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Abstract

Our paper reports on the use of data envelopment analysis (DEA) for the assessment of

performance of secondary schools in Malaysia during the implementation of the policy of

teaching and learning mathematics and science subjects in the English language (PPSMI).

The novelty of our application is that it makes use of the hybrid returns-to-scale (HRS) DEA

model. This combines the assumption of constant returns to scale with respect to quantity

inputs and outputs (teaching provision and students) and variable returns to scale (VRS) with

respect to quality factors (attainment levels on entry and exit) and socio-economic status of

student families. We argue that the HRS model is a better-informed model than the

conventional VRS model in the described application. Because the HRS technology is larger

than the VRS technology, the new model provides a tangibly better discrimination on

efficiency than could be obtained by the VRS model. To assess the productivity change of

secondary schools over the years surrounding the introduction of the PPSMI policy, we adapt

the Malmquist productivity index and its decomposition to the case of HRS model.
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1. Introduction

Data envelopment analysis (DEA) is an established methodology used for the

assessment of efficiency and performance of organisations (Cooper et al., 2006; Thanassoulis

et al., 2008). In the area of education, DEA has been widely used for the assessment of

efficiency of the school provision at different levels (Grosskopf et al., 1999; Portela and

Thanassoulis, 2001; Färe et al., 2006; Portela et al., 2012), universities and their departments

(Avkiran, 2001; Thanassoulis et al., 2011), and the impact of education policies (Bradley et

al., 2001; Grosskopf and Moutray, 2001).

The two conventional models traditionally employed in DEA studies, including

applications in education, are based on the variable and constant returns to scale (VRS and

CRS) technologies. Even if the true (best practice) technology is assumed to be VRS, the

reference, or benchmark, CRS technology is often used as a part of the scale efficiency

calculations. For the assessment of a particular education policy, it is common to use the

Malmquist productivity index based on observations collected over a period of time, with its

subsequent decompositions into different components (Johnes, 2008; Ouellette and

Vierstraete, 2010; Thanassoulis et al., 2011).

The purpose of this paper is to demonstrate that in some applications, an example of

which is the focus of our study, a better-informed model of the education technology may be

obtained by the combination of VRS and CRS characteristics in one single formulation. To

put our argument in the school education context, suppose that we have both quantity and

quality performance factors (inputs and outputs). The quantity factors would typically include

teachers (or teaching time) and students, while the quality factors may include a measure of

academic attainment on entry (input) and on exit (output). It is often a legal requirement and

an accepted managerial practice that there should be a certain ratio between teachers and

students – this may vary between different schools or school types. Therefore, for example, a

10% increase of the student numbers requires the same increase of the teaching time. This

indicates that the relationship between teachers and students may be assumed to be of the

CRS type. It may, however, be difficult to argue that the CRS assumption extends to the

quality inputs and outputs, as there may be no simple proportional relationship between these

factors, in line with the quantity factors.

The above scenario poses a dilemma. In the described setting, the use of the CRS

model for the underlying education technology is clearly unsubstantiated. On the other hand,

the VRS technology is too conservative and does not use the information that students and
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teachers satisfy the assumption of CRS. The latter implies that the VRS model underestimates

the true technology and its use would lead to an overestimation bias of the efficiency scores.

In this paper we resolve the above dilemma by using the hybrid returns-to-scale

(HRS) technology developed by Podinovski (2004a). The HRS technology is a convex

polyhedral technology that exhibits CRS with respect to a subset of inputs and outputs (in the

above scenario, with respect to teachers and students), and only VRS with respect to the

remaining factors (quality inputs and outputs).

Our application concerns the performance of secondary schools in Malaysia in the

provision of mathematics and science subjects. In 2003, the government of Malaysia initiated

a new policy of teaching and learning these subjects in the English language (PPSMI). The

policy was introduced in stages at different levels of school education and became a subject

of wide debate within the Malaysian society (Ting, 2010).

In our study we focus on the upper secondary level of the school education and

consider four cohorts of student. Two of these graduated in 2005 and 2006, and were

educated before the PPSMI policy was introduced. The other two graduated in 2007 and

2008, and were educated under the new policy. Our data set includes 221 schools from three

selected states in Malaysia that have complete data on the four cohorts.

This application is, to the best of our knowledge, the first reported application of the

HRS technology with real-life data. Several contributions to the theory and methodology of

DEA should be highlighted.

First, we extend the theoretical foundations of the HRS model by developing its new

formulation. This is more intuitive than the original model and helps us to discuss the

properties of the model and the assumptions behind it, in particular, in the context of school

education. The original model is less intuitive but it is linear, and for this reason is used in the

actual computations.

Second, we argue that the HRS model correctly represents our knowledge of the

education technology, namely, that the quantity inputs and outputs satisfy the assumption of

CRS, while the quality factors should be excluded. It is therefore a better-informed model

than the standard VRS technology, in the described setting.

Third, our computations show that the HRS model produces a tangible practical

improvement of the discrimination on efficiency scores, compared to the VRS model. This is

because the HRS technology is an extension to the VRS technology and is, therefore, larger

than the latter. Interestingly, the efficiency scores are also usually lower in the HRS model

than in the CRS model (and the discrimination of the HRS model higher than that of CRS)
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although the opposite relationship is observed for some individual schools in our sample.

This is consistent with the theory and is explored in detail below.

Fourth, in order to assess the productivity change of the secondary education sector in

the years surrounding the implementation of the PPSMI policy, we use the Malmquist

productivity index and its decomposition. Although the extension of the Malmquist index to

the case of HRS technologies is straightforward in principle, there is a particular difficulty

that needs to be overcome. The conventional Malmquist index decomposition requires the

assessment of efficiency of productive units in the VRS production technology and its

reference CRS technology, constructed for the given and reference years. In these

computations, the CRS technology is the cone extension of the VRS technology – it serves as

the reference in the assessment of scale efficiency change and boundary shift. If, as in our

study, the underlying technology is HRS, its cone extension is not the CRS but the cone-HRS

(C-HRS) technology developed by Podinovski (2009). The latter is generally larger that both

the HRS and standard CRS technology (and their union). Our application demonstrates how

the Malmquist index can be decomposed and interpreted using the C-HRS technology.

