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Abstract
We review different mathematical models proposed in literature to describe

fluid-dynamic aspects in membrane-based water filtration systems.
Firstly, we discuss the societal impact of water filtration, especially in the

context of developing countries under emergency situations, and then review
the basic concepts of membrane science that are necessary for a mathematical
description of a filtration system.

Secondly, we categorize the mathematical models available in the literature
as (a) microscopic, if the pore-scale geometry of the membrane is accounted for;
(b) reduced, if the membrane is treated as a geometrically lower-dimensional
entity due to its small thickness compared to the free flow domain; (c) meso-
scopic, if the characteristic geometrical dimension of the free flow domain and
the porous domain is the same, and a multi-physics problem involving both
incompressible fluid flow and porous media flow is considered. Implementation
aspects of mesoscopic models in CFD software are also discussed with the help
of relevant examples.

Keywords: Coupled free and porous-media flows; Membrane filtration; Com-
putational fluid dynamics; Coupling conditions.
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1 Introduction

1.1 Societal needs

Humans require 3-5 liters of clean and safe drinking water everyday in order
to survive [1]. Man-made and natural disasters can jeopardize this by damag-
ing water supply infrastructure, putting lives at risk through the difficulty of
accessing clean and safe drinking water [2, 3]. Many first-world countries have
systems and infrastructure in place to effectively react to disasters and emer-
gency situations; however, this is not the case for all developing countries [4].
The UN has demonstrated the importance of solving this humanitarian issue
through its sixth UN Sustainable Development Goal, which concerns the access
to clean and safe drinking water. A possible solution to address this goal is an
affordable and effective water purification system for emergency use in develop-
ing countries. A point-of-use water treatment (PoUWT) filtration system can
potentially fulfill these requirements by offering a device that effectively supplies
a temporary source of clean and safe drinking water until outside aid is received
[5].
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Membrane processes such as micro-filtration (MF) and ultra-filtration (UF)
have been widely used for water treatment in recent years [6, 1]. They have been
used as alternative technologies to conventional methods such as coagulation,
sedimentation, ozonation, granular activated carbon, flocculation/chlorination,
slow sand filtration, etc. The reason for this is that membrane processes are
cost effective, require simple conditions for operation and have a high output,
all with a lower energy consumption and chemical use.

A lot of research has been invested into determining possible ways of puri-
fying contaminated water with low cost/maintenance devices that use little to
no chemicals, minimizing possible harmful side effects. The success of the pro-
posed devices lies heavily on social acceptance, which is mainly dependent on
scientifically proven efficiency achieved through optimization. This is why some
authors conduct experimental studies, for example [7] for an ultra-low pressure
with dead-end ultrafiltration without backflushing and cleaning.

However, experimentation is limited due to the costs of constructing multiple
configurations of the same device whilst having trained staff conduct many trial-
and-error experiments to determine how to maximize flux and minimize blocking
effects for each device. Then, extensive comparison with other types of devices
must be carried out to validate a specific approach, as, e.g., [5] did for a hybrid
circular flow and a stirred dead end system.

To overcome this challenge, computational fluid dynamics (CFD) models
are employed to simulate the operation of any configuration, and determine
the fluid velocity and pressure at any given point, thus making it possible to
estimate the outward flux of the device, and hence maximize it by changing
certain geometrical or membrane-specific parameters.

This literature review presents different mathematical and computational
approaches to effectively and reliably model the process of filtration of an in-
compressible fluid through a porous material with application to membrane-
based water purification. More precisely, differently from other review papers
focussed only on fluid-dynamic aspects either in the feed domain or inside the
membrane, here we consider the whole filtration process considering both the
feed domain the porous materials typically used for ultra- and micro-filtration.

1.2 Coupled free and porous flow

The difficulty in modeling membrane-based filtration devices arises from the fact
that the porous domain has a very complicated microstructure almost impossible
to represent, and that in comparison with the free flow domain, the porous
medium has usually very small thickness. The complicated geometry inside the
porous medium is designed to allow flow through micropores whilst blocking
impurities above a certain size threshold. This geometry is too complicated to
model exactly, which makes the problem computationally intractable. Not only
one should represent the microscopic channels inside the porous material but, at
the interface with the feed domain, one should also treat each pore as a free flow
domain and each rigid part of the membrane as a no-slip surface (see Fig. 1). To
avoid this computational complexity and cost, averaged equations are used to
determine the fluid flow behavior in the porous medium. This approach does not
come without disadvantages as one needs to determine which equations should
be solved in each domain, the coupling conditions to describe the flow behavior
for the common free porous medium interface, and the exact location of the
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latter. We will discuss these aspects in the paper that is organized as follows.
In Section 2, we review basic membrane characteristics required in the rest of the
paper. Section 3 presents the differential models for the accurate representation
of a filtration device. We categorize the models found in literature and then
focus on the mesoscopic flow models which are based either on the Navier-Stokes
equations coupled with either Darcy’s law or Brinkman equations, or on the so-
called one-domain model. We discuss coupling conditions for heterogeneous
models and the boundary conditions that should be imposed on a simple hybrid
filtration geometry. Finally, Section 4 is devoted to the numerical approximation
and solution of the coupled heterogeneous Navier-Stokes/Darcy model using
CFD software.

