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Abstract	
	
Several	constitutive	models	for	fibre	reinforced	concrete	(FRC)	have	been	reported	in	the	past	years	based	on	
the	flexural	performance	obtained	 in	a	bending	 test.	The	Barcelona	 test	was	presented	as	an	alternative	 to	
characterize	the	tensile	properties	of	FRC;	however,	no	constitutive	model	was	derived	from	it.	In	this	article,	a	
formulation	to	predict	the	tensile	behaviour	of	FRC	is	developed	based	on	the	results	of	the	Barcelona	test.	The	
constitutive	 model	 proposed	 is	 validated	 by	 simulating	 the	 results	 of	 an	 experimental	 program	 involving	
different	 types	 of	 fibres	 and	 fibre	 contents	 by	means	 of	 finite	 element	 software.	 Moreover,	 the	 simplified	
formulation	proposed	is	compared	with	constitutive	models	from	European	codes	and	guidelines.	
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1.	Introduction	
	
The	design	codes	and	guidelines	for	fibre	reinforced	concrete	(FRC)	propose	different	constitutive	
models	 that	 share	a	common	approach:	 the	parameters	 that	determine	 the	 tensile	behaviour	are	
retrieved	from	the	results	of	flexural	tests	on	beams	[1].	The	setup	and	load	configuration	adopted	
produce	a	gradual	evolution	of	energy	release	during	the	loading	procedure,	which	simplifies	the	
control	 and	 the	 assessment	 of	 the	 response	 of	 the	 material	 depending	 of	 the	 level	 of	 damage.	
Moreover,	an	isostatic	configuration	is	used,	meaning	that	the	internal	forces	may	be	easily	derived.	
As	 an	 indirect	 consequence,	 the	 beam	 test	 has	 become	 the	 reference	 for	 the	 systematic	 quality	
control	of	FRC.		
	
Nevertheless,	 despite	 these	 advantages,	 the	method	 also	 shows	 drawbacks.	 On	 one	 hand,	 some	
authors	 suggest	 that	 the	 shape	 and	 size	 of	 the	 specimen	 and	 its	 production	 process	 favours	 a	
preferential	 alignment	 of	 the	 fibres	 along	 the	 axis	 of	 the	 beam	 [2].	 This	 tends	 to	 increases	 the	
mechanical	efficiency	and	the	overall	tensile	response	of	the	FRC,	which	might	not	occur	in	the	case	
of	full-scale	structures	without	a	marked	preferential	orientation	[3-6].	On	the	other	hand,	the	small	
area	of	 the	beam	subjected	 to	cracking	 reduces	 the	 total	amount	of	non-elastic	energy	mobilised	
and	contributes	 to	 increase	 the	scatter	 in	 the	results	 [7,	8].	 In	addition	 to	 that,	 the	weight	of	 the	
specimen	and	the	type	of	equipment	required	complicate	the	test	procedure	and	limit	the	number	
of	elements	characterized	per	batch.	This	 leads	 to	a	 serious	contradiction	 in	 terms	of	 the	quality	
control	of	FRC	since	it	is	essential	to	characterize	a	minimum	number	of	elements	in	order	to	obtain	
reliable	tensile	strength	values,	especially	in	a	materials	affected	by	a	high	scatter.		
	
Alternative	tests	have	been	proposed	with	the	aim	of	reducing	this	favourable	orientation	and	the	
scatter.	This	is	the	case	of	the	round	panel	and	the	EFNARC	panel	tests.	Although	both	of	them	seem	
to	 overcome	 the	 issues	 mentioned,	 the	 size	 of	 the	 specimen	 required	 increases	 the	 setup	
complexity,	thus	limiting	even	more	the	number	of	results	obtained	per	batch.	In	this	context,	the	
Barcelona	 test	 [8,	 9]	 according	 to	 UNE	 83515:2010	 [10]	 has	 been	 proposed	 as	 an	 intermediate	
alternative	between	the	beam	and	the	panel	tests.	Even	though	it	might	show	some	disadvantages	
regarding	the	control	of	crack	initiation	and	the	estimation	of	the	internal	stress	distribution,	it	is	
simpler	 to	 perform,	 less-time	 demanding	 and	more	 sustainable	 than	 other	methods	 in	 terms	 of	
volume	of	concrte	consumed	[8,	11-12].	Furthermore,	since	a	bigger	cracked	surface	is	mobilized,	it	
yields	values	of	the	residual	tensile	strength	and	toughness	with	an	average	coefficient	of	variation	
that	are	usually	below	 those	of	 the	beam	test	 [8].	Such	evidences	suggest	 that	 the	Barcelona	 test	



might	be	an	adequate	option	for	the	systematic	quality	control	of	FRC.		However,	its	acceptance	in	
practice	is	still	hindered	by	the	absence	of	simplified	formulation	to	derive	the	tensile	constitutive	
models	from	the	test	results.		
	
The	objective	of	this	paper	is	to	propose	an	analytical	formulation	for	the	estimation	of	the	tensile	
constitutive	curve	of	the	FRC	directly	from	the	results	of	the	Barcelona	test.	For	that,	an	analytical	
deduction	 is	 performed	 considering	 the	 changes	 in	 the	 resistant	mechanism	 experienced	 by	 the	
specimen	during	 the	 test	 procedure.	 Then,	 the	 formulation	 obtained	 is	 validated	 through	 a	 FEM	
back	analysis	using	results	of	tests	conducted	in	laboratory	with	concrete	reinforced	with	steel	and	
plastic	fibres.	Finally,	the	constitutive	equations	derived	from	the	Barcelona	test	and	from	the	beam	
test	 for	 the	 same	 concrete	 are	 compared.	 The	 results	 obtained	 confirm	 the	 validity	 of	 the	
formulation	 proposed	 in	 this	 paper,	 thus	 representing	 a	 contribution	 towards	 the	 reliable	 and	
simple	characterisation	of	the	material.	
	
2.	Description	of	the	Barcelona	test	
	
The	Barcelona	test	 is	a	double	punch	test	(DPT)	performed	on	a	cylindrical	FRC	specimen	with	a	
diameter	 and	 a	 height	 of	 150	mm,	 according	 to	 the	 specifications	 in	 the	 Spanish	 standard	 UNE	
83515	[10].		Cylindrical	steel	punches	with	a	height	of	24	mm	and	a	diameter	of	37.5	mm	are	placed	
at	 the	 centre	 of	 the	 top	 and	 the	 bottom	 surfaces	 of	 the	 specimen.	 As	 shown	 in	 Figure	 1a,	 an	
extensometer	chain	is	placed	at	half-height	of	the	specimen	to	measure	the	Total	Circumferential	
Opening	Displacement	(TCOD)	experienced.	A	constant	relative	displacement	rate	of	0.5	±	0.05	mm	
is	applied	by	the	piston	of	the	press.	The	force	and	the	TCOD	are	also	measured.		
	

   
	

 
Figure	1.	a)	Barcelona	test	setup,	b)	top	view	of	the	specimen	after	the	test,	c)	frontal	view	of	the	specimen	after	

cracking	and	d)	top	view	of	the	specimen	after	cracking.	
	
Recent	studies	have	shown	that	 it	is	possible	to	estimate	the	TCOD	without	the	need	of	using	the	
extensometer	chain.	Carmona	et	al.	 [12]	proposed	an	experimental	 correlation	between	 the	axial	
displacement	and	 the	TCOD.	Subsequently,	Pujadas	et	al.	 [13]	presented	an	analytical	 correlation	
that	is	valid	for	the	whole	extent	of	the	curve	and	for	any	type	of	FRC.	The	same	authors	have	also	
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demonstrated	that	the	test	may	be	conducted	with	cubic	specimens	with	150	m	of	side	without	the	
extensometer	chain	[14].	
	
During	 the	 test,	 the	applied	 load	produces	a	 tensile	 stress	 field	 inside	 the	 specimen.	 In	 this	 first	
stage,	 the	 concrete	 matrix	 is	 responsible	 for	 bearing	 the	 stresses.	 When	 the	 tensile	 strength	 of	
concrete	 is	 reached,	a	 transition	 stage	 occurs:	 between	2	 to	 4	 radial	 cracks	 are	 abruptly	 formed	
perpendicular	to	the	stress	field	(see	Figure	1b)	and	two	wedges	are	formed	under	the	cylindrical	
punches	where	the	load	is	applied.	These	wedges	may	be	idealized	as	cones	with	the	same	diameter	
of	the	punches	[9,	10,	12,	15,	16].	In	this	moment,	part	of	the	elastic	energy	is	released	and	a	change	
in	 the	 resistant	 mechanism	 is	 observed	 since	 the	 fibres	 become	 active;	 being	 responsible	 for	
bearing	the	tensile	stresses	at	a	sectional	level	(see	Figure	1c).		Once	the	cracks	have	appeared,	the	
specimen	 enters	 a	 kinematic	 stage,	 in	which	 the	 conical	 wedges	 slide	 into	 the	 specimen	with	 a	
certain	displacement	 (δp)	 causing	 the	 lateral	displacement	 (δL)	of	 the	concrete	segments	and	 the	
corresponding	crack	opening	(see	Figures	1c	and	1d).	Further	detail	on	the	failure	mechanism	may	
be	found	in	[13].	
	