The results of our study are largely consistent with the current discussion of the

implications of the PPSMI policy on the school education (Ting, 2010). In particular, we find

evidence that the average productivity of secondary schools in the teaching of mathematics

and science subjects declined in the two years following the introduction of the policy. The

biggest drop in school productivity was observed in 2007 – the first year of implementation

of the policy at the upper secondary level, followed by a tangible, but not full, recovery in the

year 2008. Our analysis also shows that this decline in schools in rural locations was greater

than in urban locations. Moreover, in the case of rural locations, it had already started before

the implementation of the policy but was less pronounced than in the years after its

implementation. This indicates that the decline of productivity over all these years might have

had a more complex nature than previously thought.

2. Preliminaries

2.1. Application background

The secondary education in Malaysia spans a period of five years: three years at the lower

secondary level and two years at the upper secondary level. At the end of the lower secondary

level students’ performance is evaluated through an examination referred to as Lower

Secondary Assessment (PMR). This examination is partly school based and adheres to the
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national guidelines set by the Malaysian Examination Syndicate. Following this examination,

students move to more specialised fields of study at the upper secondary level. At the end of

the upper secondary level all students take the Malaysia Certificate of Education (SPM)

examination. This examination is centrally administered and is considered to be equivalent to

GCSE qualifications in England. A further one or two years of post-secondary education is

required for entry to higher education.

Until 2003, all mathematics and science subjects at the secondary school level had

been taught in the national language Bahasa Melayu. Starting in 2003, the Ministry of

Education Malaysia introduced a new policy known as the Teaching and Learning of

Mathematics and Science Subjects in English (PPSMI). The policy aimed at improving the

English language skills of Malaysian students in the areas important for science, technology

and international trade (Ting, 2010). Under the PPSMI policy, English became the medium of

instruction in the teaching of all mathematics and science subjects. The implementation of

this policy was carried out in stages beginning with the 2003 school year. At the upper

secondary level the PPSMI policy was fully implemented starting in 2007.

Since its introduction, the purpose and benefits of the PPSMI policy became a subject

of wide debate within the Malaysia society (Yahaya et al., 2009; Ting, 2010). Critics of the

policy pointed, among other negative effects, poor students’ performance in science subjects

because of their weakness in the English language, and a disproportionate negative effect of

the policy on schools in rural locations. The supporters of the policy highlighted the benefits

of the policy and argued that the critics made unsubstantiated generalisations from limited

studies of the effects of the policy.

Following the growing public pressure to reverse the PPSMI policy, in 2010 the

Ministry of Education announced its decision to reinstate the national language for the

teaching of mathematics and science subjects, starting in 2012. The main reason for this

decision was the steady decline in the performance of students in these subjects as shown by

the Ministry’s own records and various studies (Ting, 2010).

2.2. Data collection

Data collection for this study started with an application to Economic Planning Unit

(EPU), Prime Minister’s Department Malaysia. Permission to conduct the research was

granted by EPU in April 2008. With this permission, data for our study were obtained from

Malaysian Examination Syndicate, Educational Planning and Research Division and School

Division.



6

The Ministry of Education of Malaysia gave their permission to evaluate the

performance of schools in the three northern states: Kedah, Penang, and Perlis. Overall, this

included 303 secondary schools.

In order to assess the performance of schools before and after the implementation of

the PPSMI policy, our analysis involved four cohorts of student. Two of these (2003 – 2005

and 2004 – 2006) were educated at the upper secondary level and took their PMR and SPM

exams before the introduction of the policy. The other two cohorts, 2005 – 2007 and 2006 –

2008, were educated and took their exams entirely under the new policy.

Out of all schools in the three states only 237 had complete data on the four cohorts.

This sample was reduced further by 16 schools that caused the well-known but rarely

reported infeasibility problem in the application of the Malmquist index methodology (Färe et

al., 1994b; Briec and Kerstens, 2009). Our final sample consisted of 221 schools from the

three states.

3. Inputs and outputs

The focus of our study is on the performance of schools in Malaysia in the teaching of

mathematics and science subjects at the upper secondary level. The choice of inputs and

outputs for this assessment reflects this focus, and includes relevant quantity, quality and

socio-economic factors. These are shown in Table 1.

< Table 1 here >

3.1. Inputs

The first five inputs represent the teaching provision in mathematics and science

subjects. Based on the available data, these inputs are measured as the number of classes

provided by a school in a specific subject. The class size typically varies between 25 and 30

students but on some occasions may be outside this range. In the Malaysian education system

each class is supported by 1.5 teachers. Multiplying the number of classes in a subject by 1.5

would produce an accurate estimate of the number of teachers involved – but technically

would be just a data rescaling exercise and result in an equivalent model. Our data set also

showed the number of teachers employed by the school. We decided not to use this data

because teachers often teach several different subjects and may have an uneven teaching load.

It would therefore be unreliable to attribute a particular number of teachers to a certain

science subject based on this type of data.
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Two further inputs represent the number of students who joined the upper secondary

level mathematics and science subjects with good grades (grades A and B in the relevant

subjects in PMR examinations). These inputs control for the quality of the student intake and

should positively influence the quality of the output.

The last input represents the number of students from families of high socio-economic

status (SES). The latter is measured based on the family’s income.

3.2. Outputs

The first five outputs represent the number of students on exit in each of the

mathematics and science subjects. This measure represents a quantity (volume) output that

requires resources (teaching time or classes) to produce. The authors are aware that some

studies of school efficiency treat the number of students as input (Johnes et al., 2012).

Because our goal is to model the education technology (and improve it by expanding the

VRS model to HRS, as explained below), we differentiate between the inputs and outputs

according to the theoretical axioms underpinning the definition of technology. The axiom of

free disposability classes students as output because it is possible (within the technology) to

teach fewer students rather than more, with the same resources.

The last five outputs measure the number of students who achieved good grades

(grades A and B) in the SPM examination in a relevant subject on exit from school. These

represent the quality of the education process.

4. Motivation of the new methodology

The VRS and CRS models are two conventional choices of DEA model. We would

argue that the assumption of CRS is problematic in our application. Indeed, if all the eight

inputs in Table 1 are increased by, for example, 10%, only the quantity outputs may be safely

assumed to increase in the same proportion, as required by the CRS model. The five quality

outputs may not necessarily increase in the same proportion because there is no simple linear

relationship between the socio-economic status and attainment on entry as inputs, and

attainment on exit as output.

The above implies that the VRS model might be a reasonable choice for our task.

Furthermore, because we have a relatively large data set, we would expect the efficiency

scores to be sufficiently discriminating and meaningful.
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Let us show that the VRS model underutilizes our knowledge of the education

process, and a larger model incorporating this knowledge would be a better estimate of the

true technology. Consider the two scenarios.

