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ABSTRACT 

Condition monitoring of wind turbines with only operational data has received more attention in the last decade due 

to the advantage of freely available data without extra equipment needed. Although the operational data recorded 

by the Supervisory Control And Data Acquisition (SCADA) system are intended for performance monitoring and 

typically stored only every 10 minutes, information on the turbine’s health can be extracted. A major focus is here 

on the temperature signals of mechanical parts such as drivetrain bearings. Despite the fact that absolute 

temperatures rise very late in the case of a failure, the temperature behaviour might change well in advance. Model-

based monitoring is a tool to detect these small changes in the temperature signal affected by varying load and 

operation. Data-driven models are trained in a period where the turbine can be assumed to be healthy and represent 

the normal operation thereafter. Degradation and imminent failures can be detected by analysing the residual of 

modelled and measured temperatures. However, detecting failures in the residual is not always straightforward due 

to possibly unrepresentative training data and limited capabilities of this approach. A different way of using 

SCADA data lies in the estimation of damage accumulation with performance parameters based on the Physics of 

Failure methodology. A combination of model-based monitoring with damage calculation based on a Physics of 

Failure approach is proposed to strengthen the failure detection capabilities. The monitoring performance is 

evaluated in a case study with SCADA data from a wind farm. 
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1. INTRODUCTION 

With the exponential growth of wind energy in the last decades, the demand for optimised asset management of 

wind turbines has slowly evolved. In the early days of wind energy, scheduled and corrective maintenance were the 

appropriate measures for easy-to-access onshore farms and small turbines. With the move offshore and turbine 

capacities in the multi-MW category in recent years, the more complicated accessibility and significant financial 

losses for any downtime demand an optimised maintenance strategy. Condition-based or predictive maintenance as 

a proven strategy in other industries, promises to increase the efficiency of maintenance by optimising the point of 

intervention based on the condition of the system and risks of imminent failures.  

Condition-based maintenance requires adequate measurements and monitoring techniques to reveal the health of 

the turbine and probabilities of upcoming failures. Due to the complexity of a wind turbine, a single measurement 

cannot cover the monitoring of all possible structural, mechanical and electrical failures. Failure analyses showed 

that the gearbox and generator are the most critical subassemblies in terms of failure rate and the corresponding 

downtime [1,2]. Accordingly, research and industry have focused on condition monitoring of the underlying 

mechanical failure mechanisms in wind turbine drive trains, although structural health monitoring of the blades, 

tower and foundation and detection of faults in the power converter, pitch and yaw systems have also been 

investigated. Potential measurements were found as vibration, acoustic emission, strain, torque, temperatures or oil 

parameters combined with signal processing techniques such as filtering, synchronous sampling, Hilbert transform, 

Wavelet transform, Fast Fourier Transform and many others [3,4]. 
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More recently, the use of the operational data recorded by the Supervisory Control And Data Acquisition (SCADA) 

system has been investigated due the availability of such data without additional sensor installations. While these 

data are mainly intended for monitoring the performance of turbines in terms of power production, availability, 

possible misalignment and similar, several different applications to condition monitoring have been identified. 

Alarm logs in SCADA data might be analysed to find the root causes of events [5,6]. However, the most promising 

information for drive train condition monitoring lies in the temperature signals as mechanical degradation shows in 

increased thermal losses [7]. Drive train temperatures in wind turbines fluctuate with changing wind speed, 

rotational speed and loading. Accordingly, absolute temperature thresholds are known to give late alarms in 

contrast to vibration-based condition monitoring systems [3]. To overcome this drawback, model-based monitoring 

can reveal hidden trends in the temperature time series. Due to the complexity of wind turbine systems, data-driven 

learning is preferred to analytical building of models. Inputs for modelling drive train temperatures might be other 

temperatures, control signals as the power output or rotational speed or even the history of the target in a partly 

autoregressive approach. Modelling of the temperatures has been investigated with simple linear sums of inputs [8], 

artificial neural networks (ANNs) [9,10], adaptive neuro-fuzzy inference systems [11] or state estimation 

techniques [12]. A previous comparative study of the authors showed that most of the (non-autoregressive) 

techniques result in similar accurate prediction with slight advantages of ANNs [13]. 

