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flexure-torsion induced stresses in De Saint Venant beams with 

boundary singularities 
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Abstract 

In this paper, a novel complex potential function for the solution of the flexure-torsion 

problem in De Saint Venant beams is proposed, considering the simultaneous presence of 

external shear and torsion excitations. By defining a fictitious vector field and taking 

advantage of a hydrodynamic analogy, the proposed complex potential function allows the 

stress vector field and the unitary twist rotation of the cross-section to be determined at once, 

and, therefore, returns the complete solution of the problem. The proposed approach is well-

suited for domains having boundary singularities. A numerical application, implemented by 

using the Complex Variable Boundary Element Method (CVBEM), is reported for an 

elliptical cross-section to show the validity of the proposed complex potential. Finally, two 

singularity problems are analyzed, considering an L-shaped and an epicycloid-shaped cross-

section. 
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Introduction 

The determination of the stress distribution in De Saint Venant beams has been extensively 

studied during the last century, using either stresses, displacements or mixed methods. 

However, analytical solutions describing the shear stress vector field induced by external 

flexure-torsion excitations have been provided only for limited cross-section geometries ([1] 

– [3]). Shear and torsion problems require, for most domains, numerical approaches, the most 

commonly used being the Finite Element Method (FEM) ([4] – [7]) and Boundary Element 

Method (BEM) ([8] – [10]). In the first case, since the whole domain needs to be discretized, 

an inappropriate meshing process can cause loss of accuracy for particularly irregular cross-

sectional geometries. Moreover, a large number of elements is normally required to achieve a 

reasonable accuracy for complex profiles, leading to low computational efficiency. The BEM 

requires a lower number of elements, since only the boundary has to be discretized, and it 

leads to accurate results with reduced computational effort. 

A different strategy is to formulate the problem as a Laplace equation in terms of 

stress potential function, obtaining either a Dirichlet or a Neumann boundary value problem. 

For the pure torsion case, the use of a complex potential defined in terms of the so-called 

Prandtl stress function is well-established ([2], [3], [11]). Analytic solutions for simple 

domains can be found by conformal mapping methods. For more complex cross-sectional 

shapes, complex variable numerical methods can be adopted, as, for example, the Complex 

Polynomial Method (CPM), the Complex Variable Element Method (CVBEM) and the Line 

Element-less Method ([12] – [15]), among others.  

For the case of beams subjected to both torsion and shear, a modified potential stress 

approach has been proposed in [7], superimposing the stress field generated by the shear 

forces applied at the flexure center and the stress field due to pure torsion. The two fields are 

determined by the solution of two Neumann problems and three Dirichlet problems, 

respectively. An alternative complex potential function, related directly to the shear stresses, 

has been proposed for the first time in [16], allowing the determination of the complete stress 

field distribution and unitary twist rotation at once by the LEM, using only line integrals 
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without requiring meshing process neither of the domain or the boundary. The use of this 

complex potential has been extended to the CVBEM in [17] for the case of pure torsion, and 

in [18] for the case of shear and torsion at once. Moreover, by using a suitable coordinates 

transformation, the complex potential approach has been successfully applied to orthotropic 

beams by using LEM in [1][19], [20]. 

In this paper, a modified complex potential function is introduced, allowing the 

determination of the stress vector field and the unitary twist rotation at once (and, hence, the 

torsional rigidity of the cross-section as well). The flexure-torsion problem is formulated as a 

Dirichlet boundary problem, to be solved in conjunction with the static equivalence condition 

between the external torsional moment and the internal moment produced by the shear 

stresses. Due to the particular definition of the proposed complex potential function, the static 

equivalence conditions with respect to the external shear forces are automatically satisfied, 

reducing the number of equations needed with respect to the formulation proposed in [16] – 

[18]. Moreover, the proposed complex potential can be used straightforwardly for cross-

sections having boundary singularities, unlike the previous formulations. The complete 

solution of the flexure-torsion problem is achieved by only algebraic equations and line-

integrals along the boundary, avoiding any double integral to be performed over the domain, 

hence returning a pure boundary method. The proposed approach is illustrated through three 

numerical examples by using the CVBEM. In particular, first, an elliptical cross-section, 

whose exact solution is known in analytical form, is analyzed to validate the method. Then, 

an L-shaped and an epicycloidal-shaped cross-section are analyzed to highlight the stability 

of the method in presence of boundary singularity points. 