4.1. Expansion scenario

Assume that the teaching resources of a school are increased by some factor 1 

while keeping the quality and socio-economic inputs unchanged. (For example, 1.1 

corresponds to an increase of 10%.) In our model specification this means that the number of

classes in mathematics and science subjects increase by  . Based on the existing staffing

policy, it should be possible for the school to increase the number of students in all the

subjects by the same factor  . The above proportional relationship involves only the quantity

inputs and outputs, and excludes quality and socio-economic factors.

As already discussed, the incorporation of the number of good students on exit in the

above proportion between the quantity measures is questionable. Furthermore, we do not

need to include the good students on entry and students from high SES in this proportion

either because this is not needed for the increase of the quantity outputs by  .1

Finally, if the number of classes and students are increased in proportion  , we do

not know how the number of good students on exit might change, especially taking into

account that the number of good students on entry is assumed to be constant. It may be

argued that the number of good students may increase (for example, because the attainment

on exit is not only a function of the attainment on entry, and therefore some students not

classed as good on entry should become good students on exit). However, because we do not

have any reliable information about this process, we assume the worst-case scenario: that the

number of good students on exit stays constant for all 1  .

The above can be summarized as the following assumption.

Assumption 1. For any school, it is technologically possible to change its inputs and outputs

as follows:

 The number of classes in each of the mathematics and science subjects, and the

corresponding number of students in each subject are increased by the same factor

1  .

1 By excluding the quality and SES inputs from the proportion, we state a stronger assumption and make the
model of technology larger. Indeed, this assumption implies that it is possible to increase the number of students
by  by increasing the number of classes by  , without an increase of quality and SES inputs.
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 The number of good students on entry and exit, and the number of students from high

SES remain unchanged.

4.2. Contraction scenario

Assume that the teaching resources of a school are reduced by some factor [0,1] 

while keeping the quality and socio-economic inputs unchanged. (For example, 0.9 

corresponds to a reduction of 10%.) Similar to the expansion scenario, this would imply a

reduction of the number of students in all mathematics and science subjects by the same

factor  .

Similar to the expansion scenario, we rely on the worst-case scenario to describe the

response of good students on exit to the reduction of classes and students with 1  . Note

that we do not really know how the reduction of the number of classes might affect the

number of students with good grades on exit. Therefore the only safe and undisputed

assumption is that these numbers drop to zero, for even a small reduction of the inputs.

Obviously, this statement appears over-pessimistic and unrealistic, and the exact

change of the number of good students on exit can be subject to further debate. Fortunately,

this is not important if the technology is convex, such as the hybrid returns-to-scale

technology formulated below. Theorem 1 proved and discussed in Podinovski (2004a)

implies that, in our example, the described worst-case scenario is equivalent to the

assumption of proportional change of the quality outputs by the same factor  , in line with

the classes and student numbers. In other words, the assumption of convexity has a

smoothing effect on the sudden drop of the outputs in the worst-case scenario.2

The following assumption describes the above worst-case scenario taking into account

that the resulting technology is supposed to be convex.

Assumption 2. For any school, it is technologically possible to change its inputs and outputs

as follows:

2 The following simple example illustrates the reasons of this equivalence. Consider the DMU (1,1)A  , where

the first component is input and the second is output. If we assume the logic of the worst-case scenario and
change the input to any 0 1x  , the output drops to zero and the resulting unit becomes ( ,0)x . When 0x  ,

we have the unit (0,0)B  . Let 0 1  . If the technology is assumed convex, the combined unit

(1 ) ( , )A B      is an element of this technology. Note that the unit ( , )  is obtained from A by the

proportional reduction of its input and output by the factor  . Therefore, even though we assume that the output
drops to zero with the reduction of the input by factor  , the assumption of convexity implies that a smoother
decline of the output in proportion  is also feasible in the technology.
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 The number of classes in each of the mathematics and science subjects, and the

corresponding number of students in each subject are reduced by the same factor

[0,1]  .

 The number of good students on entry, and the number of students from high SES

remain unchanged.

 The number of good students on exit is reduced by the same factor  . (As discussed,

we can alternatively assume that that the number of good students on exit is reduced

to zero, or to any number within the range [0, ] . The resulting model of technology

would be the same.)

4.3. Further discussion of Assumptions 1 and 2

Although Assumptions 1 and 2 may seem to be too conservative, they are easy to

justify and do not require any specific knowledge as to how the number of good students on

exit actually responds to the change of the number of classes and students. Note that even

these weak assumptions are stronger than those that define the VRS technology: the latter

does not allow any scaling of the classes and students.

The treatment of the expansion and contraction scenarios in Assumptions 1 and 2 is

symmetrical and based on the same principle. Namely, in both scenarios we assume the worst

possible (and most defensible) outcome. In the case of expansion, this implies that the

number of good students on exit remains constant, and in the case of contraction it is reduced

to zero.

The worst-case statement of the contraction scenario is clearly unacceptable from the

managerial point of view. For this reason we presented Assumption 2 in the more acceptable

form stating that the number of such students decreases in proportion  , which is an

equivalent assumption leading to the same model of technology.

Note that, even if we assume that the number of good students on exit drops to zero,

Assumption 2 does not state what the actual reduction is. It only affirms that it is

technologically possible to have no good students on exit – even if this cannot be allowed. It

does not imply that a more reasonable (smoother) reduction of the number of good students

on exit is impossible. As noted, the smoother proportional reduction is added to the model of

technology by the convexity assumption.

A parallel may be drawn with the definition of conventional CRS technology based

on the axioms stated in Banker et al. (1984). One of these is the assumption that the CRS
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technology is convex. In particular, the latter implies that convex combinations of observed

units are technologically possible. The sum of weights of the units used in a convex

combination is equal to one. This does not contradict the fact that in the CRS technology the

sum of weights can be any nonnegative number – the latter follows from another assumption

stating that the units can be scaled up and down. Similarly, in our case Assumption 2 states

that worst-case scenario is technologically possible – this does not contradict the fact that the

convexity assumption adds more realistic units.

Assumptions 1 and 2 are the statements of selective proportionality (Podinovski

2004a) between a subset of inputs (classes) and a subset of outputs (student numbers). This is

different from the assumption of full proportionality between all inputs and outputs in the

CRS model. Below we describe the model that allows us to incorporate Assumptions 1 and 2

in the analysis.

