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Abstract 

Recently, autonomous vehicles have received worldwide attentions from academic 

research, automotive industry and the general public. In order to achieve a higher 

level of automation, one of the most fundamental requirements of autonomous 

vehicles is the capability to respond to internal and external changes in a safe, timely 

and appropriate manner. Situational awareness and decision making are two crucial 

enabling technologies for safe operation of autonomous vehicles.  

This thesis presents a solution for improving the automation level of autonomous 

vehicles in both situational awareness and decision making aspects by utilising 

additional domain knowledge such as constraints and influence on a moving object 

caused by environment and interaction between different moving objects. This 

includes two specific sub-systems, model based target tracking in environmental 

perception module and motion planning in path planning module. 

In the first part, a rigorous Bayesian framework is developed for pooling road 

constraint information and sensor measurement data of a ground vehicle to provide 

better situational awareness. Consequently, a new multiple targets tracking (MTT) 

strategy is proposed for solving target tracking problems with nonlinear dynamic 

systems and additional state constraints. Besides road constraint information, a 

vehicle movement is generally affected by its surrounding environment known as 

interaction information. A novel dynamic modelling approach is then proposed by 

considering the interaction information as ‘virtual force’ which is constructed by 

involving the target state, desired dynamics and interaction information. The proposed 

modelling approach is then accommodated in the proposed MTT strategy for 

incorporating different types of domain knowledge in a comprehensive manner.  

In the second part, a new path planning strategy for autonomous vehicles operating in 

partially known dynamic environment is suggested. The proposed MTT technique is 

utilized to provide accurate on-board tracking information with associated level of 

uncertainty. Based on the tracking information, a path planning strategy is developed 

to generate collision free paths by not only predicting the future states of the moving 

objects but also taking into account the propagation of the associated estimation 

uncertainty within a given horizon. To cope with a dynamic and uncertain road 

environment, the strategy is implemented in a receding horizon fashion.   
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Chapter 1 

Introduction 

1.1 Overview 

Autonomous vehicles are a rapidly evolving technology which only a few years ago 

was still considered as science fiction. Recently the field of autonomous vehicles is 

rapidly growing worldwide, not only from robotics researchers but also in military 

and civilian applications. Self-driving car is considered as a strategic solution for 

governments and automotive industries. The advent of autonomous vehicles, which 

can move autonomously and navigate in daily life including highway, urban and 

unstructured scenarios, would offer a profound influence in many aspects including 

the advantages of enhanced road safety, increasing operational efficiency, and also 

lead to economic benefits such as reduced (fuel) energy usage and personnel. As a 

result, autonomous vehicles could provide significant economic, environmental and 

social benefits.  

      One of the most fundamental requirements of autonomous vehicles is the 

capability to respond to internal and external changes in a safe, timely and appropriate 

manner. This process is also known as situational awareness and decision making 

which are two crucial enabling technologies for safe operation of autonomous 

vehicles. To a large extent, it could determine the automation level of autonomous 

vehicle [1] from assisting the driver such as advanced driver assistance systems 

(ADAS), to fully controlling the vehicle in an autonomous way.           
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      Figure 1.1 illustrates an overview of this thesis and their relationships. The basic 

framework of autonomous intelligent vehicle has several real-time systems, including 

perception, localization and map building, path planning and motion control [2]. As 

shown in Figure 1.1, while perception refers to understanding its measurement 

through appropriate sensors and tracking moving objects, finding the robot/vehicle 

pose or configuration in the surrounding environment is localization and map building. 

Planning the path in accordance with the task by using cognitive decision making is 

an essential phase before actually accomplishing the preferred trajectory by 

controlling the motion.             

Sensor Measurement
(Radar,Laser,LIDAR,Camera)

Information 
Extraction 

Raw Data

Multiple Target Tracking
Environmental Interaction

(Static/Moving objects)

Forced aided Dynamic 
Tracking Model

Situation Awareness

Domain Knowledge 
Road Constraint 

(Road Map, Road Rule etc.)

Localization
(GPS,IMU,Odometer)

Decision Making

Position/Velocity
(Ego vehicle) 

Estimated Target 
State

(Position/Velocity 
etc.)

Global RRT Path Planner

Local MPC Motion Planner

Best Trajectory

Motion Control

Not considered 
in this thesis

Control Commend

 

Figure 1.1 An overview of the system presented in this thesis 

                                                                                                                                                

      In situational awareness, sensing and developed algorithms are used to understand 

the vehicle’s surrounding environment. The problem of estimating the movement 

states (including position, velocity or acceleration) of the surrounding objects such as 

humans, other vehicles and road users, is an important problem in autonomous 

vehicles. Knowledge about the position of moving objects can be used for early 

warning and collision avoidance system in ADAS and further automation decision 

making systems such as motion planning and control. The technique required to solve 

this problem is known as multiple target tracking (MTT) which are widely addressed 

in various military and civilian applications. This thesis concentrates on its use in 

autonomous vehicle and automotive safety area.  
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      In traditional MTT, the core problem includes the process of collecting data from 

sensors which may contain potential multiple obstacles and partitioning these data 

into different sets of observations or tracks. Autonomous vehicles gain its cognitive 

capabilities by acquiring information from the environment using various automobile 

sensors like radar, sonar and LIDAR. MTT algorithms are used for perception of the 

objects in the environment within a volume of time and space. In autonomous 

vehicles, MTT becomes a very challenging topic since they usually operate in a 

dynamic, unpredictable environment with incomplete (or inaccurate) sensory 

information. In probabilistic robotics and statistical approaches, environmental 

information is usually represented with a known distribution and thus such 

uncertainty is difficult to be handled with. In order to achieve more effective and 

accurate traffic information and reduce the perception uncertainty, information in the 

world model (also known as domain knowledge) such as the operation environment, 

the rules of the road and interactions between the environmental objects could be used 

in autonomous vehicle MTT.  

      This thesis is focused on improving the automation level for autonomous ground 

vehicle especially on two systems: model-based target tracking in environmental 

perception module and motion planning in path planning module, by utilising 

additional domain knowledge such as road constraint and force based interaction 

information. However, this extra information makes the traditional Gaussian 

distribution assumption invalid, which is fundamental for most of the current 

statistical Bayes approaches such as Kalman filtering. Under the Gaussian distribution 

assumption, the estimated state about a moving object can be represented by its mean 

and a covariance. In other words, the motion uncertainty can be represented by an 

uncertain region which is defined by the state mean (located at the centre) under a 

specified confidence level represented by the covariance. The introduction of domain 

knowledge such as road constraints due to the road network and interaction between 

targets or target to environment makes this Gaussian assumption not true anymore. 

