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Abstract 

This thesis presents the development of computer vision techniques for 

a robot-assisted emergency neurosurgery system that is being developed by 

the Mechatronics in Medicine group at Loughborough University, UK, and 

situates them within the context of the overall project. There are two main 

contributions in this thesis. The first is the development of a registration 

framework, to establish spatial correspondence between a preoperative plan of 

a patient (based on computed tomography images) and the patient. The 

registration is based on the rigid transformation of homologous anatomical soft 

tissue point landmarks of the head, the medial canthus and tragus, in CT and 

patient space. As a step towards automating the registration, a computational 

framework to localise these landmarks in CT space, with performance 

comparable to manual localisation, has been developed. The second 

contribution in this thesis is the development of computer vision techniques for 

a passive intraoperative supervisory system, based on visual cues from the 

operative site. Specifically, the feasibility of using computer vision to assess the 

outcome of a surgical intervention was investigated. The ability to mimic and 

embody part of a surgeon‟s visual sensory and decision-making capability is 

aimed at improving the robustness of the robotic system. Low-level image 

features to distinguish the two possible outcomes, complete and incomplete, 

were identified. Encouraging results were obtained for the surgical actions 

under consideration, which have been demonstrated by experiments on 

cadaveric pig heads. The results obtained are suggestive of the potential use of 

computer vision to assist surgical robotics in an operating theatre. The 

computational approaches developed, to provide greater autonomy to the 

robotic system, have the potential to improve current practice in robotic surgery. 

It is not inconceivable that the state of the art in surgical robotics can advance 

to a stage where it is able to emulate the ability and interpretation process of a 

surgeon. 
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Glossary of Terms 

 

Anterior   Nearer the forward end, front of a human 

Axial Plane  A plane roughly perpendicular to spine that divides the body into upper 

and lower parts  

Burr hole   Small window in the skull made to access the brain 

Canthus   Either corner of the eye, where the eyelids meet 

Catheter   A small tube inserted into a body cavity 

Cauterise  To burn, sear, or freeze tissue 

Cerebrospinal Fluid  A clear bodily fluid that occupies the subarachnoid space in the brain 

Cerebrum  The upper part of the brain, which is divided into the two cerebral 

hemispheres 

Coronal Plane  A vertical plane roughly parallel to spine that divides the body into 

anterior and posterior sections 

Coronal Suture  The line of junction between the frontal bone and the two parietal 

bones of the skull  

Dura Mater   The tough and inflexible outermost of the three layers of the meninges 

Epidural   Situated on or outside the dura mater 

Glasgow Coma Scale  A neurological scale to assess level of consciousness of acute medical 

and trauma patients 

Haematoma  A swelling of blood, usually clotted, which forms as a result of a broken 

blood vessel 

Intracerebral   Occurring or situated within the cerebrum 

Intraparenchymal  Within the brain  

Kocher’s point A common entry point for an intraventricular catheter to drain cerebral 

spinal fluid from the cerebral ventricles 

Lateral    Pertaining to the left or right of the body; further from the midline 

Medial    Pertaining to the inside; closer to the midline  

Meninges   The three membranes that envelop the brain and spinal cord  

Oedema   An excessive accumulation of serum in tissue spaces or a body cavity 

Pericranium   A membrane that covers the outer surface of the skull  

Periosteum   A membrane surrounding a bone 

Pia mater  Inner most of the meninges membranes that surround the brain and 

spinal cord  

Posterior   Nearer the back end; nearer the dorsal end in humans 

Radiography  The process of making an image, often a photographic negative, 

produced by radiation other than normal light 

Sagittal Plane  A plane roughly parallel to the spine that divides the body in left and 

right sections 
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Sagittal Suture  A dense, fibrous connective tissue joint between the two parietal bones 

of the skull 

Subarachnoid  Located or occurring below the arachnoid membrane, often specifically 

between the arachnoid membrane and the pia mater 

Subcutaneous fat  Fat found beneath the dermis layer of the skin 

Subdural   Located beneath the dura mater and above the meninges. 

Suture    To sew up or join edges of skin usually by means of a thread 

Tragus  The small piece of thick cartilage of the external ear that is immediately 

in front of the ear canal 

Trauma   Any serious injury to the body 

Ventricle   One of four cavities in the brain 
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“No head injury is so serious that it should be despaired of nor so trivial that it 

can be ignored.” 

Hippocrates 

1.1 Background 

Head injury is significant cause of fatality among trauma patients. In a 

prospective study [1] of 22,216 major trauma patients with head injury i.e. 

patients with abnormal CT brain scan and those with skull fractures, between 

1989 and 2003, the overall mortality rate was 44%. This mortality rate is ten 

times the mortality rate for major trauma patients without head injury. Although 

patient outcome after a head injury depends largely on the severity of the initial 

injury, the management of the injury and any subsequent complications is 

important for a good outcome [2].  

In patients with head injuries, neurosurgery is aimed at preventing or 

minimising irreversible damage to the brain. There are two types of demand for 

neurosurgery. The first is emergency, urgent and trauma, the second is 

demand for neurosurgery that is not immediately life threatening. Two thirds of 

the neurosurgical workload in the United Kingdom (UK) and Ireland is 

emergency, urgent and trauma [3], a demand which is not always met. A report 

by the National Confidential Enquiry into Patient Outcome and Death 

(NCEPOD) 2007 [2] highlights some of the inconsistencies in the provision of 

emergency neurosurgical services in the UK. The following case studies [4] are 

examples of the poor management of some patients with severe head injuries 

and symptomatic of the scarcity of neurosurgical resources in the UK: 

Case study 1 

“A young patient was admitted to hospital after sustaining a head injury. 

Admission GCS [Glasgow Coma Scale] was 5. CT [Computed Tomography] 

head scanning revealed a large intracerebral haemorrhage, cerebral oedema 

and midline shift. Referral was made to the regional neurosurgical centre at 

01:15. The neurosurgical SpR [Specialist Registrar] stated that there were no 

beds in the ICU [Intensive Care Unit] and advised that the patient be referred to 
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another neurosurgical centre. After some difficulty in contacting the on call 

neurosurgeon, the patient was discussed with the neurosurgical SpR at a 

second centre. This occurred at 02:15. The neurosurgical SpR stated that they 

had beds available and would be prepared to take the patient but that the 

opinion of whether transfer should occur should be made by the local 

neurosurgical centre that had no capacity to take the patient. A further 

telephone call was made to the local neurosurgical centre at 02:30 who felt that 

as they had no capacity they could not comment on the patient care. At 03:00 a 

second telephone call was made to the second neurosurgical centre and at that 

point the neurosurgical SpR requested that hard copies of the CT be sent to 

him. Six more telephone calls occurred over the next few hours between the 

initial hospital and three different neurosurgical centres. By 06:30 the patient, 

who was still in the emergency department, had fixed and dilated pupils and it 

was believed that death was the inevitable outcome...” [2] 

Case study 2 

“A teenager was involved in a road traffic accident. On admission, they 

had a Glasgow Coma Score (GCS) of 14/15. A CT scan demonstrated a 

subdural haematoma. An emergency department specialist registrar discussed 

the patient with a neurosurgical SpR and a further CT was ordered. Transfer 

was not accepted despite deterioration in the patient’s GCS to 12/15 over the 

next two hours. Following a further deterioration over another hour to GCS 8/15 

the patient was intubated and following further discussion with a neurosurgical 

specialist registrar a third CT scan was ordered. During the scan, the patient’s 

endotracheal tube became blocked and the patient became hypoxic which lead 

to raised intracranial pressure. Thirty six hours later the patient was declared 

brain dead and ventilation withdrawn” [5] 

As exemplified by these case studies, when demand for neurosurgery, in 

particular emergency neurosurgery, is not met, the consequences can be fatal. 

An expert review of the case study 2 questioned whether scarce neurosurgical 

resources were a contributing factor. A snapshot audit [6] of 223 critical care 

units in 187 hospitals and 24 regional neurosciences units (RNUs) in England 

and Wales showed that demand for neurocritical care has outstripped supply by 
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9% - 22%, and stated that „…. in some cases at least, access to neurocritical 

care is determined by capacity rather than by clinical need‟. As a step towards 

improving the supply side of the equation, the Mechatronics in Medicine group 

at Loughborough University, UK, is developing a robot-assisted system for 

emergency neurosurgery where immediate surgery is required, but for various 

reasons, the patient cannot be operated on conventionally by a neurosurgeon. 

This robot-assisted system, the Mechatronic Intervention System for 

Emergency Neurosurgery (MISEN), is conceived as a supervisory-controlled 

system, where the robot performs the surgery autonomously based on a 

preoperative plan by an off-site neurosurgeon, with an on-site surgeon, usually 

without specialist neurosurgical experience, providing some degree of 

monitoring and control.  

1.2 Image to patient registration 

An often-overlooked aspect of robotic surgery is that the surgical 

intervention by the robot is only one aspect of the surgery. There are typically 

three phases for robotic surgery: (a) preoperative planning, (b) intraoperative 

surgical intervention, (c) postoperative assessment [7]. In the preoperative 

planning phase, a surgeon uses a computer to plan the surgical intervention to 

provide guidance to the robot. This preoperative plan, based on a 3D model of 

the patient reconstructed from medical images such as CT or magnetic 

resonance imaging (MRI), usually specifies an entry point, target point(s), and a 

trajectory. To establish spatial correspondence between the preoperative plan 

and the patient, the preoperative plan has to be „aligned‟ to the patient using a 

technique known as image to patient registration. The output of the image to 

patient registration is a geometric transformation that will relate „medical image 

space‟ and „patient space‟. This geometric transformation will provide a one-to-

one mapping of points in the CT/MRI image coordinate system to points in the 

patient coordinate system, enabling the robot to follow a trajectory on the 

patient based on the preoperative plan. 
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1.3 Intraoperative assessment 

As MISEN would be performing actions that would otherwise be carried 

out by a neurosurgeon, the ability to assess the progress of the operation is an 

important aspect of the surgical intervention. One possible solution is to mimic 

and embody a surgeon‟s visual sensory and decision-making capability using 

computer vision. As a step towards this goal, the use of visual cues to inspect 

the outcome of surgical actions is investigated. The incorporation of visual 

feedback is intended to improve the reliability and robustness of robotic surgery 

systems by improving its perception. The use of computer vision should 

therefore not be viewed in isolation.  

1.4 Objectives 

This thesis has two objectives. The first is to develop an automatic image 

to patient registration framework for MISEN that is sufficiently accurate for the 

targeted neurosurgical interventions. For the registration, the error in localising 

a target anywhere in a head should be within required clinical accuracy of the 

procedures. Because the targeted neurosurgical procedures are normally 

performed using a freehand technique i.e. without image-guidance, the 

accuracy requirements for the procedures are within the centimetre range, 

similar to that achieved by neurosurgeons. The goal is to develop a registration 

framework that is capable of sub-centimetre accuracy.  

The second objective is to investigate a computer vision based approach 

to facilitate the surgical intervention by the robot. The aim is to use computer 

vision to augment/complement other sensory information e.g. force, for a more 

comprehensive assessment of a surgical action. When multiple sensory inputs 

are available, various control schemes such as traded, hybrid and shared 

control are commonly used. However, the type of control scheme used is 

beyond the scope of this thesis.  

Both the registration framework and computer vision system should be 

cost effective and practical. In terms of cost-effectiveness, the use of 

specialised hardware, such as the use of projectors to provide structured 
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lighting or the use of 3D laser scanners, which is prohibitive in terms of cost, 

should be avoided. In terms of practicality, there should not be unrealistic 

requirements on the robotic system in terms of its overall architecture and 

design. Existing workflow should not be modified. For example, in CT imaging, 

a secondary scan should not be required.  

1.5 Contribution 

There are two main contributions in this thesis. The first is the 

development of a retrospective image to patient registration framework based 

on a rigid body transformation of two homologous anatomical soft tissue 

landmarks of the head, the medial canthus and tragus, in CT and patient space. 

The proposed framework avoids resorting to the use of fiducial markers, which 

is the method of choice for image to patient registration but is a prospective 

technique that requires a secondary scan. In contrast to surface-based 

registration methods, which do not require a secondary scan, the use of 

anatomical landmarks (if judiciously chosen and correctly localised) is a 

potentially more accurate method. It also avoids the use of expensive 3D 

scanners needed to obtain surface scans of the patients. As a step towards 

automating the registration, a computational framework to localise these 

landmarks in CT images, with performance comparable to manual localisation, 

has been developed.  

The second contribution in this thesis is the development of computer 

vision techniques for the visual inspection of the outcome of surgical actions 

with applications to robotic surgery systems. To the author‟s knowledge, the 

use of vision in this context has never been considered before and this work 

represents the first step in this direction. Admittedly, the surgical environment 

can be highly unstructured, in contrast to the more controlled conditions 

typically found where computer vision is more often applied. However, because 

the surgical actions being inspected are intended to be performed robotically, 

their context is known and visual inspection is feasible. The use of computer 

vision in this context, to provide greater situational awareness to the robotic 

system and confidence to the end user, has been the goal of this research.  
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1.6 Thesis structure 

There are seven chapters in this thesis. Chapter 2 describes the 

motivation behind developing a neurosurgical robotic system and introduces 

MISEN. Chapter 3 gives a background on image to patient registration, and 

presents the proposed registration framework for MISEN. Chapter 4 presents a 

computational approach towards automating the registration. Chapter 5 

proposes the use of computer vision for the inspection of the outcome of 

surgical actions, as a step towards greater autonomy in robotic surgery 

systems. Chapter 6 describes the experiments and results on the use of 

computer vision for this purpose. Chapter 7 concludes with a summary and 

areas for future work. 
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"Our future in surgery lies not in blood and guts, but in bits and bytes!" 

 

Colonel Richard M. Satava, one of the pioneers of robotic telesurgery  

2.1 Background 

In the UK, patients with head injuries are usually admitted to a hospital 

nearest to the scene where the injuries were sustained, typically a district 

general hospital (DGH) and frequently with no neurosurgery department [8]. 

The majority of DGHs do not have neurosurgical services, with neurosurgery 

usually performed at one of the 35 RNUs around the country. A survey [9] of 

161 hospitals by the Trauma Committee of The Royal College of Surgeons of 

England found that only 12% (19) of the hospitals had on-site neurosurgery. Of 

the 170 hospitals involved in the NCEPOD study, only 38 hospitals (1 out of 

every 5 hospitals) perform neurosurgical procedures. In the same study, more 

than half of the patients (58/114) that required neurosurgery were taken to 

hospitals without a neurosurgery department. In hospitals without a 

neurosurgeon, traditionally and for historical reasons, emergency department 

consultants, general surgeons or orthopaedic surgeons are usually responsible 

for the early management of these patients [10], through collaboration with a 

RNU. Typically, a CT examination is performed and the patient‟s case and their 

CT images will be discussed with a RNU. If neurosurgery is required, the 

patient would have to undergo a secondary transfer to a RNU. 

2.1.1 Secondary transfer 

The secondary transfer of patients is necessary under the present 

system of admitting patients to DGH in the first instance, and transferring 

patients who require specialist care, where it is unavailable, to a specialist 

centre. One out of every four patients (194/795) in the NCEPOD study 

underwent a secondary transfer, with neurosurgery by far the speciality in which 

most patients were subsequently transferred (see Figure 1).  
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Figure 1: Specialty to which patients in the NCEPOD study were transferred [2] 

 

There are many disadvantages and risks associated with the secondary 

transfer of patients. One of the greatest drawbacks of secondary transfers is 

that they inevitably delay time to surgery. 

2.1.2 Time to surgery 

In patients with severe head injury, patient outcome can be significantly 

improved by the speed at which proper care is administered. For example, the 

single most important factor in improving survival rates of patients with an 

expanding intracranial haematoma, often a consequence of a severe head 

injury, is its immediate surgical evacuation [11, 12]. An intracranial haematoma 

is a blood clot within the skull resulting from internal bleeding or haemorrhage 

and is often fatal. Delay in the evacuation of a haematoma is associated with an 

increased risk of morbidity and mortality.  

In patients who underwent surgery for traumatic acute subdural 

haematoma within the first four hours (from the time of injury to the evacuation 

of the haematoma), the mortality rate was 30% compared to a mortality rate of 

90% in patients who had surgery after four hours [11]. A study [12] on the effect 

of delayed treatment for a haematoma suggested an even smaller two-hour 

window from diagnosis to evacuation of a haematoma. However, in a study [9] 

involving 161 hospitals, only 8% of hospitals where neurosurgery is not 

available on-site were able to consistently evacuate an intracranial haematoma 

within four hours, compared to 41% of hospitals when neurosurgery is available 

on-site. 
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Because the severity of head injuries can vary greatly, it is difficult to 

determine a maximum permissible delay between time of injury and surgery 

that is critical for a good outcome. The Association of Anaesthetists of Great 

Britain and Ireland advocates a maximum of four hours between time of injury 

and surgery in their recommendations for the safe transfer of patients with brain 

injury [8]. However, this is rarely achieved in practice. Of the 43 patients in the 

NCEPOD study that required a secondary transfer to a RNU, only one out of 

seven patients (6/43) had neurosurgery within four hours of injury. In contrast, 

where an on-site neurosurgeon was available, two out of three patients (22/33) 

had an operation within four hours of injury.  

A report [6] from the Neurocritical Care Stakeholder Group, established 

to offer expert advice to the Department of Health and those that commission 

neurocritical care locally, concluded that the existing system of care does not 

achieve prompt surgical evacuation of an intracranial haematoma for all 

patients. A 12-month audit on access to emergency neurosurgery for severely 

head injured children in the UK concluded that the system of care does not 

achieve surgical evacuation of a significant haematoma within the critical four 

hours [13], primarily due to delays resulting from secondary transfer. 

2.1.3 Delays 

A study [14] on the secondary transfer times of 81 patients with 

haematomas from a DGH to a RNU in Greater Manchester found a mean 

transfer time (from arrival at a DGH to arrival at the RNU) of 5.25 and 6 hours 

respectively. Another study [15] involving the secondary transfer of 50 

consecutive head-injured patients found a mean transfer time from a DGH to a 

RNU of 7.4 hours. Long distance emergency transfers by ambulance from 

Shrewsbury to Manchester and from Colchester to London have been reported 

[16]. In addition to travel times, delays were often caused by not administering 

appropriate treatment for injuries prior to the transfer, not recognising the need 

for transfer, waiting for an ambulance, etc [15, 17].  
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2.1.4 Compliance 

Arrangements for transfer were also often found to be haphazard, 

lacking compliance to existing recommendations and guidelines on the transfer 

of critically ill and severely injured patients [2]. Approximately one out of every 

three (57/183) hospitals in the NCEPOD study did not have protocols for the 

secondary transfer of patients with serious head injuries. The Intensive Care 

Society, in their 2002 guidelines for the transport of critically ill adults [18] 

observed that many secondary transfers were performed in an ad hoc manner 

and warned of the possibility of potentially serious complications. Many studies 

have shown serious flaws (e.g. lack of coordination, inadequate provision of 

equipment and training, variability in transfer quality, injuries that are not 

properly diagnosed or managed) in the secondary transfer of patients with head 

injuries [18-21]. 

2.1.5 Equity of access 

Closely related to the issue of secondary transfer is equity to access. 

This is because a long distance to a RNU may affect the likelihood of patients 

being subsequently transferred. The Society of British Neurological Surgeons 

(SBNS) has advocated a maximum surface journey time of two hours to a RNU 

if equity of access is to be achieved [3]. In Scotland, some examples of typical 

travel times by road that exceeds this recommendation include three hours from 

Inverness, and five hours from Wick and Fort William [22]. Figure 2 illustrates 

the travel time to the nearest RNU for the Scottish population.  
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Figure 2: Surface journey time to the nearest RNU for the Scottish population1 

[23] 

                                            
1
 Image reproduced after permission from NHS Scotland 
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The geographical distribution of the neurosurgical centres in Scotland 

(see Figure 2) and indeed, around the country (see Figure 3) means that 

patients living in remote areas in the country do not have equity of access to 

neurosurgical services. Of the 35 RNUs in the UK, nine centres alone are in the 

Greater London area [24] with only four RNUs in the whole of Scotland, and just 

one in Northern Ireland. The Royal College of Surgeons (RCS) Report of the 

Working Party on the Management of Patients with Head Injuries [25] found 

that although the national average distance of emergency departments without 

on-site neurosurgery facilities to a RNU was 23 miles, there were significant 

regional variations. Finally, secondary transfers are not always possible, as 

patient transfer may also be refused by a RNU, as neurosurgical capacity is 

limited.   

 

Figure 3: Geographical location of neurosurgical centres in the United Kingdom 

and Ireland [26]2 

                                            
2
 Image reproduced after permission from BMJ Publishing Group Ltd. 
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2.1.6 Neurosurgical capacity 

In the survey [9] of 161 hospitals by the Trauma Committee of The Royal 

College of Surgeons of England, the vast majority of hospitals without 

neurosurgical facilities (91%) did not transfer all patients with a severe head 

injury to a RNU. This was primarily due to RNU policy of only admitting patients 

requiring an operation (72%) and/or because of a lack of capacity by the RNU 

to accept patients (25%). To determine the capacity at RNUs to accept patients 

requiring emergency neurosurgery, Crimmins and Palmer [26], conducted a 

survey to provide a snapshot view of 36 RNUs in the UK and Ireland. This 

survey concluded that there is a severe shortage of available emergency 

neurosurgical capacity as the RNUs could only admit an additional 43 patients 

(at the time of the survey) for an overall estimated population of 63.6 million. 

Although the number of head injuries was projected at 28.6 injuries per day, 

these form only part of the neurosurgical workload. Even the London area, with 

nine RNUs, faced a shortage of available emergency neurosurgical capacity. 

2.1.7 Demand for emergency neurosurgical procedures 

The exact number of patients who undergo emergency neurosurgical 

procedures each year is unknown, partly because the data available, the 

Hospital Episode Statistics (HES) data, reflects the number of procedures and 

interventions performed, rather than the number of patients involved. An 

operation on a patient can actually be made up of several separate procedures 

and interventions, with different aspects of each operation (the actual 

procedures and interventions that are used) individually recorded. For example, 

a patient who undergoes neurosurgery to evacuate a haematoma could have 

more than one intervention recorded in the operation.  

The HES inpatient data for England for the 2008/2009 annual dataset 

recorded 21816 interventions, of which 7290 were emergency, to evacuate an 

extradural haematoma (Classification of Interventions and Procedures - Office 

of Population, Censuses and Surveys Classification of Surgical Operations and 

Procedures (OPCS) code A401). 2864 interventions, of which 1187 were 

emergency, were performed to evacuate a subdural haematoma (OPCS code 
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A411). The insertion of intracranial pressure monitors accounted for 1088 

interventions, of which 533 were emergency interventions. These figures are 

conservative, as they have not been adjusted to reflect shortfalls in the number 

of records received from National Health Service (NHS) trusts and/or 

missing/invalid clinical data. They would also vary because emergencies are 

unpredictable. In any case, there is very little excess capacity in the system to 

cater for emergencies when they do happen [27]. It should also be noted that 

emergency neurosurgery is only part of neurosurgical workload. 

2.1.8 Neurosurgical workload 

The SBNS has stated that the neurosurgical workload in the UK is 

achieved by working at levels of resource that are potentially unsafe [8]. 

Statistics from the NHS Information Centre for Workforce for 2009 show that 

there are currently only 213 full time equivalent (FTE) consultant 

neurosurgeons in England [28] for an estimated population of 51.8 million 

people [29], a ratio of approximately one FTE consultant neurosurgeon to 

243,000 people. This is far below the European average of one FTE consultant 

neurosurgeon to 125,000 people3 [30]  

A more representative indicator of neurosurgical workload is the average 

number of operations performed by consultant neurosurgeons. Because there 

is no available data on the number of operations performed by a consultant 

annually, statistics on the number of procedures and interventions performed by 

consultant neurosurgeons are used to estimate the total number of operations. 

In 2008/2009, consultant neurosurgeons in England performed an average of 

1376 main procedures and interventions each [31]. Assuming an average of 

five procedures and interventions in an operation, a consultant would have 

performed an average of 275 operations a year, a figure that exceeds the 

recommended 180 – 250 number of operations [3]. Additionally, because of 

various factors such as geographical spread and population density, there 

would inevitably be an imbalance in neurosurgical workload. As such, there 

                                            
3
 No recent statistics available, figures are for 2000 
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would be consultant neurosurgeons that greatly exceed the recommended 

number of operations, leading to potentially unsafe conditions.  

2.1.9 Discussion 

The NCEPOD report has highlighted the suboptimal care for some 

patients with severe head injuries in the UK. The report, on the current acute 

care of 795 patients who sustain a traumatic brain injury (TBI), gives a snapshot 

view of the sometimes poor state of affairs of emergency neurosurgery in the 

UK. A study on the trends in trauma care in England and Wales from 1989 to 

2000 [32] found that survival rates for patients with severe head injuries have 

not shown much improvement since 1994, suggesting that any progress under 

the existing system of care may have plateaued. This lack of improvement can 

be attributed to a number of deficiencies under the present management of 

patients with severe head injuries. These obstacles to care will at best delay 

surgical intervention or at worst prevent a patient from receiving definitive care.  

The first problem with the existing system of care for patients with head 

injuries is the requirement for secondary transfers to a RNU for neurosurgical 

care. Secondary transfers have been shown to delay time to surgery, and in 

some instances, result in avoidable deaths. A possible solution to the problems 

associated with secondary transfers is to transfer all severely head injured 

patients directly to a RNU as a matter of routine i.e. bypassing DGHs. While 

potentially eliminating the need for secondary transfers, the London Severe 

Injury Working Group [34] has concluded that direct transport might actually 

worsen outcomes where journey time to a RNU is more than 20 minutes. 

Nevertheless, some ambulance trusts have a policy of bypassing DGHs 

for RNUs to avoid the possibility of a secondary transfer. These direct transfers 

however are the exception rather than the rule [2]. Currently the decision to 

transport patients directly to a RNU is at the discretion of clinicians at the scene 

[33] based on the perceived need for neurosurgery. However, the condition of 

some of the „non-surgical‟ patients may deteriorate to an extent that they would 

also require neurosurgery, necessitating a secondary transfer.  

In the UK, the management of patients with head injuries, including 

transfers, is informed by guidelines. A report [35] commissioned by National 
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Institute for Health and Clinical Excellence (NICE), addressed two key issues 

regarding the transfer of patients. The first is whether ambulances should 

“bypass” DGHs i.e. direct transport to RNUs. The second is what the indications 

for secondary transfer are, if patients were continued to be sent to DGHs (with 

is currently the norm).  

On the issue of „bypassing‟ local hospitals, the NICE Guideline 

Development Group (GDG), representing all relevant professional and patient 

parties in the UK, at present does not recommend that DGHs be „by passed‟ 

[2]. This recommendation was based on the lack of evidence to recommend 

otherwise, as well as the significant impact on resources required for its 

implementation. As such, most head injured patients will continue to be sent to 

DGHs. 

On the indications for secondary transfer, GDG now recommends that all 

patients with severe head injury be transferred to a RNU after receiving initial 

treatment from a DGH, irrespective of the need for surgical intervention [36]. A 

systematic review [37] of the implications of these guidelines concluded that 

there is a lack of capacity in the existing system and expressed reservations 

about the recommendation to transfer all severely head injured patients to a 

RNU, citing the inability of RNUs to even cope with current demand.  

The requirement to transfer every patient with a severe head injury will 

not only stretch the already strained capacity of RNUs, it threatens equity to 

access to neurosurgical services for other groups such as patients scheduled 

for elective surgery as emergency surgery is often performed at the expense of 

elective surgery [3]. Therefore, it is unlikely that this recommendation can be 

fully implemented, a fact even acknowledged by GDG [2], with the lack of 

resources being a major constraint.   

As such, although present guidelines [36, 38] recommend that all 

patients with a severe head injury be transferred from a DGH to a RNU, many 

patients are currently not transferred, and those that are transferred experience 

significant delays, in addition to risks associated with secondary transfers. 

Furthermore, secondary transfers may not always be possible. The condition of 

some patients may have deteriorated since the initial transfer and may be too 

unstable to be transferred. 
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The fact is that the most severely head injured patients do not require 

surgical intervention [2]. Although the majority of patients (62% of the patient 

population or 493 patients) in the NCEPOD study suffered severe head injuries, 

only one in every five patients (114 patients) required neurosurgery. A more 

liberal policy in transferring patients would overwhelm a system that is 

operating at or close to full capacity.  

A possible solution to the lack of immediately available capacity at RNUs 

is to develop neurosurgical expertise within DGHs. However, training  

consultants involved in the care of severely head injured patients in DGHs 

without a neurosurgeon i.e. emergency department consultants, general 

surgeons or orthopaedic surgeons, to perform neurosurgical procedures would 

not be feasible, as most will deal with only few severe head injuries. 

Alternatively, the number of RNUs could be increased to cater for a demand for 

neurosurgical services, particularly emergency neurosurgery. However, the 

associated cost would be prohibitive. The NHS currently spends over an 

estimated £1 billion on acute hospital care alone, excluding rehabilitation and 

community care, for every 10,000 patients with significant TBI [35]. 

Given the known problems associated with secondary transfers and the 

fact that the majority of patients with head injury will continue to be sent to a 

hospital without on-site neurosurgery, performing robot-assisted surgery at 

DGHs may be a feasible alternative to moving a patient to a distant facility. 

Performing robot-assisted surgery at DGHs may be the only alternative if 

transfer to a RNU is not possible or if the transfer would put the patient at a 

greater risk.  The use of a robotic-assisted surgery system will allow patients to 

be treated locally, eliminating the need to transfer a patient. The ability to 

perform the required surgical intervention at DGHs is especially important if 

transfer to a regional neurosurgical centre is not possible. It is also important if 

immediate surgical intervention is required but a transfer would result in 

significant delays to surgery. At present, no such robotic surgery system exists.   

Robotic surgery is particularly suited for neurosurgery, since 

immobilising the head keeps the brain relatively stationary with respect to the 

robot. Admittedly, neurosurgery carries with it the risk of severe blood loss, 

brain damage, paralysis, or even death. Therefore, while it may not be feasible 

to perform all types of neurosurgery robotically, certain „low‟ risk but lifesaving 
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neurosurgical procedures that does not involved deep brain incursions or 

complex manipulation may be particularly suitable to be performed robotically.  

To this end, a robot-assisted system for emergency neurosurgery that is 

capable of performing routine but lifesaving neurosurgical procedures such as 

the evacuation of a haematoma, the drainage of cerebrospinal fluid (CSF) from 

the brain ventricles and the placement of an intracranial pressure monitor, is 

proposed. A more detailed discussion of these targeted surgical procedures is 

given in Section 2.3. The next section provides an overview of robotic surgery 

in general and robotic neurosurgery in particular. 

