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Abstract

The Energy Management Strategy (EMS) of any hybrid vehicle is re-
sponsible for determining the operating state of many components on board
the vehicle and therefore has significant effect on the fuel economy, emis-
sions, ageing of components and vehicle drive-ability. It is generally ac-
cepted that Stochastic Dynamic Programming (SDP) can be used to pro-
duce a near-optimal control strategy provided that an accurate Markov
model of the drive-cycle is available, and the cost function used for the op-
timisation is representative of the true running cost of the vehicle. The vast
majority of research in this field focussing solely on the optimisation of the
fuel economy, however for a fuel cell hybrid vehicle, the degradation of the
fuel cell contributes significantly to the overall running cost of the vehicle,
and should therefore be included in calculation of the running cost during
the optimisation process. In this work, an optimised controller using SDP is
developed for a campus passenger vehicle in order to minimise the lifetime
cost of both fuel consumption and fuel cell degradation. The vehicle is then
simulated over a number of typical journeys obtained from data logging
during its use on the University of Birmingham’s campus. It is shown that
the expected lifetime cost due to fuel cell degradation massively outweighs
the cost of the fuel consumed.

Introduction

Motivation

The automotive industry is currently under great pressure from governments and
from consumers to improve vehicle fuel economy and reduce emissions due to
climate change, energy security and limited fossil fuel resources. This has lead to
massive improvements in conventional powertrain efficiency due to refinements in
the design of the Internal Combustion Engine (ICE), but diminishing returns mean
that the industry is beginning to introduce alternative powertrain concepts such as
hybrid and electric vehicles. One of these designs is the Fuel Cell Hybrid Electric
Vehicle (FCHEV) which has the potential to represent a step change in the market
with regards to emissions. FCHEVs have the potential to become a truly emission
free vehicle, utilising spare capacity from intermittent solar and wind generation
facilities. In addition to this, they also use a renewable energy storage medium
which can be produced almost anywhere it is required. FCHEVs have recently
been introduced to the market by Toyota and Hyundai in limited numbers, but a
number of obstacles currently prohibit wide scale commercialisation.
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One of the main obstructions is the high cost of fuel cell systems. Fuel cells are
estimated as costing well over $50/kW (under mass production) [1] compared to
a US Department of Energy (DoE) target of approximately $35/kW [2] in order
to become competitive with ICEs. Adding this this, the reliability of fuel cells is
also currently below the 5000 hours of service target from the DoE for transport
applications. This means the overall lifetime cost of running a FCHEV is not yet
competitive with conventional powertrain designs.

The reliability of a fuel cell stack depends to a large degree on how it is used
[3,4]. Certain actions, such as frequent start-stop cycling and high current loading
can significantly reduce the lifetime of the stack [4,5], and therefore it is important
to consider fuel cell degradation when designing the Energy Management Strategy
(EMS). The EMS is responsible for choosing the operating point of the fuel cell in
order to optimise the power flow on board a hybrid vehicle and in doing so maintain
the battery state of charge. The optimisation of an Energy Management Strategy
(EMS) seeks to maximise the benefits afforded by inclusion of an energy storage
medium on board a hybrid electric vehicle. Some of these benefits are immediately
obvious, such as the ability to re-capture kinetic energy which would otherwise be
lost as heat during braking. However, further gains can be made by optimising
the operating points of various components in the vehicle in order to maximise
the efficiency of the system in a holistic sense [6–8]. As with many optimisation
problems there is often degree of “trade-off” between various targets which may
include fuel consumption, emissions, drive-ability and component degradation.

Generally, research into the EMS for FCHEVs focusses solely on fuel consump-
tion, which is often used in cost functions due to it’s quantitative nature [9, 10].
Component ageing and associated lifetime costs are often largely overlooked how-
ever. The ageing of the battery is often only included in the constraints of the
optimisation, and the degradation of the fuel cell is generally ignored completely.
Due to the high cost of the fuel cell stack and it’s sensitivity to the operating con-
ditions determined by the EMS, the degradation of the fuel cell should be included
in the cost function in order to maximise it’s useful lifetime. This can be done by
weighting the fuel consumption and the estimated degradation by their respective
monetary values. Using this as the basis for the cost function, the optimisation
will seek to minimise the overall running cost of the vehicle, not only improving
fuel consumption, but also the lifetime of the fuel cell.