Torsion and shear: governing equations  

In this section, the well-established De Saint Venant beam theory for isotropic linear elastic 

materials is briefly introduced, providing the basic equations needed for the flexure-torsion 

potential formulation ([1], [3]). A cantilever prismatic beam is hereinafter considered, having 

length L , uniform cross-section of arbitrary shape with area   and contour  . The beam is 

referred to a counter-clockwise coordinate system with x  and y  axes coincident with the 
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cross-section principal axes of inertia, and z  axis orthogonal to the cross-section plane 

(Figure 1). It is assumed that the beam is subjected to external shear forces xT  and yT  acting 

at its terminal section, as well as an external torque zM . A complete characterization of the 

beam stress field is achieved once the normal stresses  z z  and shear stresses  ,zx x y  and 

 ,zy x y  are determined. The normal stresses are directly related to the bending moment 

induced by the external shear forces: 

      y x
z

x y

T L z T L z
z y x

I I


 
    (1) 

where xI  and yI  are the cross-section inertia moments with respect to the x  and y  axes, 

respectively.  

For the determination of the shear stresses the equilibrium and compatibility 

equations have to be considered, along with the boundary and static equivalence conditions. 

The equilibrium equations can be written in terms of divergence of the shear stress vector 

field as follows: 

 , , ,div        in y x
zx x zy y z z

x y

T T
y x

I I
         τ  (2) 

where T
zx zy    τ , and ,xf  indicates partial derivative of the function f  with respect to 

the variable x . The compatibility conditions are expressed by Beltrami equations: 

    2 2
1, 1,1 0 ;     1 0      in zx xz zy yzJ J             (3) 

where   is the Poisson coefficient,      2

, ,xx yy
       is the Laplace operator, and 

1 x y zJ       is the first invariant of the stress tensor. By considering eq. (1), Beltrami 

equations can be expressed in terms of shear stresses laplacian as follows:  

 2 21 1
;         ;      in 

1 1
yx

zx zy
y x

TT

I I
 

 
      

 
 (4) 
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Eqs. (2) and (4) are valid on the whole domain, and they can be combined to obtain the curl 

of the shear stress vector field: 

  T
, , 2

1
y x

z zy x zx y
x y

T x T y
G

I I

  

 

          
i τ  (5) 

where zi  is the unitary vector in the z  axis direction, G  is the shear modulus and   is the 

twist rotation per unitary length.  

Along the contour  , the free stress boundary conditions have to be fulfilled, that is 

the shear stress components normal to the contour   vanish: 

 T 0       on zx x zy yn n    τ n  (6) 

where T
x yn n   n  is the outward unitary vector normal to the contour  . The flexure-

torsion problem is fully characterized once the equivalence conditions between external 

acting forces and internal shear stresses are considered, that is: 

  ;      ;      zx x zy y zy zx zd T d T x y d M   
  

       (7) 

Formulation by modified complex potential function 

When the cross-section is subjected to pure torsion, the hydrodynamic analogies between the 

torsion induced shear stress field and the velocity field of a stationary ideal fluid circulating 

with uniform velocity in a tube of the same cross-section of the twisted beam are well-known 

([1]). The formulation of the problem in terms of complex potential function and the 

definition of the torsion problem in terms of the so-called Prandtl function (corresponding to 

the stream function of the ideal fluid) result particularly convenient and they allow analytical 

and series solutions to be determined for some specific cross-sectional geometries ([2], [3], 

[11]). Herein, a similar approach is proposed for the evaluation of the flexure-torsion problem 

by defining a modified complex potential function, taking into account the simultaneous 
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presence of torque and shear forces. Firstly, a new fictitious stress vector field zx zy    τ    

is introduced as follows: 

         1
, , , +           with , x

y

q
x y x y x y G x y

q m


 
    

 
nτ τ q r q AI T  (8) 

where the vector T
x yT T   T  have components equal to the acting shear forces, while the 

vector r , the coefficient m , and the matrices A  and nI  are defined as: 

  
2

2

02
;     2 1 ;      ;      ;

02
x

x y
y

Iy x xy
m I I

Ix xy y





   

             
nr A I  (9) 

If the stress vector field τ  is solution of the flexure-torsion problem, then the equilibrium and 

compatibility equations, eqs. (2) and (5) respectively, have to be satisfied. Hence, from the 

equilibrium equations, it follows: 

 div div 0y x

x y

T T
y x

I I
   τ τ  (10) 

while, considering the expression of the curl of τ  eq. (5): 