Figure 1: Free flow/porous medium (membrane) setting (left) and zoomed in-
terface area at the micro-scale (right).

2 Membrane characteristics

2.1 Types of membranes

Systems that incorporate semi-permeable membranes for filtration are an ac-
tive field of both experimental and theoretical research due to their practical
significance and increasing number of applications. Some examples are shown
in [8]. Water treatment processes employ several types of membranes based
on the target particle size to be removed and the required operating pressure.
They include micro-filtration (MF), ultra-filtration (UF), nano-filtration (NF)
and reverse osmosis (RO), which are intended for particles with the following
sizes: MF: 0.1-1µm, UF: 0.005-2µm, NF: > 0.002µm, RO: most commonly
used for desalination with high pressures. Applications of membrane filtration
in water treatment can be divided into two groups. Firstly, MF and UF for
the removal of particulate material and micro-organisms and secondly, NF and
RO for the removal of dissolved material and micro-pollutants based on their
molecular cutoff.

2.2 Membrane modules

Membrane modules consist of the membrane, a pressure support structure, a
feed inlet, the permeate outlet, retentate streams and the overall support system.
There are five main types of modules: plate-and-frame, tubular, spiral wound,
hollow fiber and flat sheet (see, e.g., [9]). The plate-and frame module is the
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simplest configuration, consisting of two end plates, the flat sheet membrane,
and spacers. In tubular modules, the membrane is often on the inside of a tube,
and the feed solution is pumped through the tube. The most popular module
in industry for NF or RO membranes is the spiral wound module. This module
has a flat sheet membrane wrapped around a perforated permeate collection
tube. The feed flows on one side of the membrane. Permeate is collected on the
other side of the membrane and spirals in towards the central collection tube.
Hollow fiber modules used for seawater desalination consist of bundles of hollow
fibers in a pressure vessel. They can have a shell-side feed configuration where
the feed passes along the outside of the fibers and exits the fiber ends. Hollow
fiber modules can also be used in a bore-side feed configuration where the feed is
circulated through the fibers. Hollow fibers employed for wastewater treatment
and in membrane bioreactors are not always used in pressure vessels. Bundles
of fibers can be suspended in the feed solution, and the permeate is collected
from one end of the fibers. Lastly, whilst the flat sheet membrane is used in
other modules, it can also be considered a module itself, as it can be used for
MF and UF in low pressure systems for water purification purposes.

2.3 Operation modes

An important categorization of membrane systems is based on their operation
mode. There are two main modes, which are based on the flow direction com-
pared to the membrane surface.

Firstly, we have dead-end filtration (most commonly with tubular and flat
sheet membranes), where bulk flow is perpendicular to the filter medium [10],
and an accumulation of feed particles occurs at the membrane surface. This
blocks the membrane surface [11], often leading to cake formation [12], which
creates an additional resistance to mass transfer [13, 14], and, hence, a decrease
in permeate flux over time [12]. Authors in [15] concluded that fouling phenom-
ena is the limiting factor in membrane performance.

Secondly, we have cross flow filtration, where the feed flows parallel to the
membrane surface, and thus, the concentration changes as a function of distance
from the inlet [12]. There is a smaller decrease in flux with time compared
to dead-end filtration, which is owed to the reduced effect of fouling through
tangential flow across the membrane, preventing significant solid deposition [10].
This is the main advantage of crossflow over dead-end filtration.

Some authors propose hybrid systems (see, e.g., [1, 12]) to combine the
advantages of both methods, such as higher filtration velocity, the reduction of
pore blockages, and concentration polarization. We will give a simple example
of such a configuration in Sect. 3.3.1.

2.4 Fouling

Fouling is defined as the deposition of matter onto or into a membrane, which
causes a change in permeate flux and in the amount of rejected particles [10].
The driving force for membrane filtration in water treatment is the pressure
gradient across the membrane, which results in a convective transport of mate-
rial from the bulk to the membrane surface. Solvent (water) permeates through
the membrane and solutes (dissolved and particulate material) are partly or
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completely retained by the membrane. The retained dissolved solutes and par-
ticulate material accumulate in a boundary layer at the membrane surface and
a concentration build-up in time, the so-called concentration polarization, is
observed. As a result of the creation of the thin concentration boundary layer
near the membrane surface, the filtrate flux declines over time [12] and reaches
an equilibrium determined by the extent of fouling [10].