Differences	in	the	fracture	of	the	specimens	help	to	explain	the	particularities	 in	the	results	from	
the	Barcelona	test	and	the	flexural	test.	Notice	that	the	total	cracked	surface	in	the	former	is	up	to	
2.2	times	that	of	the	latter.	Consequently,	the	total	non-elastic	energy	mobilized	 in	 the	Barcelona	
test	will	be	higher,	favouring	smaller	scatter	in	the	post-cracking	results.		
	
In	the	Barcelona	test,	 the	biggest	part	of	the	elastic	energy	is	released	abruptly	at	the	moment	of	
cracking	and	a	remaining	small	part	is	released	during	the	post	cracking	stage.	On	the	contrary,	in	
the	 flexural	 test,	 the	 release	occurs	at	a	much	slower	rate	during	almost	 the	whole	post	 cracking	
stage	 since	 the	 crack	 depth	 increases	 gradually.	On	 one	 hand,	 this	may	 be	an	 advantage	 for	 the	
Barcelona	test	given	that	the	results	obtained	at	a	sectional	level	will	reflect	better	the	contribution	
of	 the	 fibres.	 On	 the	 other	 hand,	 this	means	 that	 it	 is	more	 likely	 to	 present	 instabilities	 in	 the	
precise	moment	that	cracking	occurs.	It	is	important	to	remark,	however,	that	the	authors	have	not	
experienced	any	problem	in	the	control	of	the	test	due	to	the	higher	dissipation	of	elastic	energy	in	
the	moment	of	cracking.	
	
3.	Analytical	expressions	for	the	tensile	strength	
	
Several	 analytical	 expressions	were	 reported	 in	 the	 literature	 for	 determining	 the	 direct	 tensile	
strength	 (fct)	 derived	 from	 the	 DPT	 [9,	 11,	 15-19].	 In	 Table	 1,	 a	 summary	 of	 the	 closed-form	
expressions	 is	presented.	The	main	parameters	are	 the	maximum	 load	 (P),	 the	diameter	and	 the	
height	of	the	specimen	(d	and	h,	respectively)	and	the	diameter	of	the	plate	(d').	These	expressions	
allow	determining	the	fct	for	plain	concrete	and,	in	the	case	of	the	expression	by	Molins	et	al.	[9],	the	
residual	strengths	in	the	post-cracking	stage.	However,	there	is	no	formulation	that	provides	the	σ-ε	
relation	and	that	is	valid	for	both	the	linear-elastic	and	post-cracking	stages.		
	
	
	
	
	
	
	
	
	
	
	



Table	1.	Analytical	expressions	for	the	tensile	strength.	
 

Study	 Hypothesis	/	Approach	 Expression 

Chen	(1970)1	 Limit	analysis	of	perfect	elasto-plastic	
material	

𝑓$% =
𝑃

𝜋)1.2𝑑2 ℎ − 0
𝑑′
2 2

3
4

 

Chen	and	Yuan	(1980)2	
Concrete	as	an	elasto-plastic	strain-
hardening	and	fracture	material	(FEM	

analysis)	

𝑓$% =
0.75𝑃

𝜋)1.2𝑑2 ℎ − 0
𝑑′
2 2

3
4

 

Bortolotti	(1988)3	 Modification	of	the	Coulomb	failure	
criterion	for	concrete		

𝑓$% =
𝑃

𝜋)𝑑2 ℎ − 8
𝑑9
2 :

3
cot𝛽4

 

Marti	(1989)4	 Non-linear	fracture	mechanics	 𝑓$% = 0.4
𝑃

4 8𝑑2:
3 √01+

𝑑
𝜆𝑑C

2 

Molins	et	al.	(2007)	 Strut-and-tie	model		 𝑓$% =
4𝑃

9𝜋𝑑9ℎ 
 

1,	2:	Both	expressions	are	proposed	in	Chen	and	Yuan	(1980).	
3:	where		𝛽 = E

3
− F

3
	is	the	failure	angle	and	𝜑	is	the	internal	friction	angle.		

							4:	where	𝑑C 	is	the	maximum	aggregate	size	and	𝜆	is	an	experimental	parameter	depending	on	the	material.	
	
	
4.	Formulation	to	predict	the	tensile	behaviour	of	FRC	
	
4.1	Formulation	to	estimate	the	stress	(σ)	
	
All	deductions	are	performed	considering	a	cylindrical	coordinate	system	with	the	longitudinal	axis	
coinciding	 with	 the	 axis	 of	 the	 Barcelona	 test	 sample.	 Furthermore,	 only	 half	 of	 the	 sample	 is	
analysed	in	order	to	simplify	de	visualization	of	the	phenomenon.		
	
The	cracking	surface	of	 the	conical	wedge	 is	determined	by	 the	 failure	angle	of	 the	material	 (β),	
which	in	turn	depends	of	the	interlocking	effect	between	the	aggregates	and	the	fibres	crossing	the	
contact	 surface.	 After	 the	 cracking,	 the	 force	 applied	 by	 the	metallic	 plate	 (FP)	 generates	 at	 the	
surface	of	the	conical	wedge	a	friction	force	(Ffr)	and	a	normal	force	(FN),	as	shown	in	Figure	2a.	To	
simplify	the	2D	representation,	Ffr	and	FN	are	positioned	at	one	side	even	though	in	reality	they	are	
distributed	all	around	surface.	Figure	2b	shows	the	balance	of	forces	acting.	Notice	that	the	force	FP	
is	 completely	balanced	by	 the	 vertical	 components	 of	Ffr	 and	FN.	 However,	a	 horizontal	 resulting	
radial	force	named	FR	appears.	Such	force	is	not	out	of	balance	since	it	is	distributed	all	around	the	
lateral	surface	pointing	towards	the	centre	of	the	conical	wedge,	thus	cancelling	itself.		
	

	
Figure	2.	Detail	of	a)	interplay	of	forces	at	the	conical	wedge,	b)	balance	of	forces	at	the	conical	wedge,	c)	

interplay	of	forces	at	the	specimen	and	d)	balance	of	forces	at	the	specimen.		
	
The	force	Ffr	may	be	represented	according	with	equation	(Eq.1)	as	the	product	of	a	kinetic	friction	
coefficient	 (μk)	 and	 the	 normal	 force	 (FN).	 It	 is	 important	 to	 remark	 that	 the	 kinetic	 friction	
coefficient	should	be	used	in	this	case	since	the	conical	wedge	is	constantly	moving	during	the	test.	
By	applying	equation	(Eq.1)	and	simple	trigonometry	in	Figure	3b,	equations	(Eq.2)	and	(Eq.3)	may	
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be	 deduced	 to	 estimate	 FP	 and	 FR,	respectively.	 	 After	 combining	 equations	 (Eq.2)	 and	 (Eq.3),	
equation	(Eq.4)	is	obtained	to	estimate	𝐹R 	depending	on	the	value	of	FP.	
	

	
By	 the	 principle	 of	 action	 and	 reaction,	 the	 forces	 applied	 to	 the	 conical	 wedge	 should	 also	 be	
applied	 with	 the	 same	 magnitude	 and	 opposite	 direction	 to	 the	 rest	 of	 the	 specimen.	 This	 is	
represented	in	Figure	2c	along	with	the	balance	of	forces	(see	Figure	2d).	Again,	a	resulting	radial	
force	appears	with	a	magnitude	that	could	be	estimated	through	equation	(Eq.4).		However,	due	to	
the	presence	of	radial	cracks,	in	this	case	𝐹R 	must	be	generated	by	the	contribution	of	the	fibres.	
	
This	 contribution	 is	 estimated	 using	 the	 infinitesimal	 slice	 from	 Figure	 3.	 This	 slice	 receives	 a	
normal	stress	that	balances	the	infinitesimal	radial	force	dFr.	In	order	to	simplify	the	deduction	it	is	
assumed	 that	 an	 average	 normal	 stress	 (σ)	 is	 uniformly	 distributed	 over	 the	whole	 area	 of	 the	
cracked	 radial	 surface	 (𝐴).	 Before	 the	main	 cracks	 appear,	 the	 concrete	 behaves	as	 a	monolithic	
element	and	the	resistant	mechanism	generates	a	non-uniform	stress	distribution.	Once	the	cracks	
are	formed,	the	stress	produced	inside	the	specimen	is	governed	in	the	cracked	sections	by	the	pull-
out	response	of	the	fibres	[20].		
	

	
Figure	3.	Infinitesimal	slice	of	a	concrete	segment.	

	
It	 is	 observed	 that	 during	 the	 test	 an	 approximately	 constant	 opening	 appears	 throughout	 the	
cracking	plane.	In	other	words,	the	crack	width	close	to	the	centre	of	the	specimen	is	approximately	
the	 same	 as	 at	 the	 perimeter.	 Consequently,	 the	 stress	 distribution	 generated	 by	 the	 pull-out	 of	
fibres	may	be	assumed	as	uniformly	distributed	in	the	cracking	surface.	It	 is	important	to	remark	
that,	 in	 reality,	 a	 slight	differential	opening	might	exist.	However,	 the	consideration	of	a	uniform	
stress	is	a	fare	estimate	that	is	on	the	safe	side.		
	
Considering	the	previous	assumption,	the	resulting	force	acting	at	the	cracks	must	equal	𝜎 ∙ 𝐴	(see	
Figure	3c).	 In	this	context,	the	equilibrium	of	forces	in	the	infinitesimal	slice	may	be	represented	
through	equation	(Eq.5),	which	considers	that	for	small	values	sin𝑑𝜃 ≈ 𝑑𝜃.	The	total	value	of	FR	in	
cylindrical	 coordinates	 may	 be	 obtained	 by	 integrating	 equation	 (Eq.5)	 around	 the	 complete	
circumferential	angular	section,	leading	to	equation	(Eq.6). 
 