      In this thesis, to address the challenge of non-Gaussian distributions imposed by 

making use of external domain knowledge information from the world model, a 

rigorous Bayesian framework is developed for pooling road constraint information 

and sensor measurement data to provide the better multiple ground targets state 

estimation. Among various state estimation algorithms, the moving horizon 

estimation (MHE) is of particular considered in this thesis, because by applying the 
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optimization based MHE, not only nonlinear dynamic systems but also additional 

state constraints in target tracking problems can be naturally handled. Besides, the 

unique moving horizon property of the MHE provides the natural benefit for ground 

target tracking especially in cluttered environment with noisy measurements and 

occlusion problems. To solve tracking ambiguity (data association) problem in MTT, 

an improved multiple hypothesis tracking (MHT) framework is developed by 

implementing the constrained MHE as state estimation technique namely Moving 

Horizon Estimation based Multiple Hypothesis Tracking (MHE-MHT). Comparing 

with traditional MHT, the new MHE-MHT framework inherits the advantages from 

MHE which makes it suitable for system with nonlinear measurement and capable to 

systematically deal with state constraint based environmental information such as 

road width and speed limit in both state estimation and data association layer. 

      To further improve situational awareness for autonomous vehicle, interaction 

information for the MTT problem is considered in this thesis. In a realistic ground 

tracking scenario, a target’s movement is generally affected by its surrounding 

environment considering both stationary and moving objects, which means there are 

interactions between the tracked target and its surrounding environment in addition to 

constraint information. For example, the vehicle may be repulsive away or attracted to 

certain objects in the environment and thus the surrounding environment may interact 

with vehicle’s movement to some level. A novel dynamic modelling approach is 

proposed in this thesis by considering the interaction between a vehicle and the 

environment by using a ‘virtual force’ concept. A new MHE algorithm, domain 

knowledge aided MHE (DMHE) is then proposed in this thesis. The proposed DMHE 

framework could effectively incorporate the domain knowledge, including both the 

constraint information and interaction information in a comprehensive way. The 

DMHE is then incorporated into MHE-MHT framework namely DMHE-MHT for 

ground MTT with complicated environmental information.  

      According to the framework [2] of autonomous vehicle, the improved estimation 

performance is paramount for autonomous vehicle navigation problems. In this case, a 

new vehicle motion planning algorithm for partially known dynamic environment is 

finally developed in this thesis. The environmental estimation information provided 

by the improved situational awareness approach is fed to this novel path planner. The 

proposed sensor based MTT technique is utilized to provide accurate on-board 

tracking information. A horizon length of trajectory prediction information 
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considering target motion uncertainty is also accommodated in the motion planning 

strategy implemented by a model predictive control (MPC) method to achieve a 

collision free motion planning with moving objects.   

1.2 Outline 

This thesis details the development of domain knowledge aided situational awareness 

and decision making systems for autonomous vehicle.  The contents of each chapter 

are outlined below.  

Chapter 2 - Literature Review 

Situational awareness and decision making are two of the most important enabling 

technologies for safe operation of unmanned vehicles. This research is carried out 

towards a higher automation level for unmanned vehicles. In this case, a detailed 

literature review for autonomous ground vehicle application in carried out in both 

target tracking and motion planning aspects.  

Chapter 3 - Single Target Tracking using Constrained Moving Horizon 

Estimation 

A new target tracking strategy by using constrained Moving Horizon Estimation 

approach is proposed in this chapter. By applying optimization based MHE, not only 

nonlinear dynamic systems but additional state constraints in target tracking problems 

such as road width can be naturally handled. The proposed MHE algorithm is 

demonstrated by single target tracking scenarios verified by both linear and nonlinear 

measurement models.  

Chapter 4 - Multiple Target Tracking in Cluttered Environment with Road 

Constraint Information 

In order to extend the target tracking method developed in the previous chapter for 

solving multiple target issues, a new MTT strategy MHE-MHT is proposed in this 

chapter. The proposed MHE-MHT algorithm is demonstrated by a multiple ground 

vehicle tracking scenario considering road constraints with an unknown and time 
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varying number of targets observed in clutter environments using nonlinear 

measurement model.   

Chapter 5 - Environmental Interaction Modelling and Target Tracking 

In Chapter 5, a novel dynamic modelling approach is the proposed by considering the 

interaction information between the target and its surrounding environment. The 

proposed model is then utilised in (multiple) target tracking strategies developed in 

previous chapters incorporating comprehensive domain knowledge information which 

include both environmental physical constraints and target interaction force 

information. Compared with the results in previous Chapter 4, the results in this 

chapter can provide a better tracking performance in both estimation RMSE and data 

association accuracy aspects when utilise limited/no interaction information.  

Chapter 6 - Autonomous Vehicle Motion Planning in Dynamic Environment 

with Trajectory Prediction based Collision Avoidance System 

Utilising the MTT strategy developed in the previous chapters, an autonomous vehicle 

motion planning strategy in dynamic environment is suggested in this chapter. The 

proposed MTT technique is utilized to provide accurate on-board tracking information. 

Meanwhile, targets’ motion prediction information is also accommodated in the 

motion planning strategy in a stochastic way to achieve a collision free planning. 

Chapter 7 - Conclusion and Future Work 

This chapter draws conclusions and presents directions and recommendations for 

further research. 
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Chapter 2 

Literature Review 

This chapter presents a review of the literature relevant to the project area, with the 

discussion broken down into two major areas: situational awareness and decision 

making for autonomous vehicles. Firstly, some relevant techniques about situational 

awareness are discussed including state estimation, multiple target tracking, road 

constraint information, tracking model and target interaction. Then the relevant 

challenges associated with autonomous vehicle decision making area, especially 

algorithms for solving vehicle path planning problem are also discussed in this 

chapter.   

I Situational Awareness 

2.1 Autonomous Vehicle Situational Awareness 

2.1.1 Definition 

Situational awareness is crucial for autonomous driving. A number of different 

definitions of situational awareness can be found in [3]. Among them, the one given 

in [4] is most suited to the concept of autonomous vehicle systems and its relevant 

applications: 
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“Situational awareness is the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning and the projection of 

their state in the future” Endsley, 1988 [4] 

 

Endsley in [4] also defined a model of situational awareness. This was reduced and 

adapted to enable the original definition to be operationalised. The model is called   

‘3-Q’ model which includes three fundamental questions shown below in Figure 2.1. 

What are they doing?

Who is where? What will they do?

 

Figure 2.1 ‘3-Q’ model for situational awareness 

 

      The 3-Q model can be applied to any activity where the situation is in constant 

change, and where all data, evaluations and assessments (answers to the three 

questions) are of a transitory nature [5]. Other paper [3] splits the 3-Q model into 

three types: Transitory Awareness, Local Awareness, and Global Awareness. 

Different use cases may require different perception models. Principles of situational 

awareness when used in different scenarios can be used to derive perception 

requirements for ADAS and autonomous vehicle features. In other words, the 

autonomous vehicle perception capabilities rely heavily on its situational awareness.  
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2.1.2 Contextual Information aided Target Tracking and 

Situational Awareness  

The perception capabilities in autonomous vehicle and relative ADAS are widely 

considered a key technological component to enhance safety, flow, and efficacy of 

traffic logistic [7]. Autonomous vehicles and relative ADAS systems acquire 

information from their environment by sensors such as camera, radar, and LIDAR and 

build a mental model of the real world based on an interception of this information.  