    T T 2 0
1

y x
z z

x y

T x T y
G

I I

 

 

            
i τ i τ  (11) 

Therefore, analogously to the pure torsion problem, it is possible to consider a hydrodynamic 

analogy between the modified vector field τ  and the velocity field of an incompressible 

( div 0τ ) and irrotational ( 0 τ ) fluid and to define the following complex potential 

function: 

      U w w i w    (12) 
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In eq. (12), i  is the imaginary unit, w x iy   is the complex variable, and the functions 

 w  and  w  are harmonic conjugates, that is they satisfy the following relations: 

 
2 2

, , , ,

0;              0

;                       (Cauchy-Riemann equations)x y y x

     
    

 (13) 

The function   represents the potential function of the vector field τ  (i.e.   τ ), while 

  is its stream function. Once the vector field τ  is determined, by definition it is assured 

that equilibrium and compatibility equations are satisfied. In the following, the free-stress 

boundary conditions and static equivalence conditions are expressed in terms of the complex 

potential function. 

Free stress boundary conditions 

By substituting the definition of the vector field τ  into eq. (6), the following condition on the 

boundary is obtained: 

  T
0         on G   τ q r n  (14) 

Eq. (14) can be rewritten in terms of the gradient of the potential function   as follows: 

  T T T          on G   n q n r n  (15) 

Considering the 90° counter-clockwise rotation matrix R :  

 
0 1

1 0

 
  
 

R  (16) 

recalling that 1 T R R  , s Rn  is the unitary vector tangent to the contour  , and taking 

advantage of the Cauchy-Riemann relations, eq. (13)b, it follows: 

         T T T TT      s R s R s n  (17) 
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Therefore, the free-boundary stress conditions can be written in terms of stream functions as: 

      T T TT T         on G G      s q n r n Rq s Rr s  (18) 

Introducing the function  w , such that   Rr , that is: 

 

2 2 2

2 2

w x y



    (19) 

eq. (18) can be rewritten as: 

    T T

, ,         on s sG G         s s Rq s  (20) 

The contour   can be generally described by a parametric equation       ,t x t y t  , such 

that 0 ft t   and    0 ft  . Performing line integration along the contour, the following 

equation is obtained: 

                on t G t b t k       (21) 

where       T

0

t
b t t t dt  Rq s  is defined on the boundary and    0 0k G      is 

constant. It is worth to stress that, since the objective is to determine the vector field τ , the 

stream function   (as well as the potential function  ) can be defined up to a constant 

without loss of generality. Therefore, in the following, it will be set 0k  . The function  b t  

can be evaluated in exact form for several profiles with known parametric representations, 

including any polygonal contour, as shown in the numerical application section. 

Static equivalence conditions 

As previously mentioned, one of the advantages of the proposed method is that the solution 

obtained by complex potential automatically satisfies the static equivalence conditions with 

respect to translation in the x  and y  directions (Appendix A). Moreover, in this section it is 

shown how the static equivalence condition with respect to rotation on the cross-section plane 



9 
 

can be written in terms of potential function  . To allow the application of pure boundary 

methods, the equation is written so that only line integrals along the boundaries are needed. 

First, the static equivalence condition eq. (7)c, is rewritten in terms of the vector field 

τ  and of its potential  : 

  TT
zM d G d

 
       τ r q r r  (22) 

The first term on the right hand side can be written as a line integral along the domain 

contour by using Stokes' theorem: 

             TT

, ,x yd y x d d t t t dt
   
             r Rr Rr s (23) 

where s  is the unitary vector tangent to the contour. Expanding the second term, the 

following equation is obtained: 

 
    
 

T 2 21
2 2

1 2

x x y y y y x x

x x xyy y y xxy

d x T I xyT I y y T I xyT I x d
m

T I I T I I
m

 


 

      


 

 q r
 (24) 

where 2
xyyI x yd


   and 2

xxyI y xd


   can be calculated as line integral, as well as the 

other inertia moment, as indicated in Appendix B [16]. 

