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Abstract

It has recently been shown that the incorporation of weight restrictions in models of data
envelopment analysis (DEA) may induce free or unlimited production of output vectors in
the underlying production technology, which is expressly disallowed by standard production
assumptions. This effect may either result in an infeasible multiplier model with weight
restrictions or remain undetected by normal efficiency computations. The latter is poten-
tially troubling because even if the efficiency scores appear unproblematic, they may still
be assessed in an erroneous model of production technology. Two approaches to testing
the existence of free and unlimited production have recently been developed: computational
and analytical. While the latter is more straightforward than the former, its application is
limited only to unlinked weight restrictions. In this paper we develop several new analytical
conditions for a larger class of unlinked and linked weight restrictions.
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1. Introduction

The constant and variable (CRS and VRS) models of data envelopment analysis (DEA)
can be stated in the form of mutually dual envelopment and multiplier linear programs
(Charnes et al. 1978, Banker et al. 1984, Cooper et al. 2007, Thanassoulis et al. 2008).
The DEA envelopment programs are usually interpreted using the notion of production
technology generated by the set of observed units. The DEA multiplier models employ the
dual approach based on the use of variable input and output weights.

It is well-known that the incorporation of additional weight restrictions in multiplier
DEA models generally results in the expansion of the production technology (Roll et al.
1991, Allen et al. 1997). This shifts the production frontier away from the observed units
and leads to their lower efficiency. Therefore, the use of weight restrictions generally im-
proves the discrimination of DEA models on efficiency, which is considered desirable in many
applications.

The use of weight restrictions may lead to the infeasibility of the multiplier models (Allen
et al. 1997). In a recent paper, Podinovski and Bouzdine-Chameeva (2013) show that such
an infeasibility translates into the existence of free or unlimited production of vectors of
outputs in the production technology. They also show that even if the multiplier model is
feasible for each observed unit under the assessment, the use of weight restrictions may still
induce free or unlimited production, although this effect may be undetected by standard
calculations.
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Free and unlimited production is expressly disallowed by established axiomatic charac-
terizations of technology—see, e.g., Färe et al. (1985). The ability of weight restrictions
to induce free or unlimited production in the underlying technology without being detected
is troubling. Indeed, even if the results of efficiency computations with weight restrictions
appear normal and unsuspicious, the model of technology may still violate one of the basic
production assumptions.

In this paper we call weight restrictions consistent with the set of observed units if their
incorporation in the multiplier DEA model does not create free and unlimited production.
Otherwise, the weight restrictions are referred to as inconsistent.

Because inconsistent weight restrictions may be impossible to detect by standard calcula-
tions of efficiency, we need to have a method that allows us to verify if this problem occurs,
so that the weight restrictions could be reassessed. Podinovski and Bouzdine-Chameeva
(2013) develop two approaches for testing the existence of free and unlimited production.

The general computational approach requires solving either a single specially constructed
envelopment model with the original data set or, alternatively, several standard envelopment
models with an extended set of observed units.

The analytical approach requires verifying that there exist strictly positive input and
output weights that satisfy the weight restrictions, or a slightly relaxed similar condition.
However, unlike the general computational approach, this analytical condition applies only
if the weight restrictions are unlinked, i.e., if the weight restrictions are specified separately
for the input and output weights.

The purpose of this paper is to develop more general necessary and sufficient analytical
conditions that extend to a larger class of unlinked and linked weight restrictions. These
new conditions make it unnecessary to formulate, program and solve the nonstandard linear
programs required by the above general computational approach. It should be noted that the
new sufficient analytical conditions do not extend to the types of linked weight restrictions
whose consistency depends on the particular set of observed units. The consistency of such
types of weight restrictions may be verified by the existing computational approaches.

2. Preliminaries

Assume there are N observed units (Xj, Yj), where Xj ∈ Rm
+\{0} is the vector of inputs

and Yj ∈ Rs
+\{0} is the vector of outputs, for all j = 1, . . . , N . Denote Ω the set of observed

units (the data set).
The CRS and VRS multiplier DEA models are stated in terms of variable vectors of

input and output weights v ∈ Rm
+ and u ∈ Rs

+. The use of additional weight restrictions in
such models is a common technique that aims at reducing the flexibility of input and output
weights (Allen et al. 1997).1

Below we consider the case of homogeneous weight restrictions2

Q⊤
t u− P⊤

t v ≤ 0, t = 1, . . . , K. (1)

1Our development concerns the standard CRS and VRS models. In particular, it is assumed that the
inputs and outputs are nonnegative and satisfy the assumption of free disposability. As discussed in the
concluding section, our results also extend, without any modification, to a variety of other DEA models
that are based on the same standard CRS and VRS technologies and differ only in the way the units are
projected on their boundaries. The extension of our results to DEA models based on technologies other than
the standard CRS and VRS technologies requires further research that goes beyond the scope of this paper.
In particular, this includes models with negative output values and technologies based on the assumption
of weak disposability of bad outputs.

2Homogeneous weight restrictions, unlike, for example, absolute weight bounds, have constant 0 on the
right-hand side of (1).
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In (1), Qt ∈ Rs and Pt ∈ Rm are constant vectors whose component can be positive,
negative or zero. If, for a particular t, both vectors Qt and Pt are nonzero, the corresponding
weight restriction in (1) is referred to as linked. Otherwise, if one of the two vectors is zero
(or missing), the weight restriction is unlinked.3

Under the assumption of CRS and subject to weight restrictions (1), the output radial
efficiency of the unit (Xo, Yo) is the inverse to the optimal value η∗ of the following multiplier
model:

η∗ = min X⊤
o v (2.1)

subject to Y ⊤
o u = 1, (2.2)

Y ⊤
j u−X⊤

j v ≤ 0, j = 1, . . . , N, (2.3)

Q⊤
t u− P⊤

t v ≤ 0, t = 1, . . . , K, (2.4)

u, v ≥ 0. (2.5)

Similarly, the CRS input radial efficiency of the unit (Xo, Yo) is equal to the optimal
value θ∗ in the following program:

θ∗ = max Y ⊤
o u

subject to X⊤
o v = 1, and (2.3)–(2.5).