In autonomous vehicle systems, this is also known as environmental perception 

system which usually includes three different domains: road structure, stationary 

obstacles and dynamic obstacles [6].  

      The road structure defines where and how vehicles are allowed to drive, encoding 

traffic rules as necessary. This includes information such as: the road boundaries, lane 

widths and land markings. Note that this does not only correspond directly to physical 

constraints such as the boundaries and curbs but also ‘soft constraints’ such as road 

markings and speed limit. The road structure is a logical interpretation of the 

environment. In environmental perception system this is usually called contextual 

information. 

      Stationary obstacles are defined as obstacles which are assumed not to move 

during the perception period. Dynamic obstacles on the other hand are defined as 

objects which are moving or potentially moving in the perception period. With this 

definition, not only the vehicles participating actively in traffic but these temporarily 

stopped or occluded by other road users are considered as dynamic obstacles. The 

overall architecture of environmental perception system is shown in Figure 2.2. 

      As shown in Figure 2.2, target tracking is an integral part of larger environmental 

perception system, which is responsible for identification of dynamic obstacle 

hypotheses. The process of target detection and tracking is assisted by the contextual 

information generated from both stationary obstacle estimation and road estimation.  
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Figure 2.2 Environmental perception system [6] 

 

      Target tracking is of great importance in situational awareness system. Knowledge 

about the status of moving objects such as position, velocity and acceleration can be 

used to improve the perception of the surrounding environment. Furthermore, from 

the autonomous vehicle development perspective, target tracking can even determine 

the automation level [15]. For example, this ability allows an autonomous vehicle to 

improve its collision avoidance behaviour in populated environment or high speed 

maneuver. This thesis focus on developing an autonomous vehicle target tracking 

strategy.  

      The main difference from previous target tracking algorithms is the contextual 

information is implemented to assist target tracking taking under consideration of 

environmental uncertainty. The proposed methods incorporates different types of 

contextual information in a comprehensive way considering both environmental 

physical constraints and interaction behaviour between targets and the environment, 

the details are explained in the following Chapters 3, 4 and 5.  

2.2 Background for Target Tracking Problem 

The problem of estimating the information of objects movement state (including 

position, velocity or acceleration) is very important in autonomous vehicles. This 

problem can be basically summarized as target tracking issue. Knowledge about the 

state of moving objects can be taken as powerful information to improve the autonomy 

for autonomous vehicles especially in urban environments.  
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      Moving target tracking was founded on Kalman filtering algorithm in the early 

1960s [8]. Since then, the relative approaches have been widely used in various 

military and civilian applications such as aerospace navigation, air traffic control, 

sensor networks, biomedical research and environment monitoring [9-12] in the last 

thirty decades. Recently due to the rapid growing in the field of autonomous vehicles 

and its relevant ADAS, researchers and companies start showing great interest in 

automotive MTT area [13-15]. These intelligent features have advantages of 

significantly increasing road safety and improving the quality and efficiency of people 

and transportation. Besides, these intelligent features and autonomous functionalities 

on vehicles can also bring major economic benefits from reduced fuel consumption, 

efficient exploitation of the road network, and reduced personnel [16].  

2.2.1 Autonomous Vehicle and Target Tracking  

ADAS’s have become a widespread class of automotive applications in nowadays 

commercial vehicles. They lend even more confidence to driving and improve road 

safety in complicated and challenging driving conditions (e.g. at night or bad weather 

conditions, crowed urban environments, high speed motorway maneuver). By using 

state-of-the-art onboard sensors such like radar, LIDAR, GPS and camera vision 

systems together with accurate online global map, ADAS extend extend the sensed 

information beyond the ego vehicle state to environmental information. This enables a 

wide field of latest ADAS functions, such as, e.g., lane departure warning (LDW), 

parking assist (PA) based on sonar, radar, or video. The adaptive cruise control (ACC) 

automatically adjusts velocity to keep a comfortable distance to predeceasing vehicles. 

In order to mitigate collision hazards, automated emergency braking (AEB) engages a 

strong braking when an immanent and inevitable collision is detected. Due to 

uncertainties in the processing chain, so far this action only works with low speed 

environment (e.g.  35mph) [17] and mainly in vehicle following scenarios. The main 

aim for AEB at the moment is to reduce the kinetic energy of the impact but not to 

completely avoid the collision. To achieve a more safety collision avoidance driving, 

more advanced AEBs such as cyclist AEB [18], pedestrian AEB [19], junction AEB 

[20] are now under developing. An illustration of different ADAS based on different 

sensing technologies is shown in Figure 2.3. 
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Figure 2.3 Advanced driver assistance systems [21] 

 

      Despite impressive recent merits in research in this field, the uncertainty of 

environment information is far too high as to allow fully autonomous driving in the 

near future. So far the majority of the ADAS functions spectrum is restricted to 

information, warning, and comfort enhancement, while the final responsibility stays 

with in driver. Corresponding to the five levels of automation [22] shown in Figure 

2.4, so far the current ADAS have achieved Level 2 driver assistance and moving 

from Level 3 partial automation towards Level 4 conditional automation in the next 

couple of years. The aim is to achieve a high automation level around 2025 and 

eventually the full driverless automation under complex scenarios in the future.     

      In order to improve the autonomy level for autonomous vehicles, it is essential to 

have a better understanding of driving scenarios/environments. This would lead to 

much more complete sensing and perception requirements. The enhancement of 

reliability and certainty of the perception system is of prevailing importance. Since 

detection and tracking moving objects is especial important in environmental 

perception, recently more research are started on a MTT based ADAS feature which 

aims for an early warning and collision avoidance system [23] [24]. This includes the 

usage of multisensory and multisystem capabilities [25], extended usage of data-

fusion [26], improvement of sensor capability [27], usage of a new set of information 
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source (digital map, v2X, eHorizon, infrastructure data) [28] and smarter algorithms 

and interoperability [29].  

 

 

Figure 2.4 Levels of autonomous vehicle development [22] 

 

      A number of algorithms have been studied and proposed for target tracking 

problems. The essence of target tracking problems can be defined as finding tracks 

(states of targets) from a sequence of noisy measurements [15]. Based on the 

complicity of tacking situations, the target tracking problem is divided into two main 

different classes: single target tracking and multiple target tracking (MTT). MTT 

techniques are theoretically and fundamentally different from single target tracking 

techniques. In single target tracking, only one target state is modelled, which makes 

all the other detected objects not considered or updated with the state of the target. 

Unlike single target tracking, inherent data association problems arise in MTT which 

makes the algorithms capable of tracking closely-spaced and even crossing multiple 

targets with tracking occlusion. The process of data association is to partition and 

assign the observed data into different sets of observations or tracks that are produced 
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by the same object, in other words it’s the process of associating uncertain 

measurements to known tracks [26]. The details of the differences between single 

target tracking and MTT are discussed in the following part of Chapter 1. 