𝐹Z[ = 	𝜇] ∙ 	𝐹  (Eq.1)	

𝐹_ = 𝐹 ∙ 𝑠𝑒𝑛	𝛽 + 𝐹Z[ ∙ 𝑐𝑜𝑠	𝛽 = 𝐹 ∙ (𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽) (Eq.2)	

𝐹R = 𝐹 ∙ 𝑐𝑜𝑠	𝛽 + 𝐹Z[ ∙ 𝑠𝑒𝑛	𝛽 = 𝐹 ∙ (𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽) (Eq.3)	

𝐹R = 𝐹_ ∙
𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

 (Eq.4)	
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Substituting	 equation	 (Eq.4)	 in	 (Eq.5)	 gives	 equation	 (Eq.7),	which	 allows	 the	 estimation	 of	 the	
tensile	stress	(σ)	resisted	by	the	FRC	depending	of	the	load	applied	by	the	press	(FP).	In	this	case,	
the	area	of	the	cracked	radial	surface	(𝐴)	should	be	obtained	in	equation	(Eq.8)	as	the	area	of	the	
sectional	cut	of	one	quarter	of	the	specimen	subtracted	by	the	sectional	area	of	half	of	one	conical	
wedge,	which	is	not	part	of	the	cracked	surface.	

 

	
4.2	Formulation	to	estimate	the	strain	(ε)	
	
During	the	test,	the	specimen	is	divided	in	a	number	of	segments	that	equals	the	total	number	n	of	
cracks	formed.	In	order	to	simplify	the	deduction	it	is	assumed	that	all	concrete	segments	have	the	
same	size	with	an	internal	angle	2π/n.	When	the	kinematic	mechanism	starts,	each	conical	wedge	
slide	dδP/2	 into	 the	specimen	 leading	 to	 the	 lateral	displacement	of	 the	concrete	segments	 (dδL),	
which	is	depicted	in	Figure	4a.	

 

Figure	4.	a)	Lateral	displacement	of	concrete	segment	and	b)	infinitesimal	section	of	segment.	

Both	displacements	are	related	with	the	angle	β	of	the	conical	wedge	according	to	equation	(Eq.9).	
Consider	an	infinitesimal	element	in	a	slice	of	the	concrete	segment	(see	Figure	4b)	with	a	lateral	
area	dA	that	equals	dR·dh.	The	differential	work	(dτ)	done	by	the	tensile	stress	in	this	element	may	
be	expressed	as	 shown	 in	equation	 (Eq.10).	Notice	 that	 the	 lateral	displacement	occurs	with	 the	
same	 direction	 and	 magnitude	 in	 all	 infinitesimal	 elements	 since	 it	 may	 be	 assumed	 that	 the	
concrete	segments	move	as	independent	bodies.	
	

 
In	this	context,	the	work	produced	at	each	segment	may	be	calculated	through	the	sum	of	𝑑𝜏	for	all	
infinitesimal	elements	included	in	the	segment.	This	is	equivalent	to	a	triple	integration	of	𝑑𝜏	in	the	
interval	(-π/n,	π/n),	for	a	radius	ranging	from	0	to	the	radius	of	the	specimen	(R)	and	for	a	height	

𝑑𝐹R = 2 ∙ 𝜎 ∙ 𝐴 ∙
𝑑𝜃
2 = 𝜎 ∙ 𝐴 ∙ 𝑑𝜃 (Eq.5)	

𝐹R = m 𝑑𝐹R =
3E

n
2 ∙ 𝜋 ∙ 𝜎 ∙ 𝐴 (Eq.6)	

𝜎 =
𝐹_

2 ∙ 𝜋 ∙ 𝐴 ∙
𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

 (Eq.7)	

𝐴 =
𝑑 ∙ ℎ
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varying	from	0	to	half	the	height	of	the	specimen	(h/2),	as	shown	in	equation	(Eq.11).	The	latter	
may	be	multiplied	by	the	number	of	segments	(n)	to	obtain	the	total	work	of	the	specimen,	which	is	
shown	in	equation	(Eq.12).		
	

Suppose	now	an	equivalent	specimen	subjected	to	the	same	kinematic	mechanism	but	that	was	not	
allowed	to	have	radial	cracks.	In	this	case,	the	lateral	displacement	δL	experienced	would	be	caused	
by	a	circumferential	deformation	due	to	the	tensile	stresses	(Figure	5).	
	

 
	

Figure	5.	Circumferential	deformation	of	the	specimen.		
	
The	circumferential	deformation	may	be	written	according	with	equation	(Eq.13).	The	latter	is	the	
used	in	equation	(Eq.14)	to	estimate	the	work	done	by	the	tensile	stress	in	an	infinitesimal	element	
with	a	lateral	area	dA.			

	

 
Following	 the	same	procedure	described	previously,	 the	 total	work	of	 the	specimen	 is	estimated	
through	the	triple	integration	of	dτ	in	the	interval	(-π,	π),	for	a	radius	ranging	from	0	to	the	radius	
of	 the	specimen	 (R)	and	 for	a	 height	 varying	 from	0	 to	 half	 the	 height	 of	 the	 specimen	 (h/2),	 as	
shown	in	equation	(Eq.15).	

 

	
Assuming	 that	 the	 circumferential	 deformation	 of	 the	 specimen	 is	 equivalent	 to	 the	 lateral	
displacement	 of	 the	 concrete	 section,	 the	 increments	 of	 work	 in	 (Eq.11)	 and	 (Eq.12)	 may	 be	
considered	equal,	as	shown	in	expression	(Eq.16)	and	in	(Eq.17).	
	

 
Finally,	 the	 strain	 in	 the	 specimen	 may	 be	 written	 as	 in	 expression	 (Eq.18)	 or	 in	 terms	 of	
increments	as	in	equation	(Eq.19).	
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4.3	Values	of	failure	angle	(β),	friction	coefficient	(μ)	and	number	of	cracks	(n)	
	
In	the	formulation	proposed,	the	values	of	the	failure	angle	(β),	the	kinetic	friction	coefficient	(μk)	
and	 the	number	of	 cracks	 (n)	are	 required.	The	value	of	β	 is	usually	 defined	 in	 the	 literature	by	
means	of	the	internal	friction	angle	of	the	material	(φ)	since	it	determines	the	cracking	surface	of	
the	conical	wedge.	A	review	on	the	different	values	for	φ	proposed	by	several	authors	during	the	
past	50	years	may	be	found	 in	 [12].	The	actual	 length	of	 the	conical	wedge	was	measured	 in	 the	
experiences	conducted	at	the	Laboratory	of	Structure	Technology	Luis	Agulló.	Figure	6a	shows	the	
procedure	 of	 opening	 the	 specimen,	 which	 was	 performed	 avoiding	 any	 damage	 of	 the	 conical	
wedge.		

	

	
Figure	6.	a)	Opening	of	the	specimen	and	b)	measurements	of	the	length	of	the	conical	wedge.	

	
After	 the	 conical	wedge	was	 separated	 from	 the	 concrete	 segments,	 its	 length	was	measured	 as	
observed	 in	 Figure	 6b.	 The	 measurements	 revealed	 that	 the	 length	 of	 the	 conical	 wedge	 (l)	 is	
approximately	40	mm.	Taking	into	account	the	dimensions	of	the	steel	punch	(d’	=	37.5	mm)	and	
using	expression	(Eq.20),	the	internal	friction	angle	is	65°.	Hence,	the	values	are	φ=65°	and	β	=25°.		
	

	
Regarding	 the	 friction	 coefficient,	 the	 values	 presented	 in	 the	 literature	 usually	 cover	 the	 static	
friction	 coefficient	 of	 concrete	 (µs).	 Nevertheless,	 very	 limited	 information	 is	 available	 for	 the	
kinetic	 friction	coefficient	 (µk).	 It	 is	 known	 that	 the	 value	 of	µk	 for	 the	 same	 surface	 tends	 to	 be	
smaller	 than	 µs.	 This	 should	 be	 especially	 true	 for	 two	 cracked	 concrete	 surfaces	 subjected	 to	
considerable	 relative	 displacement,	 such	 as	 observed	 in	 the	Barcelona	 test.	 As	 the	 surfaces	 start	
moving,	the	roughness	is	smoothened	due	to	the	cracking	of	their	irregularities,	thus	reducing	the	
values	of	the	friction	coefficient.	In	Figure	6b	a	detail	of	the	surface	of	the	conical	wedge	after	the	
test	is	presented.	

	
In	 the	 absence	 of	 reliable	 values	 of	 µk,	 the	 μs	 proposed	 in	 the	 Model	 Code	 2010	 [21]	 and	
summarized	in	Table	2	is	used	as	a	reference.	Considering	the	aspect	of	the	conical	wedge	after	the	
test,	it	is	assumed	that	the	μs	should	be	in	the	range	of	rough	surfaces.	However,	the	value	should	be	
reduced	to	take	into	account	the	differences	between	µk	and	μs	as	well	as	the	mechanism	observed	
during	 the	 test.	 Then,	 a	 µk	 equal	 to	 0.7	 is	 considered	 a	 reasonable	 initial	 approximation.	 It	 is	
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important	to	remark	that	more	studies	are	required	to	characterize	µk	and	the	variables	affecting	
this	parameter.	
	

Table	2.	Friction	coefficient	for	plain	concrete	according	to	the	Model	Code	2010.	
	