(3)

Under the assumption of VRS, models (2) and (3) include an additional sign-free variable
u0 and require a straightforward modification.4

3. Production trade-offs

The effect of the incorporation of weight restrictions (1) in multiplier DEA models may
be illustrated by observing the corresponding changes to their dual models. For example,
the dual to model (2) is the output-oriented envelopment model

η∗ = max η (4.1)

subject to
N∑
j=1

λjXj +
K∑
t=1

πtPt + SX = Xo, (4.2)

N∑
j=1

λjYj +
K∑
t=1

πtQt − SY = ηYo, (4.3)

λ, π, SX , SY ≥ 0, η sign free. (4.4)

In the above program, λ = (λ1, . . . , λN) is the intensity vector corresponding to inequali-
ties (2.3), π = (π1, . . . , πK) is the vector of dual variables to inequalities (2.4), and SX ∈ Rm

and SY ∈ Rs are the vectors of input and output slack variables, respectively.

3Unlinked weight restrictions are also referred to as assurance region of type I or polyhedral cone ratio
(Charnes et al. 1989). Linked weight restrictions are assurance region of type II (Thompson et al. 1990).

4See, e.g., models (8) and (9) in Podinovski and Bouzdine-Chameeva (2013).
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Similarly, the dual to model (3) is the input-oriented envelopment model:

θ∗ = min θ (5.1)

subject to
N∑
j=1

λjXj +
K∑
t=1

πtPt + SX = θXo, (5.2)

N∑
j=1

λjYj +
K∑
t=1

πtQt − SY = Yo, (5.3)

λ, π, SX , SY ≥ 0, θ sign free. (5.4)

The first group of terms with variables λj on the left-hand side of equalities (4.2), (4.3)
and (5.2), (5.3) describes a composite unit in the standard CRS technology. This unit is
further modified by the terms

(Pt, Qt), t = 1, . . . , K, (6)

used in proportions πt ≥ 0. Following Podinovski (2004), the terms (6) may be interpreted
as production trade-offs. Such trade-offs describe simultaneous changes to the inputs and
outputs of the units in the CRS technology and lead to its expansion.5

It is clear that both the output-oriented model (4) and input-oriented model (5) assess
the efficiency of the unit (Xo, Yo) in the same CRS technology extended by production
trade-offs (6) (or equivalent to them weight restrictions (1)). This technology is defined as
follows.6

Definition 1. The CRS technology with production trade-offs (6), denoted TCRS−TO, is the
set of all units (X, Y ) ∈ Rm

+ × Rs
+ for which there exist intensity vectors λ ∈ RN

+ , π ∈ RK
+ ,

and slack vectors SX ∈ Rm
+ and SY ∈ Rs

+ such that

N∑
j=1

λjXj +
K∑
t=1

πtPt + SX = X,

N∑
j=1

λjYj +
K∑
t=1

πtQt − SY = Y.

(7)

Note that Definition 1 requires that the units of technology TCRS−TO be nonnegative,
and this condition is missing from both envelopment models (4) and (5). In the former
model this does not cause any problems: because η is maximized, the unit (Xo, η

∗Yo) is
nonnegative and is in TCRS−TO, provided (Xo, Yo) is nonnegative. In program (5) the factor
θ is minimized and may theoretically become negative. It is straightforward to prove that
in such cases the optimal value of the CRS model (5) is unbounded. This is equivalent to
the infeasibility of the dual multiplier model (3) and indicates an error in the formulation
of weight restrictions (1). Therefore, the latter need to be revisited.

Under the assumption of VRS, the output and input-oriented models (4) and (5) include
the additional normalizing equality

N∑
j=1

λj = 1. (8)

5Examples of trade-offs that correspond to homogeneous and non-homogeneous weight restrictions are
discussed in Podinovski (2007a) and (2005). Computational algorithms for DEA models with weight restric-
tions and production trade-offs are developed in Podinovski (2007b).

6An axiomatic definition of this technology is given in Podinovski (2004).
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Similar to the above, we observe that both VRS models assess the efficiency of the
unit (Xo, Yo) in the VRS technology TV RS−TO that incorporates production trade-offs (6).
The definition of this technology is similar to Definition 1, where we require the additional
condition (8) to be true.

Example 1. The shaded area in Figure 1 shows the VRS technology with a single input
and single output, generated by two observed units A and B. Suppose we have specified two
linked weight restrictions, where v1 and u1 are the input and output weights, respectively:

u1 − 2v1 ≤ 0, (9.1)

−u1 + v1 ≤ 0. (9.2)

These two weight restrictions are special cases of (1). Comparing the latter with (6),
the incorporation of weight restrictions (9) in the VRS multiplier model is equivalent to the
incorporation of the following two production trade-offs in the VRS envelopment model:

(P1, Q1) = (2, 1), (10.1)

(P2, Q2) = (−1,−1). (10.2)

Production trade-offs (10) expand the original VRS technology depicted in Figure 1.
According to formula (7) (used together with the normalizing equality (8)), these trade-offs
can be applied to any unit in the VRS technology and in any proportion πt ≥ 0 (or any
number of times), provided the resulting unit is nonnegative.

For example, consider trade-off (10.1). Starting at unit A in Figure 1, and applying this
trade-off once, we add 2 units to the input and simultaneously add 1 unit to the output.
This results in unit D. Continuing this process and allowing the trade-off to be used in
any proportions π1 ≥ 0, we add the ray AL to the technology. By the assumption of free
disposability of output, the area below this ray is also added to the technology.

Similarly, starting at A and applying trade-off (10.2) once, we obtain unit K. Applying
the same trade-off in different proportions π2 ≥ 0 and observing the nonnegativity of the
resulting units, we generate the line WA. By free disposability, this automatically adds the
area below this line to the expanded technology.

We can also apply trade-offs (10) to any other unit in the (expanded) VRS technology,
e.g., to unit B. However, in our example this does not add new points to technology. Overall,
the technology TV RS−TO is the area below the line WAL and above the horizontal axis. The
new efficient frontier is the line WAL.