2.2.2 Target Dynamic Models 

In target tracking problems, the target is represented by a state vector which usually 

includes target position, velocity and/or acceleration. An example of a state vector is 

shown below: 

                                                                (2.1) 

where    and    are the position along   and   axis respectively in Cartesian 

coordinate and     and     are the respective velocities.  

      A target Dynamic model is used to describe the evolution of the target state with 

respect to time. Surveys of full different dynamic models that are used for tracking are 

presented in [30]. In this thesis, only some of the most commonly used models are 

considered such as constant velocity model (CV), constant acceleration model (CA) 

and coordinated turn model (CT). The detail explanation of each of the models is 

shown below. 

      According to the state vector (2.1) shown above, the CV model process equation 

can be written as: 

                                                        (2.2) 

where                                            

    
    
    
    

                                             (2.3) 

  

 
 
 
 
 
 

 
   

  

 
 

 
  

   
 
 
 
 

                                              (2.4) 

        is defined as the sample period. In tracking problems, the acceleration is usually 

considered as noise added in system model. In this case,             here is the 

process noise which contains acceleration in the   and   axis respectively and   
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represents the input matrix (acceleration matrix).    is defined as a zero mean white 

noise with covariance matrix    .  

      Next is the CA model. The state vector now includes the position, velocity and 

acceleration: 

                                                                (2.5) 

where     and     are the acceleration in   and   axis. 

      Similar to CV model, CA model is linear and the process equation is the same as 

(2.2) with different state transition and process noise matrix: 

  

 
 
 
 
 
 
   

 

 
     

      
      

     
 

 
  

      
       

 
 
 
 
 
 

                                 (2.6) 

   

 

 
       

   
 

 
    

 

 

                               (2.7) 

The process noise             is the same variable shown in CV model with 

different covariance     

      The third model is CT model considering the following state vector which 

contains position, velocity, acceleration and turn rate: 

                                                          (2.8) 

where   stands for the turn rate at time   which is assumed as a known parameter.  

      The CT model can be described by the following equation: 

                                                     (2.9) 

where                  

 
 
 
 
 
 
  

        

  
 

          

  

                   

 
          

  
 

        

  

                  
 
 
 
 
 
 
 

                     (2.10) 
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The zero-mean (Gaussian) white noise    is used to model the perturbation of the 

trajectory from the ideal CT model in both   and   axis. 

2.2.3 Measurement Models 

For target tracking systems, measurement model is also a compulsory part. These 

measurements are related to the state vector via the measurement function which is 

shown in (2.11) for the most general form: 

                                                           (2.11) 

where    is the source of detected measurements at time   and    is called the 

measurement noise that is caused by impreciseness of the sensor or human error and 

other environmental factors. It is assumed to be normal (Gaussian) probability 

distribution              , with zero mean and covariance denoted as R. The 

measurement function   varies with different tracking systems from linear to 

nonlinear equations. It is always assumed to be a known function which reflects the 

relation between the target state vectors    and the detected measurements   . For 

example, a sensor may receive observation in a local Cartesian coordinate (such as 

target state position in along   and   axis) and in this case the   would be a linear 

equation; or observation in a polar coordinate system (such as range and bearing 

based radar) which is described as a nonlinear equation. The details of different 

measurement models are shown in the following chapters in this thesis.  

2.3 Single Target Tracking State Estimation (Filter) 

Approaches  

The primary concern of target tracking is to use state estimation tools of determining 

the position and velocity of an object in realistic environments. State estimation 

theory is used to solve the problem of recovering unobserved state variables from 

original measurement. 

2.3.1 Bayesian State Estimation 
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prediction update

The most general state estimation algorithm is given by the Bayesian algorithm. The 

algorithm calculates the belief distribution from measurement and prior state data. 

Consider the discrete state-space system: 

                                                          (2.12) 

                                                          (2.13) 

where    is the state with initial state    and its distribution       ;    is the 

measurement;    is the white process noise with a known distribution      

independent from   ;    is the white measurement noise with a known distribution 

     independent from   . The aim is to use these given prior information to find the 

posterior density of the state           . The process noise represents the lack of 

knowledge about the system dynamics. The larger the process noise, the smaller will 

be the trust on the state equation. The measurement noise represents the imperfections 

in acquiring the data. The larger the measurement noise, the smaller the trust will be 

on the measurements. Basic probability theory gives a recursive solution in the form:  

                                                                                                               (2.14) 

      The Bayesian algorithm is recursive, that is, the belief            at time k 

(current step) is calculated from the belief                at time k-1. The recursive 

process can be represented below in a ‘for’ loop shown on the top of next paper: 

 Start with       , at k = 1. 

 For each k 

 Prediction Update 

                                                           (2.15) 

   Measurement Update 

            
                      

             
                                  (2.16)  

     where                                          is constant with respect to    

 End for  

 Let k=k+1 and repeat the process recursively.  
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prediction update

      The process includes two essential steps. First, prediction update gives a result of 

predicted probability distribution               which is obtained by integrating two 

beliefs: the prior state probability distribution                 and the state transition 

probability distribution            . The nature of prediction update is actually an 

implementation of the total probability theory                    . Then the next 

step is called measurement update, which implements the basic Bayes rule      

           

    
. In this step, the predicted state probability               is multiplied by the 

measurement likelihood function          , which is a belief of measurement    been 

observed. Finally the posterior (estimated) state probability at time k is given 

as               .  

2.3.2 Kalman Filter 

Kalman filter (KF) is a one of the most studied technique for implementing Bayes 

filters which has been widely applied in linear Gaussian systems. If the system and 

measurement process are linear with Gaussian noise, different from the basic Bayes 

filter, KF has a benefit of representing state probability by only two sufficient 

statistics: the estimated mean                    and covariance             

                   
 
       at each time step resulting in a Gaussian distributed system 

posterior density            . In other words, instead of propagating densities (2.14) 

only mean and covariance are considered: 

           ,                                          ,                                        ,             (2.17) 

As a result, the infinite dimensional estimation problem reduces to finite dimensional 

estimation problem.  

      The KF operation estimates a process by using a form of feedback loop: the filter 

estimates the process state at some time and then obtains feedback from noisy 

measurements. In this case, the operation is based on two steps: a prediction and an 

update step. The prediction step is responsible for projecting forward (in time) the 

current state and error covariance estimates to obtain the a priori estimates for the 

next time step. Then the measurement update equations, also known as correction step, 

are responsible for incorporating a new measurement into the a priori estimate to 

obtain an adjusted a posteriori estimation of mean and covariance. 
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The specific equations prediction and measurement updates are presented below: 

 Start with         ,       , at k=1. 