2.2 Robotic surgery 

„„Robotic surgery‟‟ originated as an imprecise term, but it has been widely 

used and is now generally accepted by the medical community [39]. It refers to 

the use of a robot(s) to perform surgery. A different but somewhat related 

concept is computer-assisted surgery. In robotic surgery, a surgeon operates 

on a patient using a powered electromechanical device. In computer-assisted 

surgery, devices are generally manually powered by the surgeon [7]. Computer 

assisted surgery is therefore inherently safer than robotic surgery, although 

without some of the benefits of robotic surgery, such as the ability to perform 

procedures autonomously. 

There are many robotic surgery systems at various levels of research 

and development. Some of these have already made the successful transition 

from research laboratories to the operating theatre. These commercial robotic 

surgery systems, with clinical applications in general surgery (the da Vinci 

Surgical System), neurosurgery (NeuroMate, Pathfinder, SurgiScope, 

EVOLUTION 1), and orthopaedic surgery (ROBODOC Surgical Assistant, 

SpineAssist) have different levels of autonomy, ranging from telesurgical (da 

Vinci), to supervisory controlled systems (ROBODOC).  
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2.2.1 Classification of robotic surgery systems 

Nathoo et al [40] classified robotic surgery systems according to their 

levels of autonomy, using a broad classification based on their control 

strategies in terms of robot–surgeon interaction. Their classification divides 

robotic surgery systems into three categories (see Figure 4).  

 

 

 

 

 

 

a 

b 

c 

Figure 4: Technical classification of robotic surgery systems: (a) supervisory 

controlled system, (b) telesurgical system and (c) shared control system4. 

                                            
4
 Image reproduced after permission from Wolters Kluwer Health 
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The first is supervisory controlled robotic systems, where the robot 

performs the surgery autonomously under the direction and supervision of the 

surgeon. The second is telesurgical systems, where the surgeon performs the 

surgery remotely with a robot. The third is shared control systems, in which the 

robot and surgeon share control of the surgical instrument. 

2.2.2 Robotic neurosurgery systems 

In 1985, Kwoh et al. [41] pioneered the use of robots in neurosurgery, 

using a Unimation PUMA industrial robot as an aid to perform brain tumour 

biopsies. This was the first clinical application of a robot, and was motivated by 

the fact that conventional stereotactic surgery was, in their words, tedious and 

time-consuming. Stereotactic surgery is the use of positional information to 

locate targets within the body and is a minimally invasive form of surgery. 

Kwoh‟s system essentially automated the stereotactic frame adjustments 

required in traditional stereotactic surgery for localisation of a target. The robot 

was used to position a guide for drilling a burr hole5 through the skull close to 

the site of the tumour. The system had the advantage of being faster and more 

accurate compared to previous methods that used stereotactic frames. The 

system was eventually abandoned, as the robot manufacturer did not want its 

robot, which was design for industrial applications, to be used in this manner 

[7]. The use of an industrial robot, with its large work envelope and 

corresponding huge range of motions, was intrinsically less safe than a special-

purpose mechanism whose motions and forces were designed specifically for 

the action [7]. 

2.2.2.1 Neuromate 

In principle similar to Kwoh‟s system, NeuroMate is the first robotic 

neurosurgical system to be approved by the Food and Drug Administration 

(FDA) [42], as well as the first to be commercially available. It is perhaps the 

most widely used neurosurgical robot [43]. The NeuroMate system consists of a 

                                            
5
 A small opening in the skull to provide access to the brain 
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floor mounted modified 5-DOF industrial robot interfaced with a computer. A 

surgeon plans the procedure by identifying target(s) on preoperative CT or MRI 

scans, and a passive robotic arm (an active robot with power removed) aligns 

itself with respect to the target and serves as a guide to perform surgical 

procedures. Clinical and phantom studies of the NeuroMate system [44-46] 

have reported a target localisation error of within 3 mm. For all its complexity 

and associated hardware, the system cannot rival accuracies of within 1 mm for 

standard stereotactic frame-based techniques [45]. It is also limited to 

performing single dimension incursions and cannot be used to perform 

procedures involving complex manipulation. The current version has been 

modified from the original design to incorporate specific stereotactic 

requirements and to improve on safety issues.  

2.2.2.2 CranioAssist 

CranioAssist is the neurosurgical version of SpineAssist, an FDA 

approved robotic system for orthopaedic surgery [47]. It is a minimally invasive, 

image-guided, miniature robot system that is placed directly on a patient‟s 

head. The robot is capable of repositioning itself to within millimetres of 

predefined surgical targets. Its attached mechanical guide serves as a guide for 

the insertion of a needle, probe, or catheter by a surgeon. By mounting the 

robot directly on the head/skull, the requirement to immobilise the patient is 

avoided. Image to patient registration is performed by aligning a surface 

reconstruction of a patient‟s preoperative CT/MRI images with a surface 

reconstructed from an intraoperative 3D scan image. The registration system 

has an RMS registration error of 1.0 mm (standard deviation of 0.95 mm) [47] 

and an overall target registration error of 1.7 mm (standard deviation of 0.7 mm) 

[48]. 

2.2.2.3 ROBOCAST 

ROBOCAST, an acronym for ROBOt and sensors integration for 

Computer Assisted Surgery and Therapy, is a recently launched three year 
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€4.5 million collaborative project (see Figure 5) by a consortium of European 

institutions scheduled for completion in 2011 [49]. The project is aimed at 

developing a proof of concept robot assisted minimally invasive neurosurgery 

system. The system is designed to perform procedures such as endoscopy, 

biopsy and deep brain simulation, autonomously under the supervision of a 

surgeon. 

 

 

Figure 5: The ROBOCAST project6 [53] 

 

It will feature a modular architecture consisting of two robots, an active 

biomimetic probe, an optical tracker, an endoscope and a probe equipped with 

position and force sensors. A gross positioning six-axis revolute robot will 

support a miniature parallel robot holding the probe to be introduced through a 

“keyhole” opening into the skull of the patient, adopting a concept first used by 

Davies [50, 51]. Electromagnetic position and force sensors, mounted on 

surgical instruments, provide position and force feedback to the system while 

an imaging neuroendoscopic camera provides visual information of the surgical 

field and optical trackers track patient movement.  

The integration of a multitude of sensors aims at increasing the level of 

autonomy of the robot by improving its perception. The ROBOCAST controller 

plans the entire robot trajectory within the brain based on an atlas that 

incorporates critical structures to be avoided. Execution of these procedures, 

                                            
6
 Image reproduced after permission from the Project Coordinator of the ROBOCAST project, Prof. Giancarlo 

Ferrigno 
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which include trajectory planning right up to the intervention is with minimal or 

no input from a surgeon. There are, however, provisions for change 

intraoperatively. Semi-autonomous plan updating, to respond to changes that 

occur during surgery as detected by intraoperative sensors, will be proposed by 

the system to the surgeon for final decision-making [52]. This system, if 

successful, promises to be the closest thing to autonomous neurosurgery by a 

robotic surgery system. 

2.2.2.4 neuroArm 

Today, the state of the art in robotic neurosurgery systems is the MRI-

compatible, image-guided, telesurgical, neuroArm system developed at the 

University of Calgary, Canada [54]. This system is capable of performing 

complex procedures, such as microsurgery and biopsy, inside the bore of an 

open magnet with near real-time guidance. It was used for the first time to 

remove a tumour in the brain of a 21-year old patient on the 12th of May, 2008 

[55]. However, the neuroArm system, while capable of performing complex 

procedures, is a telesurgical system, relying on a surgeon for every move. 

2.2.2.5 Minerva 

The Minerva system [57] (see Figure 6), developed by the Swiss Federal 

Institute of Technology, is a six-axis stereotactic neurosurgical robot and is the 

only supervisory controlled robotic system for neurosurgery developed thus far. 

With the exception of target identification and trajectory selection, the system is 

capable of performing stereotactic neurosurgery without human intervention. 

The first four axes of the robot are for gross positioning and are not back 

driveable. To ensure the safety of the system, these axes are locked in place 

and switched off after reaching the desired position. The fifth axis brings the 

end effector close to the operative site and it is subsequently disabled. The 

sixth axis is a linear axis and is the only active axis during the operation.  



26 

 

 

Figure 6: „Minerva‟ neurosurgery robot7 

 

The use of traditional tools adapted and fitted with electric motors 

enables autonomous incision of the skin, drilling of a burr hole through the 

cranium, perforation of the dura mater and manipulation of surgical tools [58]. 

These tools are located on a rotary carousel and locked into position on the end 

effector. The end effector, which moves in a single axis only, then advances the 

tool linearly into the region of the patient‟s head. Force and torque 

characteristics were used to determine the completion of a surgical action [58].  

A tube with a sharpened end cuts the skin at the surgical site, by 

simultaneous rotation and advancement of the end effector. The start and end 

of skin incision is determined by monitoring the current consumption of the 

motor driving the linear axis and the motor rotating the knife/tube. Removing the 

incised skin requires the use of a corkscrew through the tube. The tube is left in 

place and serves as a mechanical guide for a drill to create a burr hole in the 

skull.  

Similar to skin incision, the start and end of drilling is determined by 

monitoring the current consumption of the motor driving the drill bit. As a 

precaution, drilling will not continue for more than 15 mm, regardless of the 

current profile to prevent plunging i.e. to stop the drill bit from advancing further 

beyond the inner table of the skull. Forward movement of a sharpened tool 

through the guide-tube incises the dura.  

                                            
7
 Image reproduced after permission from Professional Engineering Publishing Ltd 
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The entire operation was performed inside a CT scanner, allowing the 

surgeon to monitor the progress of the operation e.g. to verify the position of 

tools, intraoperatively. Clinical trials of the system involving 13 patients have 

been reported [59, 60]. The system was used to operate on two patients with 

tumours (malignant intracerebral cystic lesions) using an aspiration biopsy 

probe [59]. A further 11 operations, including nine biopsies, and two cyst 

evacuations were also reported [61]. Development of the system officially 

ended in 1998 [61], with the authors stating that the Minerva project had 

achieved its goal of demonstrating the feasibility of robotic neurosurgery.  

Very few technical details of the Minerva system and of the clinical trials 

are available. It is unclear to the author if the system was used as described or 

was used in a reduced capacity, as some of the methods described were not 

entirely feasible. For example, although it was claimed that the current 

consumption and the torque profile of the motors was used to determine the 

start and end of an incision, the method was not described in any detail. The 

reported accuracy of 0.3 mm is because the surgery was performed inside a CT 

scanner, which greatly improves 3D localisation and accuracy. However, the 

use of a dedicated CT scanner is prohibitive in terms of cost. The use of CT 

intraoperatively is also highly unconventional, in part because the patient would 

be exposed to a significant amount of radiation. 

2.2.3 Discussion 

At present, patients with severe head injuries who require neurosurgery 

are transferred to a RNU for surgical intervention if neurosurgery is not 

available on-site. However, secondary transfer delays time to surgery, is not 

always possible, and is associated with increased risk to the patient. A possible 

solution is the use of supervisory controlled robotic surgery systems such as 

Minerva that are able to perform surgery autonomously under the direction and 

guidance of a surgeon (who would intervene in the event of a problem). The 

MISEN system, which aims to perform some of the same procedures as 

MINERVA, is introduced in the next section, along with the targeted 

neurosurgical procedures and the proposed surgical protocol.   



28 

 

2.3 Mechatronic Intervention System for Emergency Neurosurgery 

(MISEN) 

The Mechatronics in Medicine group at Loughborough University, UK, 

has proposed the use of a robot-assisted surgery system to perform emergency 

neurosurgical procedures at DGHs [62] (see Figure 7). The system, referred to 

as MISEN, is to be used in emergencies only when immediate surgery is 

required, but for various reasons, the patient cannot be operated on 

conventionally by a neurosurgeon. The term “emergency” is used to 

differentiate time critical surgery where immediate intervention significantly 

improves a patients‟ prognosis, from elective surgery. It is intended as an aid to 

surgeons who would not usually perform these procedures. 

 

 

Figure 7: Schematic of MISEN robot manipulator8 

2.3.1 Targeted procedures 

Brain injury can be classified as either primary or secondary. A primary 

injury is an injury that is a direct consequence of trauma, stroke, etc. while a 

                                            
8
 Drawn by former Mechatronics in Medicine group member, Salman Hussain 
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secondary injury is an injury that results from events following the initial injury. 

In patients with brain injuries, neurosurgery is aimed at preventing or minimising 

irreversible damage to the brain from secondary injuries. While the range of 

neurosurgical procedures is extensive, three procedures were targeted through 

discussions with a collaborating neurosurgeon9. The three procedures are the 

evacuation of an intracranial haematoma, the drainage of cerebrospinal fluid 

(CSF) from the brain ventricles, and the placement of an intracranial pressure 

(ICP) monitor. An ICP monitor is a diagnostic tool useful in monitoring ICP. The 

evacuation of a haematoma and the drainage of CSF from the brain ventricles 

are classified as emergency procedures [24] while an elevated ICP is a 

common secondary injury in traumatic brain injury (TBI) patients.  Of the 114 

patients in the NCEPOD report that had a surgical procedure because of head 

trauma, the majority of patients (42%) had surgery to insert an ICP monitoring 

device. Statistics from the NCEPOD study indicate that the majority of the 

neurosurgical procedures performed on patients with TBI are the evacuation of 

a haematoma and placement of an ICP monitor. These procedures alone 

account for four out of every five procedures performed on severely injured 

head patients requiring neurosurgery [2].  

2.3.1.1 Intracranial pressure monitoring 

Increased ICP may compromise cerebral perfusion (blood flow to the 

brain) and lead to cerebral ischemia (lack of blood flow to the brain). Extreme 

ICP may cause brain hernia, where the brain shifts across structures within the 

skull and is often fatal. Although the brain has the ability to regulate ICP, it loses 

this ability after a traumatic injury. Therefore, an important aspect in the 

treatment of TBI patients is to monitor and manage their ICP. ICP is used to 

calculate cerebral perfusion pressure (CPP), an indirect measure of cerebral 

perfusion. CPP is defined as the difference between mean arterial pressure 

(average blood pressure) and ICP. A CPP above 70 mm Hg is necessary to 

maintain sufficient cerebral blood flow [24].  

                                            
9
 Professor Michael Vloeberghs, Queen‟s Medical Centre, Nottingham, UK 
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Although ICP monitoring may be performed in hospitals without on-site 

neurosurgery, this procedure is not widely available in the UK [1]. While there 

are several guidelines or recommendations related to traumatic brain injuries [2, 

8, 24, 35, 63], there are currently no published national guidelines for the use of 

ICP monitoring in the UK. However, ICP monitoring is generally used in severe 

TBI patients 10 , moderate head injuries 11  [64] or abnormal CT scans [36]. 

Compared to the evacuation of a haematoma, where immediate surgery 

significantly improves patient outcome, intracranial pressure monitoring is less 

urgent, but important nevertheless as part of the overall management of brain 

injury. ICP related therapy such as the drainage of CSF could improve outcome 

after severe head injury [1]. 

An ICP monitor may be placed at several locations (see Figure 8). The 

most accurate, low-cost, and reliable method of monitoring ICP is 

intraventricular monitoring i.e. a ventricular catheter connected to an external 

pressure transducer e.g. strain gauge [24]. It is considered the „gold‟ standard 

in monitoring ICP and is the preferred method as it allows for CSF drainage 

[65]. It is placed in over 50% of severely injured patients [68]. A study of 136 

patients with severe TBI concluded that intraventricular ICP monitoring is a low-

risk procedure and may facilitate an early and accurate intervention in these 

patients [66].  

 

Figure 8: Various locations for ICP transducer placements12 

                                            
10

 A patient with a GCS of 8 or less 

11
 A patient with a GCS of 9 - 12 

12
 Image reproduced after permission from Elsevier 
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If intraventricular ICP monitoring is not feasible, for example, if the 

ventricles are very small, an intraparenchymal catheter may be used instead. 

Subarachnoid, subdural, and epidural monitors are known to be less accurate 

[24] and the exact positioning of these monitors needs to be able to 

accommodate a nearby ventriculostomy incision [67]. The following steps 

outline the general procedure for the placement of an ICP monitor: 

 

1. An anatomical landmark for the placement of an ICP monitor called the 

„Kocher‟s point‟13 is identified (see Figure 9). The entry site must at least 

1 cm anterior to the coronal suture to avoid the motor strip. 

2. The site is shaved, followed by incision and retraction of the skin to 

expose the underlying skull. 

3. The pericranium is removed prior to drilling.  

4. A burr hole is drilled through the skull to allow access into the brain.  

5. The dura is perforated while avoiding damage to the underlying 

structures.  

6. Depending on the type of ICP monitor used (see Figure 8), it may then 

be inserted into the relevant part of the brain. 

 

 

Figure 9: Location of ICP monitor placement14 

                                            
13

 2–4 cm lateral to the midline and 11 cm posterior to the nasion 

14
 Image reproduced after permission from Elsevier 
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2.3.1.2 Drainage of cerebrospinal fluid 

The drainage of CSF allows for the reduction of elevated ICP. An ICP 

above 20 - 25 mmHg is generally accepted as the upper threshold above which 

treatment to lower ICP is necessary [24]. One method of reducing ICP is 

through the drainage of CSF from the brain ventricles, where a resulting 

reduction in volume in the ventricles will result in a decrease in intracranial 

pressure. This is the basis of the Monro-Kellie hypothesis. The Monro-Kellie 

hypothesis states that total volume of the constituents of the cranial i.e. brain, 

CSF and blood, is constant and in a state of volume equilibrium. An increase in 

volume of one constituent must be compensated by a decrease in volume of 

another [68].  

CSF is usually drained into a closed collection system outside the body 

through a catheter inserted into the brain ventricles. The placement of a 

catheter in the brain ventricles for drainage of CSF is known as a 

ventriculostomy. A ventriculostomy is time critical, potentially life-saving [69] 

and one of the most common emergency neurosurgical procedures [70]. It is 

usually performed using a freehand technique based on anatomical landmarks 

[71], which is the standard of care and is the method of choice due to its 

simplicity and efficiency [69].  

2.3.1.3 Evacuation of an intracranial haematoma 

An intracranial haematoma is characterised by an immediate and rapid 

internal bleeding that may be fatal. It is a medical emergency where prompt 

intervention makes a significant difference to patient outcome. The sooner an 

expanding haematoma is evacuated, the better the outcome. For patients with 

severe brain injury e.g. intracranial haematoma, its evacuation is time critical 

and requires immediate surgery. One method for the evacuation of a 

haematoma is through a burr hole craniotomy [63]. In many respects, the 

evacuation of a haematoma is similar to a ventriculostomy. Therefore, for 

brevity, the procedure will not be explained.  
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2.3.2 On surgical complications 

Aside from complications arising from infections, the only other reported 

risk of a ventriculostomy, the most invasive of the targeted procedures, is 

haemorrhaging. However, this complication is rare. When it does occur, it is 

unlikely to be life threatening. A review of 1,790 ventriculostomies found an 

overall risk of haemorrhage of 5.7% with less than 1% clinically significant 

haemorrhage [73]. In terms of complications due to infections, a retrospective 

study of 368 ventriculostomies performed over a 4-year-period [72] found an 

infection rate of less than 3%. However, these statistics are based on a 

neurosurgeon performing the procedure. To infer from these statistics the 

likelihood that a robotic system will achieve similar complication rates is difficult. 

2.3.3 On clinical accuracy 

In a retrospective study of 24 patients who underwent a ventriculostomy 

using a free-hand technique [76], the accuracy of catheter placement, defined 

as the distance between the catheter tip and the foramen of Monro (channels 

that connect the lateral ventricles and the third ventricle at the midline of the 

brain), was 9.7 ± 6.3 mm. In another study [69] of 97 patients on the accuracy 

of a ventriculostomy using a free-hand technique, catheters were misplaced by 

an average of 1.6 cm ± 0.96 cm from the target ventricle, with an average of 

two passes. A high percentage (22.4%) of catheter tips was actually placed in 

extraventricular/nonventricular CSF spaces. These placements were 

considered „successful‟ as they were still able to drain CSF. Drainage would still 

be possible in these instances as ventricular catheters typically have multiple 

holes located away from the tip. 

2.3.4 Discussion 

The average volume of ventricles is 30.9±5.7 ml [75] with the average 

thickness of a haematoma requiring surgical evacuation is more than 10 mm 

[63]. These „targets‟ are in general are quite large, allowing for lower 

localisation accuracy. In fact, neurosurgeons frequently use fingerbreadths to 
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localise the site haematoma [54]. Therefore, in terms of clinical accuracy, a 

localisation accuracy of within a centimetre, based on the levels of accuracy 

achieved by neurosurgeons performing the neurosurgical procedures under 

consideration, should be sufficiently accurate.  

In terms of surgical complications, the targeted procedures are in 

general safe with very little risk of complications and may be made safer by 

incorporating image-guided techniques. A study [74] involving 16 patients in an 

image-guided robotic placement of a ventricular catheter using a preoperatively 

defined trajectory reported no complications. The catheter successfully reached 

the ventricles in a single pass each time, which reduces the risk of 

haemorrhaging.  

A natural progression of image-guided surgery is to perform these 

procedures robotically. The accuracy and number of passes for a robotic 

system performing a ventriculostomy is expected to be comparable to that of an 

image-guided technique. Therefore, it is likely that a ventriculostomy by a 

robotic system would be more accurate than neurosurgeons performing the 

procedure using a freehand technique, potentially reaching the ventricles in a 

single pass. The number of passes is especially important in a ventriculostomy, 

as an increase in the number of passes increases the likelihood of 

haemorrhaging.  

2.3.5 Proposed surgical protocol 

Under the proposed surgical protocol, MISEN will perform the required 

surgery as prescribed by the neurosurgeon, with a surgeon providing some 

degree of monitoring and control. This includes all surgical actions such as skin 

incision, retraction of the incision, cauterisation, drilling of a burr hole and 

perforation of the dura. A neurosurgeon would determine the need for surgery 

and where surgical intervention is indicated would determine if the patient is to 

be operated on robotically. If the decision to operate on the patient robotically is 

made and patient consent is received, the neurosurgeon should additionally 

provide a preoperative plan i.e. specify targets and entry points, based on CT 

images of the patient, to guide the robot. The neurosurgeon should also ensure 

that the straight line trajectory from the entry point (burr hole) to the target point 



35 

 

(haematoma or ventricles) avoids critical brain structures e.g. vascular regions 

and motor strip, which may otherwise cause bleeding and functional deficit 

respectively.  

A passive positioning arm is used to position the robot manipulator close 

to the entry point. The use of a passive arm prevents gross motions during 

surgery. Once near the entry point, the robot moves to the specified chosen 

entry point, and is orientated based on the trajectory towards the target point. At 

the entry point, the necessary surgical procedures to create a burr hole, such 

as incision and retraction of the scalp, drilling a burr hole and cauterising the 

dura mater is performed. A motorised drive, with a single linear axis, will 

advance an instrument e.g. a catheter, towards the target. The surgical protocol 

for the system is divided into two stages, preoperative and intraoperative [62, 

77].  

 

Preoperative  

 CT image acquisition  

 Identification of an entry point and target by a neurosurgeon, ensuring 

that the straight line trajectory avoids critical brain structures  

 

Intraoperative 

 Gross localisation by manually positioning the passive arm of the robotic 

system 

 Localisation of the entry point by a smaller active robot  

 Perform the surgical action autonomously i.e. skin incision, retraction of 

the incision, cauterising of any bleeding, drilling of a burr hole through a 

skull, perforation of the dura, and insertion of an ICP monitor or catheter. 

2.3.6 Discussion 

The majority of existing neurosurgical robotic systems, with Minerva 

being a notable exception, requires that intracranial access to the brain via a 

burr hole be made by a neurosurgeon prior to surgical intervention by the robot. 

This requirement reduces the overall utility and autonomy of these systems. 
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Existing robot-assisted surgery systems are therefore fundamentally different 

from the proposed MISEN system.  

The major steps involved in the targeted procedures are incising the 

skin, retracting the incision, drilling a burr hole through the skull to provide 

access to the brain and the insertion of an ICP monitor or catheter. These 

surgical procedures involve straight-line incursions into the brain but no 

complex manipulation. A closer inspection of these procedures, by 

decomposing them into the individual sub actions involved, reveals that 

performing these actions robotically may be feasible. The drilling of a burr hole 

through the skull may be thought of as analogous to the computer numerical 

control (CNC) machining of a work piece, with the patient‟s head, the work 

piece, and the robot, the CNC machine. Although a very simplistic view of the 

procedure, it is conceivable that these procedures can be performed using a 

supervisory controlled robotic surgery system such as the proposed MISEN 

system.  

An important step prior to the intraoperative surgical intervention in 

robotic surgery is the localisation of the intervention site based on a 

preoperative plan by a surgeon, who typically specifies an entry point, target 

point(s), and a trajectory to provide guidance to the robot. The preoperative 

plan, based on a virtual model of the patient reconstructed from medical images 

such as CT or MRI, has to be „registered‟ to the patient to establish spatial 

correspondence in a technique known as image to patient registration, which is 

the subject of the next chapter. 
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Chapter 3 

A Registration Framework for MISEN 
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3.1 Introduction 

Before the advent of CT by Hounsfield in 1971, diagnosis of neurological 

problems was primarily based on the symptoms presented by a patient. Today, 

radiological images such as CT or MRI are routinely used for diagnosis in all 

but the most trivial head injuries. Because the need for surgery can normally 

only be established after a CT or MRI scan, these images are usually available 

prior to surgical intervention. In addition to their diagnostic utility, CT and MRI 

images are useful as a means of localising an area of interest in a patient. 

Neurosurgeons, for example, would locate a particular brain structure by 

referring to its position with respect to bony landmarks in radiological images, 

based on their knowledge of the anatomy of a skull. This ability is important 

especially where there is no direct visualisation of the operative site, such as 

keyhole neurosurgery and burr hole procedures.  

An enabling technology for robotic surgery is the ability to localise 

„targets‟ identified in medical images, within a patient, independent of a 

surgeon. To localise an area of interest on a patient based on medical images, 

the geometrical relationship between the images and patient must first be 

determined. Unfortunately, unless special measures are taken during imaging, 

spatial correspondence between the image and patient is lost. In medical 

imaging, this spatial correspondence may be established through a technique 

known as image to patient registration.  

3.2 Image to patient registration 

Image to patient registration is a method where the position of an 

anatomical in an image is correlated with the position of the anatomy itself. This 

would facilitate the determination of a position identified in „image space‟ in 

„patient space‟. Mathematically, image to patient registration is the 

determination of a geometric transformation matrix that aligns corresponding 

points from these two spaces. The determination of this relationship will 

enabled target(s) and trajectory specified in a preoperative plan of the surgical 

procedure to be mapped on a patient, and is an enabling technology for robotic 

interventions that are guided by these preoperative plans. The robotic insertion 
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of a catheter into the brain ventricles for example, may be guided by a trajectory 

specified on a virtual model of the patient reconstructed from radiological 

images and registered to the patient. Figure 10 illustrates the registration chain 

between preoperative plan and the patient/robot. Medical imaging, which is the 

starting point in the registration chain, is detailed in the next section. 

 

    

a b 

Figure 10: Registration chain between (a) preoperative plan and (b) 

patient/robot. 

3.3 Medical imaging 

Common medical imaging modalities include X-Rays, CT and MRI (see 

Figure 11). In contrast to conventional X-Rays, where three-dimensional 

structures are superimposed to form a two-dimensional image that is often 

geometrically distorted, CT and MRI provides a geometrically correct three-

dimensional volumetric and two-dimensional cross-sectional visualisation of 

these structures. In their clinical guidelines on head injury [35], NICE has 

indicated CT imaging of the head as the primary investigation for the detection 

of acute brain injury, as well as advocated a more liberal scanning policy. 

Where CT imaging is indicated but unavailable, arrangements should be in 

place for urgent transfer to a centre with CT scanning. X-Rays are no longer 

recommended in the assessment of head trauma [78], with the exception of 

minor/mild head injuries [35]. For safety, logistic and resource reasons, MRI is 

also not currently indicated as the primary investigation for clinically important 

brain injury in patients who have sustained a head injury.   
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a b 

Figure 11: (a) A typical axial CT and (b) MRI image 

3.3.1 CT vs. MRI 

CT uses X-rays and computer reconstruction to generate cross-sectional 

images of individual structures while MRI uses strong magnetic fields and 

radiation in the radio frequency range to image parts of the body. Whereas 95% 

of hospitals have 24-hour access to CT imaging [2], not all hospitals have MRI 

scanners, due to the associated high cost of procuring as well as maintaining 

these scanners, as well as the personnel to operate them. Additionally, the use 

of MRI scanners is contraindicated on patients with cardiac pacemakers, 

medical or bio stimulation implants e.g. insulin pumps, ferromagnetic foreign 

bodies e.g. shell fragments, or metallic implants e.g. surgical prostheses, 

aneurysm clips [33, 79] because of the strong magnetic fields generated during 

its operation.  

Because of the nature of emergency surgery, as opposed to elective 

type surgery, it is very likely that the medical history of a patient is not known. 

The use of MRI in emergencies is therefore contraindicated, as the patient‟s 

medical history cannot be ascertained with absolute certainty. On the other 

hand, the only contraindication for use of CT is if the patient is unstable [80], 

although the patient may be sedated prior to scanning.   
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3.3.2 CT basics 

In older fourth generation CT scanners, a continuous volume of 

contiguous CT slices is acquired as an X-ray tube/source rotates around a 

patient, who is moved within a scanner equipped with a stationary circular array 

of detectors (see Figure 12a). Modern day fifth generation CT scanners use a 

circular array of X-ray sources instead, and there is no mechanical motion, with 

the exception of the bed that the patients lays on (see Figure 12b).  

 

 

 

 

a 

b 

Figure 12: (a) Fourth generation and (b) fifth generation or electron beam CT 

scanner architecture15 [81] 

 

                                            
15

 Image reproduced after permission from the Radiological Society of North America, and authors Wolbarst 

A B and Hendee W R. 
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Each CT slice consists of voxels that corresponds to the density or 

attenuation coefficient of the anatomy being imaged, which is traversed during 

the scan by numerous X-ray beams and acquired by the X-ray detectors. The 

attenuation coefficient associated with each voxel is usually determined using 

back projection. Figure 13 illustrates how back projection works.  

  

 

a b 

Figure 13: (a) X-radiation of incident intensity,  𝑜 attenuated by four voxels each 

of height,  𝑥  and of different linear attenuation coefficients,    to    and the 

transmitted intensity,   and (b) back projection reconstruction16.  