We finally note that the incorporation of weight restrictions (9) in the multiplier DEA
model or, equivalently, the incorporation of the corresponding production trade-offs (10)
in the dual envelopment model results in an improved discrimination on efficiency. While
in the original VRS model both observed units A and B are efficient, in the model with
weight restrictions only A remains efficient and unit B is not. For example, in the output
orientation, the efficient target of unit B is unit K.

4. Free and unlimited production

One of well-known potential problems with weight restrictions is that their incorpora-
tion in the multiplier model may result in its infeasibility. This of course means that the
weight restrictions need to be reassessed. Recently, Podinovski and Bouzdine-Chameeva
(2013) linked this problem to the existence of free or unlimited production in the technology
expanded by the trade-offs (6).

Let Yo ∈ Rs
+, Yo ̸= 0, be a vector of outputs.
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Figure 1: Technology TV RS−TO defined by units A and B, and two linked weight restrictions.

Definition 2. Technology T allows free production of vector Yo if (Xo, Yo) ∈ T , where
Xo = 0.

Definition 3. Technology T allows unlimited production of vector Yo if there exists a vector
of inputs Xo such that (Xo, αYo) ∈ T , for all α ≥ 0.

The free and unlimited production is not allowed by established definitions of production
technology (Färe et al. 1985). In the case of technologies TCRS−TO and TV RS−TO, the
existence of free or unlimited production indicates that we made an error in the construction
or assessment of weight restrictions.7

Podinovski and Bouzdine-Chameeva (2013) give several examples illustrating the fact
that the incorporation of unlinked and linked weight restrictions may generate free and
unlimited production in the CRS and VRS technologies. In some cases this problem is
apparent from the normal computations of efficiency, for example, if the multiplier models
are infeasible. However, it is also possible that the problem with weight restrictions may
not be apparent. Below we give an additional example that illustrates these observations.

Example 2. Consider the VRS technology generated by observed units A and B and shown
as the shaded area in Figure 2. This technology is obtained by shifting the VRS technology
in Figure 1 to the left by 3 units of input. Let us show that the same weight restrictions (9)
that were unproblematic in Example 1, induce free production in the current example.

As in Example 1, weight restrictions (9), or equivalent to them trade-offs (10), generate
the lines AL and AF which are added to the technology.8 Note that this creates free
production: point F corresponds to the production of 2 units of output from zero input.

This example leads to several observations.
First, the same weight restrictions may be unproblematic for one set of observed units

(Figure 1) and induce free production for another (Figure 2).

7In practice, it may also be worth checking whether the inputs and outputs are properly specified. For
example, a missing input may cause free production in both technologies TV RS−TO and TCRS−TO, while in
reality there may be none because not all resources (inputs) are accounted for.

8The points on the segment WF have a negative input. By the definition of the VRS technology with
production trade-offs (Definition 1 with condition (8)) such units are not members of technology TV RS−TO.
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Figure 2: Free production in technology TV RS−TO with linked weight restrictions.

Second, we may not always be able to observe any problems with the weight restrictions
by looking at the efficiency calculations or efficient targets. As an illustration, in technology
TV RS−TO in Figure 2, unit A is efficient. Unit B is inefficient and its efficiency score does not
appear problematic. For example, in the output orientation, unit B is projected onK and its
output radial efficiency is equal to 0.6. Yet, the boundary FA is a result of an unacceptable
weight restriction (9.2). Therefore, the efficiency of unit B obtained by projection on this
boundary is incorrect.

Third, if weight restrictions induce free production, the results of efficiency calculations
may be puzzling and meaningless from a practical point of view. To see this, assume that
unit C is also observed—this does not affect the technology. Its output radial efficiency
is not problematic, although it is understandably very low due to the low level of output
at C. However, in the input orientation, unit C is projected on the boundary point G,
and the input radial efficiency of C is 0. Furthermore, the envelopment model (5) with
the additional VRS constraint (8) projects C on the unit H, and the resulting input radial
“efficiency” is −1/5 = −0.2. (This is because program (5), as the dual to the multiplier
model (3), does not specify a nonnegativity condition on θ.) Using the multiplier model
instead of the envelopment model would obviously produce the same “efficiency” −0.2 of
the unit C.9

The notions of free and unlimited production in the CRS and VRS technologies are closely
related to each other, which facilitates the testing of whether any given weight restrictions
are problematic in this respect. The following two theorems proved in Podinovski and
Bouzdine-Chameeva (2013) clarify this issue.

9It might appear that the problem of negative efficiency θ∗ = −0.2 may be treated by the incorporation
of inequality θ ≥ 0 in program (5). Note that this approach would not make the problematic weight
restrictions (9) right: the latter would still induce free production in the expanded technology. Furthermore,
in the so modified envelopment program the input radial efficiency of C would be equal to 0 (i.e., θ∗ = 0),
which is meaningless. Furthermore, the modified envelopment program would no longer be dual to the
standard multiplier model.
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Theorem 1. Technology TCRS−TO allows free production of vector Yo if and only if it allows
its unlimited production.

Note that Theorem 1 does not hold in the VRS technology TV RS−TO. For example,
technology TV RS−TO in Figure 2 allows free production but does not allow unlimited pro-
duction.10

Theorem 2. The existence of free and, therefore, unlimited production of the output vector
Yo in technology TCRS−TO is equivalent to the existence of either free or unlimited production
of vector Yo (but not necessarily both) in technology TV RS−TO.

Let us point out two important implications of Theorems 1 and 2.
First, if weight restrictions (1) are problematic (causing free or unlimited production) in

either the CRS or VRS model, then the same weight restrictions are problematic in the other
model. Reversing this statement, if the weight restrictions do not cause free or unlimited
production in one of the two models, then they do not cause a problem in the other.

Second, to see if weight restrictions induce free or unlimited production in either CRS
or VRS model of technology, it suffices to test only for the existence of free production in
the CRS model.

5. Consistent weight restrictions

It is straightforward to verify that, if Xj ̸= 0 for all observed units j = 1, . . . , N (which
was assumed above), the standard CRS and VRS technologies do not allow free and unlimited
production. Examples in Podinovski and Bouzdine-Chameeva (2013) and the above Example
2 show that the incorporation of weight restrictions may induce free or unlimited production
in the expanded technology.