There are two types of fouling: internal and external. Internal fouling is
when solutes and particles are entrapped or adsorbed in or on the internal pore
structure of the membrane, which is known to be semi-permanent. External
fouling is the formation of a cake on the membrane surface, due to the rejection
of particles by the membrane, which is known to be reversible through back-
washing. Both these two types of fouling cause a resistance to mass transfer;
hence it is desirable to minimize the amount of fouling in the system [10]. The
resistances to mass transfer can be attributed to pore blocking, adsorption, gel
and cake formation, and concentration polarization, which, along with mem-
brane resistance, contribute towards the overall resistance to mass transfer in
the system [12].

2.5 Membrane surface morphology

Factors that might affect modeling in the context of the free/porous interface
(see Fig. 1) include surface morphology, such as surface roughness and wetta-
bility (see, e.g., [16]). Indeed, the membrane surface contains microscopic hills
and valleys. We can define the surface roughness with statistical methods that
involve data obtained experimentally. As shown in [17], higher values of surface
roughness lead to an increased permeate flux and a decreased diffusion path
length [18].

Another factor of surface morphology is surface charge. It is desirable for the
membrane and particles to have the same charge to promote electrostatic repul-
sion, reducing fouling. Moreover, hydrophilic (contact angle < 90◦) membranes
are preferred to hydrophobic (contact angle > 90◦) ones due to the higher free
surface energy of the former [1]. Electric effects are beyond the scope of this
paper and they will not be considered in the rest of this work.

2.6 Increased filtration efficiency

To increase efficiency, a significant amount of research is spent on proposing
devices that induce artificial fluid flow instabilities like Dean vortices [19, 20] or
Taylor bubbles [21], to recirculate the feed. These can be achieved with spacers,
rotating machinery, spiral channel systems, stirrers, etc. A good review with
experiments on these instabilities is found in [22] and the references therein.

Injecting gas in the feed to create a gas-liquid two-phase crossflow operation
and using intermittent slug bubbling through periodic introduction of large
bubbles is studied in [23, 24].

The effect of baffles in the context of filtration is studied in [25] for tubular
membrane systems, incorporating turbulence effects. This is not common in
membrane systems where the Reynolds number generally categorizes flow in
the laminar regime, but the obstruction of flow from the baffles and the faster
flow regime considered in this study facilitate in the creation of turbulence.
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Another wide field of application that is heavily benefited by the CFD mod-
elling is in narrow spacer-filled channels, as the geometric optimization is cum-
bersome in these complicated configurations. We refer, e.g., to [26] and also to
[27, 28, 29, 30] that solve the Navier-Stokes equations in the microscale geom-
etry. The work [31] presents a 3D CFD study on complex spacer geometries
as well as a comprehensive literature review on studies that have focused on
either optimizing spacer geometric parameters or attempting to gain a better
understanding of the mechanisms giving rise to mass transfer enhancement.

3 CFD modeling of membrane-based filtration
systems

The complexity of membrane based systems for various applications springs
mostly from the difficulty of modeling the flux decline due to the impurities
that block the pores of the membrane, either internally or sitting on the sur-
face, hindering the membranes’ ability to act like a barrier between two domains
and to separate a fluid or gas filled with particles. This has been well known
for many years: the work of [32] in 1985 is centered around crossflow mem-
brane filtration, and it emphasizes the importance of fluid dynamic behavior to
understand concentration polarization and membrane fouling.

CFD simulations offer a deep understanding of flow by reproducing its veloc-
ity and pressure field on a discretized version of the geometry. A few difficulties
arise when setting up a CFD simulation. Firstly, a complicated geometry must
be built, which might be difficult to approximate accurately using a computa-
tional mesh. Secondly, a correct set of equations to accurately describe the un-
derlying physics must be selected. These typically involve the balance of forces
(momentum equation) and the conservation of mass (e.g., the incompressibility
equation). Then, the question of accounting for the porous medium arises, and
its coupling with the free flow region. We categorize the coupled models found
in literature in three groups.

• Microscopic models: they aim at representing the free/porous-medium
system at the microscopic level providing a precise and detailed geomet-
rical description of the membrane.

• Reduced models: upon typically making assumptions on the flow pattern,
these models provide a simplified description of the filtration device gen-
erally limited to the feed domain.

• Mesoscopic models: they treat the membrane as a uniform porous medium
where averaged models, such as Darcy’s law, are applied. The fluid is typ-
ically described by Navier-Stokes equations leading to a system of partial
differential equations.

3.1 Microscopic models

In this framework, the geometry is modeled at the microscale accounting for
details that are not seen with the naked eye. In principle, one should represent
the whole membrane at microscopic level and then solve fluid equations such
as, the Navier-Stokes equations, both inside each of the membrane pores and
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in the free-fluid region. This approach was used, e.g., in [33], an early study
that focused on crossflow filtration over single pores of the membrane. How-
ever, this is extremely demanding. Indeed, obtaining a precise representation
of the whole membrane requires sophisticated imaging techniques, generating
a computational mesh becomes very challenging, and the number of unknowns
to describe the velocity and pressure fields, e.g., in a finite element context,
make the problem intractable. Some simplifying assumptions can be made to
alleviate the computational cost. For example, one can precisely represent only
a small portion of the membrane and replicate it to model the whole device as-
suming that the membrane is uniform and isotropic in each direction. However,
due to its computational cost, in practice the microscopic approach is used only
to study parts of the filtration device that are of special interest. Examples
of real world applications that this approach can tackle are small disturbances
in flow using gas bubbles injected in the feed or narrow spacer-filled channels
(often in spiral wound membrane modules). We refer the interested reader to
[31, 27, 28, 29, 30].

