
Pilkington Library

._ Loughborough

., University

AuthorlFiling Title J\~.~.~.~

Vol. No. Class Mark T

Please note that fines are charged on ALL
overdue items.

0402590368

111

Constructing 3D Faces from Natural Language

Interface

Salman Ahmad

Department of Computer Science

Loughborough University

A Doctoral Thesis submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of the Loughborough University

I
.~

U~:~!:~~gh
p;;., , ,'h!'lU)'
,.""" , " ,.~

mW CeJ,. ot..
,l.;. ,:l ~, 0., "'

"
class .

... -':;..,.-~.

Ace
O'to 1.. S 'I (5 :> b ~o.

ABSTRACT

This thesis presents a system by which 3D images of human faces can be constructed

using a natural language interface. The driving force behind the project was the need to

create a system whereby a machine could produce artistic images from verbal or

composed descriptions. This research is the first to look at constructing and modifying

facial image artwork using a natural language interface.

Specialised modules have been developed to control geometry of 3D polygonal head

models in a commercial modeller from natural language descriptions. These modules

were produced from research on human physiognomy, 3D modelling techniques and

tools, facial modelling and natural language processing.

This work uses two main methods sequentially for synthesising 3D facial images from

natural language descriptions:

1. Use of a fuzzy truth maintained blackboard system to interpret and translate

linguistic data which produces parameters for free form deformation modifiers to

parameterise and control pre-constructed 3D head models.

2. A commercially available 3D modelling system which has pre prepared scripts to

access and control head templates and modifiers obtained from measurements of

3D human heads.

A novel method of abstracting standard fate'images, m~~ifi~rs and hedges is described.

Base head templates are obtained by distilling out the modifiers, modifiers are obtained , .,' "\, '" -. , '. ,

by differencing the modified object from'abase'template.

"~" .. ".-. ,. ,"
After an initial description, amplifying statements may be added to refine the facial image

and are blended with the original description

.... ·c .. ' ". '.",~... \.

The interpretation of the statements is based on baseline head models and modifiers taken

from measurements of human heads and so the library of head geometry and modifiers

provides context within which the statements are given form. By changing the set of

head models and associated descriptions, the context may be changed. The interpretation

of the natural language is thus based on the experience of the machine; and may arguably

be termed "artistic". The resultant facial images are consistent with the descriptions

although it has proved difficult to obtain detailed descriptions of faces that result in a

recognisable match. The work has shown that it is possible to derive images that match

the descriptions but that the descriptions used are insufficient to completely describe a

given face. The derived templates and modifiers influence the set of faces produced from

any given set of descriptions, and form the basis by which the system interprets the

natural language statements.

Keywords: Natural Language, 3D Facial Images, 3D Modelling, Interface, Uncertainty,
TMS, Blackboard, Fuzzy Logic, Facial Modelling

Acknowledgements

This work has been carried out by the Author under the supervision of Dr. Chris J. Hinde

in the Department of Computer Science at Loughborough University.

I would like to thank Chris for the past years of help and encouragement. He has been

more like a colleague and friend, guiding and helping me whenever and wherever I

needed it. Without his skill and determination this thesis would not be possible.

I would also like to thank Dr. Helmut Bez for guiding me in the construction of the 3D

head models and many other stages throughout the development process. I would like to

thank other colleagues in the computer science department namely; John, Irene, Jo,

Judith, Margaret and Steve for their help and support.

I would like to thank my family for their continuous support and encouragement,

especially my parents who convinced me to perform a Ph.D. and have been a source of

inspiration and strength.

Lastly I would like to thank my friends Tom, Manu, Anha and Aziz with whom I

immensely enjoyed working and playing.

Contents

1 Introduction 1

1.1 Introduction.. 1

1.2 Thesis Aim...... 2

1.3 Approach... 4

1.3.1 Natural Language Interface (NU) 5

1.3.2 Fuzzy Logic 6

1.3.3 Facial Image Generation Module............................ 9

1.4 Contributions of the Thesis.............................. 10

1.5 Outline of Dissertation .. 11

2 Describing Faces - Human Physiognomy, Facial Recognition and

Verbal Descriptions .. 14

2.1 Introduction .. 14

2.2 Human Physiognomy.. 15

2.3 Properties and attributes of human physiognomy....................... 16

2.3.1 Physical structures .. 16

2.3.2 Primary facial features.. 19

2.4 Determining parameters for facial model construction...... 22

2.4.1 Conformation parameters.. 23

2.5 Facial recognition and verbal description 26

2.5.1 Verbal descriptions .. 26

2.6 Language used by people to describe faces.......... 29

2.7 Survey Results and Language Analysis 31

2.8 Conclusion ... 36

3 Tools, Techniques and Technology for 3D Facial Modelling 38

3.1 Introduction .. 38

3.2 Existing Research.. 39
3.3 Applications.. 40

3.3.1 Education.. 40

3.3.2 Entertainment... 40

3.3.3 Medicine... 40

3.3.4 Narration... 41

3.3.5 Telecommunication .. 41

3.3.6 Criminology... 41

3.3.8 Advertising .. 41

3.4 3D Facial Modelling.. 42

3.4.1 Brief history ... 42

3.4.2 Current models 43

3.4.2 Facial Recognition - Complementing Facial Generation..... 44

3.5 Representation Techniques.. 45

3.5.1 PolygonallMesh Modelling....................................... 46

3.5.2 Splines... 49

3.5.3 Bezier Patches.. 50

3.5.4 NURBS 51

3.5.5 Implicit surfaces 56

3.5.6 Rendering .. 56

3.6 Facial data acquisition.. 56

3.6.1 Three-dimensional input.. 56

3.6.2 Two dimensional input .. 58

3.7 3D Modelling Tools and Applications 60

3.8 Examining 3D Studio Max 61

3.8.1 Maxscript.. 62

3.9 Free Form Deformation (FFD) Modifiers in 3D Studio Max 62

3.10 The Technology behind FFD 65

3.10.1 FORMULATING FREE-FORM DEFORMATIONS 66

3.10.2 Deformation Domain .. 70

3.10.3 Local Deformations 71

3.11 Conclusion ... , 74

4 Development of 3D Facial Image Generation System - Procedures and

Implementation ...•.•.......••..................... 76

4.1 Introduction.. 76

4.2 Constructing 3D Head Models 77

4.2.1 NURBS Modelling ... 77

4.2.2 Bezier Patch Modelling........................ 81

4.2.3 Polygonal Modelling ,. 83

4.3 Evaluation of Modelling Procedures and Results 87

4.4 Baseline Head Models.. 87

4.5 Applying FFD Modifiers to Baseline Head... 89

4.5.1 Applying FFD modifiers to the Head and Features........ 90

4.6 Control of Head Geometry via MaxScript 94

4.6.1 Parameterisation and Facial Image Generation Script..... ... 107

4.7 Testing the Facial Image Generation Module........................... 111

4.8 Deriving Modifier Parameters from Template Head Parameters. 114

4.8.1 Extract biometric data from facial image data set 116

4.8.2 Mapping feature measurements on to 3D face parameters... 121

4.8 Conclusion 122

5 Dealing with Uncertainty - Theories and Techniques 123

5.1 Introduction...... 123

5.2 Approaches to Handling Uncertainty ,. 124

5.3 Numeric Methods 126

5.3.1 Probability Theory... 126

5.3.2 Bayes Theorem.. ... 129

5.3.3 Dempster-ShaferTheory .. 131

5.4 Symbolic Methods , , 137

5.4.1 Fuzzy Set Theory... 137

Fuzzy Numbers & Hedges........................ 142

5.4.2 Mass Assignment .. 151

Mass Assignment Calculus 153

Mass Assignment Combination 154

5.4.3 Semantic Unification 156

5.5 Truth Maintenance 158

5.5.1 Origins of Truth Maintenance 158

5.5.2 Justification-Based Truth Maintenance Systems 160

5.5.3 Assumption-Based Truth Maintenance Systems 161

Architecture of the ATMS in the Loughborough System 162

5.6 Conclusion 164

6 Interpreting Natural Language and Translating Linguistic Data 165

6.1 Introduction .. , 165

6.1.1 Phonology... 166

6.1.2 Morphology... 167

6.1.3 Syntax 167

6.1.4 Semantics '" 168

6.1.5 Pragmatics.. 170

6.1.6 Language as a Medium.. 170

6.2 Anatomy of Language.. 171

6.3 Parsing .. 176

6.3.1 Parsing Strategies 177

6.3.1.a Top-down versus Bottom-up Parsing... 180

6.3.1.b Depth-first versus Breadth-first Parsing...... 186

6.4 Interpreting Natural Language Sentences................................ 188

6.4.1 Echo Architecture 190

6.4.2 Knowledge Sources 192

6.5 Translating the Linguistic Data 199

6.6 Conclusion... 203

7 Does it Work? - Description of overall System Architecture, Test Data and

ltestIlts .. .

7.1 Introduction

7.2 System Architecture .. .

7.3 Test Data and Experimentation

7.4 Evaluation of Test Results .. .

7.5 Conclusion .. .

8 Thesis Summary, Conclusions and Future Work

8.1 Thesis Summary ~

8.2 Future Work

8.3 Conclusion .. .

Appendix A 0 •••

Appendix B

Appendix C .. "

Bibliography 0 ••

204

204

204

213

233

240

241

241

245

245

249

255

280

343

1. Introduction

Chapter 1

Introduction

Abstract

This chapter provides a description of the research aim and outlines the methodology,

approach, and process used to tackle the research problem. The chapter outlines the

remaining chapters of the thesis with a brief note on what each chapter entails.

Keywords: Facial Composite, Fuzzy Logic, Human Computer Interface, Natural

Language.

1.1 Introduction

Almost 20 years ago an interface redesign revolutionised the way computers would be

used. The WIMP (Windows Icons Menus Pointers) environment replaced the command

line interface and ushered a new era of mass computer usability. With time the WIMP

environment evolved into advanced Graphical User Interface (GUI) that is commonly

found in popular computer systems today. The drive behind the redesign and

improvement of Human Computer Interface (HCI) was primarily "Ease of use". Work

continues on improving existing graphical user interfaces to find the ultimate HCI set-up.

Whereas improvements in the area of HCI have been in the form of advanced GUI,

hardware and software solutions. An important area of study is to make computers

understand our language and communicate in a natural albeit structured form. This is

where Natural Language Processing (NLP) comes in and it is hoped that break through in

NLP will lead to implementation of a natural language interface for controlling all

functions of a computer system.

1

1. Introduction

1.2 Thesis Aim

We as humans, have a fantastic ability for recognising visual patterns. At a single glance

we can absorb and process a huge amount of information about our present environment.

We can look at an object, instantly recognise it and perhaps even give a good verbal

description of it. But if recognition is one side of the coin, then generation is the other

side. And yet how many of us have the ability to successfully generate recognisable

images of objects, specifically to sketch them? Furthermore, how many of us are capable

of determining which aspects of an object are information bearing in terms of recognition

and then reducing them into a collection of lines.

Consider the human face. Humans can distinguish quite well among faces, even though

all faces have the same basic features that appear in roughly the same relative position.

Nevertheless those among us who lack artistic talent would be hard pressed to sketch a

recognisable image of a face.

A broad, albeit vague, definition of artificial intelligence is anything done by a computer

which would be called intelligent if done by a human. The ability to perform an image

generation task or to instruct one through such a task is intelligent behaviour. Thus if a

machine could be made to perform like functions via instructions in words by end users it

would be demonstrating a form of AI. Genesereth and NiIsson contend that "Artificial

intelligence is the study of intelligent behaviour. Its ultimate goal is a theory of

intelligence that accounts for the behaviour of naturally occurring intelligent entities, and

that guides the creation of artificial entities capable of intelligent behaviour" (Genesereth

and NiIsson, 1987).

This thesis explores the problem of generating recognisable 3D facial images through

natural language descriptions. The research comprises of developing a system which can

generate 3D facial models not using the usual WIMP control environment as seen in the

widely available hybrid modellers such as Alias Wave/rant, Softlmage, 3D Studio Max,

Unigraphics etc but rather a Natural Language Interface.

2

1. Introduction

Humans have a remarkable ability to recognise objects, features, faces they see and can

reasonably describe them verbally. Whereas the professional modelling packages listed

above are adequate tools for the artistically talented and technically skilled individuals,

they are by no means useful for people inept with using graphic packages.

A good example of this can be observed with the 3D rendered image shown in Figure 1.1,

generated using SoftImage. The Artist Jeremy Bim in his tutorial demonstrates the

painstaking process involved in generating the image.

The aim of this thesis is to explore whether, firstly 3D human face models can be

constructed and modified using a rudimentary natural language interface and secondly

the facial images constructed can pass as recognizable human faces. To this end the work

carried out and the system developed is reported in this thesis.

Figure 1.1 "This is a head I modelled in The grid shows the UV
parameterisation of the NURBS surface", Birn J.

Source: Chttp://www.3drender.com//jbim/ea/HeadModel.html)

3

1. 1ntroduction

1.3 Approach

Given the conceptual framework outlined in section 1.2. Development of the entire

system was divided into three broad areas of research or study.

1. Natural language Interface Module using a Fuzzy Truth Maintained Blackboard

System

2. Head Engine Module using fuzzy logic to translate linguistic data

3. Facial Image Generation Module

Input

Natural Language
Interface

Query

Head Engine
(Fuzzy Logic)

Parameters

Facial Image
Generation Module

Figure 1.2 Diagram of a broad overview of the proposed research aim.

The diagram in Figure 1.2 shows the flow of data and processes required to successfully

achieve the project aims.

Starting with the user entering a textual description of a face, the back end of the Natural

Language Interface (NU) processes the English descriptions to smaller descriptive

phrases. These phrases filter through a Fuzzy Truth Maintenance System (TMS) that

converts the descriptors to numerical parameters. The parameters are finally read by a

3D modelling script called Head Generator Script (HGS), which generates the 3D model

of the requested face.

4

1. Introduction

1.3.1 Natural Language Interface (NU)

Natural Language Processing (NLP) is both a modern computational technology and a

method of investigating and evaluating claims about human language itself. Some prefer

the term Computational Linguistics in order to capture this latter function, but NLP is a

term that links back into the history of Artificial Intelligence (AI), the general study of

cognitive functions by computational processes, normally with an emphasis on the role of

knowledge representations, that is to say the need for representations of our knowledge of

the world in order to understand human language with computers.

NLP as a technology covers computer systems that require no knowledge of how they

work to understand what they do: Machine Translation (MT) systems translate from one

language to another; Information Extraction (lE) pulls facts and structured information

from the content of large text collections; Human-computer conversation systems allow

relatively straightforward communication with machines in English by means of speech

or typing. These major systems require a set of rather similar subsystems, which are at

the heart of NLP, with names like parsing, tagging, aligning, interpreting which can be

carried out by methods that may be knowledge and rule-based, or based on statistics or

some combination of the two.

The natural language interface module consists of a simple graphical user interface at the

front end. The back end of the natural language interface is responsible for processing the

natural language sentence of face descriptions. It handles the arduous task of interpreting

and parsing sentences using knowledge base of lexical or vocabulary and rules of English

grammar. English sentences are interpreted using a Truth Maintained Blackboard system.

The interpreted sentence is stored as a PRO LOG list of descriptors and processed by a

heads engine constructed to translate and convert the descriptors to numerical parameters.

The NU and the TMS is discussed in detail in chapter 6.

5

1. Introduction

1.3.2 Fuzzy Logic

Rules used by people use "linguistic" variables such as "much lower", "a lot", "a little",

which we need to interpret more precisely. For this we need to develop the idea of a

fuzzy number. An approximation to a fuzzy number is such a method. By

approximating a normal distribution with the view that almost any "reasonable"

interpretation will give us "reasonable" results then we could take a much simpler

approximation and be just as right or wrong (Zadeh L.A., 1965). The fuzzy membership

function, distribution diagram in Figure 1.3 shows such an approximation.

Given the fuzzy membership function in Figure 1.3 as a definition of the concept "Wide"

for eye spacing we can read off a grade of membership given a width and also read back

a width given a grade of membership.

The concept of "Hedges" within the topic of fuzziness is an important one and highly

relevant to the project in discussion. Apart from distributions such as "large", "small",

"medium", "wide", etc. there could be other distributions derived from these such as

''very wide" and "fairly wide". These adjectives "very" and ''fairly'' are known as hedges

and modify the distributions they are applied to.

The use of hedges enables finer distinctions in the sets to be derived and so allow better

judgements to be made about which set something should be a member of. These sets are

very useful in the area of fuzzy control and enable input values to be mapped onto fuzzy

sets. Figure 1.4 to 1.6 show how hedges can affect the distribution of a set by

strengthening or weakening the set

6

1. Introduction

1.0

0.5

0.0

About average
spacing

"WIDE"

Eye Spacing

Figure 1.3 Shows a denotation of the membership function "WIDE" for eye spacing

The membership function for "VERY WIDE" might look like Figure 1.4 with "WIDE"

shown for comparison.

]" 1.0

j
0.5

0.0

About average
spacing

"WIDE"

"VERY WIDE"

Eye Spacing

Figure 1.4 Shows membership function of sets "WIDE" and "VERY WIDE"

7

1. Introduction

1.0

"NOT VERY WIDE"

0.5

0.0

About average
spacing

"WIDE"

Eye Spacing

Figure 1.5 Shows the transformation NOT on "VERY WIDE". The intersection would
constitute the set "WIDE" but "NOT VERY WIDE"

Using the intersection of "WIDE" and "NOT VERY WIDE" gives the fuzzy set

corresponding most closely to "WIDE" so some one with the width within the triangle

would have a description of "WIDE" but "NOT VERY WIDE". Similarly the set

"WIDE" can be weakened to "FAIRLY WIDE" by applying "FAIRLY" membership

hedge. Figure 1.6 shows the result of applying the hedge "FAIRLY" to the set "Eye

Spacing".

Since these sets are difficult to describe accurately and precisely it is usual and

computationally efficient to use triangular sets. As fuzzy distributions are generally used

to describe vague and approximate concepts this is a reasonable decision with respect to

the operation of the fuzzy system. Fuzzy set theory and other techniques for handling

uncertainty are explained in greater detail in chapter 5.

8

1. Introduction

1.0

0.5

0.0

"FAIRLY WIDE"

About average
spacing

"WIDE"

Eye Spacing

Figure 1.6 Shows the effect of the dilation operator "FAIRLY" on the set "WIDE"
Examining the transformation implied by the two sets "WIDE" and "VERY WIDE"

could derive the operator "VERY". These sets are very useful in describing objects in a

concise manner by selecting the most appropriate descriptor.

The heads engine uses fuzzy hedges to modify parameters of features that are influenced

by classification of hedges. Chapter 6 describes how the head engine modifies parameters

using hedges.

1.3.3 Facial Image Generation Module

A lot of research and time was spent on this module. The only sensible way to tackle the

project was to build the facial image generation module first and then see how the

remaining modules need to be planned to make it al1 fit together. Proceeding on a bottom

up approach, extensive study of the human face, modelling procedures and modelling

tools was undertaken. Details on human physiognomy, modelling techniques and tools

are explained in chapter 2 and 3 respectively. Chapter 4 describes development of the

facial image generation module.

9

1. Introduction

1.4 Contributions of the Thesis

This thesis provides a novel approach to 3D image generation within the context of

intelligent machine based control. There has been a great deal of work on facial image

composition and generation in both 2D and 3D, however little or no research has been

done on generating facial images via natural language descriptions. Most of this has been

in the domain of forensic science "mug-shot search problem" (Cutler et al., 1988; Baker

E. & Seltzer M., 1997) and facial animation.

Substantive research in the real-time animation of faces for telecommunication and for

the synthesis of computer interface "agents" is being conducted at Apple Computer, Inc.

(Advanced Technology Group, Cupertino), Hitachi, Ltd. (Hitachi Central Research

Laboratory, Japan), NIT (Human and Multimedia Laboratory, NIT Human Interface

Laboratories, Japan), and Sony (Information Systems Research Center, Sony

Corporation, Japan).

A number of companies are in the business of vending computer systems and services for

making facial image composites ("identikit" police identification tools, point-of-purchase

video preview for cosmetic makeovers or cosmetic surgery, and one class of systems for

estimating the aged appearances of missing children), 3D digitization of faces, 3D

reconstructive surgery preview and manufacture of facial prosthetics, 3D digitization of

teeth for the manufacture of dental appliances, and 2D and 3D facial animation.

Other important current applications are in the entertainment industry; the use of

graphical face models in advertising, for movie special effects, etc.

The interface for facial composition systems like the mug-shot search problem vary from

an image based interface like CAFIIR (Wu et al., 1994), which allows the user to

construct a face from a database of feature parts by blending each part onto a facial

image, to natural language text based where natural language queries are used to search a

database ofImages (Wu J. K., 1988).

10

1. Introduction

None of the facial Image composition, animation and composite based Image retrieval

systems have explored the idea of generating facial composites via a natural language

Interface. Rama Bindiganavale reports work on altering agent behaviors using natural

language instructions (Bindiganavale et al., 2000). Although this is conceptually close to

this research aims, it fails to offer any clues on how 3D head geometry of avatars or

agents may be generated and controlled using a natural language interface. This thesis

provides the methods and techniques, drawn from the knowledge available on existing

work on facial animation and natural language processing, to develop a working model

for the synthesis of 3D facial Imagery via natural language descriptions using a fuzzy

logic based truth maintenance system.

As mentioned earlier the aim of this thesis is to explore whether firstly 3D human face

models can be constructed and modified using a rudimentary natural language interface

and secondly whether the facial images constructed can pass as recognizable human

faces.

1.5 Outline of Thesis

Chapter 2 provides an insight into what makes faces recognisable; it starts with a

description of the term human physiognomy, followed by explanation of the structure of

human face and its aspects and features that make faces unique and complex. It moves

on to look at existing research on how people attend to faces and describe a face and see

which features they focus most in facial recognition and description. It finally looks at

the language average people use to describe faces by analysing descriptions gathered

from surveys and questionnaires.

Chapter 3 presents background and related work to facial modeling, facial image

recognition and composition, techniques and procedures for constructing 3D facial

geometry. This chapter provides an exposition of the tools and techniques used to

establish a solid framework for the facial image generation system. The human head

models developed using the tools and techniques defined in this chapter form the

11

1. Introduction

backbone for the automated facial image generation system. The chapter has been

divided into three parts - the first dealing with facial modelling, existing research and

applications, the second with representation and acquisition techniques available for 3D

facial image composition and the third discusses the tools and technology used for

developing the human head models in 3D.

In chapter 4 the 3D facial image generation module is described. It begins with

describing the procedure for modelling a human head using representation techniques

discussed in chapter 3, namely; NURBS, Bezier Patches and Polygon Meshes. This is

followed by a description of the finalised baseline head and implementation of

deformation controllers through out the geometry to control structure and conformation

of the face and its features. Finally described is the parameterisation of the head model

and method for influencing the parameters using Maxscript to form the facial image

generation system.

In Chapter 5 is discussed the single major problem faced by designers and engineers of

AI solutions i.e. Uncertainty. What uncertainty entails has been discussed within the

domain of Knowledge-Based systems and techniques available for handling uncertainty.

Furthermore the chapter looks in detail at the two main systems namely Fuzzy Logic and

Truth Maintenance to deal with uncertainty in natural language descriptions.

Chapter 6 provides details on how natural language descriptions are interpreted and how

we have dealt with translating linguistic datum to parameters for the facial image

generation module. Obvious reference is made to techniques discussed in chapter 5 on

handling uncertainty in natural language using Truth Maintenance System and fuzzy

logic.

In Chapter 7 the overall system architecture is defined along with a working model with

extensive test results showing if the system works, how effective it is and what are its

12

1. Introduction

shortfalls. Finally Chapter 8 offers a summary of thesis conclusions and outlines some

outstanding research questions as well as suggests future research work.

13

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Chapter 2

Describing Faces - Human Physiognomy, Facial Recognition and

Verbal Descriptions

Abstract

This chapter provides an insight into what makes faces recognisable; it starts with a

description of the term human physiognomy, followed by explanation of the structure of

the human face and the aspects and features that make faces unique and complex. It

moves on to look at existing research on how people attend to faces and describe them,

and see which features they focus most in facial recognition and description. It finally

looks at the language average people use to describe faces from photo-realistic images

and examine the results to compile a list of most commonly used descriptors for the

lexical database in the natural language processing engine.

Keywords: Conformation, Description, Facial Structure, Language, Physiognomy,

Recognition.

2.1 Introduction

No other object in the visual world is quite so important to us as the human face. Not

only does it establish a person's identity, but also, through its paramount role in

communication, it commands our almost continuous attention. The significance of the

face has long been a topic for speculation by philosophers and artists concerned with

character and aesthetics. When WilIiam Hogarth wrote in his "Analysis of Beauty"

(1753) that "The face is the index of the mind", he was voicing a fairly common belief of

the time. But Hogarth also acknowledged another aspect of faces and our ability to

discriminate them when he advocated a "methodical enquiry" into the observation that

14

2. Describingfaces - human physiognomy,facial recognition and verbal descriptions

"out of the great number of faces that have been formed since the creation of the world,

no two have been so exactly alike, but that the usual and common eye would discover the

difference between them" (Davies G. M., 1981).

Our aptitude to remember and recognise faces is an amazing ability; however an

interesting discovery is that most people struggle to recall the facial characteristics with

enough detail to provide an accurate composite (Penry Jacques, 1971). In light of this

knowledge it makes sense to use visual cues and images to aid the use of facial composite

systems like Photofit (Davies G. M., 1981), E-Fit (Aspley, 1993), and Identi-kit

(Laughery & Fowler, 1980) as used by law enforcement agencies. Implementation of

visual cues and images to aid users is evident in systems like CAFlIR (Wu, Ang, Lam,

Loh, & Desai, 1994), Mac-a-Mug (Cutler B. L., 1988), and Photobook (Baker & Seltzer,

1998). Where as the use of visual aids and images is a good practise to aid a person in

recalling facial characteristics the bottom line is that people still use words to describe the

basic elements (Christie & Ellis, 1981). Therefore it would make sense to research a

system that allows words to be used to composite a human face. The application of such

a system is not as limited or, in the case of this research, targeted as an ID Kit or Photofit

system. Instead it is aimed to find out weather such a system is feasible.

In order to develop a query engine based on the language people use to describe faces a

study of the human face, people's recognition and consequently linguistics in describing

faces is important. This chapter explores the three aforementioned problems; it includes

results of surveys carried out to compare descriptions of different people and compilation

of vocabulary most commonly used when describing faces.

2.2 Human Physiognomy

A face consists of many parts and details. The term "physiognomy" refers to features of

the face, especially so when these features are used to infer the relatively enduring

character or temperament of an individual. In this thesis, this term connotes a simpler

meaning, i.e., it refers to facial features that change slowly and relatively little over time

15

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

and constitutes the structure and conformation of a face. Such features have the bony

structure as their basis, from which experts can fairly accurately reconstruct the fleshy

features.

Topics related to physiognomy have a very long history in human cultures. In China and

other Asian cultures, formal systems of face reading techniques developed sometime in

the first millennia, integrated with religious beliefs such as Confucianism. Substantial

confidence in such methods developed in these cultures, and physiognomic inferences

included descriptions of character, suitability for certain positions, and predictions about

life and death. In Western cultures, the association of facial features with a person's

characteristics also has a history, first noted in the writing of the ancient Greeks. Much

later, several pseudo-scientific and cult movements exploited the inference of character

from physiognomic features. The physiognomy movement (which cultivated the narrow

connotation for the term) was Phrenology, popularized by the 18th century Swiss

philosopher Lavater (FaceData, 1990).

The face, despite recent advances in assessing identity such as biometrics and DNA

testing, remains paramount in ordinary experience for identifying an individual person.

The relatively permanent features of the face convey most of the information about

identity, although styles in the production of more transient signals and other body shapes

and sizes may also contribute to identity information.

2.3 Properties and attributes of human physiognomy

2.3.1 Physical structures

The face is a complex biological structure. The overall shape of the face is determined by

the underlying bone shapes of the skull and the mandible (jaw bone). The bones are

generally considered to be rigid in most applications of facial modelling; however it is

obvious that changes in shape must be accounted for in any application concerning

modelling of children or of the growth process. From a physical point of view, it is also

commonly noted in the medical community that soft tissue always shapes hard tissue -

16

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

that is to say that if bone is compressed by muscle actions, the bone will eventually be

reshaped in response (Pelachaud, Badler, & Viaud, 1994).

The medical term 'joint" refers to any region where two distinct bones come together.

Several bone masses make up the skull, but by adulthood they have fused together to the

extent that the jaw is the only feature of the face which fits our common sense definition

of a joint as seen in other parts of the body. The jaw is referred to as the temporo­

mandibular joint (TMJ). To a first approximation, the TMJ can be treated as a hinge joint.

However, in practice it is important that the muscles control the lower jaw in all six

degrees of freedom (this is particularly useful for producing grinding actions in chewing).

Several layers of soft tissue cover the bones of the face. Although the tissues can be

categorised by function and material content, in vivo the difference between layers of

tissue is less distinct (in any given volume of tissue, there may be muscle fibers

interspersed with the collagen network of the dermis).

The muscles of facial expression tend to be of the flat, diffuse variety-more like the

smooth muscles of the gut than the cylindrical muscles used for locomotion and

manipulation in the arms and legs. Whereas the cylindrical muscles have well defined

origin and insertion points, the muscles of facial expression have broad attachment areas

integrated in the tissue. There may be several layers of muscle fibers connected to the

same part of the anatomy (for instance the levator labii and the risorius muscles both

insert at the corner of the mouth and are involved in raising it, but they differ in origin).

Such muscles mayor may not always be independently controllable.

The mechanical behaviour, particularly the Poisson effect and the elasticity, of the skin

and soft tissue is one of the primary determinants of the change of appearance with facial

expressions. The Poisson effect describes the tendency of the material to preserve its

volume when changing length. Since much of the mass in the soft tissue is water, the soft

tissue is nearly incompressible. Thus when muscles cause a contraction along one axis,

the face must bulge along another; since the underlying hard tissue forms a firm

foundation, facial actions almost always cause the skin to bulge out from the face. This

17

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

change in the surface becomes visible through changes in the silhouette edge of the face

and through changes in the surface shading of the face. The other major mechanical

effect, elasticity, is visible in expression through the displacement of features. When a

muscle causes a movement at a particular point of the face (say the corner of the lip is

raised), the tissue in the surrounding area is displaced also. The amount of displacement

of a particular point is determined by its distance from the point being moved, the

elasticity of surrounding tissue, and the influence of boundary conditions (such as a rigid

attachment to hard tissue). In general, the Poisson effect and the elasticity of the soft

tissue (represented mathematically by Poisson's ratio and Young's modulus, see

Appendix A) will be different depending on the material being examined. They also may

depend on the orientation of motion with respect to, for example, the underlying

orientation of fibre of the tissue. Therefore, these values should be considered to be

multiple valued functions of spatial location.

The detailed response of the facial soft tissue to muscle action is determined by the

distribution of types of material and the orientation of the fibres. In the absence of

physical trauma or surgery, these conditions are determined by growth and ageing

processes. Obviously, the general shape of the face and the locations of facial features are

determined by the developmental process. For an individual, there will be natural areas

where a crease in the skin occurs, such as at a naso-labial fold. These locations are

characterised physically as areas where the fibrous structure in the tissue is preferentially

aligned along the axis of the fold. Similar asymmetric alignments of fibers may arise over

time due to the mechanical breakdown of the tissue: age lines and wrinkles. These

features of the face occur along lines that are repeatedly exercised during facial activities.

The process of wrinkle formation is similar to the fatiguing process in metals and other

materials. Scars are characterised by a denser fibre structure and asymmetric fibre

alignment (Pelachaud, Badler, & Viaud, 1994).

18

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

2.3.2 Primary facial features

The following features are identified as relevant in modelling the human face (Parke F. I.,

1982; Faigin G., 1990). The relevance of these features comes from their role in facial

conformation, movement, and communication.

1. Nose

2. Eyebrows

3. Eyes

4. Ears

5. Mouth

6. Teeth

7. Tongue and Vocal Tract

8. Cheeks

9. Chin

10. Neck

11. Hair

12. Accessories

Nose

Nose movement usually conveys an emotion of disgust. In addition, nostril movements

are observed during deep respiration and inspiration. The size of the nose varies among

people with different origins. Nose shape contributes significantly to identification.

Eyebrows

Eyebrow actions play a vital role both in verbal and non verbal communication. They are

predominantly visible in emotions such as "surprise", "fear", and "anger". They may also

be used to accentuate a word, or to emphasise a pause or a sequence of words.

19

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Eyes

Eyes are a crucial source of expressive information. When looking at a picture of a

person, people tend to devote the greatest attention to the eyes. The eye movement may

reveal "interest", or "attention" of a person. Eye blinks may occur to keep the eyes wet,

or to emphasise speech, or to show an emotional state-hesitation, nervousness etc. The

shape, size, and colour of the eyes provide cues in recognising individuals. The modelling

of eyes should include the eyeballs and eyelids and their actions.

Ears

A face without ears looks like a mask. Ears have an intricate structure and shape.

Modelling the detailed shape of ears may not be necessary, depending on the application.

However, the simplification of ear shape changes the appearance of a complete face. Ear

movement is extremely rare in humans.

Mouth

The mouth is a highly articulate facial zone. Lips articulate elaborately during speech.

Modelling of lip motions should be able to open the mouth, stretch the lips, protrude the

lips etc., to produce the phonemes and basic emotional expressions. The form and shape

of lips is generally different for men and women. In addition, they provide attributes to

distinguish different individuals.

Teeth

Teeth define the structure of a face as much as do the other bones; however, teeth are

visible. Teeth modelling is needed for aesthetic, identification and dental surgery.

20

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Tongue and Vocal Tract

Tongue movement is explicit, particularly in the context of verbal communication, in the

formation of phonemes such as "U", "dd", etc. The motion of the tongue often becomes

obscured by the mouth motion. However, incorporation of tongue movement has

immense importance for precise simulation of speech. The vocal tract is an important

anatomical structure for speech production. This is of concern to clinicians.

Cheeks

Cheek movement is visible in many emotional states. GeneraUy, cheek movements

supplement other movements which may include the mouth or lower part of the eyes. The

zygomatic muscles generate cheek movements while extending the corners of the lips

when smiling or laughing. Actions such as the puffing and sucking of cheeks may

provide emphasis for certain emotions. They reveal characteristic movements during

sucking or whistling.

Chin

The movement of the chin is mainly associated with jaw motion. However, the chin is

distinctively deformed to indicate "disgust" and "anger" with the lips tightened. The

shape of chin also plays an important role when conforming facial models to individuals.

Neck

The neck permits the movement of the entire head, such as nodding, turning, rolling etc.

As the neck moves, it can change its width or it may elongate.

21

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Hair

To complete the modelling of a face it is essential to include hair. The colour and style of

head, hair is often an indicator of gender, race, and individuality. Hair modelling and

animation is an active subject of research with tremendous relevance to facial modelling.

Facial hair, including eyebrows, eyelashes, moustaches, beards, and nose hairs, is also

important.

Accessories

When relating to specific individuals, it is important to model accessories worn on the

face and head, such as glasses, makeup, hats and hairpieces, and jewellery. People tend to

see such accessories as identification marks.

2.4 Determining parameters for facial model construction

Developing a parameterised model consists of two distinct tasks:

1. Developing appropriate parameters and

2. Developing image synthesis models based on these parameters.

The first step is to determine the appropriate set of facial parameters - a nontrivial task.

Ideally, one would develop a complete parameter set for creating and specifying any

possible face. The possibility of developing such a set is an open question. How is a

facial parameter set developed? One approach is to simply observe the surface properties

of faces and develop ad hoc sets that allow these observed characteristics to be specified

parametrically. A second approach involves studying the underlying structure, or facial

anatomy, and developing a set of parameters based on it.

The models developed by Platt and Badler (Platt & Badler, 1981), for example, deal

directly with the underlying structures that cause facial expression. Their work uses a

22

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

notational system to encode the actions performed by the face. The notation drives a

model of the underlying muscle structure, which in turn determines the facial expression.

There are two broad categories of parameters: those controlling the conformation (Parke,

1982; 1984) or structure, of an individual face, and those controlling its expression, or

emotional content. To a certain extent, these two categories overlap, but conceptually

they can be considered distinct.

2.4.1 Conformation parameters

Changes in the conformation of faces (those aspects that vary from individual to

individual and make each person unique) require a different set of parameters. Again, the

ideal set is unknown. The following parameters continue to be used in current models,

and although this parameterisation is clearly not complete, it does allow for a wide

variety offacial conformation within the implied limits.

Some conformation parameters apply globally to the face. In addition to skin colour and

the aspect ratio of the face (height to width), these global parameters include a

transformation, suggested by other researchers (Tod, Mark, Shaw, & Pittenger, 1980),

that attempts to model facial growth. Conformation parameters control the colour (and

the texture in more elaborate models) of the eyebrows, eyelashes, iris, lips, and other

features.

Other conformation parameters use relative size (scale), shape, and positioning

information to control

2 Neck length and shape;

3 Chin, forehead, cheek, and cheekbone shape;

4 Eyelid, eyeball, and iris size and the position and separation of the eyes (Figure 6)

5 Size and shape of ears

6 Jaws width;

23

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

7 Nose length and the width of the bridge and the end of the nose; and

8 Chin and forehead scale and the scale of the mouth-to-eyes portion of the face with

the rest of the face (Figure 2.1)

9 Tongue and Vocal Tract

10 Hair

The development of a truly complete conformation parameter sets appear very difficult.

Little in the way of theory exists to support their development, and the variations in facial

structure from one individual to another are far less understood than the ways in which a

given structure varies from one expression to another.

An important factor determining what is regarded as an acceptable facial image

(synthesised by a computer system) is the viewer's expectation. Sensitive to subtle

variations in expression and conformation, we all continually observe faces and develop

very clear expectations about them. Facial expression is an important communication

channel; in some contexts, it takes priority over other channels (words for example).

"An interesting and slightly frustrating phenomenon we observed while developing our

models suggests the following rule: The closer the images get to reality, the more critical

the viewer becomes. If the images are clearly perceived as artificial or synthetic, the

viewer seems willing to be somewhat forgiving and accept them as such." (Parke, 1982)

24

2, Describing faces - human physiognomy, facial recognition and verbal descriptions

rACrAI. I'nOrORTIO'iS

Figure 2.1 Facial Feature Proportions (from Penry J ,,1971)

S,\II:ROW. nrIf>·S[1

posmo'i OF El'[S

:;~~;,~::

>~ ;.~

'r.f--iI~1

"10ELl' Sf'Ann

NO!l!\IAU.Y ,s"ACU>

CLOSf;J.Y SI-:T

Figure 2.2 Eye Types & Eye Positioning (from Penry J.,1971)

25

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

2.5 Facial recognition and verbal description

In recognizing an object, not all aspects or attributes of the stimulus receive the same

attention: certain elements appear to be more critical for identification purposes than

other (DodweIl, 1971). This is almost certainly true for faces. An opinion poIl carried out

in the Sunday Times (J ones B, 1977) asked respondents: "What facial features draw your

glance and hold you attention?" Eyes(62%) were the overwhelming choice foIlowed by

hair (22%) and mouth (8%) with the remaining 8% distributing their choices over a

variety of other features.

A study performed to provide information on cue saliency in faces (Shepherd, Davies, &

ElIis, 1981) looked at different experimental techniques of which verbal descriptions was

one. Due to the relevance of this experiment with regards to this thesis it has been

discussed. It provides information on the areas of the face people tend to focus most with

greater detail when describing faces of present people (or from images) and absent people

(from memory).

2.5.1 Verbal descriptions

A simple method of exploring how people attend to faces is to ask them to describe a face

and see which features they mention.

This technique was adopted by ElIis et al. (1975) as a convenient method for examining

any differences in feature extraction by Europeans and Africans looking at both white

and black faces. It was also more extensively employed by Shepherd et al. (1977) in a

series of studies of facial feature saliency.

In the first experiment 40 subjects were each asked to write descriptions from black and

white prints of white male faces. There were 100 faces ranging in age between 16 and 60

years, and each subject wrote descriptions of 10 of them. The resulting 400 descriptions

were then tabulated and frequency counts made of the number of times each feature was

26

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

mentioned, the number of faces for which each feature was mentioned, and the number of

subjects who used the particular feature description.

Thirteen facial features were identified in this way. In order of frequency they were: hair,

eyes, nose, eyebrows, face shape, chin, lips, mouth, ears, face lines, complexion, forehead

and cheeks. The total number of times hair occurred as a descriptor was 1135; at the other

end of the continuum, cheeks were mentioned 53 times. Similarly, the category hair was

divisible into 10 subsections (e.g. length, colour, texture), whereas cheeks subdivided into

three description classes.

The frequency tables indicated that upper face features attracted more attention than did

others. Hair, forehead, eyebrows and eyes together accounted for almost half of the total

number of feature descriptions given. Not surprisingly, most subjects gave a hair- or eye­

related description, and most faces attracted at least one description of their eyes and hair.

Figure 2.3 iIlustrates the relative frequencies with which different features were

mentioned.

. ,. 'Tofa'l: n~mbet '6f 'times ·'teOture "mentiOned,'
" ""'200 400600'" 8OO''''100i:>1200

Figure 2.3 Relative frequencies with which the principal facial features were mentioned

in free descriptions (from Shepherd et aI., 1977).

27

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

It could be argued that the distribution of descriptions across facial features depicted in

Fig. 2.3 is limited in generalizability. The faces were shown as black and white prints and

descriptions were made in the presence of the pictures. In the next experiment (Ellis et

ai., 1980) colour prints of just two male faces were employed. Subjects were required to

make a description of one face immediately following a 20-second inspection period and

the other face after a delay of an hour, a day or a week.

The detailed results of this experiment need not concern us here. What is striking about

the data, shown in Table 2.1, is the fact that the proportions of features in the descriptions

made from memory of just two faces is remarkably like those derived from descriptions

made of lOO faces while each was present.

There is considerable agreement between the two sets of figures shown in Table 2.1, and

it may therefore be reasonable to infer that there is a consistent pattern of attention to

different facial features. Regardless of whether the face is described from a picture, or

from some sort of memory image, upper face features attract more attention.

Interestingly, this pattern was not found for descriptions of faces given by black African

subjects (Ellis et al., 1975). Presumably then, we learn to attend to distinguishing facial

features. In Caucasian faces hair and eyes vary among individuals sufficiently for reliable

discriminations to be made largely on the basis of these features alone. Negroid faces,

however, are less easily differentiated by hair colour and texture and eye colour and so

Africans may develop a more diffuse deployment of attention across more areas of the

face.

28

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Feature
--

Faces absent (from ElIis et al.; Faces present (from Shepherd, et al .• .:
1980) 1977) ,. . .

Hair 0.27 0.24
Eves 0.14 0.13
Nose 0.14 0.12
Face structure 0.13 0.9
Evebrows 0.8 0.9
Chin 0.7 0.7
Lips 0.6 0.6
Mouth 0.3 0.4
Complexion 0.2 0.4
Cheeks 0.1 0.1
Forehead 0.1 0.2
Others 0.4 0.9

Table 2.1
Proportion of descriptors allocated to various facial features in two different experiments

2.6 Language used by people to describe faces

The results of the experiment by Shepherd et al. (1981) discussed in section 2.5 offers

valuable information on the approach needed to structure and conduct surveys in

acquiring data on language (vocabulary. phrases) used by ordinary people to describe

faces.

The survey was planned such that volunteers would be shown an image of a face and

asked to describe it. Depending on the level of detail attained by the descriptions the

surveyor might push the volunteer to focus on certain areas of the face and provide

description in greater detail. The sample of 12 images used in the experiment is shown in

Table 2.2. A web site with the survey was also developed. Since this would entail

viewers having to describe faces without support and advice the survey form was divided

into 7 sections. each section dealing with a specific area or feature of the face.

Volunteers could easily access the web site at their convenience. select a sample from the

main page. fill in the descriptions and send the data through. The web based survey forms

can be found in Appendix A.

29

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Sample 01 Sample 02 Sample 03

Sample 04 Sample 05 Sample 06

Sample 07 Sample 08 Sample 09

Sample 10 Sample 11 Sample 12

Table 2.2 Sample images, taken from the database of faces from Yale University and

AT&TLabs.

30

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

2.7 Survey Results and Language Analysis

The descriptions obtained from the survey were simple but diverse. A majority of

descriptions were about size and shape details closely accompanied by surface and

texture details. Table 2.3 lists the descriptions given by a population of 12 volunteers, the

descriptions have been divided into nine categories relating the head and features.

Descriptions of the head and features collected from the survey results are listed down the

table for each sample image.

Table 2.3 Descriptions obtained from survey

" " Sample 01 ,

Head "Head broad, large skin coarse."
"Large round overweight shaped face, dark smooth skinned."
"Large head, giving a very round shape to the face. Dark skin, somewhat shiny,
with an even texture. Prominent bone structure above the eyes and in the cheek
bones."

Hair "Woolly"
"Short, dark curly hair receeding from forehead."
"Short curly black hair with a hairline high on the forehead."

Eyes "Eyes oval, wide spaced eyebrows well defined, arched."
"Heavy looking eyes thickness under lower lid, bright large, dark eyes, well
spaced with thick curved dark eyebrows."
"Fairly small eyes, wide apart on the face. Eyebrows very faint."

Nose "Nose broad flat large."
"Large flat nose with large nostrils central to face."
"LarEe nose, wide at the bottom with large nostrils."

Mouth "Mouth broad, large."
"Wide mouth with thick lips normal type for Africans."
"Medium-sized mouth, with full and rounded lips. Mouth positioned quite
close to the base of the nose."

Chin "Chin round."
"Slight stubble on chin."
"Broad, rounded chin."

Cheek "Cheek high."
"Noticeable cheeks."
"Full cheeks."

Jaws "Jaw oval."
"Round heavy jaw line."
"Indistinct jaw line."

Ears "Ears small."
"Fairly small close to head."

31

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

"Ears look relatively small and not very prominent, compared to the size of the
head."

I'mi' ; Sample 02 . . , .
" . ; , .,.

Head "Large oval head"
"Head is average sized, face seem to be sightly elongated"

Hair "Straight hair left partitioned"
"Hair is straight"

Eyes "Small eyes drooping down on the inside, widely spaced"
"Eyes are slanted somewhat and seem to be quite highly placed on the face."

Nose "Long nose, wide at the base nostrils showing"
"Nose is centrally placed in face, seems to be of average size and shape"

Mouth "Small mouth with thick lips"
"Mouth seems a bit small, but lips are quite thick"

Chin "Oval chin, perhaps jutting profile"
"Oval chin"

Cheek "Fairly fuJl cheeks with high cheek bone"
"Average cheeks"

Jaws "Broad jaw line"
"wide jaw"

Ears "Small hidden behind hair"
"Ears not really visible"

Sample 03
Head "Oblong shaped face, high forehead. Smooth, pale textured skin."
Hair "Short, cut around ears curly light coloured."
Eyes "Small oval light coloured eyes with heavy eyebrow and fairly light textured

eyebrows. "
Nose "Medium sized with a bend to the right, small nostrils."
Mouth "Thin upper lip with wider lower lip."
Chin "Rounded chin."
Cheek "Non prominent cheeks."
Jaws "Smooth outline of jaws, slightly pointed jaw."
Ears "Medium sized P!otruding ears central to head"

....
•••

.... .'> , ... , ... ;.
. <', ... Sample 04 ,

•••• .," '"
iii

Head "Long oblong shape head"
"Face seems quite long skin texture not clear"

Hair "Middle partitioned slightly wavy long hair"
"Hair long and wavy"

Eyes "Squinted medium eyes, closely set"
"Eyes -"uite narrow, eyebrows very close to eyes"

Nose "Long thin nose, average sized bridge and nostrils flared out"
"Nose quite long and pointed"

Mouth "Small thin lipped mouth"

32

2. Describing faces - human physiognomy,facial recognition and verbal descriptions

"Mouth seems to be average shape and size"
Chin "Fairly horizontal/squared chin receding chin"

"Chin quite pointed"
Cheek "Average chin with wrinkles and lines"

"Cheek bones quite high"
Jaws "Slightly wide jaw"

"Broad jaw line"
Ears "Not visible"

"Not visible"

Ld[o ",,, . • ·'i. ii ',i,[o'i ·.',i""ii'i.[o, .. ,[o.i Sample OS" .. 'iiii,., "i .,[0. "," "" ii'," ""_"i'"

Head "Small round head shape pointy at the bottom"
"Head seems quite small, somewhat rounded"

Hair "Short wavy hair"
"Hair is thick and tending to curl"

Eyes "Small slightly closed eyes average spaced"
"Eyes and eyebrows very average size and shape"

Nose "Wide nose, pointy at the end"
"Nose at centre fo face, quite small"

Mouth "Small thin lined mouth"
"Mouth average"

Chin "Long extended chin"
"Chin seems a little pointed"

Cheek "Average cheeks, well define outline"
"Cheeks quite broad"

Jaws "Broad jaws"
"Jawguite broad"

Ears "Small protruding ears"
"Ears seem to stick out a little"

, , ., " " . ""[0' ,', '''i "", ii Sample 06 ,i ",i i' '" .",'" ""i""

Head "Large head"
"Large square-shaped head on a large neck; pale white skin with a number of
blemishes."

Hair "Wavy"
"Light coloured straight hair,_ quite long."

Eyes "Eyes small round eyebrow well marked, straight"
"Quite small eyes, widely spaced; dark patches under the eyes,"

Nose "Nose large blunt"
"Large and wide nose, bulbous at the tip."

Mouth "Mouth quite large, well shaped"
"Broad-lipped mouth, quite narrow compared to size of face."

Chin "Chin pointed"
"AnJnllar, protruding chin."

Cheek -
"Cheeks full"

33

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Jaws -
"Jaw bone verv an1!;ular"

Ears "Ears medium"
-

ii, SamJlle 07
Head "LoIlg_ head"
Hair -
Eyes "Large open eyes oval shaped"
Nose "Long nose"
Mouth "Wide thin lipped mouth"
Chin "Fairly straightlhorizontal chin"
Cheek "Slightly jlUffed cheeks"
Jaws "Smoothiaw line"
Ears "Long protruding ears"

'.,.
SampJe08

Head "Round shaped head, pale fairly smooth skin."
Hair "Strai1!;ht dark coloured hair, quite thick, a little wispy."
Eyes "Dark eyes, fairly round in shape and widely spaced."
Nose "Medium sized nose with small nostrils, in the middle of the face."
Mouth "Lipped mouth, fairly small and thin in outline."
Chin "Rounded chin."
Cheek "Smooth cheeks."
Jaws "Normal jaw-line."
Ears "Partially concealed ears, appear to be set quite low on the head."

i' :ii Y' i, ·'i" :i,i,.:i> '+ i'Sample09· i ,.
'" > '" ':i . ,

Head "Small round head with clear skin"
Hair "Hair wavy"
Eyes "Eyes large oval wide spaced"
Nose "Broad large flat"
Mouth "Mouth wide narrow lipped"
Chin -
Cheek "Rounded cheeks"
Jaws "Squarish jaw"
Ears "Small ears"

,iik':iik ',:i.'iLii!':' 'i"i" ',ilLL,:,'i ---"-Sam]!le 10 .-"'-'i,,'_ii> >"-:ili' J:ii ";ii.'_ ,';,:i

Head "Round angular head"
Hair "Middle parted wavy hair"
Eyes "Lar1!;e open eyes"
Nose "Medium sized, average width nose compared to head size"
Mouth "Fairly wide mouth thin lips"
Chin "Squared chin"

34

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

Cheek "Sunken cheek with"
Jaws "Wide jaw with distinct jaw line"
Ears "Medium sized ears protruding at the top"

:1'" "
, ,'" , , , ' Sample 11 '" " " ,,' "

Head "Large round head"
Hair "Short"
Eyes "Medium, average space with thin eyebrows"
Nose "Large nose with thick bridge, nostrils showing"
Mouth "Medium sized mouth lips not visible"
Chin "Straight chin profile with a round chin"
Cheek "Full and puffed cheeks"
Jaws "Broad and wide jaw"
Ears "Ears small and close to head"

" 'd':;:'" ", ' " ': ", ,Sample 12 ":':: , " ",,' ,'" :

Head "Oval head"
Hair "Side~arted, mes~'

Eyes "Small, squinted eyes"
Nose "Small nose, wide at the base"
Mouth "Small mouth"
Chin "Fairly fat, round chin"
Cheek "Cheeks full"
Jaws "Broad jaw"
Ears "Long ears close to head."

Analysis of the survey results led to the compilation of distinct words or vocabulary that

is commonly used to describe a face and its features. These descriptions form the basis

for the lexicon used by the natural language parser to identify words and process them to

generate parameters for the facial image generation module. Both the facial image

generation module and the natural language interface module are described in greater

detail in chapters 4 and 6 respectively. Table 2.4 lists the descriptors used in the lexical

database, compiled from the survey results given in table 2.3.

35

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

1 Head shape

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Forehead

Eyebrow

Eyes

Eye separation

Nose width

Nose length

Nose tip

Lips

Mouth width

Chin

Ear length

Ear protrusion

Cheeks

Cheekbones

Jaw

Hair length

Hair texture

Round, oval, small, large, long

Receding, vertical, bulging

Thin, narrow, medium, thick, bushy

Narrow, squinted, medium, open, large, small, round, oval

Close, medium, wide

Small, medium, average, wide, large

Short, small, medium, long

Bulbous, downward, hooked, pugged

Thin, average, medium, thick

Small, medium, average, wide, large

Oval, horizontal, squared

Short, medium, long, large

Slight, medium, top, bottom

Sunken, average, full, puffed

High, extruding, low

Narrow, medium, average, wide, broad

Short, average, long

Straight, wavy, curly

Table 2.3 Table of facial descriptors - compiled from survey results

2.8 Conclusion

In this chapter we have closely examined the human facial structure; this examination

has, in part looked at the medical definitions of facial structure such as the bone and

muscle that give faces structure and allow facial expressions. In greater detail we have

identified the physical parts of a face that make faces recognisable. The work of Fredric

Parke (Parke, 1982) has been acknowledged for his pioneering work on facial animation

and defining techniques to parameterise faces for artificial composition and animation.

Recent work by artists like Paigin (1990) has also been acknowledged.

36

2. Describing faces - human physiognomy, facial recognition and verbal descriptions

We have also looked at the work of Ellis (Ellis et al., 1975) and Shepherd (Shepherd et

al., 1977) on facial recognition and verbal descriptions. This has provided beneficial

insight into what areas of a face people usually remember and recall most frequently.

This information helped in planning and executing surveys necessary to acquire

important data on the language ordinary people use to describe faces.

Finally we examined the survey results and compiled a list of most commonly used

descriptors for the lexical database in the natural language processing engine.

37

3. Tools, techniques and technology for 3D facial modelling

Chapter 3

Tools, Techniques and Technology for 3D Facial Modelling

Abstract

This chapter provides an exposition of the tools and techniques used to develop 3D

geometry specifically to construct 3D head models and the facial image generation

system. The human head models developed using the tools and techniques defined in this

chapter are the backbone for the automated facial image generation system. The chapter

is in three parts; the first dealing with facial modelling, existing research and

applications, the second with representation and acquisition techniques available for 3D

facial image composition and the third discusses the tools and technology used for

developing the human head models in 3D.

Keywords: 3D, Facial Models, Tools, NURBS, Beziers, Polygons, Spline, Surface,

Geometry, FFD.

3.1 Introduction

The complexity of the human face makes it a challenging subject for modellers. Facial

modelling has been an active area of research in the computer graphics field for more

than two decades. It benefits from and can contribute to the larger field of human body

modelling. Facial modelling is also relevant in other fields, such as medicine and

engineering. It is, in fact, a multi disciplinary effort.

A facial model is a mathematical abstraction that captures to some degree of accuracy the

form and function of a face, whether human or otherwise, in a way that makes the model

useful for specific applications. State-of-the-art facial models for computer animation

attempt to represent the geometry, photometry, deformation, motion, etc., of the various

38

3. Tools, techniques and technology for 3D facial modelling

organs and features associated with the face, as well as with the rest of the head and neck.

These models rely on data from various sources (shape, colour, elasticity, control, etc.).

Typically, the models are designed to produce meaningful facial images.

3.2 Existing Research

The human face is an important and complex communication channel. It is a very

familiar and sensitive object of human perception. The facial animation field has

increased greatly in the past few years as fast computer graphics workstations have made

the modelling and real-time animation of hundreds or thousands of polygons affordable

and almost commonplace. Many applications have been developed such as

teleconferencing, surgery, information assistance systems, games, and entertainment

(Facial Animation, 1997). To solve these different problems, different approaches for

both animation control and modelling have been developed.

Substantive research in the real-time animation of faces for telecommunication and for

the synthesis of computer interface "agents" is being conducted at Apple Computer, Inc.

(Advanced Technology Group, Cupertino), Hitachi, Ltd. (Hitachi Central Research

Laboratory, Japan), NIT (Human and Multimedia Laboratory, NIT Human Interface

Laboratories, Japan), and Sony (Information Systems Research Center, Sony

Corporation, Japan).

A number of companies are in the business of vending computer systems and services for

making facial image composites ("identikit" police identification tools, point-of-purchase

video preview for cosmetic make over or cosmetic surgery, and one class of systems for

estimating the aged appearances of missing children), 3D digitization of faces

(Cyberware, 1990), 3D reconstructive surgery preview (Delinguette et af. 1994) and

manufacture of facial prosthetics, 3D digitization of teeth for the manufacture of dental

appliances, and 2D and 3D facial animation.

Another important current interest is in the entertainment industry; the use of graphical

face models in advertising, for movie special effects, etc.

39

3. Tools, techniques and technology for 3D facial modelling

3.3 Applications

Typical models of the human face are relevant to a variety of applications, such as

education, entertainment, medicine, telecommunications, etc. The amount of detail that

the model captures is likely to vary from application to application.

3.3.1 Education

In an educational environment, a major use of the face is in communicating ideas. For

example, a model that captures the physics and anatomy of the human face may be used

in teaching medical students about faces (Thalmann & Thalmann, 1994). Another

important application is artificial agents or avatars that take students on tours of historical

sites or museums. There is some work done on using avatars in networked environments

such as CSWG these can be both in field of education and industry (Capin, 1998)

3.3.2 Entertainment

The use of faces for entertainment often requires the elicitation of empathy and human

emotion towards computer generated characters. The synthesis of facial expressions is

important in this context (Thalmann & Thalmann, 1995).

3.3.3 Medicine

Preoperative simulation of corrective plastic surgery and dental treatment are of great

interest to both practitioners and patients alike. Such applications demand precise models

of particular individuals based on the bone and soft tissue of the head. A computerised

system, which incorporates an anatomically complete model of the head and face, would

provide surgeons with the capability to plan, and even rehearse, complex operations

without undertaking costly and potentially dangerous exploratory surgery (Delinguette et

at. 1994).

40

3. Tools, techniques and technology for 3D facial modelling

3.3.4 N arrati on

Speech is an integral component of human communication. A face model which

incorporates speech synthesis capabilities could prove to be useful for the deaf and hard­

of-hearing. (Roberts and Storey, 1986; Marigny, Adjoudani, and Benoit, 1994).

3.3.5 Telecommunication

Researchers are developing facial models for use in videophones (such as portable

videophones) that must transmit facial images over low-bandwidth channels. A

photorealistic model of the speaker is captured and transmitted to the receiving station

where it is reconstructed at low bit-rates to produce a realistic animated image of the

speaker's face (Ohya, 1995).

3.3.6 Criminology

Recognition and identification of faces is an important aspect in criminal investigations.

Here, representing the appearance of a wide variety of faces is particularly important

(Carey & Diamond, 1977; Turk & Pentland, 1991).

3.3.7 Forensic Medicine and Anthropology

Reconstruction of realistic faces from skeletal remains is of immense interest in forensic

medicine and archaeology (Vanezis, 1999). Facial reconstruction can be employed to

assist in identifying a victim from only a few clues. A computer-based system would

require a complete model of the face in order to mimic the manual process.

3.3.8 Advertising

A major objective of the use of the face in advertising is to give the audience an

unambiguous message. This requires accurate modelling of facial behaviours.

41

3. Tools, techniques and technology for 3D facial modelling

3.4 3D Facial Modeling

3.4.1 Brief history

The first work in developing facial models was done in the early 70's by Parke at the

University of Utah (Parke, 1972a, 1972b, 1974, 1975) and Gillenson at Ohio State

(Gillenson, 1974). Parke developed the first interpolated and the first parametric three

dimensional face models while GiIlenson developed the first interactive two dimensional

face models. In 1971, Chemoff (1971, 1973) proposed the use of simple 2D computer

generated facial images to present n-dimensional data. In the early 80's, Platt and Badler

at the University of Pennsylvania developed the first muscle action based facial models

(Plat!, 1980, 1985; Platt & Badler, 1981). These models were the first to make use of the

Facial Action Coding System (Ekman & Friesen, 1978; Ekman & aster, 1979) as the

basis for facial expression control.

Between mid 80's and early 90's there was considerable activity in the development of

facial models and related techniques. Waters and Terzopoulos developed a series of

physically based pseudo-muscle driven facial models (Waters, 1986, 1987, 1988; Waters

& Terzopoulos, 1990, 1992; Terzopoulos & Waters, 1990b). Magnenat-Thalmann,

Primeau, and Thalmann (1988) presented their work on Abstract Muscle Action models

in the same year as Nahas, Huitric and Sanintourens (1988) developed a face model using

B-spline surfaces rather than the more common polygonal surfaces. Waite (1989) and

Patel and Willis (1991) have also reported facial model work. Techniques for modeling

and rendering hair have been the focus of much recent work (Yamana & Suenaga, 1987;

Watanabe & Suenaga, 1992). Also, surface texture mapping techniques to achieve more

realistic images have been incorporated in facial models (aka et al., 1987; Williams,

1990; Waters & Terzopoulos, 1991; Anjyo, 1992; Yacoob, 1994).

In early models, modelling was done by digitising sculptures of the face with various

expressions (different lip shapes and expressions) and storing them in a library (Walczak,

1988). Animation was performed by linear interpolation between given stored

42

3. Tools, techniques and technology for 3D facial modelling

expressions. Such a method is really tedious and time consuming since it is not

automatically adaptable to any other new model.

The ability to synchronize facial actions with speech was first demonstrated by Parke in

1974 (Parke, 1974, 1975). Several other researchers have reported work in speech

animation (Pearce et al., 1986; Lewis & Parke, 1987; Hill et al., 1988; Wyvill, 1989).