Prior Literature

There is a great deal of research in the literature with regards to EMS optimisation
for many types of hybrid systems including ICE hybrid electric vehicles [10–16],
FCHEVs [7, 17–19], aerial vehicles [20], and even static applications, such as off
grid hybrid energy supplies [21]. Essentially, for any of these applications, the
problem is the same; how best to utilise the multiple power sources in order to
maximise the efficiency of the system as whole. As a result, there have been many
different techniques that have been demonstrated, starting from “rule-based” al-
gorithms [17,22] to more advanced optimisation techniques such as Deterministic
Dynamic Programming (DDP) [6, 23, 24], Equivalent Consumption Minimization
Strategy (ECMS) [25–28], Fuzzy Logic [7, 21, 29], Neural Networks [20, 30], and
Game Theory [10], but the most promising technique appears to be Stochastic
Dynamic Programming (SDP).
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SDP has been a very popular technique [13–16] over the past few years due to
the fact that it is able to produce a near-optimal controller that is both causal and
time-invariant and hence can be used on-board a vehicle for real-time control. It’s
first proposal for a solution to the EMS problem is usually credited to Lin et al. [31]
who found that the it outperformed their sub-optimal rule-based strategy based
on DDP results. Since 2004, SDP techniques have been gradually refined by the
use of more complex models, improved cost functions to include emissions [12],
drive-ability [13] and battery degradation [14] and improved solving algorithms
such as “terminal state” SDP [12].

The second area of research relevant to this work is the degradation of fuel
cells. There is a large volume of research concerning the degradation of fuel cells
ranging from detailed electrochemical modelling [32] to empirical work on acceler-
ated ageing testing [4,33]. A number of reasons for fuel cell degradation have been
identified including degradation of catalyst layer (“Electro-Chemical Active Sur-
face Area (ECASA)” reduction) [4, 33], membrane chemical attack [4, 33], hydro-
thermal mechanic stress on the membrane [34] and thermal degradation of the
membrane [4, 35–37].

The fuel cell controller on the vehicle can limit these degradation methods
by managing the reactant pressures, humidity and temperature of the fuel cell.
However, it has no control over the demanded power and simply manages the fuel
cell reactively depending how the fuel cell is being used. The demanded power has
a large effect on some of the degradation causes. For example, demanding high
current for a long periods of time may cause the temperature of the fuel cell to
increase, and running at very low current and hence high cell potentials can cause
electrochemical oxidation of impurities in the fuel. This means that the EMS can
have significant effect on the lifetime of the fuel cell. Many of the underlying
causes of these degradation methods can be mitigated by;

1. Ensuring fuel cell is electrically loaded when running in order to limit ECASA
reduction [4, 38]

2. Limiting start-up/shut-down cycling where possible to prevent non-uniform
distribution of fuel [4, 38]

3. Avoiding excessive load cycling to prevent humidity changes leading to macro-
scopic holes in the membrane [34]

4. Ensuring current demand does not exceed reactant supply limitations to
prevent reactant starvation [35]

5. Reducing loading if fuel cell temperature is too high to prevent hydrothermal
mechanical stress on the membrane [4]
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Cost Function

The objective of the SDP optimisation is choose actions in order to minimise a
future anticipated cost. This cost is calculated by the use of a cost function. In
order to minimise the total running cost of the fuel cell, the cost function should
include not only the fuel consumption, but also the degradation of the fuel cell.
The fuel consumption and degradation can then be “traded off” by changing the
weighting parameters. The fuel consumption is simply calculated as a function
of the fuel cell power, see Equation 1. This data has been obtained from the
equipment data-sheet and verified through preliminary testing of the vehicle.