5. The hybrid returns-to-scale model

5.1. Basic definitions and notation

The hybrid returns-to-scale (HRS) model was developed by Podinovski (2004a). The

underlying HRS technology is an extension to the standard VRS model in which a subset of

outputs is assumed proportional to a subset of inputs, as in the above Assumptions 1 and 2.

For a brief introduction of this technology, consider the following notation. Let T be a

production technology with the set {1,..., }m  of inputs and the set {1,..., }s  of outputs.

Its elements ( , )X Y T are referred to as DMUs. Let {1,..., }J n be the set of observed

DMUs. These are stated as ( , )j jX Y , j J .3

Let P   and P   denote the subsets of inputs and outputs that are assumed to

be mutually proportional. In our application, the set P includes five quantity inputs – the

number of classes in each of the five subjects. The set P includes five quantity outputs – the

number of students in the corresponding subjects.

Let \NP P    and \NP P    be the complementary subsets of inputs and

outputs, respectively. In our application, the set NP includes the number of good students on

3 A usual assumption (required for the correct statement of the technology and DEA models based on it) is made
that each observed unit has at least one positive input and output. It is also assumed that, for each input i 

there exists an observed unit j J such that its input 0jiX  . Similarly, it is assumed that for each output

r , there exists an observed unit j J such that its output 0jrY  .
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entry in mathematics and science, and the number of students from high SES. The set NP

includes five quality outputs: the number of good students on exit in each of the five subjects.

Any unit in technology T can be stated in the extended form as

( , ) ( , , , )P NP P NPX Y X X Y Y , where the component subvectors PX , NPX , PY , and NPY

correspond to the subsets P , NP , P , and NP , respectively.

5.2. Axioms

Following Podinovski (2004a), the HRS technology is defined by the following six

axioms.

Axiom 1 (Feasibility of observed data). ( , )j jX Y T , for all j J .

Axiom 2 (Free disposability of inputs and outputs). Let ( , )X Y T . Consider any unit

( , ) m sX Y 


   such that X X  and Y Y  . Then ( , )X Y T   .

Axiom 3 (Convexity). Technology T is a convex set.

Axiom 4 (Selective proportionality: expansion scenario). Let ( , )X Y T . Then the unit

( ( ), ( )) ( , , , )P NP P NPX Y X X Y Y T     , for any 1  .

Axiom 5 (Selective proportionality: contraction scenario). Let ( , )X Y T . Then the unit

( ( ), ( )) ( , , , )P NP PX Y X X Y T    0 , for any [0,1]  .

Axiom 6 (Closedness). Technology T is a closed set.

The first three of the above axioms are the standard axioms that define the VRS

technology of Banker et al. (1984). Axioms 4 and 5 add DMUs to the technology by allowing

selective proportional scaling of the inputs and outputs in the sets P and P . Note that these

two axioms reflect the worst-case scenarios stated by Assumptions 1 and 2 above.

As proved in Podinovski (2004a, Theorem 1) if Axiom 3 is assumed, then Axiom 5 is

equivalent to its following variant, which supports our discussion of the worst-case scenario:

Axiom 5*. Let ( , )X Y T . Then the unit ( ( ), ( )) ( , , , )P NP P NPX Y X X Y Y T      , for

any [0,1]  .

Finally, Axiom 6 states that all limit points belong to the technology, that is T is a

closed set. While this axiom is redundant in the VRS technology (it follows from Axioms 1 –

3 if only these axioms are assumed), it is no longer redundant and needs stating if the

selective proportionality is allowed. The latter was demonstrated by an example in

Podinovski (2004a).
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5.3. The HRS technology

Our main development employs the minimum extrapolation principle that was first

used in DEA for the definition of the VRS technology by Banker et al. (1984). To emphasize

the importance of this principle, note that the VRS technology is conventionally assumed to

be defined by the above Axioms 1 – 3. Note that there are many other technologies that

satisfy the same three axioms: for example, the CRS and non-increasing returns-to-scale

technologies. It is easy to prove that the VRS technology is a subset of any other such

technology and is, therefore, the intersection of all technologies that satisfy Axioms 1 – 3.

This fact implies that the VRS technology includes only those units that are necessary to

satisfy the stated axioms. Any other technology includes some units that are arbitrary

additions and do not follow from the axioms. For example, the CRS technology includes

scaled units that are not assumed feasible by the stated Axioms 1 – 3. In other words, the

VRS technology is the smallest technology that satisfies Axioms 1 – 3.

The definition of the HRS technology HRST by Podinovski (2004a) follows the same

minimum extrapolation principle as in the case of VRS. Namely, the HRS technology does

not only satisfy Axioms 1 – 6 but is also the smallest among all technologies that satisfies

these axioms.

As a new development, below we define the related technology *T based on Axioms

1 – 5 only. Technology *T is a subset of technology HRST and allows a simpler and more

intuitive interpretation than HRST . According to Theorem 3 proved below, HRST is “close

enough” to *T and is obtained by adding the “missing” limit (boundary) points to the latter4.

Definition 1. Technology *T is the intersection of all technologies m sT 
  that satisfy

Axioms 1 – 5.

Definition 2. The HRS technology HRST is the intersection of all technologies m sT 
  that

satisfy Axioms 1 – 6.

The following is a new result that is useful for the interpretation of the above two

technologies.

Theorem 1. Technology *T is the set of all units ( , ) m sX Y 
 for which there exist vectors

, , n    such that the following conditions are satisfied:

4 As shown in Podinovski (2004a), Axioms 1 – 5 do not imply Axiom 6. Therefore *T is generally not a closed
technology.
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 P P
j j j j

j J

X X  


 (1.1)

 P P
j j j j

j J

Y Y  


 (1.2)

NP NP
j j

j J

X X


 (1.3)

 NP NP
j j j

j J

Y Y 


 (1.4)

  1 (1.5)

  1 (1.6)

1T  1 (1.7)

(In the above statement and below we use bold vectors 0 and 1 to denote vectors of zeros

and ones, respectively. The dimension of these vectors is obvious from the context in which

they are used. The superscript T in (1.7) denotes transposition.)

The meaning of conditions (1.1) – (1.7) is intuitively clear. Each term j J on the

left-hand side of inequalities (1.1) – (1.4) is obtained from the observed unit ( , )j jX Y by first

its selective proportional extension with 1j  and its subsequent contraction with [0,1]  .

According to assumed Axioms 4 and 5* (the latter equivalent to Axiom 5), the resulting units

are considered to be in technology *T . The whole left-hand side of conditions (1.1) – (1.4) is

the convex combination of all such units taken with the weights j . By Axiom 3 it represents

a unit in technology *T . Finally, the unit ( , ) ( , , , )P NP P NPX Y X X Y Y on the right-hand side

is dominated by the unit on the left-hand side and is also in *T .