Finally, we remark that in the microscopic context coupling different equa-
tions is needed only to model impurities in the feed. In the example of spacer-
filled geometries, water and solute fluxes are generally described either by dif-
fusion models as seen in [34] where the concentration polarisation effects are
studied using CFD or by the Spiegler-Kedem model [35].

3.2 Reduced models

To reduce the computational cost of a full micro-scale (and also of a macro-
scale) simulation, several authors introduced simplifying hypotheses to be able
to model the filtration process assuming a certain flow pattern in the feed do-
main and representing the membrane by ad-hoc boundary conditions instead
of describing it by a dedicated model. These approaches led to define reduced
models that do not demand a huge computational effort but rely on strong
assumptions which make them difficult to adopt in general contexts.

For example, [36, 37] assumed that the permeate flux through a membrane
was independent of its location on the membrane surface and were able to
find an analytic solution for the velocity field in the feed domain. This avoids
computing numerically the latter and [38] used the analytic velocity as the
convective field for a steady-state convection-diffusion mass transfer equation
that was solved by the finite element method for a cross flow polysulphone UF
membrane. Thanks to the adopted simplification, for a given permeate flux,
[38] could obtain a linear relationship between the diffusion coefficient and the
thickness of the concentration boundary layer which was in agreement with the
theory and gave indications on how to generate an appropriate finite element
mesh near the membrane. Moreover, their finite element analysis could predict
the mass transfer coefficient, an important parameter in engineering design and
analysis of a membrane filtration process.

Other reduced models consider the membrane as a lower dimensional entity
in comparison with the free flow domain so that, e.g., a flat sheet membrane
would be considered as a porous wall. This simplifies the equations to be solved,
as the presence of the porous medium is simply described by a boundary con-
dition. The basis for this approach was set in [39], where the method is used
to model crossflow membrane filtration and the author develops a robust, ac-
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curate and cost-effective finite element scheme to simulate the flow in the feed
domain under the simplifying assumption that the membrane is regarded as a
porous wall. This work was extended in [40] to the case of curved boundaries
for crossflow filtration.

Other works represent the presence of the membrane by imposing a no-slip
boundary condition for the tangential velocity to the Navier-Stokes equations
at a boundary of the feed domain. These works, such as [41, 42], are based on
[43] that claims that in crossflow filtration mode, the tangential velocity over
the membrane is so low that it can be assumed a no-slip surface, and thus
impose a zero tangential velocity boundary condition. This can also be seen
in [44], where a rectangular reverse osmosis membrane channel is modeled by
finite elements and the authors solve the Navier-Stokes equations coupled with
convection-diffusion equations to describe mass transport with application to
salts. Again, the membrane is modelled by a suitable boundary condition that
imposes no-slip tangential velocity, and a normal velocity according to Darcy’s
law. The authors also introduce suitable coupling conditions on the membrane
for the concentration of the impurities (salts in this case). A similar study for
protein ultrafiltration is found in [45].

An attempt to combine the Navier-Stokes equations and Darcy’s law to
predict the growth of the concentration polarisation boundary layer in tubular
crossflow membrane filters is also found in [46], with special focus on the fluid
behavior in a porous tube with variable wall suction. Another similar approach
is adopted in [47, 48], where CFD is used to model fluid dynamics gauging,
a popular experimental procedure that tracks the build-up and deposition of
fouling layers on membrane filtration systems.

In [49], the finite volume method is used to model NF in a slit with a crossflow
membrane configuration, solving equations that model the motion and the solute
transport of a non-reacting binary solution. The membrane is modeled as a
boundary condition, and the results are verified with experimental data. In
[50], the membrane is modeled as a solid wall and experimental data are used to
develop 2D and 3D models where permeation of solvent molecules is described
by appropriate sink terms in the equations of conservation of mass.