Finally, the last term on the right hand side of eq. (22) is: 

  T 2 2
polG d G x y d G I  

 
   r r  (25) 

where polI  is the polar inertia moment of the beam cross-section. Hence, the static 

equivalence condition with respect to the rotation on the cross-section plane can be written 

as: 
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    T 1 2
pol z x x xyy y y xxydt G I M T I I T I I

m





      Rr s  (26) 

Shear stress distribution by complex analysis 

The flexure-torsion problem is, now, completely defined, in terms of real and imaginary parts 

of the complex potential U  and  , by the following set of equations:  

      

   

2

T

0                                                   on 

                            on 

1 2
pol z x x xyy y y xxy

t G t b t

dt G I M T I I T I I
m







   

    
       
 Rr s

 (27) 

Differently from the classic Dirichlet boundary condition, the value of the stream function on 

the boundary is herein related to the unknown  . However, an additional equation is 

provided by the static equivalence condition with respect to the rotation on the cross-section 

plane. Since only line integrals need to be evaluated and only boundary conditions are 

provided, boundary methods involving complex analysis are particularly appropriate for the 

solution of the mathematical problem described by the set of eqs. (27).  

In the following, the Complex Variable Boundary Element Method (CVBEM) has 

been considered for the numerical implementation. The CVBEM is a boundary method 

initially developed for Dirichlet-type problems ([21]) and subsequently extended to Neumann 

problem and mixed boundary condition problems ([22]). It is derived by the Cauchy integral 

formula, linking the value of analytic function inside a domain with its value on the 

boundary: 

    1
     

2

f t
f w dt w

i t w 
 

  (28) 

Briefly, by using the CVBEM, the harmonic solution is in general approximated with a 

function defined in the class [12]: 
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      0 1
1

log
k

N

k k w k
k

f w c c w a w w w w


      (29) 

where 0 1 1, , ,..., Nc c a a  are complex coefficients and 1,..., Nw w  are selected nodes on the 

contour  . The subscript kw  in the complex logarithm in eq. (29) indicates that the logarithm 

should be evaluated with respect to opportunely chosen branch cuts. The latter have to be 

arbitrary non self-intersecting curves external to the domain   or its boundary  , with 

exception of the point kw , and joining the point kw  itself to infinity. This condition is 

necessary so that the complex logarithm (and, therefore, the function  f w ) is analytic in the 

whole domain [12]. In a more recent work ([22]), Whitley and Hromadka suggest to use a 

broader class of CVBEM functions when an accurate approximation is needed for both the 

potential function and its gradient. Therefore, in this paper, the following CVBEM functions 

have been used: 

      
2

2

0 1 2
1

1 1
log

2 2 2k

N

k k w k
k

w
F w c c w c a w w w w



        
 

  (30) 

It is worth to notice that the function  f w  is the derivative of the function  F w . The 

unknown complex coefficients 0 1 2 1, , , ,..., Nc c c a a  can be evaluated by imposing the boundary 

conditions on selected collocation points.  

The CVBEM has been successfully applied to several engineering problems, and in 

particular, to pure torsion problems of isotropic ([12], [17]) and orthotropic beams ([13]) and 

to flexure-torsion problems for isotropic beams in absence of boundary singularity points 

([18]). In the next section, the proposed complex potential is used for the solution of the 

flexure-torsion problem of three different cross-sections. 

Numerical applications 

By applying the CVBEM to the complex potential  U w  defined in eq. (12), the potential 

function   and stream function   can be written in the following form: 
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2 2

1 1 2 2
1

2 2

1 1 2 2
1

, , ,
2

, , ,
2

N

k k k k
k

N

k k k k
k

x y
x y x y xy R x y I x y

x y
x y y x xy I x y R x y

     

     






      


      




 (31) 

where k k ka i    and k k kc i   , while k k kw x iy   are the selected nodes on the 

boundary. The functions kR  and kI  are defined as follows: 

 

     

     

2

2

1 1
, Re log

2 2

1 1
, Im log

2 2

k

k

k k w k

k k w k

R x y w w w w

I x y w w w w

         
         

 (32) 

It is worth stressing that, in eqs. (31), the constant 0c  has been neglected since both functions 

  and   can be defined up to a constant. 