Definition 4. For a given set of observed units Ω, weight restrictions (1) are consistent if
the technology TCRS−TO does not allow free production. Otherwise weight restrictions (1)
are inconsistent. (Equivalently, the dual trade-offs (6) are consistent in the former case and
inconsistent in the latter.)

Several comments are worth making with regard to the above definition.

• By Theorem 1, weight restrictions (1) are consistent if and only if technology TCRS−TO

does not allow unlimited production. Equivalently, by Theorem 2, weight restric-
tions (1) are consistent if and only if technology TV RS−TO does not allow free and
unlimited production.

• As Examples 1 and 2 show, the same weight restrictions may be consistent for one set
of observed units Ω and inconsistent for another set Ω′. Our main results proved in
the next section identify a large class of weight restrictions whose consistency does not
depend on the data set. This expands the earlier result of Podinovski and Bouzdine-
Chameeva (2013) stating that the consistency of unlinked weight restrictions does not
depend on the set of observed units.11

10In Figure 2, the CRS technology (induced by units A and B, and trade-offs (10)) is the nonnegative
quadrant R2

+ = {(x, y) | x, y ≥ 0}, where x is the input and y is the output. This technology obviously
allows free and unlimited production, for example, of the output y = 2.

11The fact that weight restrictions are consistent irrespective of the data set only means that they do not
induce free and unlimited production in the technology. This does not guarantee that the weight restrictions
constructed for some data set Ω remain meaningful in a model based on a different data set Ω′. For example,
weight restrictions constructed for a data set involving only research-active universities may need adjustment
for a set of universities without a strong research agenda, even if the same inputs and outputs are specified.
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• If for at least one observed unit (Xo, Yo) the output or input-oriented multiplier
model (2) or (3) is infeasible, the weight restrictions (1) are inconsistent.12 More gen-
erally, the use of inconsistent weight restrictions may also result in strangely-looking
and puzzling outcomes of efficiency calculations (as for unit C in Example 2). All such
outcomes (generally different for the cases of CRS and VRS) are stated in Theorems 3
and 4 in Podinovski and Bouzdine-Chameeva (2013). Weight restrictions (1) may also
be inconsistent even if there are no apparent problems. An illustration to this is Ex-
ample 2 in which the input and output radial efficiencies of the observed units A and
B are unsuspicious finite values.

6. Conditions for consistent weight restrictions

Podinovski and Bouzdine-Chameeva (2013) obtained a necessary and sufficient condition
for consistent unlinked weight restrictions. Below we extend this condition to include linked
weight restrictions that satisfy certain additional assumptions. For this purpose, we restate
weight restrictions (1) in the following detailed form:

Q⊤
t1
u ≤ 0, t1 = 1, . . . , K1, (11.1)

− P⊤
t2
v ≤ 0, t2 = 1, . . . , K2, (11.2)

Q⊤
t3
u− P⊤

t3
v ≤ 0, t3 = 1, . . . , K3. (11.3)

We assume that inequalities (11.3) are linked weight restrictions: Pt3 ̸= 0 and Qt3 ̸= 0
for each t3 = 1, . . . , K3.

The practical use of weight restrictions (11) that include linked restrictions, has been
demonstrated in different contexts. For example, Thanassoulis et al. (1995) used such
weight restrictions in an application of DEA to the provision of perinatal care in England.13

Podinovski (2007a), Khalili et al. (2010) and Santos et al. (2011) used this type of weight
restrictions in the context of university departments, secondary schools and electricity dis-
tribution utilities, respectively.

Theorem 3 (A necessary condition of consistency). Let Ω be the set of observed units. If
the weight restrictions (11) are consistent (for the given Ω), then there exist vectors u∗ and
v∗ that satisfy (11) and the following two conditions:

(i) u∗ > 0,
(ii) v∗ ≥ 0, X⊤

j v
∗ > 0 for all j = 1, . . . , N .

It is worth pointing out that the vectors u∗ and v∗ in Theorem 3 and in the results stated
below are not required to satisfy any constraints of the multiplier programs (2) or (3), except
the weight restrictions (11).

Also note that, if all inputs of all observed units are strictly positive, e.g. Xj > 0 for all
j = 1, . . . , N , then condition (ii) of Theorem 3 is equivalently stated as v∗ ≥ 0, v∗ ̸= 0.

The following result shows that the necessary conditions of Theorem 3 become necessary
and sufficient if all components of vectors Pt3 , t3 = 1, . . . , K3, are nonnegative.

12By duality, the infeasibility of the output-oriented multiplier model (2) is equivalent to the unboundness
of the objective function of the corresponding envelopment model (4). The latter implies unlimited produc-
tion of the output vector Yo. The infeasibility of the input-oriented multiplier model (3) also indicates either
free or unlimited production (Podinovski and Bouzdine-Chameeva 2013).

13The linked weight restriction used by Thanassoulis et al. (1995) is an equality. It is equivalently restated
as two inequalities (11.3).
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Theorem 4 (A necessary and sufficient condition of consistency). Let all vectors Pt3 ≥ 0, for
all t3 = 1, . . . , K3, and let Ω be the set of observed units. Then the weight restrictions (11)
are consistent (for the given Ω) if and only if there exist vectors u∗ and v∗ that satisfy (11)
and conditions (i) and (ii) of Theorem 3.

If the linked weight restrictions (11.3) are not specified, the assumption of Theorem 4
that all vectors Pt3 are nonnegative is removed from the formulation, and the above result
becomes Theorem 8 proved in Podinovski and Bouzdine-Chameeva (2013).

Corollary 1. Let Pt3 ≥ 0 for all t3 = 1, . . . , K3. If there exist vectors u∗ > 0 and v∗ > 0
that satisfy (11), then the weight restrictions (11) are consistent, for any set of observed
units Ω.

Corollary 2. Assume that only the linked weight restrictions (11.3) are specified, and the
unlinked weight restrictions (11.1) and (11.2) are missing from (11). Let Pt3 ≥ 0 for all
t3 = 1, . . . , K3. (Also, as assumed above, Pt3 ̸= 0 for all t3.) Then the linked weight
restrictions (11.3) are consistent, for any set of observed units Ω.