Pelachaud has reported on work incorporating co-articulation into facial animation

(Pelachaud, 1991). Work modeling the physical properties of human skin have been

reported by Komatsu (1988), Larrabee (1986), and Pieper (1989, 1991).

3.4.2 Current models

Essentially all of the current face models produce rendered images based on polygonal

surfaces. Some of the models make use of surface texture mapping to increase realism.

The facial surfaces are controlled and manipulated using one of three basic techniques:

3D surface interpolation, ad hoc surface shape parameterization, and physically based

with pseudo-muscles.

By far the most common technique is to control facial expression using simple 3D shape

interpolation. This is done by measuring (Cyberware Laboratory Inc., 1990; Vannier et

al., 1991) the desired face in several different expressions and interpolating the surface

vertex values to go from one expression to the next. One extension on this approach is to

divide the face into regions and interpolate each region independently (Kleiser, 1989).

Ad hoc parameterized facial models have been developed primarily by Parke (1982).

These models are based on a set of parameters, which affect not only facial expressions

(opening of the mouth, raising eyebrows, etc.) but also facial conformation (long nose,

short forehead, etc.). These parameters are only loosely physically based. These

parametric models (Pearce et al., 1986; Ohmura, 1988; Patel, 1991) are the only ones to

date that allow facial conformation control, i.e., changes from one individual face to

another. The separation between conformation parameters (Parke, 1982; Platt & Badler,

43

3. Tools, techniques and technology for 3D facial modelling

1981; Faigin, 1990) and expression parameters forces the independence between facial

features and the production of an expression.

Physically based models attempt to model the shape changes of the face by mode ling the

properties of facial tissue and muscle actions. Most of these models are based on spring

meshes or spring lattices with muscle actions approximated by various force functions.

These systems describe the skin as an elastic spring mesh where unit actions are

simulated by forces. The deformations are then performed by solving the dynamic

equations (Waters, 1988). Muscle movement propagation is intrinsic to the model.

Various layers of facial tissue are integrated (Turk & Pentland, 1991). It succeeds in

producing subtle facial actions with realism

3.4.3 Facial Recognition - Complementing Facial Generation

There is a long history of research into face recognition and interpretation. Much of the

work in computer recognition of faces has focused on detecting individual features such

as the eyes, nose, mouth, and head outline, and defining a face model by the position,

size, and relationships among these features. Beginning with Bledsoe's (1966) and

Kanade's (1973, 1977) early systems, a number of automated or semi-automated face

recognition strategies have modeled and classified faces based on normalized distances

and ratios among feature points such as eye corners, mouth corners, nose tip, and chin

point (e.g. Goldstein et al., 1971; Kaya & Kobayashi, 1972; Cannon et al., 1986; Craw et

aI., 1987). Lately this general approach has been continued and improved by the work of

Yuille and his colleagues (Yuille, 1991). Their strategy is based on "deformable

templates", which are parameterized models of the face and its features in which the

parameter values are determined by interactions with the image.

Such approaches have proven difficult to extend to multiple views, and have often been

quite fragile, requiring a good initial guess to guide them. In contrast, humans have

remarkable abilities to recognize familiar faces under a wide range of conditions,

including the ravages of aging. Research in human strategies of face recognition,

moreover, has shown that individual features and their immediate relationships comprise

44

3. Tools, techniques and technology for 3D facial modelling

an insufficient representation to account for the performance of adult human face

identification (Carey & Diamond, 1977). Nonetheless, this approach to face recognition

remains the most popular one in the computer vision literature.

In contrast, latest approaches to face identification seek to capture the configurational, or

gestalt-like nature of the task. These more global methods, including many neural

network systems, have proven much more successful and robust. For instance, the

eigenface (Turk & PentIand, 1991) technique has been successfully applied to "mugshot"

databases as large as 8,000 face images (3,000 people), with recognition rates that are

well in excess of 90% (Pentland, 1992), and neural networks have performed as well as

humans on the problem of identifying sex from faces (Golomb et aI., 1991).

3.5 Representation Techniques

Input for shape reconstruction may be drawn from photographs and/or scanned data.

Among the variety of ways of representing a face geometrically, the choice should be one

that allows for precise shape, effective animation and efficient rendering.

Two broad categories may be distinguished: volume representation and surface

representation. Volume representation may be based on constructive solid geometry

(CSG) primitives or volume elements (voxels) from medical images. However, volume

representation has not been widely adopted for facial animation because CSG primitives

are too simple to produce reasonable face shapes. Voxels are high resolution data, need to

be segmented from a huge voxel map and require data thinning. Largely for these

reasons, the animation using volumic data is computationally intensive.

Surface primitives and structures are currently the preferred geometrical representations

for faces. Among surface description techniques are polygonal surfaces, parametric

surfaces, and implicit surfaces. In a polygonal surface representation, a face is a

collection of polygons, regularly or irregularly shaped. The majority of existing models

use polygonal surfaces, primarily because of their simplicity and the hardware display

facilities available for polygons on most platforms. The parametric surfaces use bivariate

45

3. Tools, techniques and technology for 3D facial modelling

parametric functions to define surfaces in three dimensions, e.g. bicubic B-spline

surfaces. The advantage of these models is that they have smooth surfaces and are

determined using only a few control points. However, local high-density details for eyes

and mouth are difficult to add. Hierarchical B-splines developed by Forsey and Bartels

(1990) enable more local detail without the need to add complete rows or columns of

control points. Wang (1991) has used the hierarchical B-splines for modeling and

animating faces. An implicit surface is an analytic surface defined by a scalar field

function. Interaction with implicit surfaces is difficult with currently available techniques,

and these have not yet been used for facial modeling.

We will now discuss the five main representation techniques available for mode ling

human heads. Techniques described here have been used to model the baseline head for

the facial image generation system

• Polygonal or Mesh based modelling

• Spline based modelling

• Bezier patches

• NURBS (Non Uniform Rational B-Splines)

• Implicit surfaces

3.5.1 PolygonallMesh Modelling

Polygonal modelling consists of a topological and geometric structure of interconnecting

triangles, called facets, of various sizes and orientations. By arranging the facets a very

simple 3D model can be built up to a very complex model. Polygonal models are also

easily animated. Further, by altering the size and orientation of the facets, simple

animations can be produced, such as bends or twists, or more complex animations, such

as morphing.

46

3. Tools, techniques and technology for 3D facial modelling

Figure 3.1 The basic building blocks of polygonal modelling (scanned image: Bell,

1998).

The principle of detail is straightforward: the more facets or polygons in a given location,

the more detailed it will be. Polygons can be used to model just about anything,

furthermore they are used at the lowest level by many commercial rendering systems.

With enough detail any surface can be created. There is one major drawback though and

that is, detail on model objects requires more polygons. As facet count increases,

performance begins to degrade. The increasing number of facets also reduces the ability

to edit detailed models. Due to the large number of facets in detailed areas of a polygonal

model, making small changes can often be a significant challenge. On the other hand the

presence of a large number of facets does allow small detailed changes to be made easily.

Polygons are usually used for creating objects that are planar in nature and not

particularly organic. Example buildings, road intersection etc. For rendering reasons,

polygons are often used. Polygonal modelling works best for low detail or more rigid

looking models. Patches and NURBS work well for more complex and organic models.

However there are certain texturing and shading techniques that can reduce the faceted

look of polygonal models. (Foley, 1996; Bell, 1998; Peterson, 1997; Boardmann and

Hubbell, 1998).

47

3. Tools, techniques and technology for 3D facial modelling

Texturing/shading models (multi-spectral)

Mesh facial models (either polygonal or parametrically based) may be given realism or

texture by means of surface mapping and shading. Shading can smooth a polygonal

model. Various methods are available and they may be applied alone or in combination

depending on the desired appearance of the model:

• Flat shading: the pixels in a polygon are all the same colour with no variation. If

the model is faceted, each facet will be distinguishable. Flat shading is useful only

as a low-cost rendering method (Foley, 1996; Bell, 1998).

• Gouraud (smooth): This is a shade-interpolating method of shading that will make

the object appear smooth, instead of faceted. This method doesn't work well with

highlights or local light sources and one can often still see polygonal edges on the

object (Foley, 1996; Bell, 1998).

• Phong: This is a normal-interpolating method. The object appears very smooth.

This method goes a step further than Gouraud. A new shade is computed for each

point, point by point before it shades (Foley, 1996; Peterson, 1997, Boardmann

and Hubbell, 1998)

• Bump mapping: is another method for producing maps of rough or textured

surfaces, but it does not have the edge or shadow accuracy of displacement

mapping (Foley, 1996; Peterson, 1997; Bell, 1998; Boardmann and Hubbell,

1998).

• Displacement mapping: is a method for distorting a surface to produce an

embossed or debossed surface that produces geometry with accurate edges and

shadows. The displacement map specifies how the surface is to be moved before

being mapped (Bell, 1998).

48

3. Tools, techniques and technology for 3D facial modelling

• Reflection mapping: gives the illusion of reflection or a mirrored effect

(Boardmann and Hubbell, 1998) ..

• Environment mapping: is a method by which the model's surface reflects the

environment on its surface (Boardmann and Hubbell, 1998).

• Opacity mapping: involves using the grayscale of a 2D object to define an object's

transparency or opacity (Bell, 1998; Boardmann and Hubbell, 1998).

• Transparency mapping: gives the illusion of transparency, like looking through

glass (Foley, 1996; Bell, 1998). This is particularly useful for skin pallor, as it is

semi-transparent. For example, (Kalra et al. 1993) includes an emotion model

which expresses emotion through the vascular system, such as paleness due to

fear or blushing due to embarrassment.

• Texture mapping: is the process by which the bitmap is applied, on to the

geometric model. Textures may be applied as either 2D bitmaps or scans (Lewis

& Parke, 1987; Waters & Terzopoulos, 1992). Photographs may be applied to

mesh models as maps (Bell, 1998; and Hubbell, 1998). The mapped textures may

also be shaded in accordance with the lighting and surface geometry.

3.5.2 Splines

For very smooth surface, a variety of spline-based surface patch methods can be used.

They are great for creating any type of object that has a profile or shape that can be lofted

or extruded. Example bananas, phone handles bottles, etc.

• B-splines: (Ohmura, 1988) The face is modelled using B-splines. Deformations

are performed by moving groups of controls points.

49

3. Tools, techniques and technology for 3D facial modelling

• Cardinal splines & springs: (Waters, 1987) A cardinal spline representation is

coupled with a spring network. Muscle deformations are generated by applying

forces to the spring network. For each rest state of the spring network, the spline

surface is recalculated to create discontinuities and bulges: tangencies are

computed to keep the arclength of the spline segment identical at rest and under

compression.

• Hierarchical splines & springs: The face is modelled using hierarchical splines

(Forsey & Bartels, 1990). Muscles are defined by forces, the definition points of

which belong to the surface. Muscle definition follows any face transformation.

Additional effects such as wrinkles are provided by behaviour maps.

3.5.3 Bezier Patches

Patch surfaces consist of a series of control points connecting each other, the surface is

controlled and deformed through a deformation lattice and smoothed using parametric

polynomials or Bezier Tangent Handles.

Patches rely upon the principles of Bezier splines to deform the surface and although it

creates a smooth surface it is still an approximation. A patch is moved and distorted by

changing the shape of the lattice, either directly or by means of a Bezier vertex at each

corner.

A patch surface is made up of two parts: the surface and the deformation lattice (see

Figure. 9). The deformation lattice is a series of connected points along the surface of the

patch. Each point of the lattice is a control point that has control over the associated area

of the patch. Adjusting a lattice point adjusts an area of the patch surface, not just a single

point as in vertex editing in a mesh. The lattice acts as the vertices in a Bezier spline and

deforms the surface along a Bezier curve, instead of creating a liner curve. (Peterson,

1997; Boardmann and Hubbell, 1998; Foley, 1996).

50

3. Tools, techniques and technology for 3D facial modelling

,Vertex-'Z.

Figure 3.2 IJIustrating a patch surface (scanned image: Bell, 1998).

Patches can be joined together by the usual vertex welding method, the drawback is that

it can be difficult to get the edges of patches to line up correctly to form large patches.

Alternatively a better way is to grow a patch off an existing one. This is done in 3D

Studio Max by picking an edge of a patch and then adding a quad or tri patch, this adds

the new patch to the existing patch and blends them together.

Patches are used to create somewhat organic surfaces that require fairly precise control

over the curvature of the surface e.g. face, animal's etc.

Patches rely upon the principles of bezier splines to deform the surface although it creates

a smooth surface it is still an approximation. In Patch modelling it can be difficult to get

the edges of patches to line up correctly to form large patches.

3.5.4 NURBS

NURBS (Non-Uniform Rational B-SpIine) modelling is probably the most powerful

modelling method for creating complex surfaces available today. With NURBS, there are

two basic approaches to modelling. One is to create NURBS splines and create surfaces

51

3. Tools, techniques and technology for 3D facial modelling

between splines. The other is to create NURBS surfaces and adjust the surfaces or create

blends between surfaces (Bell, 1998; Peterson, 1997).

NURBS curves are created out of either points or control vertices (see Figure 3.3). The

difference between the two is how the curve is interpreted around the vertices. When

using points, the curve passes directly through the control points. When using control

vertices (CV), the points act more as a deformation lattice.

NURBS give both smooth, contoured surfaces and keep mesh detail relatively low.

Characters or human faces tend to be very complex so using NURBS can significantly

increase performance versus the same model in polygonal forms.

A NURBS object is one or more curved lines in three dimensional space with varying

properties (weights) that can be rationally defined mathematically (Foley, 1996).

• Non Uniform means that different areas along NURBS objects (curves or surfaces)

can have different properties (weights) and are not completely uniform, i.e. the

blending functions are no longer the same for each interval, but rather vary from

curve segment to curve segment.

• Rational means of the form % where A,B are polynomials (locally). Rational curve

segments are ratios of polynomials:

x(t)
X(t) yet) Z(t)
Wet) ,yet) = Wet) ,z(t) = Wet) (3.1)

where X(t), yet), Z(t), and Wet) are all cubic polynomial curves whose control points

are defined in homogenous co-ordinates. Rational curves are useful because they are

invariant under rotation, scaling, translation and perspective transformation of the

control points (non-rational curves are invariant under only rotation, scaling, and

translation). This means that the perspective transformation needs to be applied to

52

3. Tools, techniques and technology for 3D facial modelling

only the control points, which can then be used to generate the perspective

transformation of the original curve.

• B-splines consist of curve segments whose polynomial coefficients depend on just a

few control points. This is called local control. Thus, moving a control point affects

only a small part of the curve. In addition, the time needed to compute the

coefficients is greatly reduced. B-splines have the same continuity as natural splines,

but do not interpolate their control points.

A rational B-spline curve is defined by a set of four-dimensional control points:

(3.2)

The perspective map of such a curve in three-dimensional space is called a rational B­

spline curve:

where:

and if:

w; = 1 foraJl i

then:

n

P(U) =
;=0

PwB k(U) I I I,

_ hill
- n

;",0

n

= P,R;.k(U)
i=IJ

j=IJ

(3.3)

(3.4)

(3.5)

(3.6)

53

3. Tools, techniques and technology for 3D facial modelling

The w, associated with each control point are called weights and can be viewed as extra

shape parameters. The curve is pulled towards a control point p, if w, increases. If w, is

decreased the curve moves away from the control point.

The greatest advantage NURBS have over other modelling techniques is the attribute of

NURBS surfaces to adjust themselves in order to maintain their defining curves. NURBS

therefore produce extremely smooth and organic models closely resembling human skin

thus ideal for facial modelling.

In contrast to polygonal modelling NURBS can give both smooth contoured surfaces and

keep mesh detail relatively low. Character modelling can be very complex, so using

NURBS can significantly increase performance versus the same model in polygonal

form.

All NURBS surfaces consist of three sub-objects: points or control vertices (CV), curves

(which are determined by their control vertices) and surfaces (which are controlled by

either curves or their own control vertices). Points lie precisely on the surface or on the

curve they affect, almost exactly like a standard vertex. However, unlike a standard

spline vertex they cannot use Bezier, corner or Bezier corner manipulation (Foley et al.

1996). They behave very much like a smooth spline vertex. CVs are points that control

the amount and placement of curvature in a surface or curve but do not lie on the surface

or curve they control. CVs have a weight parameter, which influences the curve or

surface.

54

3. Tools, techniques and technology for 3D facial modelling

Figure 3.3 The figure on the left shows a NURBS curve constrained to pass through a set

of three points, whereas the figure on the right shows a NURBS curve controlled by a set

of points which do not pass through the curve but "attract" it according to their associated

weight (scanned image: Bell, 1998).

The higher the weight, the more a surface curve is drawn toward a CV's position; the

lower the weight, the smaller the influence a CV has over the curve or surface. Weights

however are relative, this means that if all of the CVs of a particular surface were set to a

high value, there would be no change because the influence over the surface is equal. If a

CV has a higher or lower relative weight than its neighbouring CV then a difference can

be seen.

Control vertices and points are the basis for everything in NURBS. They are, however

mutually exclusive. A surface or curve is made up of one or the other, never both.

In addition to the differences between point and CV objects, surfaces and curves may

also be either dependent or independent. A dependent curve or surface has no active CVs

or points of its own. Instead it is controlled by a combination of curves and/or surfaces.

The benefit of a dependent object is that it will always attempt to maintain a smooth

curve or surface across the independent objects that determine how it's formed, allowing

55

3. Tools, techniques and technology for 3D facial modelling

for extremely organic animation. The disadvantage of a dependent object is that it cannot

be manipulated or sculpted by itself.

3.5.5 Implicit surfaces

Implicit surfaces usually create very expressive models. This technique has also been

used to generate symbolic descriptions of an object by fitting simple primitives to range

data of the object. First a primitive is given, then an energy function which measures the

difference between the range data and the model is minimised each time a new primitive

is added (Muzekari, 1986).

3.5.6 Rendering

Rendering is the process of taking a geometric model, applying lighting, selecting a point

of view (camera position) to the scene, and then creating a 2D image (bitmap or

rasterization), or "snapshot" of that model. Basic rendering algorithms include wireframe,

polygon shading, ray tracing, and radiosity.

3.6 Facial data acquisition

Face models rely on data from various sources for shapes, color, texture, etc. In

constructing geometrical descriptions, two types of input should be distinguished: three­

dimensional and two-dimensional.

3.6.1 Three-dimensional input

Use of a 3D digitizer/scanner (Cyberware Laboratory Inc, 1990) is the most direct

method for acquiring the geometry of faces. A 3D digitizer involves moving a sensor or

locating device to each surface point to be measured. With this method, 128,000 range

and reflectance samples may be obtained in a few seconds. Cylindrical projection is used

for the measurement of faces. Yacoob (1994) created facial models from measured data,

and animated it. 120,000 samples are typically too much for rendering and animation use,

56

3. Tools, techniques and technology for 3D facial modelling

so they should be represented by a simpler model. Fitting the obtained samples to a

generic facial model is efficient for the facial animation. Waters and Terzopoulos (Waters

& Terzopoulos, 1992) proposed a physics-based technique to reduce these samples to

coarser, non-uniform meshes (see also Lewis & Parke, 1987). There are several types of

3D digitizers employing different measurement techniques (mechanical, acoustic,

electromagnetic). Polhemus, an electromagnetic digitizer, has been used by many

researchers for modeling faces. In other cases a plaster model has been used for marking

the points and connectivities. This procedure is not automatic and is very time

consuming.

Laser based scanners, such as Cyberware, can provide both the range and reflectance map

of the 3D data in a few seconds. The range data produce a large regular mesh of points in

a cylindrical coordinate system. The reflectance map gives color and texture information.

One of the problems with this method is the high density data provided. Another is that

the surface data from laser scanners tend to be noisy, and have missing points. Some post

processing operations are required before the data can be used. These may include

relaxation membrane interpolation for filling in the missing data, filter methods, e.g.

hysteresis blur filters, for smoothing data, and adaptive polygon meshes to reduce the size

of the data set for the final face model. One disadvantage of the laser scanner is that the

equipment is relatively expensive. Another is that no human subject can be used for

scanning due to inherent danger to eyes from laser depending on the class and strength of

laser utilized by the scanning device. The process usually involves scanning a plaster cast

of the face (Lee, 1995).

Another 3D digitising method uses 3D trackers. With this method, meshes are drawn on a

face and the 3D co-ordinates of vertices are digitised using an electro-magnetic 3D

digitizer. This procedure is not automatic and therefore is time consuming. The advantage

of the method is that the polygonal mesh is designed according to the topology of the

face, and then optimised (few polygons for a good definition of the shape). '''fony de

Peltrie" from the University of Montreal, Marilyn Monroe and Humphrey Bogart, from

Daniel Thalmann and Nadia Magnenat-Thalmann (Magnenat-Thalmann, 1987) were

created with this method.

57

3. Tools, techniques and technology for 3D facial modelling

CT (Computer Tomography) and MRI (Magnetic Resonance Imaging) are usually used

in the field of medicine. These methods can capture not only the facial surface, but also

inner structure such as bones or muscles. These additional structures will be useful for

more accurate facial modelling and animation, as well as medical applications such as a

medical operation simulation.

As an alternative to measuring facial surfaces, models may be created using interactive

methods like sculpturing. With this the face is designed and modeled by direct and

interactive manipulation of vertex positions or surface control points. This, however,

presupposes design skills and sufficient time to build the model. When constructing a

clone, relying on subjective visual impressions may not be accurate or rapid enough.

Arbitrary facial models (such as imaginary faces or faces of historical person) can be

designed. However, it requires time and design skill because faces have very complex

structures. Commercial geometric modellers have been used for the face and body design

of the figures in "Little Death" (Elson, 1996; Parke, 1975) has used interactive

deformation techniques such as the "ball and mouse" metaphor (Lee, 1993) for face and

body design.

3.6.2 Two dimensional input

There are a number of methods for inferring 3D shape from 2D images. Photogrammetry

of a set of images (generally two) can be used for estimating 3D shape information

(Parke, 1974) . Typically, the same set of surface points are located and measured in at

least two different photographs. This set of points may even be marked on the face before

the pair of photograph is taken. The measurement can be done manually or using a 2D

digitizer. A better method takes account of perspective distortion by using a projection

transformation matrix determined by six reference points with known 3D coordinates.'

Another approach is to modify a canonical or generic face model to fit the specific facial

model using information from photographs of the specific face (Williams, 1990). This

relies on the fact that humans share common structures and are similar in shape. The

58

3. Tools, techniques and technology for 3D facial modelling

advantages here are that no specialized hardware is needed and that the modified heads

all share the same topology and structure and hence can be easily animated.

Parametric animation models make use of local region interpolation, geometric

transformations, and mapping techniques to manipulate the features of the face. These

transformations are grouped together to create a set of parameters. Sets of parameters can

apply to both the conformation and the animation of the face.

In pseudo-muscle based models, muscle actions are simulated by abstract notions of

muscles, where deformation operators define muscle activities. The dynamics of different

facial tissues is not considered. The idea here is not to simulate detailed facial anatomy

exactly but to design a model with a few parameters that emulate muscle actions (Waters,

1987).

There are no facial animation models yet, based on complete and detailed anatomy.

Models have, however, been proposed and developed using simplified structures for

bone, muscle, fatty tissue and skin. These models enable facial animation through

particular characteristics of the facial muscles. Platt and Badler (1981) used a mass­

spring model to simulate muscles. Waters (1987) developed operators to simulate linear

and sphincter muscles having directional properties. A physically-based model has been

developed where muscle actions are modeled by simulating the tri-Iayer structure of

muscle, fatty tissues and the skin. Most of these methods do not have real-time

performance

The interaction between the various layers of the face generates the complexity of facial

deformations. Therefore, it is difficult to isolate representation techniques from

deformation techniques: each model is an association between a geometric representation

and some deformation tools. In some cases, as with the finite element method, the

geometry of the model is strongly linked to the deformation method. On one hand,

techniques depend on the desired application. For example, the requirements for medical

applications may be drastically different from the requirements for animation. On the

other hand, it is often desirable to get as complete a simulation as possible of the entire

structure (bones, muscles, skin, and internal actions leading to deformation are

59

3. Tools, techniques and technology for 3D facial modelling

important). In certain cases, the visual effect (deformation of the external layer) is all that

matters and the issues may be computation time and manipulation tools.

3.7 3D Modelling Tools and Applications

A prerequisite of the image generation system was existence of 3D face models. This

criterion required either the acquisition of 3D face geometry, as discussed in section 3.6,

or development of facial geometry using commercially available geometric modellers.

Difficulties in acquiring 3D face data via digitisers or scanners led to the decision to

construct a 3D head model using existing geometric modelling tools. Research on

available modelling tools narrowed down the list to a choice of four professional surface

and solid modeIlers existing at Loughborough University. These packages were as

follows:

1. Duct

2. SoftImage

3. Unigraphics

4. 3D Studio Max

Each of the four packages were tested with respect to performance, usability, scripting

facilities and modelling technologies. Duct and Unigraphics had support for Beziers but

did not support Nurbs or B-Splines. SoftImage and 3D Studio Max both had an intuitive

interface and provided a range of surface modelling techniques including Nurbs and

spline curves. The choice came down to using the software that provided B-spline or

Nurb curves technology and also included a scripting facility that would allow the entire

modelling process to be automated.The software chosen for constructing the human head

models was 3D studio Max by Discreet.

60

3. Tools, techniques and technology for 3D facial modelling

3.8 Examining 3D Studio Max

3D Studio Max is a powerful modelling and animation software tool developed by

Discreet, a division of Autodesk (http://www.discreet.com). 3D Studio Max incorporates

three different modelling technologies in the basic package, namely: Polygonal, Patch,

and NURBS. The software can be further extended with plug-ins. The software provides

a graphical user interface, which is easy to use. It is possible to import curves from

Autocad to convert them in NURBS. The rendering is efficient, almost as fast as

polygons.

The 3D Studio Max renderer includes features such as selective ray tracing, analytical

antialiasing, motion blur, volumetric lighting, and environmental effects. Lights can be

created with various properties to illuminate the scene. Lights can cast shadows, project

images, and create volumetric effects for atmospheric lighting. Cameras in a scene have

real-world controls for lens length, field of view, and motion control such as truck, dolly,

and pan.

Figure 3.4 3D Studio Max Interface

61

3. Tools, techniques and technology for 3D facial modelling

3.8.1 MAX Script

Maxscript is a programming language, like Basic, Pascal, C or C++. The structure of

Maxscript is similar to C. Like a computer program, a script consists of a series of

instructions that affect elements on the screen. Maxscript provides access to the core

functions of 3D Studio Max. Most of the tools available via the user interface are

available via Maxscript (Bell, 1998). This scripting feature of 3D Studio Max allows the

facial model to be manipulated and morphed into new heads such as female, male,

elderly, child etc. Special commands and functions allow changes to be made to the

position, scale, dimension, texture, lighting and shading of the objects in the viewport

scene.

3.9 Free Form Deformation (FFD) Modifiers in 3D Studio Max

FFD's are usually used in computer animation but can be used for modelling as well. The

FFD modifier surrounds the selected geometry with a lattice box. By adjusting the control

points of the lattice (see Figure 3.5), the enclosed geometry can be deformed. In 3D

Studio Max there are three FFD modifiers, each providing a different lattice resolution:

2x2x2, 3x3x3, and 4x4x4. The 3x3x3 modifier, for example, provides a lattice with three

control points across each of its dimensions or nine on each side of the lattice. There are

also two FFD-related modifiers FFD(Box) and FFD(Cyl) that provide supersets of the

original modifiers. The FFD(Box/CyI) modifiers can be used to create box-shaped and

cylinder-shaped lattice free-form deformation objects and the number of points in the

lattice can be set which makes them more powerful than the basic FFD modifier.

The source lattice of an FFD modifier is fitted to the geometry it's assigned in the stack.

This can be a whole object, or a sub-object selection of faces or vertices. FFD modifiers

can be controlled at three different levels:

• Control Points

• Lattice

• Set Volume

62

3. Tools, techniques and technology for 3Dfacial modelling

example, provides a lattice with three control points across each of its dimensions or

nine on each side of the lattice. There are also two FFD-related modifiers FFD(Box)

and FFD(Cyl) that provide supersets of the original modifiers. The FFD(BoxlCyl)

modifiers can be used to create box-shaped and cylinder-shaped lattice free-form

deformation objects and the number of points in the lattice can be set which makes

them more powerful than the basic FFD modifier.

The source lattice of an FFD modifier is fitted to the geometry it's assigned in the

stack. This can be a whole object, or a sub-object selection of faces or vertices. FFD

modifiers can be controlled at three different levels:

• Control Points

• Lattice

• Set Volume

Control Points: At this sub-object level, control points of the lattice can be selected

and manipulated, one at a time or as a group. Manipulating control points affects the

shape of the underlying object. Standard transformation methods can be used with the

control points to affect underlying geometry.

Lattice: At this sub-object level, the lattice box can be positioned, rotated, or scaled

separately from the geometry. When the FFD is first applied, its lattice defaults to a

bounding box surrounding the geometry. Moving or scaling the lattice so that only a

subset of vertices lie inside the volume makes it possible to apply a localized

deformation.

62

3. Tools, techniques and technology for 3D facial modelling

Figure 3.5 A simple illustration ofFFD used to model a banana from a cylinder object

Set Volume: At thi s sub-object level, the deformation lattice control points can be

selected and manipulated without affecting the underlying object. This control level

allows the lattice to be fitted more precisely to irregular shaped objects, permitting

finer deformation control (see Figure 3.6).

63

3. Tools, techniques and technology for 3D facial modelling

Figure 3.6 FFD(3x3x3) lattice with volume set modified to fit area of the nose

precisely.

FFD modifiers have been llsed extensively through out the geometry of the baseline

head models. FFD is the principal technology behind manipulation and control of

geometry of the 3D face and its features effecti vely controlling the structure and

conformation of the face. Details of the appl iance and operation of this technology on

the baseline head models have been discussed in detail in chapter 4. Since thi s

chapter is concerned with the technology, tools and techniques used for development

of 3D face models we will move on to describe the technology behind FFD.

3.10 The Technology behind FFD

Free-Form Deformation or FFD can be thought of as a method for sculpturing solid

models. Indeed, the sculpturing metaphor is stronger fo r solids than for

surfaces because a lump of clay or a block of marble is a solid. Several researchers

have promoted thi s sculpturing metaphor fo r geometric modeling, noting that it is

a natural and familiar mode of thought for a designer or stylist. For example, Parent

64

3. Tools, techniques and technology for 3D facial modelling

(1977) di scusses a "computer graphics scul ptor's studio" for defining polygonal

objects, and Brewer (1977) describes a planar shaping tool fo r manipulating

sculptured surfaces. Other "Iump-of-clay" modeling techniques are surveyed in Cobb

(1984).

FFD involves a mapping from R3 to R3 through a tri variate tensor product Bernstein

polynomial. An earlier use of R3 to R3 mapping is found in Barr's innovati ve paper

on regular defonnations of solids (Barr, 1984). While not a free-fonn modeling

technique, Barr's idea of twisting, bending and tapering of solid primitives is a

powerful and elegant design too l. Brief mention of defonnation is also made in Sabin

(1970) and in Bezier (1974). Tri variate hyper-patches also are an R3 - R3 map, but the

result is a distorted cube with six four sided faces.

FFD is a remarkably versatile tool. It can be applied to CSG based solid models as

well as those using Euler operators. It can sculpt solids bounded by any

ana lytic surface: planes, quadrics, parametric surfaces patches, or implicit surfaces.

Furthermore, its application is not restricted to solid models, but it can also sculpt

surfaces or polygonal data.

FFD can be applied locally while maintaining derivative continuity with adjacent,

undeformed regions of the model, It can also be appl ied hierarchically, with

each appl ication being analogous to a sweep of the sculptor's hands. Constraints can

be placed on the FFD to control the degree to which the volume of the solid changes,

and in fact, there exist free-fonn defonnations which are perfectly vo lume preserving.

Veenman (1982) suggests that the tree-fonn surfaces llsed in practica l engineering

design fa ll into fOllr categories: Aesthetic surfaces (the main design requirement is

visual appearance); fairings or duct surfaces (a surface transition between two other

surfaces of different cross-section); blends and fill ets (smooth the intersection of two

other surfaces} ; and functional or fitted surfaces (high geometric constraint imposed

to sati sfY some functional requirement, such as a turbine blade). FFDs can create

aesthetic surfaces and fairings. Tt is also possible to synthesize fill ets in certain

situations, but a general fill et and blending capability is not claimed. However, FFD

can be used in conjunction with any fill et and blend formulation, such as those

65

3. Tools, techlliqlles and techllology for 3D facialmodellillg

discussed in Hoffmann (1985), Middleditch (1985) and Rockwood (1988). Functional

surfaces are not discussed, although Sabin (1970) reports that a type of small

displacement FFD is useful in the design of airplane wings.

3.1 0. 1 FORMULATING FREE-FORM DEFORMATIONS

A good physical analogy for FFD is to consider a paralle lepiped of clear, flexible

plastic in which is embedded an obj ect, or several objects, which we wish to deform .

The object is imagined to also be fl ex ible, so that it deforms along with the plastic that

surrounds it.

Figure 3.5 illustrates thi s analogy using a cylindrical object embedded in clear,

fl ex ible plasti c. The plastic has been deformed and the embedded cylinder IS

deformed in a manner that is intuitively consistent with the motion of the plastic.

Figure 3.7 S, I , II Coordinate system

Mathematically, the FFD is defined in terms of a tensor product trivariate Bernstein

polynomial. We begin by
. .
ImpOSIng a local coordinate system on a

parallelepiped region, as shown in Figure 3.7. Any point X has (s, /, Il) coordinates in

thi s system such that

66

3. Tools, techniques and technology for 3D facial modelling

X= X o+ sS + /T + uU.

(3.7)

The (S,I, 11) coordinates of X can easil y be found lIsing linear algebra. A vector sol ution

IS

T xU ·(X - X) S xU ·(X - X) S x T ·(X - X)
s= 0 1= 0 11= 0

TxU·S ' SxU·T ' SxT · U

(3.8)

Note that for any point interior to the parallelepiped that O<s <1, 0 <t <I and 0 <11<1.

Figure 3.8 Undisplaced Control Points

We next impose a grid of control points Pyk on the parallelepiped. These form 1+ I

planes in the S direction, m+1 planes in the T direction, and n+1 planes in the U

direction. In Figure 3.8, /= 1, m=2, and n=3. The control points are indicated by small

67

3. Tools, techniques and technology for 3D facial modelling

green diamonds, and the brown bars indicate the neighbouring control points.

These points lie on a lattice, and their locations are defined

(3 .9)

The deformation is specified by movmg the Pyt from their undisplaced, lattice

positions. The deformation function is defined by a trivariate tensor product Bemstein

polynomial. The deformed position X ld of an arbitrary point X is found by first

computing its (S,I, u) coordinates from equation (1), and then evaluating the vector

valued trivariate Bemstein polynomial:

(3. 10)

where X ld is a vector containing the Cartesian coordinates of the di splaced point, and

where Put is a vector containing the Cartesian coordinates of the control point.

z

Figure 3.9 Control Points in Deformed Position

68

3. Tools, techlliqlles and technology for 3D facial modelling

The control points P'I' are actually the coefficients of the Bemstein polynomial. As in

the case of Bezier curves and surface patches, there are meaningful

relationships between the deformation and the control point placement. Note from

Figure. 3.9 that the 12 edges of the parallelepiped are actually mapped into Bezier

curves, defined by the control points which initially lie on the respective edges. Also,

the six planar faces map into tensor product Bezier surface patches, defined by the

control points that initially lie on the respective faces.

This deformation could be formulated in terms of other polynomial bases, such as

tensor product B-splines or non-tensor product Bemstein polynomials.

3.10.2 Deformation Domain

FFD can be applied to virtually any geometric model. Figures 3. 10 and 3.11

show deformed polygonal data. Only the polygon vertices are transformed by the

FFD, while maintaining the polygon connectivity. Deformation of polygonal data is

di scussed more thoroughly in (Sederberg, 1986).

The FFD can be applied with equal validity to parametric and implicit surface

representations. A very important characteristic of FFD is that a deformed parametric

surface remains a parametric surface. This is easy to see. If the parametric surface

is given by x = f(a, fJ),y = g(a, fJ) and z = h(a , fJ) and the FFD is given by

X ld = X(x,y,z), then the deformed parametric surface patch is given by

X ld (a,fJ) = X(f(a, fJ),g(a, fJ) ,h(a, fJ» ·

69

3. Tools, techlliques alld techllology jor 3D jacialmodeliillg

Figure 3.10 Undefonned Polygons

Figure 3.11 Deformed Polygons

This fact suggests important possibilities for solid modeling. For example, if one

performs FFD in a CSG modeling environment only after all boolean operations are

perfonned, and the primitive surfaces are planes or quadrics, then all intersection

curves would be parametric, involving rational polynomials and possibly square roots.

Quadrics and planes make excellent primitives because they possess both implicit and

parametric equations. The parametric equation enables rapid computation of points on

the surface, and the implicit equation provides a simple point classification test - is a

point inside, outside, or on the surface. To classify a point on a defonned quadric, one

must first compute its s,l, U coordinates and substitute them into the implicit

equation. The S, I, U coordinates can be found by subdividing the control point lattice,

70

3. Tools, techlliques alld techllology for 3D facialmodellillg

or by trivariate Newton iteration (see Parry, 1986). This inverse mapping

requires significant computation, and can be a source of robustness problems,

especially if the lacobian of the FFD changes sign.

3.10.3 Local Defonnations

A special case of continui ty conditions enables local and iso lated defonnations to be

perfonned. In this case, we might imagine that the neighbouring FFD with which

we wish to maintain e ' is simply an undefonned latti ce. We consider the problem of

maintaining e' along the plane where one face of the FFD intersects the

geometric model. It is easy to show that sufficient conditions for a e' local

defonnation are simply that the contro l points on the k planes adjacent to'the interface

plane are not moved. This is illustrated in Figures 3. 12 and 3. 13. Of course, e' can

be maintained across more than one face by imposing these conditions for each face

that the surface intersects.

71

3. Tools, techniques and technology for 3D facial modelling

Figure 3.12 Local et Control Points

72

3. Tools, techlliques alld techll%gy for 3D facia/modelling

Figure 3.13 COand C ' Local Deformations

This local application lends to the FFD a capabili ty that makes the technique strongly

analogous to sculpting with clay. These local deformations can be

appl ied hierarchically, which imparts exceptional fl ex ibility and ease of use to the

technique.

To summarize, FFDs strength and versati lity can be li sted as fo llows:

1. It can be used with any solid or surface modeling scheme.

2. It works with surfaces of any formulation or degree.

3. It can be applied locally or globall y, and with derivative continuity.

4. It is very easy to use. The in formal response of some professional styli sts is that the

strong sculpturing metaphor seems natural and familiar to them.

5. In addition to so lid and surface modeling, it can be applied to polygonal models.

73

3. Tools, techniques and technology for 3D facial modelling

6. It provides indication of the degree of volume change, and a class of FFDs are even

volume preserving.

7. Parametric curves and surfaces remain parametric under FFD.

8. It can be used for aesthetic surfaces, many fairing surfaces, and probably many

functional surfaces.

Every technique has its limitations .and shortfalls, the following identify limitation of

FFD:

1. It cannot perform general filleting and blending.

2. Local FFD forms a planar boundary with the undeformed portion of the object. To

create an arbitrary boundary curve, one would have to begin with a FFD which is

already in a deformed orientation, and then deform it some more. This would be quite

costly.

3. Operations on trivariate Bemstein polynomials, such as subdivision, are much more

costly than operations on bivariates.

3.11 Conclusion

We have provided an exhaustive examination of the tools and techniques available for

3D modelling. This chapter has investigated three main areas.

I. Facial modelling - existing research and applications.

2. Representation techniques available for 3D modelling and technology

available for acquiring facial data

3. Tools and technology available for constructing 3D human head geometry.

Among the various representation techniques available for constructing 3D facial

geometry, three (namely; NURBS, Bezier patches, and Ploygons) have been selected

for experimentation with creating 3D head models. Details on constructing a human

head using these techniques are presented in chapter 4. This chapter has also looked at

some other technologies in the domain of 3D modelling such as FFD that has been

critical in the development of a 3D facial image generation module.

74

3. Tools, techniques and technology for 3D facial modelling

75

4.Development of 3D facial image generation system - Procedures and implementation

Chapter 4

Development of 3D Facial Image Generation System - Procedures and

Implementation

Abstract

This chapter describes the 3D facial image generation module. It begins with describing

the procedure for modelling a human head using representation techniques discussed in

chapter 3, namely; NURBS, Bezier Patches and Polygon Meshes. Following this is a

description of the finalised baseline head and implementation of deformation controllers

through out the geometry to control structure and conformation of the face and its

features. We finally describe parameterisation of the head model and method for

influencing the parameters using Maxscript to form the Head Generator Script.

Keywords: Geometric Modelling, NURBS, Beziers, Polygons, FFD, parameterisation,

MaxScript, Image Generation, Facial Image, Human Head.

4.1 Introduction

Difficulties entailed in acquiring 3D facial geometry led to the decision of constructing

3D head models using 3D Studio Max, a commercial geometric modeler with an

impressive library of 3D modeling tools and an efficient rendering engine (See chapter 3,

section 3.9 for more details on 3D Studio Max).

The remainder of this chapter will concentrate on how the human heads were modeled

using NURBS, Beziers and Polygons and parameterization of the finalized baseline head

model for the 3D facial image generation module.

76

4.Development of 3D facial image generation system - Procedures and implementation

4.2 Constructing 3D Head Models

The 3D face model was constructed from a generic/canonical 3D face using two

orthogonal photographs, a front and a side view.

Three modelling techniques were explored for the development of human head models.

1) NURBS

2) Bezier patches using a combination of quad and tri surface patches

3) Polygonal mesh

In all three modelling techniques front and profile images of a human face were used as

reference (see Appendix B) for the construction of the basic spline outline. This section

describes the modelling procedures for constructing the baseline head. It also examines

the benefits and drawbacks of each technique and evaluates the suitability of the

techniques for the end project.

4.2.1 NURBS Modelling

The exploration of head modelling began by creating a point spline, simply because its

easier to use and can be converted to a C. V. spline if required (3D Cafe,

http://www.3dcafe.com). The axis of the spline was set at the top of the head. Then the

profile spline was cloned and rotated about five degrees. Each new profile spline was

edited before moving on to creating a new clone, Figure 4.1.

77

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.1 The model at point of cloning and editing spline profiles.

The points around the eyes were brought in and the lips made smaller. This was hard and

took some time and effort. The procedure was repeated until the area around the ear was

reached. Then the back spline was used following the same procedure of cloning and

editing until the ear was reached. One thing to note is that the splines do not have the

same number of points. Around the cheek a lot of points were erased because less detail

was required in this area.

After the splines were created, they were attached and then collapsed to a point surface. It

is important to collapse to a point surface in order to avoid dealing with a bunch of CV

points. The profile spline was then started and a u-Ioft surface created between the splines

resulting in an extremely ugly looking head. The real editing of the face could only be

achieved by converting the head to a cv-surface but taking advantage of the point surface

attributes the model could be cleaned up.

78

4.Development of 3D facial image generation system - Procedures and implementatian

Figure 4.2 The first attempt at creating a head model using NURBS.

The most complex task of the modelling procedure began after making the surface

independent thus converting the head to a cv-surface. The CV points needed a lot of

editing before feature details began to show. A number of tools in 3D Studio Max were

used for the editing namely Affect Region and CV Point weight (Bell 1998; Peterson,

1997; Boardman, 1998). Affect region allowed a region of points to be moved by moving

just a single point and by increasing a point's weight the model could be given more

detail (e.g. corners of the nose and mouth).

Beginning by editing the nose a row of points was added to produce the nostril of the

nose. A point in the middle of the nostril was then selected and brought up in the z

direction by increasing its weight. This pulled the nostril up more. Finally the points on

the outside of the nose were edited and their weights increased.

79

4.Development of 3D facial image generation system - Procedures and implementation

The eyes were a challenge and took some time. One thing that helped was to look at the

lattice and its direction. Often it is important to look at the points and the lattice and not

the surface. A couple of rows of CV points were needed to add more detail but even with

a lot of effort spent editing this region satisfactory results were not obtained.

The mouth came next, in order to edit this region of the face 3 rows of CV points were

added, increasing their weights in the middle of the mouth and corners.

After half of the head was done it was cloned and mirrored, then joined to the other side.

Joining the halves was not easy and no matter what was done the join function always

flipped the normals of one side. This was solved by creating a blend between the two

halves, making the blend independent and joining all 3 surfaces together. The drawback

of the procedure is that the centre column of points cannot be erased. The model was

difficult to construct and even after spending long hours at editing it a suitable head could

not be constructed.

Figure 4.3 The final unsatisfactory head model constructed using NURBS.

80

4.Development of 3D facial image generation system - Procedures and implementation

4.2.2 Bezier Patch Modellin g;

The first step in preparing this model involved creating a spline layout of the head using

the side and front head images as reference. Using the line tool the front and side layout

views were created. Further lines were added for the main features of the face such as

sides of the nose, outline of the lip, curve of the cheek bone etc. This was the most

important part of the modelling process since it was to form the basis of the template.

The quality of the final head is strongly dependent on the quality of the template model.

Figure 4.4 Four views of the spline layout for the patch model

The next step involved adding patches to the head template. This began by creating a

small patch by the chin. Editing the patch involved switching between vertex and edge

modes. In vertex mode it is possible to move the vertices and Bezier handles to match up

the patch with the outline. The patch handles were adjusted until a suitably round chin

shape was obtained. Then after switching back to edge mode to view the patch laid out,

another quad patch was added to the left edge leading to the cheek area. The next step

involved successive adding and editing of patches, controlling the vertices to match up

with the outline. Patching up the nose outline proved harder in comparison to the rest of

the face. The curved contours of the nose meant quad patches were not going to work so

tri patches were used. Tri patches can be useful for filling in tight curved shapes because,

81

4.Development of 3D facial image generation system - Procedures and implementation

not only are they made up from triangular faces but, when added to another patch form a

triangular shape.

Figure 4.5 Showing the emerging patch structure.

The final step involved cloning and mirroring the half head. The clone object function in

the Edit modifier tool set (Peterson, 1997; Boardman, 1998) of 3D Studio Max was used

to achieve this. The two patches had to be attached next, this required welding the

vertices down the middle of the head. The best option available was to select one set at a

time and perform the weld between the adjacent vertices. The final result was a head

constructed using Bezier patches.

Figure 4.6 A head constructed using Bezier patches

82

4.Development of 3D facial image generation system - Procedures and implementation

4.2.3 Polygonal Modelling

The first step in preparing the model involved creating a spline layout of the head using

the side and front head images as references. Once the proper contours were laid down

Create Line and Refine options (Bell 1998) were used to fuse together all the main lines,

while making sure that each section of the face was divided into Quad or Tri sections.

After connecting and unifying the spline cage, ail of the vertices were selected and

converted to cornered vertices. This was very important because it simplified the next

step, which was to pull out the flat spline cage to give it another dimension. Before

proceeding to pull out the vertices, the viewport was configured to show the left and front

view of the spline cage. The front viewport was used for selecting the appropriate

vertices and the left viewport for pulling.

Figure 4.7 Spline layout of the head for polygonal modelling.

Once all the vertices on the right edge of the front viewport had been selected, the left

viewport was activated, and the selected vertices were pulled out along the X axis. This

83

4.Development of 3D facial image generation system - Procedures and implementatian

way the structure of the face could be preserved whilst editing the profile of the face by

pulling or pushing the desired vertices along the X-axis.

Figure 4.8 The half mesh of the developing head.

Once everything had been pulled out accordingly a surface modifier was applied to

collapse the surfaced spIine cage and turn it into an editable mesh. The viewport was

configured to show the object with Edge Faces turned on as well as Mesh Smoothing and

Highlight. When working with complex meshes it is helpful to have Edge Faces on since

it shows the actual contours of the wireframe which, in turn makes it easier to modify and

edit the mesh

In order to see how the face looks as a whole, an Instanced [an interdependent copy of

MAX object] copy of the control mesh was made so that whatever modifications were

made with the original mesh, the instanced version would always update accordingly.

This is very important since, to see if the face looks reasonably realistic, it will always

need to be seen in its entirety, and not just the halved section ..

84

4.Development of 3D facial image generation system - Procedures and implementation

A Meshsmooth modifier was then applied onto the mesh. Meshsmooth is a built-in

function of 3D Studio Max that adds faces to the mesh like Tessellate does and softens

the edges. In effect, it refines the topology of the mesh. To refine the control mesh the

Cut tool was used to edit areas such as the eyes, the nose, and the lips to carve out extra

feature detail on the head.

Figure 4.9 The full head mesh.

On completion of the refinement and detail work the Instanced copy of the original mesh

was deleted, and then re-mirrored again as a copy version. The reason being that an

instanced version of the mesh can not be attached to the original mesh. In order to get the

whole head the mirrored copy or clone had to be attached to the original mesh. Once

everything was ready, and the mirrored mesh attached, the very last step was to Weld all

the vertices that meet between the edges of the two halves to complete the full head

model.

85

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.10 A basic human head modelled using polygonal mesh.

Figure 4.11 Rendered Image: Final baseline head achieved editing and adding greater
detail to the basic polygon mesh model

86

4.Development of 3D facial image generation system - Procedures and implementation

4.3 Evaluation of Modelling Procedures and Results

The head models achieved from the three different techniques varied in quality and

geometric detail. Of the three models produced the polygonal mesh model was by far the

finest. NURBS is an excellent tool for organic modelling, like constructing faces or

characters, however difficulty in using the NURBS tools made the task complicated and

tedious. Modelling using patches required a simple but tedious procedure of building

from the foundation outward. The result was a head that faired better than the NURBS

head but required tremendous amount of editing to line up the patches accurately. The

polygon head was easy to edit and once the head was built, application of mesh

optimisation, mesh smoothing, and selective shading techniques allowed for a smooth

rendered surface. Another aspect of modelling with polygons is that many 3D digitising

systems output polygonal data which may then be subsequently matched to Bezier

patches or NURBS, however the original representation is often in polygons.

A very important observation noted during the construction of 3D head models is that

while there is a large volume of data and experimentation available regarding the

mathematical theories and application in construction of complex scenes and objects in

3D. There is also a huge amount of material available for artists on how to develop 3D

objects as complex as the human head. There is however little or no reference available

with regards to how inexperienced users and non artists could approach the task of

modelling a human head or other shapes of equivalent complexity. We believe there is a

need to develop alternative means of constructing imagery other than the complicated and

often repetitive tools offered by the GUI of existing software.

4.4 Baseline Head Models

The heads constructed using polygons were by far the best effort and thus selected as the

baseline model for the system (see Figures 4.12 and 4.13). The baseline head models

comprise of tri and quad facets and have vertex counts of roughly 4500 - 5000, and

polygon counts of around 7500. An optimisation modifier built in to the modelling tool

87

4.Development of 3D facial image generation system - Procedures and implementation

can easily reduce this count depending on where and how the head models need to be

used (Peterson,1997).

Figure 4.12 Female Baseline Head Model

Figure 4.13 Male Baseline Head Model

88

4.Development of 3D facial image generation system - Procedures and implementation

4.5 Applying FFD Modifiers to Baseline Head

Construction of a basic parametric head model was the building block for an automated

3D facial image generation system. To this effect once a baseline 3D head was

constructed, the next phase involved assigning deformation control groups (FFD) through

out the geometry of the head model. These deformation groups would allow

transformation of specific areas of the geometry effectively executing non-uniform scale,

skew, rotation and translation.

Previous work on parametric models (Parke, 1972; Pearce et al., 1986; Ohmura, 1988;

Patel, 1991) are the only ones to date that allow facial conformation control, i.e., changes

from one individual face to another. The work in this thesis does not replicate the

techniques developed by Parke, Pearce or Pate1 for creating parametric heads. Instead the

head models developed here are given parametric properties using deformation control

groups applied through out the head geometry and for each group its respective control

points are assigned variables/parameters to control the underlying geometry.

The head and its features are controlled by a deformation mesh, the mesh can be regarded

as a deformation lattice with control points or handlers that allow local transformation of

vertices, effectively performing scale, translate, skew and rotation of the associated

geometry. The deformation group controls the basic head shape by pulling vertices

towards an imaginary ellipsoid. The Scaling group performs a non-uniform scaling in

each direction. The Skew controls cause the scaling to vary as a function of position.

Other deformation control groups affect the facial features like nose, eyes, ears, cheeks,

jaws, and forehead in terms of size and shape. The deformation modifiers applied to the

baseline head geometry are known as FFD modifiers in 3D Studio Max.

The FFD modifier surrounds the selected geometry with a lattice box. By adjusting the

control points of the lattice (see Figure 3.5), the enclosed geometry can be deformed. In

3D Studio Max there are three FFD modifiers, each providing a different lattice

resolution: 2x2x2, 3x3x3, and 4x4x4. The 3x3x3 modifier, for example, provides a

89

4.Development of 3D facial image generation system - Procedures and implementation

lattice with three control points across each of its dimensions or nine on each side of the

lattice. There are also two FFD-related modifiers FFD(Box) and FFD(Cyl) that provide

supersets of the original modifiers. The FFD(BoxlCyl) modifiers can be used to create

box-shaped and cylinder-shaped lattice free-form deformation objects and the number of

points in the lattice can be set which makes them more powerful than the basic FFD

modifier.

FFD modifiers in 3D Studio Max allow a great deal of flexibility in the control of the

deformation lattice. Volume of the deformation lattice can be edited and modified

allowing precise fitting of the lattice over the underlying geometry. FFD control points

can be edited manually or via MaxScript using transformation functions to affect the

vertices of the underlying geometry consequently changing the structure of the confined

area.

4.5.1 Applying FFD modifiers to the Head and Features

Head: A deformation modifier with a 4x4x4 lattice resolution was attached to the outline

head geometry to control aspects like the head width, height and depth using non-uniform

scaling and skewing (see Figure 4.14). Other control points were assigned to areas such

as the forehead and face to allow adjustment to forehead slope and face compression

(squash in or pull outwards). The FFD is denoted as Head_Modifier with single or

grouped control points assigned variables as follows: x-pull, y_pull, z_pull, head_widh,

head_depth, height height, head_width_skew, head_depth_skew, head_heighcskew,

face_squash, and forehead_slope.

Nose: A deformation modifier with a 3x3x3 lattice resolution was attached to the nose

and area around it to control aspects like nose width, length, bridge, hook or pug amount

and pull up amount (see Figure 4.15). The FFD is denoted as Nose_Modifier with single

and grouped control points assigned variables as follows: nose_width, nose_length,

nose_bridge, nose_pullup, and nose_hook.

90

4.Development of 3D facial image generation system - Procedures and implementation

Chin: A deformation modifier with a 2x2x2 matrix was applied to the chin and area

around it to control aspects like chin extent, tilt and acccent amount (see Figure 4.16).

The FFD is denoted as Chin_Modifier with single and grouped control points assigned

variables as follows: chin_extent, chin_tilCamount, and chin_accent.

Jaw: A deformation modifier with a 3x3x3 lattice was attached to the area around the jaw

to control jaw width (see Figure 4.17). The FFD is denoted as Jaw_Modifier with

grouped control points assigned variables as follows: jaw_width and

jaw_width_uniformity.

Figure 4.14 FFD(4x4x4) Applied to outline Figure 4.15 FFD(3x3x3) Applied to Nose

Cheek: A deformation modifier with a 3x3x3 lattice resolution was attached to the cheek

and area around it to control aspects like cheek bones extrusion, cheek bone position and

cheek curvature (see Figure 4.18). The FFD is denoted as Cheek_Modifier with single

91

4.Development of 3D facial image generation system - Procedures and implementation

and grouped control points assigned variables as follows: cheekbones_extrusion,

cheekbones_z_pos, cheek_curvature, cheelccurvature_z_falloff, and

cheek_curvature_y j all off.

Eyes: A deformation modifier with a 2x2x2 matrix was attached to each eye to control

aspects like eye separation, eye roundness and rotation (see Figure 4.19). The FFD is

denoted as Eye_Modifier with grouped control points assigned variables as follows:

eye_separation, eye_rotation, eye_bottom_roundness and eye_top_roundness.

Figure 4.16 FFD(2x2x2) to Chin

Ears: Deformation modifiers with a 3x3x3 lattice resolution were attached to each ear to

control aspects like ear height, depth, rotation and lobe length (see Figure 4.20). The FFD

is denoted as Ear_Modifier with grouped control points assigned variables as follows:

ear_height, ear_depth, eacrotation and ear_lobe_length.

92

4.Development of 3D facial image generation system - Procedures and implementation

93

4.Development of 3D facial image generation system - Procedures and implementation

Mouth: A deformation modifier with a 3x3x3 lattice resolution was attached to the mouth

and area around it to control aspects like mouth width and mouth protrusion (see Figure

4.21). The FFO is denoted as Mouth_Modifier with single and grouped control points

assigned variables as follows: mouth_width and mouth_protrude.

4.6 Control of Head Geometry via MaxScript.

3D Studio Max incorporates a powerful scripting tool called Maxscript. Maxscript is a

programming language like Basic, C or C++. The structure of Maxscript is similar to C it

consists of a series of instructions that affect elements on the screen. Maxscript provides

access to the core functions of 3D Studio Max. Most of the tools available via the user

interface are available via Maxscript (Bell, 1997; Peterson, 1998). This scripting feature

of 3D Studio Max is used to edit the head model using mathematical prescriptions for

adjusting and controlling various organic features. The script is used to automate the 3D

head geometry modification procedure. It handles the task of reading the parameters

produced by the Natural Language Processing engine (NLP) and passes them on to the

appropriate command function to create or edit the human head model.

The head and its features are controlled by deformation modifiers (FFO) that allow local

transformation of vertices, effectively performing scale, translate, skew and rotation of

the associated geometry. The deformation group controls the basic head shape by pulling

vertices towards an imaginary ellipsoid. The Scaling group performs a non-uniform

scaling in each direction. The Skew controls cause the scaling to vary as a function of

position. Other parameters affect the facial features like nose, eyes, ears, cheeks, jaws,

and forehead in terms of size, shape and orientation.

The head parameters associated to the deformation modifiers are adjusted through script

code called Head Generator Script or HGS (See Appendix B) using a complete set of

predefined variables as mentioned in section 4.5. A comprehensive list of the variables

and corresponding parameters are listed in Table 4. I.

94

4.Development of 3D facial image generation system - Procedures and implementation

Parameter Variable Name Type Lower Limit Upper Limit Default

Head Type head_type integer 0 100 N/A
Deformation lLPull float 1.0 100.0 100.0
X-Pull
Deformation y_pull float 1.0 100.0 100.0
Y-Pull
Deformation ~pull float 1.0 100.0 100.0
Z-Pull
Width Scaling head_width float 0.1 1000.0 1.0
Width Skew I head_ width_skew_1 float -1.0 1.0 0.0
Width Skew2 head_ width_skew_2 float -1.0 1.0 0.0
Depth Scaling head_depth float 0.1 1000.0 1.0

Depth Skew head_depth_skew float -1.0 1.0 0.0
Height head_height float 0.1 1000.0 1.0
Scaling
Height Skew head_heighcskew float -1.0 1.0 0.0
Face face_squash float 0.0 20.0 1.0
Compression
Forehead forehead_slope float -1.0 1.0 0.0
Slope
Nose Width nose_width float 0.0 2.0 1.0
Nose Length nose_length float 0.0 3.0 1.0
Nose Pullup nose_pullup float 0.0 2.0 1.0
Nose Bridge nose_bridge float -1.0 1.0 0.0
Nose nose_hook float -1.0 1.0 0.0
HooklPug
Amount
Chin Extent chin_extent float 0.0 2.0 1.0
Chin Tilt chin_tilcamount float 0.0 2.0 1.0
Amount
Chin Accent chin_accent float -1.0 1.0 0.0

Jaw Width jaw_width float -1.0 1.0 0.0
Jaw Width jaw _width_uniformity float -1.0 1.0 0.0
Uniformity
CheekBones cheekbones_extrude float -1.0 1.0 0.0
Extrude
CheekBones cheekbones_z_pos float -1.0 1.0 0.0
Z Position
Cheek cheek_curvature float -1.0 1.0 0.0
Curvature
Cheek cheek_curvature_z_fallo float 0.0 1.0 0.5
Curvature Z ff
Falloff
Cheek cheek_curvature-y jallo float 0.0 1.0 0.5
Curvature Y ff
Falloff
Eye eye_separation float 0.0 2.0 1.0
Separation

95

4.Development of 3D facial image generation system - Procedures and implementation

Parameter Variable Name Type Lower Limit Upper Limit Default

Eye Top eye_top_roundness float -1.0 1.0 0.0
Roundness
Eye Bottom eye_bottom_roundness float -1.0 1.0 0.0
Roundness
Eye Rotation eye_rotation float -1.0 1.0 0.0
Ear Height ear_height float 0.0 2.0 0.0
EarLobe eaclobe_length float 0.0 1.0 0.0
Length
Ear Depth ear_depth float -1.0 2.0 0.0
Ear Rotation eacrotation float -1.0 1.0 0.0
Mouth mouth-protrude float -1.0 1.0 0.0
Protrude
Mouth Width mouth width float -1.0 1.0 0.0

Table 4.1: Parameters and corresponding variables for the Parametric Heads

The Head Type parameter defined as an integer variable loads a head definition file from

the existing baseline heads. These can range from ° to 100, currently only two head

definition files exist denoted as Head Type: 1 (Male Head) and Head Type: 2 (Female

Head). Further baseline heads can be created and added to the database of head

definition files to increase the choice of heads to work with.

Deformation X Pull, Y Pull, and Z Pull control the amount of influence in each direction

The Scaling group performs a non-uniform scaling in each direction. The Skew controls

cause the scaling to vary as a function of position.

Head Width, Head Depth, and Head Height scale the head in each direction i.e. (x,y,z

respectively - world coordinate system).

Head Width Skewl, Width Skew2, Height Skew, and Depth Skew varies the amount of

skew (see Figures 4.22 and 4.23).

96

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.22 Width Skewl Positive and Negative

Figure 4.23 Height Skew Positive and Negative

97

4.Development of 3D facial image generation system - Procedures and implementation

Compress Face parameter squashes the face inwards with values less than 1.0 whereas

values greater than 1.0 pull the face outwards. Forehead Slope as the name suggests

controls the slope of the head. Values greater than 0.0 slope the forehead back, while

values less than 0.0 slope it forward (see figure 4.24).

Figure 4.24 Forehead Slope Negative and Positive

The Nose Width variable controls the width of the nose and affects the area around it.