The no-slip condition does not apply when rough membrane surfaces and
high tangential velocities are present, which usually occurs in operational modes
other than crossflow filtration. Also, [51] points out that the slip velocity in-
creases with the size of the membrane pores. Due to this, the zero tangential
velocity boundary condition can be replaced by a suitable slip condition similar
to the Beavers-Joseph relationship [52] that relates the tangential velocity to
the tangential shear rate. This involves a slip coefficient that depends on the
characteristics of the membrane surface such as its roughness, pore size and
structure [53]. For instance, it has been shown that the slip coefficient is higher
for a densely packed porous material than for a less densely packed one [54]. The
resulting reduced models feature the Navier-Stokes equations in the free flow do-
main with a permeable boundary condition for the normal flux to describe the
presence of the membrane. Work focusing on spiral wound membrane modules
is found in [55], where the boundary to represent the membrane is derived from
Darcy’s law. A more recent study on this approach is [56], where the proposed
model is also validated with experimental data, and also [57]. The effect of
pulsatile flow in crossflow configurations is studied with the membrane being
modeled by a Darcian-like boundary condition. Additionally, a source term is

8



added to the Navier-Stokes momentum equations to account for the permeation
through the membrane. This term is again based on Darcy’s law and it relates
the flux, the transmembrane pressure and the sum of membrane resistance and
cake resistance which are estimated from experimental data. An extension of
this work is found in [58], where two-phase flow is experimentally and numeri-
cally studied in a flat sheet membrane module for concentration polarization in
oil-in-water emulsion.

A recent summary of reduced models is found in [59], where the authors
review the hydrodynamics of membrane channels, including laminar, turbulent,
and transition flow regimes, with reference to the effects of osmotic pressure,
concentration polarization and cake formation.

A limit case of the reduced modeling approach can be found in [60] which
models a laboratory membrane filtration cell operated at low recovery. In this
setting, membranes are much thinner than the channel height and are tightly
pressed against the lower wall of the channel due to the pressure difference
between retentate and permeate sides of the membrane unit. Hence, this study
proposes to completely neglect the existence of the membrane in the cell, and
instead, treat it as an impermeable no slip wall. However, the authors note the
significance of the low recovery assumption for this model to be valid, and that
this approach is not realistic for devices with higher recoveries.

3.3 Mesoscopic models

We consider now the mesoscopic approach which can be applied to membrane
systems regardless of their operational mode and of any dimensional restrictions,
and it is a computationally feasible approach for membrane systems, compared
to the microscopic approach. First, we generally describe this approach with
reference to the literature, then we formulate it more rigorously for a chosen
hybrid operation system to demonstrate its versatility.

On the mesoscale, we treat both the free flow region and the porous medium
domain as having the same geometric dimensions. Then, we must specify an ap-
propriate set of equations to be solved in each region as well as suitable coupling
conditions between the equations to represent filtration, a controversial subject
for which no general consensus seems to exist in the literature. For example,
[43] shows that the slip effect at the semi-permeable surface in a crossflow fil-
tration system is practically negligible and thus the no-slip boundary condition
can be used, a practice implemented for various applications, for example [41].
A study modelling a 3D multichannel inorganic membrane tube is presented in
[61], where the boundary between the free flow and porous domains is said to
be a porous jump boundary and a zero tangential velocity condition is imposed
along the free flow-porous interface (a technique often seen when modelling
crossflow filtration).

The assumption of zero velocity coupling is not known to be true for hybrid
configurations, which are more general and have a higher tangential velocity.
Also, as already mentioned in Sect. 3.2, this assumption is shown not to be true
for membranes with a rough surface, where a slip velocity condition must be im-
posed, like in [62]. To circumvent the difficulty of choosing coupling conditions,
studies like [63] prefer the use of the one-domain approach (see Sect. 3.3.1) as
it provides ease of implementation and skips the controversy of the choice of
coupling conditions and different representative equations.
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With regard to crossflow membrane filtration modelling, a literature review
of previous CFD studies is presented in [64, 65] together with several compu-
tational experiments including curved interfaces and a changing value of the
membrane permeability.

In the same spirit of mesoscopic models, [66] offers a novel approach for
the coupling of free and porous media flow by defining a viscous transition
zone inside the porous domain where the equation used for the free fluid is still
valid. In addition, continuity of pressure and velocity is imposed across the
whole transition zone. In this way, imposing slip conditions like the Beavers-
Joseph-Saffman condition [52] is unnecessary, so that this method only requires
estimating the depth of the transition zone.

3.3.1 Formulation of mesosopic models for a hybrid filtration system

We now focus on formulating more precisely the mesoscopic approach in the
case of a hybrid filtration system where no simplifying hypotheses can be made
due to the arbitrary nature of the flow.

The membrane is modeled as an isotropic porous medium for simplification.
Moreover, we assume that there are no impurities in the feed. The mesoscopic
models use systems of partial differential equations to describe flow inside the
free flow channel and through the membrane, while they represent the remaining
components of the device through suitable boundary conditions. As shown in
Fig. 2, we denote Ωf as the free flow domain where the fluid flows above
the membrane Ωp. These two regions are non-intersecting and separated by a
common surface (interface) ΓI : Ωf ∩ Ωp = ∅, ΓI = Ωf ∩ Ωp. The fluid in Ωf
is characterized by its density ρ (e.g., ρ = 103 kg/m3 for water) and dynamic
viscosity µ (e.g., µ = 10−3 Pa s for water). We indicate u and p as the velocity
and pressure of the fluid respectively, and we use the subscripts f or p to indicate
if they are considered either in Ωf or in Ωp. Quantities without any subscript
are understood to be defined in both domains.