The functions expressed by eqs. (31) satisfy the Laplace equation. The boundary 

conditions and the static equivalence condition, eqs. (27)b-c, have been used for the 

determination of the 2 4N   unknown coefficients ( 1 2 1, , ,..., N     and 1 2 1, , ,..., N    ) and 

the twist rotation for unitary length  . First, the contour   is represented through a 

parametric equation       ,t x t y t  , with 0 ft t   and    0 ft  . Then, a set of M  

points    1 ,..., Mt t   are chosen on the boundary; in the following, the points have been 

selected at regular intervals, however different point distributions can be used. Substituting 

eq. (31)b into eq. (27)b, the following relation can be written for each point 

      ,j j jt x t y t   of the contour: 

 
    

    

2 2 2 2

1 1 2 2
1

, ,
2 2

,

N
j j j j

j j j j k k j j k k j j
k

j j

x y x y
y x x y I x y R x y G

b x t y t

      


 
      




(33) 
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providing a set of M  different linear algebraic equations in the unknown 1 2 1, , ,..., N    , 

1 2 1, , ,..., N     and  . Additionally, by substituting the eq. (31)a into the static equivalence 

condition eq. (27)c, the following algebraic equation is obtained: 

    2 21 1 2 2
1

1 2N

x y xy k Rk k Ik pol z x x xyy y y xxyx y
k

J J J J J J G I M T I I T I I
m

      



         

 (34) 

where the following positions have been made:  

 

   

    

   

2 2

T T

T T2 2

T T

;                         ;

1
;     ;

2

;                    ;         1,...,

x y

xyx y

Rk k Ik k

J x dt J y dt

J x y dt J xy dt

J R dt J I dt k N

 

 

 

 

  

  

 

 

 

Rr s Rr s

Rr s Rr s

Rr s Rr s

 
 

 

 (35) 

The solution of the flexure-torsion problem is, then, determined by a set of 1M   linear 

algebraic equations in the 2 5N   unknowns 1 2 0, , ,..., N    , 1 2 0, , ,..., N     and  . The 

minimum number of collocation points to achieve the solution of the problem is, obviously, 

2 4M N  ; however, selecting a larger number of points and solving the subsequent over-

determined system of equations by the pseudo-inverse matrix method lead to increased 

convergence of the procedure. For such reason, in the following applications,  2 2 5M N   

has been used, that is twice the number of the unknowns. It is worth notice that the function 

 b t  is only dependent on the geometry of the cross-section and not on the selected boundary 

nodes or collocation points, and, therefore, it has to be evaluated only once for any degree of 

discretization of the boundary.  

Three numerical applications are proposed for the three domains illustrated in Figure 

2. The algorithm for the determination of the shear stress distributions and the twist rotation 

for unitary length can be summarized by the following steps: 

 definition of the parametric equation       ,t x t y t   representing the contour   

of the analyzed domain;  t  can either be a continuous (e.g., ellipse) or a piecewise 
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function (e.g., L-shaped cross-section); the definition of the cross-section geometrical 

properties follows straightforwardly, as shown in Appendix A; 

 selection of the N  nodes on the boundary and the related branch-cuts; 

 selection of the  2 2 5M N   collocation points on the boundary; in the following, 

both the nodes and the collocation points are uniformly distributed along the contour 

of the cross-section; 

 definition of the linear algebraic system of equations CX = B , where C is the 

 2 5M N   matrix of the coefficients of eqs. (33) and (34), X is the array 

containing the 2 5N   unknowns 1 2 0, , ,..., N    , 1 2 0, , ,..., N     and  , and B  is 

the array having as elements the right hand side terms of eqs. (33) and (34); 

 solution of the system CX = B  by pseudo-inverse matrix method. 

Once the unknowns have been determined, the complex potential can be calculated by eqs. 

(31). The components of the fictitious vector field τ  are obtained as partial derivatives of the 

potential  , taking into account eq. (30): 

 

      

      

1 2 2
1

1 2 2
1

, , ,

, , ,

N

zx k k k k
k

N

zy k k k k
k

x y x y r x y i x y

x y y x i x y r x y

     

     





    

       
 








 (36) 

where the functions kr  and ki  are defined as: 

 
      
      

, Re log

, Im log

k

k

k k w k

k k w k

r x y w w w w

i x y w w w w

    
    

 (37) 

Finally, the shear stress vector field τ  is determined by eq. (8) as follows: 

      , , ,x y x y x y G  τ τ q r  (38) 
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The algorithm has been implemented using the computational software Wolfram 

Mathematica® on a 64-bit, 2.4GHz Intel(R) Core(TM) i7-3630QM CPU, with limited use of 

parallel processing on the four available cores for the evaluation of the line integrals defined 

in eq. (35). Details on the results for each studied cross-section, together with the required 

computational times, are reported in the next sections.  