Nose Width values greater than 1.0 widen the nose, whereas values less than 1.0 make it

narrow (see Figure 4.25). Nose Length controls the length of the nose with a value

greater than 1.0 stretches the nose outwards and values less than 1.0 squash it inwards.

Nose Bridge changes the slope of the Nose Bridge (see Figure 4.26).

Nose Pull Up pulls the nose upwards by compressing it from the bottom when the pullup

is greater than 1.0 and lengthens the nose vertically if the Pull Up is less than 1.0. The

Nose Bridge parameter changes the slope of the nose bridge. Nose HookJPug amount

98

4.Development of 3D facial image generation system - Procedures and implementation

hooks the nose downwards for values greater than 0.0, values less than 0.0 twist it

upwards to form a pug nose (see Figure 4.27).

Chin Extend pulls the chin in or out. Values greater than 1.0 pull the chin out. Values

between 0 and 1.0 push it inwards (Figure 4.28). Chin Tilt produces a rotation of the chin

and Chin Tilt Amount influences how much effect there is at the end of the chin. Chin

Accent sharpens the chin for values greater than 0.0 and widens the chin for values less

than 0.0

Figure 4.25 Nose Width Increased nearing upper limit - Rendered Image

99

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.26 Nose Bridge Negative and Positive

Figure 4.27 Left - Nose HooklPug greater than 0.0, Right - Nose Hook less than 0.0

100

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.28 Left - chin extend set at 0.0 (pushed inwards), Right - chin extend set at 1.5
(pulled outwards)

Jaw Width widens the jaw with values greater than 0.0 widens the jaw up to the

maximum limit of 1.0 (see Figure 4.29). The Jaw Width Uniformity control extends from

the back of the jaw to the chin. This control determines where the widening occurs most.

If the Uniformity is greater than 0.0, then the width influences the area towards the chin

more. If the Uniformity is less than 0.0, then the influence is more towards the back of

the jaw.

Cheek Bones Extrude extrudes the cheekbones outwards or pushes them inwards. Values

greater than 0.0 pulls them out, values less than 0.0 pushes them in. CheekBones Z-Pos

moves the cheekbones up and down (z direction translation). The Cheek Curvature

parameter pulls the cheek inwards for values greater than 0.0 and puffs them outwards for

values less than 0.0 (see Figure 4.30 and 4.31). Cheek Curvature Z Falloff controls the

outward curvature. If the falloff is 0.0, then the cheek will be puffed out substantially all

along the vertical direction. If the falloff is 1.0, then the fall off in the vertical direction is

101

4.Development of 3D facial image generation system - Procedures and implementation

sharp, and the puffiness is more localized vertically. Cheek Curvature Y Falloff also

controls the outward curvature. If the fall off is 0.0, then the cheek will be puffed out

substantially all along the Y direction (going from the mouth to the ears). If the fall off is

1.0, then the fall off in the Y direction is sharp, and the puffiness is more localized.

Figure 4.29 Left - Jaw Width set to 1.0, Right - Jaw Width set below 0.0

102

4.Development of 3D facial image generation system - Procedures and implementation

Curvature less than 0.0

Bones extruded and Curvature less than 0.0, Right - Cheek
Bones extruded and Curvature greater than 0.0

103

4.Development of 3D facial image generation system - Procedures and implementation

Eyes Separation controls the distance between the eyes with values greater than 1.0 pull

the eyes apart, values between 0.0 and 1.0 push them closer (see Figure 4.32). Eyes Top

Roundness and Eyes Bottom Roundness parameters control the roundness of the top and

bottom half of the eye respectively. Values greater than 0.0 make the eye sockets more

round. Values less than 0.0 make the eye sockets more squinted. Eyes Rotation parameter

rotates the eyes inwards and outwards (Figure 4.33).

Ear Height increases the ear height, ear depth increases the ear depth (grows in the

backwards direction). Ear Rotation rotates the ear around the joint to the head where

negative values rotate the ear towards the head and positive values rotate the ears away

from the head. Lobe Length lengthens the ear downwards (see Figure 4.34).

Mouth Protrude controls the amount by which the mouth extends out from the face.

Values less than 1.0 pull the mouth inward whereas values greater than 1.0 push it out

(see Figure 4.35). Mouth width controls the width of the mouth with values greater than

0.0 widen the mouth and values less than 0.0 shrink it (see Figure 4.36).

Figure 4.32 Eye Separation set at 1.0 making eyes closely set - Rendered Image

104

4.Development of 3D facial image generation system - Procedures and implementation

Figure 4.33 Eyes Rotation and Top Roundness set greater than 0.0 - Rendered Image

Figure 4.34 Left - Ears Height greater than 0.0, Right - Ears Lobe Length greater than
0.0

105

4.Development of 3D facial image generation system - Procedures and implementation

@f &.~"i .•.••......•..
. ';"Ii';.:.;;~.'."" '.

Figure 4.35 Left - Mouth Protrude between 0.0 and 1.0, Left - Mouth Protrude between
1.0 and 2.0

Figure 4.36 Left - Mouth Width less than 0.0, Right - Mouth Width greater than 0.0

106

4.Development of 3D facial image generation system - Procedures and implementation

4.6.1 Parameterisation and Facial Image Generation Script.

The Head Generator Script (HGS) edits the parameters of the 3D head geometry by

assigning floating point values listed in the Heads Parameter File generated by the NLP.

These parameters are passed as variables of the deformation control modifiers to affect

changes to the geometry of the head in the manner set in the support header file for each

deformation control modifier. The parameters need only be assigned to the correct

variables in the script; the header file handles the arduous task of ensuring the parameters

assigned to the variables edit the correct modifier control pointls by the amount specified

in the variables. Figure 4.37 gives an overview of the processes involved in the Facial

Image Generation Module.

Heads
Parameter

File

Model Library

Male Head
Fema1e Head
Eyesffeeth

Textures

3D Modeller

Head Generator Script

Figure 4.37 Flowchart of processes involved in Facial Image Generation Module

Let us take the example of the nose and how the parameters applied to Nose_Modifier

can control the structure of the nose. As mentioned earlier in section 4.5 "Applying FFD

Modifiers to Baseline Heads", the 3x3x3 matrix FFD applied to the nose has a total of 27

control points Co - C'6. Each of these control points can be controlled selectively or in

107

4.Development of 3D facial image generation system - Procedures and implementation

control po ints '0 - C" . Each of these control po ints can be controlled selecti ve ly or in

groups to perform transformation of the underlying geometry. In order to increase or

decrease the width of the nose two di stinct contro l points (C, and C7) need to be

modified. Figures 4.38 identifi es these contro l points along with other control points on

the FFD structure.

Figure 4.38 Nose_Modifier wi th control points Co - Cs outlined by red circ les

In order for the nose width parameter to be edited the nose_width variable is computed

and passed to the Nose_Modifier FFD for changes to take effect. The followi ng pseudo

code provides an explanation of how the script code works.

head_model.nose_width = [P]

head_model.noseJength = [a]

-- nose width is set to value P assigned by NLP

-- nose length is set to value a assigned by NLP

108

4.Developmellt of 3D facial image generation system - Procedures alld implementatioll

- nose_width function called by FIGS

Param_Range = #(0,0.1,0.2, ,2.0)

- array of parametric values, range pre-defined (see Table 11)

x_coord , Lcoord, z_coord = 0.0

- initial ize x, y, z coordinate variable

coordinateJocation = findltem Param_Range [P]

- Does a '==' comparison between elements in the array Param_Range and the target

value P and then returns the index of the first occurrence of the given value in the array
,

or zero if the va lue is not in the array.

CPtransform_corordinate = Param_Range[coordinate_location]

- Find the transformation co-ordinate. So if P was 1.60 then CPtransform_coordinate

will be 16 points. However since the nose width must be increase or decreased

uniformly in both directions, the amount by which the control pOints must be moved is

half in each direction.

coordinate = CPtransform_coordinate/2

x_coord = coordinate

Nose_Modifier.deformType = 1

- Integer default: 0 deform Type = 0 - Only In Volume; 1 - All Vertices

Nose_Modifier.lattice_transform SubAnim

-- Enable lattice and it's control pOints to be transformed and animated

animateVertex Nose_Modifier.control-..p0int_1.position

[x_coord ,Lcoord,z_coord]

animateVertex Nose_Modifier.control-"point_7.position [-(coordinate),O.O,O.O]

- Applies transformation to the specified control points of the FFD modifier

'Nose_Modifier', here the control point specified is transformed by positioning or moving

the control point in the x-axis direction by amount specified in variable 'coordinate' .

109

4.Deveiopmellt of 3D facial image gelleratioll system - Procedures and implementatioll

A similar process is repeated for the parameter/variable nose length with the difference

that the Param_ Range is set between 0.0 - 3.0 and only one control point is edi ted, C,.

Figure 4.39 shows the control points transformed by the script to affect the nose. Note

the visible Nose_Modifier matrix over the nose (which is otherwise hidden) to show the

new position of contro l points after nose width and length is increased.

Figure 4.39 Shows new pos ition of control po ints Cl and C, in thex direction to increase

nose width and C, extended in the z direction beyond view to increase nose length .

110

4.Developmellt of 3D fa cial image gelleratioll system - Procedures and implementatioll

4.7 Testing the Facial Image Generation Module

The facial image generati on module wa tested by scripting a rou tine that assigned

random values to parameters of the basel ine head . The random va lues were allocated by

a random number generator within the range specified in Table 4.1 for each parameter.

This simple test labelled 'Crowd Generator' provided a comprehensive method for

evaluating the different combinations and vari ations of heads and features that could be

produced by the facial image generation system. Figure 4.40 and 4.42 show a set of 12

heads produced by the 'Crowd Generator' script. Figure 4.40 shows the various

combinations of heads and features possible by the FIG module using the male baseline

head (Figure 4.4 1/4.1 3) and Figure 4.42 shows the heads produced using the female

baseline head (Figure 4.43/4.12)

Careful observation of the heads generated by the Crowd Generator script reveals the

flex ibility and capacity of the FIG module to produce vast variati ons in the head and

features . The heads produced by the FIG module may not be photorealislic and this can

be attributed to a number of factors such as quality of textures, lighting and shadi ng and

rendering configurations but a more noticeable factor is the absence of accessories l ike

hair that considerably lowers recognition detai l. The system can be confi gured to display

more reali ti c heads by working on the rendering configurat ions and improving the

textures, shadi ng and lighting details but that usually requires time and experience both as

an artist and user of the modelling application . Besides aesthetical improvements to the

model is beyond the scope and aim of thi s thesi s. We aim to show that geometric models

of human faces can be controlled and defined by natural language instruction and that is

what chapters 6 and 7 hope to demonstrate. The system as it stands is not adequate as an

ID-Kit or E-fit system however it could be used to produce heads su ited to applications

like emertainmelll or character creation such alien, demons and comic characters.

III

4.Developmellt of 3D facial image gelleratioll system - Procedllres ami implemelltation

Figure 4.40 Heads produced by the Crowd Generator script using the male basel ine head.

Figure 4.4 I Male basel ine head model

112

4. Developmellt of 3D facial image gelleratioll system - Procei/lIreS alld implemelltation

Figure 4.42 H eads produced by the Crowd Generator cript using the female baseline
head

Figure 4.43 Female baseline head model

11 3

4.Development of 3D facial image generation system - Procedures and implementation

4.8 Deriving Modifier Parameters from Template Head Parameters

Currently the database of templates contains two entries; male template (Figure 4.41) and

female template (Figure 4.43) representing geometry data of the two baseline heads

constructed and described in the earlier sections. These files hold the defaul t parameters

for the baseline head model. Modifiers are sets of parameters that affect the head

geometry when applied to the baseline head.

Modifier parameters are calculated by differencing the parameters of a modified head

from the baseline head. A simple code routine was developed in Visual Basic called

"head comparator" (see Appendix B) that compared geometric data of modified heads

with the template head and calculated the difference. The difference calculated is saved

in a new file as set of parameters in a library of modifier files. The library consists of a

comprehensive collection of files each one referring to a specific qualifier or description

such as; "wide", "long", "big", "fat", etc.

Prior to calculating modifiers, 3D head geometry had to be edited and modified to

represent a target description. For example to represent a head of African origin, the

baseline heads had to edited inside the 3D modeller application until the feature set of

both the male and female baseline heads resembled an African. Figure 4.44 shows the

modified African head derived by manually modifying the male template. The images in

Figure 4.44 show an outline illustration without highlights or textures to amplify the

shape and structure of features on the face. The most obvious differences noticeable are

in the size and shape of the head, nose, ears and mouth. Similarly other modified heads

were created to experiment with other descriptors like wide - nose, mouth, jaw; long -

nose, ears, chin, head; wide apart - eyes; fat - cheek, nose, head etc. Figure 4.44 also

shows modified heads representing faces with "large nose", "eyes wide apart", "long

protruding ears", "wide mouth" derived from the male template head by manualJy editing

the 3D head model in 3D Studio Max. The modified 3D head files are examined by the

comparator and modifier parameters are calculated and written to file for the heads

engine to use.

114

4.Development of 3D facial image generation system - Procedures and implementation

Male Tern late

African Male Eyes Wide Apart

Large Nose

Figure 4.44 Modified heads derived by editing the male baseline head/male template

115

4.Development of 3D facial image generation system - Procedures and implementation

This experiment also looked at biometric data from 2D images of real people. The

measurements stipulated parameters correlating descriptions, provided from survey

results (see chapter 2), to modifier parameters.

4.8.1 Extract biometric data from facial image data set

A small sample of 4 images was selected from the AT &T database of facial images. All

images were front poses with minimal tilt and turn to ensure feature measurement is

consistent. Table 4.2 shows the sample of images selected, all images were normalised to

have the same dimension and resolution. This was necessary for the image measurement

software to calculate head and feature dimensions coherently and accurately.

Table 4.2 Sample of 4 photo realistic facial images used as target images for
reconstruction

Numerous studies have been carried out in the past for measuring facial features (Bisson,

1965a; a965b; Sakai et aI, 1972; Bromley, 1977; Batten & Rhodes, 1978). Most of these

have been in the area of facial recognition and is based on the assumption that certain

points in a facial image can be located with accuracy. Once located, the positions of each

116

4.Development of 3D facial image generation system - Procedures and implementation

point can be recorded in a suitable coordinate system. Points typically located during

measurements are the corners and pupils of the eyes; the rightmost, leftmost, and lowest

points on the nose; the corners, highest, and lowest points on the sides of the face. Some

of these points, such as those on the sides of the face, are difficult to locate with

reproducible accuracy.

Some of the earliest work in measurement of facial features was done by Bisson (1965a;

1965b). The first of these reports, which describes efforts to determine the outside

corners of the eyes, illustrates both the methods and the difficulties in such image

processing. Processing was done by locating the front, bottom and sides of the iris;

points along the upper and lower eyelids were found; parabolas were fitted to the eyelid

lines; and the intersection s of these parabolas were found and used as corners of the

eyes. This approach generally requires some initial estimates about the size and positions

of the components to be determined. Such estimates are usually easy to make when

dealing with facial images.

The first successful automatic measuring algorithm appeared to be that of Sakai et al.

(1972). Line images were produced by thresholding the "9 x 9 Laplacian" of the image.

This simple technique produces very good line images. Facial features are then located

using a signature technique with R(y) equal to number of dark pixels across the strip.

Features are located in the following order: top of the head; sides of the face; nose,

mouth, and chin; then the chin contour. Once these have been determined, some

refinements are made, and the positions and dimensions of various features are

determined.

Bromley (1977) developed a similar feature-measuring algorithm. It is based on a line

detection scheme using an optimum filter for detecting edges in images. This filter

happens to be a cascade of the Laplacian operator with a Iow-pass filter, so it is related to

the one used by Sakai et al. (1972). The order of processing the features is different from

that of Sakai et at. First the left and right sides of the face and the face centre line are

determined. The signature (similar to that of Sakai et al.) along the centre line is used to

117

4.Development of 3D facial image generation system - Procedures and implementation

find the top of the he~d, the hairline, the mouth position, and the chin-line. Eyebrow and

eye positions are located using signatures along lines positioned to the left and right of

the centre line. The algorithm locates the tip of the nose and the end points of the mouth,

and then determines the facial outline by searching outward in various regions of the

face.

Batten and Rhodes (1978) describe a man-machine system used to obtain measurements

from several thousand images. The system comprises a computer-controlled projector, a

digitizing tablet, and a mini computer with sufficient disk storage to save the

measurements. Images placed on top of digital tablets are measured by the coordinates of

the stylus placed in the image area. The coordinates, in digital form, are transmitted to

the computer for processing.

A simpler approach to facial measurements is coding facial features in terms of distances,

angles, areas and other mathematical functions. The basic elements for geometric

information are coordinates of points. For example, the feature "length of nose", is the

distance between "top of nose" and "bottom of nose". Most existing systems use trained

people to locate these points.

A system which uses geometric coding usually combines basic measurements into

features which summarize information about the images. Two of the early facial pattern

recognition studies, Bledsoe (1964, 1966) and Kaya and Kobayashi (1972), used

geometric coding of features; the latter used 10 distances to 9 features, each feature being

a distance divided by a referent, the nose length. Townes (1976) used a similar set of

distances shown in Figure 4.45. Instead of scaling each distance to a single referent such

as nose length, he considered all possible ratios less than one and selected those which

had the best correlation with his target image.

The facial measurements used by Townes have been used as a guide line for measuring

facial features of our sample target images. Figure 4.46 shows the distances measured to

compile the basic list of measurements needed to construct a frontal pose composite

118

4.Development of 3D facial image generation system - Procedures and implementation

similar to the target face. Table 4.3 lists the measurements calculated for the 4 facial

images shown in Table 4.2.

Figure 4.45 Facial Measurements used by Townes (Image scanned from Townes,1976)

119

4. Developmellt of 3D facial image gelleratioll system - Procedllres alld implemelltatioll

~ (cm)

Images
A
B
C
D

Key:

NL
NW =

EW-L =
EW-R =
S =

MW =
JW =
HW =
HL =

Figure 4.46 Facial Measurements used for Experiment

NL NW EW-L EW-R ES MW JW HW

2.68 2.60 1.60 1.68 2.44 3.26 7.86 8.90
1.92 1.74 1.27 1.32 1.37 2.23 4.22 5.95
2.40 1.44 1.33 1.47 1.1 2 2.32 3.00 4.93
1.58 1.43 1.26 1.37 1.36 2.33 4.52 5.66

Table 4.3 Measurements of the 4 Target Faces shown in Table 4.2

Nose Length
Nose Width
Eye Width , Left Eye
Eye Width, Right Eye
Eye Spacing
Mouth Width
Jaw Width
Head Width
Head Length/Height

HL

11 .40
7.17
6.80
6.70

120

4.Development of 3D facial image generatioll system - Procedures and implementatioll

4.8.2 Mapping feature measurements on to 3D face parameters

The next stage of the experiment required mapping the measurements from Tab le 4.3 to
parameters o f the parameterised head models. This required some sort of mapping or
fitting function to map the large range of rea l values onto the limited range real number
va lues for the head parameters. One immediate so lution was to experiment with the
parameters of the 3D head until a near to accurate representation of the target image was
achieved. Not only was thi s technique tedious but crude and inefficient. Another
solution was to mathematically solve this problem. Sigmoid function was selected as a
suitab le and in many respects an efficient mathematical solution.

A sigmoid function is an S-shaped "squashing function" (see Figure 4.47) which maps a
real value, which may be arbitrarily large in magnitude (positive or negative), to a real
value which lies within some narrow range. The mathematical form for the particul ar
sigmoid function used in thi s simulation, and commonl y used in many other neural
network simulations, is the following:

1
f(x) =

(4. 1)

Where e-ax is exponential e raised to the power (-ax). The result of this sigmoid function
lies in the range 0 to 1. In the neural computation literature, the sigmoid is sometimes
al so referred to as the logistic function .

1.1,---__________ -.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0. 1

o ~;;;;;;;;,:::::::::::::::::::...=~---'

a=2

8=1

8=112

8=113

-0. 1 -+--,--,-----,--,-,--,--,-----,----,,-,--,--,---,---,,-,---.--,---,---,---l
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 2 3 4 5 6 7 8 9 10

Figure 4.47 S Shaped Curves Produced by Sigmo id Funct ion of varyi ng values for a

12 1

4.Development of 3D facial image generation system - Procedures and implementation

4.9 Conclusion

The facial image generation module has been described in this chapter. It started by

describing the modelling process using NURBS, Beziers and Polygons. Modelling a

human head is not an easy task by any means, especially where artistic skills are lacking.

As mentioned early on NURBS was a difficult tool to master and consequently the head

sculpted using the technology was less than satisfactory. Polygonal modelling however

was simpler and easier to work with especially with the vast array of tools and utilities

built inside the modelling package for polygon creation and editing. The baseline heads

constructed using polygon meshes formed the foundation for the facial image generation

module. The baseline heads were pararneterised using FFD modifiers attached to the

head geometry. Each FFD modifier was catalogued and assigned variables acting as

parameters that could be edited using Maxscript. FFD modifiers in 3D Studio Max allow

a great deal of flexibility in the control of the deformation lattice. FFD control points are

edited via MaxScript using transformation functions to affect the vertices of the

underlying geometry consequently changing the structure of the confined area.

The chapter concludes with a test that assesses the efficiency and capability of the FIG

module in its capacity to generate heads of different shapes, sizes and features. The

heads generated by the FIG module revealed its flexibility and capacity to produce vast

variations in the head and features. The heads generated by the facial image generation

module, although not photorealistic, were good enough to interface the module to a

natural language processing engine that would control and produce a head in par with the

descriptions offered to the natural language interface.

122

5. Dealing with uncertainty - Theories and techniques

Chapter 5

Dealing with Uncertainty - Theories and Techniques

Abstract

In this chapter we discuss the single major problem faced by designers and engineers

of AI solutions - Uncertainty. We will discuss what uncertainty entails within the

domain of Knowledge-Based systems and techniques available for handling

uncertainty. Furthermore the chapter looks in detail the two main systems namely

Fuzzy Logic and Truth Maintenance to deal with uncertainty in natural language

descriptions.

Keywords: Uncertainty, Probability, Dempster Shaeffer Theorem, Fuzzy Logic, Mass

Assignment, Semantic Unification, Truth Maintenance Systems.

5.1 Introduction

The problems with which Artificial Intelligence is concerned are inherently uncertain

- it is the lack of certainty, the need to make sense of incoherent or incomplete

information, which gives rise to the need for "intelligent" problem-solving behaviour.

(Hinde, 1985; 1986).

In modelling the real world uncertainty abounds; it can be broken into two main

categories: (1) uncertainty arising from lack of knowledge relating to concepts that in

the sense of classical logic may be well defined and (2) uncertainty due to inherent

vagueness in concepts. Uncertainty can manifest itself in the problem data, in facts

and in rules (Fox, 1986). Kodratoff et al. (1988) describes these sources and types of

uncertainty:

• Unreliability of data due to symbolic noise (vagueness or ambiguity in the

meaning of a term) or uncertainty in the measure of an attribute

123

5. Dealing with uncertainty - Theories and techniques

• Human induced errors: assigning wrong values to attributes, miscIassifying

examples or giving too many or too few descriptors

• Omission of necessary examples from a training set

• Noise in background knowledge

• Deficiencies in the descri ption language used

• Uncertainty in the problem domain.

The uncertainty which is inherent in a system can be distinguished from the

uncertainty introduced when modelling it using a particular representation system,

which arises from vagueness in our perception and judgement of it. These distinct

types of uncertainty may be best handled by different methods, numeric methods

being more appropriate for the former, and symbolic methods for the latter. (Wise,

1986).

5.2 Approaches to Handling Uncertainty

Two different approaches can be adopted to model intelligent (human) behaviour: the

understanding-oriented approach, aimed at duplicating the way in which humans

operate, and the performance-oriented approach, aimed at producing the same results

as a human would produce by whatever methods seems most effective. (Spiegelhalter,

1986). The various approaches which have been developed for dealing with

uncertainty reflect this division as well as the differences between types of uncertainty

which arise in different problem domains.

Humans often use vague, ill-defined terms when describing their reasoning processes;

the difficulties involved in translating vague expressions into numeric terms without

introducing an unjustifiable level of precision can be circumvented by using a

symbolic approach, but also to reason with or about uncertainty (Fox, 1986; Hinde,

1986).

Expert systems often employ IF .. Then rules obtained from human experts, with

associated certainty factors which may show various forms of bias: people's estimates

of probabilities tend to be influenced by such factors as the ease with which they can

124

5. Dealing with uncertainty - Theories and techniques

recall or imagine an event (which leads to bias towards specifics rather than

generalities) and the degree of 'representative-ness' which an event appears to

display. For example, if a coin is to be tossed six times, 'HHTHTH' will be judged a

more probable outcome than 'HHHHHH'. If the biases can be recognized, it should

be possible to remove or reduce their effects. The results obtained will then be more

accurate, but less 'human'. The main advantage of using such rule-based systems is

the ease with which their conclusions can be explained to the user.

Performance-oriented approaches are frequently based on probability theory or an

extension, simplification or adaptation of it. Probability theory is the oldest and most

widely used method of handling uncertainty, and is derived from a formal description

of rational behaviour. Probabilities are a function of two things: the proposition under

consideration, and the evidence at hand. Their precise magnitude is usually less

important than the reasoning behind it, the context in which it applies and the sources

of information which would cause it to change. Probability theory is unique in its

ability to process context-sensitive beliefs, and it has been shown in (Per!, 1988) that

for any reasonable scoring rule, any scalar measure of uncertainty is either worse than

or equivalent to it. However, its use does present some problems: there may be

insufficient data available to allow a full probability distribution to be specified

accurately. With traditional probability theory ignorance cannot be distinguished

from uncertainty and if approximations and simplifications have to be made the

results obtained may not be accurate.

The need to express ignorance as opposed to uncertainty has led to the development

of methods based on intervals. The range of probabilities which could be assigned to

a hypothesis is given, with the lower limit of the interval based on the weight of the

evidence supporting the hypothesis, and the upper limit calculated from the weight of

evidence against it, or the support for its negation. The width of the interval

represents the degree of ignorance, or lack of evidence.

There is a clear difference between the concept of probability and the concept of truth.

A probability of 0.5 attached to a hypotheses does not means that it is half-true;

hypothesis are either true or false, and probabilities can be regarded merely an

125

s. Dealing with uncertainty - Theories and techniques

estimate of the relative likelihood of these two alternatives. The idea of reasoning

with truth rather than with probability - or with belief, as the truth or falsehood of a

hypotheses will, in general, not be known - has led to the development of truth

maintenance systems. Truth maintenance systems are used to establish sets of

mutually consistent hypotheses and also to manage inconsistent hypotheses. Truth

maintenance can be linked with uncertainty methods, the use of a preference ordering

of assumptions will ensure that the 'most probable' solutions to a problem are

explored first. (Hinde et al., 1989).

5.3 Numeric Methods

5.3.1 Probability Theory

For a long time probability theory was the only way of expressing uncertainty.

Various schools of probability exist including subjective probability (based upon the

view that probability is a logic of degrees of belief) and frequentist probability (based

upon counting). Within probability theory a form of knowledge representation is used

that allows uncertainties to be represented by numbers; the frame of discernment.

Each attribute (variable) in the knowledge base is defined over a set of possible values

(its universe of discourse). A probability distribution is associated over the set of

possible values for any variable. This would say that one value is more likely than

another. Various rules of inference exist within probability theory including Bayes

Rule. Probability theory, while being an intuitive way of representing uncertainty,

does not cater directly for other areas of incompleteness in knowledge representation

such as ignorance and inconsistency. As a result the new fields such as belief theory

(Dempster 1967; Shafer 1976), mass assignment theory (Baldwin 1991) and fuzzy set

theory (Zadeh 1965) have evolved that address these shortcomings.

If an event has yet to occur, and there is more than one possible outcome, there is

clearly some uncertainty about its outcome, and we need a method to deal with this

uncertainty. Probability theory gives us one way of handling simple uncertainties such

as this. Probability gives us a measure of the likelihood of an event resulting in one

possible outcome under one set of conditions.

126

5. Dealing with uncertainty - Theories and techniques

The outcome itself is restricted to a binary state {true, false}. Given some history of

previous outcomes for this type of event we can determine a measure of the

probability of this event being true when it occurs.

Mutually exclusive events

Take for example tossing a coin. The universe over which outcomes are defined is

{head, tail}. The two possible outcomes of the toss are {head,not tail} and {not head,

tail}. For simplicity we reduce this to the mutually exclusive outcomes head and tail.

Since these outcomes are mutually exclusive, when head is true tail is false, and vice­

versa. Tossing the coin twice may generate the count of each possible outcome, head:

1 tail: 1. Probability theory assigns probabilities Pr(head) = 0.5 and Pr(tail) = 0.5 for

the next toss of the coin, where the probability of outcome P is the count of outcomes

were P is true divided by the total number of outcomes so far encountered. For an

event with possible outcomes {PI, P2, ,Pn}, the probability restriction

I;=I Pr(p,) = 1 must hold.

If there is no history of previous outcomes and we have no insight into the event

itself, we have total uncertainty with regard to the event outcome. This complete

uncertainty is represented by the uniform a priori probability distribution. A uniform a

priori probability can be assigned to each of the possible outcomes. The uniform a

priori probability for all outcomes of an event is the reciprocal of the total number of

possible outcomes of that event. For a fair six-sided dice the possible outcomes are

{I, 2,3,4,S,6} and the uniform a priori probabilities are therefore Pr(J) = 1/6, Pr(2) =

1/6, Pr(3) = 1/6, Pr(4) = 1/6, Pr(S) = 1/6, Pr(6) = 1/6.

In almost all cases the uniform a priori probabilities are unrepresentative of the actual

outcome probabilities. A better method of obtaining these probabilities is by taking a

frequency of occurrence approach where we assume the number of times the event is

encountered tends to infinity. This limit approach is more accurate than a uniform a

priori approach but requires a large history of event outcomes.

127

5. Dealing with uncertainty - Theories and techniques

The probability of mutually exclusive events can be combined to give a measure of

the probability of the disjunction of a number of outcomes. Eqn. 5.1 shows the simple

additive combination of probabilities to give the disjunctive probability

Pr(~ v P2 v P3).

(5.1)

Conditional events

These simple probability approaches are useful for many simple cases, but a more

complicated problem arises when events are not mutually exclusive.

In these cases conditional probabilities can be calculated from Eqn. 5.2, the rule of

conditional probabilities. Pr(AIB) is the conditional probability that A is true given that

B is true.

Pr(A I B) = Pr(A 11 B)
Pr(B)

(5.2)

In one way the conditional probability equation gives us some elementary reasoning

under uncertainty. We are uncertain if A is true, but since we know that B is true and

we have Eqn. 5.2 we can at least estimate the probability Pr(AIB).

The rule of conditional probability is extended to give the rule of total probabilities.

This is shown in Eqn. 5.3.

Pr(B) = Pr(B I A).Pr(A) + Pr(B I A).Pr(A) (5.3)

The rule of total probabilities gives us more power in reasoning about discrete events

which are not mutually exclusive. As we will later see, the rule of total probabilities is

important in evaluating the support logic inference rule.

128

5. Dealing with uncertainty - Theories and techniques

5.3.2 Bayes Theorem

Bayes theorem extends the rules of conditional probability and total probability. It

provides a method of dealing with inference and belief updating in uncertainty

situations.

Eqn. 5.4 defines Bayes theorem. It defines a method of calculating the conditional

probability Pr(H1E) from known probability Pr(EIH) and prior probabilities Pr(E) and

Pr(H).

We read Pr(HIE) as "the probability that hypothesis H is true given observed evi­

dence E' and Pr(EIH) as "the probability of observing evidence E given hypothesis

If'.

Bayes theorem enables us to update the probability distribution across all indepen­

dent and mutually exclusive Hi given new evidence E.

where,

P(Hi lE)

P(EIHi)

P(H i)

k

P(H
i
I E) = P(E I H,)· P(H,)

I:=,P(E I H.) .p(H.)

= probability that Hi is true given evidence E

= probability of observing E given hypothesis Hi

= a priori probability of hypothesis Hi being true

= number of hypotheses

(5.4)

It is important to note that Eqn. 5.4 applies to cases where all evidence E is

independent. This independent assumption is referred to as naive Bayes.

129

5. Dealing with uncertainty - Theories and techniques

If on the other hand we encounter new evidence e, and E and e are not independent,

we need to take into account conditional joint probabilities in order to calculate

P(H I E,e). This is shown in Eqn. 5.5.

P(H lE e) = P(H lE). P(eIE,H)
, P(e I E)

where,

P(H I E) = probability that H is true given evidence E

P(H I E,e) = probability thatHis true givenE and new evidence e

P(e I E,H) = probability of observing e given Hand E

P(e I E) = probability of observing e given E

(5.5)

The problem with modifying simple Bayes theorem (Eqn. 5.4) to the conditional

evidence case (Eqn. 5.5) is in calculating the joint probabilities. For n pieces of

evidence there are 2" joint probabilities to be calculated. For reasons of

computational speed, storage and knowledge acquisition, the conditional evidence

case of Bayes theorem is frequently intractable.

Bayes theorem adds no more insight into complete uncertainty than basic probability

theory. Given no information we stilI must assume a uniform a priori distribution

across possible outcomes.

Newer approaches to reasoning under uncertainty fall into two camps:

• Theorems based on Bayes theorem or simplified Bayes. These include

Bayesian networks and Dempster-Shafer theory.

• Approaches tackling inference under uncertainty without Bayes theorem.

These include Fuzzy set theory.

130

5. Dealing with uncertainty - Theories and techniques

5.3.3 Dempster-Shafer Theory

The Dempster-Shafer theory of evidence was designed to handle cases where the

probability distribution is not completely known; it has the ability (which traditional

probability theory lacks) to distinguish between uncertainty and ignorance.

Dempster-Shafer theory (Shafer, 1976) takes a slightly different approach to the

theories and reasoning methods derived from probability by representing data using

belief and plausibility measures.

Dempster-Shafer theory also adds a third measure, the probability assignment m,

based on belief and plausibility.

Belief measure, Bel

Given a universe X, a belief measure is defined on the power set of X, P(X) as shown

in Eqn. 5.6.

such that,

Bel(@)=O

Bel(X) = 1

Bel: P(X) -> [0, 1] (5.6)

Bel(A1 u A2 u ... uAn) ~ ~.-". Bel(A
J
. n Ak)+ ... +(-I)"+IBel(A1 nA2 n ... n A) ~J ~J<k n

The third condition applying to Eqn. 5.6 yields the conclusion Bel (A)+ Bel (A) :0; 1

given that only A and A are possible and n = 2.

Plausibility measure, PI

Plausibility is the dual of belief, and is usually defined in terms of belief, as in Eqn.

5.7.

131

5. Dealing with uncertainty - Theories and techniques

PI (A) = 1-Bel(A), \;fA E P(X) (5.7)

Plausibility can also be defined independently, given a power set of universal set X,

P(X), as shown in Eqn. S.8

such that,

PI(@) = °
PI(X) = 1

PI : P(X) -> [0, 1] (5.8)

PI(A, u~ u ... u An);=~: L j - Lj<kPI(Aj (lA.) + ... + (_I)n+' PI(A, (I~ (1 ••• (1 An)

In the dual of belief, the third condition applying to Eqn. S.8 yields the conclusion

PI (A) + PlC A) ~ 1 for the condition that only A and A are possible and n = 2.

Probability assignment m

The probability assignment m defined by Dempster and Shafer attempts to relate the

measures Bel and PI directly to probability theory.

The Dempster-Shafer probability assignment m is unlike the basic probability dis­

tribution, which is defined over the universe X, in that m is defined over the power set

of X, P(X).

such that,

m(@)=O

m: P(X) -> [0, 1] (5.9)

The focal elements A of P(X) are defined as those elements of P(X) which have non­

zero probability assignment. Clearly = cannot be a focal element.

132

· 5. Dealing with uncertainty - Theories and techniques

Clearly if we take a subset of P(X> containing only the singleton sets, {e}"i7' e EX, then

this is analogous to the basic probability density function. The basic probability

density function is therefore a restricted case of the Dempster-Shafer probability

assignment.

Given that m is defined over the power set of X, the quantity m(p) is interpreted as the

belief that is currently assigned to the exact set of hypotheses p.

It is important to note that the definition of m does not require that m(X) = 1 (as the

basic probability density function does) or that meA) :s; m(B) when A cB. The

second of these two cases is important because it gives us more representation power

then the basic probability density function.

Bel, PI and m are related by Eqns. 5.10 and 5.11, where A is a subset of P(X>

Bel(A) = Lm(B) (5.10)
B"A

PI(A) = Lm(B) (5.1I)
BnA~~

This clearly gives rise to the condition, PI(A) ~ Bel(A).

There are two special conditions to note for all of Bel, PI, and m. These are total

ignorance and absolute certainty. The absolute certainty cases are shown in Eqns.

5.12,5.13,5.14.

Bel({A}) =1 and Bel(B)=O,"i7'AE X,B*{A},BE P(X) (5.12)

PI({A}) =1 and PI(B)=O,"i7'AE X,B*{A},BE P(X) (5.13)

m({A}) =1 and m(B) = O,"i7'AE X,B*{A},BE P(X) (5.14)

The total ignorance cases are shown in Eqns. 5.15,5.16, and 5.17.

133

5. Dealing with uncertainty - Theories and techniques

Bel(X) = 1 and Bel(A) = 0, \;fA;t X,Ae P(X) (5.15)

Pl(@)=OandPl(A)=I, \;fA;tX,Ae P(X) (5.16)

m(X)= 1 andm(A)=O, \;fA;tX,Ae P(X) (5.17)

Dempster evidence combination

Dempster's evidence combination method combines two different bodies of evidence,

expressed as probability assignments. Eqn. 5.18 defines the method to combine

probability assignments rn, and m2 to give a joint probability assignment rn3 •

(5.18)

In practice it is easier to examine an application of this rule in table form. Take, for

example, the set shown in Eqn. 5.19 with power set shown in Eqn. 5.20.

X= {a,h,c} (5.19)

P(X) = {0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (5.20)

If we now have evidence expressed as rn, ({ a,b}) = O. 7 and m2 ({b,c}) = O. 3 we can

calculate the combined evidence rn3 from the table in Table 5.1. Note that, from Eqn.

5.9, the empty set is only permitted to have a zero probability assignment and that the

sum of all probability assignments must be one. Given these two condition the

remainder of the probability assignment for rn, must be allocated to the universal set

X. Thus rn, (X) = 0.3. Likewise for rn2 the remainder of the probability assignment

(0.7) is assigned to X. Thus m2 (X) = 0.7

134

5. Dealing with uncertainty - Theories and techniques

m2

{b,c} 0.3 X

m, {a,b} 0.7 (b) 0.21 {a,b}

X 0.3 {b,c} 0.09 X

Table 5.1: Table for m3

The new probability assignment m3 is expressed by the following table.

(b)
0.21

{a,b}
0.49

{b,c}
0.09

X
0.21

0.7
0.49
0.21

Now let us consider what happens as more evidence, m" is presented. If m, ({ c) =

0.7 we must find the joint probability assignment of m3 and m, in order to assimilate

this new evidence. The table for this new Dempster combination is shown in Table

5.2.

m,

(c) 0.7 X 0.3

m3 (b) 0.21 0.21 (b) 0.49
.I.f!,hl 0.49 0.09 .I.f!,hl 0.21
l.lu;.l (c) lli£l
X (c) X

Table 5.2: Table for m3

Taken directly from Table 5.2 the new probability assignment ms is expressed as the

following distribution

ms({b)) = 0.063

ms({ a,b})=0.147

ms({b,cj) = 0027

ms({c)) = 0.21

135

5. Dealing with uncertainty - Theories and techniques

ms (X) = 0.063

ms(@)=0.49

This distribution shows a probability assignment of 0.49 has been assigned to the

empty set. This indicates that m3 and m4 define conflicting evidence. Dempster's rule

decrees that this assignment must now be distributed among the other members of the

assignment. This is achieved by dividing all other assignments by 1 - ms (@) = 1 -

0.49 = 0.51. The re-scaled assignment m~ is now shown as the following distribution.

m~ ({b}) = 0.1235294118

m~ ({ a, b)) = 0.2882352941

m~({b, e}) = 0.0529411765

m~ ({ e}) = 0.4117647059

m~ (X) = 0.1235294118

m~(@)=O

The belief distribution represented by the probability assignment m3 has been revised

in light of the evidence in m4 to give a final probability assignment m~.

The renormalisation of the final probability assignment to redistribute probability

assigned to the empty set is a contentious operation. Baldwin's mass assignment

theory overcomes this problem through the mass assignment definition and combi­

nation methods.

136

5. Dealing with uncertainty - Theories and techniques

5.4 Symbolic Methods

5.4.1 Fuzzy Set Theory

Fuzzy set theory was originally introduced in 1965 by Zadeh (1965) to address

uncertainty. A further motivation behind the introduction of fuzzy sets was to provide

a more natural and transparent mapping between the real world and mathematics.

Possibility theory as explained in section 5.3.1 enables us to obtain the possibility of a

conjoined event solely from the possibility of the individual events; possibility is truth

functional. Further, possibility theory makes no assumptions about underlying

distributions and so it is non parametric. A disadvantage of possibility theory is that

there is no central limit theorem as in parametric statistics although more evidence

can be used to restrict a possibility distribution to have fewer values. If we work with

possibility distribution then we have what is known as a fuzzy logic Zadeh (1965).

We may however take any multi-valued logic and work with distributions and

provided it is truth functional the advantages and disadvantages outlined above will

tend to apply.

Dempster Shafer theory and the above have introduced possibility as a basis for fuzzy

logic; however, other viewpoints can be taken. Probability is based on precise events

and the probability of an event is based on the number of times the event occurs

divided by the number of possible events. The crucial point is the set of events that

forms the basis being precise. We might find it difficult to say whether a particular

person is tall or not and so it then becomes difficult to assess the probability of, say,

the next person to enter a room being tall as the definition of "TALL" is imprecise or

fuzzy.

137

S. Dealing with uncertainty - Theories and techniques

~
~
~

" .c
El
" ::E

1.0

0.5

0.0

"NOT TALL"

About average
height

'TALL"

Height

Figure 5.1. Possibility Distribution "TALL" and the complemented "NOT TALL"

A fuzzy set is characterised by a membership function which maps each element x in

the universe of dicsourse Q to membership value in the unit interval [0 .. 1] as opposed

to {O, I} in traditional set theory. For example the fuzzy set TALL could be

characterised by the membership function f.l.rAU(X) (depicted in Figure 5.2).

Given the fuzzy membership function in Figure 5.2 as a definition of the concept

"TALL" then given such a membership function we are able to read off a grade of

membership given a height and also read back a height given a grade of membership.

In this case height values in the interval [6 feet and higher] have a membership value

of 1 and correspond to the core of the fuzzy set. Values in the intervals [5'6",6'] have

membership values in the range [0, 1]. While other values in the universe have zero

membership in this definition of the concept of tall. Values having membership

greater than zero in a fuzzy set correspond to the support of the fuzzy set.

138

5. Dealing with uncertainty - Theories and techniques

.&

j

1.0

0.5

0.0

5'6" 6' 6'6" Height

Figure 5.2. An example of a fuzzy set defined over the universe of height values

expressed in centimetres.

An extensive calculus of fuzzy set operations exists including union, intersection,

complement etc., which in most cases are generalisations of traditional crisp set

theory (KIir and Yuan, 1995). Furthermore, a reasoning framework has been

developed based upon fuzzy truth-values: fuzzy logic (Zadeh 1979). Fuzzy set theory

and fuzzy logic has enjoyed considerable success in the knowledge-based systems

such as motor control and found applications in numerous other fields including:

• Pattern recognition

• Decision making

• Robot planning

• Engineering design

• Systems modeling

• Process control

• Social interaction systems

• Structural semantics

• Chromosome classification

Fuzzy sets are based on the idea of continuously graded degrees of membership of

sets. The characteristic function of an ordinary set

139

5. Dealing with uncertainty - Theories and techniques

J.1A(X): U ~ (O,l) where f.L(x) = 0 xinA

f.L(x)= 1 x not in A

is replaced for a fuzzy set, with a characteristic function of the form

J.1A (x) : U ~ [0,1] (5.21)

which specifies the 'degree of membership of x in A'. with this definition 'crisp'

concepts can still be represented adequately, but there is no necessity to assign

artificial boundaries to concepts which are inherently vague.

The standard set operations: union, intersection, complement can be defined for fuzzy

sets in several different ways. The definitions which are most commonly used are:

• union

(5.22)

• intersection

(5.23)

• complement

J.1 A (x) = 1-J.1;.(X),XE U (5.24)

It can be shown that these definitions of union and intersection are the only one that

are consistent with the requirements that the operations should reduce to the normal

set operations for degree of membership of 0 and 1, that they should be order

preserving and continuous, and that the normal associativity, commutativity,

distributivity, and idempotence rules should be obeyed. If the distibutivity and

140

5. Dealing with uncertainty - Theories and techniques

idempotence requirements are dropped, which may be considered desirable for

reflecting natural language usuage, then Zadeh's alternative definitions can be used:

(5.25)

(5.26)

As well as the standard set operations, there is a range of operations which are

specific to fuzzy set, for example concentration which reduces the degree of

membership of elements which are 'only partly' in the set. Normalization which

adjusts the degree of membership so that at least one element is 'totally' in the set,

intensification and fuzzification.

Imprecise statements can be modelled as fuzzy sets using linguistic variables,

variables whose values are natural language expressions referring to some quantity of

interest. These expressions can be represented by fuzzy sets composed of the possible

values that the quantity of interest can assume. For example, if the quantity of interest

could assume an integer value between 1 and 10, the expression 'few' could be

represented by

{OAI1, 0.8/2, 1I3,OA/4}

The natural language expressions normally form a structured finite set, with syntactic

rules for generating expressions and semantic rules for associating fuzzy sets with

them. Primary terms are modelled by fuzzy sets, and hedges (e.g. 'very', 'fairly',

'quite' etc) are modelled by fuzzy set operations. (Schmucker, 1984).

Fuzzy set theory can be used to extend classical logic to produce fuzzy logic in which

the constraint that every statement must be either absolutely true or absolutely false

no longer applies. The compositional rule of inference, which states that if R is a

fuzzy relation from U to V and X is a fuzzy subset of D, the fuzzy subset of V which

is induced by X is given by the composition of R and X, can be used when variables

range over finite sets.

141

S. Dealing with uncertainty - Theories and techniques

If Xis B then Y is C

XisA

YisD

Where X and Y are variables in universe U and V respectively, A and B are fuzzy

subsets of U, and C and D are fuzzy subsets of V.

The concept of fuzziness can be extended to mathematical structures, replacing the

concept of the value of a variable with 'the degree of membership of a value', as a

result of which values seem to play the role of functions and non-fuzzy functions

become functional (Gaines, 1976), and to the domains of interest of sets: operations

which map a fuzzy set and domain of interest into a new fuzzy set and new domain of

interest can be used.

One problem with fuzzy set theory is that there is no proof that it models perception

or judgement, and no clearly defined way of determining if a given membership

function is right (Wise, 1986). The theory assumes that grades of membership of

property categories may be expressed by functions, the values of which submit to the

conventional arithmetic operations, and if unary operations such as the transformation

of fuzzy sets with hedges are to be meaningful, a ratio scale must be used for

subjective measurements. Other problems with Zadeh's fuzzy logic include extreme

vagueness of results in fuzzy conditional propositions, and weaknesses in the ways in

which chain reasoning, conjunctive fuzzy conditional propositions and combination of

evidence are dealt with (N afarieh, 1988).

Fuzzy Numbers & Hedges

Rules used by people use "linguistic" variables such as "much lower", "a lot", "a

little", which we need to interpret more precisely. For this we need to develop the

idea of a fuzzy number. An approximation to a fuzzy number is such a method. By

approximating a normal distribution with the view that almost any "reasonable"

interpretation will give us "reasonable" results then we could take a much simpler

142

5. Dealing with uncertainty - Theories and techniques

approximation and be just as right or wrong (Zadeh L.A., 1965). The fuzzy

membership function, distribution diagram (Figure 5.1) shows such an approximation.

The distribution diagram (Figure 5.1) representing a version of the concept "TALL"

can be simplified substantially as shown in Figure 5.3.

.S-

I

1.0

0.5

0.0

About average
height

Figure 5.3 Simplified version of the fuzzy membership function "TALL"

Traingular and trapezoidal two sided distributions are usually used to represent fuzzy

concepts and fuzzy numbers however it is also necessary to catch outlying points and

so, especially for input sets, single tailed distributions like in Figure 5.1 will be

needed.

The relationship between the 'sets is important and Figure 5.4 shows that a particular

real number can belong to more than one set, but with different degrees of

membership. This is important for interpolating between various different rule

outputs when we come to transfer the fuzzy output sets into a control action. Fuzzy

membership diagrams are a way of selecting which grade of membership is most

suitable for any given crisp value.

143

1.0

0.0

S. Dealing with uncertainty - Theories and techniques

"WIDE" & "CLOSE"

~

"VERY CLOSE" "VERY WIDE"

Eye Spacing

Figure 5.4 A relationship between the fuzzy sets for Eye Spacing

These sets are usually difficult to describe accurately and precisely, therefore it is

standard and computationally efficient to use triangular sets. As fuzzy distributions

are generally used to describe vague and approximate concepts this is a reasonable

decision with respect to the operation of the fuzzy system.

The concept of "Hedges" within the topic of fuzziness is an important one and highly

relevant to the project in discussion. Apart from distributions such as "large",

"small", "medium", "wide", etc, There could be other distributions derived from these

such as "very wide" and "fairly wide", These adjectives "very" and "fairly" are

known as hedges and modify the distributions they are applied to,

The use of hedges enables finer distinctions in the sets to be derived and so allow

better judgement to be made about which set something should be a member of,

Hedges are unary operators and so "NOT", "FAIRLY" and "VERY" can be

interpreted as follows:

144

5. Dealing with uncertainty - Theories and techniques

If J1A (x) is the membership of the support element X in the set A then the hedges

"VERY", "FAIRLY" and "NOT" are usually denoted as:

(5.27)

(5.28)

(5.29)

Whereas the usual membership function for "Tall" is shown in Figure 5.5

.& 1.0

~
.c

~
0.5

0.0

About average
height

"TALL"

Height

Figure 5.5 Shows a denotation of the membership function ''TALL''

The membership function for "VERY TALL" might look like Figure 5.6 with

"TALL" shown for comparison. Figure 5.7 shows the transformation NOT applied to

"VERY TALL"

145

5. Dealing with uncertainty - Theories and techniques

''TALL''

1.0

"VERY TALL"
0.5

0.0

About average
height

Height

Figure 5.6 Shows membership functions for sets "TAL" and "VERY

TALL"

''TALL''

1.0 r-----_

0.5

0.0

"NOT VERY TALL"

About average
height

Height

Figure 5.7 Showing the transformation NOT on "VERY TALL". The

intersection would constitute the set "TALL" but "NOT VERY TALL"

Using the intersection of ''TALL'' and "NOT VERY TALL" gives the fuzzy set

corresponding most closely to ''TALL'' so some one with the height within the

triangle would have a description of ''TALL'' but "NOT VERY TALL". Similarly the

set "TALL" can be weakened to "FAIRLY TALL" by applying "FAIRLY"

146

5. Dealing with uncertainty - Theories and techniques

membership hedge. Figure 5.8 shows the result of applying the hedge "FAIRLY" to

the set ''TALL''.

.B< 1.0

1
~

0.5

0.0

"FAIRLY TALL"

About average
height

"TALL"

Height

Figure 5.8 Showing the effect of the dilation operator "FAIRLY" on the

set ''TALL''. The way "FAIRLY" and "VERY" have been defined makes

them inverse.

Using hedges to intensify and dilute fuzzy sets allows other fuzzy sets to be created.

Going back to figure 5.7 showing the intersection of ''TALL'' and "NOT VERY

TALL" gives us an intersection of the two sets which is a non normal set, shown in

figure 5.9.1 A non normalised set is one in which the membership does not reach the

maximum value of 1.0.

147

5. Dealing with uncertainty - Theories and techniques

1.0

0.5

0.0

"NOT VERY TALL" AND ''TALL''

Height

Figure 5.9.1 The result of intersecting "NOT VERY TALL" and ''TALL''

results in this non normalised set

Movement of the belief from uncertainty into the sets corresponding to the fuzy set

equally results in the normalised set shown in Figure 5.9.2

0. 1.0

i
0.5

0.0

"NOT VERY TALL" AND ''TALL''

Height

Figure 5.9.2 This is a normalised version of the set "NOT VERY TALL"

and ''TALL'' which reaches the maximum value 1.0.

The set "NOT VERY TALL" and "TALL" when normalised gives us a set which give

the membership function of a person and whether the descriptor ''TALL'' is

148

5. Dealing with uncertainty - Theories and techniques

appropriate. Putting this set alongside "VER Y TALL" allows us to select the

descriptor that best suits the person .

. S< 1.0

.c

J
0.5

0.0

"NOT VERY TALL" AND ''TALL''

Height

Figure 5.10 Putting "NOT VERY TALL" and "TALL" alongside "VERY

TALL" enables appropriate descriptor to be selected

Given we have a measurement to make on an object, perhaps a person, then we can

select the height along the abscissa and read off the value of the appropriate curve to

assign the most possible descriptor. Looking at a reasonable set that could be

constructed from just "TALL" we can have "TALL", "VERY TALL", "SHORT"

derived from "NOT TALL" and "VERY SHORT" derived similarly. These are

shown in Figure 5.11.1 and Figure 5.11.2

149

5. Dealing with uncertainty - Theories and techniques

1.0

0.5

0.0

"SHORT' "NOT VERY TALL" AND ''TALL''

"VERY SHORT'

Height

Figure 5.11.1 "SHORT" and "VERY SHORT" shown with descriptor sets

derived from ''TALL'' and "VERY TALL"

We can extend our ability to form description sets by adding SHORT" and "NOT

VERY SHORT" replacing "SHORT" and in the middle we have "NOT SHORT" and

"NOT TALL" which collapses to "SHORT AND TALL". These are then normalised

and we can take any value we like for height and select the most appropriate

descriptor. If we need more detail then the second largest membership can be chosen.

.9< 1.0

.r:

1
0.5

0.0

"SHORT' AND ''TALL''

"NOT VERY SHORT' AND "SHORT" ~ "NOT VERY TALL" AND ''TALL''

/'
"VERY TALL"

Height

Figure 5.11.2 Some of the sets derivable from the original set ''TALL''

which allows us to match object with natural descriptions

150

1.0

0.0

5. Dealing with uncertainty - Theories and techniques

These sets are very useful in the area of fuzzy control and enable input values to be

mapped onto fuzzy sets. The beauty of these sets is that they are all derivable from

experience. Examining the transformation implied by the two sets ''TALL'' and

"VERY TALL" could derive the operator "VERY". The same goes for "SHORT" and

"VERY SHORT'. The triangular sets as shown in Figure 5.12 are useful in

describing objects in a concise manner by selecting the most appropriate descriptor.

"SHORT' & ''TALL''

"NOT VERY TALL" & "TALL"

"VERY TALL"
"VERY SHORT"

Figure 5.12 The approximations to the distributions shown in Figure 5.1 I made by

taking the closest triangular distribution to the experientially derived distributions

5.4.2 Mass Assignement

In order to address the shortcomings of probability theory, when further

incompleteness in the knowledge exists, namely that a complete probability

distribution over the frame of discernment cannot be given (which corresponds to a

form of ignorance), mass assignment theory (to be referred as MAT from noW on) has

been proposed by Baldwin (1991; 1992). In MAT, the distribution is given over the

power set elements of the frame of discernment. This distribution is called a mass

assignment. MAT differs from previous work in this area by Dempster and Shafer

151

5. Dealing with uncertainty - Theories and techniques

(Dempster, 1967; Shafer, 1976), by catering for not only ignorance, but also for

inconsistency (allowing mass to be assigned to the null set) and providing a different

and more expressive calculus. The mass assignment is similar in representation terms

to the basic probability assignment of Dempster-Shafer theory.

A mass assignment over a finite frame of discernment n is a function:

m: P(X) ~ [0,1] (5.30)

Where P(X) is the power set of n and satisfies the condition

Lm:(A)=1 (5.31)
AeP(X)

Every set A E P(X) for which meA) > 0 is called the focal element of m.

A mass assignment can be viewed as a form of knowledge that expresses upper and

lower probabilities for the individual elements of the frame of discernment. In other

words, a mass assignment can be viewed as a family of probability distributions, all of

which satisfy the axioms of probability theory and the upper and lower constraints

delimited by the mass assignment. Consequently, although mass assignments can

represent probabilities they have the added flexibility of being able to represent

uncertain probabilities. For example, consider a class of undergraduate students where

students can be classified as first-class honours, second-class honours or as pass.

Consider the case where there are 100 students, where it is known that 30 are pass

students, 40 are second-class honours or pass and the remainder unknown. This can

be more succinctly written in mass assignment format as follows:

MAcla" = {pass} : 0.3

{pass, second-class honours} :0.4

{pass, second-class honoursjirst-class honours}:O.3

This mass assignment corresponds to the following family of probability distributions

152

5. Dealing with uncertainty - Theories and techniques

0.3 ~ Pr(pass) ~ 1

o ~ Pr(second·class) ~ 0.7 0 ~ Pr(first-class) ~ 0.3

such that

Pr(pass) + Pr(second-class) + Pr(first-class) = 1.0

A particular type of probability distribution is obtained by distributing the mass

associated within the non-singleton focal elements uniformly; this distribution is

termed as the least prejudiced distribution (LPD) (Baldwin 1992). In the case of

MAcla" the corresponding LPD, LPDCla" is given as follows:

Pr(pass) =0.3 +0.4/2+0.3/3 =0.6

Pr(second-class) = 0.412 + 0.3/3 = 0.3

Pr(first-class) = 0.3/3 = 0.1

The transformation of mass assignment to a least prejudiced distribution is reversible;

hence given a least prejudiced distribution it is possible to find a corresponding mass

assignment.

Mass Assignment Calculus

Mass assignments can be combined, corresponding to the conjunction of knowledge

statements, aggregated corresponding to the combination of alternate knowledge

statements and updated, corresponding to forming a posterior mass assignment from a

priori mass assignment when given some specific knowledge, also expressed as a

mass assignment. In Baldwin (1991; 1992) a detailed presentation of the mass

assignment calculus (meet, join, restrictions, conditioning) is presented.

153

S. Dealing with uncertainty - Theories and techniques

Mass Assignment Combination

As with probability assignments. two mass assignments can be combined. There are

two basic mass assignment meets. the general assignment and the multiplication meet.

These two methods are outlined below.

1. General assignment.

General assignment meet of mass assignments m,. and m2 assumes a unique

redistribution of mass from m, and m2 onto the intersection or union of focal

elements in m, and m2 • No mass can be assigned to the empty set. The union of focal

elements generates a more general assignment which can be restricted to either of the

original components. but the family of probability distributions resulting are not

necessarily the union of the component families of probability distributions. The

intersection of focal elements on the other hand does result in a family of probability

distributions which is the intersection of the component families of probability

distributions.

Taking the two mass assignments.

m, =LI, :MI, !i=I •...• n,

defined over the universe oflabels { LI" L1 n, • L2, L2 n2 }.

We now define a tableau m* of elements subject to the row and column constraints in

Eqns. 5.32 and 5.33. where * represents union or intersection. and m* «(21) = o.

(5.32)

154

5. Dealing with uncertainty - Theories and techniques

(5.33)

Now we find the mass associated with each focal element in rn* from the tableau, as

shown in Eqn. 5.34.

l:rn*(Ll,*L2) (5.34)

The new mass assignment m3 is the general assignment combination of rn, and

A non-unique solution is harder to calculate, and we must introduce unknowns into

the resulting mass assignment expression that capture the whole family of possible

mass assignments.

2. Multiplication meet, A.

The multiplication meet is more simple than the general assignment. It is faster and

simpler to calculate and generates a unique solution. On the other hand multiplication

meet does allow assignment of mass to the empty set and, as a result, may generate

inconsistent results.

The method of calculating multiplication meet is the same as for general assignment

up to assigning masses to cells in the tableau. At this point mass for each cell is

simply the product of the masses associated with the heads of the corresponding row

and column.

In other words, for the cell intersecting sets L,. and ~ the mass associated with that

cell is,

(5.35)

155

5. Dealing with uncertainty - Theories and techniques

In essence the multiplication meet is identical to the Dempster-Shafer combination

method, but without the reallocation of empty set mass to the non-empty sets of the

mass assignment.

5.4.3 Semantic Unification

Semantic unification gives us a method of comparing one fuzzy set with another. This

is crucial in semantic analysis of fuzzy concepts.

Take for example the two sentences "Fred is tall" and "Bill is short". Naturally we

know that Fred is taller than Bill, but it would be much more useful to know to what

degree Fred is taller. Given a new statement, "Joe is very short" we would also expect

the comparison method to give a higher similarity measure between very short and

short than between very short and tall. This similarity measure is provided by

semantic unification.

Semantic unification of fuzzy set F with fuzzy set F' generates a similarity measure

SU(F, F') in the interval [0, 11. We take this value to be equal to the conditional

probability Pr(.F IF'). We can see from this conditional probability equivalence that

semantic unification is not commutative, i.e., Pr(.F I F') is not necessarily equal to

Pr(F' I F).

Although we have talked of semantic unification in terms of fuzzy sets, it actually

operates on mass assignments. As a result fuzzy sets are translated into their mass

assignment equivalents, before semantic unification.

We use two different method of semantic unification, interval semantic unification

and point semantic unification

• Interval Semantic Unification

156

S. Dealing with uncertainty - Theories and techniques

The interval version of semantic unification generates a measure Pr(F IF')

which is expressed as a support pair [S. ,S pJ

Take the fuzzy sets F and F' . These are converted to their respective mass

assignments,

(5.36)

(5.37)

Now we can calculate the semantic unification of F given F' by deriving from

mF and mF" a mass assignment across the universe ft, f, u} where t

represents true,f represents false and u represents uncertain. We generate this

new mass assignment from Eqn. 5.38.

M = (T(L, IM):I, ·m) (5.38)

where,

i
t:Mj~L')

T(L, I M) = f: M j n ~i = 0

u : otherwIse

(5.39)

Now we have one expression for m(F IF) defined over the focal elements, as

shown in Eqn. 5.40.

(5.40)

157

5. Dealing with uncertainty - Theories and techniques

Finally we derive the support pair [S.,Sp] for Pr(F I F') as in Eqns. 5.41 and

5.42.

