applied to the untargeted metabolomic analysis of human urine. The time-of-flight mass spectrometer used in the study was scanned at a rate of 20 scans s−1 enabling a FAIMS CF spectrum to be acquired within a 1-s scan time, maintaining an adequate number of data points across each LC peak. The developed method is demonstrated to be able to resolve co-eluting isomeric species and shows good reproducibility (%RSD < 4.9%). The nested datasets obtained for fresh, aged, and QC urine samples were submitted for multivariate statistical analysis. Seventy unique biomarker ions showing a statistically significant difference between fresh and aged urine were identified with optimal transmission CF values obtained across the full CF spectrum. The potential of using FAIMS to select ions for in-source collision-induced dissociation is demonstrated for FAIMS-selected methylxanthine ions yielding characteristic fragment ion species indicative of the precursor.

Funding

Owlstone Medical Limited

History

School

  • Science

Department

  • Chemistry

Published in

Analytical and Bioanalytical Chemistry

Volume

411

Issue

24

Pages

6309 - 6317

Citation

SZYKULA, K.M. ... et al, 2019. Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics. Analytical and Bioanalytical Chemistry, 411 (24), pp.6309-6317.

Publisher

Springer © The Authors

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

19/03/2019

Publication date

2019-04-23

Notes

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

ISSN

1618-2642

eISSN

1618-2650

Language

en

Licence

Exports