 

The transmitted intensity,   for each voxel is given by Equation 3.1:  

 

    𝑜
 (           ) 𝑥 3.1 

 

where   is the transmitted intensity,  𝑜  is the incident intensity,   is the 

attenuation coefficient and  𝑥 the voxel thickness. The attenuation of the X-ray 

beam is assumed to have occurred uniformly along the entire ray path. Back 

projection reconstruction, to obtain the attenuation coefficient of each voxel, 

consists of summing the respective profiles, P1, P2, P3 and P4, subtracting an 

offset and renormalisation (see Figure 13b). 

                                            
16

 Adapted from the Wikimedia Commons file "Image: The origin of image degeneracy in radiography.gif" 

and Image: Representation of back projection.gif”. 
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3.3.2.1 Hounsfield units 

Hounsfield units (HU) are arbitrary numbers assigned to elements based 

on their relative density with values ranging from -1000 to + 1000. DICOM 

greyscale pixel value may be converted to HU using Equation 3.2: 

 

 HU = Greyscale pixel value x RescaleSlope + RescaleIntercept. 3.2 

 

where the RescaleSlope and RescaleIntercept values may be found in the file 

header of a DICOM file. The HU of various elements are shown in Figure 14.  

 

 

Figure 14: Hounsfield units for various elements [82] 

3.3.2.2 Noise 

Scanning protocols such as applied voltage, tube current, scan time, 

filtration, slice thickness, slice spacing, gantry tilt, etc., affect the signal-to-noise 

ratio of CT images. Manufacturer recommended values produce an image with 

an acceptable level of noise while limiting the radiation dose to the patient. 

However, the selection of the tube current - exposure time product (mAs) varies 

significantly even for the same make and model of CT system. Selection of 

mAs often relies on subjective decisions and predictions, and for most systems, 

the minimum and maximum values selected for mAs differ by up to a factor of 

3-4 [89].  
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Excessive radiation dose does not provide additional diagnostic 

information. However, unlike conventional radiography where excessive or 

inadequate radiation doses may result in overexposed or underexposed 

respectively, the effect is minimal in a CT image. Because CT is a digital 

technique, its image may be manipulated to a certain degree to correct for 

excessive or inadequate radiation dose [89]. However, images will be 

unacceptably noisy if the chosen mAs are less than optimal. Noise (measured 

standard deviation) is inversely proportional to the squared reduction in mAs i.e. 

 

√𝑚 𝑠
 [90]. Therefore, the level of noise doubles if the mAs are reduced by three 

quarters.  

3.3.2.3 Filtering 

Noise in CT images has many components but is primarily due to the 

quantum noise in photon detection, electronic noise in the projection data, and 

noise from the reconstruction of images from projection data [83].  A common 

technique of removing noise is by averaging a pixel value over a local 

neighbourhood. Unfortunately, averaging can blur the boundaries of image 

features by smoothing across edges. In their seminal work on anisotropic 

diffusion, Perona and Malik [84] developed a technique that removes image 

noise while preserving boundaries. In anisotropic diffusion, smoothing occurs 

within regions where the gradient is small, but not across boundaries where the 

gradient magnitude is high as the diffusion coefficient is reduced near edges 

estimated by the first derivative, as defined by Equation 3: 

  

 
  

 𝑡
 𝑑𝑖𝑣(𝑐(𝑥 𝑦 𝑡)  )   𝑐    + 𝑐(𝑥 𝑦 𝑡)∆  3.3 

 

where   is a greyscale intensity image, ∆ is the Laplacian,   is the gradient, 𝑑𝑖𝑣 

is the divergence operator. 𝑐 is the conduction coefficient, which controls the 

rate of diffusion and is given in Equation 3.4: 

  

 𝑐(𝑥 𝑦 𝑡)  𝑒 (‖  ‖  ⁄ )  3.4 
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Gerig et al. [85] was the first to apply an anisotropic non-linear diffusion 

based technique to filtering MRI data. Anisotropic diffusion is now widely used 

in medical imaging [86]. A variation of this technique that preserves ramp edges 

was developed by Gilboa [87] with smoother edges and almost no staircasing 

effects. Figure 15 shows a CT image and the same image corrupted with 

Poisson noise. Poisson noise rather than Gaussian noise is more commonly 

present in imaging applications where images are generated by photon-

counting devices such as CT [88]. The noisy image was filtered with a 

Gaussian low pass filter (3x3 with a standard deviation of 0.5) and a non-linear 

anisotropic diffusion (𝑐 = 20, 𝜅 = 0.15), respectively. The image filtered with the 

Gaussian low pass filter and anisotropic diffusion had 86% and 89% similar 

boundary pixels to the original image, with a mean absolute image difference of 

2.7 and 3.2 greylevels between the original image and filtered image 

respectively. Anisotropic diffusion therefore maintains more edge pixels than 

the Gaussian lowpass filter, while reducing noise better. 

 

 

a b 

Figure 15: CT image (a) Original and (b) corrupted with Poisson noise (shown 

in eight greylevels for visualisation purposes) 
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3.3.2.4 CT measurement accuracy 

Measurements can be reliably taken from CT if they accurately reflect 

the actual physical dimensions of the imaged object. The mean error between 

linear soft tissue measurements taken from 3D volume rendered CT images 

and physical measurements of ten conventional craniometric anatomical 

landmarks on 13 cadaver heads was 1.78% [91]. A study [92] involving 20 

linear measurements of 16 conventional craniometric anatomical landmarks of 

12 cadaver heads found no statistically significant difference between 

measurements taken from 3D volume rendered CT images and physical 

measurements. Another study [93] on the accuracy of facial soft tissue 

thickness measurements under different scanning protocols e.g. various slice 

thickness (0.5 – 7 mm), pitch (1:1 – 2:1), and types of scanner (conventional, 

spiral, multidetector) found the mean deviation to be within 0.43 mm in all 

instances when compared to actual physical measurements.  

3.4 Overview of image to patient registration methods 

Image registration methods can be classified based on the type of 

features that are used to effect registration in the two spaces to be co-

registered. These can be broadly divided into four categories, point-based 

methods, surface-based methods, intensity-based methods and non-image 

based methods [94]. The output of an image registration method may be a rigid 

or non-rigid geometrical transformation. A rigid transformation preserves all 

distances and angles, and consists of a translation and rotation component. It is 

usually used in neurosurgery and orthopaedics. Non-rigid transformations, 

which are applicable to non-rigid anatomy, are used for registration of anatomy 

other than the head and bone. 

3.4.1 Point-based methods 

The simplest registration methods are point-based methods. In point-

based methods, corresponding point pairs, whose coordinates in both spaces 

are known is used to facilitate registration. A minimum of three non-collinear 
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points is required for registering a volume in space or four [95] if homogeneous 

coordinates (as is common in robotics) are used. Early approaches employed 

head frames that were attached to a patient‟s head. The intersection of Z-shape 

rods on these heads frames with the image plane appear as points in the 

medical images. However, these frames were cumbersome to use and 

restricted access to certain parts of the brain.  

Roberts [96] was the first to introduce a frameless registration system, 

using skin-affixed markers. While less restrictive than frames, they are 

susceptible to errors due to the markers shifting or even falling. The use of 

skull-implanted markers reduces the possibility of the markers shifting, and is 

considered the gold standard in image to patient registration, but is a very 

invasive procedure. Furthermore, the use of skull-implanted markers for 

registration is not practical and highly unconventional for the targeted 

neurosurgical procedures, as they are typically only used for deep brain 

procedures requiring accuracy in the sub millimetre range such as a biopsy or 

functional neurosurgery. By contrast, errors in the order of centimetres have 

been reported without any major complications [69] for a ventriculostomy, the 

most invasive of the proposed targeted procedure. Alternatively, anatomical 

landmarks [97] may be used. The disadvantage of using anatomical landmarks 

is that, unlike skin-affixed markers, the type of landmarks available for use in 

registration is very much dependent on the anatomy being registered. 

3.4.2 Surface-based methods 

In surface-based methods, the surface of a patient‟s anatomy, typically 

obtained using a laser-contouring device, is matched with a surface of the 

anatomy reconstructed from medical images. Two of the earliest 

implementations of surface-based methods for image to patient registration was 

by Colchester et al. [98], and Grimson et al. [99]. In their methods, a surface 

model of a patient‟s head, reconstructed intraoperatively using stereovision and 

laser scanners respectively, was matched to a surface derived from their 

medical images.  

Unlike point-based methods, there is no closed form solution for surface 

matching. Surface matching algorithms, such as the „head and hat‟ algorithm by 
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Pelizzari [100] and the iterative closest point method by Besl and McKay [101], 

are usually used to find an optimal transformation to align the two surfaces. A 

known problem of surface matching algorithms is that the optimisation may 

converge to a local minimum, resulting in an inaccurate transformation. Mis-

registration or poor registration is likely if surfaces to be matched have no 

prominent features. Surface matching algorithms are also computationally 

intensive, as the optimisation problem requires an iterative approach to solve.  

3.4.3 Intensity-based methods 

Intensity-based methods exploit the full content of an image, and include 

techniques based on mutual information and photo consistency. As these 

methods are based on image intensity rather than image features, feature 

extraction or segmentation is not necessary. These techniques are therefore 

well suited in applications where features cannot be reliably extracted.  

In their seminal work on image registration by maximisation of mutual 

information, Viola and Wells [102] described an approach whereby a three-

dimensional model of an object is registered to an optical image of the object. 

This was achieved by maximising a measure of mutual dependence between 

the normal component of the surface model of an object and the image intensity 

of the object. An optimisation scheme, using mutual information as a basis, was 

used to find a transformation that best aligned the object and its image. Mutual 

information is greater when images are aligned than when not aligned. 

However, the assumption that there is a relationship between the image 

intensities and surface normals is only valid if the light sources and cameras 

are located far away from the patient. The requirement that the cameras and 

light sources be placed far from the patient would place impractical constraints 

on the design of the registration system. Alternatively, a collimated light source 

may be used. 

A different technique, based on photo consistency, was developed by 

Clarkson et al. [103] to register CT images to two or more optical images of a 

patient using a similarity measure based on the alignment of a surface to its 

optical images. In photo consistency, an unknown surface can be reconstructed 

from a set of optical images by exploiting the consistency of image intensities of 
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points in each image. Conversely, given an accurately defined surface, photo-

consistency might be used as a measure of alignment of a surface to these 

optical images. Their technique had a mean error of 1.05 mm when tested on 

an artificial skull, with a surface error of between 1.45 and 1.59 mm when the 

initial mis-registration was up to 16 mm/degrees. However, their method 

assumes a relationship between surface normal and observed intensity. 

Reflectance, though, is in general dependent on lighting and viewing direction 

as well. To date, there has been no reported use of intensity-based methods to 

perform image to patient registration in a clinical environment.  

3.4.4 Non-image based registration methods 

Non-image based registration methods require that the two devices be 

calibrated to each other. For example, registration of robot arm to a CT scanner 

may be achieved by calibrating the robot arm in relation to the CT scanner. The 

correspondence between the position of surgical tools mounted on the robot 

arm and a position on CT images would then be known. However, this would 

mean that the operation would have to be performed inside or adjacent a CT 

scanner, requiring the exclusive use of the CT scanner for the duration of the 

operation, which is not a feasible option. This method is also seldom used 

because of the exacting calibration requirements.  

Table 1 summarises the registration method, advantages and constraints 

as well as the target registration errors (TREs) of some existing commercial 

robot-assisted systems and navigation systems, with particular emphasis on the 

registration methods employed. These systems were chosen as illustrative 

examples, as there are many more similar in design and function. TRE is the 

registration error of points not used in the registration, and is explained in 

Section 4.0. 
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Table 1: Existing commercial robot assisted systems and navigation systems 

     System Registration method Advantages Constraints Accuracy 
R

o
b

o
t-

as
si

st
ed

 s
u

rg
er

y 

Pathfinder 
 

Point-based. Camera 
mounted on robot end 
effector determines 
position of skin affixed 
fiducial markers (black 
titanium sphere mounted 
on a yellow disc, with an 
adhesive backing for skin 
mounting) in patient 
space. Dedicated software 
automatically localises 
these markers In CT/MRI 
image space. 

Non-contact 
measurement 
method, 
eliminates 
errors due 
markers 
shifting due to  
physical 
contact with 
markers 

Prospective 
registration 
method 

TRE = 
2.7mm 
(range 1.8 
– 3.23 
mm) [104] 

 
NeuroMate 

 
 

1. Non-imaged based.   
NeuroMate is  
precalibrated with respect 
to a head frame (ZD 
stereotactic ring). No 
explicit registration 
required. 
2. Point-based. Uses 
helicopter-shaped 
ultrasonic localising device 
(with corresponding CT 
and MRI localisers) affixed 
to patient’s skull. 
Ultrasound probe 
determines position of 
fiducial markers in patient 
space. In image space, 
dedicated software 
automatically determines 
position of the CT and MRI 
localisers. 

1. Accurate 
2. Registration 
is automated 

1.  Difficult to use, 
may restrict 
access to certain 
parts of the brain 
2. Prospective 
registration 
method 

1. TRE = 
0.86 ± 0.32 
mm [45] 
2. TRE = 
1.95 ± 0.44 
mm [45] 
2.9 mm 
(0.7 – 3.2 
mm) [105] 

N
av

ig
at

io
n

 

ISG viewing wand 
(Mechanical-

based system) 

Point-based. 
Interchangeable contrast 
cap fiducials fits into   skull 
implanted base and 
localised interactively by a 
neurosurgeon in image 
space. The contrast caps 
are replaced with 
registration caps and are 
localised in patient space 
by the neurosurgeon 
placing the tip of a tracked 
probe in the straightest 
possible orientation to a 

Precise, 
reliable 

Prospective 
registration 
method. 
Mechanical arm 
restricts mobility 
and range. 

TRE = 2.76 
± 1.19 mm 
(skin 
affixed 
markers) 
2.25 ± 0.95 
mm (bone 
implanted 
markers) 
[106] 
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small divot on the 
registration cap.  

BrainLAB 
(Optical-based 

system) 
 

1. Point-based. Array of 
three reflective markers is 
rigidly fixed to a patient’s 
head holder with five skin-
affixed fiducials attached 
to the patient’s head.  
These fiducials are either 
donut-shaped, self-
adhesive markers or 
BrainLab markers (inserted 
into sockets attached to 
the patient’s scalp and 
detected automatically in 
medical images by 
software). 
A probe, tracked relative 
to the marker array, is 
used to touch the fiducials, 
to determine the position 
of patients head.  
2. Surface-based.  Surface 
of patients face 
reconstructed using a laser 
contouring device and 
matched with 
preoperative medical 
image.  

1. Navigation 
of various 
surgical 
instruments 
possible 
2. 
Retrospective 
registration 
possible 

1. Registration 
cannot be 
performed 
retrospectively. 
Skin-affixed 
markers, when 
used, may shift or 
fall off. 
2. Localisation 
accuracy away 
from frontal facial 
region is poor 

1. TRE = 4 
± 1.4 mm 
[107] 1.31 
± 0.87 mm 
[108] 
2. TRE = 
2.77 ± 1.64 
mm  
[108] 

InstaTrak 
(Electromagnetic-

based system) 

Point-based. A plastic 
headrest with seven metal 
fiducial balls (with an 
additional two balls in the 
earpiece to provide 
additional accuracy for 
procedures more 
posteriorly) and a 
radiofrequency 
transmitter is placed on a 
patients head prior to CT 
imaging/MRI.  
Software detects fiducials 
in patient and image space 
automatically. A receiver is 
attached to one of several 
possible instruments, and 
this instrument is 
calibrated by touching the 
central 
point on the transmitter 

Registration is 
automatic. 
Unlike optical 
systems, no 
line of sight 
requirement. 
Can be used 
with fiducial or 
anatomical 
markers. 

Electromagnetic 
system susceptible 
to interference by 
external 
electromagnetic 
field or metallic 
objects  
Contraindicated 
for use of patients 
with pacemakers 
and cochlear 
implants  

TRE = 2.28 
± 0.91 mm  
[109]  
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3.5 Registration error metrics 

A registration error metric is a quantitative measure of how well 

registered images are aligned. In point-based methods, only a least-squares 

approximation of the correct registration is possible, as there is bound to be 

some error with respect to their homologues. Maurer et al [110] defined three 

types of registration errors for point-based methods: fiducial localisation error, 

(FLE), fiducial registration error, (FRE) and target registration error, (TRE). A 

fiducial is a point used for the purposes of registration and is known to be 

reliable. FLE is the error in localising the exact position of a fiducial, which may 

occur in both spaces and causes errors in registration. FRE is a measure of 

fiducial misalignment after registration. TRE is the distance of points of interest 

not used in the registration from their true position. Figure 16 illustrates the 

different types of errors. 

 

 

a b c 

Figure 16: (a) FLE (solid circles represent actual positions while dashed circles 

represent localised position), (b) FRE (dashed circles represent position in one 

space, dashed squares represent positions mapped into the other space) and 

(c) TRE is the distance after registration between an anatomical location (filled 

square) and the corresponding location in the other space (filled circle)17 [160].  

 

                                            
17

 Image reproduced after permission from IEEE 
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3.5.1 On fiducial registration errors  

FRE is defined as the error between the fiducial and its corresponding 

position after registration and is given by Equation 3.5:  

 

       (𝑥 )  𝑦  3.5 

 

where 𝑥  and 𝑦  are the 𝑥  and 𝑦  coordinates of fiducials in both spaces 

belonging to fiducial 𝑖, and   the transformation matrix. Since FLE is not usually 

known, FRE may be used to estimate FLE. The relationship between FLE and 

FRE [111] is given by Equation 3.6: 

 

 
     (  

 

 
)     3.6 

 

where   is the number of fiducials. In general, if there is no systematic bias 

error in identifying the fiducials, the greater the number of fiducials used, the 

better the registration accuracy [112].  

3.5.2 On target registration errors  

For rigid-body point-based registration, with an identical, independent, 

and isotropic FLE distribution, TRE is given by Equation 3.7: 
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where 𝑑  is the distance of the target(s) from principal axis, 𝑘  and 𝑓  is the 

distance of the fiducials from principal axis, 𝑘. While FRE is independent of the 

fiducial configuration, TRE is a function of their configuration. Minimum TRE is 

achieved by having as many landmarks as possible, a landmark configuration 

where the target is located at the centroid of the configuration, and localising 

these landmarks accurately.  
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Errors get progressively worse as the target deviates away from this 

centroid i.e. 𝑑  becomes large. Large TREs will also result from a near collinear 

fiducial configuration i.e. 𝑓  is very small. Although the target location may not 

be known beforehand, as a general rule of thumb, landmarks should be spaced 

out evenly and located as far away from each other. Unlike FRE, TRE cannot 

be determined directly. Therefore, FRE is usually used as a measure of 

registration accuracy, as feedback to assess whether or not the registration is 

successful. Shamir et al [120] argues that FLE is not always good estimate of 

the TRE because of the assumption of identical, independent, and isotropic 

FLE distribution is not always met. However, TRE estimated based on this 

analytical expression has been shown to correspond well to that obtained in 

practice in a clinical study by West et al [121].  

3.5.3 On the accuracy of image registration methods 

FRE of 1.0 to 3.0 mm are typical of registration systems that use 

anatomical landmarks, with the number of landmarks used ranging between 

eight and 16. Systems that use skin-affixed markers may have FRE values less 

than 2.0 mm, with the number of markers used ranging from six to ten. Systems 

using bone-implanted markers have FREs less than 1.0 mm, and use three to 

five markers [114]. A prospective study involving 26 patients [115] found a 

mean root mean square (RMS) FRE of 3.2 ± 1.0 mm and 2.9 ± 1.0 mm when 

anatomical landmarks and skin-affixed markers were used.  

FRE depends only on the degree to which the chosen points correspond 

in the two views. However, in medical applications, TRE is a more significant 

measure of accuracy. A more recent study [116] involving 50 patients found 

that, independent of target location or imaging modality, the TRE for anatomical 

landmarks was 4.97 ± 2.29 mm for 6.7 ± 0.5 landmarks, the TRE for skin-

affixed markers was 2.49 ± 1.07 mm for 6.9 ± 0.4 markers and the TRE for 

surface matching  was 5.03 ± 2.30 mm. The „target‟ in the study was a fiducial 

marker placed on the surface of the head.  
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3.5.4 On the required registration accuracy 

The required registration accuracy is dependent on the surgical 

procedure. As the „targets‟ in a ventriculostomy and evacuation of a 

haematoma are in general quite large (allowing for a large margin of error in 

positioning) the required accuracy is not very high. For example, the average 

volume of ventricles is 30.9 ± 5.7 cm3 [75] while the average thickness of a 

haematoma requiring surgical evacuation is more than 10 mm [63]. A TRE of 

not more than 10 mm is therefore considered sufficient for the three targeted 

procedures.  

3.6 Registration framework 

The proposed registration framework should meet the accuracy 

requirements of the targeted neurosurgical procedures, be cost effective, and 

simple to implement. The registration problem can be stated as follows: Given a 

preoperative plan based on CT images of a patient, find a transformation that 

will registere this plan to the patient.  

3.6.1 Retrospective versus prospective methods 

The use of skin-affixed markers, which is the method of choice for image 

to patient registration systems, is a prospective technique. The main 

disadvantage of prospective methods is that they require two separate CT 

scans, one for diagnostic purposes and the other for registration purposes. On 

the other hand, registration using anatomical landmarks and surface matching, 

although less accurate than skin-affixed markers, can be performed 

retrospectively. The choice of a registration method is therefore a compromise 

between accuracy and the ability to perform the registration retrospectively.  

Prospective registration methods are not appropriate in emergencies, 

because secondary scans inevitably delay time to surgery. This is in contrast to 

elective neurosurgery, where both retrospective, but more frequently 

prospective registration methods, are used. This is because the neurosurgical 

procedure is scheduled in advance i.e. not time critical, and a secondary CT 
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scan can usually be performed. There is no requirement for secondary scans 

when retrospective methods are used, an important consideration in an 

emergency when immediate surgery is indicated or when the patient may no 

longer have access to a CT scanner for another scan. 

3.6.2 Point based versus surface based methods 

The use of a retrospective image to patient registration technique is 

appealing because no secondary scan is required i.e. a diagnostic scan may be 

used to effect registration. The choice is therefore between the use of 

anatomical landmarks and surface based methods. Because surface scans are 

typically of the facial region, accuracy in localising targets away from the facial 

region is poor. A study involving 12 patients [117] who underwent a surface 

based registration with facial surface scans found that TRE increases the 

further the target is located away from the face.  

Additionally, surface based methods require the use of specialised 

hardware such as 3D laser scanners or structured lighting to obtain a surface 

model of the patient‟s anatomy. Surface-based methods are also very much 

dependent on the similarity of the reconstructed surface, and the ability to 

reproduce faithfully similar surfaces. However, because the surfaces are 

acquired at different times, varying facial expressions between the time the 3D 

scan and medical image was acquired may reduce the accuracy of registration. 

The requirement for similar facial expression is a lesser constraint when 

anatomical landmarks that do not change substantially due to changes in facial 

expression are used, such as the ear tragus. Because of the complexities and 

hardware cost associated with surface matching, the use of anatomical 

landmarks as a registration basis is considered.  

3.6.3 Anatomical landmarks 

Anatomical landmarks of the head commonly used as a registration 

basis include the medial and lateral canthus (outer and inner corners of the 

eye), tip of the nose, philtrum (vertical groove in the upper lip), soft tissue 
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nasion (depressed area between the eyes, superior to the bridge of the nose), 

and tragus (a small pointed eminence of the ear). However, because routine 

diagnostic head CT scans start from the base and end at the vertex of the skull, 

the tip of the nose and philtrum may not always be available in CT images. In 

addition, due to the superficial nature of the lateral canthus, it is sometimes not 

very well defined. For example, the position of the lateral canthus depends on 

whether the patient‟s eyes are opened or closed.  

To ensure consistency in the position of the lateral canthus, a CT 

scanning protocol requiring that patients be scanned with their eyes opened is 

needed, which by definition would make this a prospective technique. Deep-set 

wrinkles can also mask the true location of the lateral canthus. In contrast, 

landmarks such as the medial canthus and tragus are more distinct. Meanwhile, 

surface analogues of bony landmarks such as the soft tissue nasion can usually 

only be found in patient space by palpation, and therefore cannot be used as an 

anatomical landmark in an automated registration system.  

3.6.4 Proposed registration framework 

A point-based rigid body registration based on homologous anatomical 

landmarks in CT and patient space is proposed, with automatic localisation of 

the landmarks. Currently anatomical landmarks are determined manually based 

on visual inspection or palpation, requiring user interaction. These landmarks, if 

robustly detected, could be used as a basis for an automated image to patient 

registration system. An automated registration system is proposed because it is 

a user-friendly method, requiring no user intervention. However, the automatic 

detection of anatomical landmarks is difficult. Unlike skin-affixed markers, which 

can be designed for automatic detection, anatomical landmarks do not lend 

themselves to similar techniques. Nevertheless, the automatic localisation of 

these landmarks in both image and patient space would be an enabling step 

towards an automated image to patient registration system.  

The use of anatomical landmarks as a registration basis in an automated 

image to patient registration system has not been reported. Clarkson et al. [118] 

argues that a point-based registration using anatomical landmarks is likely to be 

inaccurate as landmarks are difficult to localise accurately due to limited image 
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resolution and contrast, which gets progressively worse in CT as the slice 

thickness/spacing is increased. However, improvements in the spatial 

resolution of the CT images have enabled more accurate landmark localisation. 

Although the typical slice thickness for routine diagnostic CT images is 5 mm 

[119], CT images can be reconstructed with different slice thickness 

retrospectively from existing raw data, without re-scanning the patient. The 

limiting factor in slice thickness is the detector configuration used during the 

scan. Advances in imaging technology have therefore made localisation of 

anatomical landmarks feasible.  

The anatomical landmarks used should be spaced out as evenly, located 

as far away from each other, and encompass as large a volume of the head, as 

possible. The mean TRE when anatomical landmarks that were located 

primarily on the face were used was lower when the target was at a frontal 

location (4.03 ± 2.14 mm with a range of 0.31 – 6.59 mm) compared to a non-

frontal location (6.03 ± 2.70 mm with a range of 2.80 – 11.11 mm) [116]. 

Therefore, the landmarks chosen should not be confined to the facial region 

alone. Furthermore, while the use of four fiducials/landmarks instead of three 

improves registration accuracy and robustness significantly, registration 

accuracy does not improve considerably after five or six fiducials/landmarks are 

used [113, 114]. 

In view of this, four near co-planar anatomical landmarks, the left and 

right medial canthus i.e. inner eye corners, and the left and right tragus i.e. a 

small pointed eminence of the ear, were chosen as inputs for a rigid body 

registration. The anatomical point landmark pairs were also chosen because 

they can be reliably and robustly identified in patient and CT space. 

Intraoperatively, in patient space, close range stereo photogrammetry is used to 

localise these landmarks, because it is relatively inexpensive and allows for 

non-invasive, non-contact measurements. The same landmarks may be found 

in CT through a computational approach. The proposed framework does not 

modify the workflow in terms of CT image acquisition.  

As the registration is only valid if the patient does not move during 

surgery, the patient must be immobilised. Patient movement can be detected by 

continuously monitoring the position of the anatomical landmarks during 

surgery, and re-registration performed if any movement is detected. 
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3.6.5 Definition of the anatomical landmarks used 

The anatomical landmarks used are conventional craniometric anatomic 

landmarks. The medial canthus is the inner corner of the eye where the upper 

and lower eyelids meet (see Figure 17a). The tragus is a small, pointed, 

cartilaginous flap in front of the external opening of the ear (see Figure 17b). 

Because the tragus is a relatively large cone shaped structure, its apex is 

chosen as the point that uniquely defines its position. 

 

 

a b 

Figure 17: (a) Medial canthus and (b) tragus 

3.6.6 TRE estimated based on analytical expression 

The proposed registration framework may be used if the TRE is within 

the required clinical accuracy. Registration accuracy depends on the degree of 

correspondence between the point pairs in the two spaces. The accuracy of the 

proposed registration framework was estimated based on the analytical 

expression of TRE by Fitzpatrick et al. [111] for a given FLE and fiducial 

configuration, as given in Equation 3.7. The TRE using the four anatomical 

landmarks i.e. the medial canthi and both ear tragus, has been simulated for 

landmark localisation error of 5 mm. Figure 18 illustrates the estimated TRE. 

The TRE isocountours are ellipsoid and are overlaid in the orthogonal landmark 

principal axis planes on MRI images, and are similar to that obtained by West et 

al. [114]. The resulting TRE, within millimetre range for any location within the 

head, is acceptable as the required clinical accuracy of the targeted procedures 

is in the centimetre range and is similar to that achieved by a neurosurgeon. 
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a b 

c d 

Figure 18: (a) Anatomical landmarks used, the medial canthus and tragus; and 

the expected TREs isocontours for FLE of 5 mm in the (b) sagittal, (c) axial and 

(d) coronal planes respectively18.  

3.6.7 TRE estimated on anthropomorphic skull  

Because TRE cannot be measured directly, the TRE for the proposed 

registration framework has been determined experimentally using an 

anthropomorphic skull with 16 radiopaque markers attached at random 

                                            
18

 MRI data from US National Library of Medicine's Visible Human Project® 
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locations inside and on the surface of the skull, to simulate the range of 

possible target locations (see Figure 19a). The positions of the radiopaque 

markers are known based on measurements using a coordinate measuring 

machine (see Figure 19b).  

 

 

a b 

Figure 19: (a) Anthropomorphic skull and radiopaque markers used as fiducials 

for assessing TRE and (b) position of radiopaque markers in „skull space„ 

determined using a coordinate measuring machine 

 

The anthropomorphic skull was subsequently CT scanned (see Figure 

20) and a point-based rigid body registration, using bony analogues of the 

medial canthus and tragus, was performed to register CT images of the skull to 

the skull itself. 
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Figure 20: CT scanning of the anthropomorphic skull with radiopaque markers 

attached 

 

Because four landmarks were used for the determination of a 3x3 

dimensional transformation matrix, the calculation is overestimated and has in 

general no solution. The rigid body transformation matrix, consisting of a 

rotation matrix,  , and translation matrix, 𝑡 , are matrices that minimise the 

square FRE, as given by Equation 3.8:   

 

      
 

 
∑  

 | 𝑥 + 𝑡  𝑦 |
 

 

 

 3.8 

 

where    is the non-negative weighting factor for landmarks 𝑖 = 1, 2,…  , and 

𝑥 𝑦  are the landmarks locations in the two spaces, used to decrease the 

influence of less reliable fiducials. A closed form solution, developed by Arm, 

Huang & Blostein [122] was used to determine the transformation matrix, 

consisting of a rotation and translation component. The weighted centroid of the 

fiducial configuration is computed in each space, as given by Equation 3.9: 
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The mean centred coordinates of each fiducial, as given in Equation 

3.10, is obtained by subtracting the coordinates of each fiducial with the 

centroid: 

 𝑥̃  𝑥  𝑥̅ 

𝑦̃  𝑦  𝑦̅ 
3.10 

 

The weighted fiducial covariance matrix,  , as given in Equation 3.9, is 

computed next: 

 
  ∑  

 𝑥̃ 

 

 

𝑦̃ 
𝑡 3.11 

 

Equation 3.12 gives the singular value decomposition of  : 

 

      𝑡 3.12 

 

where   is the unitary matrix,   is a diagonal matrix with nonnegative real 

numbers on the diagonal and  𝑡 is the conjugate transpose of unitary matrix  . 