Cfuel = f(PFC) [1]

The ageing of the fuel cell is harder to quantify. Testing by the fuel cell
manufacturer specifies a maximum number of start/stop cycles, nmax, which is
likely to correspond to degradation method (2). The fuel cell should also be shut
down when electrically unloaded in order to prevent ageing due to degradation
method (1). Combining these facts, Equation 2 has been derived, which penalises
the EMS each time the fuel cell demand power drops to 0W. The manufacturer
has also found through testing that dynamic loads “including instantaneous load
changes between idle and full power” result in no performance degradation, see
Equation 3. Finally, the data-sheet also specifies a maximum lifetime, tmax, when
running at rated power, but reports essentially “zero” degradation at loads below
approximately 80%. This is most likely due to degradation methods (4) and (5)
identified in the literature (see Section 1.2). It can therefore be assumed that
between these loads, the degradation rate is approximately linear, see Equation
4. It has been assumed that each of the degradation methods is independent and
represents a certain drop in cell performance. This allows the degradation due to
each method to be summed together to obtain the total degradation of the fuel
cell, Equation 5.

Cdeg1,2 =

{
1

nmax
, if PFC,t+1 > 0 ∧ PFC,t = 0

0, otherwise
[2]

Cdeg3 = 0 [3]

Cdeg4,5 =

{
1

tmax
× PFC−0.8Pmax

0.2Pmax
, if PFC > 80%Pmax

0, otherwise
[4]

Cdeg = Cdeg1,2 + Cdeg3 + Cdeg4,5 [5]

In addition to minimising the total running cost of the fuel cell, the EMS is
also responsible for managing the battery. This can be accomplished by setting
constraints on the battery voltage which will prevent the battery from becoming
over-charged or deeply discharged. By using the battery voltage, rather than
state of charge directly, the battery will also be protected from voltage spikes
during regenerative braking and from voltage drops during periods of high current
demand, such as acceleration. This has been achieved by assigning a cost to
extreme cell potentials (Vmax and Vmin), Equation 6. Finally, in order to promote
charge sustaining behaviour, an additional cost when transitioning to the terminal
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state can be included, Equation 7. This penalises deviation from the target State
of Charge (SoC), SoCT , only on the final time step. This cost is not applied at
any other time meaning that the battery SoC is allowed to fluctuate throughout
the cycle as long as it recovers by the end of the journey.

CV =


∫

(Vmin − Vbat)dt, if Vbat < Vmin∫
(Vbat − Vmax)dt, if Vbat > Vmax

0, otherwise

[6]

CSoC = (SoC− SoCT )2 [7]

The final cost function, Equation 8, is made up by weighting and summing the
individual costs of the fuel, the fuel cell degradation, the battery voltage constraint
and the state of charge constraint. The fuel and fuel cell are weighted by their
respective monetary values, Vfuel and VFC , in order to calculate the estimated
total running cost. The battery constraints are assigned weighting parameters α
and β, orders of magnitude higher. This means that the optimisation will avoid
states that trigger these costs whenever possible.

Ctotal = −(CfuelVfuel + CdegVFC + αCV + βCSoC) [8]

Methodology

The generation of the optimised control strategy has a number of stages. Firstly
a stochastic model of the vehicle’s usage must be created. This model can then
be used in combination with simulation models to calculate the probability and
cost of transitioning between different states as defined by the vehicle’s speed,
acceleration, battery SoC and fuel cell power output. Once the probability and
cost of each transition is calculated, SDP is used to calculate the optimal control
action to perform in each state in order to minimise the cost function over an
infinite horizon. This strategy can then be tested in simulation or on a vehicle to
see how it performs.

Markov Chain Drive-Cycle Model

In order to produce the optimised controller, firstly a stochastic model typical of
the vehicle’s usage pattern must be generated. This has been achieved by examin-
ing a large number of journeys logged while the vehicle was used for transport of
passengers and mail at the University of Birmingham [39]. These data are used to
generate a Markov chain which maps the probability distribution of the accelera-
tion over the next time step to the vehicles current state as defined by it’s current
speed and acceleration. This Markov chain also contains a terminal state which
represents the end of the journey.
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Logged
Data

Generate Markov
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Solve Markov Decision Problem
Using Stochastic Dynamic Programming

Test Control Strategy

Figure 1: Flowchart of the procedure used to generate real-time controller

Markov Decision Process (MDP) Problem Formulation

A Markov Decision Process (MDP) problem can be defined by a set of decision
epochs, T , a set of Actions, As, a set of States, S, the probabilities of transitioning
between each state, Pa,ij, and the reward or cost of each transition Ca,ij. The
sample rate of the logged data is 1 second. This is acceptable to use for the MDP
problem, any dynamic effects greater than this can be reasonably ignored [31].
The set of actions chosen determines the output power of the fuel cell system (10).