Elliptical cross-section 

The first proposed example is an elliptical cross-section with semi-axes 2l   and 1h 

(Figure 2a), Poisson modulus 0.3   and shear modulus 1G  . The closed-form solution for 

the flexure-torsion problem in an elliptical domain is well-known [1], and, therefore, this 

domain is herein used as a benchmark to test results obtained by the CVBEM. The following 

parameter equations for the elliptic contour have been considered: 

 
   
   

cos
        0 2

sin

x t l t
t

y t h t


  


 (39) 

In this case, the function  b t  on the boundary can be evaluated analytically: 

  
             

 

2 22 sin 3 2 1 sin 2 cos 3 2 1 cos

3 1
x yT h t t T l t t

b t
lh

 

 

    



 (40) 

The case of shear forces and twist moment acting simultaneously has been considered 

( 1xT  ; 1yT  ; 1zM  ). The boundary has been discretized using 6N   nodes. The 

procedure returns 0.19894  , matching the value of the twist rotation provided by the exact 

solution. The required computational time has been of 16.00 seconds. Results in terms of 

shear stresses along the two axes of the ellipse are depicted in Figures 3a-b and compared 

with the exact solution, showing perfect agreement. 

L-shaped cross-section 

When dealing with problems governed by Laplace equation, the L-shaped domain is an 

extensively studied boundary singularity problem, due to its reentrant corner. Herein, the L-
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shaped cross-section shown in Figure 2b has been considered, with 1l  , Poisson modulus 

0.3   and shear modulus 1G  . The following piecewise parameter equations have been 

used to represent the boundary of the domain: 

  

 
 

 

 

 

                      0 2
2

4                   2 6
2

8              6 8

3 5            0 3

3 13               3 42

6 3 11          4 5

3 10               5 8

t t

x t t t

t t

t t

t t
y t

t t

t t

  


   
   
   


   
   
   

 (41) 

Performing line integration, the function  b t  has been evaluated analytically, obtaining the 

piecewise function: 

      
  1

3
          ;    1,...,6

36 2 1
x x k y y k

k k

x y

T I P t T I Q t
b t t t t k

I I  


   


 (42) 

where  kP t  and  kQ t  are third order polynomials, reported in details in Appendix C. Three 

cases have been analyzed: pure torsion ( 1zM  ) and pure shear forces acting in the x  and y  

directions ( 1xT   and 1yT  , respectively). Shear vector fields and shear stress magnitudes 

for the L-shaped domain, for the three cases, are depicted in Figures 4a-f. Table 1 reports 

results in terms of the torsional inertia moment  t zJ M G  and y  coordinate of the shear 

center yC . Results have been evaluated using the herein proposed formulation by CVBEM, 

for various degrees of boundary discretization. The required computational times varies from 

11.12 seconds for 48 nodes to 73.22 seconds in the case of 240 nodes. The determination of 

the shear center position is straightforward by using Betti’s theorem [16]. First, the two cases 

1zM   and 1xT   are solved and the two unitary rotations of the cross-section are obtained, 

here labeled z  and x , respectively. Then, following Betti’s theorem, y x zC   .  
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The same numerical values have been compared with values obtained by FEM, 

implemented according to [23]-[24], considering several finite element discretization degrees 

in order to achieve numerical stability, and showing excellent agreement of the results. 

Moreover, CVBEM using the formulation proposed in [18] has been implemented as well. As 

shown, for the latter case, the presence of a boundary singularity point greatly affects the 

method, and the obtained solutions largely diverge from the exact ones.  

Epicycloid-shaped cross-section 

In this section, results obtained for an epicycloid-shaped cross-section are reported. Cusps of 

an epicycloid corresponds to boundary singularities points, similarly to the L-shaped domain. 