 𝑡   𝑡      𝑑𝑖𝑎𝑔(        ), and             is an identity matrix and 

  is the eigenvalue. The rotation matrix,  , is given by Equation 3.13: 

 

    𝑑𝑖𝑎𝑔(       (  )) 𝑡 3.13 

 

and the translation matrix, 𝑡, is given by Equation 3.14: 

 

 𝑡  𝑦̅   𝑥̅ 3.14 

 

Four radiopaque markers corresponding to bony analogues of the 

anatomical landmarks i.e. medial canthus and tragus (see radiopaque markers 

1,3,4,7 in Figure 19a) were used as the registration basis for the point-based 

rigid body registration. The remaining 12 radiopaque markers were used as 

targets to assess the TRE. The location of the radiopaque markers on the skull 

was determined using a Metris LK Ultra coordinate measuring machine. The 

radiopaque markers in CT space were localised based on visual inspection 
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(see Figure 21). A FLE of 5 mm was incorporated into the localisation of the 

radiopaque markers in CT space corresponding to the anatomical landmarks by 

offsetting the localised position by 5 mm in random directions. The CT images 

of the skull were registered to the skull itself based on minimising FRE, as given 

by Equation 3.8. Both the FRE and the TRE were determined.  

 

 

a b 

c d 

Figure 21: Localisation of radiopaque markers in CT space. Crosshairs are 

placed as close as possible to the centre of the radiopaque markers in the (a) 

axial view, (c) coronal view and (d) sagittal view. (b) Volume rendered model of 

the skull with radiopaque markers attached.  
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3.6.8 Results 

Table 2 shows the CT and CMM coordinates of the 16 radiopaque 

fiducial markers. 

 

Table 2: Radiopaque fiducial markers CT and CMM coordinate 

Modality CT MRI 

Fiducials 
Coordinates (in millimetres) 

x y z x y z 

1 71.186 179.116 33.125 -22.528 7.370 -43.199 

2 74.853 93.613 40.625 62.457 11.085 -32.158 

3 118.887 78.135 39.375 78.187 55.296 -34.863 

4 136.865 79.976 39.063 76.614 73.202 -35.871 

5 181.265 91.035 42.500 65.489 117.591 -35.063 

6 190.434 131.572 72.188 23.915 128.120 -7.663 

7 190.801 174.326 38.438 -17.408 126.826 -43.297 

8 90.996 201.230 106.250 -47.884 30.583 27.831 

9 155.210 197.915 106.250 -44.111 94.797 25.387 

10 88.428 139.311 90.625 14.669 27.334 15.144 

11 121.836 131.514 124.688 21.286 62.044 48.000 

12 160.347 138.208 95.000 15.872 99.054 16.218 

13 122.920 101.719 93.750 52.163 61.826 18.656 

14 56.875 176.167 102.813 -22.770 -3.792 27.007 

15 158.315 216.269 120.000 -63.000 98.746 38.099 

16 97.602 90.298 114.688 62.876 37.186 40.955 
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Figure 22 shows the FRE for radiopaque markers 1,3,4,7, which 

correspond to the right tragus, right medial canthus, left medial cantus and left 

tragus respectively. The mean FRE is 0.18 mm with a range of 0.10 mm – 0.26 

mm. 

 

 

Figure 22: FRE for radiopaque markers 1,3,4,7, corresponding to the 

anatomical landmarks  

 

Figure 23 shows the TRE for radiopaque markers 2, 5, 6, 8 - 16, 

corresponding to randomly positioned „targets‟. The mean TRE is 0.28 mm 

(standard deviation = 0.11) with a range of 0.09 – 0.46 mm. The TRE compares 

very favourably to a study by Bickel [123] who obtained a mean TRE of 0.277 ± 

0.696 mm and 0.266 ± 0.640 mm when using 5 landmarks to register an 

artificial and cadaver skull to their CT images. 
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Figure 23: TRE for radiopaque markers 2, 5, 6, 8 - 16, corresponding to the 

„targets‟ 

Figure 24 shows the FRE for radiopaque markers 1,3,4,7, which 

correspond to the right tragus, right medial canthus, left medial cantus and left 

tragus respectively for a FLE of 5 mm. The mean FRE is 3.4 mm with a range 

of 3 – 4 mm. 

 

 

Figure 24: FRE for radiopaque markers 1,3,4,7, corresponding to the 

anatomical landmarks with FLE of 5 mm 
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Figure 25 shows the TRE for radiopaque markers 2,5,6,8-16, 

corresponding to randomly positioned „targets‟ with a FLE of 5 mm. The mean 

TRE is 3.4 mm with a range of 2.8 – 3.8 mm. TRE estimated analytically based 

on the number of landmarks, accuracy in localising the landmarks and 

landmark configuration underestimates the actual TRE. 

 

 

Figure 25: TRE for radiopaque markers 2, 5, 6, 8 - 16, corresponding to the 

„targets‟ with FLE of 5mm 

3.7 Discussion and conclusions 

The estimated TREs for a FLE of 5 mm (obtained experimentally and 

based on the analytical expression) is in the millimetre range, and compares 

favourably to the accuracy achieved by a neurosurgeon performing the targeted 

neurosurgical procedures using a freehand technique, which is sometimes in 

the centimetre range. The discrepancies between the TREs obtained 

experimentally and those based on the analytical expression are because of the 

different assumptions regarding FLEs. TREs determined using the analytical 

expression were based on the assumption that the FLEs are independent, 

normally distributed random variables with zero means and equal variances 

while the FLEs used to determine TREs experimentally (based on 
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measurements using the anthropomorphic skull) were based on random 5mm 

errors with a non-zero mean and unequal variance. The TREs obtained in the 

phantom study are more indicative of the expected errors for a given landmark 

configuration and localisation error.  

It should be noted that the TREs obtained would underestimate the 

actual errors achieved in practice. This is because several factors are not 

accounted for, such as patient movement, the accuracy of a robot to find a 

position in space, etc. However, errors due to these may be reduced by proper 

calibration of the robot as well as ensuring that the patient‟s movement is 

minimised. The patient‟s head for example, may be held relatively stationary by 

immobilising it with a clamp, as is common in neurosurgery, thereby reducing 

potential errors due to patient movement. A landmark-based approach can 

therefore yield a sufficiently accurate registration for the required clinical 

accuracy of the targeted procedures if the landmarks can be localised within 5 

mm of their true position and others sources of errors can be reduced. 

The limitation of the proposed registration framework is that the required 

anatomical landmarks i.e. medial canthus and tragus may be unreliable or 

absent, as would be the case in the occurrence of facial/head trauma that 

distorts a patient‟s normal anatomy. In this circumstance, the registration would 

have to be performed using skin-affixed markers, although this would mean that 

the patient would be required to undergo a secondary scan.  

Another drawback of the proposed registration framework is that 

because the surgical targets are predefined at the preoperative stage, the 

system cannot compensate for any errors due to imaging, surgical tool 

deflection and tissue deformation. It may also be prone to errors if the brain 

shifts after acquisition of preoperative images due to an expanding haematoma, 

patient positioning or because of the surgery itself. However, this problem is not 

unique to the proposed registration framework but is common to all registration 

methods that use preoperative images for registration. Intraoperative brain shift 

can only be accounted for by intraoperative imaging e.g. intraoperative CT/MRI. 

Potential errors due to brain shift may be reduced by careful patient positioning 

e.g. placing a patient in a position similar to their position during imaging. 

Reducing the time between imaging and surgery may reduce errors due to 
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brain shift. Fortunately, brain shift is less of an issue with burr hole procedure 

than with an open craniotomy.  

A framework for registering CT images to patient for MISEN has been 

described. Specifically, the proposed registration has been developed to 

support three emergency neurosurgical procedures. Because the three targeted 

neurosurgical procedures are intended to be performed robotically, image 

guidance is required. The registration system is a part of MISEN where 

guidance of the robot manipulator is based on registration between an image 

and the physical anatomy.  

Simulation and experimental results of the registration framework based 

on a FLE of 5 mm showed an estimated TRE of within the millimetre range, 

which is the required accuracy for these procedures. In contrast, the accuracy 

of neurosurgeons performing the targeted procedures is sometimes in the 

centimetre range. Therefore, the proposed registration approach is sufficiently 

accurate and meets the required clinical accuracy of the targeted procedures. 

To reduce the subjectivity inherent when localising the landmarks, the 

automatic localisation of these landmarks is proposed. The next chapter 

describes the automatic localisation of these landmarks in CT images. 
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Chapter 4  

Automating the Registration  
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4.1 Introduction 

The use of anatomical landmarks as a basis for image to patient 

registration is appealing because the registration may be performed 

retrospectively. Two anatomical soft tissue landmarks of the head, the medial 

canthus and the tragus have been proposed as a registration basis for an 

automated CT image to patient registration system, as inputs for a rigid body 

registration algorithm.  

In this chapter, algorithms for the automatic localisation of these 

landmarks in CT images are described. At present, anatomical soft tissue 

landmarks of the head are localised manually on CT images [124]. However, as 

CT images are digital in nature, a computational approach to the localisation of 

these landmarks was developed. The automatic localisation of these landmarks 

in CT images is an enabling step towards automating image to patient 

registration, with the aim of reducing the subjectivity inherent in the landmark 

selection process. A brief review of previous work on anatomical landmark 

localisation in CT images is presented, with the algorithm described in the 

subsequent section.   

4.2 Previous work 

Existing computational approaches to landmark localisation in CT 

images are predominantly semi-automatic and primarily for localising internal 

landmarks. The various approaches mainly differ in the types of landmarks 

localised. Frantz et al [124] used 3D generalisations of 2D differential 

operators/corner detectors to localise internal anatomical landmarks in head CT 

images such as the tips of the frontal, temporal, and occipital horns of the 

ventricular system; saddle point of the zygomatic bone; fourth ventricle, and tip 

of the external occipital protuberance. Their method however requires the user 

to specify a coarse position of the landmark of interest, as well as to select the 

most promising candidate among the detected candidate landmarks.  

A more recent approach fits geometric and intensity models of these 

landmarks to their images [125, 126]. In this semi-automatic approach, the user 

is required to provide a coarse localisation of the landmarks, which the 
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algorithm then refines, by fitting models of anatomical structures to their 

images. Although this technique could potentially be applied to localising the 

tragus, and to a lesser extent the medial canthus, user intervention, to provide 

coarse localisation of these landmarks, would still be required.  

Recently, Subburaj et al [127] described a method to localise anatomical 

landmarks of the knee-joint in CT images automatically, using surface curvature 

properties and the spatial adjacency of landmarks i.e. the relative location of a 

landmark with respect to other landmarks. However, spatial adjacency cannot 

be used in localising the medial canthus or tragus because there are no other 

landmarks close to these landmarks that can be used to facilitate their 

localisation. 

Closely related to this work is the localisation of anatomical landmarks of 

the face in 3D range images. Deo and Sen [128] localised anatomical 

landmarks of the face such as the medial canthus on a surface mesh extracted 

from range images, using curvature analysis and morphological operations. The 

extremities of regions isolated by thresholding a surface mesh based on a 

predetermined mean curvature threshold range correspond to the landmarks. 

Their intended application was in anthropometry, the science and practice of 

human body measurements. Although they reported good results for the 

localisation of the medial canthus with their database of about 20 subjects, they 

were primarily interested in measuring distances between landmarks, rather 

than in localising the landmarks accurately. When measuring distances 

between landmarks, incorrect landmark positions may still provide correct inter 

landmark distance. Furthermore, the results were achieved with subjects whose 

eyes were open, which makes localisation of the medial canthus easier. In 

contrast, the dataset used in this study consists of high resolution images of 118 

subjects. High resolution images, while affording greater localisation accuracy, 

are more susceptible to false detection. 

Chen et al [129] presented a scale space based approach using integral 

volume descriptors, for localising anatomical landmarks of the face. Integral 

descriptors are more robust to noise than curvature based strategies. Similar to 

the work by Deo and Sen, they used 3D range images. Because of its relatively 

low resolution, although seemingly similar in nature, the majority of the work in 

the localisation of anatomical landmarks of the face in 3D range images is in 
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the detection of a region of interest, rather than a specific point. The context of 

the localisation is therefore different. Furthermore, unlike surface models 

rendered from range images, surface models reconstructed from CT are more 

detailed, and as a result, false detections are more of an issue when localising 

landmarks in CT images. This is especially true when localising the medial 

canthus, where the presence of deep-set wrinkles can make localisation of the 

medial canthus difficult. In this work, the medial canthus and tragus are 

localised in CT images based on curvature analysis and a rule-based system. 

To the author‟s knowledge, no prior work to localise these landmarks in CT 

images has been reported in the literature. 

4.2.1 Localisation in patient space 

The localisation of the medial canthus and tragus in patient space have 

previously been described by Gooroochurn et al [130], who used close range 

photogrammetry and a neural network approach based on Gabor filters to 

facilitate the localisation of these landmarks. Five cameras mounted on an arc, 

placed such that it is approximately facing the patient were used to detect the 

landmark positions on the patient (see Figure 26). This camera configuration 

ensures that each landmark is viewed from two different directions, as a 

minimum of two views are required in photogrammetry. Alternatively, a single 

camera that moves to predetermined positions on the arc may be used. 

 

 

Figure 26: Close range photogrammetry camera setup for localising the medial 

canthus and tragus in patient space19 

                                            
19

 Used with permission from author 
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The automatic localisation of these landmarks in CT space would 

complement the automatic localisation of these landmarks in patient space in 

an automated image to patient registration system. In the following section, the 

methodology for the automatic localisation of these landmarks is described. 

4.3 Methodology 

The medial canthus and tragus are localised on surface models 

extracted from CT images based on their curvature saliency and using a rule 

based system that incorporates prior knowledge of their geometric and spatial 

characteristics. Candidate landmark locations are first isolated on the surface 

models based on their curvature properties. A rule-based system was 

subsequently used to facilitate the localisation of these landmarks as the use of 

curvature properties alone will result in numerous false detections. The 

landmarks are localised within candidate locations that have a geometric 

structure and spatial location consistent with the prior knowledge of these 

landmarks. The various stages of the algorithm are detailed below. 

4.3.1 Head orientation 

The first step in the algorithm is to detect and correct for any deviation of 

the head orientation from a forward facing position. This is because the 

localisation of the eye region is dependent on the head being in an 

approximately forward facing position. The left and right eye regions are 

localised based on a nearest neighbourhood clustering, with the centroids for 

the left and right eye region at the centre of the left and right sides of the 

bounding box containing the surface model. Clusters belonging to the eye 

regions may be erroneously localised if the head deviates from a frontal facing 

position. Figure 27 illustrates the left and right eye regions grouped based on 

nearest neighbourhood clustering for a deviation of 0º, 15º and 30º from the 

frontal facing position. While the eye clusters were correctly localised for a 

deviation of 15º (Figure 27b), they were wrongly localised for a deviation of 30º 

(Figure 27c). Therefore, any deviation greater than 15º has to be corrected. 
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a b c 

Figure 27: Surface model illustrating deviation from the frontal facing position of 

(a) 0º, (b) 15º and (c) 30º and the corresponding left and right eye regions as 

grouped based on nearest neighbourhood clustering  

 

Fortunately, it is relatively easy to detect and correct for any deviations 

from the required orientation. For a given set of axial CT images, a series of 

operations is performed to isolate the head region (see Figure 28). The head 

region is segmented in the axial CT images (Figure 28a) by thresholding 

(Figure 28b). To isolate the head from other structures, such as the headrest, a 

blob analysis was performed to eliminate spurious regions in the segmented 

images, whereby the largest connected binary component, which corresponds 

to the head, is chosen (see Figure 28c). The resulting binary axial CT images 

are stacked to create a composite image, which is approximately elliptical (see 

Figure 28d). 

 

 

a b c d 

Figure 28: (a) Original CT axial image, (b) segmented image, (c) largest 

connected binary component and (d) composite image. 

 

The grey level intensity distribution of a typical CT image of the head 

exhibits two well-defined peaks, representing the head region and surrounding 
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air respectively, with a valley separating the two peaks (see Figure 29). 

Intensity-based thresholding therefore works well in delineating the skin to air 

boundary, with the threshold level determined automatically using Otsu‟s 

method [131]. 

 

 

Figure 29: Grey level intensity histogram of CT axial image in Figure 28 

 

The orientation,   of the head is then estimated as the 2D orientation of 

an ellipse with the same normalised second central moments as the composite 

image, and is given by Equation 4.15:  

 

 
        (

       +√(       ) +     
 

    
) 4.15

 

                                                         

where     
∑(𝑥 𝑥̅) 

 
     

∑(𝑦 𝑦̅) 

 
     

∑(𝑥 𝑥̅)(𝑦 𝑦̅)

 
 are the second order central 

moments, 𝑥  and 𝑦  the 𝑥  and 𝑦  pixel coordinates, 𝑥̅  and 𝑦̅  the mean 𝑥  and 𝑦 

pixel coordinates and   the number of pixels 

 

The orientation estimated using this method becomes less accurate the 

closer the shape of the composite image is to a circular shape. This is because 

the terms         and     become smaller, leading to numerical instability.  As 

the head is only required to be approximately forward facing, only deviations of 
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more than 15° (see Figure 27) from the vertical axis are corrected. If required, a 

rigid body rotation of the CT images, about its centroid, is used to re-orient the 

CT images, using a rotation matrix,   given by Equation 4.16: 

 

   0
𝑐𝑜𝑠  𝑠𝑖𝑛 
𝑠𝑖𝑛 𝑐𝑜𝑠 

1 4.16 

   

To determine the validity of the proposed approach, a set of CT images 

were rotated by a known angle and the angle was subsequently calculated. For 

the given set of CT images that was rotated by 45.000°, the orientation of the 

composite image was estimated as 45.007°, an error of 0.007°. The orientation 

of the composite image, estimated as the 2D orientation of an ellipse with the 

same normalised second central moments, is therefore very accurate. 

However, this is the accuracy of the relative orientation with respect to a prior 

orientation, rather than the absolute orientation. For the purposes of reorienting 

CT images of the head however, a deviation of ±15º from the forward facing 

position is acceptable, as the head has to be approximately in this position only. 

Once properly oriented, the surface model of the head is extracted from the CT 

images. 

4.3.2 Surface model 

An important technique in visualising volumetric data such as CT in 

surface form is using an isosurface. An isosurface is a 3D three-dimensional 

analogue of isocountours, and for CT, is a set of all the points that have the 

same Hounsfield number i.e. constant intensity. Figure 30 illustrates the 

extraction of an isosurface where the intensity of each voxel is represented by 

different grey levels. 
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Figure 30: An isosurface extracted from volume data20 [132] 

 

To obtain a surface model of the head from CT images, masks 

consisting of binary axial CT images of the segmented head region obtained 

earlier are multiplied with the original CT axial images (see Figure 28). A grey 

level morphological fill operation was then performed on the segmented image 

to remove any holes (see Figure 31), as they presence of these holes would 

complicate the automatic localisation of the landmarks.  

 

 

a b 

Figure 31: (a) Head region with „holes‟ and (b) without „holes‟ after grey level 

morphological fill operation 

 

A surface model of the head, represented as a triangulated mesh, was 

then extracted using a custom isosurface algorithm [133], with an isovalue 

equal to the threshold level used earlier for the segmentation of the head region 

                                            
20

 Image reproduced after permission from SPIE 
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in CT images (see Section 4.3.1). For accurate surface reconstruction from CT 

images, an exact determination of the skin to air boundary is required. 

However, this boundary is ill defined in CT images, represented as a continuum 

of grey levels. As such, only an approximation of the actual surface is possible. 

A sample of surface models of the head for eight subjects, extracted from CT 

images, is shown as in Figure 32. The curvature of these surface models is 

computed next.  

 

 

Figure 32: Sample of head surface models extracted from CT images (Frontal 

view and corresponding profile view) 

4.3.3 Surface curvature 

While computing the curvature of a parametric surface is trivial, the 

computation of curvatures of an isosurface represented as triangular meshes is 
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difficult. Unlike a parametric surface, the curvature of a triangulated mesh is not 

well defined, as it is piecewise linear and cannot be differentiated. There are 

three approaches to calculate the curvature of a surface represented by a 

mesh: fitting methods, discrete methods, and curvature tensor estimation 

methods. In fitting methods, which are computationally expensive, an analytic 

function, whose curvature can be computed, is fitted to a mesh locally. Discrete 

methods involve a direct estimation of the curvature at each vertex, by 

summing the curvature of each face or edge associated with the vertex. These 

methods are appealing because of their speed. However, they are sensitive to 

noise and mesh resolution. Curvature tensor estimation methods are similar to 

discrete methods, except that instead of estimating the curvature directly, a 

curvature tensor is estimated. Curvatures and principal directions are derived 

from the eigenvalues and eigenvectors of the curvature tensor. These methods 

are computationally less complex than fitting methods. 

A curvature estimation method by Alliez et al [134]  was used to estimate 

the curvature of an isosurface. In their method, a curvature tensor is defined at 

each point along the edge, by observing that for every edge 𝑒 of the mesh, the 

minimum curvature is along the edge, and the maximum curvature is across the 

edge. A curvature tensor can therefore be defined at each point along an edge. 

The curvature tensor, ℑ  of an arbitrary region, 𝐵  is the average of these 

individual tensors over the region. Formally, the curvature tensor, ℑ(𝑣) at an 

arbitrary vertex, 𝑣 on the mesh, over 𝐵 is given by Equation 4.17: 

 

 ℑ(𝑣)  
 

|𝐵|
∑ 𝛽(𝑒)|𝑒 ∩ 𝐵|𝑒̅𝑒̅𝑡

𝑒𝑑𝑔𝑒𝑠 𝑒

 4.17 

 

where |𝐵|
 
is the surface area around 𝑣 over which the tensor is estimated, 𝛽(𝑒) 

is the signed angle between the normals to the two oriented triangles incident to 

edge 𝑒 (positive if convex, negative if concave), |𝑒 ∩ 𝐵| is the length of 𝑒 ∩ 𝐵 

(always between 0 and |𝑒|), and 𝑒̅ is a unit vector in the same direction as 𝑒 

(see Figure 33).  
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a b 

Figure 33: (a) Illustration of a region, 𝐵, vertex, 𝑣, edge, 𝑒, and (b) signed angle 

between the normals to the two oriented triangles incident to edge, 𝛽(𝑒) [134] 

 

To obtain a continuous tensor field over the whole surface, the piecewise 

curvature tensor is linearly interpolated at each vertex. The normal at each 

vertex is the eigenvector of the curvature tensor ℑ   associated with the 

minimum eigenvalue. The principal curvatures at 𝑣,  𝜘𝑚 𝑛 and 𝜘𝑚𝑎𝑥 , are  the 

two other eigenvalues of curvature tensor ℑ. The Gaussian and mean curvature 

can be computed from the principal curvatures. The Gaussian curvature, 

 𝑔𝑎𝑢𝑠𝑠 𝑎𝑛 is the product of the principal curvatures, 𝜅𝑚 𝑛 and 𝜅𝑚𝑎𝑥 and is given 

by Equation 4.18: 

  𝑔𝑎𝑢𝑠𝑠 𝑎𝑛  𝜅𝑚 𝑛𝜅𝑚𝑎𝑥 4.18 

 

The mean curvature, 𝐶𝑚𝑒𝑎𝑛 is the average of the principal curvatures, 𝜅𝑚 𝑛 and 

𝜅𝑚𝑎𝑥 and is given by Equation 4.19: 


 𝑚𝑒𝑎𝑛  

 

 
(𝜅𝑚 𝑛 + 𝜅𝑚𝑎𝑥) 4.19

 

Figure 34 illustrates the mean curvature map of the eye and the 

Gaussian curvature map of the ear, determined using the curvature tensor 

estimation algorithm. A neighbourhood B  that approximates a disk around v  

that is within a sphere centred at v , with a radius equal to 1/100th of a 

bounding box diagonal of the surface (as used by Alliez et al [134]), was used. 

The curvature values have been normalised and colour coded for display 

purposes. Red and blue corresponds to areas of high and low curvature 

respectively. 
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a b 

Figure 34: (a) Mean curvature map of the eye region and (b) Gaussian 

curvature map of the ear region  

 

To reduce the effect of noise when estimating surface curvature, a 10-

ring (neighbourhood) averaging of the curvature tensor at each vertex was 

applied. Figure 35 shows the concept of a ring neighbourhood for a triangular 

mesh and Figure 36 illustrates the effect of the size of this ring when averaging 

curvature values. Curvature values are smoother as the curvature tensor is 

averaged over larger neighbourhoods. However, this has the effect of masking 

surface detail and blurring curvature estimates. Nevertheless, the positions of 

the landmarks are robust to smoothing using a 10-ring averaging. 

 

 

Figure 35: A triangular mesh. The vertices in red and green are the 1-ring and 

2-ring neighbourhood of the vertex in blue  

 

 

a b c d 

Figure 36: Thresholded mean curvature map at (a) 0-ring, (b) 1-ring, (c) 5-ring 

and (d) 10-ring neighbourhood averaging filter sizes 

1.0 

 

0.0 
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4.3.4 Candidate landmark regions 

Because the medial canthus and tragus are regions of high curvature, an 

obvious way to localise them would be to use curvature properties. By applying 

an appropriate surface curvature threshold level, the medial canthus and tragus 

can be localised, due to their location on curvature extremes of contours. 

Geometrically, the medial canthus is the most medial point of a valley surface 

formed by intersection of the upper and lower eyelids. This valley surface 

extends from the outer corner to the inner corner of the eye and is 

characterised by high mean curvature and zero Gaussian curvature. Candidate 

locations for the medial canthus are therefore isolated by thresholding the 

surface curvature based on mean curvature, 𝐶𝑚𝑒𝑎𝑛  𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑, and Gaussian 

curvature threshold 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛    (see Figure 37). 

 

 

a b c d 

Figure 37: Curvature map with 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛    and 𝐶𝑚𝑒𝑎𝑛   (a) 0.005, (b) 0.010, 

(c) 0.015 and (d) 0.020 

 

The tragus is approximately semi-ellipsoid, and its apex is the tip of this 

peak structure, a locally maximum point. It is characterised by negative mean 

curvature and high Gaussian curvature (see Figure 34). Candidate locations 

containing the tragus are identified by thresholding the surface curvature based 

on Gaussian curvature, 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛  𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 and 𝐶𝑚𝑒𝑎𝑛    (see Figure 38).  
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a b 

Figure 38: Curvature map with 𝐶𝑚𝑒𝑎𝑛    and (a) 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛         (b) 

𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛         

 

While the amount and the type of curvature of a point on a surface are 

indicative of its local shape, Deo and Sen [128] used mean curvature only in 

their work. Using two principal curvatures i.e. mean and Gaussian curvature 

would yield more information about local shape. The mean and Gaussian 

curvature properties used are based on the surface geometry of the landmarks 

and the threshold level used was determined empirically. A threshold based on 

an arbitrary upper limit of a curvature histogram was considered but the 

presence of outliers due to imperfect segmentation, e.g. parts of the headrest, 

greatly affected the resulting threshold value. 

For the medial canthus, a mean curvature 𝐶𝑚𝑒𝑎𝑛        with a 

Gaussian curvature 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛    (see Figure 37) worked well in the majority of 

cases, although in some instances (Section 3.7) the mean curvature threshold 

was varied to two predefined levels i.e.  0.010 (see Figure 37b) and 0.020 (see 

Figure 37d). For the tragus, a Gaussian curvature 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛         (see 

Figure 38) and negative mean curvature 𝐶𝑚𝑒𝑎𝑛    worked well. Once isolated, 

candidate landmark regions were clustered to facilitate landmark localisation. 

4.3.5 Clustering 

Curvature properties alone are inadequate to localise the landmarks 

because there will be many false positives, as other structures with similar 

surface curvature values will be detected as well. To facilitate the localisation, 

an analysis of the clusters and knowledge of the characteristics of the 

landmarks were used. Candidate regions that may contain the landmarks are 
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first identified, with the landmarks subsequently localised within these regions. 

This is because localising the region containing the landmarks is less error 

prone than localising the landmarks by themselves. The eyes (including the 

nose) and ears (see Figure 39a) are clustered into larger regions. As these 

regions tend to have arbitrary shapes, a density-based clustering algorithm 

[135], which works well with these types of shapes, was used.  

 

 

a b 

Figure 39: Nearest neighbour clustering, of (a) right ear, eyes and nose, left ear 

and of (b) right ear, right eye, nose, left eye and left ear. 

 

The regions are subsequently grouped using nearest neighbour 

clustering, with the eyes and nose area further divided into the right eye, the left 

eye and the nose (see Figure 39b). The seed points used for the nearest 

neighbour clustering are based on the relative positions of these anatomies e.g. 

the seed points for the right and left ear were located at the extreme right and 

left of the surface model. As each anatomical area will usually have more than 

one candidate landmark region, these regions were subsequently divided into 

individual clusters (see Figure 40).  

 

 

a b 

Figure 40: Density-based clustering of a thresholded surface curvature map of 

the (a) eye and (b) ear. Each colour represents a separate cluster. 
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4.3.6 Curve skeleton extraction 

When multiple clusters are present in the eye region, the cluster 

containing the landmark has to be identified. For the medial canthus, part of the 

difficulty in localising this cluster is that the shape of the cluster is different 

depending on whether the eyes are closed, opened or partially opened (see 

Figure 41).  

 

a b c 

Figure 41: Clusters containing the medial canthus with the eyes (a) closed, (b) 

opened and (c) partially opened (only main clusters are shown).  

 

To identify the cluster containing the medial canthus, the curve skeleton 

of the clusters is extracted, and the number of branch points/nodes computed. 

A curve skeleton is a one dimensional representation of a three dimensional 

mesh or point cloud. The number of branch points of a curve skeleton is an 

indication of whether a cluster contains the medial canthus. Curve skeleton 

extraction is based either on volumetric or geometric techniques. Volumetric 

methods require voxelisation/discretisation of the cluster, resulting in lower 

resolution and loss of detail. On the other hand, geometric methods work 

directly on triangle meshes. Figure 42 illustrates the curve skeleton of the 

clusters in the eye region, based on a geometric method by Cao et al [136]. The 

curve skeletons are extracted directly on point cloud data, without the need to 

reconstruct the surface of an object.  
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a 

b 

Figure 42: (a) Clusters of a thresholded surface curvature map of the eye 

region and (b) the corresponding curve skeleton. Branch points are indicated as 

nodes. 