T = {0, 1, ...}s [9]

As = PFC = {0, ..., Pmax}W [10]

The number of states in the problem significantly affects the computational
burden, but must be sufficient to allow accurate calculation of the cost function.
Firstly, the speed and acceleration of the vehicle determine the electrical power
consumption of the motor and therefore they must be included. The battery SoC
must also be included in order to constrain the SoC within acceptable limits and
protect the battery. Finally, the fuel cell power is included in order to penalise
excessive load cycling and account for shut-down and start-up of the stack.

S = S(a, v, SoC, PFC) [11]

The probability and cost matrices are generated using a reduced order model
by simulating every valid action in every initial state. The subsequent state and
associated cost of performing each action from each initial state is calculated from
the simulation results.
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Stochastic Dynamic Programming (SDP) Solution

The MDP problem described is solved using SDP. The objective is to find the
optimal control policy, u = π∗(S) so as to minimise the total expected cost, Jπ(S0),
over an infinite horizon. Due to the inclusion of the terminal state, the solution
should converge without the use of a discount factor. The total expected cost is
calculated as;

Jπ(S0) = lim
T→∞

E

{
T−1∑
t=0

C (St, π(St))

}
[12]

The optimal policy can be found using a policy iteration algorithm. This works
by iteratively evaluating the current policy and then improving the policy until the
total expected cost converges. The policy evaluation step (13), given the current
control policy, π is calculated as the cost incurred during the current step added
to the expected cost of future steps given the new state, S ′, that the vehicle has
transitioned to.

J t+1
π (Si) = C(Si, π(Si)) + E

{
J tπ(S ′)

}
[13]

The policy is then improved by finding the action which will minimise the total
expected cost (14).

π′(x′) = arg min
a∈A(Si)

[
C(Si, a) + E {Jπ(x′)}

]
[14]

This process is iterated until the solution converges to an acceptable tolerance
level. The optimal policy π∗(S) will be based on the state of the vehicle and
time-invariant and therefore can be directly implemented for testing.

Testing of Controller

The optimal control policy obtained using SDP is entirely causal and time-invariant
and therefore it is simple to implement in any simulation model using a 4-dimensional
lookup table based on the vehicle state as defined in the MDP problem. This
lookup table outputs the optimal action, i.e., Fuel Cell output power, based on
the vehicle’s speed and acceleration, the SoC of the battery and the previous
DC/DC converter power demand.
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Results

The EMS developed using SDP has been simulated over a number of the logged
drive-cycles, an example set of results is shown in Figure 2. This logged drive-cycle
represents the typical start-stop usage pattern demonstrated by a postal delivery
route on the university campus. The drive-cycle is approximately 1 hour long and
constitutes of several individual trips separated by stationary periods. For the test
vehicle, this results in an average power demand of only 0.3kW, and a maximum
cruising power of 1.3kW, just within the capabilities of the fuel cell stack.

Figure 2: Accumulated running cost of MicroCab over 1 hour test cycle

EMS Strategy Decisions

It can be seen from Figure 2 that the EMS controller runs the fuel cell at maximum
power for approximately the first 20 minutes of the test cycle even though the
battery SoC is already above the final target. This results in a very high fuel
consumption and very high degradation of the fuel cell. After this, the policy
maintains a SoC of approximately 87%, running the fuel cell at slightly higher
power during times when the vehicle is moving. It is thought that the main
reason for these strategy decisions is to prevent the battery voltage from dropping
below the minimum acceptable voltage. At times when the vehicle is moving, the
fuel cell runs at a higher power to partially offset the current draw from the motor.
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Figure 3: Sankey diagram showing the average efficiency over the drive-cycle

Operating Efficiency

Figure 3 is a Sankey diagram showing how the chemical energy in the fuel is used.
It can be seen that the majority of energy (approx. 63%) is lost in the conversion
of the chemical energy in the fuel into electrical energy by the fuel cell. The next
biggest energy loss (13%) was to the power-train including the motor and drive-
train efficiencies. The DC/DC converter was responsible for approximately 9% of
the energy loss and battery cycling represented 4%. Overall only approximately
11% was used for tractive effort. These figures match up very well to the data
collected by Iain Staffell et al. [39] at the University of Birmingham.