In contrast to the model-based monitoring investigating temperature signals, the Physics of Failure approach tries 

to analyse the operational statistics derived from SCADA data in order to estimate the damage accumulation. In a 

case study with a big farm, it has been demonstrated that turbines with gearbox problems might be identified by 

their operational statistics [14]. 

In this paper, a combination of model-based monitoring with statistical analyses as used in the Physics of Failure 

approach is discussed and tested in a case study with data from an onshore wind farm. 

2. MONITORING WIND TURBINE DRIVE TRAINS WITH OPERATIONAL DATA 

The SCADA system in wind turbines usually measures multiple parameters with a sampling frequency of 1 Hz. 

Due to the fact that these measurements are originally intended for long-time performance monitoring, usually only 

averages and possibly extrema and standard deviations of ten minutes are recorded. The number and selection of 

measured signals depends on the turbine manufacturer or SCADA system provider, but wind speed and direction, 

pitch and yaw angles, rotational speed, power output and ambient temperature are always monitored. Additionally, 

temperatures of parts in the drive train are often measured – although with different levels of detail, e.g. only a 

generator and a gearbox temperature in one setup or more than twenty temperatures at different locations at the 

shaft in a more detailed configuration. The numerical SCADA data are supplemented by the alarm log listing all 

fault events happening during the operation. 

2.1. Normal behaviour modelling of SCADA temperatures 

Model-based monitoring [8–13] tries to identify anomalies in a system by comparing measured parameters with 

outputs of a model of the system. This kind of monitoring is able to highlight slight changes in measured signals 

affected by complex interaction of loading and heat transfers as in the wind turbine drive train. The model needs to 

predict the fluctuations of the temperature accurately enough to allow the residual of measured and modelled 

temperature to act as an indicator for possible degradation and imminent failure, as sketched in Figure 1. 
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Figure 1.Sketch of model-based monitoring and indication of anomalies in the residual. 

Although the basic heat generation in the drivetrain can be traced back to mechanical losses proportional to the 

acting wind and the rotational speed, the system is affected by more complex interaction of sub-systems, the 

ambient temperature and cumulative effects which make analytical modelling difficult. In contrast, data-driven 

modelling requires only a representative training period to learn the relationship. During this training phase the 

system needs to be in normal condition to enable detecting anomalies thereafter based on the difference to this 

behaviour. ANNs are a tool to learn and represent non-linear relationships inspired by the human brain. A common 

feedforward ANN trained by Levenberg-Marquardt backpropagation consists of one input layer, one or more 

hidden layers with a specified number of neurons and the output layer. Each neuron sums the weighted outputs of 

the previous layers and uses a non-linear activation function, typically a hyperbolic tangent, to generate an output. 

For the application of modelling a drivetrain temperature, a single linear output is used. 

The inputs for modelling can be chosen based on the understanding of the system (also called domain knowledge) 

or based on the properties of the signals, e.g. the correlation of signals. Although using partly autoregressive 

modelling might increase the accuracy of prediction, this will not necessary improve the anomaly detection 

capability as the prediction is influenced by the target signal and could adapt to changes in the behaviour. 

Wind turbine drivetrains usually consist of main bearings, main shaft, a gearbox build of a planetary and two 

parallel stages, the generator shaft and generator and multiple bearings. All possible target temperatures have to be 

monitored as behavioural changes might not only show up in the nearest sensor, but also in other signals.  

Any significant maintenance or replacement will alter the behaviour of the system. Accordingly, normal behaviour 

models need to be re-trained after such events. 

The model-based monitoring of drivetrain temperatures aims to detect slow degradation due to mechanical wear in 

bearings and gears. Early identification of these problems will enable the operator to optimise the maintenance 

scheduling and prevent long downtimes. However, challenges in representative training and limited detection 

capabilities result in significant uncertainties of this monitoring approach. 