The goal is to determine if any of the clusters have curve skeletons with 

two branch points, as this corresponds to the geometry of a cluster with the 

eyes open or partially opened, and is therefore the cluster containing the medial 

canthus. Figure 43a illustrates the corresponding branch points of the curve 

skeleton of the clusters around the eye, at 𝐶𝑚𝑒𝑎𝑛          and 𝐶𝑚𝑒𝑎𝑛          

for 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛     . Based on the initial mean curvature threshold, 𝐶𝑚𝑒𝑎𝑛        

neither cluster contains two branch points (one cluster contains a branch point 

and the other cluster contains no branch point). A curve skeleton with a single 

branch point does not correspond to the cluster containing the medial canthus. 

Decreasing the mean curvature threshold to 0.010 yields a cluster containing 

two branch points (see Figure 43b).  

 

 

a 

b 

Figure 43: Clusters and the corresponding curve skeletons for 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛      

and mean curvature threshold (a) 𝐶𝑚𝑒𝑎𝑛          and (b) 𝐶𝑚𝑒𝑎𝑛          
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The medial canthus corresponds to the most medial point of the cluster 

corresponding to the curve skeleton with two branch points. If no cluster with a 

curve skeleton containing either no branch points or two branch points is found, 

the process is repeated with 𝐶𝑚𝑒𝑎𝑛         . If a cluster with a curve skeleton 

containing two branch junctions is still not found, the eyes are either closed or 

partially opened. In this case, the cluster whose curve skeleton is the longest, 

based on the initial threshold, is the cluster containing the medial canthus (see 

Figure 44). This simplistic approach to localising the cluster containing the 

medial canthus works well (for images in our dataset). Curve skeleton length is 

a more appropriate measure than the Euclidean distance between the two 

extreme points of a cluster because it takes into account the surface shape.  

 

 

a b 

Figure 44: Clusters and corresponding curve skeletons for 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛      and 

mean curvature threshold (a) Cmean ≥ 0.015 and (b) Cmean ≥ 0.010 

 

Finally, if no cluster containing the medial canthus was found i.e. curve 

skeleton with no branch points or two branch points based on 𝐶𝑚𝑒𝑎𝑛          

and 𝐶𝑚𝑒𝑎𝑛          (see Figure 45a), curve skeletons are extracted from 

clusters based on 𝐶𝑚𝑒𝑎𝑛          (see Figure 45b). The algorithm for localising 

the medial canthus is summarised in Section 3.7. 

 

Medial canthus 
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a b 

Figure 45: Curve skeletons for 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛      and mean curvature (a) 𝐶𝑚𝑒𝑎𝑛   

       and (b) 𝐶𝑚𝑒𝑎𝑛         . Only main curve skeletons are shown. 

4.3.7 Algorithm for the localisation of the medial canthus 

Input: CT images 

Output: Vertices corresponding to the left and right medial canthus {𝑣 𝑚𝑐  𝑣𝑟𝑚𝑐}. 

 

1. Reorientate the head if the head orientation in the axial plane deviates 

more than 15o from the forward facing position (see Figure 27). 

2. Extract surface model of head from CT images (see Figure 32). 

3. Compute surface curvature (see Figure 34) 

4. Find candidate vertices, 𝑣      *𝑗        𝑛+  by thresholding based on 

𝐶𝑚𝑒𝑎𝑛          and 𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛      (see Figure 26). 

5. Group each vertex, 𝑣    𝐶  *𝑖       + using density based clustering.  

6. Isolate resulting clusters, corresponding to the left ear, the eye and nose, 

and the right ear, using nearest neighbour clustering (see Figure 39a). 

7. Separate the eye and nose, 𝑑    𝑐  *𝑖       +  into three clusters, 

corresponding to the left eye, the nose and the right eye, using nearest 

neighbour clustering (see Figure 39b). 

8. If there is no candidate cluster for the eye i.e. 𝑑  and/or 𝑑 , go back to step 

1 but change the mean curvature threshold to 0.010. 

9. If there is only one candidate cluster for the eye, select the cluster, 𝑒    𝑑  

and 𝑒    𝑑  if it has either no branch points or two branch points. 
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Otherwise, go back to step 2 but threshold using 𝐶𝑚𝑒𝑎𝑛          in the first 

instance and 𝐶𝑚𝑒𝑎𝑛          in the second instance. 

10. If there is more than one candidate cluster (see Figure 42 - Figure 45), 

select the cluster, 𝑒    𝑑  and 𝑒    𝑑  that has two branch points (see 

Figure 43b). Otherwise, go back to step 2 but change mean curvature 

threshold to 0.020 in the first instance and 0.010 in the second instance. 

11. If no cluster containing two branch points is found, the cluster with the 

longest curve skeleton length and no branch points, based on 𝐶𝑚𝑒𝑎𝑛   

      , is selected as the cluster containing the medial canthus (see Figure 

44a). Otherwise, threshold based on 𝐶𝑚𝑒𝑎𝑛         . 

12. Select most medial vertex, 𝑣 𝑚𝑐    𝑒 for left medial canthus and most 

medial vertex, 𝑣𝑟𝑚𝑐    𝑒  for right medial canthus. 

4.3.8 Localisation of the tragus 

To facilitate the localisation of the tragus and to avoid large localisation 

errors, a coarse location of the tragus is first estimated (see Figure 46).  

 

 

Figure 46: Estimated tragus positions 

 

Due to the anatomy of the ear, noise, and the fact that some parts of the 

ear are sometimes truncated in CT images, the ear region may contain false 

clusters i.e. not the tragus (see Figure 47). 
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a b 

Figure 47: Thresholded Gaussian curvature map of the ear with negative mean 

curvature illustrating (a) noise and (b) part of the ear truncated in the surface 

model 

 

An estimated location of the tragus is first found by exploiting their 

proximity to the ear canals, a more easily localised structure. A more accurate 

localisation is then found close to the estimated location on a surface rendered 

model. The position of the tragus is estimated by looking for the presence of ear 

canals in the CT axial and coronal planes (see Figure 48); and the outer ear 

structure in the CT sagittal plane (see Figure 49). 

 

 

a b c 

Figure 48: (a) Anatomical planes of reference, (b) ear canals in CT axial plane 

and (c) ear canals in CT coronal plane 

 

The sagittal plane where the tragus is approximately located may be 

found by scanning from the most lateral to the most medial sagittal plane (see 

Figure 49) until the Euler number of the largest connected binary region is 

equal to or is less than zero. In practice, a line is inserted at the bottom of the 

image to compensate for possible partial ear structures. This is because the 

whole ear does not always appear in CT images, as the scan end location is at 

the base of the skull.  
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Figure 49: (from left to right) Sequence of the outer ear structure in CT sagittal 

view i.e. lateral to medial. 

 

The ear canals in the axial and coronal CT planes are prominent 

features that can be robustly localised. A gross localisation of the tragus may be 

found by looking for the axial slice where the ear canal is longest. A possible 

approach to detect the CT slice where the ear canal is longest is to perform a 

skeletisation of the CT images and look for the medial most terminating point of 

the skeleton. This approach is illustrated in Figure 50. The axial and coronal 

planes whose skeleton endpoints are closest to the mid-sagittal plane 

correspond to the axial and coronal planes where the tragus is approximately 

located. 

 

a b c d 

Figure 50: (a) Ear canals in CT axial plane, (b) corresponding image skeleton, 

(c) ear canals in CT coronal plane and (d) corresponding image skeleton 

 

The largest cluster, within 10 mm (determined empirically) from the 

estimated tragus location, is selected as the cluster containing the tragus. The 

vertex with the highest Gaussian curvature value in this cluster corresponds to 

the apex of the tragus. The algorithm for the localisation of the tragus is 

summarised in Section 3.9.  
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4.3.9 Algorithm for the localisation of the tragus 

Input: CT images 

Output: Vertices, *𝑣𝑟𝑡 𝑣 𝑡+, corresponding to the left and right tragus. 

 

1. Reorientate the head if the head orientation in the axial plane deviates 

more than 15o from the forward facing position (see Figure 27). 

2. Extract surface model of head from CT images (see Figure 32). 

3. Compute surface curvature (see Figure 34) 

4. Estimate location of the tragus (see Figure 46). This corresponds to the 

axial (see Figure 48b) and coronal (see Figure 48c) plane where the ear 

canals appears longest based on skeletonisation (see Figure 50), and the 

first sagittal plane (from lateral to medial), with a region whose Euler 

number is equal to, or less than, zero (see Figure 49).  

5. Find candidate vertices, 𝑣       *𝑗         𝑛+  by thresholding based on 

𝐶𝑔𝑎𝑢𝑠𝑠 𝑎𝑛          , and 𝐶𝑚𝑒𝑎𝑛      (see Figure 38). 

6. Group each vertex, 𝑣 , into clusters, 𝐶  *𝑘          𝑝+ using density based 

clustering (see Figure 40b) 

7. Select the largest cluster, 𝑐   𝐶  *𝑘          𝑝+, within 10 mm from the 

estimated tragus location.  

8. The vertices, 𝑣 𝑡 𝑣𝑟𝑡  𝑐  with the highest Gaussian curvature value 

correspond to the apex of the left and right tragus respectively. 

4.3.10 Overview of the automatic localisation algorithm 

The various stages in the algorithm are shown in flowchart form in Figure 

51.  
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Figure 51: Overview of the algorithm 
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To validate the approach, the positions of the landmarks localised 

automatically and manually in near isotropic CT images of 118 patients were 

compared. These images were acquired using a multislice helical CT scanner 

(Aquilion 64 Toshiba-America Medical Systems Inc., Tustin, CA) in a private 

hospital, Johor Specialist Hospital, Malaysia. The images are 512 x 512 pixels 

with average in-slice pixel spacing and average slice thickness of 0.5 mm each, 

with no interslice spacing. The start and end scan location was from the skull 

vertex to at least the skull base, with the gantry oriented parallel to the 

infraorbitomeatal line. The DICOM compliant CT images were transferred to a 

personal computer, and the landmarks were localised automatically. 

4.4 Results  

CT images of 16 patients (out of 118 patients) were discarded from the 

analysis for the following reasons:  

 

1. The medial canthus or tragus was not present in CT images of nine 

patients (due to a scan end location above the skull base).  

2. One patient‟s eyes were obscured by a respiration mask 

3. Medial canthus was not well defined in CT images of six patients. 

 

Of the 102 patients that were included in the analysis, 52 patients were 

scanned with their eyes opened or partially opened, with the remaining 50 

patients scanned with their eyes closed. There was no significant difference 

between the localisation errors for the two groups of patients. Figure 52 

illustrates the automatically localised medial canthus and the most lateral point 

of the tragus for eight subjects in the database. 
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Figure 52: Automatically localised medial canthus and most lateral point of the 

tragus 

 

Because of the retrospective nature of this validation, there is no 

anatomical ground truth. As such, the difference in localising the landmarks, 

defined as the distance between the perceived location of the landmark (as 

determined by visual inspection on the surface rendered model) and the 

location of the landmark found automatically based on the algorithm was used 

for comparison. Because manual localisation is subjective and to minimise bias, 

the landmarks were annotated twice by the author and their position were 

averaged. Intra examiner variability was 1.0 mm and 0.7 mm for the medial 

canthus and tragus, with a maximum variability of 2.9 mm and 2.5 mm 

respectively.   

The mean difference in the localisation of the medial canthus, expressed 

as the root mean square Euclidean distance, was 1.2 mm (standard deviation = 

0.9 mm), with a maximum difference of 4.5 mm. The mean difference for 
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localising the tragus was 0.8 mm with a maximum difference of 2.6 mm 

(standard deviation = 0.6 mm). For the medial canthus, automatic and manual 

localisation agreed to within 1 mm for 51% of the landmarks, within 2 mm for 

80% of the landmarks, within 3 mm for 89% of the landmarks, and within 4 mm 

for 94% of the landmarks. For the tragus, automatic and manual localisation 

agreed within 1 mm for 75% of the landmarks, and within 2 mm for 97% of the 

landmarks. Estimates of the tragus location were found to be always within 10 

mm of its actual location, with an average difference of 8-mm.  

4.5 Discussion and conclusions 

The results for the localisation of the medial canthus were compared to 

the distance between the two medial canthi i.e. intercanthal width with that 

reported by Deo and Sen [128]. Although not exactly a like for like comparison, 

the results are nevertheless compared in the absence of a more valid 

comparison. Deo and Sen obtained an error of 0.85% for the difference 

between the intercanthal widths determined automatically and manually for one 

subject. Manual measurements were ground truth measurements, based on 

measuring the medial canthus on the subject using callipers. In contrast, the 

average difference was 3.8% for 102 subjects using the proposed algorithm.  

Good inter landmark measurement accuracy however, does not 

necessarily correspond to accurate landmark localisation. This is because 

landmarks can be erroneously localised but the distance between the 

landmarks could still be accurate e.g., the localisation of both the medial 

canthus could be offset by equal amounts and still yield accurate intercanthal 

width. Because these landmarks will be used as a basis to register images from 

two different modalities, the localised landmarks have to be spatially consistent 

between the two modalities. As such, localisation accuracy rather than 

measurement accuracy is more important.  

The maximum difference in positions of landmarks localised manually 

and automatically of 4.5 mm for the medial canthus and 2.6 mm for the tragus 

is acceptable, considering the maximum variability in localising these landmarks 

manually can be as high as 2.9 mm and 2.5 mm respectively. The error in 
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localising a target, or the TRE, for a 5 mm localisation error, has previously 

been determined using an analytical expression by Fitzpatrick et al [111] to be 

within 5 mm for targets located in the brain. As the intended use of the localised 

landmarks is as a registration basis for a CT-to-image patient registration 

system for three neurosurgical procedures normally performed using a 

freehand technique i.e. without image-guidance, this TRE is within the clinical 

accuracy required for the procedures.  

Shamir et al [120] found that FLEs are dependent on the type of 

anatomical landmarks and attributed the differences in the FLE values to the 

saliency of anatomical landmarks. The tragus, for example, is a cone-shaped 

structure, so its apex recognition was relatively accurate, with a low FLE. In 

contrast, the medial canthus is harder to localise and has a comparatively 

higher FLE. A possible solution is to weigh the landmarks differently according 

to their localisation uncertainty. The medial canthus could be assigned lesser 

weights compared to the tragus to reduce the overall registration error due to 

the larger medial canthus localisation error.  

A methodology to localise the medial canthus and tragus in CT images 

automatically was presented. Manual localisation is subjective, as it is a 

function of the examiner‟s experience and perception. On the other hand, 

automatic localisation can be performed in a consistent manner, reducing the 

subjectivity inherent when localising the landmarks manually. The basic 

approach was to exploit the curvature saliency of the medial canthus and 

tragus, as they are the most geometrically salient among commonly used 

anatomical landmarks of the head, and can therefore be more reliably detected. 

A rule system based on prior knowledge of the landmark geometric structure 

and spatial location was used to constrain the landmark search, as curvature 

properties alone result in many false detections. The medial canthus and tragus 

can be automatically localised in CT images, with a performance comparable to 

manual localisation, based on the approach presented. 

Once the preoperative plan has been registered to the patient using the 

proposed registration framework, the next phase is the intraoperative surgical 

intervention. Performing a surgical procedure autonomously using a robot is a 

safety critical process, as patient safety is paramount. However, there is always 

a real risk of the intervention going wrong. For example, when creating a burr 
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hole autonomously, it is entirely possible for a robot to begin drilling even 

though the incision has not been properly retracted, a highly unlikely event if it 

were a surgeon performing the operation. In the following chapter, the concept 

of a supervisory system, to monitor the surgical intervention intraoperatively is 

discussed, with applications to the MISEN system. 
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5.1 Introduction 

The relatively low usage of robotics in surgery can in part be attributed 

to, whether real or perceived, the lack of safety. Robotic surgery systems, 

particularly those involving neurosurgery, should therefore be designed to be 

inherently safe. While safety features (such as redundant sensors, compliance, 

hardware limited insertion speed by reduced final gear reduction ratio, etc.) are 

usually incorporated into these systems, they are unable to equal the level of 

situational awareness of a surgeon overseeing a surgical procedure. Unless 

this shortcoming is adequately addressed, it is difficult to envisage the 

widespread use of robotic surgery in place of conventional surgery. 

As a step towards emulating the supervisory role performed by a 

surgeon, an intraoperative supervisory system that is capable of monitoring a 

surgical procedure performed by a robotic system is proposed. The aim is to 

reduce the risks associated with robotic surgery and the potential for mistakes 

by the robotic system. This system would provide reassurance to the end user, 

typically a surgical team without specialised neurosurgical experience, during 

the intervention. An important feature of such a system would be the ability to 

assess the outcome of a surgical action, to validate its successful completion.  

A surgical action is a single task that is performed during a surgical 

procedure, which is usually made up of several surgical actions performed 

sequentially. The ability to assess the outcome of a surgical action is an 

important one, as subsequent surgical actions cannot usually be performed 

prior to the successful completion of the previous surgical action. This capability 

is therefore essential from both a safety and operational point of view. 

Surgeons using the da Vinci telesurgical robot, a robot synonymous with 

surgical robotics, routinely perform surgical actions primarily based on visual 

feedback (a force feedback feature, as a substitute for tactile sensation, was a 

later addition). While these surgeons assess task completion by relying on 

visual cues from the operative field, there is no reported use of vision to validate 

the successful completion of a surgical action in robot-assisted surgery 

systems. The Minerva system for example, relies only on monitoring the current 

profile of the motor driving the drill bit when drilling a burr hole  [58], without any 

visual observation of the site of the burr hole.  
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In principle, breakthrough i.e. successful penetration of the cranium can 

only be assured when it is possible to observe the dura mater (the outermost 

part of the brain). When the dura mater is detected in image space, 

breakthrough has occurred, regardless of the current profile. The outcome of 

the drilling could therefore be assessed using a computer vision-based 

approach. Apart from slight variations, the outcome of surgical actions, when 

created in a consistent fashion (as would be the case in robotic surgery 

systems), would exhibit certain distinguishing visual characteristics. This would 

make visual assessment of these outcomes, given that the surgical context is 

known, feasible.  

5.2 Computer vision 

Computer vision is the science and technology of machines that see, 

replicating a human‟s ability to deduce useful information from image. It is often 

used to imitate the human sense of sight in robotic systems. Not using 

computer vision in robot assisted surgery systems is somewhat analogous to a 

surgeon performing a surgical procedure with their eyes closed. An obvious 

solution to mimic and embody a surgeon‟s visual sensory capabilities when 

monitoring a surgical procedure is to use computer vision. Specifically, the use 

of computer vision to assess the completion of a surgical action, for contextual 

support when performing a surgical procedure using robotic surgery systems, is 

proposed. Information from the scene relevant to a task can be analysed and 

the outcome of the tasks classified, based on their surgical context. 

While numerous sensors may be used to assess the outcome of surgical 

actions, the use of a visual sensor is considered here. Sensors used to perform 

a specific task should not be used to validate the completion of the same task, 

to avoid a situation where errors, if any, become compounded. Sensors 

independent from those used to perform the task being assessed, such as 

visual sensors, should therefore be used in the validation. For example, the 

start and end of drilling in the Minerva system is based on monitoring the 

current consumption of the motor driving the drill bit. It would be necessary to 

use information from a different sensor to determine breakthrough. A visual 
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sensor may be used to inspect a burr hole to determine whether breakthrough 

was achieved, to validate task completion. Different sensory capabilities 

therefore complement each other, allowing for a more complete assessment of 

a task. Incorporating visual sensory capability improves the reliability and 

robustness of robotic surgery systems, which traditionally only employs force, 

torque and positional measurements, as a visual sensor can often provide 

information that other sensors do not have. 

5.3 Vision-based robotics 

There are two different ways of using visual information in a robotic 

system, for control or for inspection. In control, visual feedback is used, in an 

open loop or closed-loop manner, to perform a task. In open loop control using 

visual feedback, an action is performed by a “looking‟‟ then “acting” approach.  

To illustrate the use of vision in open-loop control, consider the task of 

positioning a cauteriser relative to a bleeding source to affect cauterisation. 

Here, the required robot‟s joint–space configurations to position the cauteriser 

towards the bleeding source are determined based on the position of the 

bleeding source in an image. It is assumed that the calibration between the task 

space and the camera, calibration between the camera and the robot, and the 

robot‟s inverse kinematic model i.e. kinematic relationship between the robot 

and the task space is known. In closed loop visual control, a similar approach to 

position the cauteriser at the bleeding source is used, the difference being that 

visual feedback is constantly acquired from the workspace to position the 

cauteriser. 

In inspection, the goal is to examine or evaluate an object or process in 

terms of certain characteristics or metrics based on a set of rules and to decide 

on whether the inspection criteria are met. There are three primary stages in 

visual inspection: Image acquisition, image interpretation and decision-making. 

In the first phase, image acquisition, a graphical representation of a physical 

scene is acquired. This image is subsequently analysed to extract and interpret 

information contained in the scene. Finally, the next course of action is decided, 

based on rules applied to information extracted from the image interpretation 

phase. These three stages are exemplified in the automatic inspection of an 
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incision to determine whether it is within a prescribed length. First, an image of 

the incision is acquired using a camera. The incision is then segmented from 

the image and its length determined. Its actual length can be determined If the 

scale of the image is known. If the required length is known, it can be used to 

determine if the incision length is within the allowable range. 

Visual inspection tasks range in complexity from quantitative to 

qualitative assessment. Computer vision-based inspection systems for factory 

automation began in earnest in the mid-1960s with the advent of real-time 

image processing [138]. The first application of computer vision for automated 

inspection was the detection of defects in printed circuit boards (PCBs), a 

remarkable achievement considering that this was achieved using simple 

logical operations on binary images. The use of greyscale and colour images is 

more common today, as technological advancements have made great 

improvements in the performance of both hardware and software possible, 

while driving cost down. This has led to an exponential growth in the use of 

computer vision for automated inspection in the manufacturing, food, 

pharmaceutical and agricultural sectors. Today machine vision is used for 

automated inspection in a wide variety of applications from the characterisation 

of microstructural deformations and strains in cortical bone [139] to knowledge 

intensive application such as the quality inspection of seedlings [140], where 

expert knowledge is explicitly used.  

The use of computer vision for inspection is the subject of much 

research, and the advances and success stories in this area have motivated 

this work. In particular, the use of computer vision for the diagnosis of malignant 

melanoma is especially relevant, where the subject of the inspection is 

biological specimens. Encouragingly, diagnostic accuracy that rivals those 

achieved by experts has been reported [156,157], an impressive feat 

considering that the clinical signs of malignancy are often ambiguous [158], and 

the use of low-level features only such as asymmetry, colour, texture and size 

in the inspection. Other uses of computer vision related to biological specimens 

include the automatic monitoring and analysis of human embryonic stem cells 

growth, by classifying their morphologic changes based on features extracted 

from their optical images [159]. Automating the inspection proved a reliable 
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means of obtaining more data compared to conventional methods, as well as 

allowing the continuous monitoring of these cells without disturbing them.  

5.4 Computer vision in the operation theatre 

While computer vision is routinely employed in industrial settings for 

automated inspection tasks, its use in other less conventional settings such as 

in the operating theatre has been less widespread. Several authors [141, 142] 

have investigated the use of vision in the operating theatre. Lo et. al. [141] 

developed a framework for the classification of surgical episodes using multiple 

visual cues related to shape, deformation, changes in light reflection and other 

low level image features. Specifically, their work was on the detection of 

surgical actions, such as the interaction of surgical instruments with soft tissue, 

retraction, cauterisation, and suturing, in video sequences of minimally invasive 

laparoscopic surgeries. An average classification accuracy of 85.3% for five 

video sequences (1762 video frames) was achieved using a naïve Bayesian 

classifier, with individual episode accuracy ranging from 60% to 100%. Both 

retraction and suturing were accurately classified every time. The frame-by-

frame classification accuracy was lower, averaging 77%, as temporal 

information was not used, whilst temporal information was used for episode 

classification. Misclassification of the interaction of surgical instruments with 

soft tissue and cauterisation was attributed to the lack of depth perception, 

owing to the use of a monocular vision system, and the inability to differentiate 

between these two episodes using a single feature (specular highlight) alone. 

Padoy et. al. [142] developed an approach to recognise a subset of 

surgical actions performed by the surgeon during laparoscopic surgery using 

visual cues and signals recorded from surgical instruments to monitor the 

progress of an operation. The objective was to use the information gathered to 

design a support system for an operating theatre e.g. activation of the operating 

theatre lights, automatic reporting, etc. A detection accuracy of 93% for eleven 

surgeries was achieved, although this was achieved by relying on both visual 

cues and recorded signals.  
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The above examples on the use of computer vision in the operating 

theatre are primarily concerned with the detection of surgical actions. A natural 

progression in the use of computer vision in the operating theatre is for the 

inspection of these surgical actions. The visually rich operative field presents a 

good environment for the development of automated visual inspection 

techniques to assess the outcome of surgical actions. To the author‟s 

knowledge, the use of computer vision in this context has not been reported. 

5.5 Applications to MISEN 

The proposed use of MISEN to perform the targeted neurosurgical 

procedures in their entirety, all of which require the creation of a burr hole, is a 

novel application of robotics. While creating a burr hole is trivial for a 

neurosurgeon, it is a very complex action for a robot to perform. To create a 

burr hole, a series of surgical actions must be performed. There are three 

primary surgical actions that are performed in a sequential manner to create a 

burr hole, namely skin incision, retraction of an incision, and drilling of a hole 

through a skull. Each of these surgical actions can only be performed upon 

successful completion of the previous action. For example, the skin has to be 

properly incised prior to retraction, properly retracted prior to drilling, and 

properly drilled prior to accessing the brain through a burr hole. As such, the 

ability to validate the outcome of each of these surgical actions is essential. 

The MISEN system is already equipped with close range 

photogrammetry cameras for registration purposes (see Figure 26). These 

same cameras can be used for support during surgery, in a supervisory role 

after the registration is performed. Although MISEN is conceived as a 

supervisory controlled system i.e. the robot performs surgery autonomously 

under the supervision of the surgeon, an intraoperative supervisory system to 

augment a surgeon‟s supervisory role is needed, as this information is essential 

to make a decision on whether to proceed with the next surgical action. For 

example, drilling may only commence if the incision is deemed to have been 

sufficiently retracted. The three primary actions in creating a burr hole: skin 
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incision, retraction of the incision, and drilling of a burr hole are outlined next, 

and areas where vision may play a role are discussed. 

5.5.1 Skin incision 

When creating a burr hole, the scalp has to be incised at the site of the 

hole and the incision retracted to provide access to the skull for drilling. Skin 

incision involves incising the scalp with a scalpel blade along the length of the 

incision. The variables for an incision are its length, depth, position and 

orientation. An incision of insufficient length or depth would make it difficult or 

impossible to place the retractors, or to retract the incision. An incision that is 

too long is unnecessary and would be more susceptible to bleeding. A wrongly 

placed incision or incorrectly oriented incision would also complicate the 

insertion of the retractors.  

An incision of a specified length can be made autonomously using a 

scalpel attached to the end effector of a robotic arm with encoders built into it to 

provide accurate positional feedback. Visual inspection of the incision can be a 

useful check to validate incision length and is a good complement for positional 

feedback, especially if the encoders have failed and gross positioning errors 

have occurred. To determine the length of an incision from its image, the 

incision would have to first be segmented from the image. Assuming calibrated 

cameras are used, the incision length can be determined. An alternative would 

be to infer the incision length from the scalpel travel, although this would be an 

indirect means of determining incision length.   

Determining the depth of an incision is not as straightforward. Because 

the depth of the scalp can vary considerably, between subjects of different age, 

sex and ethnicity, it is virtually impossible to specify a correct depth of cut. 

However, it may be possible to inspect an incision for sufficient depth of cut if it 

displays a distinctive visual appearance. Finally, the position and orientation of 

the incision may be determined by standard measures of region properties such 

as centroid and second moments (for orientation), assuming that the incision 

can be reliably and consistently segmented from the image.      
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5.5.2 Retraction of an incision 

One of the goals of the intraoperative supervisory system is to detect 

whether retraction of the incision is complete, as the incision would have to be 

sufficiently parted before drilling can commence. An obvious solution would be 

to infer the amount the incision has retracted based on the actual displacement 

of the retractors. Although the state of retraction can be determined quite 

trivially based on positional feedback from encoders that relay information on 

the extension of the retractors, a potential problem with this approach is that the 

retractors may have extended without the incision being retracted. This would 

be case if the retractors were incorrectly inserted into the incision prior to 

retraction. While this possibility may be ruled out by the use of force sensors to 

detect whether there is a resistive force that would indicate the incision being 

retracted, an erroneous force reading may still be possible. For example, the 

presence of other structures that impede the retraction may result in a resistive 

force that is wrongly attributed to retraction of the incision, or it might simply be 

the case of faulty force sensors. Because the use of positional and force 

sensors is an indirect form of measurement, the use of these sensors alone to 

assess the retraction of an incision might be inadequate.  

An alternative and a direct approach to the problem of determining 

whether the incision has been retracted would be a visual observation of the 

incision for evidence of retraction. A visual sensor can therefore be used to 

complement information from these other sensors to assess the level of 

retraction of an incision. Calibration between the task space and camera frame 

will enable the amount of retraction to be measured, assuming the boundaries 

of the incision are known, although this requires sufficient contrast in the image 

to segment the boundaries of the retracted incision reliably. The presence of the 

retractors may also obscure a complete view of the retracted incision.  

If the extent to which the incision has retracted proves to be difficult to 

determine visually, another possibility is to identify gross skin deformation, 

which is a consequence of the incision being retracted. The vision system may 

be used to identify the occurrence of such skin deformation, which would be 

indicative of the incision being retracted. If the amount of skin deformation 

exceeds a certain threshold, there is a strong likelihood that the incision is 
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being retracted. A problem with this assumption is that all skin deformations will 

be interpreted as a consequence of the incision being retracted. Skin 

deformation may also be the result of retractors pushing into the tissue. As 

such, it would be necessary to differentiate skin deformation due to retraction 

and due to other causes. Although less than ideal, one possibility is to relate the 

extension of the retractors with skin deformation, by relating the extension of 

the retractors and looking for corresponding skin deformation. The retraction 

amount can then be subsequently validated with the extension of the retractors.  