  For each k: 

                  Prediction Update 

                                                                 (2.18) 

                              
 +                                     (2.19) 

                   Measurement Update 

                                                                  (2.20) 

                         
                                (2.21) 

                             where                                                                                (2.22) 

                   
                                 (2.23) 

                                   
    

                                    (2.24) 

where           is the predicted state and          is the covariance of the predicted state; 

         is the estimated state and       is the covariance of the estimated state.           is 

the predicted measurement;              is the measurement error/innovation;          

is the covariance of the predicted measurements/ innovation covariance.     is the 

Kalman gain.  

      The first task during the measurement update is to compute the Kalman gain   . 

The Kalman gain serves as a ‘weighted compensator’, if   is large then     will be 

small and therefore the measurement will be given less weight. Similarly, if the 

measurement noise is low, R will be small and hence the Kalman Gain will be large, 

therefore giving more importance to the measurement innovation              . After 

each time the measurement update pair, the process is repeated with the previous a 

posteriori estimates used to project or predict the new a priori estimates.  
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2.3.3 Nonlinear State Estimation (Filters) 

The crucial for the correctness of KF is that the estimated state comes from a linear 

Gaussian system. However, the state transitions and measurement relationship to the 

process are rarely linear in practice. E.g. the target moves with constant translational 

and rotational velocity but on a circular trajectory, which cannot be represented by 

linear state transitions. This problem is handled by linearized KFs, such as extended 

Kalman filter (EKF) [31] and Unscented Kalman filter (UKF) under a Gaussian noise 

assumption [32]. Other methods, such as sequential Monte Carlo methods known as 

Particle filters (PF) are used to deal with nonlinear systems under non-Gaussian noise 

assumption [33]. The rest of this section will discuss EKF, UKF and PF in details.  

Extended Kalman Filter 

As described above, the KF addresses the general problem of estimating the state of a 

linear system with Gaussian noise. This is crucial for the correctness of KF. However, 

state transitions and measurement relationship to the process are rarely linear in 

practice.  

      The EKF is a possible solution to implement a recursive nonlinear estimation filter 

[31]. EKF relaxes one of the assumptions shown above, the linearity assumption, so 

that the state transitions probability and the measurement probabilities can be 

governed by nonlinear function   and  . The essence of EKF is to linearize about the 

current mean and covariance of the process and measurement functions so as to 

calculate a Gaussian approximation to the true belief. EKFs utilize a method called 

first order Taylor expansion to constructs a linear approximation to function   and   

about the current estimate of the state. The matrix of Jacobian partial derivatives for   

and   are calculated separately and then applied for calculating the error covariance. 

      The most important factor in EKF is the linear approximation to the non-linear 

functions. Besides, the EKF is very similar to the standard KF in prediction and 

update steps which makes it easy in implementation. However, if the linearization is 

poor, estimation biases and divergence is expected resulting in bad filter performance. 

In order to achieve better estimation performance especially for highly nonlinear 

systems, more advanced nonlinear filter techniques such as UKF and PFs are required.  
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Unscented Kalman Filter 

In linearization problems, if the uncertainty is small in the variable to be transformed, 

the EKF usually can provide good performance. However, as the uncertainty grows, 

the performance of EKF may degrade and sometimes lead to terrible results. This is 

because EKF (based on Taylor expansion) cares only about the information of 

transformation around the linearization point. Hence it only works well locally. When 

the uncertainty grows, the error propagation of linear transformations cannot be well 

approximated by a linear or quadratic function which will result in an extremely poor 

performance [34]. 

      The Unscented Kalman filter (UKF) performs a stochastic linearization through 

the use of a weighted statistical linear regression process. Instead of approximating 

the nonlinear function   by a (first order) Taylor expansion; the UKF unscented 

transformation is based on using a number of ‘sigma points’ to represent the original 

Gaussian density [35]. The sigma points are transformed with the nonlinear 

transformation   and are generally located at the mean and symmetrically along the 

main axes of the covariance. For an n-dimensional Gaussian with mean   and 

covariance  , there are 2n+1 sigma points   with four parameters: mean            and 

covariance          , mean weight    and covariance weight    . 

      In UKF, the target state posterior density and covariance are reconstructed from the 

sampling sigma points and assumed to be Gaussian. The main advantage of the UKF 

over the EKF is that instead of calculating the Jacobians linearization based on one 

specific state point, a more accurate estimate of the exact man and covariance can be 

obtained by simply increasing the number of sigma points via a wide variety of 

processes.  

Particle Filter 

Particle filtering (PF) is an alternative nonparametric implementation of the Bayes 

filter. Unlike KF based filters which summarise the target density using a mean and 

covariance, the PF describes the density directly using a finite number of randomly 

sampled points and weights. In some sense, a PF can be described as a generalization 

of UKF to random particles instead of sigma-points. This gives PF the advantages of 

solving state estimation for nonlinear and non-Gaussian systems.    

      The main idea of PF is to approximate the posterior             as: 
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prediction update

                 
      

 

   
                                  (2.25) 

where some state values      
     

  called particles and weights       
     

  are used to 

characterise the posterior density            . N is the number of support points with 

the weights are normalised such that      
 

  
  .  

      In this case, instead of propagating state densities as (2.17), a PF propagates only 

the particles and weights 

         
          

     
                               

        
     

                              
      

     
   (2.26)  

     It can be shown that as the number of particles increase    , the approximation 

(2.25) approaches the true posterior density            . The PF algorithm follows a 

similar prediction and update step as other filters described above. The filter starts 

with a set of particle points and weights, which describes the posterior density at time 

    as                . The particles are then propagated using the mean proposal 

distribution to form a new set of particles at time  , which is the same the prediction 

step. The weights at time   are a function of the process dynamics and measurement 

likelihood function. This new set of particles and weights      
      

     
  gives an 

approximation for the posterior density at time  , which is the update step.  

      One main problem with PF is known as degeneracy problem which is the situation 

where one specific particle dominates and the weights of the others are negligible. 

This is guaranteed to occur after a finite number of filter recursions [33]. In order to 

solve this problem, resampling technique is used which removes particles with 

negligible weights and replicates the particles with high weights. As a result, particle 

weights become all equal at the end of resampling. Another main disadvantage of PF 

is its high computational requirement. Due to high computational cost, PF are 

currently limited to solve smaller dimensional state space estimation problems.  

2.3.4 Moving Horizon Estimation 

In this section, a constrained state estimation method is introduced which is different 

from Kalman filter based approaches: the moving horizon estimation (MHE). MHE, 

which reformulates the estimation problem as quadratic programming over a moving 
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fixed-size estimation window, becomes an important approach to constrained 

nonlinear estimation [36]. In MHE, the basic strategy is to consider explicitly a fixed 

amount of data. In this case, the state estimate is determined online by solving a finite 

horizon state estimation problem. As new measurements arrive, the old measurements 

are discarded from the estimation window but approximately summarized by the 

estimator [37]. Mathematical optimization strategies are required and essential for 

MHE to handle explicitly nonlinear and constraints on the system. The name of 

‘moving horizon’ arises from the visual process of using a sliding estimation window 

as shown in Figure 2.5. 

