Complex architectures formed by alginate drops floating on liquid surfaces

We demonstrate the generation of natural polymeric structures of complex shapes and controlled composition, starting from the collision of aqueous drops of alginate with the surface of a calcium ion-based liquid. We prove that by tuning the impact velocity of the alginate drops on the target surface one can control the floating state of the drops inducing the formation of mushroom-like structures, upon alginate gelation. Besides the geometric peculiarity, the presented approach allows us to provide dual functionality to the polymeric objects, attaching different kinds of functional molecules onto their surface areas, which are immersed or not in the liquid, making such architectures attractive for the development of a novel class of bionanocomposites.