The following result is the original statement of the HRS technology in the linear

form.

Theorem 2 (Podinovski 2004a). Technology HRST is the set of all units ( , ) m sX Y 
 for

which there exist vectors , , n    such that the following conditions are satisfied:

( ) P P
j j j j

j J

X X  


   (2.1)

( ) P P
j j j j

j J

Y Y  


   (2.2)

NP NP
j j

j J

X X


 (2.3)
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( ) NP NP
j j j

j J

Y Y 


  (2.4)

   0 (2.5)

1T  1 (2.6)

The relation between technologies *T and HRST becomes apparent when we consider

the following substitution of variables. Let some unit ( , ) *X Y T . By Theorem 1, ( , )X Y

satisfies all conditions (1.1) – (1.7) with some vectors , , n    . It is straightforward to

verify that the unit ( , )X Y then also satisfies conditions (2.1) – (2.6) with the same vector 

and the vectors , n   defined from the following equations, for each j:

j j j j j j        , (3)

j j j j     . (4)

Alternatively, equalities (3) and (4) are restated as

( 1)j j j j     , (5)

(1 )j j j    . (6)

Interestingly, the above substitution (5), (6) maps technology *T on a subset of

technology HRST but the converse is not true: a unit represented by conditions (2.1) – (2.6)

may not always be represented by conditions (1.1) – (1.7). This result is not unexpected

because technology *T is generally a proper subset of HRST .

The following is a more precise statement of the above observation. We use notation

( *)cl T for the closure of the set *T . This is defined as the intersection of all closed sets T

such that *T T .

Theorem 3. ( *)HRST cl T .

Theorem 3 allows us to extend the above interpretation of units in technology *T to

technology HRST . Indeed, let ( , ) HRSX Y T . Then one of the two cases is possible:

1) The unit ( , )X Y is also in technology *T . As discussed, any such unit is obtained by

selective proportional expansion and/or contraction of one of the observed units, or is

a convex combination of such scaled units, or is dominated by the latter.

2) The unit ( , ) *X Y T . By Theorem 3, ( , )X Y is a limit point (unit) of some sequence

of units ( , ) *t tX Y T .
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Therefore, in summary, any unit in the HRS technology HRST can be classed as one

(or more than one) of the following five types: an observed unit, a selectively up-scaled or

down-scaled unit, a convex combination of the former types, a dominated unit, or a limit unit

of the previous types.

5.4. Efficiency assessment with the HRS model

The use of technology HRST in DEA models is straightforward. For example, the

output radial efficiency of a particular DMU 0 0( , ) HRSX Y T is obtained by inverting the

optimal value of scalar variable  in the following program:

max , subject to 0 0( , ) HRSX Y T  . (7)

For practical computations, we use Theorem 2 to restate (7) as a linear program.

Namely, the conditions of program (7) are stated in the form (2.1) – (2.6), in which the unit

( , ) ( , , , )P NP P NPX Y X X Y Y on the right-hand side is replaced by the unit

0 0 0 0 0( , ) ( , , , )P NP P NP
oX Y X X Y Y   .

Note that the conventional VRS technology is a subset of the HRS technology5, and

therefore the efficiency discrimination of the HRS model (7) should be better than the VRS

model. Our computations presented below support this general observation.

6. Computations and analysis

6.1. Analysis of efficiency

The first step of our analysis involved the assessment of output radial efficiency of all

221 schools in our sample, separately for each of the four years 2005 – 2008. For example,

the efficiency of schools in year 2005 was assessed using the data for cohort 2003-2005.

Similarly, the efficiency in year 2006 was evaluated based on the data for cohort 2004-2006.

We performed computations in the HRS technology described above. For reference

purposes, we also computed the output radial efficiency of schools in the VRS and CRS

technologies. All computations were programmed and executed in a commonly available

linear optimiser. The computation results are summarised in Table 2.

< Table 2 here >

5 The description of VRS technology is obtained from conditions (2), where  and  are zero vectors.
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As theoretically expected, the DEA model based on the HRS technology

discriminates better on efficiency than the model based on the VRS technology, because the

latter is a subset of the former. In our analysis the mean efficiency in the HRS model is

between 4% to 5% lower than in the VRS model.

It is also interesting to compare the results of the HRS and CRS models. Although

above we argued against the use of the CRS model with the inputs representing quality and

socio-economic factors, theoretically it is still worth comparing the scores, especially because

the CRS model is conventionally regarded as the best discriminating DEA model. Neither the

HRS nor the CRS technology is a subset of the other, and there are schools in the sample

whose efficiency is lower in the CRS model than in HRS, and vice versa. However, overall

the HRS model outperforms the CRS model in each year of analysis – the mean efficiency in

the former is between 2% to 4% lower than in the latter. An interesting implication of this is

that, even if there are doubts about whether the quality inputs and outputs should be included

in the proportionality assumption, the negative decision (resulting in the use of HRS over

CRS) is beneficial in both ways: this improves our confidence in the model specification and

improves the discrimination of the model. This contrasts with the usual dilemma involving

the choice of VRS or CRS technology: the former is a safer assumption but the latter leads to

a better discrimination.

The efficiencies in Table 2 are also interesting from the policy perspective. The lower

mean efficiency implies a bigger gap between the best and worst performing schools.

Although the difference between the years is not very large (for the same model), we can still

observe that the gap is the biggest (by about a 1% to 2% margin) in year 2008, when the

PPSMI policy was in the second year of implementation. This suggests that some schools

have benefited more from the policy than the others.

6.2. The Malmquist index

Below we describe the application of the Malmquist index and its decomposition for

the analysis of change of school productivity, observed over the implementation period of the

PPSMI policy. The traditional use of the Malmquist index involves the VRS technology and

its cone extension – the CRS technology (Färe et al., 1994a, 1994b).6 Because the technology

in our application is assumed to be HRS (instead of VRS), we need its cone extension to

6 Alternative decompositions of the Malmquist index are discussed by Lovell (2003) and Grosskopf (2003).
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obtain a similar decomposition to the conventional approach. The following known result

describes the required technology which is referred to as the cone-HRS (C-HRS) technology.

Theorem 4 (Podinovski 2009). The cone extension C HRST  to technology HRST is the set of all

units ( , ) m sX Y 
 for which there exist vectors , , n    such that all conditions (2.1) –

(2.5) are satisfied.