5.5.3 Burr hole  

The visual inspection of a burr hole consists of observation of the dura 

mater and is the most straightforward of the three surgical tasks under 

consideration. The inspection of the outcome of the drilling of a burr hole is 

particularly suitable to be performed visually, as a complete outcome is one 

where the underlying dura mater i.e. the outermost part of the brain, is visible. 

There are two stages in the visual inspection of the burr hole: Detecting a burr 

hole in the image and assessing the burr hole to determine if breakthrough i.e. 

the skull has been successfully penetrated has occurred. Once isolated, 

features that can distinguish the two conditions of the burr hole i.e. incomplete 

and complete can be identified and used as a basis for classification. 

5.6 Classification 

The automated inspection of the outcome of surgical actions can be 

formulated as classification problem. In classification, the objective is to group 

the outcomes of a surgical action into two classes, unsatisfactory/incomplete or 

satisfactory/complete. As there is no formal description of a complete surgical 

action, classification is based on features extracted from ground truth images of 

a surgical action. Features that are well suited as a basis for classification are 

features that can be reliably detected in image space and are distinct. These 

features should be invariant features, differentiate the two classes well while 

being robust to irrelevant variations. To determine features that can differentiate 
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the two classes, multiple observations of the two possible outcomes are 

grouped and the features that yielded the best classification rates are selected. 

In order to obtain a feature space, low level features such as colour, texture and 

shape descriptors may be used if the two possible outcomes of the surgical 

tasks under consideration differ in these respects  

5.7 Challenges 

The use of computer vision in the operating theatre may be fraught with 

difficulties, as the surgical environment can be highly unstructured, in contrast 

to the more controlled conditions typically found in an industrial setting when 

dealing with man-made objects. The inspection of these objects is usually 

based on few criteria and small deviations thereof. On the other hand, biological 

subjects have an inherent natural variation and are usually characterised by a 

combination of not so obvious features. This makes automated inspection more 

complex than the automated inspection of man-made objects. The correct 

classification of the outcome of a surgical task may have to rely on these not so 

obvious features. Nevertheless, certain surgical actions, when performed 

consistently, usually have similar outcomes. Furthermore, because the surgical 

actions being inspected are intended to be performed robotically, their context is 

known. This would make a computer vision based inspection system of a 

surgical action feasible.  

A fundamental limitation of a vision-based approach is that its use is 

limited in situations where there is no direct visualisation of the surgical action 

being assessed. For example, in the context of neurosurgery, it is only possible 

to „view‟, and thus assess, the outcomes of extracranial procedures such as 

skin incision, bleeding, the retraction of an incision, and the drilling of a burr 

hole. Intracranial procedures such as the insertion of the catheter into the brain 

ventricles cannot ordinarily be viewed and therefore cannot be assessed. 

Furthermore, even in extracranial procedures, obstruction in the camera‟s field 

of view may complicate inspection. A practical complication of this is the use of 

vision to detect whether an incision has been sufficiently retracted. Ordinarily, if 

a complete view of the retracted incision is available, by performing edge based 
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segmentation and using a priori knowledge on the expected edge separation 

distance, successful retraction of the incision can be determined. However, the 

presence of retractors obscures the complete view of the retracted incision and 

may complicate its inspection. 

Another limitation of using vision is its lack of robustness in an 

unstructured environment. In general, image-processing algorithms are known 

to be highly susceptible to changes in its environment such as changes in 

lighting. However, the algorithms used for image processing should be robust 

enough to be able to work reasonably well within a specified operating range. 

Image enhancement techniques such as contrast enhancement using adaptive 

histogram equalisation may be used to extend this operating range.  

5.8 Discussions and summary 

While on the one hand the ability of robotic surgery systems to perform 

surgery autonomously has tremendous potential to free up scarce surgical 

resources and enable surgery that would otherwise not have taken place be 

performed, there are safety considerations that have to addressed, as 

performing surgical actions autonomously is not without risk. As a step towards 

improving the safety aspect of these robotic assisted surgery systems, the 

automated inspection of the outcome of surgical actions, to provide 

reassurance during a surgical procedure, was proposed. Automated inspection 

will afford these robots the added capability to detect anomalies. It will also 

allow for more robust and autonomous robotic systems. The use of computer 

vision techniques presents a good framework for the development of this 

system.  

The intraoperative supervisory system will use video images as part of 

its sensory input for a more comprehensive assessment of the surgical action. 

A possible way of combining multiple sensory inputs where present is to use 

the Boolean logical AND operator. The outcome of a surgical action is 

considered satisfactory if all the sensory inputs that are capable of assessing 

task completion have indicated that the task is complete. Its output will be used 
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as a basis for deciding on the next course of action i.e. whether to execute the 

subsequent surgical action.  

A natural progression in the use of computer vision for the inspection of 

the outcome of surgical actions in the operating theatre is in the area of surgical 

training. Surgical training is usually based on an apprenticeship model, with the 

skills of trainees traditionally assessed by surgeons themselves. There are two 

main problems with this model for assessing surgical skills. The first is that the 

assessment can be highly subjective [143]. The second is that the amount of 

resources involved can be considerable, especially the time a surgeon has to 

spend assessing a trainee‟s skill, which could otherwise have been spent on 

performing surgical procedures.  

The alternative is the use of medical simulators based on virtual reality-

simulated environments [144]. While these simulators have been used by the 

medical community for surgical training and skills assessment, they are not 

realistic enough as the sole source for the training and assessment of surgical 

skills, in particular advanced skills [141]. Performing surgery on patients in the 

operating theatre or cadaveric dissection is therefore still necessary. As such, 

the only other alternative is to reduce the amount of time available for training, 

although the danger is that trainees may not have acquired all the requisite 

surgical skills, as they would be required to achieve the same level of 

proficiency in a lesser amount of time.  

If the outcome of a surgical action is used as a reflection of surgical skill, 

this could be used as a basis for surgical skill assessment. An alternative to the 

assessment of a trainee‟s surgical skill by a surgeon therefore could be the use 

of computer vision to assess the outcome of a surgical action, and by extension 

the surgical skill of the trainee. A computer vision based assessment of surgical 

skills has the potential to afford trainees another avenue for training, in addition 

to being a more objective means of assessment. Although there is more to 

surgical competence than technical skills e.g. decision making, communication 

skills, and leadership skills; technical proficiency is considered the most 

important attribute among surgical trainees [145]. 

In this chapter, the concept of an intraoperative supervisory system for 

robotic surgery was discussed and a niche where this system may be used for 

MISEN was identified. A vision-based approach to assess the outcome of three 
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primary surgical actions involved in creating a burr hole (skin incision, retraction 

of an incision and drilling) was proposed and possible approaches to assess 

the outcome of surgical actions using computer vision techniques were 

presented. The visual inspection of these surgical actions was investigated, to 

prove the feasibility of the approach. Preliminary results are presented in 

Chapter 6. 
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Chapter 6 

Computer vision for the inspection 

of surgical tasks 
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6.1 Introduction 

The use of computer vision to inspect the outcome of surgical tasks for a 

common neurosurgical procedure was investigated, with the aim of 

incorporating this approach in MISEN. Practical examples of three primary 

surgical tasks for creating a burr hole, namely skin incision, retraction of the 

incision, and drilling of a burr hole (see Figure 53) were used to illustrate the 

concept. 

  

 

a b c 

Figure 53: (a) Skin incision, (b) retracted incision, and (c) burr hole 

 

The feasibility of creating a burr hole robotically has previously been 

demonstrated by the Minerva system [61]. In the Minerva system, the force and 

torque characteristics of the motors driving purpose-built surgical tools were 

used as the control variables to perform the surgical actions [58]. For example, 

the start and end of drilling is determined by monitoring the current 

consumption of the motor driving the drill bit. An important distinction to be 

made in the use of these sensory capabilities is in terms of their purpose. While 

force and torque sensors were used to aid in the performance of a task i.e. to 

determine when to stop the drilling, the use of a visual sensor is for the 

inspection of its outcome i.e. to determine whether there was breakthrough.  

The ability to inspect the outcome of the three primary surgical tasks in 

creating a burr hole is an important functionality, from an operational and safety 

point of view, as each of these tasks can only be performed upon completion of 

the previous task. For example, the skin has to be properly incised prior to 

retraction, the incision has to be properly retracted prior to drilling, and the 

cranium has to be properly drilled prior to accessing the brain through the burr 

hole. Performing a task before a prior task has been successfully completed 
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may not be possible and would be dangerous. For example, attempting to 

create a burr hole in the skull without incising and retracting the scalp will inflict 

irreparable damage to the scalp, as well as cause heavy bleeding. 

6.2 Methodology 

Experiments were performed using cadaveric pig heads to simulate the 

two possible outcomes i.e. complete/satisfactory and incomplete/unsatisfactory, 

of the three primary surgical tasks involved in making a burr hole. Practical and 

ethical considerations preclude experimentation on humans or live animals. As 

such, animal cadavers were used as a substitute. In terms of the selection of an 

animal cadaver, pig head cadavers were used for the experiments because of 

their anatomical similarity to humans. With the exception of primates, the 

anatomy of the temporoparietal region (site of a burr hole) of pigs most closely 

resembles that of a human [146]. As access to the pig‟s brain is easier through 

the frontoparietal region (due to its proximity to the brain and structure of the 

pigs skull), this region was chosen as the site of the burr hole, instead of the 

temporoparietal region. 

A charge-coupled device (CCD) video camera (see Table 3 for technical 

specifications), with a white light emitting diode (LED) ring light (see Table 4 for 

technical specifications) mounted around the optical lens, was used to obtain 

video images of the surgical tasks (see Figure 54). Ring lighting reduces the 

effects of shadows by providing an even illumination in the field of view. The 

ring light used had an adjustable intensity and a four-section quadrant control, 

enabling each quadrant to be individually controlled. For a greater depth of 

focus, the camera aperture was kept to a minimum, by using the maximum 

intensity setting for the ring lighting unit. Both the camera focus and exposure 

settings were set to automatic.  
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Figure 54: Experimental setup 

 

Table 3: Video camera specifications 

Optical Sensor Size 

Optical Sensor Type 

Focal Length  

Lens Aperture  

Optical Zoom 

Lens system type  

Focal Length Equivalent to 35mm Camera 

Focus Adjustment 

White Balance  

Digital Video Format 

1/6” 

CCD 

2.3 mm-46 mm, 

F/1.8 - 3.1 

20x 

Zoom lens 

44 - 440 mm 

Manual, Automatic 

Presets, Automatic 

MPEG-2 
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Table 4: Ring light specifications 

Illumination control 

Working Distance  

Number of LED  

Brightness 

Light colour temperature  

Outer diameter 

Inner diameter 

Each quadrant controlled separately 

40-250mm 

144 

20000 Lux at a height of 100mm 

6400K 

98 mm 

61 mm 

 

The surgical procedure for creating a burr hole in a pig, as described by 

Kaiser and Fruhauf [147], is similar in many respects to that for creating a burr 

hole in a human and was adopted with some modifications. A midline incision, 

approximately 3 cm long, centred over the site of the burr hole, was made with 

a #10 scalpel blade, at different depths up to the pericranium to simulate 

incomplete incisions, and a single incision through the layers of the scalp to 

simulate complete incisions (see Figure 63). Incisions are said to be incomplete 

if all the layers of the scalp including the pericranium have not been incised, 

and are classified as complete if all the layers of the scalp including the 

pericranium have been incised. The complete incisions were subsequently 

retracted at varying degrees using a self-retaining retractor to expose the 

cranium, until the incision was wide enough to accommodate a burr hole. A burr 

hole 10 mm in diameter was then drilled in the cranium using a cordless drill at 

high speed. 

To facilitate the placement of retractors, the incision is usually pulled 

apart by applying tension parallel to the plane of the skin. In MISEN, a robotic 

tool would apply a similar constant force on either side of the incision. To 

simulate this parting of the skin, two square tabs (29 x 29 mm) were attached to 

the skin with cyanoacrylate adhesive [148] (see Figure 54) and pulled apart by 

two 600 gram weights using a pulley and weight system (see Figure 55). The 

distance between the tabs was 29 mm. 
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Figure 55: Schematic of the parting of the skin 

 

Over fifty experiments (one pig head for each experiment) were 

performed to obtain a representative sample of the outcomes of surgical 

actions, owing to the variability associated with biological subjects. Images of 

these outcomes were analysed to identify appropriate visual cues and 

characteristic features to distinguish the two possible outcomes of each surgical 

action.  

6.3 Characterisation of an incision 

The first illustrative example is the inspection of the outcome of a skin 

incision. When surgeons incise the scalp, a scalpel blade is pushed into the 

scalp, through the layers of the scalp, until it has touched the cranium. A 

complete incision should be both sufficiently long and deep i.e. an incision up to 

the cranium along the length of the incision (see Figure 56). An incision that is 

either too short or not sufficiently deep would make it difficult or impossible to 

retract the incision or place the retractors into the incision. Unless the incision is 

completely retracted, the burr hole cannot be drilled, as the cranium will not be 

sufficiently exposed. 

 

Weight 

Pulley 

Tab 

Skin 

Incision 
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Figure 56: Illustrative examples of complete incisions 

 

In this work, computer vision was used to inspect an incision for 

sufficient depth i.e. an incision that was incised up to the cranium. The incisions 

were created such that they were of the required length, the only variable being 

the depth of incision. It is assumed that the position, length and orientation of 

the incision are satisfactory, although these properties could be determined as 

well using computer vision techniques. For example, assuming that the incision 

can be segmented from the image and that the scale of the image is known, the 

properties of an image region corresponding to the incision such as position, 

length and orientation can be measured. The position of the incision is given by 

the centroid or the centre of mass of the image region. The length of the 

incision is the Euclidean distance between the two left and right extreme points 

of the image region and the orientation (relative to the camera axis) is the angle 

between the horizontal axis and the major axis of the ellipse that has the same 

second-moments as the image region.  

Two types of incisions were created, complete and incomplete incisions. 

Complete incisions are incisions incised through all the layers of the skin up to 

the cranium. Incomplete incisions were divided into superficial (see Figure 57) 

and marginal incisions (see Figure 58). Incisions up to the dermis layer of the 

skin were considered superficial incisions, while incisions beyond the dermis 

but up to the pericranium were classified as marginal incisions. These incisions 
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were subsequently analysed to determine if a distinction could be made 

between complete and incomplete incisions based on their image properties.  

 

  

Figure 57: Illustrative examples of superficial incisions 

  

 

Figure 58: Illustrative examples of marginal incision 

6.3.1 Image differencing 

When parted (by applying tension parallel to the plane of the skin, see 

Figure 55), complete incisions tend to cause the skin surrounding them to 

deform more than incomplete incisions. Although a pig‟s skin is not as elastic as 
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the human skin, it is anatomically similar. In terms of its biomechanical 

properties, it exhibits similar behaviour to human skin under uniaxial tension in 

terms of ultimate stress–strain, as concluded in a study by Ankersen et al. 

[149].  

To determine if the amount of skin deformation could be used as a basis 

to classify incision type i.e. incomplete and complete incision, the amount of 

skin deformation under constant uniaxial load by the robot would first have to 

be quantified. A simple measure of skin deformation, the absolute difference in 

intensity of greyscale images before and after an incision was made, was 

considered. To compensate for differences due to slight changes in intensity 

levels, each pixel is only considered changed if the difference in intensity value 

exceeds an empirically determined threshold. The mean number of pixels that 

changed by more than 25 greyscale intensity levels was used as the threshold 

(see Figure 59e). This threshold was chosen as it reduces the amount of noise 

i.e. pixels that do not correspond to the incision, while keeping most of the 

pixels corresponding to the incision. The mean number of changed pixels was 

used rather than the mean of the absolute difference in greyscale intensity 

value because it is a more representative measure of deformation than intensity 

difference, as large intensity difference does not necessarily correspond to 

large skin deformation.  
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a 

b 

c 

d 

e 

Figure 59: Illustrative examples of (a) incisions and (b-e) their thresholded 

difference images corresponding to an absolute difference in greyscale intensity 

levels of 10, 15, 20 and 25. 
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6.3.1.1 Results 

The mean number of changed pixels of the difference image for a total of 

17 superficial incisions, 8 marginal incisions, and 18 complete incisions were 

evaluated. Figure 60 and Figure 61 show the boxplot of the mean number of 

pixels that changed by more than 25 greyscale intensity levels for superficial 

and non-superficial incisions i.e. marginal and complete incisions, and marginal 

incisions and complete incisions respectively. The central mark in each box is 

the median value, the edges of the box are the lower and upper quartiles, and 

the ends of the whiskers are the extreme values.  

 

Figure 60: Boxplot illustrating the number of changed pixels (mean) versus 

incision type 
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Figure 61: Boxplot illustrating the number of changed pixels (mean) versus 

incision type 

6.3.1.2 Discussion 

A naïve approach to segmenting an incision based on image differencing 

is to classify any pixels in the difference image (before and after an incision is 

made) that change in greyscale intensity levels as belonging to the incision. 

However, when we consider the fact that the skin deforms when incised, and 

the fact that the skin is not homogenous (in appearance), the problem is not as 

simple as detecting any changes greyscale intensity levels. To account for the 

non-homogeneity in the appearance of skin, and the deformation of the skin 

when incised, the difference image is thresholded based on a change of 25 

greyscale values as discussed previously in Section 6.3.1 and illustrated in 

Figure 59.  

As the mean number of changed pixels of superficial incisions and non-

superficial incisions do not overlap (see Figure 61), image differencing can 

potentially be used to differentiate these two types of incision, using a nearest 

neighbour classifier based on the mean number of changed pixels. However, 
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although superficial and non-superficial incisions can be differentiated based on 

image differencing, it is not possible to differentiate marginal and complete 

incisions based on their difference image. There is a significant amount of 

overlap in mean number of changed pixels for these two types of incision (see 

Figure 60). This is because unlike superficial incisions, marginal incisions are 

closer in terms of size to a complete incision and therefore their difference 

image would be similar to that of a complete incision. Because image 

differencing is unable to differentiate marginal and complete incisions, the 

shape properties of these incisions are considered next, to determine if they 

could be used as a basis to differentiate these two types of incisions. 

6.3.2 Shape properties 

It was hypothesised that an incision may exhibit sufficiently different 

shape properties when skin is incised at different depths and subject to a 

constant lateral force by the robot, i.e. there is a correlation between the shape 

properties of an incision and incision depth. Specifically, in relation to the 

human anatomy, the extension of an incision and hence its shape properties 

may be a function of the layers of the scalp that were incised. The scalp is a 

heterogeneous tissue composed of five layers (skin, subcutaneous fat, galea, 

loose connective tissue and pericranium) with distinct biomechanical properties 

[150]. Figure 62 illustrates the different layers of a scalp.  
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Figure 62: The anatomy of a scalp21 

 

In particular, the galea, which is a tough layer of dense fibrous tissue 

(due to the presence of collagen fibres), significantly affects the tensile 

properties of the scalp [150]. Therefore, incising the galea should cause the 

incision to extend considerably (see Figure 63).  

 

 

 

Figure 63: Schematic illustrating the expected behaviour of an incision under 

tension as the different layers of the scalp is incised 

                                            
21

 Image reproduced after permission from Medscape 
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6.3.2.1 Segmentation of an incision 

To determine the shape properties of an incision, it must first be 

segmented. Due to variations in the appearance of skin, and because the 

edges of the incisions may have low contrast in an image, segmentation of the 

incision is not trivial. Segmentation using a region-based and edge-based 

approach was attempted to segment the incision.  

6.3.2.1.1 Image differencing 

To segment the incision, image differencing, obtained by subtracting a 

greyscale image of an incision with a greyscale image prior to the incision being 

made, was used. The thresholded difference image, with the threshold level 

determined automatically using Otsu‟s method [131], is shown in Figure 59. 

Black areas in the thresholded difference image indicate small differences 

between the two images, and white areas indicate large differences.  

The incision is ill defined in the thresholded difference image and image 

differencing cannot be used to segment an incision from the background skin. 

This is because of the high levels of noise in the difference image, a 

consequence of skin deformation (when incised). Additionally, the grey level 

intensity of the underlying skin layer after an incision is made is sometimes 

similar to the grey level intensity of the uppermost skin layer. As a result, the 

thresholded difference image may not register any noticeable differences for 

some portions of an incision (see Figure 59). 

6.3.2.1.2 Edge detection 

The well-known „Canny‟ edge detector was subsequently used to try to 

segment the incision by delineating its boundaries. A 31 x 31 Gaussian filter 

with a standard deviation of five, and a low and high threshold of 0.2 and 0.4 

respectively, was used. These values were determined empirically and were 

chosen as they worked best for the set of images analysed. More of the edges 

of the incision were detected (see Figure 64c) compared to those found based 

on a 4 x 4 (see Figure 64a) and 19 x 19 (see Figure 64b) Gaussian filter. A 
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morphological opening operation was used to remove noise i.e. all edges 

(connected components) that have fewer than 100 pixels, in the edge map. An 

8-connected neighbourhood was used when establishing connectivity.  

 

 

a b c 

Figure 64: Incisions segmented with Canny edge detector using a Gaussian 

filter with a standard deviation,   of (a) 1, (b) 3 and (c) 5. The filter size is 6   

+1. 

As can be seen in Figure 64, the Canny edge detector was unable to 

segment some of the boundaries of the incision, primarily because of the low 

contrast at the edges of the incision. To facilitate edge detection, these images 

were contrast enhanced by linearly mapping the greyscale image intensity 

values to new values such that 1% of intensity values in the contrast enhanced 

image are saturated at low and high intensities. Figure 65 shows the 

segmented incision using Canny edge detection on contrast enhanced images. 

Although edge detection on contrast enhanced images is able to segment some 

previously undetected boundaries, it is unable to do so consistently for all 

boundaries. Additionally, not all edges of the incisions are properly detected. 
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Figure 65: Segmented incision using Canny edge detection on contrast 

enhanced images 

 6.3.2.1.3 Edge detection and directional lighting 

To improve the detection of the edges of the incision, directional lighting 

was used. The top and bottom half of the ring light was alternately switched on 

and images of the incision were acquired. Figure 66 illustrates this technique.  

 

 
a b 

c d 

Figure 66: Incision overlaid with edges, detected using Canny edge detection 

on image illuminated with (a) all quadrants of ring light, (b) top half of the ring 

light, (c) bottom half of the right light, and (d) incision overlaid with edges from 

(b) and (c) 
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Figure 66 a-c shows the incisions overlaid with edges detected using 

Canny edge detection when illuminated by all four quadrants, top half and 

bottom half or the right light respectively. Figure 66d shows the combined 

detected edges from Figure 66 b-c. The edges of the incision are clearly 

enhanced by controlling the direction of the light source.  

6.3.2.1.4 Discussion 

The use of directional lighting to facilitate the segmentation of an incision 

in an image is a promising technique that could potentially be used in the 

MISEN system. The technique works by casting shadows on the edges of the 

incision, resulting in a sufficiently high contrast between the edges of the 

incision and the background skin, enabling the detection of ill-defined edges 

with poor contrast. However, this technique is only applicable if the incision is 

sufficiently deep such that the use of directional lighting would be able to cast a 

shadow along its edges. As such, while potentially useful, it may not work on 

superficial incisions. Image differencing (discussed in Section 3.1) should 

therefore be used in combination with directional lighting, whereby directional 

lighting may be used to facilitate the segmentation of an incision in the image in 

the case of non-superficial incisions. 

6.3.3 Shape measurement 

To obtain the shape properties of an incision, it must first be segmented. 

Because the majority of images of incisions were obtained without using 

directional lighting, the incisions were manually segmented by fitting a polygon 

to their edges using Matlab‟s impoly function. The vertices of the polygon were 

specified at or near the edge of the incision by inspection such that it 

approximated as close as possible the incision‟s actual shape. The number of 

vertices used varied depending on the complexity/curvature of the shape, with a 

greater number of vertices used for highly complex shapes. Figure 67 illustrates 

the manual segmentation of an incision in an image. The blue dots are the 

vertices of the polygon 
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Figure 67: Manual segmentation of an incision. 

 

Once segmented, the incisions are represented as an image region and 

their shape properties consisting of regional descriptors such as statistical 

moments, aspect ratio and eccentricity were computed. The aspect ratio of the 

incision is defined as the ratio of the major and minor axis of an ellipse that has 

the same normalised second central moments as the image region i.e. 

approximate regions by ellipses. The eccentricity of the incision is the 

eccentricity of the ellipse that has the same second-moments as the image 

region. It is the ratio of the distance between the foci of the ellipse and its major 

axis length, with a value between zero and one, with zero and one being 

degenerate cases (a circle has an eccentricity of zero while a line segment has 

an eccentricity of one). Skewness and kurtosis are the third and fourth shape 

moments respectively. Skewness is a measure of the asymmetry of the shape 

around the centre line, and is given by Equation 6.1 

 

  

 
 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠   

(𝑥   ) 

  
 

 𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠   
(𝑦   ) 

  
 

6.1 

 

where  is the mean and  is the standard deviation of the 𝑥 and 𝑦 pixel 

coordinates of the image region respectively. If skewness is negative, the 

shape is skewed more to the left of the centre than to the right. If skewness is 
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positive, the shape is skewed more to the right. The skewness of a perfectly 

symmetric shape is zero. Kurtosis is a measure of how irregular a shape is, and 

is given by Equation 6.2. 

 

 
 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠   

(𝑥   ) 

  
 

 𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠   
(𝑦   ) 

  
 

 

6.2 

An image is rotated such that the orientation of the incision is 

approximately horizontal prior to computing its skewness and kurtosis. The 

orientation,   of an incision is estimated as the 2D orientation of an ellipse with 

the same normalised second central moments, based on Equation 4.15. If the 

orientation of the incision deviates from a horizontal position, a rigid body 

rotation of the image region about its centroid is used to re-orient it, based on 

Equation 4.16.  

6.3.3.1 Results 

A linear classifier, linear discriminant analysis (LDA), was used to classify 

images of 54 incisions (27 complete incisions selected at random from 37 

complete incisions and 27 marginal incisions) consisting of two classes i.e. 

complete and incomplete incisions, based on their shape properties. Because 

of the relatively small sample size, a leave one out cross validation technique, 

which uses a single observation for validation and the remaining observations 

as the training data, was used. This cross validation is repeated such that each 

sample is validated once. Table 5 shows the LDA leave one out 

misclassification error rate for classifying marginal and complete incisions 

based on various shape properties.  
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Table 5: LDA leave one out incision misclassification error rate based on 

various shape properties 

LDA leave one out misclassification error rate (%) 

Shape 

property 
Iteration Average 

Eccentricity 31.9  27.8 27.8 29.2 30.6 27.8 33.3 41.7 30.6 29.2 31.0 

Aspect 

ratio 
51.4 36.1 34.7 34.7 61.1 38.9 36.1 34.7 50.0 37.5 41.5 

Vertical 

kurtosis 
23.6 25.0 25.0 22.2 25.0 26.4 26.4 25.0 22.2 26.4 24.7 

Horizontal 

kurtosis 
18.1 20.8 19.4 18.1 18.1 18.1 19.4 22.2 16.7 23.6 19.5 

Vertical 

skewness 
25.0 23.6 23.6 25.0 23.6 23.6 23.6 25.0 22.2 25.0 24.0 

Horizontal 

skewness 
29.2 25.0 23.6 25.0 25.0 22.2 25.0 26.4 26.4 29.2 25.7 

 

Figure 68 shows a boxplot of the various normalised shape property 

values (for an iteration of the classification) for the two types of incision with 

outliers shown as crosses. An outlier is defined as a value outside the range: 

,𝑄     (𝑄  𝑄 ) 𝑄 +    (𝑄  𝑄 )- where 𝑄  and 𝑄  are the lower and upper 

quartiles respectively. For normally distributed data, the constant 1.5 

corresponds to approximately 99% of the data.  Incomplete and complete 

incisions are denoted in red and blue respectively.  
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Figure 68: Boxplot of various normalised shape property values versus incision 

type. Incomplete incisions are in red and complete incisions in blue. 

6.3.3.2 Discussion 

The average misclassification error rate based on the six shape features 

range from 19.5% - 41.5%. In particular, the worst misclassification error rate 

(average of 41.5% with a range of 34.7% – 51.4%) was based on the use of 

aspect ratio i.e. the extension of an incision, as a basis for classification. 

Therefore, the earlier assumption about a correlation between incision depth 

and incision type was not valid. While the aspect ratio of individual incisions is 

related to incision depth, the in-class variation of an incision‟s aspect ratio is 

sometimes larger than its between class variation i.e. two complete incisions 

can have aspect ratios that are less alike than a complete and incomplete 

incision.   

In general, shape properties are not discriminatory enough to classify 

incisions, as there is significant overlap in the feature space of the six shape 

properties of the two classes of incisions (see Figure 68). Because shape 
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properties were not discriminatory enough to distinguish marginal and complete 

incisions, the visual appearance of these incisions were examined next. 

6.3.4 Visual cues 

It was observed that complete incisions exhibit a characteristic dark line, 

made as the scalpel blade incises the skin up to the cranium, which is not 

present in incomplete incisions (see Figure 69). As such, the presence of a dark 

line along the length on an incision might be used to identify a complete 

incision. 

 

 

a b 

Figure 69: (a) Incomplete incision and (b) complete incision 

 

The domestic pig, Sus scrofa, is the most appropriate model for all types 

of dermatological and surgical wound investigation, as well as a standard model 

for skin and plastic surgical procedures [151]. However, the use of cadavers 

meant that any bleeding resulting from the skin being incised could not be 

simulated, as cadaveric skin has no blood supply. Nevertheless, as any 

bleeding will normally be cauterised and irrigated, the visual appearance may 

not be too dissimilar and the techniques developed may potentially be 

applicable during actual surgery.  
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6.3.4.1 Line intensity profile 

To detect the presence of the dark line corresponding to a complete 

incision, the line intensity profiles of six equally spaced 13-pixel wide line 

segments across the incision were determined (see Figure 70).  

 

 

Figure 70: Line segments across an incision (line segments are drawn to scale) 

 

This method does not require that the edges of an incision, which are 

difficult to segment, to be known. However, the start and end position of the 

incision is required. As the incision would be made robotically, it is assumed 

that the start and end positions of the incision would be known. A pixel on the 

complete incision line (characteristic dark line indicative of a complete incision) 

corresponds to a pixel along the line segment where the second derivative of 

the line intensity profile is maximum and exceeds an empirically determined 

threshold of 0.015 (see Figure 71). The threshold level was determined based 

on visual inspection of the resulting images, and is a compromise between false 

detection and under detection. 



139 

 

 

Figure 71: Intensity profile of a line segment across an incision and its second 

derivative. The position of the pixel on the complete incision line along the line 

segment is denoted by an arrow. 