It can be seen that the SDP derived EMS controller does not noticeably improve
on the overall operating efficiency of the vehicle. This is understood to be due
to the small size of the fuel cell stack and therefore the limited control authority
of the EMS taking into account constraints on the battery SoC deviation. In
order to maintain acceptable battery voltage availability to run the motor over a
typical usage pattern, even one with such a low average power requirement, the
fuel cell must be run a high power levels, well outside of the optimal efficiency
operating region. In addition to this, the potential gains from running the fuel
cell at a more efficiency operating point are offset by the efficiency of the DC/DC
converter which is less efficient at lower powers.

Comparison of Fuel Cost vs. Degradation

Both the fuel consumption and fuel cell degradation have been weighted by their
approximate cost and therefore the accumulated cost over the simulation repre-
sents the estimated running cost of the journey.

Over the drive-cycle shown in Figure 2, the total cost of fuel was approxi-
mately £0.35, representing only 2.7% of the overall cost of the cycle. The fuel
cell degradation due to degradation methods (4) and (5) is estimated at £2.69
representing a significantly higher contribution (20.6%) to the running cost of the
vehicle. Finally, although not shown the Figure 2, if the fuel cell is assumed to shut
down after the test cycle is completed, the degradation due to start-up/shut-down
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cycling of the fuel cell is estimated at approximately £10, representing 76.6% of
the running cost of the vehicle.

It must be noted that the EMS has been optimised based on the approximate
cost of the fuel cell system as used in the vehicle, which was not mass produced.
Toyota [40] estimate mass production to reduce the cost of their fuel cell stack to
approximately 1/10th the cost of an individually produced stack. Even with this
reduction, the estimated degradation cost would be £1.62, representing approxi-
mately 80% of the total running cost.

Battery SoC Sustenance

The Microcab does not incorporate an external charger for daily use, and therefore
the EMS has been designed to be charge sustaining. The final SoC target has been
set to 80%, which is slightly higher than for a typical hybrid vehicle [27] because
the vehicle does not yet have regenerative braking capabilities. Examination of
the results in Figure 2 shows that the EMS has the tendency to overcharge above
this target settling between 85% and 90% SoC.

Even though the battery SoC is initially at the required final SoC of 80%,
the EMS demands full power from the fuel cell for approximately the first 20
minutes of the test. This results in significant fuel use and degradation. It is
thought that this is due to the fuel cell being slightly undersized for the application,
and is therefore unable to sustain the battery SoC during long journeys. At
approximately 700 seconds into the cycle, it can be seen that the battery SoC
drops by approximately 2% during a short journey even though the fuel cell is
running at maximum power throughout. This may lead to heavy penalties due
to low battery SoC, and therefore the EMS is likely compensating for this by
overcharging above the desired SoC.

Conclusions

A new charge sustaining EMS controller was successfully developed for the Micro-
cab H4 which accounts for both the fuel consumption and the fuel cell degradation.
The controller tends to charge the battery to a higher SoC than the terminal SoC
set by the SDP cost function, which is thought to be due to the potential for the
battery voltage to drop too low during accelerations at a lower SoC.

This means that the potential gains from implementing an SDP derived EMS
controller on board the Microcab H4 are limited in regards to optimising the
operating efficiency of the vehicle. It is shown that the constraints on the battery
SoC and the limited power of the fuel cell mean that an optimal control policy
that requires that the fuel cell is run a full power for a large proportion of the
running time, similar to the original strategy on board the vehicle. As a result,
the overall operating efficiency of the vehicle is relatively unchanged.
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The calculation of the total running cost of the fuel cell has produced an inter-
esting result, however. The fuel cost, which is normally used to optimise the EMS,
only represents 2.7% of the running cost of the vehicle. This is partly due to the
requirement to run the fuel cell at a very high power for a significant proportion
of the running time, but is also due to the high start/stop degradation as result
of non-uniform distribution of fuel which would not be improved (and likely wors-
ened) by using a larger fuel cell. This result shows EMS strategies for FCHEVs
should include fuel cell degradation and that research into fuel cells should con-
tinue to focus on reliability and cost reduction.

T. Fletcher
December 2015
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