2.2. Physics of Failure 

The Physics of Failure approach [14] aims to estimate damage accumulation based on a simplified physical model 

and operational statistics derived from SCADA data. Maintenance is to be targeted based on probabilities of 

failures. The basis of a Physics of Failure approach is a system analysis which includes a detailed system 

definition, potential failure modes with their causes and damage driving operating conditions. A damage 

accumulation model has to be built for each of the identified potential failure modes. Gray and Watson [14] 

gathered failure root causes of wind turbine gearboxes and derived several performance parameters from SCADA 

data to identify failure modes in a case study. The farm-wide comparison of the parameters such as average wind 

speed, rated power hours, brake application count, yaw movement, low speed and high power and rated speed 

hours, rotor starts and power dynamic, indicated that the failing turbines were affected by ‘high cycle fatigue due to 

poor contact between roller and raceway occurring at conditions of high stationary power’ [14]. A bearing damage 

model based on Lundberg-Palmgren’s bearing life formulae and linear Palmgren-Miner damage accumulation was 

proposed and applied using the SCADA signals power and rotational speed to approximate the bearing load. The 

damage model was only calibrated with the observed failures, but the resulting damage values of the failing 
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turbines were clearly higher than the 75% percentile of the farm. However, in terms of indicating problems in 

certain turbines, the farm-wide comparison of the rated power hours gave similarly helpful information. 

Accordingly, evaluating performance parameters can be prioritised over developing full damage models. 

3. CASE STUDY 

In this study, data from 12 turbines in an onshore UK wind farm with a capacity of approx. 1-3 MW are analysed. 

The SCADA records are available from a period of 2.5 years and consist of signals in 10 minute resolution as listed 

in    Table 1, available as averages (mean) and partly maximums (max), minimums (min) and 

standard deviations (std). No detailed specification of sensor types or locations is available. The temperature 

signals are numbered, but lack a descriptive labelling. 

   Table 1: Case study SCADA signals 

Parameter Signal 

Wind speed Mean, max, min, std 

Wind, nacelle and relative direction Mean 

Pitch angle Mean 

Generator speed Mean, max, min, std 

Electrical power Mean, max, min, std 

Power factor, frequency Mean 

Voltage and current per phase Mean 

16 temperatures Mean 

Active time for line, turbine, wind, 

ambient temperature, yaw motion 

Seconds of 600 

The investigated turbines were affected by several drivetrain subassembly or part replacements, which are gathered 

from a commented stoppage list as the only maintenance documentation. Five gearbox replacements, three 

generator replacements and six bearing replacements took place. Sufficient details to describe the failure are only 

given for one gearbox replacement, where gear teeth broke on the intermediate speed stage gear. Only three of the 

investigated turbines did not undergo any major replacement. 

Due to the missing temperature labels in this case study, the different failing parts cannot be targeted directly by 

normal behaviour modelling. Instead, all temperature signals are analysed and possibly helpful targets identified. 

Pre-processing is applied in terms of a validity check and removal of a complete sample if invalid values are found. 

ANN models with 20 neurons in one hidden layer are trained with data representing 3 months. Five inputs are 

automatically selected on the basis of the strongest correlation in the training phase. Re-training of models after 

major replacements or obvious system modifications is implemented. Residuals are filtered for steps > 5°C in the 

target, model prediction or residual. To reduce the fluctuations, residuals are smoothed by calculating the median of 

each 288 samples (two days). Warnings are generated based on a threshold representing 2% exceeding probability 

derived from a fitted Gaussian distribution to the residual from the training period. Alarms are raised only if more 

than 3 of possibly 10 warnings occur in a moving window. 

As a first step of the Physics of Failure approach, performance parameters are defined as given in Table 2. Due to 

the distribution of replacements in time, analysing statistics of the whole data as done in [14] would not be helpful. 

In contrast, the parameters are calculated for each month accumulating all data up to this date. Adequate 

normalisation is chosen to enable comparing of parameters from different data size. It has to be noted that the small 

number of turbines in this case study impedes any statistical analysis. 
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Table 2: Definition of performance parameters for failure analysis. All parameters (except TUS) are calculated for operation only by 

requiring power mean > 10%. 

Parameter Definition Normalisation / scaling 

Wind speed (WS) Average of wind speed mean 1.0 to 1.5 rated wind speed 

Turbulence (TU) Average of wind speed std 0 to 1.5 rated wind speed * 10 

Turbulence in standstill (TUS) Average of wind speed std (power < 10%) 0 to rated wind speed * 10 

Rated power (RP) Count if power mean > 90% Ratio: divide by sample size 

High wind speed (HW) Count if wind speed max > rated wind speed Ratio: divide by sample size 

Power factor inverse (PF) 1 – average of power factor mean *100 

Power dynamic (PD) Average of power std 0 to rated power * 10 

High rotational speed (HS) Count if generator speed mean > 90% Ratio: divide by sample size 

4. RESULTS 

4.1. Model-based monitoring 

Two temperatures are identified to relate to gearbox failures. The advance detection of problems is demonstrated in 

Figure 2 and 3. Gearbox problems are detected 39, 66, 75, 78 and possibly 492 days in advance for the five gearbox 

replacements, respectively. However, if the approach is applied to all turbines, a significant number of alarms is 

issued without known gearbox problems, see Figure 4. The alarms might be false or indicate other unreported 

problems. If the generator failures are to be detected, using another temperature shows good indication for the two 

replacements in the same turbine. However, the number of alarms in other turbines without generator replacement 

is high, see Figure 5. The alarm distribution over time indicates here a seasonal pattern visible in most turbines. 