 

Because techniques based on intensity profiles and derivatives are 

susceptible to noise, several noise reduction techniques were used. First, the 

image was filtered with a low pass 3-by-3 Gaussian filter with a standard 

deviation of 0.5. The mean value of the 13-pixel wide line intensity profile of 

each line segment was used, and fitted to a cubic spline (see Figure 71), to 

reduce the effects of any outliers by way of smoothing. 

The use of a relatively wide line segment also reduces the potential of 

erroneously detecting the boundaries of the incision, as the line intensity profile 

of a straight incision line would be closer to the profile of a complete incision 

line than that of the profile at the curve edges of an incision. To reduce the 

effects of specular reflection, which distorts second derivative values of the line 

intensity profile, the greyscale intensity values of pixels along a line segment 

greater than the mean of the line intensity profile was replaced with its mean 

value (see Equation 6.6). 

Second derivative threshold 
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 (𝑥)  {

  ̅            (𝑥)   ̅

 (𝑥)       (𝑥) ≤  ̅
 6.3 

  

where  (𝑥) is the greyscale intensity value of a pixel along the line segment at 

position 𝑥 and   ̅is the mean greyscale intensity value of all pixels along the line 

segment. Additionally, techniques such as temporal filtering could be used 

where video images are available. However, in this work, only still images 

(snapshot) of the incision were used. 

6.3.4.2 Results 

Figure 72 and Figure 73 illustrate the output of the complete incision 

detection method, based on the detection of a complete incision line from its 

line intensity profile, for complete and marginal incisions. The crosses represent 

the pixels that correspond to the perceived complete incision line.  

 

 

Figure 72: Illustrative examples of the output of the complete incision detection 

method for complete incisions. Further examples are included in Appendix B. 
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Figure 73: Illustrative examples of the output of the complete incision detection 

method for marginal incisions. Further examples are shown in Appendix C. 

 

Sixty-four incisions, consisting of 27 marginal incisions and 37 complete 

incisions, were analysed. Figure 74 shows the number of lines segments where 

a complete incision line is detected, for complete and incomplete incisions.  

Marginal and complete incisions can be partially differentiated based on the 

number of line segments with a complete incision line detected. An incision is 

classified as incomplete if three or less line segments where a complete 

incision line was detected were found. 
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Figure 74: The number of line segments with a complete incision line detected, 

for incomplete and complete incisions. 

 

The mean residual of a best-fit line in the least squares sense fitted to 

the pixels corresponding to the perceived complete incision line (see Figure 75) 

was determined and used to differentiate marginal and complete incisions 

further. To account for the different scales in the images, the ratio of the residual 

to the distance between the line segments was used. 

 

 

Figure 75: Line fitted to the pixels corresponding to the perceived complete 

incision line 
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The mean residual of this fitted line for marginal incisions (with a 

complete incision line detected in four or more line segments) and complete 

incisions are shown in Figure 76 and Figure 77. 

 

Figure 76: Mean residuals for marginal incisions (with a complete incision line 

detected in four or more line segments). The red dotted line is the mean 

residual threshold above which an incision is considered incomplete. 

 

 

Figure 77: Mean residuals for complete incisions. The red dotted line is the 

mean residual threshold in Figure 76 

Threshold 

Threshold 
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6.3.4.3 Discussion 

By setting a mean residual threshold of 0.04 for an incision to be 

considered as a complete incision, all the marginal incisions in this work can be 

precluded, although the overall misclassification error rate would increase. Nine 

out of the 64 sample incisions were misclassified, a misclassification error rate 

of 14.1%. Crucially however is that all the misclassifications are false negatives 

i.e. complete incisions classified as incomplete incisions (see Figure 78). In the 

visual inspection of an incision, false negatives i.e. complete incisions classified 

as marginal incisions are preferable to false positives i.e. marginal incisions 

classified as complete incisions. Erroneously classifying an incomplete incision 

as complete will result in an attempt by the robotic system to retract the 

incomplete incision. On the other hand, a false negative would only require 

further inspection before the surgical procedure could be continued, a minor 

inconvenience compared to the possible complications that may arise by 

attempting to retract an incision that has not been properly incised.  

Misclassifications were due to the mean residual of complete incisions 

exceeding the mean residual threshold of 0.04. This threshold level was 

selected to avoid misclassification of marginal incisions. The high mean residual 

of misclassified complete incisions were due to pixels being incorrectly 

identified as belonging to a complete incision line. This is usually due to the 

complete incision line having lower contrast compared to the edges/boundaries 

of the incision.  

 

 

Figure 78: Examples of misclassified complete incisions 
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There are two main problems with this approach. The first is that the 

complete incision line may not always be obvious in complete incisions, making 

its automatic detection difficult. A possible solution is to enhance the contrast of 

the complete incision line by using techniques such as histogram equalisation. 

However, contrast enhancement inevitably increases the contrast of other 

features as well, such as the edges of the incision, which would invariably be 

detected instead of the complete incision line. 

The second is that the maximum second derivative of the line intensity 

profile does not always correspond to the complete incision line (see Figure 

79). A possible solution would be to assign greater weightage to the line 

intensity profile closer to the middle of the line segment, to improve the 

detection of an incision line over the edges of an incision, although this 

technique may not work if the incision line deviates from the middle of the line 

segment. Nevertheless, the visual inspection of an incision based on the 

detection of a complete incision line using a line intensity profile is the most 

promising technique of all the methods considered.   

 

Figure 79: Intensity profile of a misclassified complete incision. „x‟ indicates the 

perceived position of the complete incision line and „+‟ indicates its actual 

position. 

Second 

derivative 

threshold 

+ 

x 
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6.4 Characterisation of a retracted incision 

Once the skin has been properly incised, the next step involves 

retraction of the incision. An incision is considered completely retracted if it is 

able to accommodate a burr hole of a given size. While the retraction of an 

incision may be determined indirectly from the separation distance of the 

prongs of the retractors (see Figure 80), a potential problem with this approach 

is that the retractors may have extended without the incision being retracted. 

This would be the case if the prongs of the retractor have not engaged the 

edges of the incision, leading to the erroneous assumption that the incision is 

sufficiently retracted. 

 

 

a b 

Figure 80: (a) Incomplete retraction and (b) complete retraction 

 

The approach adopted instead, to assess if an incision has been 

sufficiently retracted, was to determine the maximum circular free space within 

the retracted incision. This was found by fitting the largest possible circle inside 

a region bounded by the edges of the incision and the prongs of the retractor 

(see Figure 81).  
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Figure 81: The largest circular free space area within the retracted incision 

 

If the diameter of this circle is larger than the diameter of the prospective 

burr hole (within a specified tolerance), the incision is considered sufficiently 

retracted. The actual diameter of the fitted circle can be found if the scale of the 

image is known. A possible solution to determine image scale is by using the 

pixel separation distance of the prongs on each side of the retractor as a guide. 

Assuming that the actual distance is known a-priori, the scale of the image and 

hence the actual diameter of the fitted circle can be found.  

6.4.1 Colour-based segmentation of the retractors 

The edges of the incision and retractors have to first be detected in the 

image to define a region bounded by these edges. As the retractors are made 

from surgical stainless steel and have a dull grey colour that is distinct in the 

operative site, the difference in colour of the retractor and the background was 

used as a basis to segment the retractors. A colour-based segmentation using 

k-means clustering was used. K-means clustering groups objects together 

based on their spatial location in a feature space. The clustering is performed 

such that the distances of all objects to their respective cluster centroid are the 

least among all clusters. Objects belonging to the same cluster have the least 

distance to the centroid of their cluster compared to the centroid of other 

clusters.   
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6.4.1.1 Results 

Figure 82 shows the segmented image containing the retractors using a 

k-means clustering colour-based segmentation with 2, 3, 4, 5, and 6 clusters 

respectively. The clustering was repeated three times at different randomly 

selected set of initial centroids to avoid local minima. 

 

 

a b c 

d e f 

Figure 82: (a) Original colour image, and colour-based segmentation using k-

means clustering with (b) 2,(c) 3,(d) 4,(e) 5, and (f) 6 clusters respectively. 

6.4.1.2 Discussion 

A disadvantage of colour-based segmentation using k-means clustering 

is that the number of clusters to be partitioned, which is in general not known, 

has to be specified. A way of automatically determining the number of clusters 

to be partitioned is based on the number of local maxima of a three-dimensional 

colour histogram of the image, which corresponds to the number of regions with 

the most dominant colour in the image [152]. These local maxima may be 

determined using a hill-climbing optimisation technique. To illustrate the hill-

climbing optimisation technique, consider the one-dimensional histogram in 

Figure 83. The local maxima is be found by searching across the histogram 

using a three-neighbourhood search window. The k seeds are the number of 
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local maxima, with the initial seeds corresponding to the position of the 

histogram bin centre. The corresponding three-dimensional case has a 26-

neighbourhood search window. Specifying the initial cluster centroid positions 

or „seeds‟ improves the performance of the k-means clustering. 

 

 

a 

b 

Figure 83: (a) A one-dimensional histogram and the local maxima found using 

(b) a three-neighbour search window 

 

Figure 84b shows the segmentation results, with the different grey levels 

indicating the different clusters. A colour based segmentation using a k-means 

clustering algorithm was used, with the number of clusters determined 

automatically with the initial cluster centroid positions or „seeds‟ specified. The 

„seeds‟ are the local maxima (determined using a hill-climbing optimisation 

technique) of a three-dimensional CIELAB colour space histogram of the 

image, with 12 histogram bins used for each dimension. Although segmentation 

results may differ depending on the number of histograms bin used, the 

algorithm is relatively robust to small deviations in the number of histogram bins 

used e.g. 10 - 15.  
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a b 

Figure 84: (a) Original colour image and (b) segmented image of the retractors 

6.4.2 Colour recognition of the retractors 

Colour-based segmentation has successfully segmented the retractors 

by first dividing the colour image into regions of the most dominant colour. The 

next step after colour-based segmentation is colour recognition of the 

segmented regions to identify the retractor. Because of the distinctive colour of 

surgical instruments compared to background tissue, the retractors can be 

differentiated by colour recognition. A representative colour value for the 

retractors was obtained by averaging the colour value of the pixels for a sample 

region of the retractor. This colour value was subsequently used to select the 

region whose average pixel colour value is closest to the representative colour 

value for the retractors based on the nearest neighbour rule.  

6.4.2.1 Results  

Sample colours in CIELAB colour space for the retractor and background 

were obtained from 51 images. The mean sample colour values for the retractor 

and background is shown in Table 6. Illustrative examples of the colour 

recognition of retractors based on these values are shown in Figure 85.   
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Table 6: Retractor and background mean L*, a* and b* sample values 

Pattern class 
Dimensions 

L* a* b* 

Retractor 76.1729 7.8286 5.7752 

Background 58.0143 3.8930 2.7737 

 

 

Figure 85: Illustrative examples of retractors identified based on colour 

recognition 

6.4.2 Segmentation of the retracted incision 

The retracted incision was segmented next using a Canny edge detector 

to detect its edges. However, the edges of the retracted incision cannot always 

be detected because of the sometimes low contrast at the boundaries of the 

incision (see Figure 86). To improve edge detection, sections of the ring light 

were turned off to cast shadows at the boundaries of the incision to increase 

their contrast. Figure 87 illustrates the technique. 
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a b 

Figure 86: Retracted incision overlaid with edges detected using a Canny edge 

detector and illuminated (a) with all quadrants of the ring light and (b) by 

alternating each quadrant of the ring light 

 

 

a b 

c d 

Figure 87: Detected edges (using Canny edge detector) of a retracted incision 

when illuminated with (a) left half, (b) bottom half, (c) right half and (d) top half 

of the ring light respectively. The composite image is shown in Figure 86b. 
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6.4.3 Distance map 

Once the edges of the incision and retractors were detected, a distance 

map (see Figure 88b) based on the distance transform of all the pixels in the 

image to an edge map of the retractors and the retracted incision (see Figure 

88a) was determined. The pixel with the maximum distance within a circular 

region of interest (see Figure 88b) is the centre of a circle that corresponds to 

the maximum free circular space available to accommodate a burr hole. The 

radius of the fitted circle is the distance of this pixel to either the nearest edge 

pixel of the prongs of the retractors or the edge pixel of the retracted incision. It 

is important that pixels within the edges of the incision be removed, as the 

position and diameter of the fitted circle will be affected otherwise (see Figure 

90). Pixels within the edges of the incision were removed by selecting the first 

and last pixel of an edge map when traversing vertically i.e. vertical scanning of 

the edges (see Figure 88b). 

 

 

a b c 

Figure 88: (a) An edge map, (b) a distance map overlaid with the edge map and 

a circular region of interest and (c) the fitted circle 

6.4.3.1 Results 

Figure 89 and Figure 90 illustrate examples where the technique 

successfully fitted the largest circle within the retracted incision and examples 

where the technique failed respectively.  
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Figure 89: Illustrative examples of a correctly fitted circle within the retracted 

incision. Further examples are included in Appendix D. 

 

 

Figure 90: Examples illustrating an incorrectly fitting circle within the retracted 

incision 
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6.4.3.2 Discussion 

In all examples where the technique failed (see Figure 90), this was 

because the edges of the retracted incision or the prongs of the retractor were 

not segmented well. The segmentation of the retractors failed in some images 

because the number of clusters (determined automatically) used for colour-

based segmentation was inadequate. As a result, due to the proximity of the 

colour of the retractor with part of the background skin and/or shadows, the 

retractors are sometimes segmented along with these regions (see Figure 91c).  

Segmenting the retractors robustly is difficult because of the different 

skin/background colours, the presence of shadows and specular reflections 

results in a complex scene that can complicate segmentation of the retractor 

based on colour alone. Specular reflections, due to the reflectivity of the 

retractor surface, can be reduced by using retractors with a matt surface 

(instead of retractors with a mirror like surface) as well as by using a diffuser to 

provide softer illumination of the scene. This also reduces shadows in the 

scene.  

A possible solution to improve segmentation of the retractors is to over-

segment the scene (see Figure 91). In the example below, it was possible to 

differentiate between the retractors and shadows in the scene by “over-

segmenting” e.g. k-means clustering using six clusters instead of the five 

clusters that were originally specified based on the local maxima of the three-

dimensional colour histogram of the image.  

Alternatively, the colour segmentation and recognition of the retractors 

can be contrived to be simple by using a retractor with a distinct colour that will 

not be mistaken with its background and is not present in the operative field, 

such as the colour cyan. However, this would involve either the use of non-

standard retractors, or painting of the retractors (which may not be feasible in 

terms of sterility requirements).   
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a b 

c d 

Figure 91: Colour based segmentation using k-means clustering algorithm with 

(a) five clusters and (b) six clusters. (c) – (d) The original colour images overlaid 

with edges corresponding to the retractors in (a) and (b) respectively.  

 

Although the edges of the incision were not always detected in the 

majority of the images (ring lighting was not used to facilitate detection of the 

edges), this technique has successfully fitted relatively large circles within the 

retracted incision. The technique does not always require that all the edges of 

the incision be found. Circles have been fitted successfully within the retracted 

incision although some of the edges were missing (see Figure 89). 

Nevertheless, as shown in Figure 90, where edges of the incision are not 

adequately detected, the position and size of the fitted circle can be erroneous. 

Where the edges of the retracted incision were not properly detected, the use of 

directional ring lighting would facilitate its detection (see Figure 86). 
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6.5 Characterisation of a burr hole 

The inspection of a burr hole is the most straightforward of the three 

surgical tasks under consideration. An incomplete or partial burr hole is where 

the skull has not been penetrated. Depending on whether the partial burr hole 

has been drilled to the cortical or cancellous layer of the skull, it would have 

either a smooth or a „spongy‟ appearance, although both will have a 

predominantly white colour (see Figure 92a). A complete burr hole is one where 

the underlying dura mater i.e. the outermost part of the brain, is visible. The 

dura mater is primarily greyish in colour and has a membrane like appearance 

and texture (see Figure 92b). Possible features to distinguish the two types of 

burr holes may therefore include colour and texture. 

 

 

a b 

Figure 92: (a) Incomplete/partial burr hole and (b) complete burr hole. 

6.5.1 Segmentation of the burr hole 

For the visual inspection of a burr hole, it is first necessary to detect its 

presence in an image. Because of its circular shape, a Hough transform to 

detect circles was used for the detection of a burr hole. The Hough transform 

accumulator cell is a set of all points (𝑥 𝑦) in 3D parameter space consisting of 

the circle centre coordinates (𝑎 𝑏)  and radius, 𝑟  (range of radius values 

specified) such that (Equation 6.4): 

 (𝑥  𝑎) + (𝑦  𝑏)  𝑟  6.4 
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High accumulator cell counts represent circles corresponding to a 

potential burr hole. A circle is disregarded if the ratio of its accumulator cell 

count i.e. the number of detected edge pixels, to the circle perimeter is less 

than 10%. This ratio eliminates false positives i.e. a burr hole is sometimes 

„detected‟ when there is none. The 10% ratio was found to represent an 

acceptable compromise between false detection and under detection, as 

determined by visual inspection. The circle with the highest ratio of detected 

edge pixels i.e. accumulator cell count, to the number of pixels along the 

perimeter of the circle (calculated based on the radius of the circle), was 

selected. This is so that the algorithm was not biased towards larger circles, 

which may have a higher accumulator count over smaller circles. Figure 93 and 

Figure 94 show examples of the detected edge of incomplete and complete 

burr holes respectively, using this technique. 

 

 

Figure 93: Detected incomplete burr holes 

 



159 

 

 

Figure 94: Circles corresponding to complete burr holes 

6.5.2 Classification 

Once isolated, features that can distinguish the two classes of burr hole 

i.e. incomplete and complete were identified. Based on the visual appearance 

of the burr hole, it is likely that colour and texture properties might be used to 

distinguish the two (see Figure 92). The visual inspection of the burr hole was 

formulated as a classification problem with two classes i.e. incomplete and 

complete, using colour and texture features used as a basis for classification. 

Images of burr holes were labelled for ground-truth and classified using a naïve 

Bayes classifier, a linear classifier, LDA and a quadratic classifier, QDA.  



160 

 

6.5.2.1 Naïve Bayes classifier 

A naïve Bayes classifier was used to perform the classification, 

assuming two pattern classes i.e. incomplete and complete, in three 

dimensions L*, a*, and b*. The patterns of each class were assumed to have a 

Gaussian distribution in CIELAB colour space. In the three-dimensional case, 

the probability density function, 𝑝(𝑥|𝑤 )  of class 𝑤  (𝑤  𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑤  

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) and feature,𝑥 where 𝑥  ( ∗ 𝑎∗ 𝑏∗) is given by Equation 6.5: 
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where each pattern class is governed by Gaussian densities with covariance 

matrix 𝐶  and a mean vector 𝑚  whose values are estimated using Equation 

6.6: 
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The form of the decision function used, 𝑑 (𝑥) is given in Equation 6.7: 
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with  (𝑤 )the likelihood of a class appearing. The decision function minimises 

the penalty associated with misclassification.  



161 

 

6.5.2.2 Linear discriminant analysis 

A linear discriminant classifier is similar to a naive Bayes classifier, in 

that both assume normally distributed features. However, LDA does not assume 

that the features are independent (it uses a pooled estimate of covariance 

instead of a diagonal covariance matrix estimate). LDA is closely related to 

principal component analysis (PCA) in that both can be used to find a linear 

combination of features that is most representative of the data and separates 

two or more classes. The difference between the two however is that LDA takes 

into account differences between the classes of data while PCA does not. 

LDA for two classes assumes normally distributed conditional probability 

density functions 𝑝(𝑥⃗ |𝑦) = 0 and 𝑝(𝑥⃗ |𝑦)    where 𝑥⃗ is a set of features for 

each sample of an object or event with a known class 𝑦. Given only a feature, 

𝑥⃗, the classifier attempts to find a good predictor for the class 𝑦 of any sample 

of the same distribution. The decision criterion to predict points as being from 

the second class is a threshold on the dot product given by Equation 6.8 for 

mean (     ) and some threshold 𝑐: 
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 𝑥⃗  𝑐 6.8 

6.5.2.3 Quadratic discriminant analysis 

A natural extension of the LDA, the quadratic discriminant analysis 

(QDA) fits to normally distributed data better, although its performance 

degrades for non-normal data. The Bayes optimal solution for some threshold   

is given by Equation 6.9:  
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where ( ⃗  ∑  𝑦  ) and ( ⃗  ∑  𝑦  ) are the mean and covariance for each class 

respectively. Both LDA and QDA classify data by fitting a multivariate normal 

density to each group. However, the covariance estimate is pooled in LDA while 

the covariance estimate is stratified by group in QDA. 

6.5.3 Colour space 

An important aspect when using colour as a feature is the use of an 

appropriate colour space. There are many colour spaces available, with the 

more common ones being RGB, CIELAB and HSI. While the RGB colour space 

is the most commonly used colour space, its main drawback is that its 

brightness and chromaticity (hue and saturation) components are not 

separable, meaning that changes in lighting will affect colour information. The 

use of normalised RGB components can remedy this to some extent by 

reducing the effects of variations in intensity.  

Generally, hue, saturation and intensity are better at distinguishing one 

colour from another than RGB components. The HSI (hue, saturation, intensity) 

colour space for example, decouples the intensity component from the colour-

carrying component (hue and saturation) in a colour image. Intensity is 

analogous to intensity in a greyscale image, while hue and saturation refers to 

the dominant colour and „purity‟ or amount of white light of the colour 

respectively. Owing to the different ways in these which colour spaces 

represent colour, the use of RGB for image processing using colour is limited 

[153]. RGB is well suited for image generation e.g. image capture by colour 

camera or image display in a monitor screen while the HSI model is more 

suited for colour image processing. 

Both the RGB and HSI colour spaces lack perceptual uniformity and do 

not adequately separate the colour components. Unlike the RGB and HSI 

colour models, which model the output of physical devices rather than human 

visual perception, the CIELAB colour space is a device-independent model that 

approximates the perceptual uniformity of human vision i.e. a change of the 

same amount in a colour value produces a change of about the same visual 

importance. Because it is a perceptually uniform colour space, CIELAB is 
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mainly used in image segmentation. It also conforms to international standards, 

allowing measurements to be compared easily. 

6.5.3.1 CIELAB colour space 

The coordinates of the CIELAB colour space are dimension  ∗  for 

lightness and 𝑎∗ and 𝑏∗ for the colour components.  ∗, 𝑎∗ and 𝑏∗ are represent 

lightness of colour ( ∗ = 0 is black and  ∗ = 100 is diffuse white; specular white 

may be higher), position between red and green (positive 𝑎∗ values indicate red 

and negative 𝑎∗ values indicate green) and position between yellow and blue 

(positive 𝑏∗  values indicate yellow and negative 𝑏∗  values indicate blue) 

respectively. Chroma and hue correlates to the radial distance √(𝑎∗) + (𝑏∗)  

and angular position      .
𝑎∗

𝑏∗
/  in the 𝑎∗𝑏∗  plane respectively. The CIELAB 

space is relative to the white point and does not define absolute colours unless 

the white point of the data they were converted from is also specified. The 

absolute colorimetric International Color Consortium (ICC) CIELAB values are 

relative to CIE standard illuminant D50. 

6.5.4 Colour difference 

The difference in colour between a burr hole and a surrounding circular 

area, with a radius of 1.5 times the radius of the hole (see Figure 95) was 

computed to determine if colour difference could be used as a basis to 

differentiate between incomplete and complete burr holes. A circular area of 

radius 1.5 times the radius of the burr hole was chosen so that it included the 

skull surrounding the burr hole, while keeping within the confines of the 

retracted incision. Colour difference is the difference or distance between two 

colours in a colour space based on a distance measure such as Euclidean 

distance. The CIE delta-E colour difference, ∆ 𝑎𝑏∗, as given by Equation 6.10, 

is the colour difference between two colours in CIELAB space. A  ∆ 𝑎𝑏∗ ≈ 2.3 

corresponds to a just noticeable difference [154], below which the two colours 

are indistinguishable (unless placed adjacent to one another).  
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 ∆ 𝑎𝑏∗  √(  
∗    

∗ ) + (𝑎 
∗  𝑎 

∗) + (𝑏 
∗  𝑏 

∗)  6.10 

   

 

Figure 95: Circular areas used for the determination of CIE delta-E colour 

difference 

6.5.4.1 Results 

A random subset of 108 images (54 images of complete burr holes and 

54 images of partial burr holes) was classified based on the CIE delta-E colour 

difference, a measure of the 'distance' between two colours. The sRGB 22 

images of burr holes were first converted into the CIELAB colour space (based 

on ITU-R Recommendation BT.709 using the CIE illuminant D50 white point 

reference). The error in transforming sRGB to CIELAB to sRGB is 

approximately 10-5. Three classifiers, a naïve Bayes classifier, LDA and QDA 

were used.  

The leave one out naïve Bayes, LDA and QDA misclassification error 

rate based on CIE delta-E colour difference of incomplete and complete burr 

holes are shown in Table 7. In leave-one-out classification, each image from 

the dataset is used as validation data, and the remaining images used as 

training data. This process is repeated such that each observation in the 

sample is used once as the validation data. The mean and maximum 

classification error was obtained by repeating the training and testing of the 

images ten times.  

                                            
22

 Standard RGB colour space, a device independent colour definition specified in IEC 61966-2.1 
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Table 7: Naïve Bayes, LDA and QDA leave one out (mean/maximum) 

misclassification error rate (%) based on CIE delta-E colour difference pixel 

values of incomplete and complete burr holes  

Classifier 

Naïve Bayes LDA QDA 

19.5 / 24.1 19.5 / 24.1 18.7 / 22.2 

6.5.4.2 Discussion 

When computing colour difference, images from earlier experiments 

were excluded from the analysis due to incorrect illuminating conditions at the 

site of the burr holes. This was because the ring lighting unit was place too 

close to the site of the burr hole, outside its working distance, resulting in poor 

illumination. Because intensity is a component of the colour difference 

computation, it is important that the ring lighting unit be used within its 40mm - 

250mm working distance. This effect was more pronounced in complete burr 

holes that appeared darker than incomplete ones because the amount of 

illumination was reduced considerably at increasing depths. 

The misclassification error rates using the three different classifiers are 

quite similar, with QDA slightly outperforming the classification performance of 

naïve Bayer classifier and LDA. The best QDA leave one out misclassification 

error rate is 18.7% (for 10 iterations) with a maximum error rate of 22.2% based 

on the CIE delta-E colour difference (median). The maximum error rate, which 

is a more meaningful measure in terms of classification error rates, is relatively 

high. The colour difference between the burr hole and a circular area 

surrounding it seemed like an obvious choice to differentiate between 

incomplete and complete burr hole. Although on average the colour difference 

for complete burr holes is higher than incomplete burr holes, there is some 

degree of overlap in the colour difference values of the two types of burr holes, 

as shown in Figure 96. As such, colour difference is not discriminatory enough 

to be used as a basis to classify the two types of burr holes. A different feature 

space, the colour components of the pixels of a burr hole, was considered to 

determine if better classification performance could be achieved.   
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Figure 96: Boxplot of CIE delta-E colour difference (median) for incomplete and 

complete burr hole 

6.5.5 Colour components 

To determine if the misclassification error rate of 18.7% and a maximum 

of 22.2% for burr holes based on colour difference could be improved, the use 

of three different statistical measures i.e. mean, median, and mode, to 

represent the colour component values of incomplete and complete burr holes 

in CIELAB colour space were considered. The use of colour as a feature space 

was based on the observation that complete burr holes had a different colour to 

incomplete burr holes.  

Because colour can vary greatly depending on illumination, in particular 

the colour temperature of the illuminant, the white balance setting of the camera 

was manually calibrated using the CCD video camera‟s built-in calibration 

function to account for the 6400K colour temperature of the white LED.  
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6.5.5.1 Results 

Colour components in CIELAB colour space were used to classify the 

burr holes. Table 8 – Table 11 shows the leave one out misclassification error 

rates based on colour values of incomplete and complete burr holes in CIELAB 

colour space for all three classifiers.  

 

Table 8: Naïve Bayes leave one out misclassification error rate (%) 

Naïve Bayes leave one out misclassification error rate (%) 

Statistical 

Measure 

Colour space 

L* a* b* L*a* L*b* a*b* L*a*b* 

Mean 

(average/maximum) 

13.8 

14.8 

35.2 

38.9 

10.8 

13.0 

9.7 

11.1 

3.7 

6.5 

15.6 

17.6 

4.5 

7.4 

Median 

(average/maximum) 

13.3 

15.7 

36.6 

39.8 

13.2 

15.7 

8.1 

10.2 

4.1 

5.6 

18.6 

20.4 

5.6 

8.3 

Mode 

(average/maximum) 

14.4 

18.5 

34.8 

37.0 

19.3 

21.3 

9.6 

12.0 

5.9 

9.3 

24.6 

29.6 

6.8 

9.3 

 

Table 9: LDA leave one out misclassification error rate (%) 

LDA leave one out misclassification error rate (%) 

Statistical 

Measure 

Colour space 

L* a* b* L*a* L*b* a*b* L*a*b* 

Mean 
(average/maximum) 

13.8 

14.8 

35.2 

38.9 

10.8 

13.0 

8.9 

10.2 

3.7 

6.5 

10.7 

13.9 

2.3 

3.7 

Median 
(average/maximum) 

13.3 

15.7 

36.6 

39.8 

13.2 

15.7 

7.0 

10.2 

4.1 

5.6 

13.1 

15.7 

4.1 

4.6 

Mode 
(average/maximum) 

14.4 

18.5 

34.8 

37.0 

19.3 

21.3 

9.8 

13.0 

6.1 

9.3 

19.4 

21.3 

6.0 

9.3 
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Table 10: QDA leave one out misclassification error rate (%) 

QDA leave one out misclassification error rate (%) 

Statistical 

Measure 

Colour space 

L* a* b* L*a* L*b* a*b* L*a*b* 

Mean 
(average/maximum) 

13.9 

14.8 

35.1 

38.0 

10.7 

13.0 

10.0 

13.0 

4.5 

6.5 

6.3 

8.3 

3.0 

3.7 

Median 
(average/maximum) 

13.2 

15.7 

35.0 

38.0 

13.3 

15.7 

8.5 

12.0 

5.4 

7.4 

10.8 

13.0 

3.8 

5.6 

Mode 
(average/maximum) 

14.8 

18.5 

35.8 

40.7 

20.4 

23.1 

9.8 

13.0 

5.5 

7.4 

19.7 

22.2 

5.2 

7.4 

 

Table 11: LDA leave one out misclassification error rate (%) for each iteration 

LDA leave one out misclassification error rate 

Statistical 
measure 

Iteration 
Average/ 
Maximum 

Mean 3.7 3.7 1.9 1.9 3.7 2.8 3.7 3.7 1.9 2.8 
2.3 
3.7 

6.5.5.2 Discussion 

The best mean misclassification error rate is 2.3% (for 10 iterations) with 

a maximum error rate of 3.7% based on mean L*a*b* values using LDA. The 

good classification performance can be attributed to the good separability of the 

two types of burr hole in CIELAB colour space (see Figure 97 - Figure 99). 