 

Figure 2.5 Illustration of moving horizon estimation (MHE) for one time step 

 

      Different from other methods, MHE has a great advantage of capable to handle 

different forms of constraints naturally in its framework by reconstructing the mode of 

the posteriori distribution via constrained optimisation [38]. In addition to state 

constraints, such constraints can also be placed on the state process and/or 

measurement noise of a linear/nonlinear system which are typically used to model 

bounded disturbance or random variables with truncated distribution/densities. The 

interest on MHE was originally motivated by its robustness, which makes the 

approach suitable for solving modelling uncertainties and numerical errors [39]. 

Recently, MHE has been widely applied in chemical process [40], fault detection [41, 

42], system identification [43] and process control. The technique has also been 

implemented in linear systems [36, 44], hybrid systems [45] and more recently in 
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nonlinear system with constraints explicitly [37]. However, literature shows that MHE 

has been rarely implemented in target tracking problems especially for autonomous 

vehicle applications due to its relatively high computational load .  

      For this very reason, this research is mainly focus on how to adopt constrained 

MHE as an alternatively efficient state estimation technique into target tracking 

process so as to improve the target tracking performance even with nonlinear system 

and additional state constraint. The details of MHE mathematical explanation and 

relevant adaption for solving target tracking problems will be explained in Chapter 4.       

2.4 Multiple Target Tracking --- Data Association 

Approaches  

In MTT, useful information containing one or more (potential) targets is collected 

from raw data by sensor data processing and measurement formation. Then the (new) 

tracks are formed based on the existing tracks and a new set of input measurements. 

However in practical applications, false alarms or clutter are also presented in the 

original measurement which makes the relation between which measurement 

corresponds to the target of interest not clear, especially when multiple targets are 

presented. In this case it is necessary to partition and assign the observed data into 

different sets of observations or tracks that are produced by the same object. This 

process is known as data association [34], which is also the core of MTT problems. 

Once observations are assigned to tracks, the states of the tracks are updated and 

predicted using state estimation algorithms, such as the well-known Kalman filter. 

The basic structure of MTT is shown below in Figure 2.6. The details of each of the 

block will be discussed in the following of this chapter. 
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Figure 2.6 Structure of multiple target tracking algorithms 

 

      Before moving to MTT issues, a series basic concepts and structures are worth to 

be covered first. Target tracking is basically to use the state estimation tools in 

realistic environments. The outline of target tracking includes three types of data: 

measurements, targets states, trajectory; and four main modules: tracking 

initialization/formation, tracking maintenance (maneuvering decision, filtering, and 

prediction), tracking termination, data association and state estimation, gating. 

2.4.1 Basic Concepts in Multiple Target Tracking                                                                                                                                                                                                                            

Measurements  

During the first observation stage, the term measurement contains all quantities 

included in a (processed) output from the raw data of a sensor. Such measurements 

may include velocity, distance, bearing angle or range. Because the data received by 

sensors is affected by measurement noise and other forms of interference, there is a 

need of pre-process of raw data. Inherent uncertainties are always with measurements 

in target tracking problems. Such as false measurements (false alarm probability 

     ) and missed measurements (the detection probability     ). Thus each 

measurement has three types of sources including detected target, a new target or false 

alarm (Clutter). False alarm (Clutter) refers to erroneous detection events such as 

those caused by random noise or clutter that do not persist over several scans.  

Data Association  
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As there are multiple targets considered in the sensor’s field of view, all the 

confirmed measurements need to be associated with existing objects. This process is 

also known as data association (assignment process) which is technically the core of 

MTT process. Examples of data association algorithms including: Nearest neighbours 

(NN), Global nearest neighbours (GNN), Joint probabilistic data associations (JPDA) 

and Multiple hypothesis tracking (MHT). The details of data association techniques 

will be discussed in the next section in this chapter.  

Gating 

In the filter and prediction stage, the location of each target is predicted in the 

subsequent measurement step using filtering and state estimation algorithm. This 

prediction is based on an estimate of the location data computed by filter under 

relative target model from previous iteration and the actual location data measured 

during current observation stage. The difference between the predicted information of 

each target and the actual current measurement is known as innovation vector which 

can be calculated based on different mathematic equations, such as by Mahalanobis 

distance [46]. The results of this step are needed by the following gating process. 

Only the measurements within the gating region are considered for update of the track. 

The shape of the gate varies in different algorithms such as rectangular, circle and 

ellipsoid. The most common choice is ellipsoidal gate which is defined by a 

probability contour obtained when intersecting a Gaussian with a hyper-plane 

(ellipsoid). The gate checking is needed before data association so as to minimize the 

measurements candidates and the number of possible combinations. 

Targets 

In practical applications, vehicles and objects may leave or enter the sensor’s field of 

view at any time which makes the tracking initialization and termination essential in 

MTT structure. The target candidate is confirmed or deleted only if it is detected or 

missed for a specific number of iterations. The threshold is varied for different 

situations and usually obtained empirically.  
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2.4.2 Data Association Algorithms                                                                                                                                                                                                                           

In this chapter, some concept and basic data association algorithms are discussed. 

Several approaches for MTT have been developed over the last decades, overviews 

can be found in Pulford [15] and Christoph [14]. Basically, these methods can be 

divided into two categories – the data association based ‘classic’ methods and the 

more recent finit set statistics (FISST) based approaches. In this thesis only the data 

association based MTT algorithms are considered. GNN, JPDA and MHT are the 

most widely used data association techniques. 

      The basic and simpliest solution is the nearest neighbour standard filter (NNSF) 

[47]. This techinique associates each target with only the closest measurement in 

statistiacal distance. Because of this feature, such a method is also known as making 

‘hard dicision’. However, this simple procedure prunes away many feasible 

hypotheses. To overcome this problem, a combination of observation associations is 

made in the GNN approach [48] and the dicision is made only based on the most 

likely combination. In GNN, an essential association matric concept is introduced to 

‘score’ the distance between all measurements and all targets, resulting in a matrix of 

values. The combination of associations with the highest score is then chosen, taking 

into account the fact that a single target may only result in one observation in each 

combination. Combinatorial optimization methods are required in GNN to solve this 

optimal assignment problem. In standard GNN method, the current measurements are 

associated to existing tracks with only the most likely association hypothesis at each 

step. Only one hypothesis (most likely assignment combination) is considered for 

existing track update and new track initiation. Because of this inherent property, GNN 

only works well in the case of widely spaced targets, accurate measurements, and few 

alarms in the track gates [48]. 

      Rather than making ‘hard decisions’, a suboptimal Bayesian approach which is 

based on mimimum mean square error (MMSE) is designed, known as JPDA [49]. 