S. = m(F IF) (t) (5.41)

(5.42)

• Point Semantic Unification

A simplification of the interval semantic unification algorithm gives us the

point semantic unification. This algorithm returns a point probability value for

Pr(F IF') rather than an interval.

Given mF and mF' defined in Eqns. 5.36 and 5.37 respectively, we generate a

new mass assignment M given by Eqn. 5.43.

(5.43)

Finally the point probability Pr(F IF') is given by Eqn. 5.44.

Pr(F IF') = L m'j (5.44)
i,j

5.5 Truth Maintenance

5.5.1 Origins of Truth Maintenance

Truth maintenance systems (TMS) were developed to support the use of non­

monotonic reasoning in problem solving. This type of reasoning may be appropriate

when knowledge of a problem in incompatible and default assumptions must be made

158

S. Dealing with uncertainty - Theories and techniques

to enable a solution to be found, when the universe of discourse is changing or when

temporary assumptions are used to test a possible solution (Frost, 1986). The truth

maintenance concept is based on the use of belief values which, unlike truth values,

are subject to alteration and revision in the light of new evidence. TMS are designed

to be used by deductive systems to maintain logical relations among beliefs, to modify

the belief structure when premises are changed and to use the logical relations to trace

the source of contradictions or failures, leading to more efficient backtracking

(McAllester, 1978).

The development of TMS stemmed from Stallman and Sussman's work, (Stallman &

Sussman, 1977) which aimed at improving the behaviour of chronological

backtracking in combinatorial search problems such as electronic circuit analysis by

recording dependencies as the search progressed - dependency directed backtracking

(DDB), (Shanahan & Southwick, 1989).

There are two types of TMS. The earlier type, justification based systems (JTMS)

such as those produced by Doyle (Doyle, 1979) and McAllester (McAllester, 1978),

store as fundamental data the immediate justifications for inferences, maintaining a

single consistent hypothesis and using DDB to restore consistency by rejecting an

assumption when contradictions are discovered. These systems have several

limitations:

• Only one solution can be considered at a time, alternative solutions cannot be

compared

• The current choice set can only be changed by introducing a contradiction,

which cannot be removed later so switching states is difficult

• Their machinery is cumbersome

• If some but not all of the inferences based on an assumption set have been

derived when a contradiction is found, the work may have to be repeated later

if the complete set of inferences is required (de Kleer, 1984).

The later assumption-based systems (ATMS), which were developed by de Kleer in

an attempt to solve these problems, record the fundamental assumptions on which

159

S. Dealing with uncertainty - Theories and techniques

inferences rest, maintaining multiple self contained but mutually inconsistent sets of

hypotheses or contexts (Shanahan & Southwick, 1989). However, they too have

limitations:

o If only one solution is required they are hopelessly inefficient

o They may search regions of the solution space, which DDB would avoid

o Debugging is difficult; intermediate states represent pieces of many solutions,

and it can be hard to tell which is causing problems (de Kleer & Williarns,

1986).

The development of a combined system which was intended to have the advantages of

both types and the disadvantages of neither, using DDB to provide the search strategy

with a coarse focus and to handle control assumptions, and an ATMS to provide an

additional level of discrimination and to handle non-control assumptions, is described

in (de Kleer & Williarns, 1986). ATMS has been implemented with some form of

rating system to ensure that the most promising solutions are investigated first (Hinde

et al., 1989; Pro van, 1990).

5.5.2 Justification-Based Truth Maintenance Systems

The JTMS developed by Doyle is generally considered to be the first true TMS. It

operates by keeping track of which statements, assumptions and hypotheses are

currently believed 'IN' and which are not currently believed 'OUT' (Doyle, 1979).

Doyle's JTMS employs two data structures: nodes, which represent beliefs and

justifications, which represent reasons for beliefs. Each node has one or more

justifications associated with it. A node is IN if and only if at least one of its

justifications is valid. There are two different types of justifications, support-list

justification and conditional-proof justification. Support list justifications have two

part: an in-list containing nodes used in the derivation of the belief, all of which must

be IN for the justification to be valid, and an out-list in which all the nodes must be

OUT for validity. The out-list is used to allow assumptions to be retracted. If the out­

list of an assumption A contains the node notA, the assumption will be retracted

automatically if it leads to a contradiction (Norman, 1987). Conditional-proof

160

5. Dealing with uncertainty - Theories and techniques

justifications are used when the status of the node depends on the validity of a

hypothetical argument; they have three parts, a consequent, an in-list and an out·list,

and are valid if the consequence is IN whenever each node in the in-list is IN and each

node in the out-list is OUT.

The JTMS maintains a single consistent context (the current set of IN models) by

using DDB to restore consistency when a contradiction arises. The nodes which

contribute to the contradiction are found by tracing through the dependency structure,

one of them is chosen as the culprit and rejected, and all justifications which depend

on this node are checked for validity (Shanahan & Southwick, 1989).

McAllester developed a simplified JTMS. His system allows propositions to have

one of three truth values, true, false or unknown, and represents all logical relations

between propositions as disjunctive clauses; this representation makes no distinction

between antecedents and consequents, which simplifies the backtracking process

(McAllester, 1978).

5.5.3 Assumption-Based Truth Maintenance Systems

The ATMS described in (de K1eer, 1986a, 1986b, 1986c) was designed to allow a

problem database to contain unresolved inconsistencies, so that the problem solver

could follow more than one search path through the solution space at once and

compare alternative solutions with one another. It was also intended to increase the

ease with which results obtained in one region of the space could be carried over into

other regions, by recording derivations in the most general way possible.

ATMS nodes have a label, supplied by the ATMS, which determines the

environments or contexts in which the datum holds by specifying the minimal sets of

assumptions from which it can be derived. A premise has an empty label, the label of

an assumption specifies a single assumption set which contains only the assumption

itself. Nodes also have justifications supplied by the problem solver giving the parent

nodes from which they were derived.

161

5. Dealing with uncertainty - Theories and techniques

A special node is used to represent falsity. The assumption sets specified for this

node are 'no good' sets - sets from which inconsistencies have been derived. These

sets are used to partition the space into self-consistent environments, and thus to

ensure that inconsistencies are not propagated. When computing a node label, the

system checks the assumption sets and removes any which contain 'no good' sets.

Architecture of the A TMS in the Loughborough System

The TMS works around the concept of a blackboard containing entries (concept of the

blackboard system and its architecture is described in chapter 6). Entries given to the

blackboard by users as specifications or requirements are in the form of assumptions,

with associated ratings which specify how feasible or desirable the assumptions are

felt to be. When a calculating engine such as the English engine takes a number of

entries and produces a result from it, then this result is called a consequence of those

entries, and the list of assumptions that led to the consequence is called the

assumption base. Assumptions are initial defeasible entries, whereas initial

indefeasible entries are facts. In the Loughborough system an engine can derive a

consequence in two key ways; necessarily and possibly. A necessary assumption is

one where the assumption base could only lead to that result through processing by

the expert, and a possible assumption is one where more than one outcome is possible

even if there is only one outcome delivered by the expert. The engine must also

specify how feasible any outcome of a possible result is, to give it a ranking compared

to other possible consequences of that assumption base. All the truth maintained

agents in our system are Assumption Based in that each entry can stand without

reference to its derivation path, only the assumptions which underpin its validity are

needed (Hinde & Bray, 1992).

In order to understand how natural language can be interpreted using ATMS, let us

describe the internal representation used in the ATMS. This should give a feel for the

amount of data that may need to be stored when many assumptions are used to solve a

large problem. The format of the entries is:

(tag, entry, assumption bases)

162

S. Dealing with uncertainty - Theories and techniques

tag is a unique tag to distinguish entries from one another and to provide a reference

for building assumption bases.

entry is the actual entry.

assumption bases are the lists of assumptions which underpin the entry, or justify it.

The statement:

{[J, user, possible, [a= l]l would result in the following entry being made:

(1, a = 1, [[1]]) This is a self justifying assumption. The reading of this is that

"a=I" is true if entry 1 is true, i.e. if "a=l" is true. It stands on its own but may be

contradicted.

(2, b = 0, [[2]]) This is also self justifying.

(3, c = -4, [[3]])

(4, a*x2 + b*x + c = 0, [[4]])

These may be presented to an algebraic equation solver which could deliver, as

possible answers, the two entries "x=2" & "x=-2".

(5, x = -2, [[1, 2, 3, 4, 5]]) This is a partially self justifying assumption, i.e. a

possible derivation of entries 1-4.

(6, x = 2, [[I, 2, 3, 4, 6]]) As is this.

(7, x > 0, [[7]]) This eliminates the entry "x = -2" from any environment

containing assumption 7.

(0, false, ([[0],[1,2,3,4,5,6],[1,2,3,4,5,7]]) This is the entry that declares 5 and 6 are

inconsistent in the context of 1,2,3 & 4 etc. If we were able to state that 5 & 6 are

163

5. Dealing with uncertainty - Theories and techniques

inconsistent in all possible worlds then the assumption base of our false entry would

be [[0],[5,6],[1,2,3,4,5,7]]. This results in shorter assumption bases.

5.6 Conclusion

In this chapter we have examined some important uncertainty handling theories,

ranging from probability theory to mass assignment to fuzzy set theory. It is important

to remember that these theories do not stand independently from each other, rather

they are all linked by the fundamental mathematics underneath.

It is important to see that fuzzy logic brings a linguistic perspective to human

computer interaction methodologies, and natural language plays an important part in

our managing uncertainty. Finally a note to mention the importance of fuzzy numbers

in particular the use of fuzzy hedges as an important component of this thesis for

processing natural language descriptions of faces. We have also looked at TMS

especially ATMS which forms an integral part of the Natural Language Interface in

interpreting natural language description of faces.

164

6. Interpreting natural language and translating linguistic data

Chapter 6

Interpreting Natural Language and Translating Linguistic Data.

Abstract

This chapter looks at Natural Language Processing (NLP) within the domain of AI. We

start with a brief description of natural languages, the various areas of study connected

with natural language processing. We move on to inspect the anatomy of language, its

orthographic structure, grammar and components of grammar. We have discussed

computational tools such as Parsing, Prolog, Echo and the Truth Maintained Blackboard

systems to interpret natural language descriptions of faces. We finally describe how the

interpreted linguistic data is translated to numeric parameters.

Keywords: Natural Language Processing, Universal Grammar, Generative Grammar,

Syntax, Semantic, Morphology, Phonology, Parsing, PROLOG, Echo, Blackboard and

TMS.

6.1 Introduction

Writing a letter, reading a newspaper, having a conversation - the every-day written and

spoken language of such activities is called natural language to distinguish it from

artificial, made-up languages like programming languages. For over 30 years, researchers

have studied how computers can be programmed to understand and generate written text

and spoken utterances. The study area has been called natural language processing (NLP)

or computational linguistics, though these terms tend to be associated with text

processing rather than speech processing.

These days, NLP research is conducted at many universities and in the research

laboratories of large companies, and there is a growing number of commercial NLP

165

6. Interpreting natural language and translating linguistic data

products (Obermeier, 1989) such as machine translation systems (see Hovy, 1993) and

natural language interfaces (Sijtsma & Zweekhorst, 1993).

The study of natural language is frequently decomposed into a number of smaller,

partially overlapping study areas: phonology, morphology, syntax, semantics and

pragmatics. The scope of each area is described below, together with problems that each

area presents for NLP. The descriptions of areas are adapted from (Crystal 1992).

Language is a medium: its auditory form is spoken language, its visual form is written

language. This view of language is briefly described below.

• Phonology

• Morphology

• Syntax

• Semantics

• Pragmatics

• Language as a Medium

6.1.1 Phonology

Phonology is the study of the sound structure of language. Sounds are organized into a

system of contrasts, and analyzed in terms of phonemes, distinctive features, or other

such phonological units according to the theory used. A phoneme is the minimal unit of

the sound system of a language. Some languages have as few as 15; others have as many

as 80. No two languages have the same system of phonemes. Distinctive features are used

either to define phonemes or as an alternative to the notion of phoneme. Example pairs

include +nasal and -nasal, and +voice (voiced) and -voice (voiceless). Nasal sounds are

produced when there is complete closure in the mouth and all the air thus escapes through

the nose, as in the 'n-' sound of 'nasal'. Voiced sounds are produced while the vocal cords

are vibrating, e.g., the 'b-' sound in 'bin'; voiceless or unvoiced sounds are produced

when there is no such vibration, as in the 'p-' sound of 'pin'.

166

6. Interpreting natural language and translating linguistic data

Problems include the ratio of noise to data, the varying speech rates within and across

individuals, and co-articulation. Co-articulation takes place when the articulation for two

or more sounds takes place in the vocal tract, e.g., the 'sh-' in 'shoe' is normally

pronounced with lip-rounding in anticipation of the '-00' sound.

6.1.2 Morphology

Morphology is the study of the structure of words, especially through use of morphemes.

Morphemes are commonly divided into free forms (morphemes which can occur as

separate words) and bound forms (morphemes which cannot occur in this way, e.g.,

'unselfish' consists of three morphemes, 'self which is a free form, and 'un-' and '-ish'

which are bound forms.

A major morphological problem is ambiguity: the suffix's', for example, can indicate the

plural of a noun or the present tense of a verb. Another problem is exceptions, for

example, the plural of the noun 'foot' is 'feet' (not 'foots').

6.1.3 Syntax

Syntax is the study of how words are combined to form sentences in a language.

Syntactic structures (or constructions) are analyzed into sequences of syntactic categories

(or classes). The sequences are established on the basis of syntactic relationships that

linguistic items have with each other in a construction, e.g., "tall people" is generally

analyzed into a noun phrase consisting of an adjective "tall" and a noun "people".

Linguists have designed grammars for many languages. A grammar is a system of syntax

and inflections for a language. Inflection is the change words undergo when used, for

example, in the plural ("mouse" and "mice") or in the past tense ("fly" and "flew").

Parsing refers to the assignment of syntactic categories and structures in single sentences.

Parsers often but not always use grammars. The following are some major problems for

syntactic processing.

167

6. Interpreting natural language and translating linguistic data

Structural ambiguity occurs when a sentence construction can be assigned several

possible structures or combinations of elements, e.g. in "Jane saw the man in the park

with the telescope" the prepositional phrase "with the telescope" could be attached to

either "Jane saw" or "the man in the park."

Unbounded or long distance dependency is a relationship between two syntactic

components of a sentence in which the related constituents are not required to be within

some bounded distance of each other. The dependency, which may extend over one or

more clause boundaries, usually involves an empty noun phrase constituent called a

"trace" which is co-indexed with another noun phrase appearing earlier, as in "Show me

the report that Nick wanted Dan to write" where, although "report" is the object of the

verb "write", there is no explicit object following the verb.

6.1.4 Semantics

Semantics is the study of meaning in language. It contains a number of branches

including philosophical semantics and linguistic semantics, which have both been studied

in NLP. Philosophical semantics studies relations between linguistic expressions (like

sentences) and the entities in the world to which they refer, and the conditions under

which such expressions can be said to be true or false. Analysis is performed with logical

systems. Linguistic semantics studies the semantic properties of natural languages using a

variety of linguistic constructs. Among the phenomena studied within semantics are the

following.

Lexical ambiguity refers to a semantic property of words that they can have multiple

senses or meanings, e.g., the word "crook" has different senses: it can mean a thief, a

bend, or a shepherd's stick. Resolution of lexical ambiguity is required for understanding

sentences that contain ambiguous words like "crook", e.g., in ''The crook stole a diamond

ring," the thief sense is meant.

168

6. Interpreting natural language and translating linguistic data

Similarity or paraphrase refers to a property of sentences that different ones can have the

same (or very similar) meanings, e.g.,

"Give me the Western region financial performance for July,"

"Give me the July financial performance for the Western region,"

"Give me the financial performance for July for the Western region" and

"Give me the July Western region financial performance" (McFetridge, 1991).

The problem is recognizing when two sentence are paraphrases.

Reference is a relationship of identity between linguistic units, e.g., between a pronoun

and a noun or noun phrase. Pronouns are of various kinds, including definite pronouns

like 'it' and 'them', personal pronouns such as '1' and 'you', reflexive pronouns like

'myself' and 'yourself', and relative pronouns such as 'who', 'whom' and 'that'. The

problem is resolving reference, i.e., connecting a pronoun with the noun or noun phrase

to which it refers.

Reference can occur across sentence boundaries, and can be backwards or forwards.

Anaphora (or back-reference) is reference to an earlier part of a discourse. Cataphora (or

forward reference) is reference to a later part of the discourse. The difference can be seen

in a two different two-sentence discourses where the first sentence each time is "John is

at home." There is an anaphoric reference to John when the second sentence is "If he is

not drunk, Peter will be surprised" versus a cataphoric reference to Peter when the second

sentence is "If he is not drunk, Peter will take me there" (Strzalkowski & Cercone, 1986).

Traditional syntactic solutions have been able to treat only simple classes of anaphora

and only occasional inter-sentential references.

169

6. Interpreting natural language and translating linguistic data

6.1.5 Pragmatics

Pragmatics is the study of the communicative use of language, particularly the structure

of conversations and dialogue: how participants take turns in conversations, how speakers

use knowledge of communication (e.g., about the context in which language is used), and

the effects their use of language has on other participants. Pragmatic problems include the

following.

Presupposition is the information assumed by a person when using language and which is

as the centre of a person's communicative interest, e.g., "There is unrest in Macedonia"

presupposes the existence of (a country called) Macedonia.

Conversational repair refers to the attempt made by participants in a conversation to

make good a real or imagined deficiency in the interaction (for example, a mishearing or

misunderstanding)" (Crystal, 1992). A major problem here is working out which

participant is wrong or mistaken and hence should have their conversation (and

understanding) repaired.

Indirect meaning refers to the communicative purpose of a piece of language which does

not directly reflect its surface form. The true communicative purpose is understood from

examining the context in which the piece of language was used, for example, "It's hot in

here" looks like an assertion, but in the right context - spoken to someone standing by a

window - might be a request to open the window. Likewise, "Can you pass the salt?"

looks like a question, but can also be a request to pass the salt if said when sitting at a

table and spoken to someone closer to the salt than you are!.

6.1.6 Language as a Medium

The NLP community has responded to the growing interest in multimedia systems by

investigating how to integrate natural language (in typed, handwritten and spoken forms)

with other kinds of multimedia input such as the use of graphics, input devices like

170

6. Interpreting natural language and translating linguistic data

menus and data gloves. Similarly, there have been studies of generating coordinated

multimedia output in which natural language is mixed with diagrams and so forth.

6.2 Anatomy of Language

"A standard assumption is that a language consists of two components: a lexicon and a

computational system. The lexicon specifies the items that enter into the computational

system, with their idiosyncratic properties. The computational system uses these elements

to generate derivations and Structural Descriptions, SD' s. The derivation of a particular

linguistic expression, then, involves a choice of items from the lexicon and a computation

that constructs the pair of interface representations." (Chomsky, 1992)

A language can be seen as an infinitely large set of sentences. Each sentence is

characterised as a well-fonned string over a finite vocabulary of symbols. For sake of

simplicity, these symbols can be regarded as words, though this view is not quite correct.

Well-fonned means that the form of the string - i.e. the way the symbols are put together

- does not violate certain criteria specified in rules of fonnation which are contained in a

grammar.

The notion of formal grammar can be described here but in a form which is very rigidly

defined. A formal grammar G is a quadruple <VN , VT , P, S>, where:

VT is a finite set of tenninal symbols. If the grammar generates human language these

symbols coincide more or less with the words of the language.

V N is a finite set of non-tenninal symbols. Sometimes they are also referred to as

variables (Hopcroft and Ullman, 1969). In linguistic applications they correspond to

categories. It is their presence in the rules that allows a grammar to express general

wellformedness conditions.

P is a finite set of rules called productions. They are of the form 'a --+ W (a rewrites as

~) where both a and ~ stand for strings of elements of VN and VT •

171

6. Interpreting natural language and translating linguistic data

S is the starting symbol or root. S is an element of V N and has to occur at least once on

the left hand side of the rewrite arrow in the productions (in the place of u)

A grammar G generates a language L(G). There exist several different types of grammar,

depending on the form of the strings u and 13 in the rules (i.e. exactly what elements of

V N and VT occur in u and 13). The type of G determines the type of L(G): grammars of a

certain type generate languages of a corresponding type.

The term grammar is systematically ambiguous between two idea, first is an internalised

grammar and the other is linguist's grammar.

An internalised grammar is the internalised knowledge of a native speaker of English that

enables him or her to make judgements about language data such as make grammaticality

judgements i.e. differentiate a grammatical sentence (the man depends on his car) from

an ungrammatical sentence (the man depend his car). Recognise ambiguous utterances

and identify the degree of ambiguity and recognise sentences that are synonymous or

partial paraphrases. John and Bill are identical is synonymous with John is identical to

Bill. If one sentence is true, the other must be true; and if either sentence is false, the

other must be false. The sentence John knows all the irregular past-tense forms of all

French verbs is a partial paraphrase of John knows all the forms of all French verbs. If

the latter is true, the former must be true. But if the former is true, the latter mayor may

not be true.

The linguist's grammar, called a generative grammar, is the logical or computational

model constructed by a linguist using computers, programs, logical notations, and other

descriptive tools.

Grammar can be segmented into parts, called levels. There are 5 basic levels of linguistic

structure (Dougherty R.C., 1994).

172

6. Interpreting natural language and translating linguistic data

• Discourse Level: A discourse is sentences or utterances exchanged between two

persons (e.g. question/answer pairs).

• Paragraph Level: A paragraph is sentences joined in a sequence with sentence

separators (period, question, or exclamation marks) between them. Adverbs

(therefore, hence, thus, nevertheless ...) can occur to show the logical

connectedness among the sentences.

• Sentence Level: A simple sentence is a full proposition consisting of a subject and

a predicate. A complex sentence consists of two or more simple sentences joined

by a coordinating conjunction (and, but) or a subordinating conjunction

(although, after, that ...).

• Phrase Level: A phrase consists of a lexical item (noun, verb, adjective ...) and its

associated modifiers, e.g. the, a ... precede nouns; very, too ... precede adjectives;

will, can ... precede verbs. A phrase is always defined by the type of lexical head:

noun, verb, adverb ...

• Word (lexical and grammatical formative) Level: A word is anything in a

sentence that has white spaces on either side. An orthographic string is a written

series of words. The grammar contains each possible word in its lexicon.

Chomsky's universal grammar (1986a; 1986b) defines the structure of levels, the number

of levels, and interrelations among levels. Factoring, a part of universal grammar, plays

a role in defining the technical terminology used to represent information at each level

and in relating the technical terminology used at one level to that used at another.

Parsing, a derivational mechanism of a grammar, relates to the processes by which a

particular sequence of orthographic symbols (or words) in English is assigned a specific

structure at each level. A question in universal grammar (factoring) is: What is a noun

phrase? The answer would be to define noun phrase in terms of the types of words that

compose it: determiners (the, a), nouns (girl, thought, adjectives (tall, red). A question in

English grammar (parsing) is: what is the tall grass? The parser might answer that the tall

grass is a noun phrase with the structure determiner + adjective + noun.

173

6. Interpreting natural language and translating linguistic data

Figures 6.1 to 6.4 demonstrate how the levels of grammar define the structure of

language for the sentences "The cat eats the mouse", "did the cat eat the mouse", "the

mouse was eaten by the caf', and "was the mouse eaten by the cat".

s

/\
det n

v np

A
det n

I I
the cat eats the mouse

Sentence level
Lowest element of sentence
level is highest element of
phrase level

Phrase level
Lowest elements of
phrase level are highest
elements of word level

Word (lexical)
level

Figure 6.1: Phrase marker for sentence "the cat eats the mouse"

174

6. Interpreting natural language and translating linguistic data

aux

did

det

the

s

det n

the cat

A
v np

A
det n

I I
eat the mouse

Sentence level

Phrase level

Word J-- (lexical) level

Figure 6.2: Phrase marker for sentence "did the cat eat the mouse"

s

n aux

mouse was

v

eaten by

Sentence level

Phrase level

Word
~ (lexical) level

Figure 6.3: Phrase marker for sentence "the mouse was eaten by the cat"

175

6. Interpreting natural language and translating linguistic data

s

aux

det n

p np

deA
I I

was the mouse eaten by the cat

Sentence level

Phrase level

Word
(lexical) level

Figure 6.4: Phrase marker for sentence "was the mouse eaten by the cat"

6.3 Parsing

Consider the sentence "the cat eats the mouse", and its underlying structure:

(S (NP (Det The)(N cat))(vp (v eats)(NP (Det the)(N mouse))))

also represented as a phrase marker graph in Figure 6.1. Although generative grammar

may generates both a sentences and its underlying structure as shown in Figures 6.1 to

6.4, the grammar alone however does not offer any indication on how the link between

the sentence and the structure gets established. In order to decide which structure ought to

underlie a given sentence such as "the cat eats the mouse" a procedure is needed that will

not just recognise the sentence but also discover how it is built. The execution of this

procedure is called parsing and the thing that executes it is called a parser (King M.,

1983).

176

6. Interpreting natural language and translating linguistic data

So, parsers essentially do two things. On the one hand, when presented with a string,

they have to recognise it as a sentence of the language they can parse. In this respect,

parsers have built in recognisers. On the other have to assign to that sentence a structure

which they have to output. This implies that parsers must reply on linguistic information

as contained in a grammar with at least strong generative capacity, whereas recognisers,

because they do not output structure, can be built referring to grammars with weak

generative capacity.

A parser usually proceeds by taking a string of symbols (the input sentence) and applying

a rule to it, which mostly comes down to rewriting a bit of the string. For example, the

string 'ADC' by applying the rule 'B -> D' (rewrite 'B' as 'D') and 'ADC' into 'AdC'

according to a rule 'D -> d'. The strings 'ABC', 'ADC' and 'AdC' are called

derivations. The string' ADC' is directly derived from 'ABC' since it is the result of the

Application of a single rule to 'ABC'. 'AdC' is indirectly derived from 'ABC' as more

than one rule has to be executed to link up both strings. At each step the parser can output

some structure. A sentence has been parsed when we know all the structures that can be

assigned to it according to the set of rules available.

6.3.1 Parsing Strategies

Let us assume that a parser works by referring to rules which reflect linguistic

knOWledge. Dissociated from a parser that uses them, such a set of rules can potentially

be executed in many different orders when assigning a structure to a sentence. Each

different order corresponds to a different parsing strategy and parsers are classified

according to the strategy to which they adhere.

Two criteria for looking at parsing strategies are considered standard and occur

frequently in the literature (Roeck A, 1983; Dougherty R, 1994). The first one focuses on

the linguistic structure the parser outputs for the string it parses and takes into

consideration whether that structure gets built starting from the input string (data) - in

this case the parser works bottom-up - or from the starting symbol (the symbol

corresponding to the axiom of the grammar and which always has to be present as the

177

6. Interpreting natural language and translating linguistic data

root of the tree in any linguistic structure denoted by the symbol'S') - in which case the

parser works top·down.

The other criterion for classifying parsing strategies can be better explained by means of

an example. Consider a set of rewrite instructions:

la. S --- AB

b. S --- CD

c. A --- a

d. B --- b

e. C---c

f. d---D

For a given set of rules, it is possible to construct a scheme of all possible derivations

those rules can yield. Considering that the beginning symbol, 'S', is present two of the

rules listed under I can be executed: rule la resulting in the derivation 'AB' and rule lb

yielding 'CD'. If rule la gets executed, a similar situation arises. To the string 'AB' rules

lc and Id apply, respectively returning the strings 'aB' and 'Ab'; etc. Following this

reasoning, all possible sequence of derivations that a given set of rewrite instructions

allows can be discovered. The result is usually represented in the form of a tree as in

Figure 6.5.

178

6. Interpreting natural language and translating linguistic data

s

AB CD

aB Ab cD Cd

ab ab cd cd

Figure 6.5 Graph showing the sequence of derivations possible from rule in 1

The tree in Figure 6.5 shows all possible sequences of derivations that can result from the

rules in 1. each node in the tree represents a point in the procedure where a choice

presents itself in terms of different rules potentially to be executed on the same sentential

form. The leaves of the tree represent the sentential forms to which no further rules apply.

In this case their content corresponds to those strings which can be parsed according to

the rewrite instructions in 1 ('ab' and 'cd').

The tree shown if Figure 6.5 is not the same that linguists use to represent linguistic

structure, and which expresses how the parts of a sentence fit together such as those in

Figure 6.1 to Figure 6.4. The tree in Figure 6.5 gives all possible sequences of

derivations by which a linguistic structure can be constructed. The classification of

parsing strategies on the axis 'depth-first' versus 'breadth-first' is based on this kind of

tree. The sections 6.3.1.a and 6.3.1.b give further details about these two basic criteria

for characterising parsers (top-down versus bottom-up and depth-first versus breadth­

first).

179

6. Interpreting natural language and translating linguistic data

6.3.l.a Top-down versus Bottom-up Parsing

The following examples will explain how a very simple and frugal top-down and bottom­

up parser assigns a structure to sentence 2

2. The cat eats the mouse

provided both have access to the same set of rewrite instructions listed in 3:

3a. S-NPVP

b. Np·ArtN

c. Vp·YNP

d. VP·Y

e. V - eats

f. N -cat

g. N -mouse

h. Det - the

Top-down parsing. Top-down parsers always start with the starting symbol ('S'), find

rules that apply to it and expand it. In this example the only rule available to do so is 13a.

The result of the execution of 3a is the structure in 4:

4.
S

NP VP

Two new nodes appeared. The parser first looks whether any of these two nodes is a

tenninal - i.e. whether they contains symbols that would belong to VT in the

corresponding grammar. If so, those symbols will be checked against the string that is

being parsed (sentence 2). If not, as is the case here, the parser further expands the first

180

6. Interpreting natural language and translating linguistic data

non-terminal node - in the example the 'NP' node. Rule 3b applies and is executed,

yielding the structure 5

5.
s

A
NP VP

Det N

Again, none of the newly constructed nodes is a terminal, and again the left-most non­

terminal gets expanded. This way of proceeding is repeated and after the application of

rules 3h, 3f, 3c, 3e, 3b, 3h and 3g the string to be parsed is actually met. No further rules

apply and the parse, outputting the structure shown in Figure 6.1, succeeds.

But things do not always turn out to be as straightforward as that. Take some steps back

and imagine the parser has applied, to begin from the starting symbol, rules 3a, 3b and 3h

yielding the structure

6.
s

NP VP

Det N

181

6. Interpreting natural language and translating linguistic data

The next non-terminal to be expanded is the node labelled 'N'. Before it was happily

assumed rule 3f applies next, but there is no reason why rule 3g should not be executed

instead. The pars er then builds 7.

7

s

A
NP VP

Det N

mouse

In that case, the parser wiII find out when checking the newly found terminal against the

data that 'mouse' does not correspond to the symbol it finds in the appropriate position in

the sentence. It discovers its mistake and now has to do two things. First, it has to

remember that 3g was not the right rule to apply in the previous state (illustrated in 6);

then it has to re-establish the situation occurring before the application of 3g and try and

find another rule to rewrite 'N'. The jargon refers to this move backwards as backtracking

or back-up. The necessity for backtracking follows from the fact that, during the

execution of the rewrite rules, a situation arose in which more than one option was

available as to what to do next. This is the simplest case of non-determinism in a

procedure. The set of rewrite rules in 3 is non-deterministic because whenever either of

the non-terminals 'VP' or 'N' are encountered in a derivation more than one rule presents

itself as a candidate for execution (for 'VP' 3c and 3d, for 'N' 3f and 3g), each resulting in

a different structure. Top-down parsers are sometimes called 'hypothesis driven' because

they explore a particular derivation in the belief that it is the right one until they meet

failure or success.

182

6. lntetpreting natural language and translating linguistic data

Bottom-up parsing. As opposed to top-down parsers, a bottom- up parser starts to work

on the input string itself and reduces it to the root'S'. It takes a sentence, replaces the

words (terminal symbols) by their categories, and strings of categories by other

categories. In order to do so it must took at the symbols on the right hand side of the

rewrite rules and reduce them to the category written on the left hand side. Again,

sentence 2 will get a structure assigned to it according to the grammar expressed in 3a-h,

for instance by first applying 3g, yielding

8.

N

The cat eats the mouse

No rule applies to an 'N' node, either alone or combined with a string of terminals, so the

parser looks at the next terminal, 'the', and reduces it according to rule 3h resulting in

9.

Det N

I I
The cat eats the mouse

At this point there is a rule available that combines the categories 'Art' and 'N' reducing

them to an 'NP' (rule 3b), as illustrated in 10.

183

6. Interpreting natural language and translating linguistic data

10.

NP

/\
Det N

The cat eats the mouse

Then the terminal 'eats' is used by rule 3e, after which 3c, 3f, 3h, 3b and 3a are executed.

With this strategy also, there is a need for backtracking. Imagine the intermediate

structure after the execution of rule 3e in the above rule sequence, as pictured in 11:

11.

NP

/\
v Det N

The cat eats the mouse

'V' can be reduced to 'VP' by rule 3d, thus leaving out the 'NP' and resulting, after the

application of 3f, 3h, 3b and 3a in

184

6. Interpreting natural language and translating linguistic data

12.

S

NP VP

!\
Det N V Det N

The cat eats the mouse

Structure 12 is illegal because, in spite of the fact that the root of the tree has been

reached, there is a part of the structure that hangs loose (the rightmost 'NP'). In this case

too the parser has to backtrack and remake a choice at an earlier stage.

It may seem odd that the parser just described parses a sentence starting from the right

and working its way to the front of the string. Clearly language does not work like that,

and this bottom-up parser can be argued to be psychologically not accurate on those

grounds. Still, from the point of view of parsing and in terms of results obtained, a parser

that starts from the left is equivalent to one that starts from the right if both refer to the

same grammar, even if they follow different sequences of derivations. It may be useful to

know that this right-to-left opposition has nothing to do with what is known in the

literature as a right or left parse. A right parse is always the result of a bottom-up parser,

which reduces sentential forms by referring to symbols found on the right hand side of

rules. A top-down parser executes a left parse, deriving sentential forms by expanding the

symbol found on the left hand side of rules.

Similarly, top-down and bottom-up parsers which refer to the same grammar are also

equivalent because they assign the same structures to the same sentences according to the

185

6. Interpreting natural language and translating linguistic data

same linguistic information - as shown by the examples. Their differences, besides the

fact that they follow different sequences of derivations, have to be expressed in terms of

memory needed and computing time involved.

6.3.1.b Depth-first versus Breadth-first Parsing

If we look at the rewrite instructions in 1 and the corresponding derivation tree in figure

6.5. A similar tree can be drawn for all sets of rewrite instructions, picturing all possible

sentential forms they allow to be constructed. Such a tree can be approached in two

different ways: one concentrating on its vertical and the other on its horizontal aspect.

These two distinct viewpoints result in a criterion for classifying parsing strategies.

Depth-first parsing. Let us consider the vertical aspect of the derivation tree in Figure 6.5

and pick out one single vertical path linking the root with the sentence to be parsed. E.g.

for sentence 'ab', contained in a leaf node, one could conceivably pick the path as in 13.

13.

S

AB

Ab

ab

This path, like any other vertical path in the tree, gives a sequence of sentential forms.

The word sequence has some importance here. It indicates that each sentential form is the

result of the application of one single rule to the result of the execution of another single

rule or to the root. If to a particular derivation several rules could potentially apply, only

one rewriting possibility is retained. The other options are expressed in other paths of the

186

6. Interpreting natural language and translating linguistic data

tree and can not be traced along a single vertical path. Any parser that follows a sequence

of sentential forms as can be represented on a single vertical path in a derivation tree is

called a depth-first parser. Both the top-down and the bottom- up parser described in

6.3.l.a belong to this type, the first starting the derivation at the top of the derivation tree,

the other at the bottom.

Figure 6.5 shows clearly that more than one path may link a same sentence with the

starting symbol'S' (for each sentence - 'ab' and 'cd' - there are two). Since a depth first

parser explores only one path at the time it is possible that the path chosen from the

beginning is not the right one. In those cases it becomes necessary that the parser be able

to recover from its error by undoing the mistake (back-up: the parsers described in 6.3.l.a

illustrated this). For this reason depth- first parsers are usually implemented with

backtracking facilities.

Breadth-first parsing. But one can also look at a derivation tree while stressing its

horizontal dimension and taking into consideration all nodes at the same level in the tree.

For instance, the root of the derivation tree consists of a node bearing the sentential form

'S'. Two daughter nodes hang off this node, containing, respectively, the sentential forms

'AB' and 'CD', each being the result of the application of alternative rules to'S'. A parser

which, in such a case, indeed does build both alternative derivations simultaneously and,

in the next step, again applies all possible rules to both results, is called a breadth-first

parser.

Breadth first parsers apply all applicable rules to all sentential forms constructed; they

explore the horizontal dimension of the derivation tree, exhausting all the choices which

arise at the same time and taking them to their conclusion of either failure or success.

This way of proceeding makes backtracking in case of failure superfluous: even if a

derivation sequence resulting from a bad choice dies out, all successful alternatives being

developed simultaneously will survive.

187

6. Interpreting natural language and translating linguistic data

6.4 Interpreting Natural Language Sentences

There are numerous different ways of constructing a natural language interpretation

system. However. two particular techniques for analysing sentences have proved to be

popular. One of these involves the use of Augmented Transition Networks (AT'Ns).

while the other is based on an algorithm known as an Active Chart Parser (ACP).

ATNs were introduced by Woods (1970). ATNs are based on a grammatical description

of the target language in the form of a series of networks. Traversal of the appropriate

networks is the central process involved in parsing sentences using an ATN. The results

of the parse are stored in a series of special- purpose registers.

ACPs derive from the work of Kay (1967). Earley (1970) and Kaplan (1973). They are so

called because they make use of a graph-like data structure known as a chart to build up

the analysis of a sentence. They operate in association with a grammar in the form of a

context-free production system. and offer a particularly efficient means of natural

language parsing. the various components of an active chart parser are as follows:

• An initialisation of the chart

• A "fundamental rule" that combines an active edge with a passive edge.

• A control strategy (either top-down or bottom-up).

• A search strategy (either breadth-first or depth-first)

As this description indicates. active chart parsers can be of different types e.g. bottom-up

and depth-first. top-down and breadth first etc (see section 6.3).

The technique used in this thesis to interpret natural language description of faces

involved extending the Echo project. The Echo Project initiated in 1987 (Hinde. Lawson

& Connolly. 1989; Hinde & Bray. 1992) was developed by Dr Chris Hinde using

PROLOG to translate natural language (English) phrases into Structured Query Language

(SQL). The system was originally designed to interface with a database such as Ingres.

188

6. Interpreting natural language and translating linguistic data

However modifications were made to the program to cater for the demands of this thesis.

The natural language processing engine of Echo does not take a simple parsing approach

as many other natural language interfaces (such as 'The Intellect system' on mM and

DEC systems, 'SPOCK' and 'NATURAL LANGUAGE' for oracle databases) for three

important reasons. Firstly parsing based systems are computationally quite heavy, owing

to the combinatorial explosion problem. Secondly they have difficulties with poorly

formed or ungrammatical phrases - which are of course exceedingly common in normal

speech. Thirdly from a review of the development of such systems in the past, and their

capabilities, it was obvious that no single method wilI suffice to quickly and easily

interpret sentences that no human would have any difficulty with, ie. different techniques

must be combined and used as appropriate.

For example consider the following sentences:

I. "Ann took the cat to the vet because she had injured her tail".

2. "The robber fell off the bank".

3. "The dusting of the new cleaner was not very thorough".

Any human can interpret all three without difficulty because of semantic knowledge. A

computer system may find all three ambiguous.

Echo is modeled entirely in PROLOG which is a logic programming language that is

unique among programming languages in that it has, built into the language:

1. A powerful pattern-matching algorithm, called unification,

2. A powerful backtracking search mechanism, and

3. Recursion.

These features are ideally suited for the type of domain-specific tool we are talking about.

PROLOG patterns, called terms, are built from simple components, but can be arbitrarily

189

6. Interpreting natural language and translating linguistic data

complex. It is these that can be used to model the knowledge representation of the

domain.

6.4.1 Echo Architecture

The ECHO system is based around a ranked-bid truth maintained blackboard system

which is unique in its combination of features so as to enable us to incorporate various

techniques (i.e. information sources). There is a precedent for using blackboard systems

in natural language understanding with the Hearsay systems developed at Stanford

University; however the use of a truth maintenance system is novel in this application and

the ranked-bid system is a further development of blackboard architectures.

Knowledge
Source

BLACKBOARD

Entry

Entry

Entry
~ __ -.,.-I--r=-----P"

Knowledge
Source

141------ Entry _----+1

Figure 6.6 Structure of a Blackboard System

Knowledge
Source

Knowledge
Source

Blackboard systems use knowledge sources of various types to solve problems in a

collaborative manner. Each knowledge source examines the blackboard for interesting

entries that it can do something with. There is also a set of "facts" which if true could

allow a rule or knowledge source to "fire". It is also possible to maintain several

interpretations concurrently - for example of ambiguous sentences. A considerable

190

6. Interpreting natural language and translating linguistic data

amount of the work in developing the ECHO system has gone into designing the

Blackboard management system and implementing the system's matching algorithm in a

way to maintain efficiency (Hinde, Lawson & Connolly, 1989).

The normal cycle of activity of the blackboard system is as follows: the system controller

determines which of the knowledge sources are capable of utilising the information

currently held on the blackboard and determines which of the possible operations should

be executed first, and then the selected operation is carried out. This produces changes in

the information on the blackboard, so the controller is reactivated to assess the new

situation and the cycle is repeated. The pre-conditions for each knowledge source, i.e. the

information which they require, must obviously be specified so that the controller can

determine which operations could be performed; some means must also be provided for

assigning an order of priority to the operations, for example assessing the usefulness and

reliability of the potential output (Jones and Millington, 1986).

The knowledge sources may offer many different types of knowledge or information.

Many previous natural language understanding systems have been based on a syntactical

analysis of the sentence followed by a thorough semantic analysis and finally the required

action is formulated via consideration of the pragmatics. It is often the case though that

humans can make a syntactically invalid statement which is clearly understood by the

receiver; the statement "has blue eyes" has no verb and so is syntactically invalid but is

interpretable by almost anyone. In any particular situation the blue colour of the eyes of

an assumed object, in this case an earlier description of a face would be drawn from a

previous context. Syntactic and semantic knowledge is important in determining the

required action, but in the context of a facial description system, nothing is relevant

unless it helps to resolve the required action. We have therefore adopted an approach

primarily based on the content and structure of the sentence to guide the interpretation;

and although the system incorporates an ACP, syntax is used only as and where

necessary to reduce ambiguity.

191

6. Interpreting natural language and translating linguistic data

6.4.2 Knowledge Sources

There are three major knowledge sources currently being used by the NU under the Echo

system:

• Description of a face by user (this includes any edit or amplification entry)

• Lexical Analysis

• Formation of descriptor list

A description of each follows.

User Descriptions Knowledge Source

The Blackboard is empty on start-up and so the users describe subsystem is the only one

capable of being activated as it does not require any other entries to be present. The result

is a new window called 'Describe' activated, from the Echo Menu Interface, where the

user enters the description or loads a pre-defined description which is subsequently

processed. The Blackboard is split into many sections corresponding to the various

knowledge classes. The user description is entered as entry of type "phrase" with an

appropriate assumption number and corresponding consequence number. The entry is a

PROLOG term ofthe form:

phrase, echo (language, entry, target database, assumption bases, rating/mass)

Such as:

1. phrase, echo(english, [the, man, has, a, large, nose, and, squinted, eyes], heads),

[[1]],100 with rating enabled OR

1. phrase, echo(english, [the, man, has, a, large, nose, and, squinted, eyes], heads),

192

6. Interpreting natural language and translating linguistic data

[[1]],«0.0,0.0,1.0» with mass assignment enabled

Lexical Analysis Knowledge Source

The lexical analysis stage associates English words with their conventional lexical

classes. A more complete lexical analysis would allow greater latitude in assuming

domain type for unknown words, although this would be at the expense of some fault

tolerance. It is this knowledge source which contains knowledge about the structure and

meaning of the sentence.

This stage involves inferring the lexicon and grammar of the source language, in this case

English, to firstly identify words in the lexicon and then identify the correct structure of

each phrase provided in the grammar. The result of this phase is a set of entries which

correspond to the interpretations placed on the words in the user description. From the

entry in 1 we obtain entries of the form:

(Inference of Lexical)

language, language(lexicon clause(type of word), [type of word, lexical

variable],[original phrase], lexical(lexicon clause, [type of word], target database),

assumption bases, rating/mass.

OR

(Inference of Lexical and Grammar)

language, language(lexicon clause(type of word), [type of word, lexical

variable],[original phrase], grammar(grammar clause, [grammar structure],

[lexical(lexicon, [type of word])]), target database), assumption bases, rating/mass.

Such as:

2. english, english(definite_article([the]), [the, lex3ar, lex_var, lex_var, lex_var,

lex_var, lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(definite_article, [the]), heads),[(1, 2]],100

193

6. Interpreting natural language and translating linguistic data

3. english, english(noun([man]), [Iex_ var, man, lex_ var, lex_ var, lex3ar, lex_ var,

lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(noun, [man]), heads),[[I, 3]],100

4. english, english(transitive3erb([has]), [Iex3ar, lex_var, has, lex_var, lex_var,

lex_var, lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(transitive3erb, [has]), heads),[[I, 4]],100

5. english, english(indefinite_article([a]), [Iex3ar, lex_ var, lex3ar, a, lex_ var, lex_ var,

lex_ var, lex_ var, lex_ var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(indefinite_article, [a]), heads),[[I, 5]],100

6. english, english(adjective([large]), [lex3ar, lex_var, lex3ar, lex3ar, large, lex3ar,

lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(adjective, [large]), heads),[[I, 6]],100

7. english, english(noun([nose]), [Iex_var, lex_var, lex_var, lex3ar, lex_var, nose,

lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(noun, [nose]), heads),[[I, 7]],100

8. english, english(conjunction([and]), [Iex_ var, lex_ var, lelL var, lex_ var, lex3ar,

lex_var, and, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(conjunction, [and]), heads),[[I, 8]],100

9. english, english(adjective([squinted]), [Iex_ var, lex_ var, lex3ar, lex_ var, Iex_ var,

lex_var, lex_var, squinted, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

lexical(adjective, [squinted]), heads),[[I, 9]],100

10. english, english(noun([eyes]), [lex3ar, lex_var, lex3ar, lex_var, lex_var, lex_var,

lex_var, lex_var, eyes], [the, man, has, a, large, nose, and, squinted, eyes], lexical(noun,

[eyes]), heads),[[I, 10]],100

11. english, english(adjective_phrase([squinted]), [lex3ar, lex_var, lex3ar, lex3ar,

lex_ var, lex_ var, lex_ var, squinted, lex_ var], [the, man, has, a, large, nose, and, squinted,

194

6. Interpreting natural language and translating linguistic data

eyesl, grammar(adjective-phrase, [adjectivel, [lexicaI(adjective, [squinted])]), heads),[[I,

9, 11]],100

12. english, english(adjective_phrase([large]), [lex_var, lex_var, lex_var, lex_var, large,

lex_var, lex_var, lex_var, lex_varl, [the, man, has, a, large, nose, and, squinted, eyesl,

grammar(adjective_phrase, [adjectivel, [lexicaI(adjective, [large])]), heads),[[I, 6,

12]],100

13. english, english(noun_phrase([eyes]), [lex_var, lex_var, lex_var, lex_var, lex_var,

lex_var, lex_var, lex_var, eyesl, [the, man, has, a, large, nose, and, squinted, eyesl,

grammar(noun_phrase, [nounl, [lexicaI(noun, [eyes])]), heads),[[I, 10, 13]],100

14. english, english(noun_phrase([squinted, eyes]), [lex_ var, lex_ var, lex_ var, lex3ar,

lex_ var, lex_ var, lex_ var, squinted, eyesl, [the, man, has, a, large, nose, and, squinted,

eyesl, grammar(noun_phrase, [adjective_phrase,

[grammar(adjective_phrase, [adjectivel, [lexicaI(adjective,

grammar(noun_phrase, [nounl, [lexicaI(noun, [eyes])])]), heads),[[I,

14]],100

noun_phrasel,

[squinted])]),

9, 10, 11, 13,

15. english, english(noun_phrase([nose]), [lex_var, lex_var, lex_var, lex_var, lex3ar,

nose, lex_var, lex_var, lex_varl, [the, man, has, a, large, nose, and, squinted, eyesl,

grammar(noun_phrase, [nounl, [lexicaI(noun, [nose])]), heads),[[I, 7,15]],100

16. english, english(noun_phrase([large, nose]), [lex_var,lex_var,lex_var,lex_var,large,

nose, lex_var, lex_var, lex_varl, [the, man, has, a, large, nose, and, squinted, eyesl,

grammar(noun_phrase, [adjective_phrase, noun_phrasel, [grammar(adjective_phrase,

[adjectivel, [lexicaI(adjective, [large])]), grammar(noun_phrase, [nounl, [lexical(noun,

[nose])])]), heads),[[I, 6, 7,12, IS, 16]],100

17. english, english(noun_phrase([a, large, nose]), [lex_var, lex_var, lex_var, a, large,

nose,lex_var,lex_var,lex_varl, [the, man, has, a,large, nose, and, squinted, eyesl,

195

6. Interpreting natural language and translating linguistic data

18. grammar(noun_phrase, [indefinite_article, noun_phrase], [lexical(indefinite_article,

[a]), grarnmar(noun_phrase, [adjective_phrase, noun_phrase],

[grarnmar(adjective_phrase, [adjective], [lexical(adjective, [large])]),

grarnmar(noun_phrase, [noun], [lexical(noun, [nose])])])]), heads),[[1, 5, 6, 7, 12, 15, 16,

17]],100

19. english, english(verb_phrase([has, a, large, nose]), [lex_var, lex_var, has, a, large,

nose, lex_ var, lex_ var, lex_ var], [the, man, has, a, large, nose, and, squinted, eyes],

grarnmar(verb_phrase, [transitive_verb, noun_phrase], [lexical(transitive_ verb, [has]),

grammar(noun_phrase, [indefinite_article, noun_phrase], [lexical(indefinite_article, [a]),

grammar(noun_phrase, [adjective.jlhrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [lexical(adjective, [large])]), grarnmar(noun_phrase, [noun], [lexical(noun,

[nose])])])])]), heads),[[I, 4, 5, 6, 7,12, 15, 16, 17, 18]],100

20. english, english(noun_phrase([man]), [lex_ var, man, lex3ar, lex_ var, lex_ var,

lex_var, lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

grammar(noun_phrase, [noun], [lexical(noun, [man])]), heads),[[I, 3, 19]],100

21. english, english(sentence([man, has, a, large, nose]), [lex_ var, man, has, a, large,

nose, lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

grammar(sentence, [noun_phrase, verb_phrase], [grammar(noun_phrase, [noun],

[lexical(noun, [man])]), grarnmar(verb_phrase, [transitive_verb, noun_phrase],

[lexical(transitive_verb, [has]), grammar(noun_phrase, [indefinite_article, noun_phrase],

[lexical(indefinite_article, [a]), grarnmar(noun_phrase, [adjective_phrase, noun_phrase],

[grammar(ad jecti ve _phrase, [ad jecti ve], [lexical(adjective, [large])]),

grammar(noun_phrase, [noun], [lexical(noun, [nose])])])])])]), heads),[[I, 3,4,5,6,7,12,

15,16,17,18,19, 20]],100

36, english, english(sentence([the, man, has, a, large, nose, and, squinted, eyes]), [the,

man, has, a, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and, squinted,

eyes], grarnmar(sentence, [noun_phrase, verb_phrase], [grarnmar(noun_phrase,

[definite_article, noun_phrase], [lexical(definite_articIe, [the]), grammar(noun_phrase,

196

6. Interpreting natural language and translating linguistic data

[nounl, [lexical(noun, [man])])]), grammar(verb_phrase, [transitive_verb, noun_phrasel,

[lexical(transitive_verb, [has]), grammar(noun_phrase, [noun_phrase, conjunction,

noun_phrasel, [grammar(noun_phrase, [indefinite_article, noun_phrasel,

[lexical (indefinite_article, [a]), grammar(noun_phrase, [adjective_phrase, noun_phrasel,

[grammar(adjective_phrase, [adjective l, [lexical(adjective, [large DJ),

grarnmar(noun_phrase, [nounl, [lexical(noun, [nose])])])]), lexical(conjunction, [and]),

grammar(noun_phrase, [adjective_phrase, noun_phrasel, [grammar(adjective_phrase,

[adjectivel, [lexical(adjective, [squintedl)]), grammar(noun_phrase, [nounl,

[lexical(noun, [eyes])])])])])]), heads),[[l, 2, 3, 4, 5, 6, 7,8,9, 10, 11, 12, 13, 14, 15, 16,

17,19,21,22,23,36]],100

The above tells us that the system has interpreted the words in the phrase "the man has a

large nose and squinted eyes" and resolved each word to an associated lexical. The

entries 1 to 10 relate to lexical inference only and identify which lexical variable the

word belongs to. Entries 11 - 36 (see Appendix C for unlisted entries 22-35) relate to

grammar and lexical inference and mean that the two knowledge sources were used to

interpret and parse the user described phrase. If the English is fairly tightly written with

no extraneous or unrecognised words then the system is immediate in interpreting the

data. However if extra words are inserted which have little bearing on the actual

description then the system tries to make sense of them, fails and then looks for other

interpretations which ignore the unexplained words

Formation of Descriptor List

This stage groups the interpreted words into a list of object and qualifier lists. These are

PROLOG lists with data items separated by comma within square brackets [l. The result

of this phase picks each word from the user defined description and by comparing the

word with the final interpreted result from the lexical analysis it assigns a tag to the word.

This tag identifies the word as either an 'object' or a 'qualifier'. Objects can be

considered as nouns such as 'man', 'nose', etc. Qualifiers are adjectives, describing the

noun, such as 'african', 'european', 'asian', 'large', 'wide', etc. and adverbs also known

197

6. Interpreting natural language and translating linguistic data

as hedges such as 'very', 'fairly', 'slightly', etc. From the entry in 36 we obtain entries

of the form:

target database, descriptor([original phrase], [[object([noun]), [qualifiers

([adjective],[adverb])]]), [[assumption bases]], rating/mass

Such as:

37, heads, descriptor([the, man, has, a, large, nose, and, squinted, eyes], [[object([man]),

[qualifiers([], [])]], [object([eyes]), [qualifiers([squinted], m]], [object([nose]),

[qualifiers([], m]]]).[[l, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, IS, 19,21,29,30,31,32,

34,37]],100

38, heads, description([[object([man]), [qualifiers([], [])]], [object([eyes]),

[qualifiers([squinted], m]], [object([nose]), [qualifiers([], [])l]]),[[I, 2, 3, 4, 5, 6, 7, 8, 9,

10,11, 12, 13, 14, IS, 19,21,29,30,31,32,34,37]],100

39, heads, descriptor([the, man, has, a, large, nose, and, squinted, eyes], [[object([man]),

[qualifiers([], [])l], [object([eyes]), [qualifiers([squinted], m]], [object([nose]),

[qualifiers([large], [])llD,[[I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, IS, 16, 19, 21, 25,

26,27,35,39]],100

40, heads, descriptor([the, man, has, a, large, nose, and, squinted, eyes], [[object([man]),

[qualifiers([], [])]], [object([eyes]), [qualifiers([squinted], m]], [object([nose]),

[qualifiers([large], m]]]),[[I, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, IS, 16, 17, 19,21,

22,23,36,40], [1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, IS, 16, 19,21,25,26,27,35,

40]],100

The result from this stage is passed to the heads engine which translates this linguistic

data to numeric parameters for the 3D head generator script.

198

6. Interpreting natural language and translating linguistic data

6.5 Translating the Linguistic Data

Technically this phase of the system is conceptually different to the natural language

processing stage. However since the result from the natural language interpretation

directly leads in to the heads engine for translation to numeric parameters it is closely

related to the natural language interface module.

We observed the last set of results from the natural language interpreter being a list of

descriptor of the form:

descriptor([],n object([man]), [qualifiers([] ,[j)]],[object([eyes]),[qualifiers([squinted], [])]],

[object([nose]), [qualifiers([large], [])]]])

The list is broken down by the heads engine into smaller lists of object and qualifiers.

These lists get processed through a series of routines that identify each object and its

associative qualifier and perform various actions ranging from loading the correct

template file to calculating modifiers for each object taking into account hedges that

affect the amount of modification applied to the original template parameters.

In the sentence "the man has a large nose and squinted eyes". The engine will initially

identify man as the parent object and load the correct template file. Currently the

database of templates contains two entries; male template and female template

representing geometry data of the two baseline heads constructed and described in

chapter 4. These files hold the default parameters for the baseline head model. Since the

object 'man' does not have an accompanying qualifier the process of loading the

appropriate modifier parameters does not occur. Example of some acceptable qualifiers

for 'man' could be 'Asian', 'European', 'African', 'Pat', etc. Modifiers are sets of

parameters that can affect the head geometry when applied to the baseline head (see

chapter 4, section 4.8).

The next stage involves processing the next object - qualifier list. The only difference is

that this time the object - qualifier list contains a qualifier and the object is a child of the

parent object 'man'. This stage does not require loading of object parameters since the

199

6. Interpreting natural language and translating linguistic data

object is a feature of the parent and its parameters were loaded in the previous stage. In

order to modify the eyes so that they appear 'squinted' the engine will first load the

modifier file from the database of modifiers. The modifier file holds Prolog clauses with

sets of parameters that can transform every aspect of a feature to produce a near realistic

modification. The engine picks the feature specified in the object-qualifier list and

recursively loops through all the parameters of the feature applying modifications to the

feature list of the template head. The process is repeated until an empty object-qualifier

list is reached.

Hedges are processed by the heads engine using a power function to concentrate or dilute

the modifier parameters. The power function returns a high value for smaller power

values and low values for high power numbers. So if the qualifiers list contained the

items 'wide' and 'fairly' for object nose.

[object([nose D,[qualifiers([wide],[fairly DJ] (6.a)

then the engine will identify 'fairly' as a hedge and calculate the new modifier value by

diluting the original modifier value.

CONCENTRATE FUNCTION

extremely --> original modifier * power(O.S) (6.b)

very --> original modifier * power(0.6) (6.c)

DILUTE FUNCTION

fairly -> original modifier * power(l.1) (6.d)

slightly --> original modifier * power(1.2) (6.e)

There is however one small problem that must be addressed before any modifier value is

applied to the original head parameters and that is ensuring all modifications lie within

200

6. Interpreting natural language and translating linguistic data

the upper and lower limits defined in table 4.1 for each head parameter. Let us assume

the default parameter for nose width is 1.0., the upper limit for this parameter is 2.0 and

bottom limit is 0.0. Now if a user description modifies the nose width by adding 0.5

increasing the parametric value of nose width to 1.5 and the user unsatisfied with this

width amplifies the description to further increase the width and does so using the adverb

'extremely' then the new modifier calculated would be:

[object([nose]), [qualifiers([wide 1, [extremely]) II (6.f)

New modifier = modifier(nose width) * power(0.5) (from equation 6.b)

New modifier = 0.5 * power(O.5) = 0.7

New nose width = 1.5 + 0.71 = 2.2

Addition of the new modifier value to the current nose width parameter will result in a

parametric value that exceeds the legitimate limit for nose width. This is valid the other

way round where the new parameter value calculated may lie below the lower limit. To

avoid such errors a Gaussian normal distribution function (equation 6.g) has been

implemented that maintains the parameters within the specified range. The normal

distribution is characterized by two parameters: the mean f! and the standard deviation .

The mean is a measure of location or centre and the standard deviation is a measure of

scale or spread. The mean can be any value between ± infinity and the standard deviation

must be positive. Each possible value of f! and define a specific normal distribution and

collectively all possible normal distributions define the normal family

1
I(x) = rze

(2nO") 2
, -oo(x < 00 (6.g)

Figure 6.7 shows a diagram of a normal distribution implemented to determine the

appropriate modifier value for a given parameter value. The diagram represents

diminishing modifier values for nose width parameters above and below the default or

mean value. Let us consider the normal distribution diagram in Figure 6.7, if the value

201

6. Interpreting natural language and translating linguistic data

for nose width is recorded being 1.5 then the modifier value for increasing nose width

would be returned as approximately 0.3. In case of no hedges declared the new modifier

value when added to the nose width parameter will result in a value well within the

maximum limit for nose width.

New nose width = 1.5 + 0.3 = 1.8

Also if hedges are declared as in 6.f then applying hedges to the modifier will give:

New modifier = modifier(nose width) * power(0.5) (from equation 6.b)

New modifier = 0.3 * power(0.5) = 0.5

New nose width = 1.5 + 0.5 = 2.0

The new modifier influenced by application of hedges still results in a new nose width

within the nose width parameter range even though it is tight.

Once the head engine has successfully translated all available linguistic data, it writes the

full list of new head parameters to an ASCII text file for the Head Generator script to

consult and construct the 3D head model. Code for the heads engine and the NU can be

found in Appendix C.

202

0.5

0.4

0.3

0.2

0.1

0.0

6. Interpreting natural language and translating linguistic data

Modifier

0.0 1.0 2.0
Nose Width Parameter Range

Figure 6.7 Normal Distribution function used to determine modifier value so that

increment or decrement to parameter remains within range.

6.6 Conclusion

This chapter has explored natural language processing. It started with a brief description

of natural languages, the various areas of study connected with natural language

processing. It then moved on to inspect the anatomy of language, its orthographic

structure, grammar and components of grammar. Computational tools such as Parsing,

PROLOG, Echo and the Truth Maintained Blackboard system. Finally it looked at how

the black board system with an assumption based truth maintenance system interprets

natural language descriptions of faces and how the interpreted linguistic data gets

translated by the heads engine into parameters for the facial image generation module.

203

7. Does it work? - Description of overall system architecture, test data and results

Chapter 7

Does it Work? - Description of overall System Architecture, Test Data

and Results

Abstract

This chapter provides a detailed overview of the final system architecture. It shows how

the different modules and processes described in the earlier chapters work together to

construct facial imagery from natural language descriptions. It also provides results of an

exhaustive test containing a spectrum of facial descriptions in sentences both simple and

complex.

Keywords: Architecture, Testing, Results

7.1 Introduction

Chapters 2 to 6 have primarily concentrated on solutions to specific processes necessary

to achieve the thesis aims. This chapter shows how all the different modules and

processes link together to form the overall system. In chapter 1 a broad overview of the

thesis aim was discussed. Building on that broad definition we will now discuss how the

three main modules i.e. the Natural Language Interface (NU), TMS + Fuzzy Logic

process, and Facial Image Generation module operate in tandem to generate 3D facial

images from natural language descriptions of a human face.