Figure 2: A simple example of a geometrical setting that induces hybrid filtra-
tion by combining dead-end and crossflow filtration.

Coupled heterogeneous models. The first approach we review to model
the filtration device is to adopt different sets of equations in the free flow and
porous media domains (Ωf and Ωp, respectively). These account for the different
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physics in each region. To solve this coupled system of equations, we need to
prescribe suitable sets of coupling conditions across the interface ΓI .

To be more precise, in Ωf we consider the incompressible Navier-Stokes
equations: find the fluid velocity uf and the pressure pf such that

ρ(uf · ∇) uf = ∇ · T (µ; uf , pf )+ρg in Ωf
∇ · uf = 0 in Ωf

(1)

where g is gravitational acceleration, while

T (µ; uf , pf ) = −pfI + µ(∇uf + (∇uf )T )

is the Cauchy stress tensor. For this equation to be a valid model for our system,
we have to determine the operating velocity regime (laminar or turbulent); the
common practice is to evaluate the Reynolds number [67]:

Ref =
UfρLf
µ

, (2)

where Lf is a characteristic length of the free flow domain and Uf is a char-
acteristic free flow velocity. If Ref is sufficiently low, a valid simplification of
the Navier-Stokes equations 1 is the Stokes equation that can be obtained by
neglecting the inertia term ρ(uf · ∇) uf . This makes the momentum equation
linear and thus much easier to numerically solve, but this is only valid for very
low velocities, densities and characteristic lengths or highly viscous fluids. The
Navier-Stokes equations (1) are generally considered valid for Ref < 2000 [68].
For Reynolds numbers above 2000, the flow is said to be affected by turbulence
and another model must be introduced, with the most commonly used in CFD
being the k − ε model [69] or the Reynolds averaged Navier-Stokes (RANS)
model [70]. It is not in the scope of this paper to review those cases, as in most
MF and UF membrane-based systems, the velocity magnitude is usually low so
that Ref does not exceed the turbulent threshold. Recent examples of CFD
studies on tubular membranes that include turbulence are found in [71, 25, 72]
where baffles and spacers are used to obstruct flow in the geometry in order
to achieve better filtration performance by reducing fouling and increasing the
flux.

In the porous medium Ωp we have the option to either consider Darcy’s law
or non-Darcian equations.

Darcy’s law is a linear relation between velocity up and pressure pp of an
incompressible fluid in a saturated porous medium [73]:

up = −K

µ
(∇pp−ρg) in Ωp

∇ · up = 0 in Ωp

(3)

with K the permeability tensor. If the porous medium can be assumed homo-
geneous and isotropic as it is often the case for membranes, K can be replaced
by a constant K. Typical values of K for UF membranes are in the range
10−15 ≤ K ≤ 10−9 m2 (see, e.g., [12, 74]).

Darcy’s law is considered valid for porous Reynolds numbers (considering
the characteristic length as the average pore radius) below 10 (see, e.g., [75]).
The porosity of the membrane is also a deciding factor for the equations to be
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used: [63, 76] report that a threshold of 0.6 can be used for the porosity, above
which the shear stresses inside the porous medium are considered to become
non-negligible. In such cases, non-Darcian models are used as discussed, e.g.,
[77]. One of these models is Brinkman equation [78] that adapts the Navier-
Stokes momentum equation by adding the Darcian term µK−1up to mimics the
presence of a porous medium. The problem translates into finding the velocity
up and the pressure pp such that

ρ(up · ∇)up = ∇ · T (µb; up, pp)− µK−1up + ρg in Ωp

∇ · up = 0 in Ωp .
(4)

Equation (4)1 involves the effective (or Brinkman) viscosity µb instead of µ,
which should be estimated experimentally since there are no theoretical expres-
sions for it [79]. For instance, in [80], experimental work on idealized axial flow
through infinite and streaked arrays of cylindrical rods showed a dependence
of the effective viscosity on porosity and that µb ≤ µ for their particular case.
Furthermore, [81] relates µb to the slip coefficient on the interface between a
free fluid and a porous medium. However, due to a lack of general consensus on
how to determine µb, it is generally accepted to approximate µb ≈ µ [82].

Another non-Darcian model is Forchheimer equation [83, 84, 85]. In this
case, a quadratic non-linear term is added to Darcy’s law to account for the
viscous dissipation (conversion of kinetic energy into internal energy by work
done against the viscous stress) as mentioned in [86]. Forchheimer equation
becomes: find the fluid velocity up and the pressure pp such that

−∇pp =
µ

K
up +

ρCf√
K
|up|up + ρg in Ωp

∇ · u = 0 in Ωp ,

(5)

where Cf is the Forchheimer drag (or inertial resistance) coefficient [85, 86]. (In
general, non-linear correction terms of the form |up|αup with 1 ≤ α ≤ 2 can be
considered for Darcy’s law as discussed in [87].)