Theorem 4 implies that the cone technology C HRST  is obtained by omitting the

normalising equation (2.6) from the statement of technology HRST .

Following traditional notation, let units ( , )t tX Y and 1 1( , )t tX Y  represent the same

school in years t and 1t  , respectively. Let ( , )t t t
HRSE X Y and ( , )t t t

C HRSE X Y be the output

radial efficiency of the given school in technologies t
HRST and t

C HRST  respectively,

constructed by the data set from year t. Define 1 ( , )t t t
C HRSE X Y
 and 1 1( , )t t t

C HRSE X Y 
 in a

similar way. For example, 1 ( , )t t t
C HRSE X Y
 denotes the output radial efficiency of the given

school ( , )t tX Y relative to the frontier of technology 1

C HRS

tT


 .

The Malmquist index of productivity change can be defined and interpreted on the

cone technology C HRST  in the same way as on the cone CRS technology. By taking the

geometric mean of the period t and period 1t  Malmquist productivity indexes, we obtain

1
1 1 1 1 1 2

1 1

1

( , ) ( , )
( , , , )

( , ) ( , )

t t t t t t
t t t t C HRS C HRS

C HRS t t t t t t
C HRS C HRS

E X Y E X Y
M X Y X Y

E X Y E X Y

    
   

 
 

 
  
 

, (8)

As in the conventional case of CRS, the meaning of (8) is straightforward. The first

ratio in (8) assesses the change of the average productivity of the school using the cone

technology in year t. The second term uses technology in year 1t  .7

7 Let T be any technology that satisfies the very weak assumptions stated in Podinovski (2004b) – for example T
can be a VRS or HRS technology. Let C be the cone extension of T (for example, CRS or C-HRS, respectively).
Podinovski (2004b, page 233) proves that the radial efficiency (obviously the same in both input and output
orientations) of any unit ( , )X Y T in technology C is equal to the minimum of the ratio /  , subject to the

condition ( , )X Y T   . In other words, the output (or input) radial efficiency of the unit ( , )X Y in C is equal

to its average productivity expressed as a fraction of the average productivity of its most productive scale size

(MPSS). For example, if ( , ) 0.5t t t
C HRSE X Y  , the unit’s average productivity is 50% compared to its MPSS in

the form ( , )X Y  found in technology t
HRST . If at the same time 1 1( , ) 0.6t t t

C HRSE X Y 
  , the average

productivity of the unit (compared in the latter case to a generally different MPSS but still in the same

technology t
HRST ) has improved in year 1t  compared to year t by a factor 0.6 / 0.5 1.2 .
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Repeating the logic of the Malmquist index decomposition as in Färe et al. (1994a),

we decompose the school productivity change (8) in two adjacent years t and 1t  as

follows:

1 1( , , , )t t t t
C HRSM X Y X Y TE SE T 
     ,

where

1 1 1( , )

( , )

t t t
HRS

t t t
HRS

E X Y
TE

E X Y

  

  , (9)

1 1 1 1 1 1

1 1 1

( , ) ( , ) ( , )

( , ) ( , )( , )

t t t t t t t t t
C HRS C HRS

t t t t t tt t t
HRS HRS

SE X Y E X Y E X Y
SE

E X Y E X YSE X Y

     
 
  

   
      

   
, (10)

1
1 1 2

1 1 1 1

( , ) ( , )

( , ) ( , )

t t t t t t
C HRS C HRS
t t t t t t
C HRS C HRS

E X Y E X Y
T

E X Y E X Y

 
 
   
 

 
   

 
. (11)

The above terms (9) – (11) can be interpreted in the conventional sense, with the

substitution of VRS and CRS by, respectively, HRS and C-HRS technologies. Namely, the

pure technical efficiency change TE is the ratio of the output radial efficiency of the school

in year 1t  to its efficiency in year t .

The scale efficiency change SE is the ratio of the scale efficiencies of the school in

years 1t  and t. Each of the two scale efficiencies is calculated as the ratio of the output

radial efficiency of the school in the cone technology C-HRS to its output radial efficiency in

the assumed technology HRS (Podinovski, 2009). This is similar to the calculations in the

case of the VRS technology and its cone extension CRS.

The term T represents the geometric mean of two terms. The first of these shows

the change of the average productivity of school 1 1( , )t tX Y  as the technology progresses

from year t to 1t  (Grosskopf, 2003). The second has the same meaning for the school

represented as ( , )t tX Y . Overall, T has a traditional interpretation as an indicator of

technical change, or boundary shift.

6.3. Analysis of productivity change

We used the described Malmquist index methodology to analyse the productivity

change of secondary schools in Malaysia over three years: 2006, 2007 and 2008, in
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comparison to 2005 as the base year8. Table 3 shows the computational results. These are the

geometrical averages of the corresponding terms computed for all 221 schools in the sample.

< Table 3 here >

Our results show that both the technical efficiency and scale efficiency of the schools

in the sample have changed little in relation to the base year 2005. The only exception is the

pre-policy year 2006 which exhibited an almost 2% increase in the technical efficiency.

The technical efficiency change in years 2006, 2007 and 2008 shown in Table 3 is

consistent with the means of efficiency scores in the HRS model in the corresponding years

as shown in Table 2. In particular, the mean HRS score is the highest in 2006, followed by

2007, 2005 and 2008, respectively. The geometric mean TE of pure technical efficiency

change in Table 2 points to the same order.9

In contrast, the technical change, or boundary shift, is much more noticeable. In all

three years after 2005 the most productive schools (and consequently, the boundary of the

cone C-HRS technology) in each year have exhibited a decline in productivity. It is

interesting that this decline is observed in both pre-policy year 2006 (decline over 3%) and in

the years 2007 and 2008 under the PPSMI policy (decline over 6% in 2007 and about 2.5% in

2008).

The overall Malmquist index is the product of the three above components, and its

decline is primarily explained by the negative effect of the technology change.

< Table 4 here >

Furthermore, each school in our data set was classed as either urban or rural. In total,

there were 108 urban and 113 rural schools. Table 4 shows the Malmquist index and its

decomposition in the two different technologies: one based only on the urban, and the other

on rural schools. It is easy to notice that the schools of both location types essentially

replicate the pattern already observed in their combined analysis. Namely, as can be seen

from the last column of Table 4, the overall productivity of schools has, regardless of their

8
The calculation of the Malmquist index in relation to the same base year 2005 follows the approach of Grifell-

Tatjé and Lovell (1996). We also investigated the application of the Malmquist index to the consecutive pairs of
years 2005-2006, 2006-2007 and 2007-2008. The results exhibited a strong non-circularity property which is a
well-known theoretical fact (Fried et al., 2008). This made them less interesting for policy interpretation.