	
	
 
The	number	of	cracks	(n)	 may	 be	 determined	
experimentally	 through	 the	 observation	 of	 the	 specimens	 after	 the	 test.	 The	 influence	 of	 this	
parameter	on	the	final	stress-strain	curve	with	the	constitutive	model	proposed	here	is	presented	
in	 Figure	 7.	 For	 that,	 the	 experimental	 result	 of	 the	 characterisation	 of	 one	 specimen	was	 used	
considering	n	values	of	2,	3	and	4.	It	is	evident	that,	the	change	in	n	does	not	affect	significantly	the	
shape	nor	the	absolute	values	of	stress	estimated	for	a	certain	strain.	Therefore,	if	no	information	
on	the	number	of	cracks	is	available,	a	number	of	cracks	equal	to	3	may	be	adopted	since	it	is	the	
most	common	outcome.	

	
Figure	7.	Influence	of	the	number	of	cracks	(n)	on	the	constitutive	model.	

	
5.	Experimental	program	
	
In	 order	 to	 validate	 the	 formulation	 proposed	 and	 to	 compare	 the	 new	 formulation	 with	 the	
constitutive	models	from	European	codes	and	guidelines	based	on	flexural	tests,	the	results	of	three	
experimental	 studies	 involving	 Barcelona	 tests	 and	 3-point	 bending	 tests	 are	 considered.	 These	
results	correspond	to	four	series	of	SFRC,	two	of	them	from	[23]	and	the	other	two	from	[24].	Two	
series	of	PFRC	from	the	study	of	[6]	were	also	analysed.	In	Table	3,	the	specimens	of	the	Barcelona	
test	(C)	and	the	beams	bending	test	(B)	are	listed	according	to	their	corresponding	reference.	These	
were	produced	according	to	[10]	and	[22],	respectively.	
	 	

Table	3.	Series	of	FRC	beams	and	cylinders.	
	
	

	
	
	
	
	
According	to	the	notation	adopted,	the	letters	A,	B	and	C	identify	a	different	type	of	fibre	and	the	
number	 following	 the	 letter	 corresponds	 to	 the	 fibre	 content	 (in	 kg/m3).	 The	 letters	 B	 and	 C,	
appended	at	the	end,	differentiate	the	cylindrical	specimens	from	the	beams,	followed	by	a	number	
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Interface	roughness	 Friction	coefficient	μ	[-]	
Smooth	interface	 0.5	-	0.7	
Rough	interface	 0.7	-	1.0	

Very	rough	interface	 1.0	-	1.4	

Series	 Reference	 Cylinders	(C)	 Beams	(B)	 Notation	
A40	 Blanco	2013	 5	 6	 A40_C1	or	A40_B2	
A60	 Blanco	2013	 2	 1	 A60_C2	or		A60_B3	
B30	 Monsó	2011	 10	 8	 B30_C3	or		B30_B4	
B50	 Monsó	2011	 10	 10	 B50_C4	or		B50_B5	
C5	 Pujadas	2014	 6	 3	 C5_C5		or	C5_B6	
C7	 Pujadas	2014	 5	 3	 C7_C6		or	C7_B1	



identifying	the	specimens	of	the	series.	The	type	of	fibre	used	steel	fibre	(SF)	or	plastic	fibre	(PF)	
and	additional	fibre	characteristics	are	presented	in	Table	4.	
	

Table	4.	Characteristics	of	the	fibres	(provided	by	the	manufacturer).	
	
	
	
	
	
	
	
	
	
The	average	results	at	28	days	of	the	compressive	strength	(fcm)	and	the	modulus	of	elasticity	(Ecm)	
assessed	according	to	UNE	83507:2004	[25]	and	UNE	83316:1996	[26],	respectively,	are	presented	
in	Table	5.	The	results	of	the	flexural	test	included	in	Table	6	correspond	to	the	average	values	of	
the	 limit	 of	 proportionality	 (fL)	 and	 the	 residual	 flexural	 tensile	 strengths	 fR1,	 fR2,	 fR3	 and	 fR4	
associated	to	crack	mouth	opening	CMOD	of	0.05	mm,	0.50	mm,	1.50	mm,	2.50	mm	and	3.50	mm,	
respectively,	according	to	EN14651:2005	[22].	

	
Table	5.	Main	properties	of	the	FRC	series.	

	
It	 should	be	remarked	 that	 the	study	by	[24]	does	not	provide	any	results	 regarding	Ecm	 and	 the	
values	were	estimated	from	 fcm	with	the	formulation	in	the	Spanish	code	EHE-08	[27].	Notice	that	
due	to	the	control	device	malfunctioning;	only	the	results	of	one	beam	are	available	for	A60.	
	
6.	Simplified	model	
	
Following	the	approach	of	the	current	European	design	codes	and	guidelines	for	FRC,	which	include	
simplified	constitutive	models,	a	simplified	version	of	the	formulation	is	proposed	in	the	shape	of	a	
multilinear	σ-ε	diagram,	as	indicated	in	Figure	8.	Table	6	summarizes	the	parameters	defining	the	
simplified	 σ-ε	 diagram	 derived	 from	 the	 Barcelona	 test.	 Notice	 that	 the	 values	 stresses	 may	 be	
expressed	as	function	of	the	load	associated	to	a	certain	displacement,	considering	the	constant	(ω).	
The	procedure	followed	to	obtain	the	simplified	version	is	described	in	Appendix	A.	
	
	
	
	
	
	

Characteristics	 Unit	 A	 B	 C	
Material	 -	 SF	 SF	 PF	
Length	(L)	 [mm]	 50	 50	 48	
Diameter	(d)	 [mm]	 0.62	 1.05	 -	
Aspect	ratio	(L/d)	 [-]	 83	 48	 -	
Tensile	strength	(fy)	 [MPa]	 1270	 1115	 550	
Modulus	of	elasticity	(E)	 [GPa]	 210	 210	 10	
Number	of	fibres	per	kg	 [-]	 8100	 2800	 35000	

Characteristics	 A40	 A60	 B30	 B50	 C5	 C7	

Modulus	of	elasticity	 Ecm	
Avg.	[MPa]	 29029	 31597	 30200	 30000	 31150	 31930	
CV	[%]	 0.96	 1.10	 -	 -	 1.69	 2.14	

Compressive	strength	 fcm	
Avg.	[MPa]	 46.73	 54.30	 44.85	 43.97	 52.15	 54.64	
CV	[%]	 0.77	 1.51	 1.80	 4.80	 1.52	 0.82	

Residual	flexural	strengths		

fL	
Avg.	[MPa]	 5.29	 3.72	 13.14	 13.76	 4.61	 5.14	
CV	[%]	 2.23	 -	 9.4	 7.5	 2.19	 8.71	

fR1	 Avg.	[MPa]	 6.13	 6.40	 3.73	 8.58	 2.01	 3.59	
CV	[%]	 13.71	 -	 40.3	 21.9	 22.30	 9.20	

fR2	
Avg.	[MPa]	 7.04	 6.12	 3.91	 9.47	 2.25	 4.66	
CV	[%]	 15.77	 -	 45.3	 28.5	 28.53	 7.05	

fR3	
Avg.	[MPa]	 7.08	 6.24	 3.89	 9.29	 2.46	 5.14	
CV	[%]	 15.05	 -	 50.0	 32.0	 26.84	 6.50	

fR4	
Avg.	[MPa]	 6.62	 6.47	 3.62	 8.88	 2.48	 5.17	
CV	[%]	 12.08	 -	 48.7	 32.3	 23.47	 6.43	



Table	6.	Parameters	of	the	simplified	model.	

														Figure	8.	Simplified	σ-ε	diagram.	
	
Figure	9	shows	the	comparison	between	the	simplified	and	the	complete	σ-ε	models	deducted	in	
this	study	for	one	specimen	of	series	A40,	A60,	B30,	B50,	C5	and	C7.	The	curves	reveal	a	good	fit	
and	the	validity	for	steel	and	plastic	fibres	as	well	as	for	different	fibre	contents	of	the	simplified	
model,	which	represents	with	good	accuracy	the	shape	of	the	curve.	
	

 
Figure	9.	Complete	and	simplified	models	for	a)	A40_C6,	b)	A60_C2,	c)	B30_C5,	d)	B50_C2,	e)	C5_C1	and	f)	C7_C2.	
	
7.	Numerical	validation	
	
7.1	Model	type	and	geometry	
	
The	finite	element	software	DIANA	9.4	was	chosen	to	model	the	Barcelona	test	due	to	its	extensive	
material	 library	and	analysis	capabilities.	The	setup	of	the	test	required	a	3D	analysis,	using	solid	
and	 interface	 elements	 to	 simulate	 the	 behaviour	 of	 the	 specimen	 during	 the	 test.	 Given	 the	
symmetry	of	the	test,	only	half	of	the	specimen	was	modelled	to	favour	the	efficiency	of	the	analysis	
and	 a	more	 refined	mesh	 discretization	 (see	 Figures	 10a,	 10b	 and	 10c).	 Furthermore,	 the	 steel	
punch	used	in	the	Barcelona	test	to	transmit	the	load	to	the	specimen	was	not	modelled.	Instead,	
the	load	was	directly	applied	in	an	equivalent	area	on	the	top	surface	of	the	FRC	specimen.		
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Figure	10.	a)	Specimen	of	the	Barcelona	test,	b)	half	of	the	specimen	modelled	with	FEM,	c)	definition	of	the	

conical	wedge	in	the	model	and	d)	detail	of	the	conical	wedge.	
	