JPDA makes soft decision equivalent of GNN. All the possible association conditions 

are now considered by allowing a track to be updated by a weighted sum of all 

observations in its gate. This means that each measurement may contribute to more 

than one track which makes it different from GNN. In this approach, all 

measurements that are close to the predicte target location are considered in data 

association. Each observation is essentially weighted in a probabilistic way based on 



 

28 
  

the maginitude of deviation from the predicted location and then the Bayesian 

measurement update step is performed using all these weighted measurements in a 

Gaussian mixture pdf form. The main shortcoming of JPDA filter is that the final 

estimate is collapsed to a single Gaussian, thus discarding some pertinent information. 

The derivations of JPDA such as sample-based JPDA [51] and Monte Carlo JPDA 

[50], suboptimal/fast JPDA [52], N-best JPDA [53], etc. Some of these subsequent 

work addressed the JPDA shortcoming by reducing the number of mixture 

components but many feasible hypothese may be discarded by the pruning 

mechanisms.  

      The problems result from standard GNN and JPDA together with the increase in 

computational capabilities makes MHT a preferred data association method [48]. 

MHT method form alternative association hypotheses in case of observation to track 

conflict situations. Rather than choosing the best hypothesis at current step as in GNN 

and JPDA, MHT keeps a set of multiple hypotheses and thus the assignment 

ambiguity will be resolved in future when subsequent new observations are arrived. In 

this case, possible error association could be corrected when more evidences are 

updated. 

2.4.3 Multiple Hypothesis Tracking 

MHT methods form alternative association hypotheses in case of observation to track 

conflict situations and the basic structure of MHT is shown in Figure 2.7.  

 Input 
Measurement

Gate Computation
New 

Hypotheses/Tracks 
Formation

Track Prediction
Hypotheses 

Evaluation/Deletion

 

Figure 2.7 MHT algorithm logic overview 
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      Rather than choosing the best hypothesis or combining the hypotheses as in JPDA 

method at current step, the set of hypotheses is propagated into the future in 

anticipation that subsequent data will resolve the assignment ambiguities. Unlike 

other data association algorithms like JPDA, MHT algorithm does not use a separate 

track initialization procedure and hence track initiation is integrated into the algorithm.  

Fig 2.8 illustrates how MHT manages these hypotheses using an example.  

      As shown in Figure 2.8, two tracks T1 and T2 are in predicted positions 

       
 and        

 . Four measurements are received at the same scan. Assume that the 

statistical distance between track n and measurement m is     and only these pairs 

with a distance less than gate size are considered as candidate for data association. In 

this case, the unlikely observation   
  is eliminated. The MHT will form different 

hypotheses by taking into account all the possible sources of a measurement: new 

track, false alarm and existing track. For example, two very likely hypotheses would 

both update T1 with   
  but update T2 with either   

  or   
 . Other unlikely but feasible 

hypotheses would be that all observations represent new targets or false alarms. 

 

Figure 2.8 Gating procedure for MHT with tracks drawn in circle and measurements 

in rectangle 

 

Hypothesis based MHT (Reid’s Algorithm) 

Reid’s algorithm is a hypothesis based MHT implementation which keeps the past 

different hypotheses in the memory between consecutive time steps. When a new 
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measurement is received, observations that fall within the gate region will set a 

possible measurement to track assignment and thus an existing hypothesis is 

expanded to a set of new hypotheses. Each hypothesis contains a set of compatible 

observation to track assignments, leading to an exhaustive approach of enumerating 

all the possible assignment combinations. Tracks are defined to be compatible if they 

have no measurements in common which means each of the new measurement can 

only be taken to updated with of one of the existing tracks; defined as a new track or a 

false alarm.  

Hypotheses formation:  

Assuming N hypotheses are generated from original measurements at time k-1. Each 

of the hypotheses {    
 },         is characterized by their assumed number of 

targets (tracks) and corresponding hypothesis probability       
  . The new 

hypotheses formation is demonstrated in Figure 2.9 (left) using one of the N 

hypotheses. Assuming a set of three measurements is received at time k. Then an 

assignment problem based hypotheses tree can be generated, which is shown in 

Figure 2.9 (right). Regarding to measurement one   
  , four hypotheses can be made: 

creating a false alarm, a new target, updating the existing track one   or track two   . 

The measurement two   
  can only generate three hypotheses, updating target two, 

creating new target or false alarms while only two hypotheses for measurement 

three   
 : creating a new target or false alarm. The depth of the tree is equal to the 

number of measurements in the current scan. 
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Figure 2.9 MHT new hypothesis formulation 

 

Hypotheses probabilities calculation: 

The evaluation of alternative hypotheses formation is based on a probabilistic 

expression known as the hypotheses probability        
  . It includes prior probability 

of existing target, the false alarms density, the detection sequences and dynamic 

(kinematic) consistency of the measurements in the tracks.  

      Assuming at time k (an intermediate stage of tracking), there are       targets 

established previously and       
    

   measurements which are just received. As 

mentioned above, there are     
 ,         different hypotheses about the past kept 

in the memory between consecutive scans. Let   
          

  ,         , denotes 

  posterior hypotheses at current scan k. Each   
  combines a relative past 

hypothesis      
  with a current generated assignment set    . (   is an arbitrary 

association combination about the current measurement set   ) Thus its probability 

can be represented as:  
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Each parameter in the above equation is explained below: 

   
   is the number of false alarms in gate region   at scan k. Thus the probability 

distribution of   
   false alarms in the region   is defined as: 

        
        

  
          

  
   

                                            

where    (number of FAs/area/scan) is the density of false alarms 

   
   is the number of new targets in gate region   at scan k. Thus the probability 

distribution of   
   new targets in the region   is defined as:  

        
        

  
          

  
   

                                            

where     is the density of new targets is (number of NTs/area/scan) 

 The detection probability of the  th target is   
 
.  

 The gate probability of the  th target is   
 
. (Detected target is in the gate.) 

   
   and     

  are the set of indices of detected targets and non-detected targets 

respectively depending on the previous hypothesis     
         . 

   
      is the index of the measurements (compressed in the hypothesis) that is 

assigned to target when     
 .  

 Predicted measurement density (innovation likelihood function) of  th target 

based on  the measurement from       hypothesis is: 

      
 

   

  
     

                                             (2.30) 

which can be calculated using the normal distribution density function: 
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 The term       
 
  

 
 

  
 

   
  is a constant value for each hypothesis represented 

below as   : 

           
 
  

 
 

  
 

   
       

 
  

 
 

    
 

      
 
  

 
 

     
 

     (2.32) 

      The MHT hypothesis probability function (2.27) can then be simplified by taking 

a logarithm transformation, the result is shown below: 

       
          

           
                                                       (2.33) 

     
  

 
      

 
   

  
     

 

     
 
  

 
 

    

          
          

      From an implementation perspective, it is easier and practical to represent each 

hypothesis tree with corresponding statistic assignment probability in a matrix form 

known as the assignment matrix [58]. Taking the example of the first hypothesis tree 

    
  in Figure 2.9, the assignment matrix is formed as below in Table 2.1. 