9 Note that Table 2 shows the arithmetic means of efficiency scores, while Table 3 shows the geometric means
of their ratios. Therefore, the two types of mean, while indicating the same direction of change, produce close
but generally different numerical estimates of the change.
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location, deteriorated mostly in the first year of the implementation of the PPSMI policy

(shown as year 2007), followed by the noticeable recovery in the following year 2008. The

three multiplicative components of the Malmquist index shown in Table 4 indicate that most

of this deterioration was due to the technical change, while the schools changed little with

respect to their technical and scale efficiency relative to the retracting efficient frontier.

Judging by the overall Malmquist index and its main changing component (technical

change), the productivity dynamics of rural schools lagged behind the productivity of urban

schools in all three years of analysis. In particular, in 2007 the average productivity of a rural

school declined by more than 7% compared to the base year 2005, while the decline for urban

schools was more modest at approximately 4.5%. In 2008 these numbers changed to about

3.8% and 1.4% respectively. This might indicate that the initial implementation of the PPSMI

policy was more challenging for rural schools than urban schools.

Overall, our results are consistent with the existing literature on the effects of the

PPSMI policy (Ting, 2010) and indicate that:

 There was a decline in the average school productivity over the three years 2006 – 2008

compared to the base year 2005. The biggest drop was registered in 2007 – the first year

of the PPSMI policy. However, this improved in the following year 2008. The fact that

the decline was also observed in year 2006 before the new policy was implemented,

suggests that the reasons for the deterioration of average school productivity might have

had complex roots10.

 While the average school productivity in years 2006 – 2008 was below their productivity

in the base year 2005, most schools retained their technical efficiency (proximity to the

best practice HRS frontier in relative terms), even when the frontier was retracting from

the highest levels observed in 2005.

 The observed productivity decline followed the same pattern for both rural and urban

schools: the biggest drop in 2007 and signs of recovery in 2008. However, the decline

was deeper in rural locations than in urban schools.

7. Conclusion

In this paper we reported an application of the hybrid returns-to-scale (HRS) model to

the analysis of efficiency of secondary schools in Malaysia, and analysed the change of their

10 This finding is not unusual. For example, a decrease of the productivity in the higher education sector in
England has been observed by Thanassoulis et al. (2011).
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productivity over a period 2005 – 2008. During these years the new policy of teaching

mathematics and science subjects in the English language (PPSMI) was implemented.

The HRS model exhibits CRS with respect to a subset of inputs and outputs while

keeping the remaining inputs and outputs subject to the assumption of VRS. In this paper we

argued that the HRS model is a better-informed model in the context of education

technologies than the conventional VRS model. Indeed, it is common practice to link the

number of students at school to the teaching resources. It is therefore reasonable to assume

the CRS (proportional relationship) between the number of students in individual subjects to

the teaching provision (number of classes in our application). The quality of the teaching

process is represented in the model by the attainment metrics on entry and exit, and measures

of socio-economic status. We argued that the quality inputs and outputs might not exhibit the

same proportionality property and should therefore be excluded from the assumption of CRS.

Our data set included 221 secondary schools in the Malaysian states Kedah, Penang

and Perlis. Our computations showed that the HRS model discriminated better on the

efficiency scores than the conventional VRS model. The mean school efficiency in the HRS

model was 4 – 5% lower than the mean efficiency in the VRS model, in each of the four

years of analysis 2005 – 2008. Interestingly, the HRS model also outperformed the CRS

model by 2 – 4% on the mean efficiency. (This comparison was performed only for academic

reasons, as we argued against the actual use of CRS in the application).

We used the Malmquist index and its decomposition to analyse the productivity

change of Malaysian secondary schools in the two years before the implementation of the

PPSMI policy, and two years after. The conventional application of the Malmquist index is

performed in the CRS technology which is the cone extension of the underlying VRS

technology. Because in our application the underlying technology is HRS, its cone extension

is not CRS but a larger set called cone-HRS (C-HRS) technology. In our paper we used an

adaptation of the Malmquist index based on the HRS and C-HRS technologies.

The application of the Malmquist index methodology to our data set showed that in

the three years 2006, 2007 and 2008 there was a decline in the average productivity of the

upper second level education at Malaysian schools driven predominantly by the technical

change. The decline was most pronounced in 2007 – the first year in which the PPSMI policy

was implemented, although there was a tangible recovery in the following year. We also

showed that the productivity of urban schools was affected to a smaller extent than rural

schools, although both location types followed the same pattern.
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Appendix A: Proofs

Proof of Theorem 1. The proof consists of two parts stated in Lemmas 1 and 2.

Lemma 1. Technology *T satisfies Axioms 1 – 5.

Proof of Lemma 1. *T obviously satisfies Axioms 1 and 2. In particular, the unit ( , )X Y  in

Axiom 2 satisfies (1.1) – (1.7) with the same vectors , , n    as the unit ( , )X Y , and

therefore, ( , ) *X Y T   . To prove that *T satisfies Axiom 3, consider any two units

1 1( , )X Y and 2 2( , )X Y from *T . Then these satisfy (1.1) – (1.7) with some vectors

1 1 1, , n    and 2 2 2, , n    , respectively. Consider [0,1]  and define

1 1 2 2( , ) ( , ) (1 )( , )X Y X Y X Y     . We need to prove that ( , )X Y  satisfies (1.1) – (1.7) with

some vectors , , n      .

Indeed, the required vectors are found from the following equations:

1 2(1 )      , (12)

1 1 2 2(1 )j j j j j j          , j J  , (13)

1 1 1 2 2 1(1 )j j j j j j j j j             , j J  . (14)

Note that (12) fully defines vector  . From (13), and taking into account (12) and

(1.5), we have

   1 1 2 21 1 2 2

1 2

(1 )(1 )
[0,1]

(1 )

j j j jj j j j

j

j jj

        


  

  
  

 



, j J  . (15)

Similarly, from (14), and by (13) and (1.6), we have

   1 1 1 2 2 21 1 1 2 2 2

1 1 2 2

(1 )(1 )
1

(1 )

j j j j j jj j j j j j

j

j j j jj j

            


     

  
  

 


 
, j J  . (16)

Note that the derivation in (15) assumes that 0j  . If 0j  , (12) implies that both terms

1 2(1 ) 0j j     , and (13) and (14) are satisfied if we arbitrarily take 1j j   .