The	 fracture	 process	 leads	 to	 a	 change	 of	 the	 resistant	 mechanism.	 This	 change	 is	 difficult	 to	
reproduce	with	a	 single	mesh	 for	 all	 the	 volume	 since	 it	 entails	 localized	 large	 displacements	 at	
certain	 locations	 (particularly	 in	 the	 formation	 of	 the	 cone)	 that	 may	 cause	 divergences	 and	 a	
different	response	from	the	real	one.	For	this	reason,	the	specimen	was	not	addressed	as	a	single	
volume	 but	 as	 the	 summation	 of	 the	 cone	 and	 the	 rest	 of	 the	 specimen.	 This	 approach	 of	
predefining	the	failure	mechanism	in	a	double	punch	test	was	already	applied	in	previous	studies	
by	defining	the	failure	planes	[28].	In	addition,	to	avoid	concentrated	loads	in	the	vertex,	the	cone	
was	 approximated	 as	 an	 inverted	 truncated	 cone	with	 a	 top	 diameter	 equal	 to	 that	 of	 the	 steel	
punch,	a	bottom	diameter	of	4	mm	and	a	height	of	40	mm	(see	Figure	10d).	
	
An	interface	element	was	defined	between	the	lateral	surface	of	the	cone	and	the	specimen	to	allow	
the	displacement	of	the	cone	and	the	cracking.	The	meshes	of	each	of	the	4	parts	of	the	specimen	
were	radially	generated	so	as	to	reduce	the	influence	that	the	discretization	adopted	may	have	on	
the	 mesh	 and	 the	 results.	 Symmetry	 conditions	 were	 imposed	 by	 restraining	 the	 vertical	
displacement	 of	 the	 bottom	 face	 of	 the	 half	 specimen.	 The	 load	 case	 consisted	 of	 a	 vertical	
displacement	 acting	 simultaneously	 at	 all	 nodes	 on	 the	 loading	 surface.	 Each	 load	 step	 was	
equivalent	to	a	vertical	displacement	of	0.025	mm.	
	
7.2	Material	properties	
	
A	 fracture	 energy	 based	 on	 total	 strain	 rotating	 crack	model	 [29]	was	 used	 for	 the	 FRC	 of	 the	
specimens	 assuming	 the	 multilinear	 (σ-ε)	 curve	 in	 tension	 proposed	 in	 section	 5.	 General	
characteristics	and	the	parameters	of	this	model	were	established	in	accordance	with	Eurocode	2	
[30].	Since	no	cracking	is	expected	in	the	cone	(as	observed	experimentally),	for	efficiency	purposes	
it	was	defined	as	an	elastic	material	with	a	modulus	of	elasticity	equal	to	that	of	the	corresponding	
FRC.	The	 interface	material	between	 the	cone	and	 the	rest	of	 the	specimen	 is	characterized	by	a	
linear	normal	and	linear	tangential	stiffness	and	a	frictional	behaviour	simulated	using	a	Coulomb	
friction	model	with	a	brittle	gapping	criterion.		
	
Table	7	includes	a	summary	of	the	main	properties	of	the	materials.	Notice	that	for	the	validation	of	
the	formulation	six	types	of	FRC	were	considered:	four	of	SFRC	(A40,	A60,	B30	and	B50)	and	two	of	
PFRC	 (C5	 and	 C7).	 Notice	 that	 the	 same	 base	 mixture	 composition	was	 used	 for	 A40	 and	 A60,	
changing	only	the	fibre	content	from	40	kg/m3	in	the	former	to	60	kg/m3	in	the	latter.	The	same	
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holds	true	for	the	mixture	B30	and	B50	with	fibre	contents	respectively	of	30	kg/m3	and	60	kg/m3	
and	 for	 C5	 and	 C7,	 which	 present	 5	 kg/m3	 and	 7	 kg/m3.	 To	 simplify	 the	 presentation	 of	 the	
information,	the	main	properties	of	the	FRC	are	classified	according	to	series	A	(for	A40	and	A60),	B	
(for	B30	and	B50)	and	C	(for	C5	and	C7).	Only	two	specimens	per	each	series	and	fibre	content	are	
presented	since	the	tendencies	are	similar.	
	

Table	7.	Material	properties	considered	in	the	FEM	model.	

	
Taking	 into	 account	 the	 inspections	 of	 the	 specimens	 after	 the	 Barcelona	 test	 and	 the	
considerations	included	in	section	4.3,	a	failure	angle	(β)	of	0.438	rad	and	a	dynamic	friction	angle	
(μk)	of	0.7	were	used	in	all	FEM	and	in	the	simplified	model	proposed	here.	It	was	also	assumed	that	
the	number	of	cracks	(n)	that	appear	during	the	test	was	3	since	this	is	the	most	common	outcome	
of	the	test.	 

 

Model	part	 Material	properties	 Value	 Reference	

Interface	material	

Normal	stiffness	[MN/m3]	 1.0·105	 	
Tangential	stiffness	[MN/m3]	 1.0·105	 	
Tangent	of	friction	angle		 0.7	 	
Tangent	of	dilatancy	angle		 0.0	 	

Conical	wedge	 Poisson	ratio	[-]	 0.2	 Eurocode	2	
Average	modulus	of	elasticity	[GPa]	 2.9	/	3.2/	3.0/	3.0/	3.1/	3.2	 A40/A60/	B30/B50	/C5	/C7	

SFRC	
(Series	A)	

Average	compressive	strength[MPa]	 46.7	/	54.3	 A40	/	A60	
Average	modulus	of	elasticity	[GPa]	 29.0	/31.6	 A40	/	A60	
Poisson	ratio	[-]	 0.2	 Eurocode	2	
Tensile	strength	σ1	[MPa]	 2.9	/	2.9	/	3.3	/3.4	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Residual	strength	σ2	[MPa] 	 2.4	/	2.2	/	3.2	/	3.2	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Residual	strength	σ3	[MPa]	 2.0	/	1.5	/	2.7	/	2.8	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Residual	strength	σ4	[MPa]	 1.3	/	1.0	/	1.6	/	1.7	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Strain	ε1		[‰]	 0.1	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Strain	ε2	[‰]	 0.2	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Strain	ε3	[‰]	 4.0	 A40_C5	/	_C6	/	A60_C1	/	_C2	
Strain	ε4	[‰]	 20.0	 A40_C5	/	_C6	/	A60_C1	/	_C2	

SFRC	
(Series	B)	

	

Average	compressive	strength[MPa]	 44.9	/	44.0	 B30	/	B50	
Average	modulus	of	elasticity	[GPa]	 30.2	/	30.0	 B30	/	B50	
Poisson	ratio	[-]	 0.2	 Eurocode	2	
Tensile	strength	σ1	[MPa]	 2.8	/	2.5	/	2.7	/	2.8	 B30_C5	/	_C8	/		B50_C2	/_C8	
Residual	strength	σ2	[MPa] 	 2.4	/	2.0	/	2.5	/	2.3	 B30_C5	/	_C8	/		B50_C2	/_C8	
Residual	strength	σ3	[MPa]	 1.6	/	1.6	/	1.9	/	1.4	 B30_C5	/	_C8	/		B50_C2	/_C8	
Residual	strength	σ4	[MPa]	 0.7	/	0.9	/	1.0	/	0.9	 B30_C5	/	_C8	/		B50_C2	/_C8	
Strain	ε1		[‰]	 0.1	 B30_C5	/	_C8	/		B50_C2	/_C8	
Strain	ε2	[‰]	 0.2	 B30_C5	/	_C8	/		B50_C2	/_C8	
Strain	ε3	[‰]	 4.0	 B30_C5	/	_C8	/		B50_C2	/_C8	
Strain	ε4	[‰]	 20.0	 B30_C5	/	_C8	/		B50_C2	/_C8	

PFRC	

Average	compressive	strength[MPa]	 52.2	/	54.6	 C5	/	C7	
Average	modulus	of	elasticity	[GPa]	 31.3	/	32.1	 C5	/	C7	
Poisson	ratio	[-]	 0.2	 Eurocode	2	
Tensile	strength	σ1	[MPa]	 3.3	/	3.1	/	3.5	/	3.3	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Residual	strength	σ2	[MPa] 	 1.4	/	1.8	/	1.5		/	1.8	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Residual	strength	σ3	[MPa]	 0.8	/	1.0	/	1.0	/	0.9	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Residual	strength	σ4	[MPa]	 0.5	/	0.6	/	0.6	/	0.6	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Strain	ε1		[‰]	 0.1	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Strain	ε2	[‰]	 0.2	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Strain	ε3	[‰]	 4.0	 C5_C2	/	_C5	/	C7_C2	/	_C5	
Strain	ε4	[‰]	 20.0	 C5_C2	/	_C5	/	C7_C2	/	_C5	



7.3	Results	
	
In	Figure	11,	the	experimental	and	the	predicted	curves	are	compared	for	two	specimens	of	each	
series.	 It	 must	 be	 remarked	 that	 in	 the	 experimental	 results	 there	 is	 an	 accommodation	 effect	
between	 the	 surfaces	 of	 the	 piston	 and	 the	 specimen	 (due	 to	 irregularities	 of	 the	 surface	 of	 the	
specimen)	that	leads	to	larger	displacements	in	the	early	stages.	This	effect	was	not	observed	in	the	
simulation	with	the	finite	element	software	since	the	contact	 is	perfect	from	the	beginning	of	the	
test.	For	this	reason,	the	maximum	load	of	the	experimental	curve	was	moved	to	match	the	peak	of	
the	simulated	curve.		
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Figure	11	Experimental	and	numerical	P-δ	curves	for:	a)	A40_C5,	b)	A40_C6,	c)	A60_C1,	d)	A60_C2,	e)	B30_C5,	f)	
B30_C8,	g)	B50_C2,	h)	B50_C8,	i)	C5_C2,	j)	C5_C5,	k)	C7_C2	and	l)	C7_C5.		