It is worth noting that the validity of assumptions of Corollaries 1 and 2 depends only
on the weight restrictions (11) and does not depend on the set of observed units Ω. If such
assumptions are true, the weight restrictions are, as stated, consistent for any Ω.

The next result applies to a larger class of weight restrictions (11) than the class identified
in Theorem 4. Specifically, it relaxes the assumption that all vectors Pt3 are nonnegative.
It is, however, only a sufficient condition.14

Theorem 5 (A sufficient condition of consistency). Let Ω be the set of observed units. Sup-
pose there exist vectors u∗ and v∗ that satisfy the inequalities (11), conditions (i) and (ii) of
Theorem 3 and such that P⊤

t3
v∗ ≥ 0 for all t3 = 1, . . . , K3. Then the weight restrictions (11)

are consistent (for the given Ω).

7. Examples

The following examples clarify the application of the theoretical results obtained in the
previous section. We use notation vi for input weights and ur for output weights.

Example 3 (Illustration to Theorem 3). Assume there are two inputs and one output.
Consider the following two weight restrictions:

v1 − v2 ≤ 0, 2u1 − v1 + v2 ≤ 0. (12)

It is straightforward to show that the weight restrictions (12) are inconsistent for any set
of observed units Ω. Indeed, by adding the two inequalities (12), we obtain

2u1 ≤ 0.

Therefore, the necessary condition (i) of Theorem 3 cannot be satisfied and the weight
restrictions (12) are inconsistent for any Ω.

14As an illustration, consider weight restrictions (9). As shown in Example 1, these weight restrictions do
not induce free or unlimited production in the VRS technology (in Example 1) and therefore (by Theorem 2)
in the corresponding CRS technology. However, noting (10.2), P2 = (−1), and the product P⊤

2 v < 0 for any
v > 0. This shows that the conditions of Theorem 5 are not necessary for the absence of free production.

10



Example 4 (Illustration to Corollary 1). Assume there are two inputs and two outputs.
Consider the following three weight restrictions:

−u1 + u2 ≤ 0, v1 − v2 ≤ 0, 2u1 − v1 ≤ 0. (13)

The first two weight restrictions in (13) are unlinked. The third weight restriction is
linked and, formally, Q3 = (2, 0)⊤ and P3 = (1, 0)⊤. Note that vector P3 satisfies the
nonnegativity assumption P3 ≥ 0 of Corollary 1. Furthermore, strictly positive weights u∗

1 =
u∗
2 = 1 and v∗1 = v∗2 = 2 satisfy all inequalities (13). By Corollary 1, weight restrictions (13)

are consistent for any set of observed units Ω.

Example 5 (Illustration to Corollary 2). The single weight restriction (9.1) used in Exam-
ples 1 and 2 satisfies the conditions of Corollary 2. Therefore, this single weight restriction
may be used in the CRS and VRS DEA models and will not induce free or unlimited pro-
duction, for any Ω.

Example 6 (Illustration to Theorem 5). Assume that the weight restrictions (12) from
Example 3 have been modified as follows:

v1 − v2 ≤ 0, 2u1 + v1 − v2 ≤ 0. (14)

The second of these weight restrictions is linked and the corresponding vector P =
(−1, 1)⊤. Note that this does not satisfy the conditions of Theorem 4 and Corollaries 1
and 2. Let us show that all conditions of Theorem 5 are satisfied. Indeed, define u∗

1 = 1,
v∗1 = 1 and v∗2 = 3. Then the inequalities (14) and both conditions (i) and (ii) of Theorem 3
are satisfied. Moreover,

P⊤v∗ = (−1, 1)(1, 3)⊤ = −1 + 3 = 2 > 0.

By Theorem 5, weight restrictions (14) are consistent for any set of observed units Ω.

Example 7 (Analytical conditions do not apply). Consider the weight restrictions that
specify the lower and upper bounds on the ratio of an output to input weight:

a ≤ u1

v1
≤ b,

where b ≥ a ≥ 0 are some constants. This can be restated as

−u1 + av1 ≤ 0, u1 − bv1 ≤ 0. (15)

Note that weight restrictions (9) in Examples 1 and 2 are of this type. The first linked
weight restriction in (15) does not satisfy the assumptions of Theorems 4 and 5.15 Therefore,
these theorems cannot be used to verify if the weight restrictions (15) are consistent. In a
practical application, the consistency of such weight restrictions would, as in Examples 1
and 2, depend on the set of observed units Ω and could be tested using the computational
method of Podinovski and Bouzdine-Chameeva (2013).

Example 8 (Virtual weight restrictions). This type of weight restrictions, introduced by
Wong and Beasley (1990), puts the lower and upper limits on the proportion of any virtual

15For this inequality, P1 = (−a) < 0, which violates the assumption of Theorem 4. Because P⊤
1 v∗ =

−av∗ < 0 for any v∗ > 0 (the latter required by condition (ii) of Theorem 3), Theorem 5 does not apply
either.
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Table 1: University departments.

Department Staff UG students Master students Publications

D1 45 400 50 39

D2 78 1500 450 62

D3 55 700 120 26

D4 61 1000 0 10

D5 89 1590 180 139

input or output in relation to the total virtual input or, respectively, output. For example,
let Yjr∗ be output r∗ of the unit j. Then we can require that the proportion of the virtual
output Yjr∗ur∗ be within the range

ar∗ ≤ Yjr∗ur∗/Y
⊤
j u ≤ br∗ , (16)

where ar∗ and br∗ are constant scalars such that 0 ≤ ar∗ ≤ br∗ ≤ 1.
After a straightforward linearization, output virtual weight restrictions (16) and their

input analogues become unlinked weight restrictions (11.1) and (11.2), respectively. There-
fore, the consistency of virtual weight restrictions can be verified by the general results
obtained in Section 6 or using the computational methods developed in Podinovski and
Bouzdine-Chameeva (2013).

8. Numerical example

The following hypothetical example illustrates the results of this paper. Table 1 shows
five academic departments from different universities that specialize in the same area of
knowledge, e.g., departments of economics. For simplicity, let the single input be staff, and
let the three outputs be undergraduate (UG) students, master students and publications
per year.