Considering the Navier-Stokes equations (1) in Ωf and Darcy’s law (3) or the
Brinkman equations (4) or Forchheimer equation (5) in Ωp, we have to introduce
coupling conditions prescribed on the common free flow-porous interface ΓI , in
order to accurately represent the filtration process.

A classical set of conditions introduced to couple the Navier-Stokes and
Darcy’s law as seen, e.g., in [52, 88, 89, 90, 91, 92] are:

(i) the continuity of the normal velocity across ΓI :

uf · n = up · n on ΓI (6)

ii the balance of the normal stresses across ΓI :

pp + ρgz = −n · T (µ; uf , pf ) · n on ΓI (7)

where z is the elevation with respect to a reference level, and

(iii) the Beavers-Joseph-Saffman condition on the Navier-Stokes tangential ve-
locity:

t · T (µ; uf , pf ) · n = −t ·
(
αµ√
K

uf

)
on ΓI . (8)
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Here, n and t are the normal (pointing outwards of Ωf ) and tangential
unit vectors on ΓI , while α is the dimensionless Beavers-Joseph-Saffman
slip coefficient that depends on the characteristics of the porous medium
[52]. According to the classical experiments of [52], a valid range for the
slip coefficient for different porous materials is 0.1 ≤ α ≤ 4.

The coupling conditions indicated in equations (6)–(8) apply also in the case
Forchheimer equations (5) are used in the porous medium domain Ωp.

To couple the Navier-Stokes and Brinkman equations, a possible strategy is
to impose the continuity of both velocity and normal stress [81, 93]:

up = uf on ΓI

T (µb; up, pp) · n = T (µ; uf , pf ) · n on ΓI
(9)

whereas other authors suggest replacing equation (9)2 by the following jump
condition for the tangential component of the stress [94]:

(εp
−1∇up −∇uf ) · n =

β√
K

up on ΓI

where εp is the porosity (liquid volume fraction) of the porous medium and β is
a dimensionless coefficient to be determined experimentally.

One-domain approach. The difficulty of identifying appropriate interface
coupling conditions and of solving different types of equations in two sub-regions
of the domain of interest is avoided by using the one-domain approach [66].

This method is commonly found in commercial finite element software (such
as, e.g., COMSOL Multiphysics [95]), since it is much more straightforward to
implement. It uses spatially changing coefficients (porosity and permeability)
within a unified momentum equation, to realistically model filtration. More
precisely, the problem proposed in [66] reads: find the fluid velocity u and
pressure p in the whole domain Ω such that

ρ

(
u

εp
· ∇
)

u

ε p
= ∇ · T (µbε

−1
p ; u, p)− µK̃u + ρg in Ω

∇ · u = 0 in Ω

(10)

where the porosity εp is set equal to 1 in Ωf , while K̃ is zero in Ωf . Naturally,

K̃ = K−1 in Ωp and εp assumes the value of the porous medium porosity in Ωp.
Using this model, both velocity and pressure are continuous across the interface
ΓI but an interfacial stress jump is induced due to the discontinuous porosity
and the Darcian term µK̃u that plays the role of an additional stress term in
the porous medium domain. A comparison between the coupled Stokes/Darcy
model and this approach is carried out in [66]. The finite element approximation
of the one-domain model has been studied extensively in [96].

An extension of the one-domain equations (10) to account for the case of
non-Darcian flow regimes in the porous medium is provided by the so-called
penalization method [97, 63]. This is analogous to the one-domain approach,
since it consists of a modified set of Navier-Stokes equations in the whole domain
of interest, including two penalization terms associated to the resistance induced
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by the porous medium. More precisely, the equations for this model become:
find the fluid velocity u and pressure p such that

ρ

(
u

εp
· ∇
)

u

εp
= ∇ · T (µbε

−1
p ; u, p)− µK̃u− ρCf

√
K̃|u|u + ρg in Ω

∇ · u = 0 in Ω.

(11)

This model does not require coupling conditions and it is used in commercial
CFD software (e.g., [98, 95]).

All the models presented produce analogous results both in the fluid re-
gion and inside the porous medium. The most notable differences are in the
interfacial region where the one-domain and the penalization models predict
a continuous velocity field while the other three models result in a discontin-
uous tangential velocity. A comparison between the different approaches can
be found in [63] for a simple 2D setting where these differences can be easily
appreciated.

4 Solving the equations using commercial soft-
ware: example of COMSOL

In this section, we give an example of how the Navier-Stokes/Darcy and the
one-domain models can be solved using COMSOL Multiphysics 5.3a [95], a
commercial finite element solver that can consider multi-physics problems char-
acterized by different equations in different regions as well as various types of
boundary and coupling conditions.