7.2 System Architecture

The underlying technology for our research system is Mac PRO LOG working on an

Apple Power Mac G3 running Mac OS 9. The interface for describing faces is an

extension of Echo and allows users to enter sentences of facial description. These

204

7. Does it work? - Description of overall system architecture, test data and results

sentences can be edited to refine the facial image using the amplify function. The

describe and amplify process will be described in greater detail further on in the chapter.

The facial image generation module operates inside 3D Studio Max on a Windows OS

and runs on the host machine via Virtual PC (Connectix, 2001). Apple script connects

the NU to the facial image generation module by launching 3D Studio Max (if not

running) and passing the file of heads parameter generated by the heads engine to the

Head Generator Script (HGS). Figure 7.1 gives a diagram of the system architecture.

The diagram in Figure 7.1 includes a collection of sub environments within a global

environment in which processes and data flow to successfully accomplish the task of

generating facial images from natural language descriptions. The global environment

refers to the Mac OS platform under which the whole system works. The sub

environments include application environments such as MacPROLOG and Virtual PC.

Within these sub environments we have Echo and 3D Studio Max running.

The process starts with the user describing a facial image by entering textual data in the

Describe box of the NU. The data entered, usually in sentence form, passes through the

TMS and blackboard system inferring the grammar rules and lexical database to make

sense of the linguistic data. The list of descriptors produced is processed by the head

engine which divides the list into smaller lists of object and qualifiers. These lists contain

a single object (or feature such as eyes, nose, ears) and one or more qualifiers (also called

descriptors like round, large, long, small, etc.) and hedges (or adverbs like very, fairly,

slightly). These descriptors or qualifiers are first loaded from a database of modifiers

then each aspect of a feature is calculated making careful adjustments for hedges and the

value of an aspect with respect to its distribution table.

The distribution table enables decision to be made on the modifier value by which the

parameter of an aspect should either be concentrated or diluted. This translation process

generates a list of parameters for each aspect of a feature of the head. The complete list

is then written to an external file and saved to a network disk or shared folder from where

205

7. Does it work? - Description of overall system architecture, test data and results

the facial image generation module can easily access the parameters files and generates a

3D head. Since the 3D Modelling application and HGS run outside the Echo

environment, a linking process has been developed that can be invoked from within

MacPROLOG, or any other Macintosh application for that matter.

This linking process utilises Apple Script Technology to launch the VPC environment

and initiate 3D Studio Max. Once activated the Head Generator Script locates the Heads

Parameter file and uses the data to generate a 3D head model. The type of baseline head

model to load is included in the heads parameter file. The correct baseline head model

and textures are loaded from a library of head models and textures stored on a local drive.

The final task involves instructing the rendering engine to produce a rendered image of

the 3D head for the user to visualise.

206

7. Does it work? - Description of overall system architecture, test data and results

MAC OS 9 - Global Envir onment
- -

Echo - MacPROLOG
Descnbe

~
ATMS+

Blackboard System

Sentence Interpreted and I
Descriptor List Produced

Amplify or Edit

Database of template and modiifers Head Engine 1
~ .<l (Breaks Senetence List into

0°7 L j
smaller list of Object and

Qualifiers. Translates
Unguistc Datum to

Parameters)

- ~ -

I Save L Head Parameters
File

Operation
/-

I

---~--- -
Apple Script

(launch VPC and initiate
Network Diskl 30 Modeller + FIG Script)
Shared Folder -

.-

Virtual PC
r-- -

Fetch Head
Parameters Windows OS

3D Studio Max Facial Image
-.--~ Generation

\
Complete

Head Generator Script
I- ~

Facial Image Ge neratio n
Mod ule ,

Facial Image 130
library of Baseline Heads '" Textures t~ Model File

Objects (e .g. Eye balls, teeth, etc) " -
-

Figure 7. 1 System Architecture Diagram - Shows Flow of Process and Data

207

7. Does it work? - Description of overall system architecture, test data alld results

The interface design for the describe procedure is shown in Figures 7.2 to 7.5. It consists

of two simple menu functions, (a) load the head engine from the TMS menu and (b) bring

up the describe window from the Echo menu where the user enters the natura l language

descriptions.

. - .vJ.tUil . rH uce/3 .

Show
ShowfUe
Reporting •
Load Engine .

Figure 7.2 Shows TMS menu with ' Load Engine ' highlighted for select ion

208

7. Does it work? - Description of overall system architecture, test data alld results

F1Ie Edit Search Windows Desktop Eval TMS ECHO

systelll
is in .tac t. l Old.c1 * J

.H_.-..H.H*HH •• H";;"*,,;;j :-dynaMio loading/ 1 , loadK / I .

: - .. ult.it:ile red.~/3 .
load_~nqine (EN;Ji.ne) :­

loacling(EngiJw) ,
I.

load_enqine(Enqineo) : ­
l oaded (Enginr).
I.

l Ol4_",tIQi.ne (EnQUIe) : -
userta(loading(Engine » ,
elt(Itnqine • . :_ster ' 1,r1FUIt .-> .
oonsult(enqines(~11e» .
retTlct(loading(Enqine» ,
an erta(loaded.(Eng.ine» ,
I •
.. hile(nt._bid (Eng.in.) , true) .

rt!'_load_lmgine (Engine) : -
.. hile(set_bid CEnlJinr) , tnw) .

T,,_l old_all :-
lOldvd (Engine) .
r .. _lod_Itl'WiJi.rw (E.nqitw) •
.fail. .

r .. _lold_ .. ll .

Engine

o ld

Cancel

Figure 7.3 Shows the Engine Selection window with the ' heads' engine highl ighted for
selection

The amplify proced ure brings up the same describe window (Figure 7.5) as the describe

procedure but it does so without resetting the language and heads data. New entri es or

modifications are merged with the ex isti ng sentence structure and reprocessed appending

new ca lculated parameters to the existing parameters li st and writing a new heads

parameter fil e at the end of the process . The code for describe, amplify, TMS and Echo

menu is given in Appendix C along with a full li sting of the heads engine and other

related predicates.

209

7. Does it work? - Description of overall system architecture, test data and results

The call for launching Virtual PC and 3D Stud io Max can be triggered either by

MacPROLOG or manually by the user executing the Apple script link . The HG script

runs automatica ll y on start up of 3D Studio Max. T he script also provide a cu tomised

interface with controls to ed it the 3D human head model. Such a feature wou Id norma ll y

not be revea led to th e end user since modifi ca tions should be handled by the NU using

the amplify process and not the modelling environment. However if finer control is need

to edit the head models then the means to do so is avai lable. Figure 7.6 shows the contro l

window offered by the HG script to create and edit the 3D head model.

File Edit Seon:h Win do..... Desktop EIIol TMS

: - . ultiHle rN\ICIe /3 .

I.

AmplifY
Acquire
Prlnt Ne\W Language
Consolidate language
Print Language
Save Language
Reset language

_b1l.(•• t_b14 (EDQine) . tru.) .
r-,,_10ll4_"nq:lM(EntJine) : ­
.b1l.(•• t_bid(Enqine).tr~) .

r.J.oa4_*U :-
loadri (En;iM).
r._load_.ngi.nI>(~) •
trll .

Figure 7.4 Shows Echo Menu with ' Describe ' highlighted for selection, note the entry

'Ampli fy' in the same menu under ' Describe'

2 10

7. Does it work? - Descriptioll of overall system architecture, test data alld results

Rle Edit Search Windows: EYal TMS

__ nd ass ert. t.bat.
in b o l 10 .. 4ft . ,

o-dynaaio lot.diWJ/ I , load" / l .

Description

the men has 8 fairly large nose

Language

I I :!,~~:;!~;:; Id j.cUn J. (nounl . Ilnic;aJ. (DOUft ,
, 6 , . 8 , 9 , 10 , 11 , 12 , 13 ,

bHds , cl •• er1ptor((tt. , -.n, ._ , . , rill. , l.arv- . _., . I [objeet(
Iq1.tIIli.ti.n(l!. [DJ], JobjeotC(nos.J). Iq_liHers((h.rv-l. 1I

I 'W'~"" ·' I [lt.rlll' . ride) , 11»)]»,[(1 , 2 , 3 , 4 , S , ' , 7 , 9 , 9 , ID , 11 ,
13 , 14 , 1:5 , 16 , 18 , 19 , 20]1.100

• hn.ds , \I •• oripUonCllobj.ctCI_n» , (qual..lli.r'(I). 1))11 , IO"iK" <l1
D. [qUl.l..Ui.n(llt.r~J. Il l. qU&l.i..tier. (l1uv- . rid'l . [I

I
lib,u,;',;" 5 , ' , ' , 8 , 'iI , l a , 11 , 12 , 13 , 14 , 15, 16 , 18 , 19 , 2011 . 100

AppliH to bn.d

,

Cancel

load

Tergot Database

frog. shopper

Joydb
natlandb . protodb . punlabl

Ii

I

~ .

Figure 7.5 Shows the Describe window, the text box under ' Description' is where the

user enters text. The selection box under ' Language' a llows a different language to be

selected ror input, so far only English has been implemented but work on other languages

is being researched such as Punjabi and French. Load button opens a new wi ndow with

predefined sentences that the user can pick and edit to make data entry convenient.

2 11

7. Does it work? - Descriptioll of overall system architecture, test data ami results

__ I

--,
~
->=...J

~
----"T"----- -i ~

--~~~~~~~, I=----t---t---->-----t--
- - -t-f l --r_ ---t--

~J ---->---b=:r----1-----.J:.---.....,j,---~I -r-

Figure 7.6 3D Studio Max interface with the HG script ' Edit Head ' ro ll out circled in red
The fi gure be low shows a magnified shot ofa porti on of the Edit Head menu.

E~Head

Head....,.."

-J
HeadDejIIh

-J
HeadHOIItt

-J
HeadFlolten

-J
F",ohoad Slope

-J
Nose""'''''

J-
NoseLOf'9h

J
N ... P\.6.4>

J
N ... S"dge

)--
Nose Hook

t-
Clw>E .. ent

-J

2 12

7. Does it work? - Descriptioll of overall system architecture, test data alld results

7.3 Test Data and Experimentation

The test data consists of a number of sentences conjured to investigate operational

efficiency of the overall system and natural language processing ab ility of t he NU. The

aim of this experiment was to d iscover if the NU cou ld understand sentences of complex

content and structure and interprets the data effecti vely so that the head engine would

produce correct head parameters. The test data was fabr icated so that each sentence was

not always the same and predictable. Some sentences inc luded more than a single

adject ive describing a feature and others were an amalgamation of several conjunctions.

The test data used for the experiment is provided in table 7. 1. Results from the

experiment include a brief listing of th e output reported. T his includes th e origi na l user

description, input into the natura l language interpreter as entry ' phrase', the Engli sh

interpretation produced by the NU and the list of descriptors produced by the interpreter

for the heads engine. The list of head parameters li sted for test data 2 and 7 only show the

complete li st of head parameters generated by the heads eng ine after trans lat ing the

descriptors to numeric parameters. Each test resu lt includes a rendered image of the head

generated by the Head Generator Scri pt.

Test Data
I Describe - "The European man has a very wide nose"
2 Describe - "the man has a large nose and squinted eyes"
~ Describe - "the man has large eyes and a thin nose and a small mouth" J

Amplify - " the man has large eyes and a fairly wide nose and a small mouth"
4 Describe - "the man has puffed cheeks, and a hooked nose and a broad jaw"
5 Describe - " the african woman has a thin nose and aquamarine eyes"
6 Describe - " the man has a large w ide nose and vampire eyes"
7 Describe - " the man has a very wide mouth and vampire eyes"
8 Describe - "the man has a round pugged nose and a broad jaw and an oval chin"

Ampli fy - "The man has a round pugged nose and a fairly broad jaw and a sli ghtly
oval chin"

9 Describe - " the woman has small ears and a long nose and aq uamarine eyes"

Table 7.1 - Sentences used as test data for experimentatio n

Test Data 1

Describe " the European man has a very wide nose"

2 13

7. Does it work? - Description of overall system architectllre, test data and results

phrase, echo(engli sh. [the, european, man. has, a, very. wide. nose] , heads). ITI]j,
« 0.0,0.0,0. 1))

engli sh, engli sh(senlence(leuropean, man, has, a. very. wide, nose]), [Iex_var, european,
man, has, a, very, wide, nose], [the, european, man, has, a, very, wide, nose],
grammar(senlence, [noun_phrase, verb_phrase] , fgrammar(noun_phrase.
[adjecti ve_phrase. noun_phrase] , [grammar(adjecti ve_phrase, [adjective l,
Jl exical (adjecti ve, [european1)1), grammar(noun_phrase, Inoun] , pex ica l(noun.
[man])])]), grammar(verb_phrase, [tTans itive_verb, noun_phrase1,
Il ex ical(transiti ve_ verb, [has1), grammar(noun_phrase, 1 indefinite_article, noun_phrase I,
fl ex ical(i ndefi ni te_article, lal), grammar(noun_phrase, la djecti ve_phrase. noun_phrase I,
[grammar(adjecti ve_phrase, [adverb, adj eclive1, [Iex ica l(ad verb, [very !),
lex ica l(adjective. [wide !)]), grammar(noun_phrase, [noun I, flexical(noun ,
r nose DJ) !)J) D D, heads),[[I, 4. 5, 6. 7. 8. 9, 10, 12. 13, 15, 16. 18, 2 1, 22. 23. 261 J,
« 0.0,0.0,1.0))

heads, descriptor([the, european, man, has, a, very, wide, nose], f[object(J man1),
Iquali fi ers([european] , om lobject([noseJ), [qualifiers(lwideJ, [veryJ)]lD,lf l. 2. 4,5, 6,
7,8, 9, 10, 12, 13, 15, 16, 18, 19,2 1,22,23,24,27]],« 0.0,0.0, 1.0))

Figure 7.7 Rendered image o r head generated from description "the european man has a
very wide nose"

2 14

7. Does it work? - Descriptioll of overall system architecture, test data alld reslllts

Test Data 2

Describe - "the man has a large nose and squinted eyes"

phrase, echo(engli sh, Ithe, man, has, a, large, nose, and, squinted, eyes], heads), lIl]] ,
« 0.0,0.0,1.0))

engli sh, engli sh(sentence([the, man, has, a. large, nose. and, squinted, eyes]), Ithe, man,
has. a, large, nose. and, squinted, eyes], [the, man, has, a. large, nose, and, squinted,
eyes] , grammar(sentence, [noun_phrase, verb_phraseJ, [grammar(noun_phrase,
[definite_article. noun_phraseJ, [Iexical(definite_article, I the !), grammar(noun_phrase,
[noun] , [Iexica l(nolln , [man))])]), grammar(verb_phrase, [transitive_verb, noun_phrasel,
[lexica1(transiti ve_verb, [has !), grammar(noun_phrase, [noun_phrase, conjunction,
noun_phrase], 19rammar(noun_phrase, [indefinite_artic le, noun_phrase I,
I lexical (indefi nite_article, raJ), grammar(noun_phrase, [adjective_phrase, noun_phrase],
[grammar(adjecti ve_phrase, [adjectivel, [I ex ical(adjective, lJ argeJ)]),
grammar(noun_phrase, [noun], [Iexical(noun , [noseJ)J)]).I), lex ical (conjunction, landJ),
grammar(noun_phrase, [adjective_phrase, noun_phrase], Igrammar(adjective_phrase,
[adjective], [Iex ical(adjective, Isguinted])!), grammar(noun_phrase, InounJ ,
[I ex ical(nolln , [eyes !)])!)])])]), heads),III , 2, 3, 4, 5, 6, 7, 8, 9. 10, t I, t2, 13, 14, t5, 16,
17,19,2 1,22,23,3611. «0.0,0.0, 1,0))

heads, descriptor(lthe, man, has, a, large, nose, and, squinted, eyes], [[object(!m an!),
Iq ualifiers([l, rIlll , [object(~yesl) , [qllalifiers([squintedj , [])]l, [objectUnosel),
Iqllalifierscnarge l, l!)lll), ITI, 2, 3, 4,5, 6, 7,8,9, 10, 11 , 12, 13,14, 15, 16, 17,19,2 1,
22,23, 36, 40 1, 11 ,2, 3, 4,5,6, 7, 8,9, 10, 11 , 12, 13, 14, 15, 16, 19,21,25,26, 27,35,
40JJ , «0.0,0.0, 1.0))

Modifiers Applied to head

Man
head texture = I
head type = 2
head strength = 0
head x_pull = 100
head y_pull = 100
head z_pull = 100
head y_offset = 0
head z_offset = 0
head width = I
head widthskew I = 0
head widthskew2 = 0
head depth = I
head depthskew = 0
head height = I

nose hook = 0
nose hook_i nfluence = 0
ch in ex tent = I
chin tilt = I
chin ti It_influence = 0
chin accent = 0
jaw width = 0
jaw infl uence = 0.5
jaw uniformity = 0.5
cheek ex trude = 0
cheek zpos = 0
cheek curvatu res = 0
cheek curvature_zpos = 0
cheek curvature-ypos = 0
cheek curvature_zfalloff = 0.5

2 15

7. Does it work? - Description of overall system architecture, test data a"d results

head heightskew = 0
head face_squash = I
head flatten = I
head slope = 0
nose width = 1.5
nose widlh_zweighl = 0.5
nose length = 1.5
nose length_zweight = 0.65
nose pull up = I
nose bridge = 0
ears depth = 0
ears rotation = 0
mouth width = 0
mouth protrude = I
eye I translate x = 1.8
eye I translate y = -23.85
eye l translate z = 3.9
eye2translate x = - I .8

cheek curvatu re-yfa lloff = 0.5
eyes colour = 14
eyes separation = I
eyes inset = 0
eyes toproundness = -0.5
eyes bottom roundness = -0.5
eyes rotation = 0
eyes brow_bulge = 0
ears height = 0
ears lobe = 0
eye2translate y = -23 .8
eye2translate z = 3.8
eye lrotate x =- 1
eye I rotate y = 0
eye I rotate z = - 1
eye2rotate x = - I
eye2rotate y = 0
eye2rotate z = I

Figure 7.8 Rendered image of head generated from description "the man has a large nose
and squinted eyes"

2 16

7. Does it work? - Description of overall system architecture, test data allll results

Figure 7.9 Front view of wire frame model of head generated by test data 2

Figure 7.10 Rotated view of wire frame model of head generated by test data 2

2 17

7. Does it work? - Descriptioll of overall system architecture, test data alld results

Test Data 3

Describe - "the man has large eyes and a thin nose and a small mou th"

phrase, echo(engli sh, [the, man, has, large, eyes, and, a, thin, nose, and, ll, small , mouth] ,
heads), n I n, «0.0,0.0, 1.0))

engli sh, engli sh(sentence(lman, has, large, eyes. and, a, thin, nose, and, a, small , mouth]),
[Iex_ var. man, has. large. eyes, and. a. thin, nose, and, a, small , mouth] . [the. man. has,
large, eyes, and, a, thill , nose, and. a, small . mouthl , grammar(sentence, Inoun_phra e,
verb_phrasel , [grammar(noun_phrase,[noun] , [lexical(noun, [man I)]),
grammar(verb_phrase, Itransirive_ verb. noun_phraseJ , [I ex ical(transiti ve_ verb, [has]),
grammar(noun_phrase, [adjective_phrase, noun_phrase'I, [grammar(adjective_phrase,
[adjective], [Iexical (adjective, [l arge])]), grammar(noun_phrase, I noun_phrase,
conjuncti on, noun_phrase.! , [grammar(noun_phrase, [noun_phrase. conjunction,
noun_phrase], [grammar(noun_phra e, [nounJ. [I exical (noun , [eyes])]),
lex ical(conjunction. land]), grammar(noun_phrase, [indefinite_article, noun_phraseJ ,
[Iex ica l(indefinite_article, la l), grammar(noun_phrase, [adjective_phrase. noun_phrase].
[grammar(adjecti ve_phrase, [adjectiveJ. [Iex ical(adjective, Lthin DJ),
grammar(noun_phrase, [noun.! , [lex ical(noun , Lnose])DDDJ), lex ical (conj unction, [and]),
grammar(noun_phrase, [indefi nite_article, noun_phrase,!, [I exical (indefin ite_article, [a.l),
gram mar(noun_phrase, [adjective_phrase, noull-phrase] , [grammar(adjective_phrase,
[adjectiveJ , [Iexical (adjective, rsmallD]), grammar(noun_phrase, Inounl , Ilexical(noun.
[mouthlml)]ml)nl), heads),[[1 . 3,4, 5,6, 7,8, 9, 10,1 1, 12, 13. 14, 15, 16, 17, 18, 19,
20, 21, 22,23, 24, 27, 60, 86,87, 88, 90]], «0.0,0.0, 1.0))

heads, descril' tor(i'the, man, has, large, eyes, and, a, thin, nose, and. a, small , mouth'l,
[[object(fmanl), [qualifiersCD , om, [object(reyes]). [qualifiers(l]arge], mn,
[object(l mouth I). [qual ifi ers([smal l'l , [])]], [object(f noseD, [qualifi ers(rthin l, 0)]]1),1[1 , 2,
3.4, 5,6,7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17. 18, 19,20,21. 22, 23. 24, 25, 27, 29, 45,
76,78,79, 801, ri , 2, 3,4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, IS , 16, 17, 18, 19, 20, 2 1,22,
23,24, 25, 27, 29, 30, 42, 43, 69, 76 1, 11 ,2, 3,4,5, 6,7,8, 9, 10, 11 , 12. 13, 14, IS, 16,
17, 18, 19,20, 2 1, 22, 24, 25, 27, 29, 3 1, 32,39,40,70, 76].1 , « 0.0,0.0,1.0))

218

7. Does it work? - Descriptioll of overall system architecture, test data alld results

Figure 7.11 Rendered image of head generated from de cription "the man has large eyes
and a thin nose and a small mouth"

Ampli fy - "the man has large eyes and a fairly wide no e and a small mouth"

phrase, echo(englj sh, [the, man, has, large, eye . and, a, fairly, wide, nose. and, a, small ,
mouth] , heads), 1J I]] , « 0.0,0.0, 1.0))

english, english(sentence([man, has, large, eyes, and, a, fairly, wide, nose, and, a, small ,
mouth]), [Iex_var, man, has, large, eyes, and, a, fairl y, wide, nose, and, a. smal l, mo uth].
[the, man, has, large, eyes, and, a, fairl y, wide, nose, and . a, small, mouthj ,
grammar(sentence, I'noun_phrase, verb_phrase] . [grammar(noun_phrase, [noun'I,
Ilex ical(noun , Iman])]), grammar(verb_phrase, [trans itive_verb, noun_phrase l,
pex ical(transitive_ verb, l11as]), grammar(noun_phrase, [noun_phrase, conjunction,
noun_phrase I, [grammar(noun_phrase, [adj ecti ve_phrase, noun_phrase],
[grammar(adjecti ve_phrase, [adjecti vel , [I ex ical(adjecti ve, Ilargel)l),
grammar(noun_phrase, [noun], [Iex ical(noun , leyesDl}J), lex ical(conjunction, [ancfi),
grammar(noun_phrase, [indefi nite_article, noun_phrase], [Iexical(indefi nite_article, [a I),
grammar(noun_phrase, [noun_phrase, conjunction. noun_phrase'l,

219

7. Does it work? - Descriptioll of overall system architecture, test data alld results

[grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjec tive_phrase,
[adverb, adjective! , [I ex ical (adverb, [fairly]), lexical(adj ec tive, [wide]}!),
grammar(noun_phrase, [nounl, Ll ex ical(noun, [noseJ)])]), lexical (conj unction , rand !),
grammar(noun_phrase. [indefinite_article, noun_phrase], [Iexical(indefi ni te_article. la !),
grammar(noun_phrase, [adjective_phrase, noun_phrasel, [grammar(adjecti ve_phrase,
[adjective] , [Iexical (adjective, lsmal l])]) , grammar(noun_phrase, [nounl , [Iex ical(noun ,
[mouth !)j)J)J)J)j)])J)j), heads),ll9l , 93, 94, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104,
105, 106, 108, 109, 110, 111 , 11 2, 11 4, 11 5,1 17, 11 8, 121,173, 174, 180, 181 , 183 11 ,
«0.0,0.0,1.0))

heads, descriptor([the, man, has, large, eyes, and, a, fairl y, wide, nose, and , a, small ,
mouth] , [[object([man]), [qualifiers(O, l1l11, [object([eyes]), [qualifiers<Qarge], 0)]],
[object([mouth]), [qualifiers([smalll , om, [object([nose]), [qualifiers([widel ,
[fairly])]]]),[[9I , 92, 93, 94, 95, 96, 97, 98, 99, 100, 10 I, 102, 103, 104, 105, 106. 108,
109, liD, 111,112,114, 11 5, 11 7, 11 8, 120, 12 1, 122, 163, 169, 170, 171 , 1841, [91 , 92,
93,94, 95, 96, 97, 98, 99, lOO, 101 , 102, 103, L04, lOS , 106, L08, 109, 110, 111 , 11 2,
11 4, liS, 11 7, 11 8, 120, 121, 122, 127, ISO, 151 , 152, 18411, «0.0,0.0, 1.0))

Figure 7.1 2 Rendered image of head generated from amp li fy instruction "the man has
large eyes and a fa irly wide nose and a small mouth"

220

7. Does it work? - Description of overall system architecture, test data and results

Test Data 4

Describe - "the man has puffed cheeks, and a hooked nose and a broad jaw"

phrase, echo(english, [the, man , has, a, puffed, cheek, and, a, hooked, nose, and, a, broad,
jaw], heads), [f I]] , « 0.0,0.0, 1.0))

engl ish, engli sh(sentence([the, man , has, a, puffed , cheek, and, a, hooked, nose, and, a,
broad, jaw D, [the, man, has, a, puffed, cheek, and, a, hooked, nose, and, a, broad, jaw"!.
[the, man, has, a, puffed, cheek, and, a, hooked, nose, and, a, broad, jaw],
grammar(sentence, [noun_phrase, verb_phrase], [grammar(noun_phrase,
[defi nite_artic le, noun_phrase], [l ex ical (defi nite_arti cle, [the I), grammar(noun_phrase,
[noun]. [I exical(noun , [man])])]), grammar(verb_phrase, [transiti ve_ verb, noun_ phrase],
[lexical(trans iti ve_ verb, [hasJ), grammar(noun_phrase, [indefinite_artic le, noun_phrase I,
[Iexical(i ndefi nite_article, raj), grammar(noun_phrase, [adjecti ve_phrase, noun_ ph rase j,
[grammar(adjective_phrase, [adjecti ve I, [l ex ica l (ad jecti ve, lpuffed])J).
grammar(noun_phrase, lnoun_p hrase, conjunction , noun_phrase],
[grammar(noun_phrase, [noun_phrase, conj unction, noun_phrasel,
19rammar(noun_phrase, [noun], llexical(noun , IcheekJ)]), lex ical (conjunction, [andJ),
gram mar(nou n_phrase, [i ndefi ni te_article, noun_phrase], ll ex ical (i ndefi ni te_article, 1 al),
grammar(noun_phrase, [adjecti ve_phrase, noun_phrase], [grammar(adjecti ve_phrase,
[adjective], [Iexical (adjective, [hookedJ)]), grammar(noun_phrase, [noun], li ex ical(noun .
[nose])])])1)]), lex ical(conjunction, [and)), gram mar(nou n_phrase, [i ndefi n i te_article,
noun_phrase], [Iexical(indefin ite_article, [al), grammar(noun_phrase, [adjective_phrase,
noun_phrase], [grammar(adjective_phrase, [adjective], [Iexical(adjective, rbroad])]),
grammar(noun_phrase, Inoun], [Iexical (nolln, [j aw))])]rD])])])DJ), heads),[[l , 2, 3, 4, 5 ,
6, 7,8, 9, 10, 11 , 12, 13, 14, 15,16, 17, 18, 19, 20,2 1,22,23, 24, 25, 29, 3 1, 81, 126,
127, 128, 129, 130j], « 0.0,0.0,1.0))

heads, descriptor([the, man, has, a, puffed, cheek, and, a, hooked, nose, and, a, broad,
jaw], Ilobject([manl), [qualifiers([1, rlm. [object(rcheek]), [qualifiers([puffed], om,
[object(ljawl), [qual ifiers(lbroad I. O)]J, [object([nos~), lqual ifiers([hooked) , [])]JI),[[I,
2,3, 4,5, 6, 7,8,9, 10, 11 , 12, 13, 14, 15, 16, 17,18, 19,20, 2 1, 22, 23, 25, 26, 29, 3 1,
33, 34,54,55,56, 92, 1021, [1,2,3, 4, 5, 6, 7,8,9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19,
20, 2 1,22,23,24, 25,26,29, 31,62, 102, 11 2, 113, 11 4, 11 51, 11 , 2, 3, 4,5, 6, 7, 8,9, 10,
11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22,23, 24, 25,26, 29, 3 1, 62, 63, 102, 108, 109,
110], [1 , 2,3,4,5,6,7,8,9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19,20,2 1,22,23,24, 25,
26,29,3 1,32, 58, 59, 60,9 1, 102], [1 ,2, 3, 4,5,6,7,8,9, 10, 11 , 12, 13, 14, 15, 16, 17,
18, 19,20, 2 1, 22,23, 25,26,27, 29, 3 1,33,34, 41 , 42, 96, 102], [1 ,2,3, 4,5,6,7, 8,9,
10, 11 , 12, 13, 14, 15, 16, 17, 18, 19,20,21,22, 23,24, 25, 26, 27, 29, 3 1, 32, 44, 45, 95,
102], [1, 2,3,4, 5,6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16,17, 18, 19, 20, 2 1, 22, 23, 24, 25,
26,27,29, 3 1,47, 102, 104, 105, 106]], « 0.0,0.0, 1.0))

22 1

7. Does it work? - Description of overall system architecture, test data and results

Figure 7. 13 Rendered image of head generated from description "the man has puffed
cheeks, and a hooked nose and a broad jaw"

i
~ - ----.J •
~~GI'

~~
--'--'

3
•

Figure 7.1 4 Front view of wire frame model of head generated by test data 4

222

7. Does it work? - Descriptioll of overall system architectllre, test data alld reslllts

.... '-I __
tttr'" 11j. 1!I@;~[]~ Ii.+ () F'"""::JF xyzn)oP'l

Figure 7. 15 Side view of wire fra me model of head generated by test data 4

Test Data 5

Describe - " the arrican woman has a th in nose and aquamarine eyes"

phrase, echo(engli sh, [the, afri can, woman, has, a, thin , nose, and, aquamarine, eyes),
heads), f[I)), «0.0,0.0, 1.0))

english, engli sh(sentence([the, african, woman, has, a, thin , nose, and, aquamarine,
eyes)), [the, african, woman, has, a, thin, nose, and, aquamari ne, eyes) , [the, afri can,
woman, has, a, thin, nose, and, aquamarine, eyes), grammar(sentence, [noun_ phrase,
verb_phrase!. [grammar(noun_phrase, [definite_ruticle, noun_phrase1,
[lex ical(definite_3lticle, rthe]), grammar(noun_phrase, [adjecti ve_phrase, no un_phrase],
[grammar(adjective_phrase, [adjective 1, [Iex ical(adjecti ve, [african])]),
gram mar(noun_phrase, [noun] , [lexical(noun, [woman 1)1)])1), granllllar(verb_phrase,
[transitive_verb, noun_phrase), Qexical(transiti ve_ verb, [has]), grammar(noun_phrase,
[noun_phrase, conjunction, noun_phrase), [grammar(noun_phrase, [indefinite_articl e,
noun_phrase], f1 ex ical(indefinite_article, [a)), grrunmar(noun_phrase, [adjective_phrase,
noun_phrase l, Igrammar(adjective_phrase, [adjecti ve], [lex icaJ(adjecti ve, Ithin])'!),
grammar(noun_phrase, Inoun] , Il exical(noun, Inose])])!)]). lex ical(conj uncti on, [andJ).
grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjecti ve_phrase,
[adjective), [Iex ical(adjecti ve, [agurunarine l)]), grrun mar(noun_phrase, [noun I.

223

7. Does it work? - Description of overall system architecture, test data al/d results

[lexical(noun, [eyes])])])])])]), heads),[[I, 2, 4, 5,6.7. 8, 9, 10, 11. 12, 13, 14, 15, 16, 17,
18, 19, 20,22, 23, 27, 29, 30, 46]] , ((0.0,0.0, 1.0»

50, heads, descriptor([the, african, woman, has, a, thin, nose, and, aquamarine, eyes] ,
[[object([woman I), [qualifiers([african], O)]J , [object([eyes I), [qualifiers([aquamarine],
U)]J , 10bject(l noseJ), Iqualifiers(LthinJ, lJ)]Jl),[[I , 2, 4, 5, 6, 7,8, 9, 10, 11 , 12, 13, 14, 15,
16, 17, 18, 19, 22,23, 27,33,34, 35, 45, 50],[1 , 2, 4,5, 6,7, 8,9, 10, 11 , 12, 13. 14, 15,
16, 17, 18, 19. 20, 22, 23, 27, 29, 30, 46, 50]], «(0.0,0.0, 1.0»

Modi fiers Appl ied to head

woman
head texture = 6
head type = 2
head strength = 0.051
head x_pull = 77
head y _pull = 88
head z_pull = 74
head y_offset = 0
head z_offset = 0.334
head width = 1
head widthskew 1 = -0.168
head widthskew2 = 0.194
head depth = 1
head depthskew = -0.284
head height = I
head heightskew = 0.064
head face_squash = 0.76
head fi atten = 0.7
head slope = 0
nose width = 1.628
nose width_zweight = 0.261
nose length = 0.28
nose length_zweight = 1
nose pullup = 1
nose bridge = 0.32
nose hook = 0.52
nose hook_infiuence = 0
chin extent = 0.562
chin tilt = 1.166
chin tilt_infiuence = 0
ch in accent = 0.261
jaw width = 0.277
jaw infiuence = 0.48

jaw uniformity = 0.119
cheek extrude = 0.48
cheek zpos = 0.281
cheek curvatures = 0.145
cheek curvature_zpos = 0.258
cheek curvature-ypos = -0.613
cheek curvature_zfalloff = 0.214
cheek curvature-yfalloff = 0.7 15
eyes colour = 13
eyes separation = 1.542
eyes inset = 0.568
eyes toproundness = 0.274
eyes botlomroundness = 0.135
eyes rotation = 0
eyes brow_bulge = 0.137
ears height = 0.29
ears lobe = 0.209
ears depth = 0.313
ears rotation = -0.128
mouth protTude = 0.5
mouth width = 0.22
eye 1 translate x = 3.25
eyel translate y = -17.5
eye I trans late z = 3.1
eye2translate x = -3.25
eye2translate y = - 16.4
eye2translate z = 3
eye 1 rotate x = -1
eye 1 rotate y = 0
eye 1 rotate z = 0
eye2rotate x = - I
eye2rotate y = 0
eye2rotate z = 0

224

7. Does it work? - Description of overall system architecture, test data and results

Figure 7.16 Rendered image of head generated from description " the african woman has
a thin nose and aq uamarine eyes"

-,-
~ ("~ ., 'I!! ~ D~ f\ + t> II .~" x Y Z n.;Io ' .,1

-

Figure 7.17 Front view of wire frame mode l of head generated by test data 5

225

7. Does it work ? - Description of overall syste11l1lrchitecture, test dllta lI1ld results

.... ,_ UiIIIi~

11!' ~ ~ "" a 'it ~ Q~ 1\ + t> tlF"3 ... X Y Z n .> ." .' "' ~ I!I u ii> o~G
.:.....'""'"=O"=~;-.;.~~='~~~=-......... ' I&'<l>IIIIITI , .

. -

Figure 7. 18 Side view of wire frame model of head generated by test data 5

Test Data 6

Describe - " the man has a large wide nose and vampire eyes"

phrase, echo(engli sh, (the, man, has, a, large, wide, nose, and, vampire, eyes],
heads),[(I]] , « 0.0,0.0, 1.0))

engli sh, engli sh(sentence«(the, man, has, a, large, wide, nose, and, vampire, eyes]), (the,
man, has, a, large, wide, nose, and, vampire, eyes], (the, man, has, a, large, wide, nose,
and, vampire, eyes], grammar(sentence, (nouny hrase, verb""phrase],
(grammar(noun""phrase, (defin ite_article, no un y hrase], (I ex ica l(de finite _arti cle, (theJ),
grammar(noun""phrase, (noun], (I ex ica l(noun, [manJ)])]), grammar(verb""phrase,
(transitive_verb, noun ""phrase], (I ex ical (transitive _verb, (has]), grammar(noun""phrase,
(noun y hrase, conj unction, noun ""phrase], (grammar(noun yhrase, (indefinite_article,
noun ""phrase], (I ex ica l(indefinite _arti cle, (a)), grammar(noun ""phrase, (adjective ""phrase,
noun ""phrase], (grammar(adjecti ve ""phrase, [adj ecti ve], (Iex ica l(adjecti ve, (large])]),
grammar(noun""phrase, (adj ecti ve ""phrase, noun ""phrase], [grammar(adj ective ""phrase,
(adjecti ve], [Iex ical(adj ecti ve, (wide])]), grammar(noun""phrase, (noun], (I ex ical(noun ,
(!!ose)])])])]), lex ica l(conj uncti on, (and]), grammar(noun ""phrase, [adjecti ve ""phrase,
noun""phrase] , (grammar(adjectiveyhrase, (adjective], (I exica l(adjecti ve, (vampire])]),
grammar(noun""phrase, (noun] , [Iex ica l(noun, [eyesJ)])])])])]), heads),([I , 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 46]], 100

226

7. Does it work? - Descriptiotl of overall system architecture, test data atld remits

heads, descriptor([the, man, has, a, large, wide, nose, and, vampire, eyes),
[[object([man]), [q ua lifiers(O, 0))), [object([eyes]), [qualifiers([vampire) , [))]),
[object([nose]), [qualifiers([large, wide), [))))),[[1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11 , 12, 13, 14,
15, 16, 17, 18, 19, 20, 22, 24,25, 26, 46, 5 1], [1 , 2, 3, 4,5, 6,7, 8, 9, 10, 11 , 12, 13, 14,
15, 16, 17, 18, 19, 22, 24, 28, 29, 30, 45, 5 1)), «0.0,0.0, 1.0»

Figure 7 . 19 Rendered image of head generated fro m description "man has a large wide
nose and vampire eyes"

Test Data 7

Describe - "the man has a very wide mouth and vampire eyes"

phrase, echo(engli sh, [the, man, has, a, very, wide, mouth, and, vampire, eyes],
heads), [[I]] , « 0.0,0.0,1.0»

engli sh, engli sh(sentence([the, man, has, a, very, wide, mouth , and, vampire, eyes]), [the,
man, has, a, very, wide, mouth, and, vampi re, eyes], [the, man, has, a, very, wide, mouth,
and, vampire, eyes J, grammar(sentence, [noun_phrase, verb_phrase],
[grammar(noun_phrase, [defi nite_article, noun_phrase J, nexica l(defi nite_anicle, [the]),

227

7. Does it work? - Descriptioll of overall system architectllre, test data and results

grammar(noun_phrase, [nounl , Il exica l(noun, [man DDJ). grammar(verb_phrase.
[transiti ve_ verb. noun_phrase] , llexical(transiti ve_ verb, [has D. grammar(noun_phrase,
lindefi nite_article. noun_phrase], lIexical(indetinite_article, la) , grammar(noun_phrase,
[noun_phrase, conjunction, noun_phrase], [grammar(noun_phrase, [adjective_phrase,
noun_phrase], [grammar(adjecti ve_phrase, [adverb, adjec ti ve], [Iexical(adverb, Ivery !),
lexical (adjective, I.wide !)J), grammar(noun_phrase, [noun], [Iexical(noun, Imouth I) I)J),
lex ical (conjunction, I and]), grammar(noun_phrase, [adjective_ hrase, noun_phrase],
[gram mar(adjective_phrase, [adjecti ve], [l ex ical (adjecti ye, [vampire]) J),
grammar(noun_phrase, [noun], [lexica l(noun, I eyes !)])])]) I)])]), heads), (f41 , 42, 43, 44,
45.46,47,48, 49, 50,5 1, 52, 54, 55,56, 58.59, 60, 6 1,79,80, 8 1,82]], «0.0,0.0, 1.0»

heads, descriptor(fthe, man, has, a, very, wide. mouth , and, vampire, eyes] ,
IT object(r man)), fqual i fiers(O , 0)]], r object([eyes]), Iq ual i fi ers(f vampire l , m n,
[object(l'mouthl). Iqualifiers([widej, [very])l] !), [r41 , 42. 43, 44, 45, 46, 47, 48, 49, 50, 51 ,
52, 54,55,56,58,59,60,6 1. 79, 80, 8 1, 82. 841, r41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
5 1, 52,54,55,56, 58.59,60, 61 , 62,75,76,77,84]] , « 0.0,0.0,1.0»

Figure 7.20 Rendered image of head generated from description "the man has a very
wide mouth and vampire eyes"

228

7. Does it work? - Description of overall system architecture, test data alld results

Test Data 8

Describe - ' the man has a bulbous nose and sun ken cheek and slanting up eyes"

phrase, echo(engl ish. [the, man. has, a. bulbous, nose, and, sun ken, cheek, and.
slantingup, eyes], heads),[[I)] , « 0.0,0.0, I .0»

engli sh, engli sh(sentence([the, man, has, a, bulbous, nose, and, sunken, cheek, and.
slantingup, eyes]), [the, man, has, a, bulbous, nose, and, sunken, cheek, and. slanlingup,
eyesl, Ithe, man, has, a, bulbous, nose, and, sunken, cheek, and, slantingup, eyes I,
grammar(sentence, [noun_phrase, verb_phrase I, [grammar(noun_phrase,
[defi nite_article, noun_phrase], [Iex ical(defi nile_article, [the]), grammar(noun_phrase,
I noun]. fJ exical(noun, rman])l)]), grammar(verb_phrase, [transitive_verb, noun_phrase I.
Il ex ical(transiti ve_verb, [has]), grammar(noun_phrase, [indefinite_article, no un_phrase].
Il exical(indefi nite_artic le, [a]), grammar(noun_phrase, [adjective_phrase, noun_phrase I.
I grammar(adjec ti ve_phrase, [adjecti ve], [Iexical(adjective, [bulbousj)]),
grammar(noun_phrase, [noun_phrase, conjunction, noun_phrase],
[grammar(noun_phrase, [noun_phrase, conjuncti on, noun_phrase],
[grammar(noun_phrase, [noun] , [Iex ical(noun , Inosel)D, lex ical(conjunction, [and),
grammar(noull_phrase, [adjecti ve_phrase, noun_phrase], [grammar(adjecti ve_phrase,
[adjective"l, fJ ex ica l(adjective, [sunkenlm , grammar(noull_phrase, [noun] , [Jex ical(noun ,
Icheek!)])])]), lexical(conjunction. [and l}. grammar(noun_phrase, [adjecti ve_phrase.
noun_phrase], [grammar(adjecti ve_phrase, [adjective], [I ex ical (adjecti ve, [slantingup])l),
grammar(noun_phrase, Inoun] , lIex ical(noun , leyes !)J)J)J)J)J)J)J), heads), [I I, 2, 3, 4, 5,6,
7. 8,9, 10, I 1, 12, 13, 14. 15, 16, 17, 18. 19,20,2 1,25,27,62, 104, 105, 106, 107, 108]],
«0.0.0.0, I .0»

heads, descriptor([the, man, has, a, bul bous, nose, and, sun ken, cheek, and, s lantingup,
eyes!, l[objectCl man]), lquali fie rs(U, ID]]. lobjectCl cheek]). lquali fiers(Lsunken I. m]] ,
[objecL(leyes l), Iqualifiers(l slantingup I, I I) 11 , lobject(l nose I), [qua li fiers([bulbous I,
m]lD. l[1. 2, 3. 4, 5, 6. 7. 8, 9, 10, I I. 12, 13, 14, IS, 16, 17, 18, 19,20, 2 1,22,25,27,48,
49,80, 86, 87, 88], [1 , 2, 3, 4, 5, 6,7, 8, 9, 10, I 1, 12, 13, 14, IS, 16, 17, 18. 19, 20, 2 1,
22.23,25, 27,37,80, 82,83,84] , [1,2,3,4,5,6,7,8, 9, 10, I I, 12, 13, 14, IS, 16, 17,
18, 19, 20, 2 1, 22.25, 27,28, 44, 45, 46, 7 1, 80], [1 , 2,3, 4,5,6,7,8,9, 10, I I, 12, 13,
14, IS, 16, 17, 18 19, 20, 2 1, 22, 23,25, 27. 28,34, 35.74, 80ll , « 0.0.0.0, 1.0»

229

7. Does it work? - Description of overall system architecture, test data and results

Figure 7.2 1 Rendered image of head generated from description "the man has a bulbous
nose and sunken cheek and slanting up eyes"

Amplify - "the man has a bulbous nose and slightl y puffed cheek and s lanting down
eyes"

phrase, echo(engli sh, [the. man, has, a, bulbous, nose, and, sli ghtly, puffed, cheek, and,
slantingdown, eyes], heads),[[I)) , ((0 .0,0.0,1.0))

english, english(sentence([the, man, has, a, bulbous, nose, and, s li ghtly, puffed, cheek,
and, slanti ngdown, eyes]), [the, man, has, a, bu lbous , nose, and, sli ghtl y, puffed, cheek,
and, slantingdown, eyesJ, [the, man, has, a, bu lbous, nose, and, slightly, puffed, cheek,
and, slantingdown, eyes], grammar(sentence, [noun_phrase, verb_phrasel,
[grammar(noun_phrase, [definite_article, noun_phrasel, [Iexical(definite_artic le, [the D,
grammar(noun_phrase, [noun 1, [lexical(noun, [man])])]), grammar(verb_phrase,
[transitive_verb, noun_phrase"l. [Iexical(transitive_verb. rhas)). grammar(noun_phrase,
[noun_phrase, conjunction, noun_phrase], rgrammar(noun_phrase, [indefi nite_article,
noun_phrase'I, rIexical (indefinite_artic1e, raJ), grammar(noun_phrase, [adjective_phrase,
noun_phrase1, [grammar(adjective_phrase, [adjective1, [lexical (adjecti ve. [bulbousll]),
grammar(noun_phrase, [noun], [l exical(noun , rnose]}I)])]), lex ical(conjunction. land D,
grammar(noun_phrase, [noun_phrase, conjunction, noun_phrase],

230

7. Does it work? - Description of overall system architecture, test data and results

[grammar(noun_phrase, ladjective_phrase, noun_phrase I, [grammar(adjeclive_phrase,
lad verb, adjectiveJ , llex ical(adverb, [s lightlyJ), lexical(adjective. [puffed J)]),
grammar(noun_phrase, [noun] , [I exical(noun, [cheek J)])J). lex ical(conjunclion, land]),
grammar(noun_phrase, ladjective_phrase, noun_phraseJ, [grammar(adjective_phrase,
[adjecti ve], lI ex ical(adjective, Lslantingdown"J)]), grammar(noun_phrase. lnoun J,
[Iexical (noun, [eyes])])])])])])]), heads),[[I , 2, 3, 4, 5, 6.7,8,9, 10, 11 , 12, 13, 14, IS, 17,
18, 19, 20,22,23,24, 26,27,29,30, 97, 109, 110, l11Jl , ((0.0,0.0, 1.0))

heads, descriptor(fthe, man, has, a, bulbous, nose. and, slightl y, puffed, cheek, and,
slantingdown, eyesl, [[object([manl), [qualifiersm, mll , [objecl(rcheekl),
[qualifiers(fpuffedl , rs lightly])]l, [object(leyes]), Iqualifier ([slantingdownl , nm,
lobject([nose]), lqualifiers([buJbous], o)JI]),[[I , 2, 3, 4,5, 6, 7,8, 9, 10, 11 , 12, 13, 14,
15, 17, 18, 19,20,22, 23,24, 26, 27,29,30, 40, 69, 70, 7 1, 113]], ((0.0,0.0,1.0))

Figure 7.22 Rendered image of head generated from amp li fy instruction"the man has a
bulbous nose and slightly puffed cheek and slanting down eyes"

Test Data 9

De cribe - "the woman has small ears and a long nose and aquanlarine eyes"

23 1

7. Does it work? - Description of overall system architecture, test data and results

phrase. echo(engli sh, the, woman, has, small, ears, and, a, long, nose, and. aquamarine,
eyes], heads), [[IJJ , ((0.0,0.0,1.0))

engli sh, engli sh(sentence([the, woman, has. small , ears, and, a, long, nose, and,
aquamarine, eyes]), [the, woman, has, small , ears, and, a, long, nose, and, aquamari ne,
eyes], [the, woman, has, small , ears, and, a, long, nose, and, aquamarine, eyes],
grammar(sentence, [noun_phrase, verb_phrase], I.grammar(noun_phrase,
[definite_article, noun_phrase l , Dexical(defi nite_articl e, I thel), grammar(noun_phrase,
[noun] , rlex ical(noun , rwoman))])]), grammar(verb_phrase, [transitive_verb,
noun_phrase l. [Iex ical(transiti ve_verb. rhas D, grammar(noun_phrase, [adjective_phrase,
noun_phrase I, [grammar(adjective_phrase, [adjecti ve I, [I ex ical(adjecti ve. [smaIUm,
grammar(noun_phrase, [noun_phrase , conjunction, noun_phrase],
[grammar(noun_phrase, [noun_phrase, conjunc tion, noun_phrase],
[grammar(noun_phrase, [nounl , f1exical (noun, learsl m, lex ica l(conjllnction. rancfl) ,
grammar(noun_phrase, [indefinite_article, noun_phrase"l, rlex ical(indefin ite_articl e. [a D,
grammar(noun_phrase. [adjecti ve_phrase, noun_phrase], [grammar(adjective_phrase.
[adjecti vel , rlexical (adjective, Dong])]), grammar(noun_phrase, [noun], [Iex ical(nolln.
[nose])])])])]) , lexical(conjuncti on, rand D, grammar(nolln_phrase, [adjective_phrase,
noun_phrase"l, rgrammar(adj ecti ve_phrase, [adjective'I, [I ex ical(adjective,
[aguamarineD]), grammar(noun_phrase, [nounl , f1exical(noun , reyes])])])])])])"I),
heads), [[I , 2, 3, 4, 5, 6, 7, 8, 9,10, 11 , 12, 13, 14, IS, 16, 17, 18, 19, 20, 2 1, 22, 25, 27,
58, 84, 85, 86, 87]1. ((0.0,0.0, 1.0))

heads. descriptorCl the, woman, has, small. ears, and, a, long, nose, and, aquamarine,
eyes.l, [[object(Lwoman)), [qualifiers(LI , U)IJ , [object([earsj), Iqllalifiers(lsmall], [])l.l ,
[object([eyes.!), I qual i fiers([aquamari n~ , u).I] , [object([noseD, [qual i fiers(llongJ,
0)))]),[[1. 2, 3, 4. 5, 6, 7, 8.9, 10, 11 , 12, 13, 14, IS, 16, 17, IB, 19,20, 2 1. 22, 23, 25, 27.
43 , 74, 76,77, 7B], [I, 2, 3,4,5,6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, IB, 19,20, 21.
22, 23, 25,27. 28, 40, 41 , 67, 74], [1, 2,3, 4,5,6,7, B, 9, 10, 11 , 12, 13, 14, IS, 16, 17,
18, 19,20, 22, 23.25,27,29, 30, 37, 38. 68, 74]] , ((0.0,0.0,1.0))

The interpretation of the statements is based on baseline head models and modifiers taken
from measurements of human heads and so their library of head geometry and modifiers
provides contex t within which the statements are given form. By changing the set of
head models and associated descriptions, the contex t may be changed. The interpretation
of the natural language is thus based on the experience of the machine; and may arguably
be termed "arti stic"

232

7. Does it work? - Descriptioll of overall systelll architecture, test data alld results

Figure 7.23 Rendered image of head generated from description "the woman has small
ears and a long nose and aq uamarine eyes"

7.4 Evaluation of Test Results

It is believed that the system operates reasonab ly well on the whole. Looking at test

results from secti on 7.3 we can clearl y see that the natura l language interface/ interpreter

successfull y proce sed every description, including the ampl ifi cation or edit description.

In a ll test cases user descriptions were successfully parsed by correctly identi fy ing the

grammar rule and lex ical for each word (highlighted in yellow). Similarl y the descriplor

lists produced by the interpreter were apparent and under tandable for each test case. The

head parameters listed under test data 2 and 5 demonstrates the head engine's ability to

translate the descriptors to parameters. Finally the rendered image shows the fac ial

image constructed by the FIG mod ule. The majority of images produced by te t data I to

9 offer an acceptable representati on of the de cription. It is true that the quality of image

233

7. Does it work? - Descriptioll of overall system architecture, test data and results

produced and the leve l of reali sm and recognition offered by the rendered images is

questionable. However th is point was stressed in chapter 4, section 4.7. Our aim was to

demonstrate that geometric models of human faces can be constructed and controlled by

natura l language descriptions and that is what we hope the test resul ts in secti on 7.3

confi nn .

Even though the system appears to work satisfactorily there are moments when the

individual mod ul es can perform be low expectation. For example if we look at the result

from test data 7 it is reasonable to assess that the natural language interpreter successfully

completed its operation and generated a correct li st of descriptors. However observat ion

of the rendered image of the head in Figure 7.20 reveals that the head engine is incapable

to ca lcul ate mouth width in relati on to the dimensions or proporti on of the face. The

result is a mouth that spreads beyond reali sti c limits. A similar eva luati on can be

deduced for nose width of the man in Figure 7. 19, result of test data 6. This is an

important result since it requires further enhanc ing the heads engine to cater for such

measures. The features of any given face description are likely to be correlated, and so a

statement about j aw size may influence mouth size. The current implementati on has not

catered fo r confli cting influences, however the inbu ilt uncertainty handling mechani sm

was inc luded precisely for those reasons, and prov ides a suitable platform for further

work.

The interpretati on of the "descri be" and "ampli fy" statement is based on baseline head

models and modi fiers and so their library of head geometry and modifiers provides

context within which the statements are given form. By changing the set of head models

and associated descriptions, the context may be changed. The interpretation of the natural

language is thus based on the experi ence of the machine; and may arguably be tenned

"arti stic". Thi s poin t can be demonstrated by changing the basic head template so that

instead of loading the template male or fe male head (Figure 7.24) the FIG module loads

completely di ffe rent head geometry (Figure 7 .25) and applies head parameters generated

by the NU to it.

234

7. Does it work? - Descriptioll of overall system architecture, lest data a"d reslllts

Male Baseline Head Female Baseline Head

Figure 7.24 Male and female head templates used by the FIG module

Altered Male Baseline Head Altered Female Baseline Head

Figure 7.25 Male and female head templates modified to different geometry

configuration

If we run Test Data 8 and 9 again with the new head templates implemented we get the

following facial images shown in Figure 7.26 to 7.28.

Test Data 8

Describe - "the man has a bu lbous nose and sunken cheek and slanting up eyes"

235

7. Does it work? - Description of overall system architecture, test data al/d results

Result :-

Figure 7 .26 Rendered image of head generated from description " the man has a bulbous

nose and sunken cheek and slanting up eyes" us ing new male baseline head geometry

236

7. Does it work? - Descriptioll of overall system architecture, test data and results

Ampli fy - " the man has a bul bous nose and sli ghtl y puffed cheek and slanting down
eyes"

Result:-

Figure 7.27 Rendered image of head generated from ampli fy instruction"the man has a

bu lbous nose and slightly puffed cheek and slanting down eyes" using new male baseline

head geometry.

237

7. Does it work? - DescriptioTl of overall system architecture, test data alld reslt/ts

Test Data 9

Describe - "the woman has small ears and a long nose and aq uamarine eyes"

Result:-

238

7. Does it work? - Description of overall system architectllre, test data and reslllts

Figure 7.28 Rendered image of head generated fro m description "the woman has small

ears and a long nose and aquamarine eyes" using new fe male baseline head geometry

239

7. Does it work? - Descriptioll of overall system architecture, test data alld results

The change of head geometry dramatically altered the resulting facial image even though

the same describe statements are used. In thi s framework it can be argued that the head

geometry and modifiers provides context within which the 'describe' and 'amplify'

statements are given form. By changing the set of head models, the context may be

changed.

7.5 Conclusion

Thi s chapter has explored the design and architecture of the final research system

proposed to generate 3D facial images via a natura l language interface. It has explained

how the various modules identi fied in chapter I and elaborated through the course of thi s

thesis integrate and work together. Further more a structured test sequence was

described , demonstrating the operationa l capacity of the system to successfully interpret

and translate lingui stic data to numeric parameters. The fina l result of each test was a

rendered image of the 3D head constructed using the aforementioned parameters. It is a

safe conjecture that the images represent the description fa irl y accurately. The chapter

fini shes off wi th an eva luation of the test results concluding that the system works in

sense that it can successfull y process natural language descriptions of faces, generate

approx imately accurate head parameters and construct 3D image of a face that refl ects

the original description. Some shortfa ll s of the system have also been highlighted

concern ing specifi c modules sllch as the head engine and its abi li ty to contro l head

geometry with finer precision in respect to head and feature proportions.

240

8. Summary, conclusions andfuture work

Chapter 8

Thesis Summary, Conclusions and Future Work

8.1 Thesis Summary

The focus and motivation behind this thesis was to develop a system by which 3D images

of human faces could be constructed using a natural language interface. The driving force

behind the project was the need to create a system whereby a machine could be made to

perform an artistic task without requiring a complex control system that only skilled

professionals with artistic talent can operate. The interface for such a system needed a

simple and natural input mechanism doing away with a complex control structure of

menus and panels of brushes and 2D 13D art tools. Hence the idea of a natural language

interface since words are the most common and basic means of learning, teaching and

communicating. The research was never meant to create a facial composite system like

Identi-kit or E-fit. Instead the research was specifically geared towards discovering how

3 Dimensional facial images can be constructed and edited using a natural language

interface.

We have presented two main methods for achieving this aim,

1. Use of a fuzzy truth maintained blackboard system to interpret and translate

linguistic data

2. Use of free form deformation modifiers to parameterise and control geometry of

pre-constructed 3D head models in a commercially available 3D modelling

system which has pre prepared scripts to access and control templates and

modifiers obtained from measurements of 3D human heads.

Both methods are diverse looking at two separate disciplines of research however in

context of this thesis they are strongly connected and intertwined to solve the thesis aim.

241

8. Summary, conclusions andfuture work

Chapter 1 presented a description of the research aim and outlined the methodology,

approach, and processes proposed to tackle the research problem.

Chapter 2 examined the human facial structure; it partly looked at medical definitions of

facial structure such as the bone and muscle that give faces structure and allow facial

expressions. In greater detail it identified the physical parts of a face that make faces

recognisable. The work of Fredric Parke (Parke, 1982) was acknowledged for his

pioneering work ·on facial animation and defining techniques to parameterise faces for

artificial composition and animation. Recent work by artists like Faigin (1990) was also

acknowledged.

It also looked at the work ofEllis (Ellis et al., 1975) and Shepherd (Shepherd et al., 1977)

on facial recognition and verbal descriptions. This provided beneficial insight into what

areas of a face people usually remember and recall most frequently. This information

helped in planning and executing surveys necessary to acquire important data on the

language ordinary people use to describe faces. Finally we examined the survey results

and compiled a list of most commonly used descriptors for the lexical database in the

natural language processing engine.

Chapter 3 provided an exhaustive examination of the tools and techniques available for

modelling 3D objects. The chapter investigated three main areas.

1. Facial modelling - existing research and applications.

2. Representation techniques available for 3D modelling and technology available

for acquiring facial data

3. Tools and technology available for constructing 3D human head geometry.

This chapter also looked at some other technologies in the domain of 3D modelling such

as FFD that proved critical in the development of the 3D facial image generation module.

Chapter 4 described the facial image generation module. It described construction of a

3D head model using NURBS, Bezier patches and Polygon meshes. The Head geometry

242

8. Summary, conclusions andfuture work

constructed using polygon was evaluated to be the best out of all three modelling

procedures. The baseline heads constructed using polygon mesh formed the foundation

for the facial image generation module. The baseline heads were parameterised using

FFD modifiers attached to the head geometry. Each modifier was catalogued and

assigned variables acting as parameters that could be edited using Maxscript.

The chapter concluded assessing efficiency and capability of the FIG module in its

capacity to generate heads of different shapes, sizes and features. The heads generated by

the FIG module, although not photorealistic, were qualitatively acceptable to test with the

natural language interface module.

Chapter 5 presented some important uncertainty handling theories, ranging' from

probability theory to fuzzy set theory, mass assignment, semantic unification and truth

maintenance systems. Examination of fuzzy logic offered a linguistic perspective to

human computer interaction methodologies, and how natural language can play an

important part in our managing uncertainty. Finally the importance of fuzzy numbers

was mentioned, particularly in the use of fuzzy hedges as an important component of this

thesis for processing natural language descriptions of faces. We also looked at TMS

especially ATMS which forms an integral part of the Natural Language Interface in

interpreting natural language description of faces.

Chapter 6 investigated natural language processing, the various areas of study connected

with it. It inspected the anatomy of language, orthographic structure, grammar and

components of grammar. It discussed computational tools such as Parsing, PROLOG,

Echo and the Truth Maintained Blackboard system. It presented a new system for

interpreting natural language sentences using a black board system with an assumption

based truth maintenance system. It also presented details on the heads engine and how it

can translate linguistic data into parameters for the facial image generation module.

Chapter 7 presented the design and architecture of the final system to generate 3D facial

images via a natural language interface. It explained how the various modules identified

in chapter I and elaborated through the course of this thesis integrate and work together.

243

8. Summary, conclusions andfuture work

Further more a structured test sequence was described, demonstrating the operational

capacity of the system to successfully interpret and translate linguistic data to numeric

parameters. The final result of each test was a rendered image of the 3D head constructed

using the aforementioned parameters. The chapter concluded with the assessment that

the system worked successfully in processing natural language descriptions of faces and

generating 3D facial images that reflected the original description. It also pointed to

some interesting results derived from certain test data indicating shortfalls in the head

engine's ability to control head geometry with finer precision in respect to head and

feature proportions. However the inbuilt uncertainty handling mechanism was included

precisely for this reason, and provides a suitable platform for further work

If we briefly revisit the thesis aim as laid out in chapter I. then our objective was to:

1. investigate whether 3D human face models can be constructed and modified using

a rudimentary natural language interface and

2. if the facial images constructed can pass as recognizable human faces

We believe the main objective of this thesis has been attained and the system developed

and reported in this dissertation offers strong evidence of success in achieving the main

thesis aim. The second thesis aim concerned with examining if the facial images

constructed can pass as recognizable human faces is difficult to conclude. The imagery

produced by the system can easily be regarded as human like but how realistic in terms

of, accuracy of representation and level of recognition is an open question. The 3D heads

constructed by the FIG module lack accessories like hair, eyebrows. teeth and facial hair.