Similarly, in (16) we assume that 0j j    . If 0j j    , then either 0j  (this case was

dealt with above), or 0j  but 0j  . In the latter case both terms on the right-hand side

of (13) are equal to zero, and (14) is satisfied if we arbitrarily take 1j  .
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Note that (14) implies that ( , )X Y  satisfies (1.1) and (1.2) with vectors , ,    .

Similarly, (13) implies (1.4), and (12) implies (1.3) and (1.7). Finally, (15) and (16) imply

(1.5) and (1.6). Therefore, *T satisfies Axiom 3.

To prove that *T satisfies Axiom 4, let unit ( , )X Y satisfy (1.1) – (1.7) with some

, , n    . Consider any 1  and define the unit ( ( ), ( )) ( , , , )P NP P NPX Y X X Y Y      

as in Axiom 4. It straightforward to verify that ( ( ), ( ))X Y   satisfies (1.1) – (1.7) with

vectors  ,  and ̂   . Similarly, consider any [0,1]  and define

( ( ), ( )) ( , , , )P NP P NPX Y X X Y Y         as in Axiom 5* (equivalent to A5). Then

( ( ), ( ))X Y   satisfies (1.1) – (1.7) with vectors  , ̂   and  . □

Lemma 2. *T T  , where m sT 


   is any technology that satisfies Axioms 1 – 5.

Proof of Lemma 2. Let ( , ) *X Y T , and therefore ( , )X Y satisfies (1.1) – (1.7) with some

, , n    . Consider any j J such that 0j  . Because T  satisfies Axiom 1,

( , )j jX Y T  . By Axiom 4, ( ( ), ( )) ( , , , )P NP P NP
j j j j j j j j j jX Y X X Y Y T      . Furthermore,

applying the selective contraction with [0,1]  to the above unit ( ( ), ( ))j j j jX Y  , by

Axiom 5* we conclude that ( , ) ( , , , )P NP P NP
j j j j j j j j j j jX Y X X Y Y T        . By Axiom 3, the

unit on the left-hand side of (1.1) – (1.4) is in T  . This unit dominates the unit ( , )X Y on the

right-hand side. By Axiom 2, ( , )X Y T  . □

Proof of Theorem 3. Because HRST satisfies Axioms 1 – 5, * HRST T . Therefore,

( *) ( )HRS HRScl T cl T T  . To prove the converse embedding ( *)HRST cl T , by definition of

HRST it suffices to prove that ( *)cl T satisfies Axioms 1 – 6. Axioms 1 and 6 are obvious.

Because *T is convex, by Theorem 6.2 in Rockafellar (1970), ( *)cl T is convex and satisfies

Axiom 3.

To prove that *T satisfies Axiom 2, consider any ( , ) ( *)X Y cl T and let unit

( , )X Y  be such that X X  and Y Y 0 . We need to prove that ( , ) ( *)X Y cl T   .

Indeed, there exists a sequence of units ( , ) *t tX Y T , 1,2,...t  , such that

( , ) ( , )t tX Y X Y as t   . (17)
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Define the vector ( , ) ( , ) ( , )t t t tW Z X Y X Y  , t . Then ( , ) ( , ) ( , )t t t tX Y X Y W Z  ,

t , and ( , ) 0t tW Z  as t   . Define ( , ) ( , ) ( , )t t t tX Y X Y W Z     . Then

t t t tX X W X W X      and, similarly, t tY Y , t . If all vectors tY  0 , then by Axiom

2, ( , ) *t tX Y T   . Because ( , ) ( , )t tX Y X Y    as t   , by Axiom 6 ( , ) ( *)X Y cl T   . If

some vectors tY  have negative components, we change all such components to zero, for all

such vectors, and repeat the above proof.

To prove that *T satisfies Axiom 4, consider any unit ( , ) ( *)X Y cl T and 1  .

We need to prove that the unit ( ( ), ( )) ( , , , ) ( *)P NP P NPX Y X X Y Y cl T     . Indeed,

consider the sequence of units ( , ) *t tX Y T as in (17). Because *T satisfies Axiom 4, the

unit

( ( ), ( )) ( , , , ) *P NP P NP
t t t t t tX Y X X Y Y T     , t .

Because ( ( ), ( )) ( ( ), ( ))t tX Y X Y    as t   , ( ( ), ( )) ( *)X Y cl T   .

The proof that *T satisfies Axiom 5* (and therefore A5) is similar. □
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Table 1

Inputs and outputs

Inputs Outputs

Mathematics classes

Science classes

Physics classes

Biology classes

Chemistry classes

Good mathematics students on entry

Good science students on entry

Students from the high SES group

Mathematics students

Science students

Physics students

Biology students

Chemistry students

Good mathematics students on exit

Good science students on exit

Good physics students on exit

Good biology students on exit

Good chemistry students on exit

Table 2

Descriptive statistics of efficiency scores in different DEA models.

Year Model Minimum Maximum Mean

2005

HRS .59 1.00 .9016

VRS .62 1.00 .9475

CRS .62 1.00 .9345

2006

HRS .50 1.00 .9134

VRS .64 1.00 .9551

CRS .53 1.00 .9352

2007

HRS .57 1.00 .9105

VRS .61 1.00 .9570

CRS .61 1.00 .9399

2008

HRS .58 1.00 .8929

VRS .60 1.00 .9527

CRS .60 1.00 .9392
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Table 3

Malmquist index and its decomposition calculated on the base year 2005.

Year
Technical efficiency change

TEΔ 

Scale efficiency

change SEΔ 

Technical

change TΔ 

Malmquist Index

TEΔ × SEΔ× TΔ 

2006 1.0190 1.0002 0.9687 0.9873

2007 1.0073 0.9979 0.9372 0.9420

2008 0.9992 0.9971 0.9751 0.9715

Table 4

Malmquist indexes by location calculated on the base year 2005.

Location Year
Technical efficiency

change TEΔ 

Scale efficiency

change SEΔ 

Technical

change TΔ 

Malmquist Index

TEΔ × SEΔ× TΔ 

Urban

2006 1.0281 0.9980 0.9749 1.0003

2007 1.0121 0.9969 0.9469 0.9554

2008 0.9993 1.0076 0.9794 0.9862

Rural

2006 1.0131 1.0018 0.9618 0.9762

2007 1.0027 0.9988 0.9281 0.9296

2008 0.9915 0.9993 0.9711 0.9622