	
A	general	overview	of	the	curves	reveals	that	the	model	 is	not	able	to	predict	the	sudden	drop	of	
load	 after	 the	 cracking	 occurs.	 In	 general,	 the	 model	 provides	 a	 peak	 load	 close	 to	 the	
experimentally	obtained	for	series	A	and	B,	whereas	the	predicted	value	for	series	C	is	lower	than	
the	experimental	value.	It	should	be	remarked	that	the	novelty	of	the	formulation	proposed	is	that	
it	is	valid	for	the	post-cracking	stage	and,	for	that	reason;	the	aim	of	the	finite	element	analysis	is	to	
validate	the	capacity	of	the	model	to	reproduce	that	stage	of	the	experimental	curves.			
	
Regarding	the	post-cracking	stage,	the	results	indicate	that	the	predicted	curves	exhibit	a	tendency	
very	 similar	 to	 the	 one	 experimentally	 observed,	 especially	 from	 a	 displacement	 of	 2.0	 mm	
onwards.	However,	at	the	same	time,	a	growing	difference	between	the	experimental	and	predicted	
results	is	detected	as	the	displacement	increases.	This	is	particularly	evident	in	series	B30	and	B50	
for	displacements	bigger	than	4.0	mm.	
	
In	order	to	further	analyse	this	behaviour,	the	differences	in	the	values	of	load	for	displacements	of	
1.0	mm,	3.0	mm	and	5.0	mm	are	included	in	Table	8.	Notice	that	a	positive	value	indicates	that	the	
prediction	 overestimates	 the	 value	 of	 load,	 whereas	 a	 negative	 number	 corresponds	 to	 an	
underestimation	of	the	experimental	value.	
	
Table	8.	Differences	between	experimental	and	predicted	load	values	for	displacements	of	1.0,	3.0	and	5.0	mm.	

	
	
	
	
	
	
	
	
	
	
	
	
	
From	 the	 results,	 it	 is	 found	 that	 the	 difference	 between	 both	 curves	 is	 highest	 for	 a	 value	 of	
displacement	 of	 1.0	 mm.	 It	 is	 important	 to	 highlight	 the	 difficulty	 that	 the	 modelling	 of	 the	
Barcelona	test	entails	since,	as	previously	introduced,	after	the	cracking	of	the	concrete	matrix	the	
failure	is	governed	by	a	kinematic	mechanism.	This	change	in	the	resistant	mechanism	is	very	hard	
to	reproduce	even	with	advanced	finite	element	software.	In	this	case,	the	differences	between	the	
results	 provided	 by	 the	 model	 and	 the	 experimental	 data	 may	 be	 partially	 attributed	 to	 the	
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Series	 Specimen	
Differences	between	experimental	data	and	model	[%]	

1.0	mm	 3.0	mm	 5.0	mm	

A	
(SFRC)	

A40_C5	 -15.7	 0.1	 -2.1	
A40_C6	 -13.2	 4.7	 12.5	
A60_C1	 -2.1	 -7.8	 -6.6	
A60_C2	 -13.8	 -3.7	 0.0	

B	
(SFRC)	

B30_C5	 -28.9	 -1.7	 27.2	
B30_C8	 -23.6	 7.0	 26.5	
B50_C2	 -26.5	 0.6	 23.2	
B50_C8	 -12.8	 9.4	 14.9	

C	
(PFRC)	

C5_C2	 -11.5	 -1.0	 -	
C5_C5	 -14.4	 -1.0	 -	
C7_C2	 -6.8	 2.1	 32.0	
C7_C5	 -4.7	 9.1	 -	



difficulty	 to	 reproduce	 such	 phenomenon.	 Nevertheless,	 as	 the	 response	 FRC	 stabilizes,	 the	
experimental	response	and	the	prediction	of	the	model	become	closer	(around	a	displacement	of	
2.0	and	3.0	mm).	
	
In	 the	 last	 stretch	 of	 the	 post-cracking	 stage	 (around	 a	 displacement	 of	 5.0	mm),	 the	 difference	
between	the	model	and	the	experimental	results	increases	again.		In	fact,	the	overestimation	at	5.0	
mm	of	the	models	ranges	from	15%	to	30%	for	series	B	and	C.	In	the	case	of	series	A,	the	difference	
remains	below	20%.	At	such	advanced	stage	of	the	test,	 the	influence	of	the	type	of	 fibre	and	the	
fibre	content	may	be	significant.	Notice	that	the	average	difference	for	series	B50	is	lower	than	for	
series	B30,	which	has	lower	fibre	content	than	the	former.	This	behaviour	may	also	be	observed	for	
series	C,	since	the	average	difference	is	lower	for	C7	than	for	C5.		

	
Despite	the	differences,	the	model	yields	results	with	a	tendency	and	an	absolute	value	similar	to	
those	from	the	experimental	test.	Taking	into	account	the	particularities	in	the	response	of	FRC	and	
the	numerical	difficulty	to	simulate	the	Barcelona	test	in	a	finite	element	model,	the	results	indicate	
that	the	simplified	constitutive	equation	from	this	work	provides	satisfactory	results.	
	
8.	Comparative	analysis	with	the	models	in	European	codes	
	
The	 formulation	 based	 on	 the	 Barcelona	 test	 is	 compared	 in	 this	 section	 with	 the	 constitutive	
models	in	the	European	codes	and	recommendations	for	the	design	of	FRC,	which	are	based	on	the	
flexural	performance	of	 small	beams.	For	 that	purpose,	the	 trilinear/multilinear	models	 from	 the	
DBV	[31],	the	RILEM	[32],	the	EHE-08	[27]	and	the	Model	Code	2010	[21]	were	selected	since	they	
reproduce	more	accurately	the	contribution	of	the	fibres	after	cracking.	In	the	case	of	the	CNR-DT	
204	 [33],	 the	 bilinear	 model	 was	 considered.	 Even	 though	 the	 most	 recent	 recommendations	
already	 include	 certain	 plastic	 fibres	 as	 structural	 fibres,	 it	 should	 be	 remarked	 that	 these	
constitutive	models	are	based	on	the	experiences	with	steel	fibre	reinforcement.		
	
The	values	of	the	parameters	defining	each	of	the	constitutive	models	for	series	A40,	A60,	B30,	B50,	
C5	and	C7	are	presented	in	Table	9.	Notice	that	the	tensile	strength	is	σ1	for	all	models	except	the	
M2010,	 in	 which	 the	 tensile	 strength	 is	 represented	 by	 σ2	 due	 to	 the	 shape	 of	 the	 diagram.	
Additionally,	it	should	be	pointed	out	that	partial	safety	factors	were	not	used	to	obtain	any	values	
of	stress	and	strain.	The	notation	used	to	refer	the	models	in	the	codes	is	DBV,	RILEM,	CNR-DT,	EHE	
and	MC	(or	beam	models	as	a	group);	while	for	the	formulation	proposed	it	is	BCN.	
	

Table	9.	Parameters	defining	the	constitutive	models	of	series	A40,	A60,	B30,	B50,	C5	and	C7.	

Series	 Models	
σ1	 ε1	 σ2	 ε2	 σ3	 ε3	 σ4	 ε4	

[MPa]	 [‰]	 [MPa]	 [‰]	 [MPa]	 [‰]	 [MPa]	 [‰]	

A40	

DBV	 2.536	 0.104	 0.642	 0.204	 -	 -	 0.522	 10.000	
RILEM	 5.907	 0.203	 2.811	 0.303	 -	 -	 2.451	 25.000	
CNR-DT	 2.811	 0.097	 -	 -	 -	 -	 1.916	 20.000	
EHE	 3.038	 0.105	 2.811	 0.205	 -	 -	 2.274	 20.000	
MC	 3.089	 0.106	 3.432	 0.150	 2.806	 0.193	 2.274	 20.000	
BCN	 2.851	 0.098	 2.191	 0.198	 1.447	 4.000	 0.907	 20.000	

A60	

DBV	 3.395	 0.107	 1.200	 0.207	 -	 -	 0.996	 10.000	
RILEM	 6.657	 0.211	 2.879	 0.311	 -	 -	 2.394	 25.000	
CNR-DT	 2.879	 0.091	 -	 -	 -	 -	 1.146	 20.000	
EHE	 3.423	 0.091	 2.879	 0.208	 -	 -	 1.839	 20.000	
MC	 3.481	 0.110	 3.868	 0.150	 2.855	 0.473	 1.839	 20.000	
BCN	 3.368	 0.107	 3.199	 0.207	 2.784	 4.000	 1.704	 20.000	

B30	 DBV	 2.918	 0.097	 0.040	 0.197	 -	 -	 0.000	 6.300	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	results	regarding	the	tensile	strength	(σ1)	reveal	that	the	lowest	values	always	correspond	to	
the	 DBV	 and	 the	 highest	 to	 the	 RILEM.	 In	 this	 analysis,	 the	 value	 of	 the	 CNR-DT	 model	 is	 not	
considered	since	it	 is	a	simplified	bilinear	model	which	cannot	be	compared	to	a	trilinear	model.	
The	values	provided	by	the	BCN	model	remain	between	the	limit	values	of	the	DBV	and	the	RILEM.	
In	fact,	the	value	of	σ1	of	the	DBV	is	only	11.0%,	0.8%,	14.8%,	5.4%,	1.2%	and	0.7%	lower	than	the	
value	of	the	BCN	for	series	A40,	A60,	B30,	B50,	C5	and	C7,	respectively;	whereas	the	value	of	the	
RILEM	is	107.2%,	97.6%,	125.1%,	106.6%,	93.7%	and	94.8%	higher	than	the	value	of	BCN	for	A40,	
A60,	B30,	B50,	C5	and	C7,	respectively.	In	general,	the	beam	model	that	presents	the	closest	values	
to	the	BCN	is	the	MC	(note	that	the	tensile	strength	of	the	MC	corresponds	to	σ2).	
	