These are important factors in determining level of realism and recognition in human

faces.

244

8. Summary, conclusions andfuture work

8.2 Future Work

The existing setup uses a combination of TMS and fuzzy mass assignment to handle

uncertainty in natural language descriptions of faces. Future work should involve a more

thorough implementation of mass assignment and semantic unification to existing natural

language interpreter to allow better handle of uncertainty in processing more varied and

diverse descriptions of faces. It is envisaged that combination of TMS and mass

assignment will improve both interpretation and translation of linguistic data.

The application of the modifiers to baseline template using a normal distribution function

is a commutative operation. Modifiers either increment or decrement the baseline

template parameters depending on the descriptor. This provides scope for further work in

implementing fuzzy blending between sets of facial features to correlate features of any

given face description such that related features may be able to influence each other ..

Further improvements can be made to the facial image generation module, particularly by

adding accessories such as hair, eyebrows, hats and glasses to the existing object library.

Within the duration of this research such accessories could not be developed due to the

author's inability to construct objects of reasonable quality and usefulness. It is

reasonable to assess that implementing such accessories will enhance the quality of facial

imagery generated by the system. This will result in higher level of realism and

recognition, perhaps to the extent that the system could be used as a natural language

based facial image composite system for identification purposes.

8.3 Conclusion

This thesis presented a novel approach to constructing 3D human faces. It is the first to

look at constructing and modifying facial image artwork using a natural language

interface.

Specialised modules were developed to control geometry of 3D polygonal head models in

a commercial modeller from natural language descriptions. These modules were

245

8. Summary, conclusions andfuture work

produced from research on human physiognomy, 3D modelling techniques and tools,

facial modelling and natural language processing.

This work used two main methods sequentially for synthesising 3D facial images from

natural language descriptions:

3. Use of a fuzzy truth maintained blackboard system to interpret and translate

linguistic data which produces parameters for free form deformation modifiers to

parameterise and control pre-constructed 3D head models.

4. A commercially available 3D modelling system which has pre prepared scripts to

access and control head templates and modifiers obtained from measurements of

3D human heads.

A novel method of abstracting standard face images, modifiers and hedges was described

where base head templates were obtained by distilling out the modifiers and modifiers

obtained by differencing the modified object from a base template.

The interpretation of the natural language descriptions was based on baseline head

models and modifiers taken from measurements of human heads and so the library of

head geometry and modifiers provided context within which the statements were given

form. By changing the set of head models and associated descriptions, the context could

be changed as demonstrated in chapter 7. The interpretation of the natural language is

thus based on the experience of the machine; and may arguably be termed "artistic". The

resultant facial images were consistent with the descriptions although it proved difficult

to obtain detailed descriptions of faces that resulted in a recognisable match. The work

has shown that it is possible to derive images that match the descriptions but that the

descriptions used are insufficient to completely describe a given face. The derived

templates and modifiers influence the set of faces produced from any given set of

descriptions, and form the basis by which the system interprets the natural language

statements.

246

8. Summary, conclusions andfuture work

The existing system has implemented a partial fuzzy logic solution. Rather than using a

complete set of fuzzy rules and fuzzy membership functions, the system relied on specific

concepts of fuzzy logic, in particular fuzzy hedges. The translation of natural language

descriptions to parameters was handled so efficiently by the template, modifier tabular

schema that the simplicity and robustness of the solution was accepted and adopted.

There is however scope for further work using fuzzy logic, mass assignment and the

inbuilt TMS based uncertainty handling mechanism to correlate features of any given

face description such that related features may be able to influence each other.

247

8. Summary, conclusions andfuture work

This Page has been left blank intentionally!

248

A. Explanation of Terminology used in Chapter 2 and Survey Forms

Appendix A

Explanation of Tenninology used in Chapter 2 and Survey Fonns

Youngs Modulus:

The stress - strain ratio measured along the longitudinal axis of a material. Stress is

applied to the longitudinal axis. Strain is measured as extension along this axis."

E= ~P.L
tJL

Poissons Ratio:

The Ratio of transverse strain to longitudinal strain of a material under stress.

Front page of survey web site and a sample questionnaire page.

A.I. FIGS Research Survey

Welcome to A.I. FIGS Research Survey Page. The Artificial Intelligence based
Facial Image Generation System is a Gradients research project aimed at teaching a
computer to build human faces in 3D through natural language descriptions.

In order for a human face to be generated, data about the face is needed and that is
where you can help us. We need to examine how people describe faces. To be more
specific we want to analyze the phrases and words you use to describe a human face.

Instructions

To begin click on an image thumbnail at the bottom of the page to go to a
questionnaire form. Observe the facial image then fill in the survey form, once you
have completed the form hit the submit button at the bottom of the form to send the
data to us.

249

A. Explanation of Terminology used in Chapter 2 and Survey Forms

The survey consists of a number of different facial image samples. We request that
you submit a minimum of three samples for data coherency reasons. You do not have
to submit all three samples at the same time. The survey has been designed so that
you can return to it when ever you have some time to spare. You can browse through
the sample images and take your pick. Any samples that you have submitted earlier,
simply ignore and choose a different one.

Thank you for your co-operation. Your help is most appreciated.

Regards

Salman Ahmad

Dr. Chris Hinde

Gradients Research Group

Computer Science Department

Loughborough University

A.I. FIGS Survey - Copyright © Salman Ahmad, 2000. Facial Images - Copyright © Yale University,
1998 and AT&T Labs Facial Image Database, 1998. All rights reserved.

250

A. Explanation o/Terminology used in Chapter 2 and Survey Forms

Sample of Questionnaire Form:

Please describe the above sample face, you may include information about size, shape
and positioning of features with respect to the face such as eye spacing, forehead size,
mouth width, eye width, etc. Size of head, skin texture, hair.

[Questions marked with "*" are required fields.]

1. * Description of general size, shape and skin texture of head

2. * Description of Hair (Hair Style i.e. curly, straight, etc)

3. * Description of Eyes, Eyebrows (size, shape, spacing, position with respect to
whole face)

251

A. Explanation o/Terminology used in Chapter 2 and Survey Forms

4. * Description of Nose (size, shape, position with respect to whole face)

5. * Description of Mouth (size, shape, position with respect to whole face)

6. " Description of Chin, Cheek, Jaws

7. * Description of Ears (size, shape)

Your Name : I :======,--­
E-mail:

:···············T" ... "·····, : §ubrrit !]eset

252

§l

£.

it
t

[!]
,

A. Explanation of Terminology used in Chapter 2 and Survey Forms

Sample of Survey Results Received:

Subject: Survey sample06-Man4

Head = head large skin spotty
Hair = wavy
Eyes = eyes small round eyebrow weJl marked, straight
Nose = nose large blunt
Mouth = mouth quite large, well shaped
Cheek_chinjaw = chin pointed
Ears = ears medium
Name =
email =

Subject: Survey sample06-Man4

Head = Large square-shaped head on a large neck; pale white skin with a number of
blemishes.
Hair = Light coloured straight hair, quite long.
Eyes = Quite small eyes, widely spaced; dark patches under the eyes, eyebrows very
close to eye sockets and indistinct. Normal eye shape.
Nose = Large and wide nose, bulbous at the base.
Mouth = Broad-lipped mouth, quite narrow compared to size of face.
cheek_chin.Jaw = Cheeks full, but jaw bone very angular and an angular, protruding
chin.
Ears = Ears not visible.
Name = Stephen McCoy
email =s.a.mccoy@lboro.ac.uk

Subject: Survey sampleOl-AfricanMan

Head = Large round overweight shaped face, dark smooth skinned
Hair = Short, dair cury hair receeding from forhead
Eyes = Heavy looking eyes thickness unde lower lid, bright laerge, dark eyes, well
spaced with thick curved dark eybrows. Thicker at nose end narrowing out towards
ears
Nose = Large flat nose with large nos tries central to face
Mouth = Wide mouth with thick lips normal type for Africans
Cheek_chin.Jaw = Noticible cheeks round heavy jowl, slight stuble on chin
Ears = Fairly small close to head
Name = Jo McOuat
email- J.Mcouat2@lboro

253

A. Explanation of Terminology used in Chapter 2 and Survey Forms

Papers submitted for review and publication to journals and conference from the work
in this thesis:

• Ahmad, S. and Hinde, C. 1. (2001). Painting with Words. Submitted to Human

Computer Interaction Journal. Oct, 2001.

• Ahmad, S. and Hinde, C. J. (2001). Constructing and Parameterising a Human

Head using FFD inside 3D Studio Max. Submitted to Computer Graphics

Journal. Nov, 2001.

254

B. Facial image generation module - Reference material and HG script

AppendixB

Facial Image Generation Module - Reference Material and HG Script

Reference Images used for construction of Spline layout in the three modelling

procedures:

Front View

255

B. Facial image generation module - Reference material and HG script

SidelProfile View

Head Generator Script ver 1.0 automatically loaded on start-up of 3D Studio
Max

Code Listing
/**/

include "hdspprt.mse"

-- Use support script file, necessary for modifying correct FFD head variable called by
code statements in this script.

hdparam_arrayl = #0
hdparam..array2 = #0

strin~size = #()

-- Head Parameters array 1
-- Head Parameters array2

-- String Array

-- Parameter for string truncate operation used to extract data from head parameters
file

strin~size[ll = 15

256

B. Facial image generation module - Reference material and HG script

strinILsize[2] = 12
strinILsize[3] = 16
strinILsize[4] = 14
strinILsize[5] = 14
strinILsize[6] = 14
strinILsize[7] = 16
strinILsize[8] = 16
strinILsize[9] = 13
strinILsize[1 0] = 18
strinILsize[ll] = 18
strinILsize[12] = 13
strinILsize[13] = 17
strinlLsize[14] = 14
strinlLsize[15] = 18
strinlLsize[16] = 19
strinILsize[17] = 15
strinlLsize[18] = 13
strinILsize[19] = 13
strinlLsize[20] = 21
strinlLsize[21] = 14
strinlLsize[22] = 22
strinILsize[23] = 14
strinlLsize[24] = 14
strinILsize[25] = 12
strinILsize[26] = 22
strinlLsize[27] = 14
strinlLsize[28] = 12
strinlLsize[29] = 22
strinlLsize[30] = 14
strinlLsize[31] = 12
strinILsize[32] = 16
strinlLsize[33] = 17
strinILsize[34] = 16
strinlLsize[35] = 13
strinlLsize[36] = 19
strinlLsize[37] = 23
strinlLsize[38] = 23
strinlLsize[39] = 27
strinlLsize[40] = 27
strinlLsize[41] = 14
strinlLsize[42] = 18
strinlLsize[43] = 13
strinlLsize[44] = 19
strinILsize[45] = 23
strinlLsize[46] = 16
strinILsize[47] = 18
strinlLsize[48] = 13
strinILsize[49] = 11
strinlLsize[50] = 12

257

B. Facial image generation module - Reference material and HG script

strin~size[51] = 15
strin~size[52] = 17
strin~size[53] = 14
strin~size[54] = 18
strin~size[55] = 18
strin~size[56] = 18
strin~size[57] = 18
strin~size[58] = 18
strin~size[59] = 18
strin~size[60] = 14
strin~size[61] = 14
strin~size[62] = 14
strinlLsize[63] = 14
strinlLsize[64] = 14
strin~size[65] = 14

-- Get Name of Head Index 2
name_head = getHeadName(2)
type = getHeadType name_head
-- Test if Head Exists in Database
test = headType Valid type
if (test == true) then
(

utility Head_Generator "Head Generator" -- Generate Head Generator Utility
(

label params "Head Generation Script vl.O"
button create "Create Head"
button quit "Quit 3DS Max"

on create pressed do
(

resetMaxFileO #noPrompt
progressStart "Generating Head"
progress Update (10)
-- Assign parametric head to variable ph
ph = param_heads head_type: type
-- Move parameteric head [x,y,z]
move ph [0.350917,-104.469,0]
move ph [0,0,35.4826]
scale ph [5.55,5.55,5.55]
progressUpdate (15)

-- Load Material and Textures Library
mat_name_Ioad = 10adMaterialLibrary
"C:\3dsmax3 _I \Matlibs\Head_ Textures.mat"
-- If Materials Library existis in Database then

258

B. Facial image generation module - Reference material and HG script

if maCname_load == true then (
maCname = getMatLibFileNameO
skin_type = "Material #1"
meditMaterials[I]= currentMaterialLibrary[skin_type]
-- Assign material skin type to slot 1 of the editor
ph.material = meditMaterials[1]
-- Assign material from editor to head object ph

progress Update (20)
ph.mapCoords = on
mergeMAXFile
"C:\3dsmax3_1 \Scenes\HeadDesign\Eyes2.max"
-- Open and merge eyes 3d model
select $EyeO 1
-- Tranformation to position Eyes appropriately
move $EyeOl [0,0,-57.8311]
move $EyeOl [4.4934,0,0]
select $Eye02
move $Eye02 [0,0,-59.0721]
move $Eye02 [-3.25661,O,DJ
move $Eye02 [0,0,0.400439]
move $Eye02 [0,-0.0673475,0]
move $Eye02 [-0.410314,0,DJ

progressUpdate (25)

select $EyeO 1
move $EyeOl [0,-1.86045,0]
move $EyeOl [0.429525,0,0]
move $EyeOl [0,0,5.764]
move $EyeO 1 [-4.23381,0,0]
move $EyeOl [0,-21.9471,0]
move $EyeOl [0,0,3.46355]
move $EyeOl [0.905571,0,0]
move $EyeOl [0,-84.0637,0]
move $EyeOl [0,0,15.2293]
move $EyeOl [5.74716,0,DJ
move $EyeOl [0,0,1.02152]
move $EyeOl [0.0252424,0,0]
move $EyeOl [-0.064502,16.2655,0]
move $EyeOl [0,0,-3.28828]
move $EyeOl [-1.13887,0,0]
move $Eye02 [0,0,5.81182]
move $Eye02 [4.29086,0,0]
move $Eye02 [0,-92.2886,0]
move $Eye02 [0,0,16.1499]
move $Eye02 [-5.57312,0,0]
move $Eye02 [O,O,1.l4661]
move $Eye02 [-0.890665,0,0]

259

B. Facial image generation module - Reference material and HG script

#19"]

#19"]

move $Eye02 [0,-0.214613,0]
meditMaterials[2]= currentMaterialLibrary["Material

$Eye01.material = meditMaterials[2]

progress Update (35)

select $Eye02
move $Eye02 [0.280777,0,0]
move $Eye02 [0,0,-0.0385544]
rotate $Eye02 (angleaxis 4 [1,0,0])
meditMaterials[3]= currentMaterialLibrary["Material

$Eye02.material = meditMaterials[3]

select $EyeOl
$Eye01.scale = [1.01942,0.970874,0.795798]
$Eye01.scale = [0.886452,0.844238,0.691998]

select $Eye02
$Eye02.scale = [1.01942,0.970874,0.795798]
$Eye02.scale = [0.886452,0.844238,0.691998]
$Eye02.scale = [0.881644,0.839659,0.688245]

progress Update (45)

f = openFile "C:/Head Designer/headsparamll.txt"
-- Open Parameters File
if (f != undefined) then -- check if file exists
(

instring = readLine f -- Read parameters file
modstring = replace instring 1 15 "Material #"
-- extract value for head material code
hdparam_arrayl[l] = modstring
count = 2

do
(

else

instring = readLine f -- read file data
if (count == 41) then
(

modstring = replace instring 1
string..,size [count] "Material #"
-- extract value for eye material code

hdparam_arrayl[2] = modstring
)

260

B. Facial image generation module - Reference material and HG script

(

)

modstring = replace instring I
strin/Lsize[count] ""
-- extract values for head parameters
hdparam_arrayl[count+l] = modstring

count = count+ I
) while not eof f

array_size = hdparam_arrayl.count

j =42
do
(

hdparam_arrayl [j] = hdparam_arrayl [j+ I]
j =j+1
)while G != array _size+ I)

print array_size
print hdparam_arrayl

count2 = I
for i = 3 to (array_size - 1) do
(

)

hdparam_array2[count2] =
hdparam_arrayl [i] as float
-- format parmaeters to float type
count2 = count2 + I

array_size2 = hdparam_array2.count
print array _size2
print hdparam_array2
progress Update (60)
-- Select head object ph
select ph
-- Edit Parametric Head Attributes assigning

values from array
ph. head_type = hdparam_array2[I]
ph.MastecStrength = hdparam_array2[2]
ph.x_Pull = hdparam_array2[3]
ph.Y]ull = hdparam_array2[4]
ph.z]ull = hdparam_array2[5]
ph.Y_Offset = hdparam_array2[6]
ph.Z_Offset = hdparam_array2[7]
ph.Head_ Width = hdparam_array2[8]
ph.Head_ Width_Skew_1 = hdparam_array2[9]
ph.Head_ Width_Skew _2 = hdparam_array2[I 0]
ph.Head_Depth = hdparam_array2[II]
ph.Head_Depth_Skew = hdparam_array2[12]

261

B. Facial image generation module - Reference material and HG script

ph.Head_Height = hdparam_array2[13]
ph.Head_HeighcSkew = hdparam_array2[14]
ph.Face_Squash = hdparam_array2[15]
ph. Head_Flatten = hdparam_array2[16]
ph.Forehead_Slope = hdparam_array2[17]
-- doiCprog.value = 65
progressUpdate (65)
ph.Nose_ Width = hdparam_array2[18]
ph.Nose_ Width_Z_ Weight =
hdparam_array2[19]
ph.Nose_Length = hdparam_array2[20]
ph.Nose_Length_Z_ Weight =
hdparam_array2[21]
ph.Nose_PulIup = hdparam_array2[22]
ph.Nose_Bridge = hdparam_array2[23]
ph.Nose_Hook = hdpararILarray2[24]
ph.Nose_Hook_Influence = hdparam_array2[25]
ph. Chin_Extent = hdparam_array2[26]
ph.Chin_TilCAmount = hdparam_array2[27]
ph.Chin_TilUnfluence = hdparam_array2[28]
ph. Chin_Accent = hdparam_array2[29]

progressUpdate (70)

phJaw _Width = hdparam_array2[30]
phJ aw _Influence = hdparam_array2[31]
phJaw_ Width_Uniformity =
hdparam_array2[32]
ph. Cheekbones_Extrude = hdparam_array2[33]
ph.Cheekbones_z....Pos = hdparam_array2[34]
ph. Cheek_Curvature = hdparam_array2[35]
ph.Cheek_Curvature_Z_Pos =
hdparam_array2[36]
ph. Cheek_ Cuvature_ Y _Pos =
hdparam_array2[37]
ph.Cheek_Curvature_Z_Falloff =
hdparam_array2[38]
ph.Cheek_Curvature_ Y_Falloff =
hdparam_array2[39]

progressUpdate (75)

ph.Eye_Separation = hdparam_array2[40]
ph.Eye_Inset = hdparam_array2[41]
ph.Eye_Top_Roundness = hdparam_array2[42]
ph.Eye_Bottom_Roundness =
hdparam_array2[43]
ph.Eye_Rotation = hdparam_array2[44]
ph.Eye_Brow _Bulge = hdparam_array2[45]

262

B. Facial image generation module - Reference material and HG script

ph.Ear_Height = hdparaIR-array2[46]
ph.Ear_Lobe_Length = hdparam_array2[47]
ph.Ear_Depth = hdparam_array2[48]
ph.Ear_Rotation = hdparam_array2[49]
ph.Mouth_Protrude = hdparam_array2[50]
ph.Mouth_ Width = hdparam_array2[51]

progressUpdate (85)

meditMaterials[l]=
currentMaterialLibrary[hdparam_array 1 [I]]

ph.material = meditMaterials[1]
-- Assign material/texture to head object

select $EyeOI
--max move
move $EyeOI

[hdparam_array2[52],hdparam_array2[53],hdparam...array2[5411
-- move $EyeOI [0,0,1.14486]
rotate $EyeOI (angleaxis 4

[hdparam_array2[58],hdparam_array2[59],hdparam_array2[60]])
meditMaterials[2]=

currentMaterialLibrary[hdparam_arrayI [2]]
$EyeOl.material = meditMaterials[2]

progressUpdate (95)

select $Eye02
move $Eye02

[hdparam_array2[55] ,hdparam_array2[56] ,hd paraIR-array2[5711
-- move $Eye02 [0,0,1.13579]
rotate $Eye02 (angleaxis 4

[hdparam...array2[6I] ,hdparam_array2[62],hdparam_array2[63]])
meditMaterials[3]=

currentMaterialLibrary[hdparam_arrayl [2]]
$Eye02.material = meditMaterials[3]

render camera outputwidth:640 outputheight:480
-- Render and display image of 3D head model

progressUpdate (lOO)

)
else

progressEndO
messageBox "Facial Image Generation
Complete"

messageBox "Head Parameters File Not Found!!"

263

B. Facial image generation module - Reference material and HG script

)
else
print "No materials found!!"

)
on edit pressed do
(
rollout edithead "Edit Head" -- Create rollout called Edit Head

(
-- Create slider object on rollout to control
parameter

slider HeadWidth "Head Width"
orient:#horizontal ticks:O range: [0, 1 0,hdpar~array2[8]]

slider HeadDepth "Head Depth"
orient:#horizontal ticks:O range: [0, IO,hdparam_array2[I1]]

slider HeadHeight "Head Height"
orient:#horizontal ticks:O range:[O, 1 0,hdparam_array2[13]]

slider HeadFlat "Head Flatten"
orient:#horizontal ticks:O range:[0,2,hdparam_array2[I6]]

slider HeadSlope "Forehead Slope"
orient:#horizontal ticks:O range: [-1,1 ,hdparam_array2[17]]

slider NoseWidth "Nose Width"
orient:#horizontal ticks:O range: [0,2,hdparam_array2[18]]

slider NoseLength "Nose Length"
orient:#horizontal ticks:O range: [0,3 ,hdparam_array2[20]]

slider NosePullup "Nose Pullup"
orient:#horizontal ticks:O range:[0,2,hdparam_array2[22]]

slider NoseBridge "Nose Bridge"
orient:#horizontal ticks:O range: [-1,1 ,hdparam_array2[23]]

slider NoseHook "Nose Hook"
orient:#horizontal ticks:O range: [-1,1 ,hdparam_array2[24]]

slider ChinExtent "Chin Extent"
orient: #horizontal ticks:O range: [0,2,hdparam_array2[26]]

slider ChinTilt "Chin Tilt" orient:#horizontal
ticks:O range: [0,2,hdparam_array2[27]]

slider JawWidth "Jaw Width" orient:#horizontal
ticks:O range: [0, I,hdparam_array2[30]]

slider CheekBones "Cheekbone Extrude"
orient:#horizontal ticks:O range:[-1,1 ,hdparam_array2[33]]

sIider CheekCurv "Cheek Curvature"
orient:#horizontal ticks:O range: [-1,1 ,hdparam_array2[35]]

slider EyeSep "Eye Seperation"
orient:#horizontal ticks:O range: [0,2,hdpar~array2[40]]

slider EyeRotate "Eye Rotate" orient:#horizontal
ticks:O range:[-I,I,hdparam_array2[44]]

slider EarHeight "Ear Height" orient:#horizontal
ticks:O range:[0,2,hdparam_array2[46]]

slider LobeLength "Lobe Length"

264

B. Facial image generation module - Reference material and HG script

)

orient:#horizontal ticks:O range: [0,1 ,hdparam_array2[47]]
slider MouthWidth "Mouth Width"

orient:#horizontal ticks:O range: [-1,1 ,hdparam_array2[5111

-- if slider value changes then assign value to head
parameter
on HeadWidth changed val do

ph. Head_ Width = val
on HeadDepth changed val do

ph.Head_Deptb = val
on HeadHeight changed val do

ph. Head_Height = val
on HeadFlat changed val do

ph.Head_Flatten = val
on HeadSlope changed val do

ph.Forehead_Slope = val
on NoseWidth changed val do

ph.Nose_ Width = val
on NoseLength changed val do

ph.Nose_Length = val
on NosePuIIup changed val do

ph.Nose_PuIIup = val
on NoseBridge changed val do

ph.Nose_Bridge = val
on NoseHook changed val do

ph.Nose_Hook = val
on ChinExtent changed val do

ph. Chin_Extent = val
on ChinTiIt changed val do

ph.Chin_TiICAmount = val
on JawWidth changed val do

phJaw _Width = val
on CheekBones changed val do

ph. Cheekbones_Extrude = val
on CheekCurv changed val do

ph. Cheek_Curvature = val
on EyeSep changed val do

ph.Eye_Seperation = val
on EyeRotate changed val do

ph.Eye_Rotation = val
on EarHeight changed val do

ph. Ear_Height = val
on LobeLength changed val do

ph.Ear_Lobe_Length = val
on MouthWidth changed val do

ph.Mouth_ Width = val

265

B. Facial image generation module - Reference material and HG script

)
)

eh=newRolloutFloater "Modifiers" 300220 -- Position rollout floater
addRollout edithead eh -- Add rollout to interface

)
on quit pressed do
(
quitMAXO #noPrompt
)

1***~********I

Head Comparator

~,,~~"-- ~.--. ·:·o:.~~_.~:.,~,,_,~,·o.~=.~w ~~
~:::::--,o:=.::::+~--:::::~.:~.--:..:.:c.:-:------.:-... :~,,·~~ .. " ... HEt,' ·;~",-~=aI:ii_~~==.~=~~==--=.::r- -~--...---

r,-----'-----..d Is~ P,,,,,, 3

.
t~1

__ .. .:.J

Head Comparator - Averaging and Modifier Utility Interface

Code Listing

1**1

266

B. Facial image generation module - Reference material and HG script

Dim head_paraml(65) As String
Dim head_param2(65) As String
Dim averaged_param(65) As String
Dim file_nameA, file_nameB As String

Dim strinjLsize(65) As String

Private Sub average_ClickO
Dim fso, txtfile, StrLine$
Dim param_stringA, param_stringB, param_descript As Variant
Dim strlength, length As Integer
Dim new_headparam(65) As String
Dim paramA, paramB, average As Double

ProgressBar1.Min = 0
ProgressBar1.Max = 100
ProgressBarl.Visible = True

If Text1.Text = "" Or Text2.Text = "" Or file_nameA = file_nameB Then
ProgressBar1.Visible = False
response = MsgBox("Sorry can not calculate average for null or similar files,

please select different head files for comparative analysis.", vbExclamation, "Head
File Selection Error")

Else

Forj = I To 65
strlength = Len(head_paramIG» 'calculates length of string
length = strlength - strinjLsizeG)
param_stringA = Right(head_paramlG), length) 'returns characters of

amount length from right

left
param_descript = Left(head_paramlG), strinjLsize(j» 'returns char from

paramA = CDbl(param_stringA) 'converts string to double

strlength = Len(head_param2G»
length = strlength - strinjLsize(j)
param_stringB = Right(head_param2(j), length)
paramB = CDbl(param_stringB)
average = FormatNumber(((paramA + paramB) / 2), 3)
If (j <= 3) Then

average = Int(average)
End If
new_headparam(j) = param..descript & CStr(average)
ProgressBar1.Value = IntG /2)

Nextj

If (Combo1.Text = "Head File I Selection") Then
file_nameA = file_nameA

267

B. Facial image generation module - Reference material and HG script

Else
file_nameA = Combo I. Text
End If

If (Comb02.Text = "Head File 2 Selection") Then
file_nameB = file_nameB
Else
file_nameB = Combo2.Text

End If

file_name = file_nameA & "-" & file_nameB & " averaged.txt"
Set fso = CreateObject("Scripting.FileSystemObject")
Set txtfile = fso.CreateTextFile("C:\My Documents\Head

Designer\Templates\Averaged\" & file_name, True)

Fork = I To 65
txtfile.WriteLine new_headparam(k)
StrLine = StrLine & vbCrLf
StrLine = StrLine & new_headparam(k)
ProgressBarl.Value = Int((65/2) + k)

Nextk
txtfile.Close

Labell.Caption = "Average of" & file_nameA & " and" & file_nameB
Label 1. Visible = True
Text3.Text = ""
Text3.Visible = True

Text3.SelStart = Len(Text3)
Text3.SelLength = 0
Text3.SelText = StrLine

ProgressBarl.Value = lOO
message = "Average of" & file_nameA & " and " & file_nameB & " written

to file:C:\My Documents\Head Designer\Templates\A veraged\" & file_name
response = MsgBox(message, vbInformation, "Output to File")
ProgressBarl.Visible = False
ProgressBarl.Value = ProgressBar1.Min

End If
End Sub

Private Sub Combol_Click()
Dim filename As String
Dim Str$, StrLine$

listvalue = Combo l.ListIndex

268

B. Facial image generation module - Reference material and HG script

Select Case listvalue
Case 0: filename = "generic man.txt"
Case I: filename = "generic woman.txt"
Case 2: filename = "african man.txt"
Case 3: filename = "african woman.txt"
Case 4: filename = "european man.txt"
Case 5: filename = "european woman.txt"
Case 6: filename = "oriental man.txt"
End Select

LabelS .Caption = ''''
Text1.Text = ""
Open "C:\My Documents\Head Designer\Templates\" & filename For Input As #1
, Read the contents of the file.
step = 1
While Not EOF(l)

Line Input #1, StrLine$
head_paraml(step) = StrLine$
If Str <> "" Then Str = Str & vbCrLf
Str = Str & StrLine
step = step + 1

Wend
Close #1

Text1.SelStart = Len(Textl)
Text1.SelLength = 0
Text1.SeIText = Str

End Sub

Private Sub Combo2_ClickO
Dim filename As String
Dim Str$, StrLine$

listvalue = Combo2.ListIndex

Select Case listvalue
Case 0: filename = "generic man.txt"
Case 1: filename = "generic woman.txt"
Case 2: filename = "african man.txt"
Case 3: filename = "african woman.txt"
Case 4: filename = "european man.txt"
Case 5: filename = "european woman.txt"
Case 6: filename = "oriental man.txt"
End Select

Label6.Caption = ""
Text2.Text = ""
Open "C:\My Documents\Head Designer\Templates\" & fiIename For Input As #2

269

B. Facial image generation module - Reference material and HG script

, Read the contents of the file.
step = I
While Not EOF(Z)

Line Input #2, StrLine$
head_pararnZ(step) = StrLine$
If Str <> "" Then Str = Str & vbCrLf
Str = Str & StrLine
step = step + I

Wend
Close #2

TextZ.SelStart = Len(TextZ)
TextZ.SelLength = 0
TextZ.SeIText = Str

End Sub

Private Sub Commandl_CIickO

Dim fso, txtfile, StrLine$
Dim param...stringA, pararn_stringB, pararn_descript As Variant
Dim strlength, length As Integer
Dim new _headparam(65) As String
Dim pararnA, pararnB, average, modifier As Double

ProgressBar1.Min = 0
ProgressBar1.Max = 100
ProgressBar 1. Visible = True

Iistvalue = Comb03.Text

Select Case Iistvalue
Case "Select Process":

ProgressBarl.Visible = False
response = MsgBox("Please select process.", vbExclarnation, "Process selection

Error")
Case "Average":

If Text1.Text = "" Or TextZ.Text = "" Or Combol.Text = ComboZ.Text Or
file_nameA = fiIe_narneB Then

ProgressBar1.Visible = False
response = MsgBox("Sorry can not calculate average for null or similar files,

please select different head files for comparative analysis.", vbExclarnation, "Head
File Selection Error")

Else

Forj = I To 65
strlength = Len(head-pararnIG» 'calculates length of string

Z70

B. Facial image generation module - Reference material and HG script

length = strIength - strin/Lsize(j)
param_stringA = Right(head_paraml (j), length) 'returns characters of

amount length from right
param_descript = Left(head_paraml(j), strin/Lsize(j» 'returns char from

left
pararnA = CDbl(param_stringA) 'converts string to double

strlength = Len(head-param2(j»
length = strIength - strin/Lsize(j)
param_stringB = Right(head_param2(j), length)
pararnB = CDbl(param_stringB)
average = FormatNumber«(pararnA + paramB) / 2),3)
If (j <= 3) Then

average = Int(average)
End If
new_headparam(j) = param_descript & CStr(average)
ProgressBarl.VaIue = Int(j / 2)

Nextj

If (Combol.Text = "Head File 1 Selection") Then
file_nameA = file_nameA

Else
file_nameA = Combo1.Text

End If

If (Comb02.Text = "Head File 2 Selection") Then
file_nameB = file_nameB

Else
file_nameB = Comb02.Text

End If

file_name = file_nameA & "-" & file_nameB & "averaged.txt"
Set fso = CreateObject("Scripting.FileSystemObject")
Set txtfile = fso.CreateTextFile("C;\My Documents\Head

Designer\Templates\Averaged\" & file_name, True)

Fork = 1 To 65
txtfile. W riteLine new _ headparam(k)
StrLine = StrLine & vbCrLf
StrLine = StrLine & new_headparam(k)
ProgressBar1.Value = Int«65 / 2) + k)

Nextk
txtfile.Close

Labell.Caption = "Average of" & file_nameA & " and " & file_nameB
Label 1. Visible = True
Text3.Text = ""
Text3. Visible = True

271

B. Facial image generation module - Reference material and HG script

Text3.SelStart = Len(Text3)
Text3.SelLength = 0
Text3.SeIText = StrLine

ProgressBar1.Value = 100
message = "Average of" & file_nameA & " and " & file_nameB & " written

to file:C:\My Documents\Head Designer\Templates\Averaged\" & file_name
response = MsgBox(message, vbInformation, "Output to File")
ProgressBar1.Visible = False
ProgressBar1.Value = ProgressBar1.Min

End If
Case "Modifier":

If Combo1.Text = "" Or Comb02.Text = "" Or Combo1.Text = Comb02.Text
Then

ProgressBar1. Visible = False
response = MsgBox("Sorry can not calculate modifier for null or similar files,

please select different head files for comparative analysis.", vbExclamation, "Head
File Selection Error")

Else

Forj = 1 To 65
strlength = Len(head_paraml (j» 'calculates length of string
length = strlength - strinlLsize(j)
param_stringA = Right(head_paraml (j), length) 'returns characters of amount

length from right
param....descript = Left(head_paraml(j), strin!Lsize(j» 'returns char from left
pararnA = CDbl(param_stringA) 'converts string to double

strlength = Len(head_pararn2(j»
length = strlength - strinlLsize(j)
param_stringB = Right(head_pararn2(j), length)
pararnB = CDbl(param_stringB)
modifier = FormatNumber((paramB - paramA), 3)
If (j <= 3) Then

modifier = Int(modifier)
End If
new_headparam(j) = param_descript & CStr(modifier)
ProgressBar 1. Value = Int(j /2)

Nextj

If (Combo I. Text = "Head File 1 Selection") Then
file_nameA = file_nameA

Else
file_nameA = Combo1.Text

End If

If (Comb02.Text = "Head File 2 Selection") Then
file_nameB = file_nameB

272

B. Facial image generation module - Reference material and HG script

Else
file_nameB = Comb02.Text

End If

file_name = file_nameA & "-" & file_nameB & "modifier.txt"
Set fso = CreateObject("Scripting.FileSystemObject")
Set txtfile = fso.CreateTextFile("C:\My Documents\Head

Designer\Templates\Modifiers\" & file_name, True)

Fork= I To 65
txtfile.WriteLine new _headparam(k)
StrLine = StrLine & vbCrLf
StrLine = StrLine & new _headparam(k)
ProgressBarl.Value = Int«65 / 2) + k)

Nextk
txtfile.Close

Labell.Caption = "Modifier of" & file_nameB & " from" & file_nameA
Labell.Visible = True
Text3.Text = ""
Text3.Visible = True

Text3.SelStart = Len(Text3)
Text3.SelLength = 0
Text3.SelText = StrLine

ProgressBarl.Value = 100
message = "Modifier of" & file_nameB & " from" & file_nameA & " written to

file:C:\My Documents\Head Designer\Templates\Modifiers\" & file_name
response = MsgBox(message, vbInformation, "Output to File")
ProgressBarl.Visible = False
ProgressBarl.Value = ProgressBarl.Min

End If

End Select

End Sub

Private Sub Cornmand2_ClickO
Forml.Hide

End Sub

Private Sub exiCCiickO
Forml.Hide

End Sub

273

B. Facial image generation module - Reference material and HG script

Private Sub Form_LoadO
Combol.AddItem "Generic Male"
Combol.Addltem "Generic Female"
Combol.AddItem "African Male"
Combol.AddItem "African Female"
Combol.AddItem "European Male"
Combol.AddItem "European Female"
Combol.Addltem "Oriental Male"

Combo2.AddItem "Generic Male"
Combo2.Addltem "Generic Female"
Combo2.AddItem "African Male"
Combo2.Addltem "African Female"
Combo2.AddItem "European Male"
Combo2.AddItem "European Female"
Combo2.AddItem "Oriental Male"

Combo3.Addltem "Average"
Combo3.Addltem "Modifier"

strinR-size(1) = 16
strinR-size(2) = 16
strinR-size(3) = 12
strinR-size(4) = 16
strinR-size(5) = 14
strinR-size(6) = 14
strinR-size(7) = 14
strinR-size(8) = 16
strinR-size(9) = 16
strinR-size(10) = 13
strinR-size(11) = 18
strinR-size(12) = 18
strinR-size(13) = 13
strinR-size(14) = 17
strinR-size(15) = 14
strinR-size(16) = 18
strinR-size(17) = 19
strinR-size(18) = 15
strinR-size(19) = 13
strinR-size(20) = 13
strinR-size(21) = 21
strinR-size(22) = 14
strinR-size(23) = 22
strinR-size(24) = 14
strinR-size(25) = 14
strinR-size(26) = 12
strinR-size(27) = 22
strinR-size(28) = 14
strinR-size(29) = 12

274

B. Facial image generation module - Reference material and HG script

strin~size(30) = 22
strin~size(31) = 14
strin~size(32) = 12
strin~size(33) = 16
strin~size(34) = 17
strin~size(35) = 16
strin~size(36) = 13
strin~size(37) = 19
strin~size(38) = 23
strin~size(39) = 23
strin~size(40) = 27
strin~size(41) = 27
strin~size(42) = 18
strin~size(43) = 13
strin~size(44) = 19
strin~size(45) = 23
strin~size(46) = 16
strin~size(47) = 18
strin~size(48) = 14
strin~size(49) = 12
strin~size(50) = 13
strin~size(51) = 16
strin~size(52) = 17
strin~size(53) = 14
strin~size(54) = 18
strin~size(55) = 18
string_size(56) = 18
strin~size(57) = 18
strin~size(58) = 18
strin~size(59) = 18
strin~size(60) = 14
strin~size(61) = 14
strin~size(62) = 14
strin~size(63) = 14
strin~size(64) = 14
strin~size(65) = 14

ProgressBar 1. Visible = False
Labell.Visible = False
file_narneA = "a"
file_narneB = "b"
Label5.Caption = ""
Label6.Caption = ""

End Sub

Private Sub HeadFilel_ClickO

Dim Str$, StrLine$

275

B. Facial image generation module - Reference material and HG script

CommonDialogl.Flags = cdlOFNHideReadOnly
, Set filters
CommonDialogl.Filter = "Text Files(* .txt)l* .txt"
, Specify default filter
CommonDialogI.FilterIndex = 2
, Display the Open dialog box
CommonDialogl.ShowOpen
, Display name of selected file

, MsgBox CommonDialogl.filename
'Exit Sub
file_nameA = CommonDialogl.filename
strlength = Len(file_nameA) 'calculates length of string
length = strlength - 40
fil(LnameA = Right(file_nameA, length)
strlength = Len(file_nameA)
length = strlength - 4
file_nameA = Left(file_nameA, length)

Open (CommonDialogl.filename) For Input As #1
, Read the contents of the file.
step = 1
Textl.Text = ""
Combol.Text = "Head File 1 Selection"
LabelS.Caption = file_nameA & ".txt Loaded"
While Not EOF(I)

Line Input #1, StrLine$
head_paraml(step) = StrLine$
If Str <> "" Then Str = Str & vbCrLf
Str = Str & StrLine
step = step + 1

Wend
Close #1

Textl.SelStart = Len(Text2)
Textl.SelLength = 0
Textl.SeIText = Str

End Sub

Private Sub headfile2_ClickO
Dim Str$, StrLine$.

CommonDialogI.Flags = cdlOFNHideReadOnly
, Set filters
CommonDialogI.Filter = "Text Files(*.txt)I*.txt"
, Specify default filter
CommonDialogl.FilterIndex = 2
, Display the Open dialog box

276

B. Facial image generation module - Reference material and HG script

CommonDialog I.ShowOpen
, Display name of selected file
'MsgBox CommonDialogl.filename
'Exit Sub
file_nameB = CommonDialogl.filename
strlength = Len(file_nameB) 'calculates length of string
length = strlength - 40
file_nameB = Right(file_nameB,length)
strlength = Len(file_nameB)
length = strlength - 4
file_nameB = Left(file_nameB,length)
Print file_nameB
Open (CommonDialogl.filename) For Input As #2
, Read the contents of the file.
step = I
Text2.Text = ""
Comb02.Text = "Head File 2 Selection"
Label6.Caption = file_nameB & ".txt Loaded"
While Not EOF(2)

Line Input #2, StrLine$
head_param2(step) = StrLine$
If Str <> "" Then Str = Str & vbCrLf
Str = Str & StrLine
step = step + 1

Wend
Close #2

Text2.SelStart = Len(Text2)
Text2.SelLength = 0
Text2.SelText = Str

End Sub

Private Sub modifiecClickO
Dim fso, txtfile, StrLine$
Dim param_stringA, param_stringB, param_descript As Variant
Dim strlength, length As Integer
Dim new_headparam(65) As String
Dim pararnA, pararnB, modifier As Double

ProgressBarl.Min = 0
ProgressBarl.Max = lOO
ProgressBarl. Visible = True

If Textl.Text = "" Or Text2.Text = "" Or Combol.Text = Comb02.Text Or
file_nameA = file_nameB Then

ProgressBarl.Visible = False

277

B. Facial image generation module - Reference material and HG script

response = MsgBox("Sorry can not calculate average for null or similar files,
please select different head files for comparative analysis.", vbExc1amation, "Head
File Selection Error")

Else

Forj = 1 To 65
strlength = Len(head_paraml(j» 'calculates length of string
length = strlength - strinR-size(j)
param_stringA = Right(head_paraml (j), length) 'returns characters of

amount length from right

left
param_descript = Left(head_paraml(j), strinR-size(j» 'returns char from

paramA = CDbl(param_stringA) 'converts string to double

strlength = Len(head_param2(j»
length = strlength - strinR-size(j)
param_stringB = Right(head_param2(j), length)
paramB = CDbl(param_stringB)
modifier = FormatNumber«paramB - paramA), 3)
If (j <= 3) Then

modifier = Int(modifier)
End If
new_headparam(j) = param_descript & CStr(modifier)
ProgressBar1.Value = Int(j / 2)

Nextj

If (Combo1.Text = "Head File I Selection") Then
file_nameA = file_nameA

Else
file_nameA = Combol.Text
End If

If (Comb02.Text = "Head File 2 Selection ") Then
file_nameB = file_nameB

Else
file_nameB = Comb02.Text

End If

file_name = file_nameA & "-" & file_nameB & "modifier.txt"
Set fso = CreateObject("Scripting.FileSystemObject")
Set txtfile = fso.CreateTextFile("C:\My Documents\Head

Designer\Templates\Modifiers\" & file_name, True)

Fork= I To 65
txtfile.WriteLine new _headparam(k)
StrLine = StrLine & vbCrLf
StrLine = StrLine & new _headparam(k)
ProgressBar1.Value = Int«65 / 2) + k)

Nextk

278

B. Facial image generation module - Reference material and HG script

txtfile.Close

Labell.Caption = "Modifier of " & file_nameB & " from " & file_nameA
Labell. Visible = True
Text3.Text = ""
Text3.Visible = True

Text3.SelStart = Len(Text3)
Text3.SelLength = 0
Text3.SelText = StrLine

ProgressBarl.Value = lOO
message = "Modifier of " & file_nameB & " from" & file_nameA & " written

to file:C:\My Documentslliead Designer\Templates\Modifiers\" & file_name
response = MsgBox(message, vbInformation, "Output to File")
ProgressBarl. Visible = False
ProgressBarl.Value = ProgressBarl.Min

End If
End Sub

1**1

279

C. Listing of heads engine code and NLl code

AppendixC

Head Engine and TMS + NU Code Listing

/********************** HEADS ENGINE *********************/

/* false detection */

:-multifile expand/7,set bid/1,inconsistent/3,subsumes/3.

subsumes (heads,descriptor(P1,_) ,descriptor(P2,_»:­
append(LP1,P2RP1,P1),
append(P2,RP1,P2RP1),
(LP1 = [_U;
RP1 = [_U).

subsumes(heads,descriptor(P,D1s),descriptor(P,D2s» :­
forall(

) .

member(D2,D2s) ,
(forall (

member([qualifiers(A2s,H2s)] ,D2),
(member (D1, D1s) ,

member([qualifiers(A1s,H1s)] ,D1),
(append (LA1,A2RA1,A1s) ,

append(A2s,RA1,A2RA1) ;
append (LH1,H2RH1,H1s),
append (H2s,RH1,H2RH1)

/* find a heads phrase */

set_bid (heads) :-
make_bid (heads , 0,

[[phrase,echo(Language,Phrase,heads) ,true]],
lOO,
[[heads, nil]]) .

280

C. Listing of heads engine code and NLI code

set_bid (heads) :-
make_bid (heads, 100,

[[heads,descriptor(P,D) ,true]] ,
[[heads,description(_) ,true]],
100,
[[heads,description(D)]]) .

set_bid (heads) :-
make_bid (heads , 101,

[[heads,description(Dl) ,true] ,
[heads,descriptor(P2,D2) ,true]],

100,
[[heads,description(D)]]) .

set_bid (heads) :-
make_bid (heads, 10,

[[heads,description(D) ,true]] ,
2,
[[heads, nil]]) .

expand (heads, 100,
[[heads,descriptor(P,D)]] ,
necessary,
[[heads,description(Dl]],
,n) .

expand (heads , 101,
[[heads,description(Dl)],

[heads,descriptor(Pl,D2)]] ,
necessary,
[[heads,description(Dl]] ,
,n) :-

append(Dl,D2,DT),
refine_qualifier_hedges(DT,D) .

expand(heads,lO,
[[heads,description(D)]] ,
necessary,
[[heads,
nil]] ,

,n) : -
dump_head (D) .

dump_head (D) :-
delete_element (Obj,D,OD),
[object ([X]) ,Q] = Obj,

281

C. Listing of heads engine code and NLl code

load_head_object(X) ,
apply_template_to_head,
/* check if qualifier exists for object X and apply

qualifier by loading appropriate modifier parameters */
modify_head_object(Q),

do_head_object(OD) ,
tell (user) ,
write (X) ,
nI,
print_head_object,
new(File, 'Heads Parameter File', 'headsparam.txt'),

open (File, write) ,
stype(File, 'TEXT',ttxt),
telling (Current) ,
tell (File) ,

print_head_object,
told,
tell (Current) ,
!.

expand(heads, 0,
[[phrase,echo(Language,Phrase,heads)]] ,
necessary,
[[Language,
nil]] ,

,n) : -
(
LPhrase

[Language,sentence(_),Phrase,Phrase,Parsed,heads] ,
make_bid(heads,ll,

[[phrase,echo(Language,Phrase,heads) ,true],
[Language,LPhrase,true]] ,
100,
[[heads,nil]]);

LPhrase = ..
[Language,comparison-phrase(_) ,Phrase,Phrase,Parsed,heads],

make_bid (heads , 12,
[[phrase,echo(Language,Phrase,heads) ,true] ,
[Language,LPhrase,true]] ,
100,
[[heads, nil]])

) .
expand(heads,ll,

[[phrase,echo(Language,Phrase,heads)] ,

282

C. Listing of heads engine code and NLI code

[Language,LPhrase]] ,
necessary,
[[heads,
nil]] ,

,n) :-

LPhrase
[Language, sentence (P) ,Phrase, Phrase,_, heads] ,

NPhrase = .•

[Language,noun-phrase(_) ,_,Phrase,_,heads] ,
VPhrase = ••

[Language,verb-phrase(_),_,Phrase,_,heads] ,

ancestor([Language,LPhrase], [Language,NPhrase,true] ,_)

ancestor([Language,LPhrase], [Language,VPhrase,true] ,_)

\+ancestor([Language,VPhrase], [Language,NPhrase, true] ,
) ,

make_bid(heads,21,
[[Language,LPhrase,true] ,
[Language,NPhrase,true] ,
[Language,VPhrase,true]] ,
100,
[[heads, F]]) .

expand (heads, 12,
[[phrase,echo(Language,Phrase,heads)] ,

[Language,LPhrase]] ,
necessary,
[[heads,
nil]] ,

,n) :-

LPhrase - ..
[Language,comparison-phrase(P) ,Phrase, Phrase,_, heads] ,

NPhrase = ..
[Language,noun-Fhrase(_),_,Phrase,_,heads] ,

ancestor([Language,LPhrase], [Language,NPhrase,true] ,_)

APhrase = .•

[Language,adjective-Fhrase(_),_,Phrase,_,heads] ,

283

C. Listing of heads engine code and NLI code

ancestor([Language,LPhrase], [Language,APhrase,true] ,_)

\+ancestor([Language,NPhrase], [Language , APhrase , true] ,
) ,

\+ancestor([Language,APhrase], [Language, NPhrase, true] ,
) ,

make_bid (heads, 22,
[[Language,LPhrase,true] ,
[Language,NPhrase,true] ,
[Language,APhrase,true]] ,
100,
[[heads, F]]) .

expand (heads , 21,
. [[Language,SPhrase],
[Language,NPhrase] ,
[Language,VPhrase]] ,

possible«0.0,0.1,0.9»,
[[heads,
descriptor (P, [QualifiersM I QualifiersSSR])]] ,

,n) : -

SPhrase = •• [Language,sentence(P),_,Phrase,_,heads] ,
/* extract the elements of the subject noun phrase */

OPhrase1 = •.
[Language,noun(MainObject),_,Phrase,_,heads] ,

ancestor([Language,NPhrase], [Language,OPhrase1,true] ,_
) ,

setof([qualifiers(Adjectives,Hedges)] ,
(setall(Adjective, (

APhrase = .•
[Language,adjective([Adjective]) ,_,Phrase,_,heads],

(ancestor([Language,NPhrase], [Language,APhrase,true] ,_
) ;

NPhrase = APhrase»,
Adjectives) ,

findall (Hedge, (
HPhrase = ..

[Language,adverb([Hedge]),_,Phrase,_,heads] ,

284

C. Listing of heads engine code and NU code

ancestor([Language,NPhrase], [Language,HPhrase,true] ,_)
) ,

Hedges)
) ,
Qualifiersl) ,

QualifiersM = [object (MainObject) IQualifiersl],

/* extract the elements of the verb phrase */
setal 1 (QualifiersS,
(NVPhrase = ••

[Language,noun-phrase(_),_,Phrase,_,heads] ,
ancestor([Language,VPhrase], [Language,NVPhrase,true] ,_

) ,
OPhraseV = ••

[Language,noun(SubObject),_,Phrase,_,heads] ,
OPhraseV2 = ••

[Language,noun(SubObject2),_,Phrase,_,heads] ,
ancestor([Language,NVPhrase], [Language,OPhraseV, true] ,

) ,
\+«ancestor([Language,NVPhrase], [Language,OPhraseV2,t

rue] ,_),SubObject \= SubObject2)),

setof([qualifiers(Adjectives,Hedges)] ,
(setall(Adjective, (

APhrase = ••
[Language,adjective([Adjective]),_,Phrase,_,heads] ,

(ancestor([Language,NVPhrase], [Language , APhrase , true] ,
) ;

NVPhrase = APhrase)),
Adjectives) ,

findall (Hedge, (
HPhrase = ••

[Language,adverb([Hedge]),_,Phrase,_,heads] ,

ancestor([Language,NVPhrase], [Language,HPhrase,true] ,_
)) ,

Hedges)
) ,
Qualifiers2) ,

QualifiersS = [object (SubObject) IQualifiers2]),
QualifiersSS) ,
refine qualifier hedges (QualifiersSS, QualifiersSSR) . - -

285

C. listing of heads engine code and NLl code

expand(heads,22,
[[Language,SPhrase] ,
[Language,NPhrase] ,
[Language,APhrase]] ,

possible ((0.0,0.1,0.9»,
[[heads,
descriptor(P,Qua1ifiers)]] ,

,n) :-

SPhrase = .•
[Language,comparison-phrase(P) ,_,Phrase,_,heads] ,

/* extract the elements of the subject noun phrase */

OPhrase1 = .•
[Language,noun(Subject),_,Phrase,_,heads] ,

ancestor([Language,SPhrase], [Language,OPhrase1,true] ,_
) ,

setof ([qualifiers (Adjectives ,Hedges)] ,
(setall(Adjective, (

NAPhrase = .•
[Language,adjective([Adjective]),_,Phrase,_,heads] ,

(ancestor([Language,NPhrase], [Language, NAPhrase , true] ,
) ;

NPhrase = NAPhrase»,
Adjectives) ,

findall (Hedge, (
HPhrase = ••

[Language,adverb([Hedge]),_,Phrase,_,heads] ,

ancestor([Language,NPhrase], [Language,HPhrase,true] ,_)
) ,

Hedges)
) ,
Qualifiers1) ,

/* extract the elements of the adjectival phrase */

setof([qualifiers(Adjectives,Hedges)] ,
(setall(Adjective, (

AAPhrase = .•
[Language,adjective([Adjective]l ,_,Phrase,_,heads] ,

(ancestor([Language,APhrase], [Language , AAPhrase , true] ,
) ;

286

C. Listing of heads engine code and NU code

APhrase = AAPhrase)),
Adjectives),

findall (Hedge, (
HPhrase = ••

[Language,adverb([Hedge]),_,Phrase,_,heads] ,

ancestor([Language,APhrase], [Language,HPhrase,true] ,_)
) ,

Hedges)
) ,
Qualifiers2) ,
append(Qualifiersl,Qualifiers2,Qualifiers12) ,
Qualifiers = [[object(Subject),Qualifiers12]].

refine qualifier hedges ([] , []) .
refine=qualifier=hedges([[object(0),Q1S] 10s] ,NewOs):­

delete_element([object(0),Q2s] ,os,ros),
merge qualifier hedges (QIs,Q2s,Qs), - -
! ,
refine_qualifier_hedges([[object(O),Qs] Iros] ,NewOs).

refine_qualifier_hedges([[object(O),Qls] 10s] ,NewOs):­
delete_element([object(0),Q2s] ,0s,rOs),
append(QIs,Q2s,Q12s),
refine_qualifier_hedges([[object(0),Q12s] Iros] ,NewOs).

refine_qualifier_hedges ([[object (0) ,QIs]IOs], [[object (0) ,Ql
s]INewOs]) :-

\+member([object(O) ,Q2s] ,Os),
! ,
refine qualifier hedges (Os,NewOs) . - -

merge qualifier hedges (Qs,Qs,Qs) . - -merge qualifier hedges (QIs,Q2s,Qs) :-- -
append(QIs,Q2s,UZQs),
delete_all(qualifiers([], []),UZQs,UQs),
sort (UQs, Qs) .

merge hedges([],Qs,Qs).
merge=hedges([qualifiers([Q] ,HIs) IQls] ,Q2s,Qs):­

delete_element (qualifiers ([Q] ,H2s),Q2s,Q2Ds),
append (HIs,H2s,UHs),
sort (UHs, Hs) ,
merge_hedges([qualifiers([Q] ,Hs) IQIs] ,Q2Ds,Qs).

merge_hedges ([qualifiers ([Q] ,HIs) IQls] ,Q2s, [qualifiers ([Q],
HIs) IQs]) :-

\+member(qualifiers([Q],H2s),Q2s),
merge_hedges (QIs,Q2s,Qs) .

287

C. Listing of heads engine code and NLI code

files(engines('heads:templates') ,Files),
member (X, Files) ,
seeing (Old) ,

cat ([' heads: templates: ' ,X] ,TX, _) ,
see(engines(TX)),
load_head_objectl,
seen,
see (Old) .
/* ;nl,

cat (['Heads template file ',X,' not
found'] ,Message,_),

write(Message),nl). */

load_head_objectl:-
read (Term) ,
deal_with_head_term(Term) .

!.

! .
deal with head term(template(X)):-

-X= .. [F U-;-
XX= •. [FU,
retractall(template(XX)) ,
assert(template(X)),
load_head_objectl.

apply_template_to_head:­
retractall(head(_)) ,
forall (template (H) , (H =.. [F, X] ,hoover (X, XX) ,HH
[F,XX] ,assert(head(HH)))).

hoover ([] , []) .
hoover([(F,V,M) Ix], [(F,V) IXX]):­

hoover (X,XX) .

print_head_object:­
do_value (head) ,
do_value (nose) ,
do_value (chin) ,
do_value (jaw) ,
do_value (cheek) ,
do_value (eyes) ,

288

C. Listing of heads engine code and NLI code

do_value (ears) ,
do_value (mouth) ,
do_value (eyeltranslate),
do_value (eye2translate),
do_value (eyelrotate),
do_value (eye2rotate) .

do_value (X) :-
F; .. [X,ValueList],
head(F) ,
do_values (X,ValueList) .

! .
do_values (X, [(N, V) I R]) :­

write (X) ,
wri te (' I),
write (N) ,
wri te (' ; '),
write (V) ,
nI,
do_values (X,R) .

/*apply wholehead modifier ([]):-- -
apply_wholehead_modifier([object(O),QIRL]):- */

! •
do_head_object([[object(ObjectFeature),Q] IRD]):-

load_modifiers (ObjectFeature,Q) ,
/* apply_modifier (0) ,
apply_qualifiers (O,Q), */
do_head_object(RD) .

modify head object ([]) :-- -
! .

modify_head_object([qualifiers([],_) IQs]):­
mOdify head object (Qs) .

modify_head=obje~t([qualifiers([Q] ,H) IQs]):­
load_modifiersl([head] ,qualifiers(Q,H»,

modify_head([nose,chin,jaw,cheek,eyes,ears,mouth,eyeltransl
ate,eye2translate,eyelrotate,eye2rotate] ,qualifiers(Q,H»,

modify head object (Qs) . - -

289

C. Listing of heads engine code and NLI code

modify_head([] ,qualifiers(Q,H»:-
! .

modify_head([ObjectFeatureIFeatureRem],qualifiers(Q,H» :­
apply modifier([ObjectFeature],qualifiers(Q,H»,
modify head(FeatureRem,qualifiers(Q,H».

load_modifiers (ObjectFeature, []):-
!.

load_modifiers (Obj ectFeature , [qualifiers([] ,_) IQs]):­
load modifiers (ObjectFeature,Qs) .

load_modifiers (ObjectFeature, [qualifiers([Q] ,H) IQs]):­
load_modifiersl(ObjectFeature,qualifiers(Q,H»,
load_modifiers (ObjectFeature,Qs) .

load_modifiersl(ObjectFeature,qualifiers(Q,H» :­
files(engines('heads:modifiers') ,Files) ,
/* member(qualifiers([X]),Q), */
(member (Q, Files)
-> seeing (Older) ,

cat(['heads:modifiers:' ,Q] ,TX,),
see (engines (TX» ,

load_modifier_object,
seen,
see (Older) ,

1* synonym (Obj ectFeature, Os) , */
apply_modifier(ObjectFeature,qualifiers(Q,H»,
write('Modifiers Applied to head'),
nl

;apply_qualifiers(ObjectFeature,qualifiers(Q,H») .

/* load_modifiers (0, []) :-
! .

load_modifiers (0, [[qualifiers ([] ,_)]IMods]) :-
! ,
load_modifiers (O,Mods) .

load_modifiers (0, [[qualifiers ([Q I Qs] ,H)] I Mods]) :­
load_modifiersl(O, [qualifiers(Q,H)]),
load_modifiers (0, [[qualifiers (Qs,H)] I Mods]). */

load_modifier_object:­
read (Term) ,
deal with modifier_term(Term) .

deal_with_modifier_term(end_of_file) :­
!.