Consider the hybrid water purification system illustrated in Fig. 3. The fluid
flows from the sample reservoir into a spiral-shaped channel with open bottom
placed on top of a UF membrane sheet [99, 100, 101]. We remark that the
computational domain is characterized by different characteristic lengths since
the membrane is much thinner than the free flow domain (the spiral channel), a
common situation also for other applications (see, e.g., [38]). Thus, anisotropic
meshes made of tetrahedra and prisms refined both inside the free flow channel
and in the membrane domain should be considered. An example of computa-
tional mesh generated using COMSOL is shown in Fig. 4 where we can see that
boundary layers were added near the interface and on the channel walls, while
coarser elements were used inside the membrane where small velocity gradients
are expected.

Figure 3: Schematic representation of the filtration device (left) and 3D illus-
tration of the spiral flow channel and the membrane filter.
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Figure 4: Mesh created in COMSOL made of 659,139 elements.

The finite element approximation of the Navier-Stokes and the one-domain
momentum equations can be realized by Lagrangian elements. COMSOL uses
the second-order Taylor-Hood elements P2−P1 by default but P1−P1 elements
with streamline stabilization [102, 103, 104] can be easily selected to reduce the
computational cost by reducing the number of unknowns for the velocity field.
In order to solve Darcy’s law (3), COMSOL automatically reduces the system
of equations to an elliptic equation for the pressure: find pp such that

∇ ·
(
−K
µ
∇pp

)
= 0 in Ωp , (12)

and then it uses Darcy’s law in equation (3)1 to post-process the velocity. To
discretize the pressure pp, one can use P1 Lagrangian elements, which is the sim-
plest and most economical choice in terms of computational cost. Since COM-
SOL solves this elliptic equation with the pressure as the only unknown, instead
of solving the mixed formulation (3), the system that arises from the finite el-
ement approximation of the Navier-Stokes/Darcy model has fewer unknowns
(degrees of freedom) than the one associated with the one-domain model. In
particular, the mesh in Fig. 4 has 659,139 elements that correspond to 829,852
unknowns (for velocity and pressure) for the Navier-Stokes/Darcy problem and
to 1,080,036 unknowns for the one-domain case.

Suitable boundary conditions must be introduced to represent the presence
of the inlets, outlets and the impermeable walls. Additionally, the coupling
conditions considered in Sect. 3.3.1 for the coupled heterogeneous problems
can be implemented in COMSOL as if they were boundary conditions for each
subproblem on the respective subdomain, either Ωf or Ωp. More precisely,
the Beavers-Joseph-Saffman condition (equation (8)) and the continuity of nor-
mal stresses (equation (7)) should be implemented as boundary stresses for the
Navier-Stokes equations(1). For Darcy’s law (equation (12)) the continuity of
normal velocity, equation (6), should be imposed as a Neumann boundary con-
dition for the pressure.

The finite element approximations give rise to non-linear systems of equa-
tions that were solved using Newton’s method with convergence criterion re-
quiring that the residual error must be less than 10−3.

In Fig. 5, we plot the computed pressure on a cross section of the chan-
nel for a given inflow pressure. We remark that, while the one-domain model
gives a continuous pressure across the interface, a pressure jump arises in the
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Navier-Stokes/Darcy case due to the imposed coupling conditions. Moreover,
the centrifugal force produced by the curved shape of the fluid channels creates
a pressure gradient between the convex and the concave walls. As expected, this
gives rise to Dean vortices that are clearly visible in Fig. 6. Velocity vectors
and streamlines highlight the vortices near the membrane surface and at the
top of the channel as discussed in [100, 101].

Figure 5: Pressure computed using the Navier-Stokes/Darcy model (left) and
the one-domain model (right) at a cross-section of the device.

Figure 6: Velocity magnitude at a cross section of the device using Navier-
Stokes/Darcy (left) and the one-domain model (right). Dean vortices are visible
for both models.

Finally, Fig. 7 shows the velocity magnitude plotted in the middle of the
spiral channel for the one-domain model and for the Navier-Stokes/Darcy model
for different values of the Beavers-Joseph-Saffman slip coefficient α. The lowest
value of α corresponds to higher slip velocity on the interface as clearly shown
in the figure.

5 Conclusions

In this paper, we have reviewed several modeling techniques that have been
proposed in the literature to represent filtration in membrane systems for water
treatment applications. It is evident that many models rely on strong assump-
tions on the flow behavior and are application specific so that they cannot be
applied to general configurations, such as hybrid membrane filtration systems.
Additionally, we identified the basic mesoscopic models that can be used to
model the fluid dynamics in generic configurations. We have also demonstrated
how the proposed settings could be implemented in a commercial finite element
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Figure 7: Velocity magnitude plotted in the middle of the spiral channel for the
two models.

software to simulate filtration inside a specific water-purification device. Over-
all, we conclude that while the literature on coupled free and porous modelling
is mature, there is still scope to apply these approaches to modeling filtration
systems, due to the dynamic nature of these domain, and this is something that
should be pursued vigorously in the future.
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