To be specific, consider the output-oriented VRS model. The corresponding efficiency of
the five departments is shown in the second column of Table 2.

Consider the following four weight restrictions. These restrictions are constructed using
the trade-off approach illustrated in a similar context by Podinovski (2007a).

Trade-off/Weight restriction 1. We assume that any department can reduce the
number of master students by 1 and use the released teaching time to increase the number
of undergraduate students by 1, without asking for extra input (staff) and with no detriment
to the other outputs (publications).

To state this judgement as a trade-off, we define P1 = (0) and Q1 = (1,−1, 0)⊤. The
corresponding weight restriction is:16

u1 − u2 ≤ 0. (17)

Trade-off/Weight restriction 2. Similarly, assume that it is technologically feasible
for any department to reduce the number of undergraduate students by 2 and instead teach

16In transforming production trade-offs to weight restrictions, we use the relationship in the general form
between trade-offs (6) and weight restrictions (1).
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1 master student, without any change to staff and publications. The corresponding trade-off
is stated as P2 = (0) and Q2 = (−2, 1, 0)⊤, and is equivalent to the weight restriction

−2u1 + u2 ≤ 0. (18)

Trade-off/Weight restriction 3. We now consider a statement that links the input
to outputs. For example, suppose we accept that 1 extra member of staff is sufficient
to increase the number of undergraduate students by 10 and publications by 0.5. This
statement is represented by the trade-off P3 = (1) and Q3 = (10, 0, 0.5)⊤ and, equivalently,
by the linked weight restriction

10u1 + 0.5u3 − v1 ≤ 0. (19)

Trade-off/Weight restriction 4. Assume that a reduction of staff by 1 should not
lead to the reduction of more that 25 undergraduate students and more than 2 publications
per year. The corresponding trade-off is stated as P4 = (−1) and Q4 = (−25, 0,−2)⊤ and,
equivalently, by the linked weight restriction

−25u1 − 2u3 + v1 ≤ 0. (20)

Before using the above weight restrictions in the calculations of efficiency, let us check if
they are consistent with our data set.

If we want to use only the first three weight restrictions, their consistency follows from
Corollary 1. Indeed, in this case (19) is the only weight restriction among the three that is
linked, and the corresponding vector P3 = (1) ≥ 0, as required by Corollary 1. Furthermore,
all three inequalities (17)–(19) are simultaneously satisfied if, for example, we let

u∗
1 = u∗

2 = u∗
3 = 1, v∗1 = 11. (21)

Therefore, these weight restrictions are consistent. The third column of Table 2 shows
the output radial efficiency of the departments in the VRS model that incorporates weight
restrictions (17)–(19).

Obviously, any subset of the three weight restrictions is also consistent with the data
set.17 For example, we may use only the first two weight restrictions instead of all three.

Now consider all four weight restrictions (17)–(20) together. Because P4 = (−1), the
conditions of Theorems 4 and 5, and Corollaries 1 and 2 are not satisfied, and we cannot
use these results to check the consistency of the given weight restrictions. Note that the
conditions of Theorem 3 are satisfied, for example by the weights (21), but this is only a
necessary condition that does not imply the consistency of the four weight restrictions.18

The incorporation of weight restriction (20) alone or together with weight restrictions (17)–
(19) does not allow us to use the analytical criteria developed in this paper. In this case we
can use either of the two computational methods developed in Podinovski and Bouzdine-
Chameeva (2013). One of these requires the solution of the linear program (B.1) shown in
Appendix B. It has a finite optimal value which proves that the four weight restrictions (17)–
(20) are consistent with the set of observed departments.

The last column of Table 2 shows the output radial efficiency of all departments in the
VRS model with the four weight restrictions (17)–(20).

17It is clear that Corollary 1 is satisfied for any subset of the three weight restrictions (17)–(19). As an
alternative proof, we note that an omission of any weight restriction removes the corresponding trade-off in
the definition of technology and makes the latter generally smaller.

18As demonstrated in Example 3, the necessary condition of Theorem 3 is useful for the proof that weight
restrictions are inconsistent.
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Table 2: Output radial efficiency in different VRS models.

Weight restrictions

Department None (17)–(19) (17)–(20)

D1 1 1 0.76

D2 1 1 1

D3 0.94 0.91 0.69

D4 1 0.85 0.66

D5 1 1 1

Table 3: Efficiency with the inconsistent set of weight restrictions (17), (19), (20) and (22).

VRS CRS

Department Output Input Output Input
oriented oriented oriented oriented

D1 0.76 0.87 0.55 0.55

D2 0.53 0.65 0.51 0.51

D3 0.37 0.59 0.3 0.3

D4 0.12 0.4 0.1 0.1

D5 1 1 1 1

Now let us show how inconsistent weight restrictions may arise and be tested in the given
context.

Example 9. Suppose that we made a mistake and, instead of weight restriction (18), stated
the following inequality:

−u1 + 2u2 ≤ 0. (22)

The above corresponds to the trade-offs P̂2 = (0) and Q̂2 = (−1, 2, 0)⊤.
Table 3 shows the “efficiency” of the five departments in the output and input-oriented

VRS and CRS DEA models. Some of these scores appear low but otherwise not particularly
problematic. Note that, as expected, the computation results with the CRS model are
identical in the output and input orientations.

It is straightforward to verify that the use of weight restriction (22) instead of (18)
creates an inconsistent set of weight restrictions. Indeed, the four weight restrictions (17),
(19), (20) and (22) do not satisfy the necessary condition of consistency stated in Theorem 3.
To prove this, we add the inequalities (17) and (22) and obtain u2 ≤ 0. The latter contradicts
statement (i) of Theorem 3. Alternatively, we can use the computational approach based
on a model similar to (B.1) shown in Appendix B to establish the same result.

Example 10. In the above example the origin of inconsistency is obvious: the weight
restriction (22) is inconsistent with (17). The following example is more subtle. Suppose
we believe the judgement on which the weight restriction (20) is based is too relaxed. More
precisely, if staff is reduced by 1, the number of students should be reduced by no more
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Table 4: Efficiency and solver diagnostic for inconsistent set of weight restrictions (17)–(19) and (23).