290

C. listing of heads engine code and NLl code

!.
deal with modifier term(modifier(X»:-

-x= .. [FU, -
XX= .. [FU,
retractall(modifier(XX»,
assert(modifier(X»,
load_modifier_object.

apply_modifier(ObjectFeature,qualifiers(Q,H» :­
synonym (ObjectFeature, Os) ,
HeadF = .. [Os,ValueListH],
head (HeadF) ,
ModifierF = .. [Os,ValueListM],
modifier (ModifierF),
LimitsF = .. [Os,ValueListL],
limits (LimitsF) ,

add_modifier (head (Os , ValueListH), modifier (Os,ValueListM),
head (Os ,ValueList) ,limits (Os,ValueListL) ,qualifiers(Q,

H)) ,
reverse (ValueList,ReversedHeadList),
NewHeadF= .. [Os,ReversedHeadList],
retractall(head(HeadF»,
assert(head(NewHeadF» .

add_whole_modifier([] ,_,_):-
! .

add_whole_modifier([Obj IFlist] ,ValueListH,ValueListM):­
add modifier(Obj,ValueListH,ValueListM),
add_whole_modifier(Flist,ValueListH,ValueListM) .

add_modifier (head (Feature,ValueListH),
modifier(Feature, []), head (Feature, ValueListH),
limits (Feature, ValueListL),qualifiers(, »:-

!.
add modifier (head (Feature, ValueListH),
modifier (Feature, [(Aspect,Increment,Sign) IValueListM]),

head (Feature,NewH) ,
limits (Feature, [(Aspect,Default,Lower,Upper) IValueListL]
) ,qualifiers (Q,H» :-
/* find and delete aspect from head value list */

delete_element«Aspect,HValue),ValueListH,IValueListH),

evaluate_modifier (HValue,Default, Lower, Upper, Increment, NewI
ncrement) ,

291

C. Listing of heads engine code and NU code

/* calculate new value of aspect */
(Sign == add
->apply hedges (NewIncrement,H,NewModifier),
NewHValue is HValue + NewModifier
;NewHValue is Increment),

/* pass on new values and apply remainder of modifier */
add_modifier (head (Feature, [(Aspect,NewHValue) I IValueListH])
,modifier (Feature,ValueListM), head (Feature, NewH),
limits (Feature,ValueListL), qualifiers(Q,H».

evaluate modifier (HValue,Default, Lower, Upper, Increment,NewI
ncrement) :-

HValue == Default,
NewIncrement is Increment.

evaluate_modifier (HValue,Default, Lower, Upper, Increment, NewI
ncrement) :-

HValue > Default,
(HValue < Upper
->InterValueA is 1/(D.8*sqrt(2*3.14»,

InterValueB is (HValue - Default)A2 ,
InterValueC is 2*(D.8 A 2),

InterValueD is aln(InterValueB/InterValueC) ,
NewIncrement is InterValueA*InterValueD

;NewIncrement is 0).

evaluate_modifier (HValue , Default , Lower, Upper, Increment, New I
ncrement) :-

HValue < Default,
(HValue > Lower
-> InterValueA is 1/(D.8*sqrt(2*3.14»,

InterValueB is (HValue - Default)A2 ,
InterValueC is 2*(D.8 A 2),

InterValueD is aln(InterValueB/InterValueC),
New Increment is (InterValueA*InterValueD),

(sign (Increment) =:= -1
->NewIncrement is -(NewIncrement)

;NewIncrement is NewIncrement)
;NewIncrement is 0) .

apply_qualifiers (0, []):-
! .

apply_qualifiers (0, [qualifiers (Q,H) IQs]):­
head_semantic_map(Q,F,PlusMinus),
synonyrn(O,OS),
Feature - .. [OS,ValueList],

292

C. listing of heads engine code and NLI code

template (Feature) ,
HeadFeature = •• [OS,HeadValueList],
head (HeadFeature),
member((F,_,Modifier) ,ValueList) ,
delete_element((F,Value) ,HeadValueList, InterHeadValueL

ist) ,
Modifier is Modifier * PlusMinus,
apply hedges (Modifier,H,NewModifier),
NewValue is Value + NewModifier,
NewHeadFeature = ••

[OS, [(F, NewValue) I InterHeadValueList]] ,
retract(head(HeadFeature)) ,
assert(head(NewHeadFeature)),
apply qualifiers (O,Qs) .

apply_hedges (Modifier, [] ,Modifier):-
! .

apply_hedges (Modifier, [HIHs],NewModifier):­
apply hedge (Modifier,H,InterModifier),
apply_hedges (InterModifier,Hs,NewModifier) .

apply hedge (Modifier, very, NewModifier) :­
NewModifier is Modifier A 2.

apply hedge (Modifier,fairly,NewModifier) :­
NewModifier is Modifier A O.5.

apply hedge (Modifier,slightly,NewModifier) :­
NewModifier is Modifier A O.5.

:-dynamic head_semantic_map/3.
head_semantic_map(wide,width, 1) .
head_semantic_map (long, length,l) .
head_semantic_map(small,height,-l) .

:-dynamic synonym/2.
synonym ([X] ,X) .
synonym ([ears] ,ear) .

/* Fuzzy Variables */

fuzzy_variable (forehead_slope) :­
[0,1];
receeding, \, linear, [0,0.5];
vertical, /\, linear, [x,y,z];
bulging, /, linear, [yz].

fuzzy_variable (eye_width) :­
[-1,1];

293

C. Listing of heads engine code and NLl code

small, \, linear, [-1, -0.1];
medium, /\, linear, [0, 0.2, 0.4];
large, /, linear, [0.5, 1].

fuzzy_variable (eye_open) :­
[0,1];
narrow, \, linear, [0 , 0.5] ;
medium, /\, linear, [x,y, z];
wide, /, linear, [yz].

fuzzy_variable (eye_seperation) :­
[0,1];
close, \, linear, [0, ° .5];
medium, /\, linear, [x,y,z];
wide, /, linear, [yz].

fuzzy_variable (nose_length) :­
[0,1];
short, \, linear, [0, ° .5];
medium, /\, linear, [x,y, z] ;
long, /, linear, [yz].

fuzzy_variable (nose_width) :­
[0,1];
small, \, linear, [0, ° .5];
medium, /\, linear, [x,y, z];
large, /, linear, [yz]

fuzzy_variable (nose_tip) :­
[0,1];
upward, \, linear, [0, 0. 5] ;
horizontal, /\, linear, [x,y, z];
downward, /, linear, [yz].

fuzzy_variable (nose-profile) :­
[0,1];
concaved, \, linear, [0,0.5];
straight, /\, linear, [x,y, z];
hooked, /, linear, [yz].

fuzzy_variable (mouth_width) :­
[0,1] ;
small, \, linear, [0,0.5];
medium, /\, linear, [x,y,z];
wide, /, linear, [yz].

fuzzy_variable (mouth-protrusion) :­
[0,1] ;
slight, \, linear, [0,0.5];
medium, /\, linear, [x,y,z];
large, /, linear, [yz].

fuzzy_variable (ear_length) :­
[0,1] ;
short, \ , linear, [° , ° . 5] ;

294

C. Listing of heads engine code and NU code

medium, /\, linear, [x,y, z];
long, /, linear, [yz].

fuzzy_variable (ear-protrusion) :­
[a,l];
slight, \, linear, [0,0.5];
medium, /\, linear, [x,y, z];
large, /, linear, [yz].

:-dynamic modifier/l.
modifier(head([(texture,l.O,assign), (type,2.a,assign), (stre
ngth,O.O,add), (x-pull,lOa.O,add), (y-pull,laO.O,add), (z-pul1
,lOa.O,add), (y_offset,O.O,add), (z_offset,O.O,add), (width,la
o. 0, add) , (widthskewl, a . ° ,add) , (widthskew2, o. a, add) , (depth, 1
OO.O,add), (depthskew,O.O,add), (height,laO.a,add), (heightske
w,O.O,add), (face_squash,l.O,add), (flatten,l.O,add), (slope,a
.O,add)])).
modifier (nose ([(width,1.a,add), (width_zweight,O.O,add), (len
gth,l.a,add), (length_zweight,a.O,add), (pullup,l.a,add), (bri
dge,l.a,add), (hook,l.O,add), (hook_influence,O.O,add)])).
modifier(chin([(extent,l.O,add), (tilt,l.O,add), (tilt_influe
nee, 1. a, add) , (accent, O. 0, add)])) .
modifier(jaw([(width,a.a,add), (influence,O.O,add) , (uniformi
ty, ° . 0, add)])) .
modifier(cheek([(extrude,O.a,add), (zpos,O.O,add), (curvature
s,O.O,add), (curvature_zpos,O.a,add), (curvature_ypos,a.O,add
), (curvature_zfalloff,a.5,add), (curvature_yfalloff,0.5,add)
])) .
modifier (eyes ([(colour,6.0,assign) , (separation,1.0,add), (in
set,O.a,add), (toproundness,O.a,add), (bottomroundness,O.a,ad
d), (rotation,O.O,add) , (brow_bulge,O.O,add)])).
modifier (ears ([(height,O.O,add) , (lobe,O.O,add), (depth,O.a,a
dd) , (rotation, o. a, add)])) .
modifier(mouth([(protrude,a.O,add), (width,a.O,add)])).
modifier(eyeltranslate([(x,O.O,add), (y,a.O,add), (z,O.O,add)
])) .
modifier (eye2translate ([(x, o. a, add) , (y, o. 0, add) , (z, a. a, add)
])) .
modifier (eyelrotate ([(x, 1. a, add) , (y, o. a, add) , (z, -
1. ° , add)])) .
modifier (eye2rotate ([(x, 1.0,add), (y, ° .O,add), (z,-
1. ° , add)])) .

:-dynamic head/l.
head (head ([(texture,1.0, 0), (type, 2 .0, o.a), (strength, 0.0,1. °
), (xyull,lOO.a,1.0), (y-pul1,lOO.0,1.a), (zyull,lOa.O,l.O),

295

Co Listing of heads engine code and NU code

(y offset,O.O,O.l), (z offset,OoO,Ool), (width,lOOoO,lOoO), (w
idthskewl,OoO,Ool), (widthskeW2,000,0.1), (depth,lOOoO,lOoO),
(depthskew, ° 0 0, ° .1) , (height, 100. 0,100 0) , (heightskew, 0. 0, ° 01
), (face_squash, 100,100) , (flatten, 100, ° .1) , (slope, ° 00, 001)])
) 0

head(nose([(width,loO,O.l), (width_zweight,O.O,Ool), (length,
1.0,002), (length zweight,OoO,O.l), (pullup,LO,Ool), (bridge,
1. 0, ° .1) , (hook, 1. 0, ° .1) , (hook_influence, ° 0 0, 001)] » .
head(chin([(extent,LO,Ool), (tilt,1.0,001), (tilt_influence,
1.0,0.1), (accent,O.O,O.l»)) 0
head(jaw([(width,O.O,Ool), (influence,OoO,Ool), (uniformity,O
.0,0.1»))0
head (cheek ([(extrude, ° 0 0, 0.1) , (zpos, 0. 0, ° 0 1) , (curvatures, ° . ° , ° 0 1) , (curvature _ zpos , ° 0 0, ° 0 1) , (curvature _ypos , ° . ° , ° 0 1) , (c
urvature_zfalloff,005,0.1), (curvature_yfalloff,0.5,001»)).
head(eyes([(colour,600,0), (separation,loO,Ool) , (inset,O.O,O
.1), (toproundness,OoO,O.l), (bottomroundness, 000,001) , (rotat
ion,OoO,O.l), (brow_bulge,OoO,O.l»)).
head (ears ([(height,0.0,0.2), (lobe,0.0,002), (depth,OoO,O.l),
(rotation,O.O,O.l»)) .
head (mouth ([(protrude,Oo 0, ° 02), (width, 000, 001»)) .
head (eyeltranslate ([(x, ° .0, 0), (y, ° 0 0, 0), (z, ° 0 0, 0»)) 0
head (eye2translate ([(x, 000, 0), (y, 000, 0), (z, 0.0, 0»)).
head (eyelrota te ([(x, 1. 0, 0) , (y, ° 0 ° , 0) , (z, -1. ° , 0)))) 0
head (eye2 rotate ([(x, 1 . ° , 0) , (y, ° . ° , 0) , (z, -1. ° , 0)])) 0

:-dynamic limits/l.
limi ts (head ([(texture, 0, 0, 0) , (type, 0, 0, 0) , (strength, 0, 10, 0)
,(xJ)ull,lOO,l,lOO), (YJ)ull,lOO,l,lOO), (zJ)ull,lOO,l,lOO), (
y_offset, 0, -1, 1), (z_offset, 0,-
1,1), (width,l,O.l,lOO), (widthskewl,O,-l,l), (widthskew2,0,-
1,1), (depth,l,O.l,lOO), (depthskew,O,-
1,1), (height,l,Ool,lOO), (heightskew,O,-
1,1), (face_squash,1,0,20), (flatten,1,0,2) , (slope,O,-
1,1)]»0
limits(nose([(width,1,0,2), (width_zweight,O,-
1,1), (length, 1, 0, 3), (length_zweight, 0,-
1, 1) , (pullup, 1, 0,2) , (bridge, 0, -1,1) , (hook, 0, -
1,1), (hook_influence,O,-l,l»)).
limits (chin ([(extent, 1, 0,2) , (tilt, 1, 0,2) , (tilt_influence, 0,
-1,1), (accent,O,-l,l»)) 0
limits (jaw([(width, 0, 0, 1), (influence, 0, 0, 1), (uniformity, 0,-
1,1»))0
limits(cheek([(extrude,O,-l,l), (zpos,O,-
1,1), (curvatures, 0,-1,1) , (curvature_zpos,O,-
1,1), (curvature_ypos,O,-

296

C. listing of heads engine code and NLI code

1,1), (curvature_zfalloff,0.5,0,1), (curvature_yfalloff,0.5,0
,1)]».
limi ts (eyes ([(colour, 0, 0, 0) , (separation, 1, 0,2) , (inset, 0, -
1,1), (toproundness, 0,-1,1) , (bottomroundness,O,-
1,1) , (rotation, 0, -1,1) , (brow_bulge, 0, 0,1)])) .
limi ts (ears ([(height, 0, 0,2) , (lobe, 0, 0,1) , (depth, 0, -
1 , 2) , (rot at i on, ° , -1, 1)])) .
limits (mouth ([(protrude, 0, -1, 1), (width, 0, -1, 1) 1» .
limits (eyeltranslate ([(x, 0. 0, 0) , (y, 0.0,0) , (z, 0.0,0) 1» .
limi ts (eye2translate ([(x, ° . 0, 0) , (y, 0. 0, 0) , (z, ° . 0, 0)])) .
limits (eye1rotate ([(x,!. 0,0), (y, 0. 0,0), (z, -1.0,0)]» .
limi ts (eye2 rotate ([(x,!. ° , 0) , (y, ° . ° , 0) , (z, -1. 0, 0) 1)) .

:-dynamic template/l.
template (head ([(texture,!. 0,0) , (type, 2. 0, 0.0) , (strength, 0. °
,1.0), (xyull,100.0,1.0), (yyull,100.0,1.0), (zyull,100.0,1
. 0) , (y _offset, ° . 0, ° . 1) , (z_offset, ° . 0, 0.1) , (width, 100 . 0,10. °
), (widthskew1,0.0,0.1), (widthskew2,0.0,0.1), (depth,100.0,10
.0), (depthskew,O.O,O.l) , (height,100.0,10.0), (heightskew,O.O
,0 .1) , (face_squash, 1. 0,1.0) , (flatten, 1. 0, ° .1) , (slope, 0. 0, 0.
1)])) .

template (nose ([(width,!. 0, 0.1) , (width zweight, 0. 0, ° .1) , (len
gth,1.0,0.2), (length_zweight,O.O,O.l), (pullup,2.0,0.1), (bri
dge, 1. 0, ° .1) , (hook,!. 0, ° .1) , (hook_influence, 0. 0, 0.1)] » .
template (chin ([(extent, 1. 0, 0.1) , (tilt,!. 0, ° .1) , (tilt_influe
nce,1.0,0.1), (accent,O.O,O.l)]».
template (jaw ([(width, 0. 0, 0.1) , (influence, 0. 0, 0.1) , (uniformi
ty,O.O,O.l)]» .
template (cheek ([(extrude, 0.0, ° .1) , (zpos, 0. 0, ° .1) , (curvature
s,O.O,O.l), (curvature_zpos, 0.0,0.1) , (curvature_ypos,O.O,O.l
), (curvature_zfalloff,0.5,0.1), (curvature_yfalloff,0.5,0.1)
] » .
template (eyes ([(colour, 6.0, 0), (separation, 1.0, 0.1), (inset, °
.0,0.1), (toproundness, 0.0,0.1) , (bottomroundness, 0.0,0.1) , (r
otation,O.O,O.l), (brow_bulge,O.O,O.l)]».
template (ears ([(height, ° . 0, ° . 2) , (lobe, ° . 0, ° .2) , (depth, ° . 0, °
.1), (rotation, 0.0, 0.1)]» .
template (mouth ([(protrude, ° . 0, 0.2) , (width, ° . 0, ° . 1)])) .
template (eyeltranslate ([(x, 0.0, 0), (y, 0.0, 0), (z, 0.0, 0)]» .
template (eye2translate([(x,o.o,o), (y,O.O,O), (z,O.O,O)]».
template (eyelrotate ([(x,1.0, 0), (y, 0.0, 0), (z, -1. 0, 0)]» .
template (eye2rotate ([(x, 1. 0,0), (y, 0.0,0), (z, -1.0,0)]» .

/************************** END **************************/

297

C. Listing of heads engine code and NU code

/********************* ENGLISH ENGINE ********************/

/* false detection */

/* :-multifile expand/7, set_bid/l, tms_inconsistent/3. */

tms_inconsistent(english,Ll,L2l :­
consistent_meaning(english,Ll,L2,ConVall,
! ,
ConVal = false.

expand(english,O,
[[english, Sl] ,
[english,S2]] ,
necessary,
[[_,ConVal]], ,cl:-
consistent_meaning (english,Sl,S2,ConVal) .

/* lexical analysis */

set_bid(english) :-
make_bid(english,l,

[[phrase,_,true]] ,
100,
[[english,english(_,_,_,_,_l]]l.

/* syntax analysis */

set_bid (englishl :-
grammar (english,_, [BareAntecedent/BareAntecedents],_l,
construct_antecedents (english, [BareAntecedent] ,Anteced

ent) ,
make_bid(english,2,

Antecedent,
100,
[[english, english (, , , ,)]] 1 - - - --

/***************************** END ***********************/

/********************** ENGLISH GRAMMAR ******************/

/* english grammar */

298

C. Listing of heads engine code and NU code

:-dynamic grammar/4.
:-multifile grammar/4.

grammar (english,sentence,
[noun-phrase, verb-phrase] ,100) .

grammar (english,sentence,
[imperative_verb,noun-phrase] ,100).

grammar (english,sentence,
[sentence, conjunction, sentence] ,100).

grammar (english,noun-phrase,
[noun] ,100) .

grammar (english,noun-phrase,
[noun-phrase,possessor,noun-phrase] ,100).

grammar (english,noun-phrase,
[noun-phrase,conjunction,noun-phrase] ,100).

grammar (english,noun-phrase,
[adjective-phrase,noun-phrase] ,100).

grammar (english,adjective-phrase,
[adjective] ,100) .

grammar (english,adjective-phrase,
[adverb,adjective] ,100) .

grammar (english,noun-phrase,
[noun-phrase,comparison-phrase] ,100).

grammar (english,noun-phrase,
[indefinite_article,noun-phrase] ,100).

grammar (english,noun-phrase,
[definite_article,noun-phrase] ,100).

grammar (english,verb-phrase,
[intransitive_verb] ,100).

grammar (english,verb-phrase,
[verb-phrase,prepositional_phrase] ,100).

grammar (english,verb-phrase,
[transitive_verb,noun-phrase] ,100) .

grammar (english,prepositional-phrase,
[preposition,noun-phrase] ,100).

grammar (english,prepositional-phrase,
[prepositional-phrase,

conjunction,
noun-phrase] ,100).

grammar (english,comparison-phrase,
[noun-phrase,comparator,noun-phrase] ,100)

grammar (english,comparison phrase,
[noun-phrase,comparator,adjective-phrase] ,100).

/*************************** END *************************/

299

C. Listing of heads engine code and NLI code

/*********************** ENGLISH LEX *********************/

/* english lexemes */

:-multifile lexical/4.
:-dynamic lexical/4.

lexical (english,noun, [fruit] ,100) .
lexical (english,noun, [time] ,100).
lexical (english, noun, [nose] ,100) .
lexical (english,noun, [ears] ,100).
lexical (english, noun, [eyes] ,100) .
lexical (english,noun, [mouth] ,100) .
lexical (english, noun, [head] ,100) .
lexical (english,noun, [chin] ,100).
lexical (english,noun, [cheek] ,100).
lexical (english,noun, [jaw] ,100).
lexical (english,noun, [man] ,100).
lexical (english, noun, [men] ,100) .
lexical (english,noun, [woman] ,100) .
lexical (english,noun, [train], 100) .
lexical (english,noun, [boxer] ,100) .
lexical (english,noun, [male] ,100).
lexical (english,noun, [female] ,100) .
lexical (english,noun, [african] ,100).
lexical (english,noun, [european] ,100).
lexical (english,noun, [oriental] ,100) .
lexical (english,noun, [caucasian] ,100).
lexical (english, adj ective, [large] ,100) .
lexical (english,adjective, [small] ,100) .
lexical (english,adjective, [big] ,100).
lexical (english,adjective, [flat] ,100).
lexical (english,adjective, [fat] ,100).
lexical (english,adjective, [slim] ,100).
lexical (english,adjective, [wide] ,100).
lexical (english,adjective, [narrow] ,100).
lexical (english,adjective, [beautiful] ,100).
lexical (english,adjective, [african] ,100).
lexical (english,adjective, [european] ,100).
lexical (english,adjective, [oriental] ,100) .
lexical (english,adjective, [caucasian] ,100).
lexical (english,adjective, [blue] ,100).
lexical (english,adjective, [hazel], 100) .
lexical (english,adjective, [grey] ,100).
lexical (english,adjective, [aquamarine] ,100).
lexical (english,adjective, [green] ,100).

300

C. listing of heads engine code and NLI code

lexical (english,adjective, [brown] ,100).
lexical (english,adjective, [vampire] ,100).
lexical (english,adjective, [bony] ,100).
lexical (english,adjective, [broad] ,100).
lexical (english,adjective, [bulbous] ,100).
lexical (english,adjective, [bulging] ,100).
lexical (english,adjective, [closeset] ,100).
lexical (english,adjective, [full] ,100).
lexical (english,adjective, [hooked] ,100).
lexical (english,adjective, [jutting] ,100).
lexical (english,adjective, [long] ,100).
lexical (english,adjective, [oval] ,100).
lexical (english,adjective, [protruding] ,100).
lexical (english,adjective, [puffed] ,100).
lexical (english,adjective, [pugged] ,100) .
lexical (english,adjective, [receding] ,100).
lexical (english,adjective, [round] ,100).
lexical (english,adjective, [short], 100) .
lexical (english,adjective, [slantingdown] ,100).
lexical (english,adjective, [slantingup] ,100) .
lexical (english,adjective, [squared] ,100).
lexical (english,adjective, [squinted] ,100) .
lexical (english,adjective, [sunken] ,100).
lexical (english,adjective, [thin] ,100).
lexical (english,adjective, [wideapart] ,100).
lexical (english,adverb, [very] ,100).
lexical (english,adverb, [fairly] ,100).
lexical (english,adverb, [quite] ,100).
Lexical (english,adverb, [slightly] ,100).
lexical (english,noun, [he] ,100) .
lexical (english,noun, [jake] ,100) .
lexical (english,transitive verb, [has] ,100).
lexical (english,noun, [flies] ,100) .
lexical (english,adjective, [fruit] ,100).
lexical (english,imperative_verb, [eat] ,100).
lexical (english,imperative_verb, [sell] ,100).
lexical (english,intransitive_verb, [flies] ,100).
lexical (english,transitive_verb, [like] ,100).
lexical (english, possessor, [of] ,100) .
lexical (english,preposition, [like] ,100).
lexical (english,preposition, [with] ,100).
lexical (english,indefinite_article, [a] ,100).
lexical (english, indefinite_article, [an] ,100) .
lexical (english,definite_article, [the] ,100).
lexical (english,definite_article, [draw] ,100).
lexical (english,noun, [banana] ,100).

301

c. Listing of heads engine code and NU code

lexical (english,noun, [arrow] ,100) .
lexical (english,noun, [shop] ,100).
lexical (english,conjunction, [and] ,100).
lexical (english,disjunction, [or] ,100).
lexical (english,transitive_verb, [sells] ,100).
lexical (english,transitive_verb, [list] ,100).
lexical (english,noun, [shops] ,100) .
lexical (english,adjective, [shops] ,100).
lexical (english,noun, [product] ,100).
lexical (english,noun, [bread] ,100) .

__ lexical (english,transitive_verb, [is] ,100).
lexical (english,comparator, [is] ,100) .

/*************************** END *************************/

/************************** PHRASE ***********************/

:- dynamic active/O.

describe:­
reset,
amplify.

amplify: -
setal 1 (Language, (grammar(Language,_,_,_);lexical(Langu

age,_,_,_)) ,Languages) ,
setall(Da,echo_database(Da),Ds),
(describe_boxes (OldSource, OldPhrase, OldDataBase) ;
Es = [
'the man has a large nose',
'the woman has small ears',
'the man has a very wide nose',
'the very fat woman has large eyes',
'the woman is very beautiful',
'the very slim woman is fairly beautiful'
] ,
Es = [OldEI_] ,
TD = 230,
TW = 310,
centred(TT,TL,TD,TW),

mdialog(TT,TL,TD,TW,
[button(187,220,26,80, 'Ok'),

button(190,10,20,80, 'Cancel'),
text(10,10,20,190, 'English'),

302

C. listing of heads engine code and NU code

menu(30,10,150,290,Es,OldE,OldPhrase)
] ,

) ,
OldSource = english,
OldDataBase = heads),
(member (TOldDataBase,Ds),
OldDataBase = TOldDataBase,
I • . ,
[OldDataBasel_] = Ds),
(member (TTopLanguage, Languages) ,
Top Language = TTopLanguage,
I • . ,
[TopLanguagel_] = Languages),

D = 350,
W = 310,

centred(T,L,D,W),
mdialog(T,L,D,W,
[button(317,220,26,80, 'Ok'),

button(320,10,20,80, 'Cancel'),
button(150,220,20,80, 'Load'),
text(10,10,20,290, 'Description'),
edit (30, 10,100,290,OldPhrase,Phrase) ,
text(180,10,20,140, 'Language'),

menu(210,10,100,140,Languages,TopLanguage,QLanguage) ,
text(180,160,20,140, 'Target Database'),
menu(210,160,100,140,Ds,OldDataBase,DataBase)

] ,
Button) ,
(Button = 1,

atom_string (Phrase, SPhrase),
cat([SPhrase,- . -] ,SPhrase_Dot,_),
read_in (SWords_Dot) <- SPhrase_Dot,
append (SWords, [' . '] , SWords_Dot) ,
statistics (runtime, Time) ,
assert(start_time(Time» ,
retractall(describe_boxes(_,_,_»,

assert(describe_boxes(QLanguage,Phrase,DataBase»,
assume (phrase, echo (QLanguage, SWords, DataBase) ,100);
Button = 3,
retractall(describe_boxes(_,_,_»,
amplify) .

/*********************** END PHRASE **********************/

303

C. listing of heads engine code and NU code

/*********************** OPEN ECHO ***********************/

file_search-path(echo, 'Macintosh HD:Echo:').

'<LOAD>' (_) : -
abolish('<LOAD>'/l) ,
source_load(echo(open_tms»,
source_load(echo(echo»,
load_engine (echo) ,
/*load_engine(sql),*/
load_engine (english),
/*load engine (punjabi) ,*/
load_engine (mapper) ,
install_menu('ECHO', ['Database', 'Query', 'Describe', 'Am

plify', 'Acquire', 'Print New Language', 'Consolidate
Language', 'Print Language', 'Save Language', 'Reset
Language', 'Reset']).

, ECHO' ('Query') : -
query.

'ECHO' ('Database') : -
database.

'ECHO' ('Describe'):­
describe.

'ECHO' ('Amplify'):­
amplify.

/*'ECHO' ('Acquire'):­
acquire.*/

'ECHO' ('Print New Language'):­
print_new_language.

'ECHO' ('Consolidate Language'):­
consolidate_language.

'ECHO' ('Print Language'):­
print_language.

'ECHO' ('Save Language'):­
save_language.

'ECHO' ('Reset Language'):­
reset_language.

'ECHO' ('Reset') :-
reset,
retractall(unisql_collection(_»,
retractall(old_unisql_collection(_» .

/***/

304

C. listing of heads engine code and NU code

/*********************** OPEN TMS ************************/

file_search-path(tms, 'Macintosh HD:Echo:').
file_search-path(engines, 'Macintosh HD:Echo:ENGINES: ').
logic style(O.95).
· multifile tms_inconsistent/3.
· multifile tms_equivalent/3.

multifile trivial/3.
· multifile subsumes/3.

'<LOAD>' (_) : -
abolish('<LOAD>'/l) ,
source_load(tms(aardvaark)),
source_load(tms(tms)),
install_menu('TMS', ['Propagate', 'Reset', 'Show', 'Show

file', 'Reporting', 'Load Engine']),
install_menu('Reporting', ['On', 'Rating', 'Derivation'],

'TMS' ('Reporting')),
mark_item('Reporting', 'On'),
mark_item('Reporting', 'Rating'),
mark item('Reporting', 'Derivation'),
init,
load_engine (human) ,
load_engine (result) .

'TMS' (' Propagate') : -
propagate.

'TMS' (' Reset') :­
reset.

, TMS' (, Show') :­
show.

'TMS' ('Show file') :-
retract (current window(Name,Type,Comment)),
assert(current_window(Name,blackboard,Comment)) ,

show,
retract(current_window(Name,_,Comment)),
assert(current_window(Name,Type,Comment)) .

'Reporting' ('On'):-
reporting (Reps) ,

append(L, [onIR] ,Reps),
append (L,R,NewReps),

retract(reporting(_)),
assert(reporting(NewReps)),
unmark_item('Reporting', 'On').

'Reporting' ('On'):-
retract(reporting(Reps)),

305

c. listing of heads engine code and NU code

\+member(on,Reps) ,
assert(reporting([on/Reps])),
mark_item('Reporting', 'On').

'Reporting' ('Rating'):­
reporting (Reps) ,

append(L, [rating/R] ,Reps) ,
append(L,R,NewReps),

retract(reporting(Reps)),
assert(reporting(NewReps)) ,
unmark_item('Reporting', 'Rating').

'Reporting' ('Rating'):-
reporting (Reps) ,

\+member (rating, Reps) ,
retract(reporting(_)),

assert(reporting([rating/Reps])),
mark_item('Reporting', 'Rating').

'Reporting' ('Derivation'):-
reporting (Reps) ,

append(L, [derivation/R] ,Reps) ,
append(L,R,NewReps),

retract(reporting(_)),
assert(reporting(NewReps)),
unmark item('Reporting' ,'Derivation') .

'Reporting' ('Derivation'):-
reporting (Reps) ,

\+member(derivation,Reps) ,
retractall(reporting(_)),

assert(reporting([derivation/Reps])),
mark_item('Reporting', 'Derivation').

'Reporting' (X) :-
\ +reporting C) ,
assert(reporting([on])).

'TMS' ('Load Engine'):­
folders (engines,UEs),
sort (UEs,Es) ,
D = 200,
W = 200,

centred(T,L,D,W) ,
mdialog(T,L,D,W,
[button(167,110,26,80, 'Ok'),

button(170,10,20,80, 'Cancel'),
text(10,10,20,190, 'Engine'),

menu(40,10,100,190,Es, [] ,LEngine)],
Button) ,
LEngine = [Engine],
load_engine (Engine) .

306

c. Listing of heads engine code and NU code

/***/

/* ***/
/* Fuzzy Mass Assignment Reduction * /
/***/

.- multifile reduce/3.

fuzzy number(R):­
number (R) ,
! .

fuzzy_number«_,_,_» .

fuzzy_It (Vl,V2) .­
number (VI) ,
number (V2) ,
! ,
VI < V2.

fuzzy_It«Fl,FTl,Tl), (F2,FT2,T2»
Tl + FTl < T2 + FT2,
! .

fuzzy_It«Fl,FTl,Tl), (F2,FT2,T2»
Tl + FTl = T2 + FT2,
! ,
Tl < T2.

fuzzy_It (VI, (F2,FT2,T2»
number (VI) ,
Tl is Vl/IOO.O,
Tl < T2 + FT2,
! .

fuzzy_It ((F2,FT2,T2) ,VI) .­
number (VI) ,
Tl is Vl/IOO.O,
Tl > T2 + FT2,
! .

reduce (fuzzy, Expression,Value) :-
logic style (PM) ,
reduce(fuzzy(PM),Expression,Value) .

reduce (fuzzy C) ,bot tom, (1. 0, o. 0, o. 0)) : -
! .

reduce (fuzzy() ,false, (1.0,0.0,0.0»:­
! .

reduce (fuzzyC) ,neutral, (0.0,1.0,0.0»:-

307

C. Listing of heads engine code and NU code

!.
reduce (fuzzy(_) ,equal_false, (0.3,0.5,0.2»:­

! .
reduce (fuzzy(_) ,equal, (0.33,0.33,0.33»:­

!.
reduce (fuzzyC) ,equal_true, (0.2,0.5,0.3»:­

! .
reduce (fuzzyC) ,low, (0.0,0.9,0.1»:­

! .
reduce (fuzzy(_) ,high, (0.0,0.1,0.9»:­

! .
reduce (fuzzy C) ,top, (0. 0, ° . 0,1. 0)) : -

! .
reduce (fuzzy(_) ,true, (0.0,0.0,1.0»:­

! .
reduce (fuzzy(_) ,Value, (O.O,FT,T»:­

number (Value) ,
! ,
T is Value/100.0,
FT is 1.0 - T.

reduce (fuzzy(_), (FuF,FuT), (F,FT,T»:­
number (FuF) ,
number (FuT) ,
! ,
(FuF > FuT,
F is FuF-FuT,
T is 0.0,
FT is 1.0 - F;
FuF =< FuT,
T is FuT - FuF,
F is 0.0,
FT is 1. ° - T).

mass to fuzzy((F,FT,T), (FF,TT»:­
-FF-is FT + F,

TT is T + FT.
fuzzy_to_mass((FF,TT), (O.O,FF,T»:­

TT >= FF,
T is TT - FF.

fuzzy_to_mass((FF,TT), (F,FF,O.O»:­
TT < FF,
F is FF - TT.

truth_to_fuzzy_mass(Support,Masses,Set) :­
sort_sup (Support,Masses,SSupport,SMasses),
to_set (SSupport,SMasses, Set) .

sort sup ([1 , [1 , [1 , [1) .
sort=sup([ElementITaill, [MassElementlMassTaill ,Sorted,MassSo
rted) : -

308

C. Listing of heads engine code and NLI code

sort sup (Tail,MassTail,SortedTail,SortedMassTail) ,
sup insert (Element,MassElement,SortedTail,SortedMassTai

l,Sorted~MassSorted) .

sup_insert (Element , MassElement , [TopElement I Sorted] , [TopMassE
lementIMassSorted], [TopElementI Sortedl] ,[TopMassElementIMass
Sortedl]) :-

fuzzy_lt(MassElement,TopMassElement),
! ,
sup insert(Element,MassElement,Sorted,MassSorted,Sorted

l, MassSortedl) .
sup_insert (Element,MassElement,Sorted,MassSorted, [Element ISo
rted] , [MassElementIMassSorted]).

to_set (SSupport,SMasses, Set) :-
to_setl (SSupport, SMasses, 0 . 0, [] ,Set) .

to_setl ([S] , [(F, FT, T)] ,Slack, RSupport, [[S I RSupport] :M]) :­
M is T + FT + Slack.

to_set1 ([SupportlsSupport], [(Fl,FT1,Tl), (F2,FT2,T2) ISMasses]
,Slack,RSupport, [[SupportIRSupport] :MISet]):-

M is (T1 + FT1) - (T2 + FT2) + Slack,
to_set1(SSupport, [(F2,FT2,T2) ISMasses] ,0.0, [SupportlRSu

pport] ,Set) .

/* mass_to-probability(Set,PSet) */

mass_to-probability(Set,PSet) :-
mass_to-probability1(Set, [],PSet).

mass_to-probability1([] ,PSet,PSet).
mass_to-probabilityl([Set:MassISets] ,PSet,NewPSet):­

length(Set,LSet),
DeltaMass is Mass/LSet,
assign mass (Set,DeltaMass,PSet,InterPSet),
mass_to-probability1(Sets,InterPSet,NewPSet) .

assign mass([],DeltaMass,PSet,PSet).
assign=mass([ElementISet] ,DeltaMass,PSet,NewPSet):­

(delete_element (PElement/Prob,PSet,MPSet),
(number (Element) ,

) ,
! ,

abs(Element-PElement) < 0.00001

Element = (E1,E2),
PElement = (PE1,PE2),
abs(E1-PE1) < 0.00001,
abs(E2-PE2) < 0.00001

NewProb is Prob + DeltaMass,

309

C. Listing of heads engine code and NLI code

assign_mass (Set,DeltaMass, [Element/NewprobIMPSet] ,NewPS
et)

;

assign_mass (Set,DeltaMass, [Element/DeltaMassIPSet],NewP
Set)

) .
reduce(fuzzy([PM/P]) ,Expression, (FP,FTP,TP»:­

reduce (fuzzy (PM) ,Expression, (F, FT, T)) ,
FP is F * P,
FTP is FT * P,
TP is T * P.

reduce(fuzzy([PM/plpMs]) ,Expression, (F,FT,T»:­
reduce (fuzzy(PM) ,Expression, (Fl,FT1,Tl»,
reduce (fuzzy(PMs) ,Expression, (FR,FTR,TR»,
F is Fl * P + FR,
FT is FTl * P + FTR,
T is Tl * P + TR.

reduce(fuzzy«AC,PM»,Op(CValuel,CValue2), (F,FT,T»:­
atomic (AC) ,
simplify(fuzzy«AC,PM»,CValuel, (Fl,FT1,Tl»,
simplify(fuzzy«AC,PM»,CValue2, (F2,FT2,T2»,
AF is (Fl + F2)/2,
AFT is (FTl + FT2)/2,
AT is (Tl + T2)/2,
reduce (fuzzy(PM) ,ope (Fl,FT1,Tl), (F2,FT2,T2», (PF,PFT,PT

»,
F is AC*AF + (l-AC)*PF,
FT is AC*AFT + (l-AC)*PFT,
T is AC*AT + (l-AC)*PT.

reduce (fuzzy ((AC, PM)) ,Op (CValue) , (F, FT, T)) :­
reduce(fuzzy«AC,PM»,CValue, (CF,CFT,CT»,
atomic (AC) ,
reduce(fuzzy(PM),Op«CF,CFT,CT», (F,FT,T».

reduce(fuzzy(PM),CValuel and CValue2, (F,FT,T»:­
atomic (PM) ,
simplify(fuzzy(PM) ,CValuel, (Fl,FT1,Tl»,
simplify (fuzzy (PM) ,CValue2, (F2,FT2,T2»,
ZT is Tl * T2,
ZFT is Tl * FT2 + FTl * T2 + FTl * FT2,
ZF is Fl*T2 + F2*Tl + FT1*F2 + FT2*Fl + Fl * F2,
(PM < 0,

MPM is -PM,

310

C. Listing of heads engine code and NLI code

FaF is min(1.0,F1+F2),
FaFT is min(1.0 - FaF,min(T1 + FT1,T2 + FT2)),
FaT is 1.0 - (FaF + FaFT) ,
F3 is FaF*MPM + ZF*(l - MPM) ,
FT3 is FaFT*MPM + ZFT*(l - MPM) ,
T3 is FaT*MPM + ZT*(l - MPM)

PM > 0.0,
TrT is min(Tl,T2) ,
TrFT is min(min(T1 + FT1,T2 + FT2) - TrT,FT1+FT2),
TrF is 1.0 - (TrFT + TrT) ,

;

) ,

F3 is TrF*PM + ZF*(l-PM),
FT3 is TrFT*PM + ZFT*(l-PM),
T3 is TrT*PM + ZT*(l-PM)

F3 is ZF,
FT3 is ZFT,
T3 is ZT

normalise_fuzzy_truth((F3,FT3,T3), (F,FT,T)).

reduce(fuzzy(PM),CValue1 or CValue2, (F,FT,T)):­
atomic (PM) ,

T2,

FT2) ,

simplify(fuzzy(PM),CValue1, (F1,FT1,T1)),
simplify(fuzzy(PM),CValue2, (F2,FT2,T2)),
ZF is F1 * F2,
ZFT is F1 * FT2 + FT1 * F2 + FT1 * FT2,
ZT is F1 * T2 + F2 * T1 + FT1 * T2 + FT2 * T1 + T1 *

(PM < 0,
MPM is -PM,
FaT is min(1.0,T1+T2),
Fa FT is min(1.0 - FaT,min(F1 + FT1,F2 + FT2)),
FaF is 1.0 - (FaT + FaFT) ,
F3 is FaF*MPM + ZF*(l - MPM) ,
FT3 is FaFT*MPM + ZFT*(l - MPM) ,
T3 is FaT*MPM + ZT*(l - MPM)

PM > 0.0,
TrF is min(F1,F2),
TrFT is min(min(F1 + FT1,F2 + FT2) - TrF,FT1 +

TrT is 1.0 - (TrFT + TrF) ,
F3 is TrF*PM + ZF*(l-PM),
FT3 is TrFT*PM + ZFT*(l-PM),
T3 is TrT*PM + ZT*(l-PM)

F3 is ZF,
FT3 is ZFT,
T3 is ZT

311

C. Listing of heads engine code and NU code

) ,
normalise_fuzzy_truth((F3,FT3,T3), (F,FT,T».

reduce(fuzzy(PM),CValuel impl CValue2, (F,FT,T»:­
atomic (PM) ,

T2,

FT2) ,

simplify(fuzzy(PM),CValuel, (Fl,FT1,Tl»,
simplify(fuzzy(PM) ,CValue2, (F2,FT2,T2»,
ZF is Tl * F2,
ZFT is FTl * F2 + FTl * FT2 + Tl*FT2,
ZT is Fl * F2 + Fl * FT2 + Fl * T2 + FTl * T2 + Tl *

(PM < 0.0,

;

) ,

MPM is -PM,
TrF is min(Tl,F2),
TrFT is min(min(Tl + FT1,F2 + FT2) - TrF,FTl +

TrT is 1.0 - (TrFT + TrF) ,
F3 is TrF*MPM + ZF*(l - MPM) ,
FT3 is TrFT*MPM + ZFT*(l - MPM) ,
T3 is TrT*MPM + ZT*(l - MPM)

PM > 0.0,
FaT is min(l.O,Fl + T2),
FaFT is min(l.O-FaT,min(Tl + FT1,F2 + FT2»,
FaF is 1.0 - (FaT + FaFT) ,
F3 is FaF*PM + ZF*(l-PM),
FT3 is FaFT*PM + ZFT*(l-PM),
T3 is FaT*PM + ZT*(l-PM)

F3 is ZF,
FT3 is ZFT,
T3 is ZT

normalise_fuzzy_truth((F3,FT3,T3), (F,FT,T».

reduce(fuzzy(PM),CValuel equiv CValue2, (F,FT,T»:­
atomic (PM) ,
simplify(fuzzy(PM),CValuel, (Fl,FT1,Tl»,
simplify(fuzzy(PM),CValue2, (F2,FT2,T2»,
ZF is Tl * F2 + Fl * T2,
ZFT is Fl * FT2 + Tl * FT2 + FTl * F2 + FTl * T2,
ZT is Fl * F2 + Tl * T2 + FTl * FT2,
(PM < 0.0,

MPM is -PM,
TrF is min(Tl,F2) + min(T2,Fl),
TrFT is min(l.O - TrF,FTl + FT2) ,
TrT is 1.0 - (TrFT + TrF) ,
F3 is TrF*MPM + ZF*(l - MPM) ,
FT3 is TrFT*MPM + ZFT*(l - MPM) ,
T3 is TrT*MPM + ZT*(l - MPM)

312

C. Listing of heads engine code and NU code

;
PM > 0.0,
FaT is min{T1,T2) + min{F2,Fl) + min{FT1,FT2),
FaFT is min{F2 - min{F2,F1) + T2 - min{T2,Tl),FT1

- min{FT1,FT2)) + min{Fl - min{F2,F1) + Tl - min{T2,T1),FT2
- min{FTl,FT2)),

;

) ,

FaF is 1.0 - (FaT + FaFT) ,
F3 is FaF*PM + ZF*{l-PM),
FT3 is FaFT*PM + ZFT*(l-PM),
T3 is FaT*PM + ZT*{l-PM)

F3 is ZF,
FT3 is ZFT,
T3 is ZT

norma1ise_fuzzy_truth{{F3,FT3,T3), (F,FT,T)).

reduce (fuzzy{PM) ,Hedge (CValue) ,HValue):­
atomic (PM) ,
sirnplify{fuzzy{PM),CValue,Value) ,
fuzzy ma hedge (Hedge,Value,HValue1),
norrnalise_fuzzy_truth{HValue1,HValue) .

fuzzy rna hedge {not, (F,FT,T), (T,FT,F)):­
! .

fuzzy rna hedge {fairly, (F,FT,T), (VF,VFT,VT)):­
Ft Is sqrt (F) ,
FTt is sqrt{FT) ,
Tt is sqrt (T) ,
Tot is Ft + FTt + Tt,
VF is Ft/Tot,
VFT is FTt/Tot,
VT is Tt/Tot.

fuzzy rna hedge {very, (F,FT,T), (VF,VFT,VT)):­
Ft Is F*F,
FTt is FT*FT,
Tt is T*T,
Tot is Ft + FTt + Tt,
VF is Ft/Tot,
VFT is FTt/Tot,
VT is Tt/Tot.

fuzzy_rna_hedge {absolutely, (F,FT,T), (1.0,0.0,0.0)):­
F > FT,
F > T.

fuzzy_rna_hedge {absolutely, (F,FT,T), (0.0,0.0,1.0)):­
T > FT,
T > F.

fuzzy_rna_hedge {absolutely, (F,FT,T), (O.O,l.O,O.O)):­
FT > F,
FT > T.

313

C. Listing of heads engine code and NU code

normalise fuzzy truth ((FI,FTl,Tl), (F,FT,T)):­
max (Fl , ° . 0-;-F) ,
max(FTl,O.O,FT) ,
max(Tl,O.O,T) .

normalise_fuzzy (MassAssignment , NormalMassAssignment) :­
normalise_fuzzyl (MassAssignment, O.O,NormaIMassAssignme n

t) .

normalise_fuzzyl([Assignment:Mass] ,Cum, [Assignment:NormaIMas
s]) : -

NormalMass is 1.0 - Cum.

normalise_fuzzyl([Assignment:MassIMassAssignments] ,Cum, [Assi
gnment:MassINormaIMassAssignments]) :-

Cuml is Mass + Cum,
normalise_fuzzyl(MassAssignments,Cuml,NormaIMassAssignm

ents) .

1**/

/* ********************** UTILITIES **********************/
/* various useful general purpose utilities */
/***/

max(X,Y,X) :­
X >= Y.

max(Y,X,X) :­
X >= Y.

min(X,Y,X) :­
X =< Y.

min(Y,X,X):­
X =< Y.

/* substitute (NewTerm, OldTerm, OldExpression, NewExpression)
replaces all */
/* occurrences of OldTerm in OldExpression with NewTerm,
producing */
/* NewExpression.
*/

substitute (New,Oldl,Old2 ,New) :­
Oldl == Old2,
! .

substitute (,Oldl,Old2,Old2):­
var(Old2),

314

C. Listing of heads engine code and NLI code

\+ oldl == Old2,
! .

substitute (, ,Val,Val):­
\+ (var (Val)) ,
atomic (Val) ,
! .

substitute (New,Old,Val,Newval) :­
Val= .• [FnIArgs],
subst args(New,Old,Args,Newargs),
Newval= .. [FnINewargs] .

subst_args(_,_, [], []):-
! .

subst_args(New,Old, [ArgIArgs], [NewargINewargs]):­
substitute (New,Old,Arg,Newarg),
subst_args(New,Old,Args,Newargs) .

delete element (Element, List,NewList) :­
append(L, [ElementIR] ,List) ,
append(L,R,NewList) .

delete all (Element,List,NewList) :­
append(L, [ElementIR] ,List),
delete_all (Element,R,IList),
append(L,IList,NewList) .

delete_all (Element,List,List) :­
\+member(Element,List) .

/***/

/*********************** BIDDER - SET BIDS ***************/

/* bidding package, this is used to set up, rank and bid
for resources.
It comprises the pattern matcher to find things to bid for
and the record
keeper to avoid bidding for things that have already been
done.
The bids are in the form of the bidder identifier followed
by a set (list)
of patterns which are required to fire and a pattern that
can be delivered.
The delivery pattern is not used yet as there is no goal
seeking behaviour yet.
The actual propagation mechanism finds the top bid and
forms a call to the

315

C. Listing of heads engine code and NU code

relevant "expand" predicate with the first term as the
bidder's name and the
following terms the Types and Expressions relevant.

The main predicate provided for the engine implementor
is

make_bid(EngineType,PatternList,Rating,Goal,Flags) .
the set of flags Flags takes sets of values which

control the TMS.
the mf flag takes values m and f. The values mean
f, the system will not allow two patterns to match the

same object.
m, the system will allow two patterns to match the

same object.
the ap flag takes values a and p. The values mean
a, the system ancestry checks
p, the system doesnt ancestry check
external means that the tms will tell other tms's that

it has the
capability to deliver the particular goal inj the

make_bid
The main predicate for the insertion of blackboard

entries is
pattern_keeper (Type,Expression,ConNo,OldNew) .
The main predicate for choosing bids is
choose_bid (BidNo, Enginetype, ConsequenceList) .
The main predicate for evaluating bids is
execute_bid(BidNo,Enginetype,ConsequenceList,Modality,

Goal) */

/* MAIN PREDICATE */
make_bid (EngineType, Section, PatternList , NegPatternList ,Rati
ng,Goals) :-

number (Rating) ,
make_bid (EngineType, Section, PatternList , NegPatternList

Rating, Goals, [f,a]).
make_bid (EngineType, Section, PatternList ,Rating, Goals, F lags)

number (Rating) ,
make bid(EngineType,Section,PatternList, [] ,Rating,Goal

s,Flags) .
make_bid (EngineType , Section, PatternList, Rating, Goals) :­

number (Rating) ,
make_bid(EngineType,Section,PatternList, [] ,Rating, Goal

s, [f,a]).

316

C. Listing of heads engine code and NLI code

make bid (EngineType, Section, PatternList ,NegPatternList , Rati
ng,Goals,Flags) :­

code-pattern_list(PatternList,CodedPatternList,SPatter
nList) ,

code-pattern_list(NegPatternList,CodedNegPatternList,_
) ,

code_goal-pattern_list(Goals,CodedGoalList) ,
Bid = bid(BidNo,EngineType,Section,

CodedPatternList,SPatternList,CodedNegPatternList,
Rating,CodedGoalList,Free,Flags) ,

(Bid,
! ,
(Free = free,
r • . ,
retract (Bid) ,
assertz(bid(BidNo,EngineType,Section,

CodedPatternList,SPatternList,CodedNegPatternList,
Rating,CodedGoalList,free,Flags»,

broadcast (Goals) ,
retract(bid_list(Bid_List»,
bid_sort (Bid_List, Free_Bid_List),
assertz(bid_list(Free_Bid_List»);
get_num(bid,BidNo) ,
Free=free,
assertz(Bid) ,
assertz(needs_pattern(BidNo,CodedPatternList»,
set-pattern_bid_list(BidNo,CodedPatternList),
find_bids(BidNo» ,
! .

code-pattern_list ([] , [] , []) :-
! .

code-pattern_list([[Type,Expression,Conds] /Rest], [Code/Code
dRest] ,

[[Type,Expression] /SRest]):­
set-pattern(Type,Expression,Conds,Code) ,
code-pattern_list(Rest,CodedRest,SRest) .

! .
code_goal-pattern_list([[Type,Expression] /Rest], [Code/Coded
Rest]):-

set-pattern (Type, Expression, true, Code) ,
code_goal-pattern_list(Rest,CodedRest) .

317

C. Listing of heads engine code and NLI code

set_functionality(_, [)):-
! .

set_functionality(Source, [[Type,Expression) /Preconditions))

asserta(functionality(Source, [Type,Expression))),
setall (,

(freshcopy((Type,Expression), (Typel,Expressionl)),

vared-Fattern_type(Typel,Expressionl,PatternType,_),

clause (pattern_type (Type2,Expression2 ,patternType) ,Con
ds2) ,

send_socket(Source,message(My_Socket,result([[Type2,Ex
pression2,Conds2)))))),

) ,
set_functional it y(Source, Preconditions) .

set-Fattern(Type,Expression,Conds,PatternType) :­
cdm_name(My_Name,My_Socket) ,
cdm_type(My_Type) ,
setall(_, (functionality(Source, [Type,Expression)),

\+(Source ~ null),
\+(Source ~ My Type),
\+(Source ~ My Name),
\+(Source ~ My_Socket),
send_socket (Source,message (My_Socket,

result([[Type,Expression,Conds)))
)))

, _) I

set-FatternO(Type,Expression,Conds,PatternType) .
set-FatternO(Type,Expression,Conds,PatternType) :­

freshcopy((Type,Expression,Conds),
(Typel,Expressionl,Condsl)) ,

numbervars((Typel,Expressionl,Condsl),l,_),
set-Fatternl(Type,Expression,Conds,Typel,Expressionl,C

onds1,
PatternType) .

/*
set-Fattern1(Type,Expression,Conds,Type1,Expression1,Condsl
,PatternType) */

318

C. Listing of heads engine code and NU code

set-pattern1(_,_,_,Type1,Expression1,Conds1,PatternType) :­
vared-pattern_type(Type1,Expression1,PatternType,Conds

1) ,
! .

set-pattern1(Type,Expression,Conds,Type1,Expression1,Condsl
,PatternType) :-

gensym(pattern,PatternType) ,
assert (vared-pattern_type (Type1,Expression1,PatternTyp

e,Conds1»,
assert«pattern_type(Type,Expression,PatternType) :­

Conds»,
! ,
find-patterns(PatternType) .

set-pattern_bid_list(_, []):­
! .

set-pattern_bid_list(BidNo, [PatternTypelRestCodedPatternLis
t]) : -

retract(pattern_type_bid_list(PatternType,BidList»,
! ,
sys_unite([BidNo] ,BidList,NewBidList),
assert(pattern_type_bid_list(PatternType,NewBidList» ,
! ,
set-pattern_bid_list(BidNo,RestCodedPatternList) .

set_pattern_bid_list(BidNo, [PatternTypelRestCodedPatternLis
t]) : -

assert_set (pattern_type_bid_list (PatternType, [BidNo]»

! ,
set-pattern_bid_list(BidNo,RestCodedPatternList) .

find-patterns(PatternType) :-
(setall([ConNo,Rating] ,

(clause (pattern_type (Type,_, PatternType) ,_) ,
consequence (ConNo, Type, Expression,_, Rating) ,
ConNo > 0,
pattern_type(Type,Expression,PatternType»,
List) ;

List = []),

pattern_sort (List,SList) ,
! ,
assertz(pattern_list(PatternType,SList» .

1* MAIN PREDICATE *1
pattern_keeper (_,_,_, leave) :­

! .

319

c. Listing of heads engine code and NU code

pattern_keeper(Type,Expression,ConNo,OldNew) :­
nonvar (ConNo) ,
ConNo > 0,
pattern_type (Type,Expression,PatternType),
insert-Fattern_list(PatternType,ConNo,OldNew) ,
fail.

pattern_keeper (_,_,_,_) .

insert-Fattern_list(PatternType,ConNo,OldNew) :­
retract(pattern_list(PatternType,List)),
(consequence (ConNo,Type,Expression,_,Rating) ,

insert entry (ConNo,Rating,List,NewList),
assert(pattern_list(PatternType,NewList)) ,

update bid list(PatternType,ConNo,Type,Expression,Rati - -
ng,OldNew) ;

assert(pattern list(PatternType,List))),
! .

insert entry (ConNo,Rating, [], [[ConNo,Rating]]):-
!.

insert entry (ConNo,Rating, List,NewList) :-
append (LeftList, [[ConNO,_] IRightList] ,List),
append (LeftList, [[ConNo,Rating] I RightList] ,NewList),
! .

insert_entry (ConNo,Rating,List,NewList) :­
pattern_sort([[ConNo,Rating] IList] ,NewList),
! .

/* MAIN PREDICATE */
/* this wierd one at the front to allow crashes to occur
gracefully * /
execute_bid (0, [],_,_,_):-

! .
execute_bid (BidNo,ConsequenceList,Modality,GoalList, Rat ing)

bid(BidNo,EngineType,Section,_,_,_,_,_,free,_) ,
form_argument_list(ConsequenceList,Argsl),

/* form_variable_argument_list(CodedGoalList,TGoalList),
*/

append([Argsl,Modality,TGoalList], [Rating,CommNonComm]
,Args) ,

Bid = .• [expand,EngineType,SectionIArgs],
! ,
(monitor (BidNo,Bid),

320

C. Listing of heads engine code and NU code

GoalList = TGoalList;
GoalList = [bugger, nil] ,
CommNonComm = n),
assert_bid(BidNo,ConsequenceList,CommNonComm) ,
(CommNonComm=p,
I • . ,
true) .

form_argument_list([], []):-
! .

form_argument_list([ConNojRestCons], [[Type,Expr] jRestArgs])

consequence (ConNo,Type,Expr,_,_) ,
form_argument_list(RestCons,RestArgs) .

! .
form_variable_argument_list([PatternjRestPatterns], [[Type,E
xpr] j RestGoals]) :­

clause(pattern_type(Type,Expr,Pattern),_),
form_variable_argument_list(RestPatterns,RestGoals) .

/* MAIN PREDICATE */
choose_bid (BidNo, EngineType,ConList,DerivationSet, Rating) :­

bid_list (Bids) ,
choose_bidl(Bids,BidNo,EngineType,ConList,DerivationSe

t,Rating, NewBids) ,
(Bids = NewBids;
rerecord_bid_list(NewBids»,
! .

choose_bid (BidNo, EngineType, ConList, DerivationSet , Rating) :­
nl,
write('Choose_bid failed. bid list reconstructed'),
nl,
retractall(bid_list(_»,
retractall(bid(_,_,_,_,_,_,_,_,_,_»,
assert(bid_list([]»,
rejigall,
bid_list (Bids) ,
choose_bidl(Bids,BidNo,EngineType,ConList,DerivationSe

t,Rating,NewBids),
(Bids = NewBids;
rerecord_bid_list(NewBids» ,
!.

choose_bid (0, nil, [] , [] ,0) :-

321

C. Listing of heads engine code and NU code

nl,
write (' Quel Dick Head, you haven' , t loaded the "human"

engine'),
nl,
assert (stop) .

rejigall:-
loaded (Engine) ,
while (set_bid (Engine) ,true) ,
fail.

rejigall.

choose_bidl ([[TBidNo, []] I Bids] ,0, nil, [] , [] ,0, [[TBidNo, []] I B
ids]) :-

! .
choose_bidl([[TBidNo, [[TConList,TRating] IRestCons]] IBids] ,B
idNo, EngineType,ConList,DerivationSet,Rating,NewBids) :­

(bid(TBidNo,EngineType, , , ,CodedNegPatternList, , , --- ---
,Flags) ,

get_neg_list(CodedNegPatternList,NegList),
check (TConList ,NegList ,DerivationSet, Flags) ,
\+((justifies(TConList,EngineType, , ,),

TConList=[_I_]», - --
BidNo = TBidNo,
ConList = TConList,
Rating = TRating,
NewBids =

[[TBidNo, [[TConList,TRating] IRestCons]] IBids] ,
I • . ,
bid_resort([[TBidNo,RestCons] IBids] ,TempBids),
choose_bidl(TempBids,BidNo,EngineType,ConList,Derivati

onSet,Rating,NewBids» .

! .
get_neg_list([CodedNegPatternlcodedNegPatternList], [NegCons
INegList]) :-

pattern_list (CodedNegPattern,NegCons),
! ,
get_neg_list(CodedNegPatternList,NegList) .

get_neg_list([_ICodedNegPatternList] ,NegList):­
get_neg_list(CodedNegPatternList,NegList) .

assert_set(P) :­
P,
! .

322

C. Listing of heads engine code and NU code

assert_set{p) :­
assert{P) .

conjoin_ratings (Rl,R2,CR) :­
Rl > R2,
CR = R2,
I • . ,
CR = Rl.

disjoin_ratings (Rl,R2,CR) :­
Rl < R2,
CR = R2,
I • . ,
CR = Rl.

/* assert_bid{BidNo,ConList,CommNonComm)
asserts that a bid has been completed with the

consequence list
ConList.
If CommNonComm = c then all permutations of the

consequence list
are deemed to have been done.
If CommNonComm = n then only the actual consequence
list is asserted
If CommNonComm = cs then this is equivalent to a

partial cut (s for
suspended) then c
If CommNonComm = ns then this is equivalent to a

partial cut (s for
suspended) then n
If CommNonComm = a then this is equivalent to a cut.

*/

assert_bid {BidNo, ,a):-
! ,
abolish_bid (BidNo),
! .

assert_bid{BidNo,ConList,cs) :-
! ,
retract {bid{BidNo,EngineType, Section,

CodedPatternList, PatternList, Rating, CodedGoaIList,_, FI ags))

assert {bid{BidNo, EngineType, Section,

CodedPatternList, PatternList, Rating, CodedGoalList, susp ended
,Flags)) ,

assert_bid{BidNo,ConList,c) ,

323

C. listing of heads engine code and NLI code

!.
assert_bid{BidNo,ConList,ns) :-

! ,
retract {bid (BidNo,EngineType, Section,

CodedPatternList,PatternList,CodedNegPatternList,
Rating,CodedGoalList,_,Flags)),

assert (bid (BidNo,EngineType, Section,

CodedPatternList, PatternList, CodedNegPatternList,
Rating,CodedGoalList,suspended,Flags)),

assert_bid(BidNo,ConList,n) ,
! .

assert_bid (_,_,p) :-
! .

assert_bid(BidNo,ConList,NC) :­
bid list (Bids) ,
(append(First, [[BidNo,Bid_List] I Second] ,Bids),

bid_delete([ConList,] ,Bid_List, NewBid_List,NC),
(NewBid_List = [],

append (First,Second,NewBids)
;

append (First, [[BidNo,NewBid_List] I Second] ,TNewBids),
bid_sort(TNewBids,NewBids)),
rerecord_bid_list(NewBids)

;
true) ,
!.

is_ayermute ([] , []) .
is_ayermute{[ElementIList] ,PList):­

append (Left, [ElementIRight] ,PList),
append (Left,Right,PListl),
! ,
is_ayermute(List,PListl) .

bid_delete (, ,[], a) :-
! .

bid_delete (,[], [],):-
! .

bid_delete ([Bid, _] , [[Bid, _] I Bids] ,Bids, n) : -
! .

bid_delete ([Bid,R], [[PBid,_]IBids] ,NewBids,c):­
is_ayermute(Bid,PBid),
bid_delete([Bid,R],Bids,NewBids,c) ,

324

C. Listing of heads engine code and NU code

!.
bid_delete {Bid, [NonBidIBids] , [NonBidINewBids] ,NC):­

bid_delete (Bid,Bids,NewBids,NC),
! .

abolish_bid {EngineType ,Section) :­
bid{BidNo,EngineType,Section,_,_,_,_,_,_,_) ,
abolish_bid (BidNo) .

abolish_bid { ,).

abolish_bid (BidNo) :­
retract {bid {BidNo, , ,

CodedPatternList,_,_,_,CodedGoalList, ,)),
(retract{needs-pattern{BidNo,_));true) ,
append{CodedPatternList,CodedGoalList,patternList) ,
remove-pattern_type_bid_list{PatternList,BidNo),
bid list (Bids) ,
(append{First, [[BidNo,_] I Second] ,Bids),
append{First,Second,NewBids) ,
rerecord_bid_list{NewBids) ;
true) ,
! .

abolish_bid {).

! .
remove-pattern_type_bid_list{[PatternTypeIList] ,BidNo):­

pattern_type_bid_list{PatternType,BidList),
! ,

retract{pattern_type_bid_list{PatternType,BidList)),
sys_difference{BidList, [BidNo] ,NewBidList),

assert{pattern_type_bid_list{PatternType,NewBidList)) ,
remove-pattern_type_bid_list{List,BidNo) .

remove-pattern_type_bid_list{[_IList] ,BidNo):­
remove_pattern_type_bid_list{List,BidNo) .