Here a 4  cusps epicycloid is considered (Figure 2c), whose parametric equations are: 

 

     

     

1
cos cos 5

5
        0 2

1
sin sin 5

5

x t r t t

t

y t r t t



        
      

 (43) 

It has been considered 1r  , Poisson modulus 0.3   and shear modulus 1G  . Also in this 

case, the function  b t  can be evaluated in closed form as follows: 

             
8

1

1
sin 2 1 1 cos 2 1           0 2

3348 1
n

n x y
n

b t A T n t T n t t
a


  

      
 

 (44) 

where the coefficients nA  are reported in details in Appendix C. Values of tJ  evaluated by 

the proposed approach for the case of unitary external torsional moment ( 1zM  ) are 

reported in Table 2. In the latter, results are compared with those obtained by FEM, also in 

this case implemented according to [23]-[24].  Figures 5a-b show the shear vector field and 

shear magnitudes contour plot for the case of pure torsion ( 1zM  ), while Figures 5c-d show 

results for a unitary external shear force acting along the y  axis direction ( 1yT  ). Due to the 

symmetry of the studied domain, the case of shear acting along the x  axis has not been 
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reported. The required computational times varies from 28.73 seconds for 48 nodes to 152.10 

seconds in the case of 480 nodes. As it can be noticed, the results are not affected by the 

presence of multiple boundary singularity points and they converge for increasing degree of 

boundary discretization. 

Conclusions 

In this paper, a novel complex potential formulation is proposed for determining the shear 

stress distribution, as well as the unitary twist rotation of the cross-section, of De Saint 

Venant beams subjected to external twist moments and shear forces. The new formulation is 

based on the definition of a fictitious incompressible irrotational vector field, so that its 

potential function and stream function are easily determined by hydrodynamic analogy. The 

flexure-torsion problem is completely defined as a Dirichlet problem in terms of the stream 

function of the fictitious vector field, coupled with the static equivalence condition with 

respect to rotation of the cross-section, written in terms of potential function. The use of the 

proposed complex potential guarantees that the static equivalence conditions with respect to 

translation is automatically satisfied. All domain integrals are rewritten as line integrals, so 

that the solution of the method can be achieved by using boundary methods. 

The proposed formulation has been validated by opportunely implementing the 

Complex Variable Boundary Element Method. The solution, obtained for an elliptical cross-

section subjected simultaneously to shear and torsion, has been used as benchmark to test the 

method accuracy. By using CVBEM, very few nodes are needed to achieve high accuracy in 

the results. 

The formulation has been tested for domains with single and multiple boundary 

singularity points, considering in particular a L-shaped and an epicycloid-shaped cross-

sections. Adopting the CVBEM, solutions are stable and converge for increasing degree of 

the boundary discretization. Numerical values have been compared with Finite Element 

Method analysis, obtaining matching results. With respect to the latter, the use of CVBEM 

has the great advantage of easiness in the boundary discretization with respect to the meshing 

process of the FEM. Moreover, while FEM returns values of the shear stresses in selected 
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nodes, the CVBEM returns the complete shear stress distribution in all the points in the 

domain. 

The proposed formulation can be implemented by numerical methods different from 

the CVBEM. Although complex boundary element methods seem to be the most suitable 

approaches, other boundary methods, as well as finite element methods or mesh-less 

approaches, can be used as well.  

In the case of composite or heterogeneous cross-sections with anisotropic behavior, 

the presence of the additional elastic constants in the constitutive equations has to be 

considered. A generalized complex potential approach and its application for the solution of 

the flexure-torsion problem for cross-sections with boundary singularity points is currently 

under investigations. 

Appendix A: static equivalence conditions with respect to translations 

This appendix shows that the two static equivalence conditions with respect to translations, 

eqs. (7a-b), are automatically satisfied by the stress vector field obtained through the 

proposed complex potential. By substituting the expression of the vector field τ  into eq. (7a), 

and recalling that ,x zx  , it follows: 

  ,zx x xd q G y d 
 

       (A.1) 

Since 2 0   , the first term on the right hand side of eq. (A.1) can be rewritten as: 

      2
, , , , , divx x x xx yyd x d x x d x d

   
                   (A.2) 

and, by taking advantage of Gauss’s theorem: 

  T

,xd x dt
 
    n  (A.3) 
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Since the line integral in eq. (A.3) is performed along the contour  , the boundary conditions 

eq. (15) hold true; therefore the following expression is obtained: 

  T

,xd x G dt
 
    q r n  (A.4) 

and by applying again Gauss’s theorem: 

      , div div  divx xd x d G x d q G y x G d  
   
          q r q r (A.5) 

Substituting eq. (A.5) back into eq. (A.1): 

   divzxd x G d 
 

    q r  (A.6) 

Finally, by considering the definition of the vector field τ  eq. (8), recalling the expression of 

the divergence of the stress vector field τ  and recalling that div 0τ , the following 

expression is obtained:  