VRS CRS

Department Output Input Output Input
oriented oriented oriented oriented

D1 0.53 0.51 unbounded 0

D2 1 1 unbounded 0

D3 0.59 0.59 unbounded 0

D4 0.62 0.57 unbounded 0

D5 1 1 unbounded 0

than 20, and publications by more than 1.5 per year.19 Therefore, we change (22) to the
following weight restriction:

−20u1 − 1.5u3 + v1 ≤ 0. (23)

The above corresponds to the trade-off expressed as P̂4 = (−1) and Q̂4 = (−20, 0,−1.5)⊤.
The incorporation of weight restrictions (17)–(19) and (23) in the VRS model does not

signal any obvious problems in either the input or output orientations. Table 4 shows the
corresponding efficiency scores. However, the calculations by the output-oriented CRS model
result in the unbounded objective function for all departments. By Definition 3 this means
the technology allows unlimited production and the weight restrictions are inconsistent.
Obviously, the computational test outlined in Appendix B also reveals the same result.

It is interesting to note that the two linked weight restrictions (19) and (23) used with-
out (17) and (18) are consistent with the set of observed departments in Table 1. However,
as demonstrated above, the set of all four weight restrictions is inconsistent.

Finally, the same four weight restrictions (17)–(19) and (23) that are inconsistent with
the data set in Table 1 become consistent if we change the number of staff of department D5
from 89 to 90 or more. This shows that the consistency of linked weight restrictions (11.3)
where the vector Pt3 has negative components, as in restriction (23), depends on the data
set of observed units.

9. Conclusion

In a recent paper, Podinovski and Bouzdine-Chameeva (2013) related the infeasibility
of multiplier DEA models with weight restrictions to the fact that the latter induce free or
unlimited production in the dual envelopment model. Furthermore, it was shown that the
infeasibility is only one of several possible outcomes of problematic weight restrictions. In
some cases the fact that weight restrictions cause free or unlimited production may not be
obvious from the standard efficiency computations.

If weight restrictions induce free or unlimited production (we call such weight restrictions
inconsistent), they need to be reassessed. It is therefore important to be able to test whether
the CRS or VRS technology with weight restrictions allows free or unlimited production.

19This view may be supported by the fact that the highest student-to-staff ratio is that of department D2
which is just over 19, and that the highest publication ratio of all departments is also well below 1.5, except
department D5 whose publication ratio is 1.56.
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Podinovski and Bouzdine-Chameeva (2013) developed two approaches, computational and
analytical, for this purpose. The latter applies only to unlinked weight restrictions, i.e.,
those that include only input or output weights in each inequality.

In this paper we extended the above analytical approach to the case that includes linked
weight restrictions. We formulated necessary and sufficient conditions for the consistency
of such weight restrictions and illustrated their use by examples. Outside this development
are left linked weight restrictions whose consistency depends on the particular data set of
observed units. The consistency of such weight restrictions can be verified using the known
computational approach.

The literature on DEA suggests that weight restrictions are predominantly used in the
standard CRS and VRS models that aim at the assessment of the input and output radial
efficiency. For this reason our results are presented in terms of these two models. However,
all these results extend in a straightforward way, without any modification, to many other
DEA models that are based on the same standard CRS and VRS technologies. Examples
include models based on directional distance function approach of Chambers et al. (1998),
DEA models for the assessment of cost and revenue efficiency, and additive DEA model and
its variations (see, for example, Thanassoulis et al. 2008).

All such models employ the same CRS or VRS technology and differ only in the way the
units are projected on its boundary. Furthermore, the incorporation of weight restrictions (1)
in the multiplier form of any of these models induces trade-offs (6) in the dual envelopment
form, exactly as in the standard CRS and VRS models considered in our paper. Therefore,
weight restrictions (1) and the corresponding trade-offs (6) are consistent in any of these
models (i.e., do not induce free and unlimited production in the technology) if and only if
they are consistent in the standard CRS and VRS models. This means that all analytical and
computational procedures developed in our paper, and earlier in Podinovski and Bouzdine-
Chameeva (2013), are applicable regardless of which of the above models is used for the
assessment of efficiency. This observation is of course not surprising: the absence of free
production is a characteristic of technology, which is separate from the way in which the
projection of inefficient units on the boundary is performed.
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Appendix A. Proofs

Lemma 1. Let (Xo, Yo) ∈ TCRS−TO and Yo ̸= 0. Technology TCRS−TO allows free production
of vector Yo if and only if program (2) is infeasible.

Proof of Lemma 1. By Theorem 1, free production of Yo is equivalent to its unlimited
production. The latter is equivalent to the unboundness of the optimal value of program (4)
and, by duality, to the infeasibility of (2).

Proof of Theorem 3. Let Γ be the set of solutions (u, v) to (11) such that u, v ≥ 0. Note
that (u, v) = (0, 0) ∈ Γ. Therefore, Γ ̸= ∅. Assume that there exists no (u, v) ∈ Γ such that
both conditions (i) and (ii) are true. We need to prove that TCRS−TO allows free production.
Under the assumption made, at least one of the following statements must be true:

(a) there exists an r∗ = 1, . . . , s such that, for all (u, v) ∈ Γ, the component ur∗ = 0;
(b) there exists an observed unit j∗ = 1, . . . , N such that, for all (u, v) ∈ Γ, X⊤

j∗v = 0.

Indeed, assume the converse: for each r = 1, . . . , s, there exists a solution (u(r), v(r)) ∈ Γ

such that u
(r)
r > 0. Similarly, for each j = 1, . . . , N , there exists a (u(j), v(j)) ∈ Γ such

that X⊤
j v

(j) > 0. Let (ũ, ṽ) ≥ 0 be the simple average of all s solutions (u(r), v(r)) and N

solutions (u(j), v(j)). Because Γ is a convex set, (ũ, ṽ) ∈ Γ. Note that ũ > 0 and, for every
j = 1, . . . , N , we have X⊤

j ṽ > 0. This contradicts the last assumption. Therefore, either
statement (a) or (b), or both, is true.