/*
update_bid_list{pattern_Type,ConNo,Type,Expression,Rating)

This updates the whole set of bids in "bid_list" and
ranks them.

In a highly specific system this should be a small
task but it is

potentially large.

325

C. Listing of heads engine code and NU code

The Pattern_Type will be associated with a collection
of bids which are

set up ab initio.
The ConNo is the actual consequence or entry that has

just been entered
and is to give rise to some new bids.
rating is the credibility of the new entry. */

update_bid_list(Pattern_Type,ConNo,Type,Expression,Rating,O
ldNew) :-

(pattern_type_bid_list(Pattern_Type,Bids) ,
update_bids (Bids, Pattern_Type, ConNo, Type, Expression, Ra

ting,OldNew) ;
true) ,
! .

update_bids([] ,_,_,_,_,_,_):-
! .

update_bids([BidIRest] ,Pattern_Type,ConNo,Type,Expression,R
ating,OldNew) :­

update_bid(Bid,Pattern_Type,ConNo,Type,Expression,Rati
ng,OldNew) ,

update_bids (Rest, Pattern_Type, ConNo, Type, Expression, Ra
ting,OldNew) .

update_bid (Bid,Pattern_Type, ConNo, Type, Expression, Rating, ne
w) : -

update_needs-pattern(Bid,Pattern_Type),
! ,
bid (Bid, , ,Coded_Pattern_List,Pattern_List,_,_,_,_,Fl

ags) ,
setall([Con_List,CRating],

(find-pattern_types(Pattern_Type, [Type, Expression] ,
Coded_Pattern_List,pattern_List,
Left_Coded,Left_Pattern,
Right Coded,RightPattern),

consbid(Left Coded,Left pattern,ConNo,Rating, - -

Right Coded,RightPattern,Con List,CRating,Flags», - -
Con_Lists) ,

merge bid list (Bid,Con Lists). - - -

update_bid(Bid,_,ConNo,_,_,Rating,old) :­
needs-pattern(Bid, []),
! ,

326

C. Listing of heads engine code and NU code

update_bid(_,_,_,_,_,_,_) .

/*
find-pattern_types(Pattern_Type,Pattern,Coded_Pattern_List,
Pattern_List,

Left_Coded,Left_Pattern,Right_Coded,RightPattern) .
finds pattern types in lists of them,
a bit like append and member but goes down the lists in
unison */

find-pattern_types(Pattern_Type,Pattern, [Pattern_Type), [Pat
tern) , [) , [) , [) , [)) .

find-pattern_types(Pattern_Type,Pattern, [Pattern_Type I Coded
Pattern List) ,

- [Pattern I Pattern_List) ,
[), [) ,Coded_Pattern_List,Pattern_List).

find-pattern_types(Pattern_Type,Pattern, [Pattern_Typellcode
d Pattern List) •
- -[PatternlIPattern_List) ,

[Pattern_TypelILeft_Coded), [PatternlILeft_Pattern),
Right_Coded,Right_Pattern) :-

find-pattern_types (Pattern_Type, Pattern, Coded_Pat tern_
List,

Pattern_List,
Left_Coded,Left_Pattern,
Right_Coded,Right_Pattern) .

update_needs-pattern(Bid,_) :­
needs-pattern(Bid, [)),
! .

update_needs-pattern(Bid,Pattern_Type) :­
needs-pattern(Bid,Pattern_List),
append(Left, [Pattern_Type I Right) ,Pattern_List) ,
append (Left, Right , New_Pattern_List),
retract(needs-pattern(Bid,Pattern_List)),
assertz(needs-pattern(Bid,New_Pattern_List)),
! ,
needs-pattern(Bid, [)).

327

C. Listing of heads engine code and NU code

consbid(Left Coded,Left Pattern,ConNo,Rating,Right Coded,Ri - - -
ght_Pattern, Con_List, CRating, Flags) :-

conslrbid(Left_Coded,Left_Pattern,Left_ConList, [ConNo]
,LRating, Flags) ,

conslrbid(Right Coded,Right Pattern,Right ConList, [Con
NoILeft_ConList] ,RRating,Flags) ,- -

conjoin_ratings (LRating,RRating,LRRating),
append(Left_ConList, [ConNoIRight_ConList] ,Con_List),
conjoin_ratings (LRRating, Rating, CRating) .

conslrbid([], [], [], ,1000,):-
! .

conslrbid([Pattern_TypeIRestPattern_Types], [[Type,Expressio
n] I RestPatterns] ,

[ConNoI RestCons] ,BarredCons,Rating, Flags) :­
pattern_list (Pattern_Type, PList),
! ,
member([ConNo,CRating] ,PList), .
\+«\+member(m,Flags),

member(ConNo,BarredCons»),
consequence (ConNo,Type, Expression,DerivSet,_),
conslrbid1(DerivSet,RestPattern Types,RestPatterns,Res

teons, [ConNoIBarredCons] ,RRating, Flags) ,
conjoin_ratings (CRating, RRating, Rating) .

conslrbidl (,[], [], [], ,1000,):-
! .

conslrbid1(DerivSet1, [Pattern_Type I RestPattern_Types],
[[Type,Expression] I RestPatterns] ,
[ConNo I RestCons] ,BarredCons,Rating, Flags) :­

\+member(m,Flags) ,
pattern list (Pattern Type,PList), - -
! ,
member([ConNo,CRating] ,PList),
\+member(ConNo,BarredCons) ,
consequence (ConNo,Type,Expression,DerivSet,_),
form_derivation_set(DerivSetl,DerivSet,NewDerivSet),
check_nogoods(NewDerivSet,_,GoodSet),
\+ «GoodSet ; []»,
conslrbid1(GoodSet,RestPattern_Types,RestPatterns,Rest

Cons, [ConNo I BarredCons] ,RRating, Flags) ,
conjoin_ratings (CRating, RRating, Rating) .

conslrbid1(DerivSetl, [Pattern_Type I RestPattern_Types],
[[Type,Expression] I RestPatterns] ,
[ConNo I RestCons] ,BarredCons, Rating, Flags) :­

member(m,Flags) ,

328

C. Listing of heads engine code and NLI code

pattern_list (Pattern_Type,PList),
! ,
member([ConNo,CRating] ,PList),
(member (ConNo,BarredCons),
conslrbidl(DerivSetl,RestPattern_Types,RestPatterns,

RestCons,BarredCons,Rating,Flags);
\+member(ConNo,BarredCons) ,
consequence (ConNo, Type,Expression,DerivSet,_) ,
form_derivation_set(DerivSetl,DerivSet,NewDerivSet),
check_nogoods(NewDerivSet,_,GoodSet),
\+ «GoodSet = [])),

conslrbidl(GoodSet,RestPattern Types,RestPatterns,Rest
Cons, [ConNo I BarredCons] ,RRating, Flags) ,

conjoin ratings(CRating,RRating,Rating)).

consallbid ([] , [] , [] ,Level,):­
! ,
cut_off_level(Level) .

consallbid(CPatterns, Patterns, Con_List, Rating, Flags) :­
conslrbid (CPatterns, Patterns, Con_List, [] ,Rating,Flags)

update merge bid list (BidNo, ConNo, Rating) :-- --
bid list (Bids) ,
(append (First, [[BidNo,OldList] I Second] ,Bids) ,
update merge bid listl(ConNo,Rating,OldList,TNewList), - --
pattern sort (TNewList,NewList),
append(First, [[BidNo,NewList] I Second] ,TNewBids),
bid_sort (TNewBids,NewBids) ,
rerecord_bid_list(NewBids) ;
true) .

update merge bid listl (, ,[], []) :-- - - --
! .

update_merge_bid_listl(ConNo,Rating, [[ConList,Rl] ICon_Listl
] , [[ConList, R2] I Con_List2]) :-

2) •

member (ConNo,ConList),
conjoin_ratings (Rating,Rl,R2),
! ,
update_merge_bid_listl(ConNo,Rating,Con_Listl,Con_List

update merge bid listl(ConNo,Rating, [[ConList,Rl] ICon_Listl
], [[ConList,Rl]lcon_List2]):-

! ,
update merge bid listl(ConNo,Rating,Con Listl,Con List - - - --

2) •

329

c. listing of heads engine code and NU code

merge bid list {BidNo, Con Lists):-- - -
bid list (Bids) ,
(append{First, [[BidNo,OldList] I Second] ,Bids),
merge_bid_listl{Con_Lists, OldList,TNewList),
pattern sort {TNewList,NewList),
append {First, [[BidNo,NewList] I Second] ,TNewBids);
pattern_sort (Con_Lists,NewList),
TNewBids=[[BidNo,NewList] IBids]),
bid_sort (TNewBids,NewBids) ,
rerecord_bid_list{NewBids) .

! .
merge_bid_listl{[],Con_List,Con_List) :­

! .
merge_bid_listl{[[Conl,Rl] ICon_Listl] ,Con_List2,

[[Conl, Rl] I Con_List]) :-
append {LCon_List2, [[Conl,_] I RCon_List2] ,Con_List2),
! ,
append{LCon_List2,RCon_List2,NCon_List2),
merge bid listl{Con Listl,NCon List2,Con List).

merge_bid_listl{[[Conl,Rl] ICon_Listl], [[Con2,R2] ICon_List2]

[[Con2,R2] ICon_List]):­
R2 > Rl,
! ,
merge_bid_listl{[[Conl,Rl] ICon_Listl] ,Con_List2,Con_Li

st) .
merge_bid_listl ([[Conl, Rl] I Con_Listl] , [[Con2, R2] I Con_List2]

st) .

[[Conl, Rl] I Con_List]) :­
merge_bid_listl{Con_Listl, [[Con2,R2] ICon_List2] ,Con_Li

find_bids (BidNo) :-
bid {BidNo, , ,Coded_Pattern List,PatternList,_,_,_,_,F

lags) ,
{check_needs (BidNo) ,
setall{[Con_List,CRating] ,

(consallbid{Coded_Pattern_List,PatternList,
Con_List,CRating,Flags»,

Con_Lists),
pattern_sort (Con_Lists,SCon_Lists) ;
SCon_Lists=[]) ,

330

c. Listing of heads engine code and NU code

(bid_list (Bids) ,
I • . ,
nl,
write('Crashed-bid_list reconstructed'),
nl,
assert(bid_list([])),
Bids = []),
(Seon_Lists = [],

(append (First, [[BidNo,_] 1 Second] ,Bids),

append (First , [[BidNo,SCon_Lists] 1 Second] ,TNewBids)

) ,
! .

append(Bids, [[BidNo,SCon_Lists]] ,TNewBids)),
bid_sort (TNewBids, NewBids),
(Bids=NewBids;
rerecord_bid_list(NewBids)
)

check_needs (BidNo) :­
needs-Fattern(BidNo, []),
! .

check_needs (BidNo) :­
needs-Fattern(BidNo,List),
! ,
check_needsl(List,NewList) ,
(List = NewList;
retract(needs-Fattern(BidNo,List)) ,
assertz(needs-Fattern(BidNo,NewList))),
! ,
NewList = [].

check_needsl ([] , []) :-
!.

check_needsl([PatternlIRestPatterns], [PatternllNewRestPatte
rns]) :-

pattern list (Patternl, []) ,
! ,
check needsl(RestPatterns,NewRestPatterns).

check_need;l([patternlIRestPatterns] ,NewRestPatterns):­
pattern_list (Patternl, [_1_]),
! ,
check_needsl(RestPatterns,NewRestPatterns) .

331

c. Listing of heads engine code and NLI code

/***/

/************************* PROPAGATE *********************/
/* Propagation of new assumption or consequence */
/***/

/* propagate{N) 'unifies' consequence N with each of the
preceding */
/* consequences.tms_assume{eds,eds,Entry,Base,lOOsequences
resulting from these unifications*/
/* are asserted into the consequence database and
similarly propagated. */

propagate:-
retractall{stop) ,
bidsys{Modality,GoalList,Engine,ConList,DerivationSet)

process_results {Modality,GoalList,Engine,ConList,Deriv
ationSet) ,

stop;
propagate.

process results {Modal it y,GoalList , Engine, ConList, Derivation
Set) : -

({Modality=necessary,
! ,
process_consequences {no_redo,GoalList, Engine, Modality,

ConList,DerivationSet));
(Modality=mgu,
! ,
process_consequences {no_redo,GoalList, Engine ,Modality,

ConList,DerivationSet));
(Modality=assume{Rating) ,
! ,
process-possibilities{GoalList,Engine,Modality,ConList

,DerivationSet));
(Modality=possible{Rating) ,
! ,
process-possibilities{GoalList,Engine,Modality,ConList

,DerivationSet))),
! .

process_consequences{_, [] ,_,_,_,_):­
! .

332

C. Listing of heads engine code and NLI code

process_consequences (Redo, [[Type,Goal] IRestGoals],Engine,Mo
dality, ConList, DerivationSet) :-

process_consequence (Redo, [Type,Goal],Engine,Modality,C
onList,DerivationSet),

process_consequences (Redo, RestGoals, Engine , Modality, Co
nList,DerivationSet),

! .

process_consequence (Redo, [Type,Goal] ,Engine,Modality,ConLis
t,DerivationSet) :-

Goal = nil,
I • . ,
insert_consequence (ConNo,Type,Goal,ConList,Engine,Moda

lity,DerivationSet, OldNew),
redo_rating (Redo, OldNew,OldNewl) ,
pattern_keeper (Type,Goal,ConNo,OldNewl),
! .

redo_rating (no_redo,OldNew,OldNew) :-
! .

redo_rating(redo,leave,old) :-
! .

redo_rating (redo, OldNew, OldNew) :-
!.

process-possibilities([[Type,Goal]] ,Engine,Modality,ConList
,DerivationSet) :-

Goal = nil,
I • . ,
insert_consequence (ConNo, Type,Goal, [ConNoIConList] ,Eng

ine,Modality,DerivationSet,OldNew) ,
pattern_keeper (Type, Goal,ConNo,OldNew),
!.

process-possibilities (GoalList, Engine,Modality, ConList, Deri
vationSet) :-

check_link (GoalList, Link) ,
write('found a duplicate set'),
nI,
! ,
insert_consequence (ConNo, link, Link, [ConNoIConList] ,Eng

ine, Modality, DerivationSet,_) ,
! .

process-possibilities(GoaIList,Engine,Modality,ConList,Deri
vationSet) :-

gensym(possible_link,Link),
insert_consequence (ConNo,link,Link, [ConNolconList] ,Eng

ine,Modality,DerivationSet,_) ,

333

C. Listing of heads engine code and NLI code

consequence (ConNo,link,Link,Poss_Derivation,_),
process_consequences (no_redo,GoalList,Engine,mgu, [ConN

0] ,Poss_Derivation),
! .

bidsys(Modality,Goal,EngineType,ConList,DerivationSet)
choose_bid (BidNo,EngineType,ConList,DerivationSet ,Rati

ng) ,
execute_bid (BidNo,ConList, Modality, Goal ,Rating) .

/***/

/************************ RATING SYS *********************/
/* Rating of Consequences */
/***/

/* set_rating (ConNO,FDerivationSet,Modality) */

set_rating (_,_,necessary) :­
! .

set_rating (_,_,mgu) :­
! .

set_rating(ConNo,_,possible(RatingValue)) :­
(retract(rating(ConNo,OldValue)),
simplify(fuzzy,OldValue or RatingValue,NewValue);
NewValue is RatingValue),
assert(rating(ConNo,NewValue)),
!.

get_rating([DerivationSetBits/Derivations] ,Rating):­
bits_to_list(DerivationSetBits,DerivationSet),
work_out_rating(DerivationSet,Ratingl),
get_ratingl(Derivations,Ratingl,Rating) .

get_ratingl([] ,Rating,Rating):-
! .

get_ratingl([DerivationSetBits/Derivations] ,RatingSoFar,Rat
ing) :-

bits_to_list(DerivationSetBits,DerivationSet),
work_out_rating(DerivationSet,Ratingl),
simplify(fuzzy,Ratingl or RatingSoFar,NewRating),
get_ratingl(Derivations,NewRating,Rating) .

work_out_rating (DerivationSet ,SetRating) :-

334

C. Listing of heads engine code and NLI code

work_out_ratingl(DerivationSet,RatingSoFar),
! ,
work_out_rating2(DerivationSet,RatingSoFar,SetRating),
! .

work_out_ratingl([ElementIRest] ,Rating):­
(rating (Element, Ratingl),
1 . ,
work_out_ratingll(Rest,Ratingl,Rating);
work_out_ratingl(Rest,Rating» .

work_out_ratingll([],Rating,Rating) :-
! .

work_out_ratingll([ElementIRest] ,RatingSoFar,Rating):­
rating (Element,Ratingl),
simplify(fuzzy,Ratingl and RatingSoFar,NewRating) ,
work_out_ratingll(Rest,NewRating,Rating) .

work_out_rating2(DerivationSet,RatingSoFar,SetRating) :­
setal 1 (Rating, (rating set (Element , Rating) ,bit sys subs - - -

et(Element,DerivationSet»,Ratings),
update_rating_thingy(Ratings,RatingSoFar,SetRating) .

update_rating_thingy([],Rating,Rating).
update_rating_thingy([RatingIRatings] ,OldRating,NewRating):

simplify(fuzzy,Rating and OldRating,RatingSoFar),
update_rating_thingy(Ratings,RatingSoFar,NewRating) .

/* re_rate_entry (Delay, ConNo,Modality, Rate) re calculates
the rating for an entry if it needs to be updated, only
really necessary for necessary(R), possible(R), and
critical(R) ,
Delays rewriting the consequence if Delay is set to delay,
otherwise reasserts */

! ,
consequence (ConNo,_,_,_, Rate) .

re_rate_entry (_, ConNo,mgu, Rate) :-
! ,
consequence (ConNo,_,_,_,Rate) .

re_rate_entry(Delay,ConNo,possible(Rating) ,NewRating):-
! ,
consequence (ConNo,Type,Consequence,AssBase,OldRating) ,
set_rating(ConNo,AssBase,possible(Rating»,

335

C. listing of heads engine code and NU code

get_rating (AssBase,NewRating),
(Delay=delay;
retract (consequence (ConNo,Type,Consequence,AssBase,Old

Rating)) ,
assert (consequence(ConNo,Type,Consequence,AssBase,NewR

ating))) ,
!.

/**/

Lexical Analysis Entries (22 to 35) continued from Chapter 6, Section 6.4,
Subsection 6.4.2

22. english, english(noun_phrase([the, man]), [the, man, leJLvar, lex_var, leJLvar,

. lex_var, lex_var, lex_var, lex_var], [the, man, has, a, large, nose, and, squinted, eyes],

grammar(noun_phrase, [definite_article, noun_phrase], [lexical(definite_article, [the]),

grammar(noun_phrase, [noun], [lexicaJ(noun, [man])])]), heads),[[1, 2, 3,19,21]],100

23. english, english(noun-phrase([a, large, nose, and, squinted, eyes]), [lex_var, leJLvar,

lex_var, a, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and, squinted,

eyes], grammar(noun_phrase, [noun-phrase, conjunction, noun_phrase],

[grammar(noun_phrase, [indefinite_article, noun_phrase], [lexicaJ(indefinite_article, [a]),

grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [lexicaJ(adjective, [large])]), grammar(noun_phrase, [noun], [Jexical(noun,

[nose])])])]), lexical(conjunction, [and]), grammar(noun_phrase, [adjective_phrase,

noun-phrase], [grammar(adjective_phrase, [adjective], [lexical(adjective, [squinted])]),

grammar(noun_phrase, [noun], [lexicaJ(noun, [eyes])])])]), heads),[[I, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, IS, 16, 17,22]],100

24. english, english(verb_phrase([has, a, large, nose, and, squinted, eyes]), [leJLvar,

lex_var, has, a, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and,

squinted, eyes], grammar(verb_phrase, [transitive_verb, noun_phrase],

[lexical(transitive_verb, [has]), grammar(noun_phrase, [noun_phrase, conjunction,

noun-phrase], [grammar(noun_phrase, [indefinite_article, noun_phrase],

336

C. Listing of heads engine code and NU code

[Iexical(indefinite_article, [a]), grammar(noun_phrase, [adjective_phrase, noun_phrase],

[grammar(adjective_phrase, [adjective], [Iexical(adjective, [large])]),

grammar(noun_phrase, [noun], [lexical(noun, [nose])])])]), lexical(conjunction, [and]),

grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [Iexical(adjective, [squinted])]), grammar(noun_phrase, [noun],

[lexical(noun, [eyes])])])])]), heads),[[I, 4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17,22,

23]],100

25. english, english(sentence([man, has, a, large, nose, and, squinted, eyes]), [lex_ var,

man, has, a, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and, squinted,

eyes], grammar(sentence, [noun_phrase, verb_phrase], [grammar(noun_phrase, [noun],

[lexical(noun, [man])]), grammar(verb_phrase, [transitive_verb, noun_phrase],

[lexical(transitive_ verb, [has]), grammar(noun_phrase, [noun_phrase, conjunction,

noun_phrase], [grammar(noun_phrase, [indefinite_article, noun_phrase],

[lexical(indefinite_article, [a]), grammar(noun_phrase, [adjective_phrase, noun_phrase],

[grammar(adjective_phrase, [adjective], [lexical(adjective, [large])]),

grammar(noun_phrase, [noun], [Iexical(noun, [nose])])])]), lexica1(conjunction, [and]),

grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [lexical(adjective, [squinted])]), grammar(noun_phrase, [noun],

[lexical(noun, [eyes])])])])])]), heads),[[1, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,

19, 22, 23, 24]],100

26. english, english(noun_phrase([large, nose, and, squinted, eyes]), [lex_var, lex_var,

lex_var, lex_var, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and,

squinted, eyes], grammar(noun_phrase, [noun_phrase, conjunction, noun_phrase],

[grammar(noun_phrase, [ad jecti ye_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [lexical(adjective, [large])]), grammar(noun_phrase, [noun], [lexical(noun,

[nose])])]), lexical(conjunction, [and]), grammar(noun_phrase, [adjective_phrase,

noun_phrase], [grammar(adjective_phrase, [adjective], [lexica1(adjective, [squinted])]),

grammar(noun_phrase, [noun], [Iexical(noun, [eyes])])])]), heads),[[I, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16,25]],100

337

C. listing of heads engine code and NLl code

27. english, english(noulLphrase([a, large, nose, and, squinted, eyes]), [lex_var, lex_var,

lex_var, a, large, nose, and, squinted, eyesl, [the, man, has, a, large, nose, and, squinted,

eyesl, grammar(noun_phrase, [indefinite_article, noun_phrasel,

[lexical(indefinite_article, [a]), grammar(noun_phrase, [noun_phrase, conjunction,

nounJlhrasel, [grammar(noun_phrase, [adjective_phrase, noun_phrasel,

[grammar(adjective_phrase, [adjectivel, [lexical(adjective, [large])]),

grammar(noun_phrase, [nounl, [lexical(noun, [nose])])]), lexical(conjunction, [and]),

grarnmar(noun_phrase, [adjective_phrase, noun_phrasel, [grarnmar(adjective_phrase,

[adjectivel, [lexical(adjective, [squinted])]), grammar(noun_phrase, [nounl,

[lexical(noun, [eyes])])])])]), heads),[[I, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25,

26]],100

28. english, english(verb_phrase([has, a, large, nose, and, squinted, eyes]), [lex_var,

Iex_var, has, a, large, nose, and, squinted, eyesl, [the, man, has, a, large, nose, and,

squinted, eyesl, grammar(verb_phrase, [transitive_verb, noun_phrasel,

[lexical(transitive_verb, [has]), grammar(noun_phrase, [indefinite_article, noun_phrasel,

[lexical(indefinite_articIe, [a]), grammar(noun_phrase, [noun_phrase, conjunction,

nounJlhrasel, [grammar(noun_phrase, [adjective_phrase, noun_phrasel,

[grammar(adjective_phrase, [adjectivel, [lexical(adjective, [large])]),

grammar(noun_phrase, [nounl, [lexical(noun, [nose])])]), lexical(conjunction, [and]),

grammar(noun_phrase, [adjective_phrase, noun_phrasel, [grammar(adjective_phrase,

[adjectivel, [lexical(adjective, [squinted])]), grammar(noun_phrase, [nounl,

[lexical(noun, [eyes])])])])])]), heads),[[I, 4, 5, 6,7,8, 9, 10, 11, 12, 13, 14, 15, 16,25,

26,27]],100

29. english, english(sentence([man, has, a, large, nose, and, squinted, eyes]), [lelLvar,

man, has, a, large, nose, and, squinted, eyesl, [the, man, has, a, large, nose, and, squinted,

eyesl, grammar(sentence, [noun_phrase, verb_phrasel, [grammar(noun_phrase, [nounl,

[lexical(noun, [man])]), grammar(verb_phrase, [transitive_verb, noun_phrasel,

[lexical(transitive_verb, [has]), grammar(noun_phrase, [indefinite_article, noun_phrasel,

338

C. Listing of heads engine code and NU code

[Iexical(indefinite_article. [a]). grammar(noun_phrase. [noun_phrase. conjunction.

noun_phrase l. [grammar(noun_phrase. [ad jecti ve_phrase. noun_phrase l.

[grammar(adjective_phrase. [adjective l. [Iexical(adjective. [large])]).

grammar(noun_phrase. [nounl. [Iexical(noun. [nose])])]). lexical(conjunction. [and]).

grammar(noun_phrase. [adjective_phrase. noun_phrasel. [grammar(adjective_phrase.

[adjectivel. [lexical(adjective. [squinted])]). grammar(noun_phrase. [nounl.

[lexical(noun. [eyes])])])])])])]). heads).[[I. 3. 4.5.6.7.8.9. 10. 11. 12. 13. 14. 15. 16.

19. 25. 26. 27. 28ll.100

·30. english. english(noun_phrase([nose. and. squinted. eyes]). [Iex_var. lex_var. lex_var.

lex_var. lex_var. nose. and. squinted. eyesl. [the. man. has. a. large. nose. and. squinted.

eyesl. grammar(noun-phrase. [noun_phrase. conjunction. noun_phrasel.

[grammar(noun_phrase. [nounl. [lexical(noun. [nose])]). lexical(conjunction. [and]).

grammar(noun....Phrase. [adjective....Phrase. noun_phrasel. [grammar(adjective_phrase.

[adjectivel. [lexical(adjective. [squinted])]). grammar(noun_phrase. [nounl.

[lexical(noun. [eyes])])])]). heads). [[I. 7.8.9.10.11.13. 14. 15. 29ll.100

31. english. english(noun_phrase([large. nose. and. squinted. eyes]). [lex_var. lex_var.

lex_var. lex_var. large. nose. and. squinted. eyesl. [the. man. has. a. large. nose. and.

squinted. eyesl. grarnmar(noun_phrase.

[grammar(adjective_phrase. [adjectivel.

[adjective_phrase. noun_phrasel.

[Iexical(adjective. [large])]).

grammar(noun_phrase. [noun_phrase. conjunction. noun_phrasel.

[grammar(noun_phrase. [nounl. [Iexical(noun. [nose])]). lexical(conjunction. [and]).

grarnmar(noun_phrase. [adjective_phrase. noun_phrase l. [grammar(ad jecti ve_phrase.

[adjectivel. [Iexical(adjective. [squinted])]). grammar(noun_phrase. [nounl.

[Iexical(noun. [eyes])])])])]). heads).[[l. 6. 7. 8. 9.10.11.12.13.14.15.29. 30ll.100

32.english. english(verb-phrase([has. a. large. nose. and. squinted. eyes]). [Iex_var.

lex_var. has. a. large. nose. and. squinted. eyesl. [the. man. has. a. large. nose. and.

squinted. eyesl. grammar(verb_phrase. [transitive3erb. noun_phrasel.

[lexical(transitive_verb. [has]). grarnmar(noun_phrase. [indefinite_article. noun_phrasel.

339

C. listing of heads engine code and NU code

[Iexical(indefinite_article. [a]). grammar(noun_phrase. [adjective_phrase. noun_phrasel.

[grammar(adjective_phrase. [ad jecti vel. [Iexical(adj ecti ye. [large])]).

grammar(noun.....phrase. [noun_phrase. conjunction. noun_phrasel.

[grammar(noun_phrase. [nounl. [Iexical(noun. [nose])]). lexical(conjunction. [and]).

grammar(noun_phrase. [adjective_phrase. noun_phrasel. [grammar(adjective_phrase.

[adjectivel. [Iexical(adjective. [squintedl)]). grammar(noun_phrase. [nounl.

[Iexical(noun. [eyes])])])])])])]). heads).[[I. 4. 5. 6. 7.8.9.10.11. 12. 13. 14. 15.29.30.

31.32]].100

33. english. english(sentence([man. has. a. large. nose. and. squinted. eyes]). [Iex_var.

man. has. a. large. nose. and. squinted. eyesl. [the. man. has. a. large. nose. and. squinted.

eyesl. grarnmar(sentence. [noun_phrase. verb_phrasel. [grammar(noun-phrase. [nounl.

[Iexical(noun. [man])]). grammar(verb-phrase. [transitive_verb. noun_phrasel.

[lexical(transitive3erb. [has]). grammar(noun-phrase. [indefinite_article. noun_phrasel.

[Iexical(indefinite_article. [a]). grarnmar(noun_phrase. [adjective_phrase. noun_phrasel.

[grammar(ad jecti ve _phrase. [ad jecti vel. [Iexical(adjective. [large])]).

grammar(noun_phrase. [noun_phrase. conjunction. noun_phrasel.

[grammar(noun.....phrase. [nounl. [Iexical(noun. [nose])]). lexical(conjunction. [and]).

grammar(noun_phrase. [adjective_phrase. noun_phrasel. [grammar(adjective_phrase.

[adjectivel. [Iexical(adjective. [squinted])]). grarnmar(noun_phrase. [nounl.

[Iexical(noun. [eyes])])])])])])])]). heads).[[I. 3.4.5.6.7.8.9. 10. 11. 12. 13. 14. 15. 19.

29.30.31.32.33]].100

34. english. english(sentence([the. man. has. a. large. nose. and. squinted. eyes]). [the.

man. has. a. large. nose. and. squinted. eyesl. [the. man. has. a. large. nose. and. squinted.

eyesl. grarnmar(sentence. [noun_phrase. verb_phrasel. [grarnmar(noun_phrase.

[definite_article. noun_phrase l. [Iexical(definite_article. [the D. grarnmar(noun_phrase.

[nounl. [Iexical(noun. [man])])]). grarnmar(verb_phrase. [transitive3erb. noun_phrasel.

[Iexical(transitive_verb. [has]). grammar(noun_phrase. [indefinite_article. noun_phrasel.

[Iexical(indefinite_article. [a]). grammar(noun_phrase. [adjective_phrase. noun_phrasel.

[grammar(adjective_phrase. [adjective l. [Iexical(adjective. [large])]).

340

C. Listing of heads engine code and NLI code

grammar(noun_phrase, [noun_phrase, conjunction, noun_phrase],

[grammar(noun_phrase, [noun], [Iexical(noun, [nose])]), lexical(conjunction, [and]),

grammar(noulLphrase, [adjective_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [Iexical(adjective, [squinted])]), grammar(noun_phrase, [noun],

[lexical(noun, [eyes])])])])])])])]), heads),[[I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, IS,

19,21,29,30,31,32,34]],100

35, english, english(sentence([the, man, has, a, large, nose, and, squinted, eyes]), [the,

man, has, a, large, nose, and, squinted, eyes], [the, man, has, a, large, nose, and, squinted,

eyes], grammar(sentence, [noun_phrase, verb_phrase], [grammar(noun_phrase,

[definite_article, noun-phrase], [Iexical(definite_article, [the]), grarnmar(noun_phrase,

[noun], [Iexical(noun, [man])])]), grammar(verb_phrase, [transi ti ve _verb, noun_phrase],

[Iexical(transitive_verb, [has]), grammar(noun_phrase, [indefinite_article, noun_phrase],

[lexica1(indefinite_article, [a]), grammar(noun""phrase, [noun_phrase, conjunction,

noun_phrase], [grammar(noun_phrase, [adjective_phrase, noun_phrase],

[grammar(adjective_phrase, [adjective], [Iexical(adjective, [large])]),

grammar(noun_phrase, [noun], [Iexical(noun, [nose])])]), lexical(conjunction, [and]),

grammar(noun_phrase, [adjective_phrase, noun_phrase], [grammar(adjective_phrase,

[adjective], [lexica1(adjective, [squinted])]), grarnmar(noun_phrase, [noun],

[Iexical(noun, [eyes])])])])])])]), heads),[[I, 2, 3, 4, 5, 6, 7, 8, 9,10,11, 12, 13, 14, IS, 16,

19,21,25,26,27,35]],100

341

c. Listing of heads engine code and NLl code

This Page has been left blank Intentionally

342

Bibliography

Bibliography

3D Studio Max Reference Volume I and n, 1999. Discreet, AutoDesk Systems.

Ahmad, S. and Hinde, C. J. (2001). Natural Language based Facial Image Generation

System. Proceedings of Nordic Interactive Conference in association with ACM

SIGGRAPH. Copenhagen, Oct 31"_ Nov I".

Anjyo, K., Usami, Y. and Kurihara, T. (1992). A simple method for extracting the natural

beauty of hair. Computer Graphics, 26(2):111-120, July.

Aspley Limited (1993). E-fit, Hartfield, UK: Aspley Limited.

Baker, E. and Seltzer, M. (1997). The Mug-Shot Search Problem. Harvard University

Center for Research in Computing Technology, Technical Report-20-97.

Baldwin, J. F. (1991) A theory of Mass Assignments for Artificial Intelligence. UCAI '91

Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in

Artificial Intelligence, pp. 22-34.

Baldwin, J. F. (1992) Fuzzy and Probabilistic Uncertainties. Encyclopedia of AI, 2nd ed.,

Shapiro, pp 528-537.

Barr, A. H. (1984). Global and Local Deformations of Solid Prim-itives, Computer

Graphics 17,3, July, pp 21-30.

343

Bibliography

Batten, G.W and Rhodes, B.T. (1978). UHMFS: The University of Houston mug file

system. Proceedings of the 1978 Camahan Conference on Crime Countermeasures.

Lexington, Kentucky.

Bell, J.A. (1998). "3D Studio Max R2.5 fIx and design", The Coriolis Group, pp 382-

397.

Bezier, P. (1974). Mathematical and practical possibilities ofUNISURF, in Computer

Aided Geometric Design, R. E. Barnhill and R. F. Riesenfeld, eds., Academic Press, New

York, pp 127-152.

Bindiganavale, R., Schuler, W., Allbeck, J. M., Badler, N. 1., Joshi, A. K. & Palmer, M.

(2000). Dynamically Altering Agent Behaviors Using Natural Language Instructions,

Proceedings of the fourth international conference on Autonomous agents, June 3 - 7,

Barcelona Spain.

Bisson, C.L. (l965a). Measurements by computer of the distances on and about the eyes

(Report No. PRI-18). Panoramic Research, Inc., Palo Alto, California.

Bisson, C.L. (l965b). Location of some facial features by computer. (Report No. PRI-

20). Panoramic Research, Inc., Palo Alto, CaliforniaBledsoe, W. W. (1966). The model

method infacial recognition. Panoramic Research Inc., Palo Alto, CA, PRI:15, Aug.

Boardman, T. and Hubbell, J. (1998). "Inside 3D Studio Max 2", New Riders

Publishing, pp 9-22.

Bledsoe, W.W. (1964). The model method in facial recognition. (Report No. PRI-15).
Panoramic Research, Inc., Palo Alto, California

Bratko 1. 1986: Prolog Programming for Artificial Intelligence. Addison-Wesley

344

Bibliography

Brewer, J. A. and Anderson, D. C. (1977). Visual interaction with Overhauser curves and

surfaces. Computer Graphics 11,2, July, pp. 132-137.

Bromley, L.K. (1977). Computer-aided processing techniques for usage in real-time

image evaluation. Master's thesis, University of Houston

Capin, T. K., Pandzic , I., Thalmann , N. M. , Thalmann, D. (1998). Integration of

Avatars and Autonomous Virtual Humans in Networked Virtual Environments.

Computer Graphics Laboratory, Swiss Federal Institute of Technology. MIRALAB-CU.

University of Geneva

Cannon, S. R., Jones, G. W., Carnpbell, R., & Morgan, N. W. (1986). A computer vision

system for identification of individuals. Proceedings of IECON (pp. 347-351).

Carey, S. & Diamond, R. (1977). From piecemeal to configurational representation of

faces. Science, 195, 312-313.

Chernoff, H. (1971). The use of faces to represent points in N-dimensional space

graphically. Office of Naval Research, December, Project NR-042-993.

Chernoff, H. (1973). The use of faces to represent points in K-dimensional space

graphically, Journal of American Statistical Association, 361.

Cobb, E. S. (1984). Design of Sculptured Suifaces using the B-spline Representation.

Ph.D. Dissertation, Department of Computer Science, University of Utah, June.

Connectix, (2001). http://www.connectix.com/products/vpc4m.html

345

Bibliography

CorIet R.A. & Todd S. J. 1986: A Monte Carlo Approach to Uncertain Inference. In:

Artificial Intelligence and its Applications. Ed. Cohn & Thomas. John WiJey & Sons.

Pp. 127 -137.

Craw, I., EIIis, H., & Lishman, J. R. (1987). Automatic extraction of face features.

Pattern Recognition Letters, 5, 183-187.

Chomsky, Noam (1986a). Barriers. Linguistic Inquiry Monograph 13. Cambridge, MA:

MITPress.

Chomsky, Noam (1986b). Knowledge of Language: its nature, origin and use. Newyork:

Praeger.

Chomsky, Noam (1992). A minimalist program for linguistic theory. Cambridge, MA:

MIT Working Papers in Linguistic, pp. 3.

Christie, D. F. M., & EIIis, H. D. (1981). Photofit construction versus verbal descriptions

of faces. Journal of Applied Psychology, 66, pp 358-363.

Crystal, David (1992). An Encyclopedic Dictionary of Language and Languages. Oxford,

England: Blackwell.

Cutler, B. L., Stocklein, C. J., & Penrod, S. D. (1988). Emperical Examination of a

Computerized Facial Composite Production System, Forensic Reports, 1:207-218

Cyberware Laboratory Inc (1990). 4020IRGB 3D scanner with color digitizer. Monterey,

CA.

DataFace (1990), Facial Animation Work Shop, Report to NIC.

346

Bibliography

Davies. G. M. (1981). Face recall systems. In G. M .• H. D. Ellis. & J. W. Shepherd

(Eds.). Perceiving and remembering faces. London: Academic Press

de Kleer J. 1985: Choices without Backtracking. Proc. Of Conference of the American

Association for Artificial Intelligence. Austin. Texas. August 1986. pp. 79-85.

de Kleer J. 1986(a): An Assumption-Based TMS. Artificial Intelligence Vol. 28. pp. 127

-162.

de Kleer J. 1986(b): Extending the ATMS. Artificial Intelligence Vol. 28. pp. 163 -196.

de Kleer J. 1986(c): Problem Solving with the ATMS. Artificial Intelligence Vol. 28. pp.

197 - 224.

de Kleer J. & Williams B. C. 1986: Back to Backtracking: Controlling the ATMS. Proc.

Of 5th National Conference on A.I.. AAAI-86. August 1986.

Delinguette. H .• Subsol. G .• Cotin. S .• and Pignon. J. (1994). A craniofacial surgery

simulation testbed. Technical Report 2199. INRIA. France. February.

Dodwell. P.C. (1971). "Perceptual Processing: Stimulus Equivalence and Pattern

Recognition". Appleton-Century-Crofts. New York

Dougherty. R. C. (1994). Natural Language Computing. New York University. Lawrence

Erlbaum Associates

Doyle J. 1979(a): A Glimpse of Truth Maintenance. UCAI-79. Vol. 1. pp. 232-237.

347

Bibliography

Doyle J. 1979(b): A Truth Maintenance System. Artificial Intelligence Vol. 12, pp. 231-

272.

Earley, J. (1970). An Efficient Context-Free Parsing algorithm. Communications of the

Association of Computing Machinery.

Ekman, P. & Oster, H. (1979). Facial expressions of emotion. Annual Review of

Psychology, 20, 527-554.

Ekman, P. & Friesen, W. V. (1978). Facial action coding system: A technique for the

measurement offacial movement. Palo Alto, Calif.: Consulting Psychologists Press.

Ekman, P. & Friesen, W. V. (1986). A new pan cultural facial expression of emotion.

Motivation and Emotion, 10(2), 1986.

Elson, M. (1990). "Displacement" facial animation techniques. In Vo126: State of the Art

in Facial Animation, pages 21-42. ACM Siggraph'90 Course Notes, Dallas Convention

Center, August 6th-10th.

Ellis, H. D., Deregowski, J. B., & Shepherd, J. W. (1975). Descriptions of white and

black faces by white and black subjects. International Journal of Psychology, 10, pp.

119-123.

Ellis, H. D., Deregowski, J. B., & Shepherd, J. W. (1980). The deterioration of verbal

descriptions of faces over different delay intervals. Journal of Police Science and

Administration, 8, pp. 101-106.

Facial Animation, (1997). http://www.cis.ohio-state.eduJ-sking/FaciaIAnimation.html

348

Bibliography

Faigin, G. (1990), "The Artist's Complete Guide to Facial Expression".

Foley, Van Dam, Feiner, Hughes (1996), Computer Graphics Principles and

Practice. 2nd Edition, Addison-Wesley Publication.

Forsey, D.R. and Bartels, R.H. (1990). Hierarchical bspline refinement. Computer

Graphics, pp 205-212, May.

Fox, J. (1986). Knowledge, Decision Making, and Uncertainty. Artificial Intelligence and

Statistics (Ed. Gale). Addison-Wesley, pp. 57-76.

Fox, J. (1987). Dealing With Uncertainty. Intelligent Knowledge Based Systems - An

Introduction, (Ed. O'Shea, Self & Thomas). Harper & Row, pp. 52-67

Franksen O. I. 1978: On Fuzzy Sets, Sunjective Measurements and Uti1ty. Workshop on

Fuzzy Reasoning: Theory and Applications. Queen Mary College, Univ. of London. 15th

September, 1978.

Fried, L. A. (1976). Anatomy of the head, neck, face, and jaws. Philadelphia: Lea and

Febiger.

Friedman J.H. & Stuetzle, W. (1981). Projection pursuit regressio. Journal of the

American Statistics Association, 76(376),817-823.

Friedman, S. M. (1970). Visual anatomy: Volume one, head and neck. New York: Harper

and Row.

Frost, R.A. (1986). Introduction to Knowledge Based Sysstems. Collins

349

Bibliography

Gaines, B. R. 1976: Foundations of Fuzzy Reasoning. Int. Journal of Man-Machine

Studies, No. 8, pp. 623-668.

Gamham, A. 1987: Artificial Intelligence - An Introduction. Routledge & Kegan Paul

Genesereth, M.R. and Nilsson, N.J. (1987) Logical Foundations of Artificial Intelligence,

Morgan Kaufmann Publishers Inc, Palo Alto USA.

Gillenson, M.L. (1974). The interactive generation of facial images on a CRT using a

heuristic strategy. Ohio State University, Computer Graphics Research Group, The Ohio

State University, Research Center, 1314 Kinnear Road, Columbus, Ohio 434210

Goldstein, A. J., Harmon, L. D., & Lesk, A. B. (1971). Identification of human faces,

Proceedings of IEEE, 59, 748.

Golomb, B.A., Lawrence, D.T., & Sejnowski, T.J. (1991). SEXNET: A neural network

identifies sex from human faces. In D.S. Touretzky & R. Lippman (Eds.), Advances in

Neural Information Processing Systems, 3, San Mateo, CA: Morgan Kaufmann.

Hill, D.R., Pearce, A., & Wyvill, B. (1988). Animating speech: An automated aproach

using speech synthesis by rules. The Visual Computer, 3, 277-289.

Hinde, C. J. 1985: Artificial Intelligence and Expert Systems. Further Developments in

Operational Research. Ed. Rand & Eglese. Pergamon Press.

Hinde, C. J. 1986: Fuzzy Prolog. Int. Journal of Man-Machine Studies Vol. 24, pp. 569-

595.

350

Bibliography

Hinde, C.J., Bray A.D., Herbert PJ., Launders V.A. & Round D. (1989). A Truth

Maintenance Approach to Process Planning. Artificial Intelligence Vo!. 29, No. 2. pp.

217-222.

Hinde, CJ., Lawson, R.J. and Connolly, J.H. (1989). Natural Language: The Ultimate

User-Firendly Interface. San Francisco, Interex H.P. users conference.

Hinde, CJ. and Bray, A.D. (1992). Concurrent Engineering using Collaborating Truth

Maintenance Systems. In Ed Max Bramer, Research and Development in Expert systems,

C.U.P.

Hoffmann, C. and Hoperoft, J. (1985). Automatic surface generation in Computer Aided

Design. TR 85-6617 Dept. of Computer Science, Comell University, January.

Hogarth, W. (1953). ''The Analysis of Beauty" (J. Burke, Ed.). Oxford University Press,

Oxford

Hopcroft, J.E and Ullman, J.D. (1969) Formal Languages and their Relation to

Automata' Addison-Wesley, Reading, Mass.

Hovy, Eduard H. (1993). How MT Works. Byte, January 1993, pp. 167-176

Jones, B. (1977). Beauty: 6. Sunday Times, December 11, pp. 74-75.

Janes, J. and Millington, M. (1986). An Edinburgh Prolog Blackboard Shell. University

of Edinburg, Dept. of Artificial Intelligence Research Paper No. 281

Komatsu, K. (1988). Human skin capable of natural shape variation. The Visual

Computer, 3, 265-271.

351

Bibliography

Kalra, P., Gobbetti, E., Magnenat-Thalmann, N. and Thalmann, D. (1993). A multimedia

testbed for facial animation control. In T.S. Chua and T.L. Kunii, editors, International

Conference of Multi-Media Modeling, MMM'93, pp. 59-72, Singapore, Nov 9-12.

1988. Kleiser Walczak Construction Comp.

Kanade, T. (1973). Picture processing system by computer complex and recognition of

human faces. Dept. of Information Science, Kyoto University, Nov.

Kanade, T. (1977). Computer recognition of human faces. Basel and Stuttgart:

Birkhauser Verlag.

Kanade, T. (1981). Recovery of the 3D shape of an object from a single view. Artificial

Intelligence 17, 409-460.

Kaplan, R (1973). A General syntactic processor. In Rustin, R. (ed.), Natural Language

Processing. New York: Algortithmics Press. 193-241.

Kay, M. (1967). Experiments with a Powerful Parser. In Proceedings of the Second

International COLING Conference.

Kaya, Y. & Kobayashi, K. (1972). A basic study of human face recognition. In A.

Watanabe (Ed.), Frontier of Pattern Recognition (pp. 265).

King, M (1983). Parsing Natural Language. Academic Press

Kleiser, J. (1989). A fast, efficient, accurate way to represnt the human face. State of the

Art in Facial Animation. ACM, SIGGRAPH '89 Tutorials, 22,37-40.

352

Bibliography

Klir, G. J. and Yuan, B. (1995) "Fuzzy Sets and fuzzy Logic, Theory and Applications" ,

Prentice Hall, New Jersey.

Kodratoff, Y., Manago M., and Blythe, J. (1988). Generaliszation and Noise. Knowledge

Accquisition for Knowledge Based Systems (Ed. Gaines & Boose). Academic Press, pp.

301-324.

Larrabee, W. (1986). A finite element model of skin deformation. Laryngoscope, 96,

399-419.

Laughery, K. R., & Fowler, R. F. (1980). Sketch Artists and Identi-kit procedures for

recalling faces. Journal of Applied Phsycology, 65, pp 307-316.

Lee, Y., Terzopoulos, D. and Waters, K. (1993). Constructing physics-based facial

models of individuals. In Graphics Interface '93, pp. 1-8, Toronto, ON, May.

Lee, Y., Terzopoulos, D. and Waters, K. (1995). Realistic Modeling for Facial Animation

In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp.

55-62.

Lewis, J. P. & Parke, F. I. (1987). Automatic lip-synch and speech synthesis for character

animation. CHI+CG '87, Toronto, 143-147

Magnenat-ThaImann, N. and Thalmann, D. (1987). The direction of synthetic actors in

the film: Rendez-vous 11 Montreal. IEEE Computer Graphics and Applications, pp. 9-

19,December.

Magnenat-Thalmann, N., Primeau, N.E., & Thalmann, D. (1988). Abstract muscle

actions procedures for human face animation. Visual Computer, 3(5),290-297.

353

Bibliography

Magnenat-Thalmann, N. and Thalmann, D. (1989). Synthetic actors. In Vo122: State of

the Art in Facial Animation, pp. 145-152. ACM Siggraph'89 Course Notes.

Magnenat-Thalmann, N. and Thalmann, D. (1994). "Towards virtual humans in

medicine: a prospective view", Computerized Medical Imaging and Graphics, v. 18, n. 2,

pp. 97-106.

Magnenat-Thalmann N, Thalmann D (1995). Digital Actors for Interactive Television,

Proc. IEEE, Special Issue on Digital Television, Part 2, July, pp. 1022-1031.

Mamdani E. H. & Gaines B. R. 1981: Fuzzy Reasoning and its Applications. Academic

Press.

Marigny, T., Adjoudani, A. and Benoit, C., (1994). A 3-D Model of the Lips for Visual

Speech Synthesis. In Proc. of the 2nd ESCAlIEEE workshop on Speech Synthesis, pages

49-52, New Paltz, NY.

McAllestrer D. A. 1978: A Three-Valued Truth Maintenance System. M.lT. AI Memo

473

McFetridge, Paul, and Nick J. Cercone (1990). The Evolution of a Natural Language

Interface: Replacing a Parser. In Proceedings of Computational Intelligence '90, Milan,

Italy. Appeared as Installing an HPSG Parser in a Modular Natural Language Interface.

In N. J. Cercone, F. Gardin and G. Valle (Eds.) Computational Intelligence III

(Proceedings of the International Symposium, Milan, Italy, September 24-28 1990).

Amsterdam, Netherlands: Elsevier Science Publishers, pp. 169-178.

McFetridge, Paul (1991). Processing English Database Queries with Head Driven

Phrase Structure Grammar. In Proceedings of the 2nd Japan-Australia Joint Symposium

on Natural Language Processing (JAJSNLP '91), Iizuka City, Kyushu, Japan.

354

Bibliography

Middleditch, A. E. (1985). and Sears, K. H. Blend surfaces for set theoretic volume

modelling systems. Computer Graphics 19,3, July, pp. 161-170.

Muzekari, L. and Knudsen, H. (1986). Effect of context on perception of emotion among

psychiatric patients. Perceptual and Motor Skills, 62(1):79-84.

Nafarieh A. 1988: A New Approach to Inference in Approximation Reasoning and its

Application to Computer Vision

Nahas, M., Huitric, H., & Sanintourens, M. (1988). Animation of a B-spline figure. The

Visual Computer, 3, 272-276.

Norman, M. (1987). A Prolog set-theoretic equation solver. Loughborough Unversity

M.Sc. Thesis.

Obermeier, Klaus K. (1989). Natural Language Processing Technologies in Artificial

Intelligence: The Science and Industry Perspective. Chichester, West Sussex, England:

Ellis Horwood.

Ohya J, Kitamura Y, Kishino F, Terashima N (1995) Virtual Space Teleconferencing:

Real-Time Reproduction of 3D Human Images, Journal of Visual Communication and

Image Representation, Vol. 6, No. I, pp. 1-25.

Ohmura, K., Tomono, A. and Kobayashi, Y. (1988). Method of detecting face direction

using image processing for human interface. SPIE, Visual Communications and

ImageProcessing '88, 1001:625-632.

355

Bibliography

Oka, M. Tsutsui, K., Ohba, A., Kurauchi, Y., & Tago, T. (1987). Real-time manipulation

of texture-mapped surfaces. Computer Graphics, 21(4), 181-188.

Parent, R. E. (1977). A System for Sculpting 3-D Data. ComputerGraphics 11, 2, July,

pp. 138-147.

Parke, F. I. (1972a). Computer Generated Animation of Faces. University of Utah, Salt

Lake City, June, UTEC-CSc-72-120.

Parke, F. I. (l972b). Computer generated animation of faces. ACM Nat'l Conference, 1,

451-457.

Parke, F. I. (1974). A parameteric model for human faces. University of Utah, UTEC­

CSc-75-047, Salt Lake City, Utah, December.

Parke, F. I. (1975). A model of the face that allows speech synchronized speech. Journal

of Computers and Graphics, I, 1-4.

Parke, F. I. (1982). Parameterized models for facial animation. IEEE Computer Graphics

and Applications, 2(9), 61-68.

Parke F. I. (1984). "A Parametric Model for Human Faces" Technical Report University

of Utah.

Parry, S. R. (1986). Free-form deformations in a constructive solid geometry modeling

system, Ph.D. Dissertation, Department of Civil Engineering, Brigham Young

University, April.

356

Bibliography

Patel, M. & Willis, P. J. (1991). FACES: Facial animation, construction and editing

system. In F. H. Post and W. Barth (Eds.), EUROGRAPHlCS '91 (pp. 33-45).

Amsterdam: North Holland.

Pearce, A., Wyvill, B., Wyvill, G., & Hill, D. (1986). Speech and expression: A computer

solution to face animation. In M. Wein and E. M. Kidd (Eds.), Graphics 1nteiface '86

(pp. 136-140). Ontario: Canadian Man-Computer Communications Society

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible

inference. Morgan Kaufmann.

Pelachaud, C. (1991). Communication and coarticulation infacial animation. University

of Pennsylvania, Department of Computer and Infonnation Science, October.

Pelachaud, C., Badler, N.I., Viaud, M. (1994). Final Report to NSF of the Standards for

Facial Animation Workshop, October. University of Pennsylvania.

Penry, J. (1971). "Looking at Faces and Remembering Them", pp. 28-29, 32-38 Elek

Books, London

Pentland, A, Etcoff, N., Starner, T. (1992). Expression recognition using eigenfeatures.

M.LT. Media Laboratory Vision and Modeling Group Techical Report No. 194, August.

Peterson, M. T. (1997). "3D Studio Max 2 Fundamental", New Riders Publishing, pp. 67-

91.

Pieper, S. D. (1989). More than skin deep: Physical modeling of facial tissue.

Massachusetts Institute of Technology, 1989, Media Arts and Sciences, MIT.

357

Bibliography

Pieper, S. D. (1991). CAPS: Computer-aided plastic surgery. Massachusetts Institute of

Technology, Media Arts and Sciences, MIT, September.

Platt, S. M. (1980). A System for Computer Simulation of the Human Face.,The Moore

School, 1980, Pennsylvania.

Platt, S. M. (1985). A structural model of the human face. The Moore School,

Pennsylvania.

Platt S.M. and Badler N. 1. (1981). "Animating Facial Expressions," Computer

Graphics, Vol. 15, No. 3, August, pp. 245-252.

Rockwood, A. P. and Owen, J. (1986). Blending surfaces in solid modeling, in Geometric

Modeling, G. Farin, editor, SIAM.

Roeck, A. De (1983). An Underview of Parsing in Parsing Natural Language. Academic

Press

Sabin, M. A. (1970). Interrogation techniques for parametric surfaces, Proceedings­

Computer Graphics '70, Brunei University, April.

Sakai, T., Nagao, M. and Kanade, T. (1972). Computer analysis and classification of

photographs of human faces. Proceedings of the First USA - Japan Computer

Conference, pp. 55-62.

Schmucker K. J. 1984: Fuzzy Sets, Natural Language Computations and Risk Analysis.

Computer Science Press

358

Bibliography

Sederberg, T. W. and Parry, S. R. (1986). Free-form deformation of polygonal data,

Proceedings, International Electronic Image Week, Nice, France (April), pp. 633-639.

Shafer G. (1976). A Mathematical Theory of Evidence, Princeton University Press.

Shaherazam (1986). The Mac-a-Mug Pro Manual, Milwaukee, Wisconsin: Shaherazam

Shanahan M. & Sothwick R. 1989: Search, Inference and Dependencies in Artificial

Intelligence. Ellis Horwood.

Shepherd, J. W., Ellis, H. D., & Davies, G. M. (1977). Perceiving and remembering

faces. Technical report to the Home Office under contract POU7311675/24/1.

Shepherd, J., Davies, G., & Ellis, H. (1981) .. In G. M., H. D. Ellis, & J. W. Shepherd

(Eds.), Perceiving and remembering faces. London: Academic Press

Baker E. & Seltzer M. (1998). The Mug-Shot Search Problem, Vision Interface

Proceedings, Vancouver, Canada.

Sijtsma, Wietske, and Olga Zweekhorst (1993). Comparison and Review of Commercial

Natural Language Interfaces. In Franciska M.G de long and Anton Nijholt (Eds.)

Natural Language Interfaces: From Laboratory to Commercial and User Environment,

Proceedings of the Fifth Twente Workshop on Language Technology (TWLT5).

Universiteit Twente, Enschede, Netherlands, pp. 43-58.

Stallman R. & Sussman G. 1977: Forward Reasonong and Dependency Directed

Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intelligence

Vol. 9. pp. 135.

Strzalkowski, Tomek, and Nick J. Cercone (1986). A Framework for Computing Extra­

Sentential References. Computational Intelligence, 2, (4), pp. 159-180

359

Bibliography

Terzopoulos, D. & Waters, K. (1990a). Analysis of facial images using physical and

anatomical models. Proceedings of the International Conference on Computer Vision,

1990,727-732.

Terzopoulos, D. & Waters, K. (1990b). Physically-based facial modeling, analysis, and

animation. Journal of Visualization and Computer Animation, 1(4), 73-80.

Todd J.T., Mark Leonard S., Shaw Robert E., and Pittenger John b. (1980). "The

Perception of human Growth," Scientific American, Vol. 242, February, pp. 132-134.

Townes, J.R. (1976). A computer algorithm for mug shot identification. EAI Symposium
on Automatic Imagery Pattern Recognition, College Park, Maryland.

Turk, M. A. & Pentland, A. P. (1991). Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1), 71-86.

Vanezis, P. (1999) "Identity Crisis" Article in New Scientist, 27 February, pp 40-46.

Vannier, M. W., Pilgram, T., Bhatia, G., & Brunsden, B. (1991). Facial surface scanner.

IEEE Computer Graphics and Applications, 11(6),72-80.

Veenman, P. R. (1982). The design of sculptured surfaces using recursive subdivision

techniques, in: Proc. Con! On CAD/CAM Technology in Mechanical Engineering, MIT,

Cambridge, March.

360

Bibliography

Waite, C. T. (1989). The Facial Action Control Editor, Face: A Parametric Facial

Expression Editor for Computer Generated Animation. Massachusetts Institute of

Technology, Media Arts and Sciences, Cambridge, Febuary.

Wa1czak, K. (1988). Sextone for President. ACM SIGGRAPH Video Review, vol. 38/39.

Kleiser Walczak Construction Comp.

Wang, S.-G. & George, N. (1991). Facial recognition using image and transform

representations. In Electronic Imaging Final Briefing Report, U.S. Army Research

Office, P-24749-PH, P-24626-PH-UIR, The Institute of Optics, University of Rochester,

New York.

Watanabe, Y. & Suenaga, Y. (1992). A trigonal prism-based method for hair image

generation. IEEE Computer Graphics and Applications, January, 47-53.

Waters, K. (1986). Expressive three-dimensional facial animation. Computer Animation

(CG86) , October, 49-56.

Waters, K. (1987). A muscle model for animating three-dimensional facial expressions.

Computer Graphics (SIGGRAPH'87), 21(4), July, 17-24.

Waters, K. (1988). The computer synthesis of expressive three-dimensional facial

character animation. Middlesex Polytechnic, Faculty of Art and Design, Cat Hill Barnet

Herts, EN4 8HT. June.

Waters, K. & Terzopoulos, D. (1990). A physical model of facial tissue and muscle

articulation. Proceedings of the First Conference on Visualization in Biomedical

Computing, May, 77-82.

361

Bibliography

Waters, K. & Terzopoulos, D. (1991). Modeling and animating faces using scanned data.

Journal a/Visualization and Animation, 2(4), 123-128.

Waters, K. & Terzopoulos, D. (1992). The computer synthesis of expressive faces. Phi/'

Trans. R. Soc. Lond., 355(1273), 87-93.

Williams, L. (1990). Performace driven facial animation. Computer Graphics, 24(4),

235-242.

Wise, B.P. (1986). An Experimental Comparrison of Uncertain Inference Systems.

Carnegie-Mellon University Ph.D. Thesis, pp. 1-6\.

Woods, W.A. (1970) Transition network grammars for natural language analysis.

Communications 0/ the ACM 13, pp. 591-606

Wu, J. K., Ang, Y. H., Lam, P., Loh, H. H., and Desai, A. (1994). Inference and Retrieval

of Facial Images, Multimedia Systems, 2: 1-14.

Wu, J. K. (1998) - "Fuzzy content-based retrieval in image databases", Information

processing & management, Vo1.34, No.5, pp.513-534

Wyvi1l, B. (1989). Expression control using synthetic speech. State 0/ the Art in Facial

Animation, SIGGRAPH '89 Tutorials, ACM, 22, 163-175.

Yacoob, Y. and Davis, L. (1994). Computer Vision and Pattern Recognition Conference,

chapter Computing spatio-temporal representations of human faces, pp. 70-75. IEEE

Computer Society.

362

Bibliography

Yamana, T. & Suenaga, Y. (1987). A method of hair representation using anisotropic

reflection. IECEJ Technical Report PRU87-3, May, 15-20, (in Japanese).

Yuille, A. L. (1991). Deformable templates for face recognition. Journal of Cognitive

Neuroscience, 3(1), 59-70.

Zadeh L.A. (1965) "Fuzzy Sets". Journal of Information and Control, 8 pp.338-353

Zadeh L.A. (1979) "A Theory of Approximate Reasoning", in Fuzzy Sets and

Applications: Selected Papers by L.A. Zadeh, R. Yager et. aI., Editors 1979, John Wiley

& Sons. pp. 149-194.

Zadeh L. A. 1986: Is Probability Theory Sufficient for dealing with Uncertainty in AI: A

Negative View. Uncertainty in Artificial Intelligence. Ed. Kanal & Lemmer. Elsevier.

Pp. 103 -116

Zadeh L.A. (1996) "Fuzzy Logic = Computing with Words", IEEE Transactions on Fuzzy

systems, VoI.4No.2, pp. 103-111.

363

•