   2div y x
zx

x y

T T
d x d xyd x d

I I


   
       τ τ  (A.7) 

where the integral in the first term is null, since the cross-section is referred with respect to 

the principal inertia axes, while the second one is the inertia moment yI . Therefore, the first 

static equivalence condition is verified: 

 zx xd T


  (A.8) 

By following an analogous reasoning, permuting x  and y , it can be demonstrated that the 

static equivalence condition with respect to translation in the y  direction is verified as well. 
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Appendix B: cross-section geometrical properties by line integrals 

For any domain, geometrical properties like area, static and inertia moments can be evaluated 

by using line integrals, taking advantage of the Green’s theorem [16] as follows: 

  1

2 x yA d xn yn dt
 

     (B.1) 

 
2 21 1

;        
2 2x y y xS yd y n dt S xd x n dt

   
         (B.2) 

 
2 3 2 31 1

;        
3 3x y y xI y d y n dt I x d x n dt

   
         (B.3) 

 
2 3 2 31 1

;        
3 3xyy x yxx yI x yd x yn dt I y xd y xn dt

   
         (B.4) 

Appendix C: closed-form expressions of the boundary function  b t  for the 

studied domains. 

The boundary function  b t  has been introduced in eq. (21), and it is here reported for sake 

of clarity: 

            T 2 2

0 0

1
2 2

2 1

t t

x x y y y x x y y x
x y

b t dt I T x I T xy s I T xy I T y s dt
I I

 


    
 Rq s

 (C.1) 

where the dependence on the parameter t , along the boundary, of the coordinates x  and y , 

as well as the components of the unitary vector s , tangent to the contour, has herein been 

omitted. The function  b t  can be determined in closed-form for most practical domain, 

including any polygonal shape, as well as several cross-sections whose boundary is described 

by continuous or piecewise parametric functions. Herein, the explicit expressions for the L-

shaped and epicycloid-shaped cross-sections previously analyzed are reported. 
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L-shaped cross-section 

For the L-shaped cross-section depicted in Figure 2b, whose contour is described by the 

parametric equations (41), the boundary function  b t  assumes the form: 

      
  1

3
          ;    1,...,6

36 2 1
x x k y y k

k k

x y

T I P t T I Q t
b t t t t k

I I  


   


 (C.2) 

where the third order polynomials  kP t  and  kQ t  are expressed as follows: 
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Epicycloid-shaped cross-section 

For the epicycloid-shaped cross-section depicted in Figure 2c, whose contour is described by 

the parametric equations (43), the boundary function  b t  assumes the form: 

             
8

1

1
sin 2 1 1 cos 2 1           0 2

3348 1
n

n x y
n

b t A T n t T n t t
a


  

      
 

 (C.4) 

where the coefficients nA  are reported in the following: 

 

 
   
   

 

1 2
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Table 1 

Torsional inertia moment tJ  and y  coordinate of the shear center C  for L-shaped cross-section. 

CVBEM  FEM  CVBEM
(*)

  

Nodes tJ  yC   Nodes tJ  yC   Nodes tJ  yC  

48 0.8607 0.2643  451 0.8595 0.2614  48 1.5292 -0.2646 

96 0.8580 0.2665  2383 0.8572 0.2627  96 1.8034 -0.4814 

144 0.8573 0.2670  8259 0.8566 0.2632  144 2.0491 -0.6757 

192 0.8570 0.2673  30063 0.8564 0.2633  192 2.2754 -0.8547 

240 0.8568 0.2674  44283 0.8564 0.2634  240 2.4873 -1.0223 

(*)
 CVBEM considering the formulation based on the shear stresses proposed in [18]. 

 

Table 1



Table 2 

Torsional inertia moment tJ  for epicycloid-shaped cross-section. 

CVBEM  FEM 

Nodes tJ   Nodes tJ  

48 1.8503  561 1.8311 

96 1.8390  1377 1.8302 

144 1.8367  11879 1.8283 

192 1.8358  32425 1.8254 

240 1.8354  53621 1.8253 

480 1.8349  74481 1.8253 

 

Table 2



FIGURE 1: De Saint Venant beam subjected to external shear and torsion excitations. 
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FIGUREL2:LAnalyzedLcross-sectionalLgeometries:L(a)LellipticLcross-section;L(b)LL-shapedLcross-section;L
(c)Lepicycloid-shapedLcross-section
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