Comparative study on prediction of fuel cell performance using machine learning approaches

2016-09-19T12:22:44Z (GMT) by Lei Mao Lisa Jackson
This paper provides a comparative study to evaluate the effectiveness of machine learning techniques in predicting fuel cell performance. Several methods applied in fuel cell prognostics are selected, including a neural network, an adaptive neuro-fuzzy inference system, and a particle filtering approach. Test data from a fuel cell system is used for the evaluation. From the results, the advantages and disadvantages of these approaches are compared, which can provide a general framework for the selection of the necessary algorithms for fuel cell prognostics under different conditions.