The	other	parameters	in	Table	9,	particularly	the	values	of	stress,	may	be	more	easily	identified	and	
analysed	if	plotted.	In	Figure	12,	the	constitutive	models	obtained	from	the	average	results	of	the	
beam	 tests	 are	 compared	 to	 the	 models	 determined	 by	 means	 of	 the	 average	 results	 of	 the	
Barcelona	test	for	each	series.	In	general,	the	highest	values	of	correspond	to	the	RILEM,	the	EHE	or	
the	MC.	The	BCN	model	ranges	between	the	ones	presenting	the	lowest	and	the	highest	values	of	
residual	 strengths	 (except	 for	 series	 A60).	 The	 curves	 of	 series	 A40	 are	 an	 example	 of	 such	
behaviour.		
	
Figures	12a	and	12b	correspond	to	the	same	type	of	steel	fibre	with	a	high	aspect	ratio	(L/d	=83)	
for	 fibre	 contents	 of	 40	 kg/m3	 and	60	 kg/m3,	 respectively.	 An	 increase	 of	 20	 kg/m3	 in	 the	 fibre	
content	 leads	 to	 a	 significant	 increment	 in	 the	 values	 of	 stress,	 which	 is	 observed	 if	 the	 curves	
obtained	with	the	BCN	model	for	A40	and	A60	are	compared.	In	fact,	the	values	of	σ2,	σ3	and	σ4	for	
A60	are	46.0%,	92.3%	and	87.9%	higher	than	for	A40.	It	 is	reasonable	that	the	lowest	 increment	
corresponds	 to	 σ2	 since	 after	 the	 cracking	 the	 reinforcement	 capacity	 of	 the	 fibres	 is	 not	 fully	
developed	until	higher	values	of	strain,	which	correspond	to	σ3.	Likewise,	it	could	be	expected	that	
the	 increment	 in	 the	 value	 of	 the	 ultimate	 stress	 (σ4)	 should	 be	 lower	 than	 for	 σ3	 due	 to	 the	
debonding-slipping	mechanisms.		

	

RILEM	 5.722	 0.189	 1.677	 0.289	 -	 -	 1.338	 25.000	
CNR-DT	 1.677	 0.056	 -	 -	 -	 -	 0.884	 20.000	
EHE	 2.943	 0.097	 1.677	 0.197	 -	 -	 1.201	 20.000	
MC	 2.993	 0.099	 3.325	 0.150	 1.671	 0.266	 1.201	 20.000	
BCN	 2.542	 0.094	 2.056	 0.194	 1.417	 4.000	 0.688	 20.000	

B50	

DBV	 2.871	 0.096	 0.332	 0.196	 -	 -	 0.175	 10.000	
RILEM	 5.629	 0.188	 3.860	 0.288	 -	 -	 3.284	 25.000	
CNR-DT	 3.860	 0.129	 -	 -	 -	 -	 2.312	 20.000	
EHE	 2.895	 0.109	 3.860	 0.196	 -	 -	 2.931	 20.000	
MC	 2.944	 0.098	 3.271	 0.196	 3.143	 16.346	 2.931	 20.000	
BCN	 2.724	 0.091	 2.439	 0.191	 1.629	 4.000	 0.803	 20.000	

C5	

DBV	 3.289	 0.105	 0.303	 0.205	 -	 -	 0.244	 10.000	
RILEM	 6.449	 0.206	 0.818	 0.306	 -	 -	 0.769	 25.000	
CNR-DT	 0.818	 0.026	 -	 -	 -	 -	 0.608	 20.000	
EHE	 3.748	 0.120	 0.818	 0.220	 -	 -	 0.692	 20.000	
MC	 3.391	 0.108	 3.768	 0.150	 0.848	 0.189	 0.692	 20.000	
BCN	 3.329	 0.106	 1.339	 0.206	 0.805	 4.000	 0.491	 20.000	

C7	

DBV	 3.409	 0.106	 0.594	 0.206	 -	 -	 0.655	 10.000	
RILEM	 6.685	 0.208	 1.561	 0.308	 -	 -	 1.931	 25.000	
CNR-DT	 1.561	 0.049	 -	 -	 -	 -	 2.074	 20.000	
EHE	 3.438	 0.121	 1.561	 0.207	 -	 -	 1.868	 20.000	
MC	 3.515	 0.110	 3.906	 0.150	 1.487	 0.180	 1.868	 20.000	
BCN	 3.432	 0.107	 1.487	 0.207	 0.910	 4.000	 0.610	 20.000	



However,	such	increase	in	the	values	of	stress	does	not	occur	in	the	case	of	the	beam	models,	which	
might	be	attributed	to	the	fact	that	the	constitutive	models	of	series	A60	were	obtained	with	the	
results	 of	 only	 one	 beam	 (the	 other	 tests	 failed	 due	 to	 a	 problem	 with	 the	 test	 equipment).	
Therefore,	conclusive	remarks	cannot	be	made	from	comparing	the	beam	models	of	series	A40	and	
A60;	even	though	a	significant	increase	in	the	response	should	be	expected	if	more	beams	had	been	
tested.						
	

 	

	

	
Figure	12.	Comparison	of	the	formulation	based	on	the	Barcelona	test	with	the	constitutive	models	based	on	beam	

tests:	a)	A40,	b)	A60,	c)	B30,	d)	B50,	e)	C5	and	f)	C7.	
	
Regarding	12c	and	12d,	corresponding	to	series	B30	and	B50,	a	noticeable	increase	in	the	response	
is	observed	in	the	beam	models	when	the	amount	of	fibres	increases	from	30	kg/m3	to	50	kg/m3.	
The	increase	in	the	case	of	the	BCN	model	 is	more	subtle	than	for	series	A40	and	A60;	being	the	
values	of	σ2,	σ3	and	σ4	 for	B50	only	18.6%,	15.0%	and	16.8%	higher	than	for	B30.	The	reason	for	
this	difference	between	series	A	and	B	may	be	attributed	 to	 the	 type	of	 fibre.	Despite	having	 the	
same	length,	the	SF	of	series	B	has	a	smaller	aspect	ratio	than	the	SF	of	series	A	and,	consequently,	
the	number	of	fibres	in	the	concrete	matrix	is	lower.	Therefore,	despite	increasing	the	fibre	content	
in	 20	 kg/m3	 in	 both	 cases,	 the	 number	 of	 fibres	 is	 higher	 for	 series	 A,	 thus	 leading	 to	 a	 higher	
restriction	of	the	crack	opening	and	higher	values	of	stress.		
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From	the	behaviour	observed	in	Figures	12c	and	12d	a	question	regarding	the	differences	between	
the	beam	models	and	the	BCN	test	may	be	raised.	Why	the	increase	in	fibre	content	leads	to	bigger	
increments	in	the	stresses	for	the	beam	models?	This	is	probably	related	to	the	amount	of	energy	
dissipated	at	the	moment	the	main	cracks	appear	and	during	the	whole	test.	The	study	by	Guàrdia	
[34]	revealed	that	the	energy	dissipated	in	the	Barcelona	test	is	around	4	to	5	times	bigger	than	in	
the	beam	test.	 Such	difference	 in	 the	amount	of	energy	released	may	be	attributed	 to	 the	bigger	
crack	 surface	 in	 the	 case	 of	 the	Barcelona	 test.	Hence,	 an	 equivalent	 increment	 in	 the	 values	 of	
stress	in	the	BCN	model	would	require	a	bigger	increase	of	the	fibre	content.		
	
In	the	case	of	the	plastic	fibres	(see	Figures	12e	and	12f),	an	increase	in	the	fibre	content	of	2	kg/m3	
(from	0.55	%	to	0.77	%	in	volume)	does	not	result	in	a	significant	increase	of	the	values	of	stress	for	
neither	the	beam	models	nor	the	BCN	model.	However,	a	significant	difference	in	the	response	of	
the	 beam	 models	 is	 observed	 between	 series	 C5	 and	 C7	 since	 the	 latter	 exhibits	 hardening	
behaviour.	This	phenomenon	does	not	appear	in	the	case	of	the	BCN	model	and	the	reason	may	be	
found	in	the	failure	mechanism	of	the	Barcelona	test. 
	