Additionally, it seems possible, that some alarms might indicate gearbox problems. No clear alarm pattern is found 

in any of the temperatures for the bearing replacements. 

 

Figure 2. Detection of a gearbox problem with the time axis referring to the replacement date (temperature A, turbine 12). 
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Figure 3. Detection of a gearbox problem with the time axis referring to the replacement date (temperature B, turbine 2). 

 

Figure 4. Alarms for gearbox problems in all turbines based on temperature B. Unrelated alarms are marked red, gearbox 

replacements with a circle, generator and bearing replacements with a square and asterisk, respectively. 

 

 

Figure 5. Alarms for generator problems in all turbines based on temperature C. Unrelated alarms are marked red, generator 

replacements with a square, gearbox and bearing replacements with a circle and asterisk, respectively. 
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4.2. Operational statistics 

The analysis of the defined performance parameters showed that the whole farm is affected by changing operation 

during the whole 2.5 years of data as the parameter values from all turbines clearly vary with time. As there is no 

common pattern, it is most likely that the reported replacements of gearboxes, generators and bearings have diverse 

causes and failure modes. Examples are given in Figure 6 and 8 for selected dates with highlighted replacements 

happening in this month. The generator problem in turbine 4, Figure 6a, seems to be related to relative high wind 

speed and accordingly rated power operation and high speed. Noticeably, the reactive power generation was 

exceptionally high in this time in several turbines including the failing one (average power factor of 0.9947). The 

bearing replacements, Figure 6b and Figure 7a, are found with various parameter values. Although most of the 

replacements show low or average parameter values, some are linked to high turbulence in operation. A high 

turbulence could also be the driver of the two gearbox replacements in Figure 7b. 

  

         (a)            (b) 

Figure 6. Performance parameters for all turbines in July year 1 (a) and December year 2 (b). Generator and bearing replacements 

marked with square and diamond, respectively. The extrema of the parameters from all months are marked with a plus symbol. 

  

         (a)            (b) 

Figure 7. Performance parameters for all turbines in April year 3 (a) and July year 3 (b). Bearing and gearbox replacements marked 

with diamond and circle, respectively. The extrema of the parameters from all months are marked with a plus symbol. 

5. CONCLUSION 

Operational data from wind turbines could build an alternative and complement of dedicated vibration 

measurements. Model-based monitoring is a way to detect anomalies in the behaviour of wind turbine drive train 

temperature signals to detect mechanical degradation and possible failures. In contrast, the statistical analysis used 
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in the Physics of Failure approach tries to identify turbines at risk by evaluating the damage drivers with 

performance parameters. A combination of the two approaches is proposed to increase the reliability of monitoring. 

In a case study, both approaches are applied with the aim of finding early indications for several gearbox, generator 

and generator bearing replacements. In the model-based monitoring with ANNs and thresholds based on the 

residual distribution from training, early alarms for all gearbox replacements are issued. Similarly, generator 

problems in one turbine show up if using another temperature signal. However, many unrelated or possibly false 

alarms in turbines without reported problems of this type reveal challenges in getting reliable monitoring. The 

evaluation of the performance parameters results in the conclusion that different damage drivers and failure modes 

were involved. Particular high values in turbulence, reactive power generation and wind speed are found to 

correlate with some of the failed turbines. Although the properties of the case study limit the capabilities of both 

approaches, it can be seen that the combination of model-based monitoring and statistical analysis of SCADA data 

increases the knowledge of the system’s condition. 

In future works, the performance parameter values of this farm shall be compared to farms with similar settings. 

However, a thorough evaluation of the benefit of combining the two monitoring approaches will need better case 

data with a bigger farm size, more fault-free turbines and sufficient documentation. 
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