Figure 97 - Figure 101 shows the separation of the mean pixel values of all 

incomplete and complete burr holes in CIELAB colour space. The error rate 

shown in the figures is the percentage of samples that are misclassified, 

weighted by the prior probabilities for the group. The mean CIE delta-E colour 

difference, ∆ 𝑎𝑏∗ between the two classes is 34.4, which is considerably greater 

than the just noticeable difference ∆ 𝑎𝑏∗ ≈ 2.3, below which the two colours are 

indistinguishable [154]. 
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Figure 97: Scatterplot of mean L*a* values of incomplete and complete burr 

holes in CIELAB L*a* colour space 

 

Figure 98: Scatterplot of mean L*b* values of incomplete and complete burr 

holes in CIELAB L*b* colour space 
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Figure 99: Scatterplot of mean a*b* values of incomplete and complete burr 

holes in CIELAB a*b* colour space 

 

Figure 100 and Figure 101 show the classification of the burr holes 

based on the CIELAB L*a*b* feature space with the two classes separated by a 

plane and quadric surface respectively.  
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Figure 100: Scatterplot of pixels values (mean) of incomplete and complete burr 

holes in CIELAB colour space and the LDA decision boundary separating the 

two classes. The misclassification error rate is 1.9%. 

 

 

Figure 101: Scatterplot of pixels values (mean) of incomplete and complete burr 

holes in CIELAB colour space and the QDA decision boundary separating the 

two classes. Misclassification error rate is 2.8%. 
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Although the images from the CCD video camera are in sRGB colour 

space, a device-independent colour model, it is not known if the images 

acquired are colour-accurate sRGB because the CCD was not calibrated for 

colour. Nevertheless, although the colour values are not absolute colorimetric 

values, assuming similar colour calibration for all images, this work has shown 

that the two types of burr holes can be separated in terms of their colour. 

In general, all the classifiers performed equally. However, classification 

performance e.g. sensitivity and specificity can be changed using different LDA 

and QDA decision criterion threshold value 𝑐 and   respectively in Equation 6.8 

and Equation 6.9. Geometrically, these threshold values correspond to the 

location of the decision boundary i.e. the plane and quadratic surface in Figure 

100 and Figure 101. Although these decision boundaries give the best 

misclassification error rate, in this work, a false positive i.e. partial burr holes 

incorrectly classified as a complete burr hole would result in the subsequent 

surgical task being performed. A receiver operating characteristic curve could 

be used to identify threshold values such that there are no false positives. 

Although this will inevitably reduce the sensitivity i.e. number of true positives 

correctly identified, of the inspection and increase the amount of false negatives 

i.e. complete burr holes misclassifies as partial burr hole, a higher overall 

misclassification rate without any false positives is preferable to a lower 

misclassification error rate with false positives. 

6.6 Texture 

The use of textural information to improve further classification 

performance was considered. Textural information may prove to be useful 

feature for discriminating the two types of burr holes as incomplete and 

complete burr hole are predominantly smooth and rough respectively. Four of 

Haralick‟s coefficients [155] for a grey-level co-occurrence matrix (GLCM), 

contrast, correlation, energy and homogeneity, were computed and used as 

features for classification. Each element (𝑖 𝑗) in the GLCM corresponds to the 

frequency pairs of adjacent pixels (for a given spatial relationship) have grey 

level intensity values 𝑖 and 𝑗 respectively. A 𝑘 x 𝑘  x 8 GLCM was used (𝑘  = 
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8,16,32,64,128 and 256), with a distance of one pixel in each direction for a 

pixel of interest and its corresponding pair/neighbour.  

Contrast (also known as variance) is a measure of intensity contrast 

between pixel pairs over the entire image and is given by Equation 6.11. It is 

zero for a constant image. 

 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡   ∑|𝑖  𝑗| 𝑝(𝑖 𝑗)

   

 6.11 

 

Correlation is a measure of how correlated a pixel pair are over the 

entire image and is given by Equation 6.12. 

 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛   ∑
(𝑖    )(𝑗    )𝑝(𝑖 𝑗)

    
   

 6.12 

 

Energy is a measure of uniformity and is given by the sum of squared 

elements in the GLCM over the entire image, as shown in Equation 6.13. 

Energy ranges from 0 to 1 and is 1 for a constant image. 

 

  𝑛𝑒𝑟𝑔𝑦   ∑𝑝(𝑖 𝑗) 

   

 6.13 

.  

Homogeneity is a measure of the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal over the entire image and is given 

by Equation 6.14. 

 

  𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦  ∑
𝑝(𝑖 𝑗)

 + |𝑖  𝑗|
   

 6.14 
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6.6.1 Results 

Table 12 shows the leave one out misclassification error rates for all 

three classifiers respectively, based on all the possible permutations of the four 

measures of texture of incomplete and complete burr holes for a 256 x 256 x 8 

GLCM. The best maximum misclassification error rate ranges from 13.0 – 

13.9% with the average misclassification error rate ranging from 9.7 – 12.0%.   

 

Table 12: Mean and maximum misclassification error rate (%) based on 

permutations of the four different texture measures of incomplete and complete 

burr holes using a Naïve Bayes classifier, LDA and QDA. (1 = Contrast, 2 = 

Correlation, 3 = Energy, 4 = Homogeneity) for a 256 x 256 x 8 GLCM 

GLCM 
properties 

Classifier 

Naïve Bayes LDA QDA 

1 
39.4 
41.7 

39.4 
41.7 

39.7 
42.6 

2 
22.8/ 
25.0 

22.8 
25.0 

23.0 
25.9 

3 
43.9 
48.1 

43.9 
48.1 

42.4 
45.4 

4 
40.1 
46.3 

40.1 
46.3 

37.9 
44.4 

1,2 
20.6 
22.2 

22.1 
25.0 

21.6 
23.1 

1,3 
42.1 
45.4 

38.0 
40.7 

30.7 
36.1 

1,4 
22.3 
28.7 

18.3 
20.4 

19.0 
21.3 

2,3 
24.0 
25.9 

21.8 
24.1 

19.4 
25.0 

2,4 
19.8 
23.1 

19.9 
23.1 

18.2 
20.4 

3,4 
26.6 
32.4 

16.3 
21.3 

17.0 
25.9 

1,2,3 
21.8 
24.1 

15.0 
17.6 

15.6 
18.5 

1,2,4 
17.5 
21.3 

10.3 
13.9 

11.9 
16.7 

1,3,4 
25.6 
32.4 

11.9 
14.8 

13.2 
16.7 

2,3,4 
20.5 
22.2 

15.7 
19.4 

15.1 
21.3 

1,2,3,4 
19.1 
22.2 

9.7 
13.0 

10.5 
15.7 
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6.6.2 Discussion 

Classification was performed using all permutations of the different 

texture measures. The lowest leave one out misclassification error rate was 

obtained using LDA based on all four texture measures i.e. contrast, correlation, 

energy and homogeneity, with a mean misclassification error rate of 12.0% and 

a maximum error rate of 13.9%. This misclassification error rate is considerably 

higher than the mean misclassification error rate of 2.3% and a maximum error 

rate of 3.7% achieved using colour information alone.  

Figure 102 is the bivariate scatterplots between the four texture 

measures that shows the separation of the two classes between pairs of texture 

measures. There is a considerable amount of overlap, although separation in 

four dimensions would be better, based on the classification results. 

 

Figure 102: Scatterplot matrices of all the bivariate scatterplots between the 

four texture measures, along with a univariate histogram for each texture 

measure. Incomplete and complete burr holes are in red and blue respectively. 
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Although texture is a weaker feature in discriminating the two classes of 

burr holes compared to colour, the combined use of texture and colour was 

considered. Table 13 shows the LDA leave one out misclassification error rates 

based on colour and texture properties of incomplete and complete burr holes. 

 

Table 13: LDA leave one out misclassification error rate (%) based on mean 

colour values in CIELAB colour space and texture properties of incomplete and 

complete burr holes  

LDA leave one out misclassification error rate (%) 

Feature 
Space 

Iteration 
Average/ 
Maximum 

Colour 3.7 3.7 1.9 1.9 3.7 2.8 3.7 3.7 1.9 2.8 
2.3 
3.7 

Colour + 
Texture 

3.7 2.8 2.8 3.7 3.7 0.9 2.8 2.8 2.8 3.7 
3.0 
3.7 

6.7 Discussion and conclusions 

The average misclassification error rate based on combined colour and 

texture information is 3.0% with a maximum misclassification error rate of 3.7%. 

On the other hand, the lowest average and maximum misclassification error 

rate are 2.3% and 3.7% respectively, using colour information only. Combining 

textural information with colour information did not change classification 

performance in terms of the maximum misclassification error rate. Further 

testing with a greater number of sample images is needed to determine if the 

use of texture measures will aid in classification performance. Figure 103 

shows the images that the classifier could not discriminate based on colour and 

texture alone. All misclassified burr holes were false positives i.e. partial burr 

holes incorrectly classified as a complete burr hole. 
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Figure 103: Misclassified burr hole based on mean CIELAB pixel value and 

texture properties. 

 

In terms of the best feature to represent a burr hole, the mean pixel 

colour value (in CIELAB colour space) of all its pixels gave the best 

misclassification error rate with a better classification performance  compared to 

using colour difference. In terms of classifier performance, the misclassification 

error rates were comparable for naïve Bayes classifier, LDA and QDA, with 

LDA performing slightly better, suggesting that the feature space is linearly 

separable. Although different classifiers such as neural networks might give 

better classification results, because of the relatively small dataset, the 

emphasis was on finding appropriate features to perform the classification 

rather than strength of the classifiers. Furthermore, neural networks could 

overfit the data and may not generalise well to a different set of data.   

Although this work has shown promising results on the use of computer 

vision for inspection of the outcome of the three surgical tasks, there are 

several challenges regarding the use of computer vision for this purpose. The 

first is the inherent natural variation in appearance of biological matter. A case 

in point is the inspection of incisions based on the presence of an incision line. 

Because of the large variations in appearance of the incision line, the reliance 

on a single feature was unable to capture all the differences between a 

complete and incomplete incision. The use of computer vision should therefore 

not be viewed in isolation. Indeed, the aim is to use computer vision to 
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augment/complement other sensory information, although it is not 

inconceivable that the state of the art in computer vision can advance to a stage 

where it is able to emulate the visual recognition ability and interpretation 

process of a human expert. The second is misclassification. False positives in 

the detection are more of an issue than false negatives. Erroneously classifying 

an incomplete surgical task as complete will result in the subsequent task being 

performed. When performing classification, the emphasis should therefore be 

on reducing the number of false positives, rather that achieving the best overall 

misclassification rate.  

This chapter described a vision-based approach to inspect three primary 

surgical tasks for the creation of a burr-hole, a common neurosurgical 

procedure, as a step towards performing this procedure robotically. To validate 

the approach, experiments were performed on cadaveric pig heads, to simulate 

different fault scenarios, and to assess completion by using visual cues from the 

scene. While a burr hole is a relatively simple procedure performed by a 

neurosurgeon, it is a very complex problem to perform robotically. A subset of 

this problem is to determine the successful completion of a given surgical 

action. Towards this end, the use visual cues from the operative field were 

investigated.  

The use of computer vision to inspect surgical tasks has never been 

considered before. Encouraging results were obtained for the three surgical 

tasks under consideration, which has been demonstrated by experiments on 

cadavers. For example, the classification rate for incisions was 85.9% while 

classification rate for burr holes was 97.7%. The low burr hole misclassification 

rates can be attributed to incomplete and complete burr holes having 

characteristic colours, and these being consistent through a wide range of 

subjects. Classification simply becomes a matter of discriminating the two 

classes based on their characteristic colours.  

As the use of images from actual surgeries was beyond present 

resources, cadaveric dissection of pig heads were used to generate images of 

the outcome of a surgical action. Similar techniques may not necessarily extend 

to humans in a clinical environment. As such, clinical testing under more 

realistic conditions are necessary before this system can be deployed in an 
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operation theatre. Nevertheless, these findings are encouraging and suggestive 

for the potential use of computer vision for a more comprehensive approach in 

robotic surgery.  
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Chapter 7  

Conclusion and Future Work 
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7.1 Conclusions 

In this thesis, the concept of MISEN, a robot-assisted surgery system for 

the provision of emergency neurosurgical procedures, was presented. MISEN 

was proposed as an alternative to conventional surgery, as an engineering 

solution to what is essentially a medical problem. It is designed to perform 

certain routine but lifesaving neurosurgical procedures such as the evacuation 

of a haematoma and the drainage of cerebrospinal fluid from the brain 

ventricles. MISEN will enable these procedures to be performed at hospitals 

without on-site neurosurgery, where the majority of patients with head injury are 

sent. This would eliminate the need for a secondary transfer and avoid the 

problems associated with it. Crucially, it will reduce time to surgery, an 

important consideration where immediate intervention would significantly 

improve a patient‟s outcome. Currently, no similar robotic surgery system 

exists.  

Preoperative planning and intraoperative intervention are two main 

phases of the surgical protocol for MISEN, as well as for robotic surgery in 

general. The aim of this thesis was to contribute in these two areas. Important 

components of both these phases are image to patient registration and 

intraoperative assessment respectively. Computational approaches were 

developed to perform these two aspects of the surgery that would ordinarily be 

performed by a neurosurgeon, to afford greater autonomy to MISEN. 

Specifically, a computational approach for automating the image to patient 

registration and computer vision techniques for intraoperative assessment, 

were developed. In this concluding chapter, these techniques are discussed 

and areas for future work proposed. 

7.1.1 Image to patient registration 

An image to patient registration framework for MISEN was proposed, 

based on a rigid body transformation of homologous anatomical soft tissue 

landmarks of the head, the medial canthus and tragus, in CT and patient space. 

The registration framework meets the required clinical accuracy of the targeted 

procedures, is cost effective, and practical.  
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In terms of accuracy, the errors in localising a target anywhere in a head, 

obtained experimentally and estimated based on an analytical expression, was 

shown to be within the millimetre range (if the landmarks can be localised to 

within 5 mm of their true position). This accuracy compares favourably to that 

achieved by a neurosurgeon performing the targeted neurosurgical procedures 

using a freehand technique, which is sometimes in the centimetre range. Errors 

due to patient movement and robot calibration notwithstanding, the registration 

framework can therefore yield a sufficiently accurate registration for the 

required clinical accuracy of the targeted procedures. 

The registration framework is cost effective because it does not require 

the use of specialised hardware, such as projectors to provide structured 

lighting or the use of 3D laser scanners, relying instead on comparatively 

inexpensive optical cameras. It is practical as it is a retrospective technique, 

avoiding the requirement for a secondary scan. In contrast, the use of fiducial 

markers, which is the method of choice for image to patient registration, is a 

prospective technique that requires a secondary scan.  

Developing an inherently safe system is the design philosophy behind 

the MISEN system. As the registration framework is an important aspect of the 

system, failing which the robot may not be able to locate a point in space, it was 

deemed essential that the registration be automated, removing the human 

element and the potential for a mistake, especially if automatic localisation can 

be shown to be reliable. In fact, one of the motivations behind automating the 

registration was to improve the safety aspect of the registration. Although the 

landmarks may be localised manually, a conscious decision was made to 

relegate the human‟s role to one of validating the localisation of the landmarks. 

By reducing human involvement in the registration to one of validation, a check 

and balance is created, as it is highly unlikely that both a human and computer 

will commit the same error. Manual localisation is also subjective, as it is a 

function of the examiner‟s experience and perception.  

As a step towards automating the registration, a computational approach 

to localise automatically these landmarks in CT space was developed. This 

approach lends itself well to CT images, which are digital in nature. More 

importantly, the technique does not require changes to the existing workflow in 

terms of CT image acquisition. Although the localisation of anatomical 
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landmarks such as the medial canthus and tragus is well researched in 2D 

intensity images, its localisation in 3D images is less well researched. To the 

author‟s knowledge, no work on the automatic localisation of the medial 

canthus and tragus in CT images have been reported, and the work on this is a 

novel contribution, with applications to image to patient registration.  

The medial canthus and tragus were localised automatically on surface 

models extracted from CT images based on their curvature saliency and using 

a rule based system that incorporates prior knowledge of their characteristics. 

with performance comparable to manual localisation. The maximum difference 

in positions of landmarks localised manually and automatically of 4.5 mm for 

the medial canthus and 2.6 mm for the tragus is within the 5 mm FLE for a TRE 

of within 5 mm, and compares well to a maximum variability of 2.9 mm and 2.5 

mm respectively in localising these landmarks manually. 

An important consideration for any registration technique is the speed at 

which the registration can be performed. The advantage of a landmark based 

approached compared to retrospective techniques based on mutual information 

and photo consistency is that it is an inherently faster technique, as the 

localisation of landmarks in CT space can be performed offline preoperatively, 

reducing the amount of time required for the registration. In contrast, 

registration based on mutual information and photo consistency is time 

consuming, as the solution (optimal) requires a computationally intensive 

iterative approach. More importantly, for a landmark based approach, the time 

for reregistration (required if there is patient movement), is only a function of the 

time taken to localise the landmarks in patient space intraoperatively. This is in 

contrast to the time taken in finding a new optimal solution for registration 

based on mutual information and photo consistency. A lengthy reregistration 

process would negate any potential benefits afforded by automating the 

registration. 

Another advantage in terms of the practicality of using anatomical 

landmarks as a registration basis is that it is an intuitive technique and can 

therefore be easily understood. Errors, when they occur, can be corrected, 

even by someone without specialised neurosurgical experience or engineering 

expertise. For example, if the algorithm has erroneously localised the medial 

canthus or tragus, this will be immediately obvious to the person monitoring the 
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registration, assuming that the localised landmarks are overlaid on the surface 

rendered CT images and optical images of the patient, and can be easily 

corrected. On the other hand, errors from image to patient registration 

techniques based on mutual information and photo consistency (these methods 

work with optical images as well) are not apparent i.e. they cannot be observed 

directly, and therefore cannot be corrected when mistakes occur in the 

registration. Furthermore, these techniques have not been used clinically, in 

contrast to anatomical landmarks, which is a well-established registration basis 

in image to patient registration. 

The medial canthus and tragus were localised in near isotropic high 

resolution CT images. As these are point landmarks, the localisation of these 

landmarks is not feasible in lower resolution CT images, as they would not be 

well defined, making their localisation impossible. Advances in CT imaging 

technology such as isotropic or near isotropic sub-millimetre image resolution 

mean that CT images could now achieve a level of detail that has made 

possible the detection of point landmarks that would be unfeasible in low-

resolution images. These high resolution CT images can be reconstructed 

retrospectively from existing raw data, without re-scanning the patient, although 

this is limited by the detector configuration used during the scan. If the CT 

scanning protocol for head injury/trauma is used, the image resolution of routine 

CT scans is sufficient to localise these landmarks automatically.  

In conclusion, the proposed registration framework is perfectly suited for 

the MISEN system as it meets all the stated requirements, the most important 

one being the ability to perform the registration retrospectively. The ability to 

perform a registration retrospectively is important where immediate surgical 

intervention would improve a patient‟s prognosis, as a secondary scan may not 

always be possible and will inevitably delay time to surgery. This registration 

framework may also be used in other robotic neurosurgery systems where the 

emphasis is on being able to perform the registration retrospectively, rather 

than performing it to a high degree of accuracy. This registration framework is 

therefore particularly suitable for emergency neurosurgical procedures that are 

ordinarily performed using a freehand technique, such as the targeted 

procedures of the MISEN system. However, this would exclude certain 

neurosurgical procedures such as deep brain stimulation and biopsies.  
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7.1.2 Intraoperative assessment 

In this thesis, the concept of an intraoperative supervisory system was 

conceived. When developing a robotic surgery system such as MISEN, the 

design of an inherently safe system is the responsibility of the system 

developer. In the context of MISEN, an intraoperative supervisory system that is 

capable of monitoring the surgical intervention by the robot was deemed 

essential, as MISEN would be performing actions that would otherwise be 

carried out by a neurosurgeon. This is especially true considering that MISEN is 

intended for use in hospitals without on-site neurosurgery, by a surgical team 

with little or no neurosurgical experience and engineering expertise.  

An important component of the supervisory system is the ability to 

assess the outcome of a surgical action, which is an important aspect of the 

surgical intervention. The use of computer vision was proposed to emulate a 

surgeon‟s visual sensory and decision-making capability when assessing task 

completion. Specifically, a computer vision based inspection of the outcome of 

a surgical action based on visual cues was investigated. The aim was to 

incorporate computer vision based inspection into the MISEN system, to 

improve safety as well as to facilitate the surgical intervention by the robot. The 

use of vision is particularly well suited for surgery where sterility is an important 

consideration, as it is a non-contact form of inspection i.e. no part of the vision 

system will be in direct contact with the patient.  

In the context of the MISEN system, the introduction of an intraoperative 

supervisory system will not require a change in its architecture, as it is already 

equipped with photogrammetry cameras used for image to patient registration. 

These same cameras may be used for the visual inspection of the surgical 

intervention. Unlike conventional surgery, which can be highly unstructured, the 

surgical actions and their context are known in robotic surgery, making their 

visual inspection feasible. An approach similar to the use of machine vision for 

inspection tasks was adopted for the visual inspection of the outcome of a 

surgical action. Images of the outcomes were acquired and representative 

features based on visual cues that best differentiate the two possible outcomes 

were identified. Computer vision techniques were subsequently developed to 

detect these features.  
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The use of computer vision for the inspection of the outcome of surgical 

tasks, while somewhat unconventional, has its advantages over human experts. 

For example, computer vision is able to quantify differences in colour, a 

subjective measure that is usually described with adjectives. Computer vision is 

also able to resolve small differences in colour, while humans can only 

differentiate colours with a CIE delta-E colour difference, ∆ 𝑎𝑏 greater than 2.3 

(unless these colours are placed adjacent to each other). Therefore, in the 

visual inspection of a burr hole for instance, computer vision is able to detect 

differences in colour that might not be apparent to the human observer. This 

capability is probably best exemplified with the over 97% classification rate 

achieved when computer vision was used to classify incomplete and complete 

burr hole based on colour   

A difficulty when dealing with biological specimens was inherent natural 

variation. The variation in biological specimens can be large, for example the 

variation in terms of its biomechanical properties, which explains why features 

based on shape alone are not discriminating enough to differentiate incision 

types. Nevertheless, it was still possible to distinguish between superficial and 

non-superficial incisions for example, using image differencing. From a visual 

inspection point of view, one difficulty encountered is that features used for 

classification may not always be apparent. For example, in determining the 

shape properties of an incision, the sometimes low contrast of the incision in an 

image made its segmentation difficult, although the use of directional ring 

lighting facilitated its segmentation. In the visual inspection of an incision, the 

presence of a dark line that is characteristic of a complete incision is sometimes 

not obvious. Nevertheless, the use of this feature was able to give reasonably 

good misclassification error rates, and crucially without any false positives.  

The use of computer vision techniques for the visual inspection of the 

outcome of surgical actions has shown promising results, suggestive of its 

potential use in an operating theatre. Although only low-level image features 

were used, it was possible to distinguish the two possible outcomes, complete 

and incomplete, for the surgical actions under consideration, which have been 

demonstrated by experiments on cadaveric pig heads. In particular, the visual 

inspection of a burr hole, to distinguish between incomplete and complete burr 

holes, had a detection rate of over 97%. The visual inspection of a burr hole is 
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therefore sufficiently accurate to be potentially used in an automated inspection 

system.  

For the assessment of the retraction of an incision, the technique 

proposed, based on determining the maximum circular free space within the 

retracted incision by fitting the largest possible circle inside a region bounded 

by the edges of the incision and the prongs of the retractor, worked well in the 

images used in this study. It could potentially give better results if used in 

conjunction with directional lighting to facilitate edge detection. Although similar 

results may not necessarily extend to humans in a clinical environment, it is not 

inconceivable that the techniques developed can be applied in a clinical setting. 

The current work has laid the groundwork and foundation for the future 

development of these techniques.  

The concept of an intraoperative supervisory system with applications to 

robotic surgery was conceived and a niche where this system may be used for 

MISEN was identified. To the author‟s knowledge, the use of vision in this 

context has never been considered before, and is a novel contribution, 

representing the first application of computer vision in this area. The use of 

computer vision however, should not be viewed in isolation, as it is intended to 

augment/complement these other sensory sources for a more comprehensive 

assessment of a surgical action. This system has the potential to afford robotic 

surgery systems greater autonomy and a greater level of safety. The use of a 

visual sensor will also improve the reliability and robustness of these systems, 

which traditionally only employs force, torque and positional sensors, by 

introducing redundancy in its sensor space.  

The science in automated inspection has advanced to a stage where its 

application in the operating theatre is no longer a distant reality. The future of 

the proposed concept of an intraoperative supervisory system is exciting, has 

tremendous potential and holds great promise. Intraoperative supervisory 

systems and similar systems, for greater situational awareness and confidence, 

will probably be increasingly developed and applied to robotic surgery systems 

in the near future, as it has the potential improve current practice in these 

systems.  
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7.2 Recommendation for future work 

In the next section, the future directions for the two strands of research in 

this thesis are suggested, to further their development for eventual use in the 

MISEN system. While the concepts and techniques suggested have been 

developed with MISEN in mind, they may extend to other areas such as the 

earlier example on the use of the intraoperative assessment system for surgical 

training.  

For the automatic localisation of anatomical soft tissue landmarks in CT 

images, a potential application is in the processing of large databases of CT 

images such as craniofacial databases. These databases provide a standard 

craniofacial measurement of the normal population and stores craniofacial 

information such as standard anthropomorphic and anatomic measurement, 

typically merging data from a variety of image acquisition modalities such as 

close range photogrammetry, 3D close range laser scanning, and CT. A typical 

patient model would incorporate data from all these modalities to provide a 

comprehensive craniofacial model. To merge CT data with close range 

photogrammetry data for example, an expert would have to identify surface 

analogues of bone landmarks on CT and corresponding points on close range 

photogrammetry images for rigid point based registration. Automation of this 

annotation step would facilitate the registration of these two modalities. 

7.2.1 Image to patient registration 

While the medial canthus and tragus are the most geometrically salient 

among the commonly used anatomical landmarks of the head, the use of other 

landmarks in addition to these should be considered, as registration accuracy is 

a function of the number of landmarks used. However, as registration accuracy 

does not improve considerably after five or six fiducials, an additional two 

landmarks should be considered. Potential landmarks that may be used include 

the lateral canthus and the soft tissue nasion. However, the problems 

associated with the use of these landmarks for registration, such as deep-set 

wrinkles masking the true location of the lateral canthus and the fact that the 



189 

 

soft tissue nasion can usually only be found in patient space by palpation, have 

yet to be resolved. 

A limitation of the proposed registration framework is that the required 

anatomical landmarks i.e. medial canthus and tragus may be unreliable or 

absent, as would be the case in the occurrence of facial/head trauma that 

distorts a patient‟s normal anatomy. In this circumstance, the registration may 

be performed using skin-affixed markers, although this would mean that the 

patient would be required to undergo a secondary scan. Future work in this 

area therefore would have to focus on an alternative image to patient 

registration framework that is not based on anatomical landmarks. Techniques 

based on mutual information and photo consistency are the most promising, 

and research should be focused on a means of validating the registration. 

On registration accuracy, while the user can validate and correct for an 

error in the localisation of the medial canthus and tragus prior to the surgical 

intervention, the target registration error, which is a more significant measure, is 

unknown. Future work should look into a means of determining the expected 

target errors. 

7.2.2 Intraoperative assessment 

In this thesis, the visual inspection of the outcome of surgical action was 

based on the use of pig head cadavers, specifically images of the outcome of a 

surgical action from cadaveric dissection of pigs head. Although pigs are 

anatomically similar to humans in many respects, certain important aspects of 

the surgery could not be simulated. For example, any bleeding resulting from 

the skin being incised could not be simulated, as cadaveric skin has no blood 

supply. Therefore, although cadaveric dissection is the most realistic alternative 

to live surgery, the limitation in the use of cadavers is that it may not be 

representative of the conditions in actual surgery. In this case, the techniques 

developed here may not work in a clinical setting. Clinical trials or testing under 

conditions that are more realistic is therefore an obvious area of future work 

and essential before this system can be deployed in an operation theatre.  

Although images from live surgery would be the most realistic, unlike 

cadaver testing where an incomplete outcome may be performed, ethical and 
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practical considerations would prevent the same from being performed on 

humans. Alternatively, human cadavers, which would be more representative, 

could be used. However, this would mean that potentially important 

physiological processes such as bleeding could not be simulated as well. The 

use of live animals may be another possible avenue for testing, if ethical 

approval can be obtained.  

Another possible area of future work is to use temporal information from 

video images. In this work, only a snapshot view i.e. still image of the outcome 

was used. The use of temporal information has the potential to stop a surgical 

action being performed if it is deemed unsafe. In the current work, a surgical 

action would have to be already performed prior to visual inspection, with the 

goal being to validate task completion only. The subset of surgical tasks 

considered could also be expanded to include other tasks that are particularly 

suited for visual inspection.  

In this work, image scale was assumed to be known. However, this 

would not be the case in practice. The use of the prongs of the retractors has 

been suggested as a possible means to determine image scale. However, this 

is only applicable during the retraction of an incision, where the retractors are 

present in the image. When assessing the length of an incision, the retractors 

are not available in the image and an alternative method to determine image 

scale must be found. A possible solution is to introduce a calibration object for 

the purposes of determining scale in the image. The solution is less than ideal, 

as it would require a change in the process workflow. Another possible solution 

is to track instrument movement and infer image scale based on cross 

validating instrument travel with positional information obtained from encoders.  

Finally, the potential for using a similar system in the context of surgical 

training for teaching trainee surgeon was mentioned. The use of such a system 

has the potential to replace a trained surgeon, for assessing the skills of a 

trainee. This was based on the assumption that the outcome of a surgical 

action can be used as an indication of surgical skill. An intraoperative system 

such as the one proposed in this thesis could be a viable alternative to the 

subjective assessment of surgical skills by a surgeon, or where a skilled 

surgeon may not be available. For assessing surgical skill, the inspection 

criteria has to be defined explicitly and features representative of the different 
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skills be identified. More demanding and complex surgical tasks would require 

expert knowledge to identify these features as well as the basis for assessment, 

as they may not always be known explicitly. 
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Appendix B 

Illustrative examples of the output of 

the complete incision detection 

method for complete incisions 
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Appendix C 

Illustrative examples of the output of 

the complete incision detection 

method for marginal incisions 
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Appendix D 

Illustrative examples of a correctly 

fitted circle within a retracted 

incision 
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