Failure	in	the	Barcelona	test	occurs	when	the	stress	in	the	specimens	reaches	the	tensile	strength	of	
concrete.	At	this	point,	two	scenarios	are	possible:	a	softening	behaviour	or	a	hardening	behaviour.	
The	softening	behaviour	is	the	most	common	response	and	usually	takes	place	for	low	or	moderate	
fibre	 contents	 since	 the	 restriction	 to	 the	 opening	 of	 the	 radial	 cracks	 is	 small.	 In	 such	 case,	 the	
conical	 wedge	would	 slide	 inside	 the	 specimen	 leading	 to	 a	 sudden	 reduction	 of	 the	 load	 (and	
energy	 dissipation)	 until	 the	main	cracks	 open	and	 the	 fibres	 start	 their	 bridging	mechanism.	 If,	
however,	the	amount	of	fibres	is	big	enough,	a	higher	restriction	to	the	crack	opening	would	occur	
as	the	fibres	restrict	the	slide	of	the	conical	wedge	into	the	specimen.	This	 is	particularly	true	for	
short	 fibres	 since	 their	bridging	capacity	 is	 activated	 for	 smaller	crack	 openings.	 In	 this	 case,	an	
increase	in	the	load	value	and	a	hardening	behaviour	of	the	material	are	expected.		
	
The	same	argument	could	be	valid	for	the	beam	test.	However	why	is	it	that	for	the	same	amount	
and	type	of	fibres	the	hardening	behaviour	only	occurs	in	the	beam	models?		This	is,	again,	related	
to	the	amount	of	energy	dissipated	when	the	main	cracks	appear	and	during	the	whole	test.	Given	
that	the	energy	dissipated	in	the	beam	test	is	smaller	and	less	abrupt	than	in	the	Barcelona	test,	it	is	
possible	that	for	the	same	fibre	content	this	is	high	enough	to	result	in	a	hardening	behaviour	in	the	
bending	test	but	still	not	enough	to	generate	such	response	in	the	Barcelona	test.	In	fact,	hardening	
in	the	Barcelona	test	would	only	occur	if	the	amount	of	fibres	was	very	high	and	after	the	formation	
of	the	conical	wedge	the	fibres	did	not	break.	
	
9.	Conclusions	
	
This	paper	presents	a	new	analytical	formulation	to	predict	the	post-cracking	tensile	behaviour	of	
FRC	from	the	results	of	the	Barcelona	test.	It	also	represents	a	step	forward	on	the	knowledge	of	the	
failure	mechanism	of	the	Barcelona	test.	The	analytical	formulation	proposed	was	simplified	in	the	
form	 of	 a	 multilinear	 σ-ε	 diagram	 in	 which	 the	 values	 of	 strain	 are	 predefined.	 This	 simplified	
version	 of	 the	 model	 may	 be	 easily	 implemented	 in	 the	 current	 design	 tools	 and	 adopted	 by	
professionals.	

	
The	fracture	process	of	the	Barcelona	test	leads	to	a	change	of	the	resistant	mechanism	that	is	very	
hard	 to	 simulate,	 even	with	 advanced	 FEM	 programs.	 Indeed,	 an	 approach	 in	which	 the	 conical	
wedge	 formed	 during	 the	 test	 was	 geometrically	 predefined	 in	 the	 finite	 element	 analysis	 was	
required	 to	 avoid	 divergences.	 The	 results	 provided	 by	 the	 model	 were	 used	 to	 validate	 the	
formulation	 by	 comparing	 them	 to	 the	 experimental	 results	 of	 several	 FRC	 with	 different	 fibre	
types	and	contents.	Despite	the	differences	between	the	experimental	and	the	predicted	behaviour,	



the	model	provided	satisfactory	results	with	a	similar	trend	to	that	of	the	experimental	results.	The	
numerical	results	revealed	that	the	formulation	is	valid	to	estimate	the	post-cracking	response	of	
concrete	reinforced	with	either	steel	or	plastic	fibres.	

	
The	 development	 of	 the	 analytical	 formulation	 and	 the	 numerical	 study	 allowed	 identifying	 the	
need	for	reliable	values	of	the	kinetic	friction	coefficient	for	a	concrete	to	concrete	contact.	Given	
the	absence	of	this	information	in	the	literature,	the	values	of	the	static	friction	coefficient	provided	
in	the	design	recommendations	were	considered	as	a	reference.			
	
The	 comparison	 of	 the	 model	 proposed	 with	 the	 constitutive	 models	 in	 European	 codes	 and	
guidelines	revealed	that	the	former	remains	in	the	range	of	stresses	of	the	latter.	On	future	studies,	
the	 constitutive	 model	 presented	 may	 be	 used	 to	 predict	 the	 response	 of	 certain	 structural	
applications	to	determine	whether	its	prediction	is	more	accurate	than	the	beam	models.		
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Appendix	A	
	
In	 this	 appendix,	 the	 procedure	 followed	 to	 propose	 a	 simplified	 version	 of	 the	 constitutive	 models	 is	
developed.	The	first	stage	of	the	curve	of	the	constitutive	model	corresponds	to	the	linear-elastic	stage	prior	to	
cracking,	where	the	concrete	matrix	bears	the	tensile	stresses.	The	tensile	strength	(σ1)	and	its	corresponding	
strain	(ε1)	can	be	calculated	as	indicated	in	expressions	(Eq.A1)	and	(Eq.A2).	
	 	

	
The	value	of	σ1	can	be	easily	determined	by	knowing	the	maximum	load	registered	during	the	test	(FPmax)	and	
the	values	of	the	failure	angle	(β)	and	the	kinetic	friction	coefficient	(μk).	When	the	value	of	σ1	is	known,	the	
strain	ε1	may	be	obtained	using	the	modulus	of	elasticity	(Ecm).	

	
Once	the	tensile	strength	of	the	concrete	matrix	is	reached,	cracking	occurs	and	there	is	a	drop	of	stress	until	
the	fibres	start	their	bridging	capacity,	characterized	by	σ2	and	ε2.	The	value	of	ε2	is	established	following	the	
philosophy	in	most	European	codes	and	guidelines	which	define	this	parameter	as	in	equation	(Eq.A3).	
	

	
In	order	to	determine	the	value	of	σ2,	 the	 load	associated	with	the	value	of	ε2	must	be	known.	For	that,	 the	
displacement	 equivalent	 to	 the	 strain	 ε2	 must	 be	 calculated	 isolating	𝛥𝛿�	in	 equation	 (Eq.19),	 which	 gives	

𝜎� =
𝐹_�C�
2 ∙ 𝜋 ∙ 𝐴 ∙

𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

	 (Eq.A1)	

𝜀� =
𝜎�
𝐸$�

	 (Eq.A2)	

𝜀3 = 𝜀� + 0.1‰	 (Eq.A3)	



equation	(Eq.A4).		If	a	number	of	cracks	equal	3,	a	β	equal	to	0.438	rad	and	a	𝛥𝜀	equal	to	0.1	‰	(𝜀3 − 𝜀�	from	
equation	 (Eq.19)	 are	 assumed,	 the	 value	 0.02	mm	 of	 displacement	 equivalent	 to	 the	 strain	 ε2	 is	 obtained.	
Notice	that	the	0.02	mm	is	measured	from	the	displacement	corresponding	to	FPmax	onwards.			
	

	

The	stress	of	σ2	may	be	determined	as	shown	in	(Eq.A5)	for	the	value	of	load	corresponding	to	a	displacement	
of	0.02	mm	(𝐹_n.n3��).	

	

	
The	same	procedure	was	used	to	estimate	the	values	of	𝜎�	related	with	the	strain	ε3.	After	analysing	several	
experimental	 results,	 a	 ε3	 equal	 to	 4.0‰	 was	 chosen	 in	 order	 to	 obtain	 a	 good	 fit	 with	 the	 complete	
constitutive	curve.	This	corresponds	to	a	Δε	of	3.9‰	(ε3-ε1	=	4.0‰	-	0.1‰),	assuming	that	for	typical	concrete	
ε1	 should	be	 close	 to	0.1‰.	Substituting	 this	 value	 in	equation	 (Eq.A4)	gives	a	relative	displacement	𝛥𝛿�	of	
approximately	0.8	mm.	Therefore,	the	value	stress	σ3	may	be	calculated	as	indicated	in	expression	(26).	

	

	 	
The	 value	 of	 ε4	 is	 assumed	 as	 20‰,	 following	 the	 tendency	 observed	 in	 several	 instruction	 and	 codes	
regarding	the	maximum	strain	for	the	constitutive	curves	of	FRC.	Considering	the	same	assumptions	as	for	ε3,	
the	displacement	associated	to	20‰	estimated	in	equation	(Eq.19)	is	approximately	3.9	mm	and,	 therefore,	
the	value	of	σ4	may	be	determined	as	indicated	in	expression	(Eq.A7).	

	

	

𝛥𝛿_ =
𝛥𝜀𝜋𝑅

𝑛𝑡𝑎𝑛𝛽sin	(𝜋𝑛)
=

0.0001 · 𝜋 · 75	𝑚𝑚
3 · tan(0.436) · sin(𝜋3)

= 0.02	𝑚𝑚	 (Eq.A4)	

𝜎3 =
𝐹_n.n3��
2 ∙ 𝜋 ∙ 𝐴 ∙

𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

	 (Eq.A5)	

𝜎� =
𝐹_n.����
2 ∙ 𝜋 ∙ 𝐴 ∙

𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

	 (Eq.A6)	

𝜎� =
𝐹_�.nn��
2 ∙ 𝜋 ∙ 𝐴 ∙

𝑐𝑜𝑠	𝛽 − 𝜇] ∙ 𝑠𝑒𝑛	𝛽
𝑠𝑒𝑛	𝛽 + 𝜇] ∙ 𝑐𝑜𝑠	𝛽

	 (Eq.A7)	