Let (a) be true. Let us prove that technology TCRS−TO allows free production of the
output vector Yo such that (Yo)r∗ = 1 and (Yo)r = 0, if r ̸= r∗. By Lemma 1 it suffices to
prove that program (2) is infeasible with (Xo, Yo), where Xo is a zero vector. By (a), ur∗ = 0
for any (u, v) ≥ 0 that satisfies weight restrictions (2.4). Then Y ⊤

o u = 0, and constraint (2.2)
cannot be satisfied.

Similarly, let (b) be true. Let us prove that TCRS−TO allows free production of Yj∗ . By
Lemma 1, it suffices to prove that program (2) is infeasible with (Xo, Yo), where Xo is a zero
vector and Yo = Yj∗ . By constraint (2.3) for j = j∗, we have Y ⊤

j∗u−X⊤
j∗v ≤ 0. By (b), we have

X⊤
j∗v = 0 and, therefore, Y ⊤

j∗u ≤ 0, for any (u, v) ≥ 0 that satisfies weight restrictions (2.4).
Therefore, it is impossible to satisfy (2.2), where Yo = Yj∗ , and program (2) is infeasible.

Proof of Theorem 4. Taking into account Theorem 3, we need to prove the sufficiency of
conditions (i) and (ii). Consider any unit (0, Yo), where Yo ≥ 0, Yo ̸= 0. We need to prove
that (0, Yo) /∈ TCRS−TO. By Lemma 1, it suffices to prove that (2) is feasible for (0, Yo).

Indeed, by condition (i), u∗ > 0. Therefore, Y ⊤
o u∗ > 0 and there exists an α > 0 such

that Y ⊤
o (αu∗) = 1. (More precisely, α = 1/(Y ⊤

o u∗) > 0.) By condition (ii), there exists a
sufficiently large β > 0 such that Y ⊤

j (αu∗) − X⊤
j (βv

∗) ≤ 0, ∀j = 1, . . . , N . Therefore, the
vectors of input and output weights defined as

u = αu∗, v = βv∗ (A.1)

satisfy constraints (2.2) and (2.3). The weight restrictions (11.1) and (11.2) are also satis-
fied. It remains to be proved that, by choosing a sufficiently large β > 0, we can satisfy
conditions (11.3). Consider any t3 = 1, . . . , K3. Because P⊤

t3
≥ 0, two possibilities arise.

If P⊤
t3
v∗ = 0 then, because (u∗, v∗) satisfies (11.3), Q⊤

t3
u∗ ≤ 0. Therefore, P⊤

t3
(αv∗) = 0,

Q⊤
t3
(βu∗) ≤ 0, and the weights (u, v) defined by (A.1) satisfy (11.3).
If P⊤

t3
v∗ > 0, the weights (u, v) defined by (A.1) satisfy (11.3) for all sufficiently large

β > 0.
We have proved that the pair (u, v) defined by (A.1), where β > 0 is sufficiently large,

satisfies all constraints of program (2), and the latter is feasible. By Lemma 1, TCRS−TO

does not allow free production.
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Proof of Corollary 1. Because v∗ > 0 andXj ≥ 0, Xj ̸= 0, ∀j, condition (ii) of Theorem 4
is true.

Proof of Corollary 2. All conditions of Theorem 4 are satisfied if we take any u∗, v∗ > 0
where the components of v∗ are so large that the weight restrictions (11.3) are satisfied. The
latter is possible because Pt3 ≥ 0 and Pt3 ̸= 0, ∀t3.

Proof of Theorem 5. The proof is similar to the first part of the proof of Theorem 4. For
all sufficiently large β > 0, the vectors u and v defined by (A.1) satisfy conditions (2.2),
(2.3) and weight restrictions (11.1) and (11.2). For each t3 = 1, . . . , K3, we have two possible
cases: P⊤

t3
v∗ = 0 and P⊤

t3
v∗ > 0. As proved in Theorem 4, both cases imply that, for

sufficiently large β > 0, the vectors u and v defined by (A.1) satisfy the linked weight
restriction (11.3).

Appendix B. Examples of models

In Section 8 we discuss the assessment of the output radial efficiency of five university
departments using the VRS model with weight restrictions (17)–(20). Equivalently, we can
solve the dual envelopment models with the corresponding production trade-offs.

The following envelopment VRS model is used to assess the output radial efficiency of
department D1. Its efficiency is reciprocal to the optimum value η∗ in the following program:

η∗ = max η

subject to

45λ1 + 78λ2 + 55λ3 + 61λ4 + 89λ5 + 1π3 − 1π4 ≤ 45,

400λ1 + 1500λ2 + 700λ3 + 1000λ4 + 1590λ5 + 1π1 − 2π2 + 10π3 − 25π4 ≥ 400η,

50λ1 + 450λ2 + 120λ3 + 180λ5 − 1π1 + 1π2 ≥ 50η,

39λ1 + 62λ2 + 26λ3 + 10λ4 + 139λ5 + 0.5π3 − 2π4 ≥ 39η,

λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λj, πk ≥ 0,∀j, k, η sign free.

To check the consistency of the four weight restrictions (17)–(20) with the data set,
we use model (12) developed by Podinovski and Bouzdine-Chameeva (2013). This model
maximizes the sum of all individual outputs in the CRS technology, where the input is kept
constant and equal to the input vector of one of the observed units (we take the input of
department D1 for this purpose).

S∗ = max y1 + y2 + y3

subject to

45λ1 + 78λ2 + 55λ3 + 61λ4 + 89λ5 + 1π3 − 1π4 ≤ 45,

400λ1 + 1500λ2 + 700λ3 + 1000λ4 + 1590λ5 + 1π1 − 2π2 + 10π3 − 25π4 ≥ y1,

50λ1 + 450λ2 + 120λ3 + 180λ5 − 1π1 + 1π2 ≥ y2,

39λ1 + 62λ2 + 26λ3 + 10λ4 + 139λ5 + 0.5π3 − 2π4 ≥ y3,

λj, πk ≥ 0, ∀j, k, y1, y2, y3 ≥ 0.

(B.1)

Calculations show that the above linear program has a finite optimal value. (The ac-
tual value S∗ = 2295.744 is unimportant for this test.) By Theorem 12 in Podinovski
and Bouzdine-Chameeva (2013), weight restrictions (17)–(20) are consistent with the set of
departments in Table 1.
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