 

Table.2.1 Assignment matrix     

       

 

      The assignment matrix    has a dimension of     where   represents the number 

of measurements and   is the total number of potential tracks (including existing 
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tracks, new targets and false alarms). The variable     is equal to    
  

 
      

 
   

  

     
 
  

 
 

 

which has been derived in (5);    and    are the density of false alarms and new 

targets respectively. Now finding the optimal association hypothesis is equivalent to 

find a corresponding combination of column   (1 to 8) and row   (1 to 3) such that the 

sum            

 

   
 is maximized. This is also known as assignment problem [54] 

in optimization subject. Computation expense is the main issue in assignment problem 

as the computation cost is extremely heavy when the matrix dimension increases. 

Some relative algorithms and the corresponding programming tool boxes can be 

founded such as: linear programming technique (Hungarian method) [54], Munkres 

algorithm [55], Jonker and Volgenant (JVC) algorithm [56], Auction algorithm [57] 

and Murty’s algorithm [58]. 

Reducing number of hypotheses:  

As suggested in Reid’s algorithm [58], instead of generating all possible hypotheses 

that are possibly deleted later, only the best m hypotheses are generated from each 

prior hypothesis. Auction algorithm is used to find the m-best assignment solutions 

from the assignment matrix    by maximum reward (minimum cost).  

      The key principle of the MHT method is that difficult data association decisions 

are deferred until more data are received which could be achieved by using N-scan 

pruning. The structure provides a convenient mechanism for implementing deferred 

decision logic and for presenting a coherent output from the MHT. As a result, 

uncertainty at time k-N is resolved by the hypotheses given at time k.   

2.5 Other Multiple Target Tracking Approaches  

Some nonenumerative approach based MTT algorithms have also been developed 

such as Probabilistic Multiple Hypotheses Tracker (PMHT) [59]. These methods do 

not require explicit enumeration of data association hypotheses which leads to an 

incomplete data association problem that can be efficiently solved using expectation 

maximization algorithm [60]. However, PMHT is a batch strategy which is not 

suitable for online applications and the standard version of PMHT is also generally 

outperformed by JPDA [61].  
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      Particle filters on the other hand have also been implimented in MTT problems to 

replace EKF for solving nonlinear models especially when the performance of the 

algorithm degrades as the non-linearities become more severe [62]. The data 

association problem has also been addressed directly in the context of particle filtering 

(Sequential Monte Carlo) [63]. The main problem with these MC strategies is that 

they are iterative in nature and take an unknown number of iterations to converge 

which makes them not entirely suitable for real-time applications.  

      Most of the above conventional approaches implicitly assume that some form of 

thresholding has been applied to raw sensor data in order to reduce the amount of 

measurement data for processing. In contrast, track-before-detect (TBD) strategies do 

not apply thresholding and construct a generative model for the raw 

measurements/state in terms of a multiple target state hypothesis and thus completely 

avoid an explicit association process [64]. However, such TBD strategies are 

motivated by highly cluttered sensor data, which can not provide a reasonable 

detection of object features prior to a valid track. In practial systems, such 

measurements are not always readily available and may lead to a larger computational 

complexity. Thereful, TBD techniques have limited applicability comparing with 

conventional thresholded measurement procedure.  

      Very recently, a new concept has been introduced in MTT area - the random 

FISST [65]. While the convential MTT methods try to solve the problem explicitly by 

expending single target tracking with data association capabilities, the number of 

targets is also a random variables (random set) in FISST and explicit data association 

are avoided. The innovation of FISST is to model both the system and measurement 

as random finite sets (RFSs) and directly apply the Bayes recursion to these set-

valued random variables and thus solve the data association problem implicitly. In 

contrast to explicit data association methods, conventional probability-mass functions 

are replaced by belief-mass functions. Probability hypothesis density filter (PHD) [66] 

and multi-target multi-Bernoulli (MeMBer) [67] filter proposed by Mahler have 

successful implemented the FISST concept into MTT algorithms. Furthermore, the 

performance of MHT and Gaussian mixture cardinalized probability hypothesis 

density (GM-PHD) is compared in [68]. The results show that MHT is more stable 

with lower RMSE while GM-PHD has the advantage of  faster response to new 

/vanishing targets.  
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II Decision Making 

2.6 Path Planning for Autonomous vehicle  

This section focus on discussing how to implement situational awareness based 

information to assist decision making for autonomous vehicle. As shown in Figure 1.1 

in Chapter 1, while perception refers to understanding its measurement through 

appropriate sensors and tracking moving objects, finding the vehicle’s pose or 

configuration in the surrounding is localization and map building. Planning the path in 

accordance with the task by using cognitive decision making is an essential phase 

before actually accomplishing the preferred trajectory by controlling the motion.  

      The path planning problem has been studied extensively over the past decades. 

See, for instance, the textbooks of Choset et al. [69], De Berg et al. [70], Latombe [71] 

and LaValle [72] for detailed introductions into path planning and many references to 

related work. Although path planning problems have well studied in stationary 

environment, less attention has been given to path planning in dynamic environments. 

Besides stationary obstacles, dynamic environments contain moving obstacles with 

which collisions must be avoided as well. This is especially the case for mobile robot 

and automated vehicle systems.  

      The main purpose of autonomous vehicle path planning is to determine a safe and 

collision-free path from a starting point to a goal point optimizing a performance 

criterion such as distance, time or energy [73] while taking into account the vehicle 

dynamics and manoeuver capabilities [74]. Some examples of common assumptions 

are listed below, these topics are not discovered in the thesis and more details can be 

found in [75]:  

 Vehicle models vary in complexity from velocity controlled linear models to 

realistic car-like. 

 Different levels of knowledge about the obstacles and other vehicles are required 

by different planning scheme. This ranges from abstracted obstacle set 

information to allowance for the actual nature of realistic noisy sensor data 

obtained from range-finding sensors. 

 Different assumptions about the shape of stationary obstacles have been proposed. 

 Uncertainty is always present in real time autonomous vehicle systems. To better 
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reflect this, assumptions can be made describing bounded disturbance from the 

nominal model, bounded sensor errors and the presence of communication errors 

[76].  

2.6.1 Path Planning Levels 

Based on the availability of environmental information, the autonomous vehicle 

planning can be roughly classified into different levels. The highest level is global 

planning (also known as offline path planning) which is primarily concerned in 

environments where workspace information about stationary obstacles and limited 

digital map are known in advance. Path planning is therefore the problem of finding a 

geometric feasible path form a known initial position to a given goal. The feasible 

path is required not to result in collision with stationary obstacles and therefore must 

adhere to any environment physical constraints. 

      On the other hand, the lower level motion planning is concerned with real-time 

online planning of the actual vehicle transition from one feasible state (including 

position, velocity, rotation etc.) to another satisfying the vehicle’s dynamic constraints 

while avoiding obstacles in both stationary and moving form. 

2.6.2 Sampling based Path Planning 

In recent years, various probabilistically complete approaches that do not constrain 

the nature of the robot’s motion have been suggested to solve the path planning 

problem in known environments. These methods are also known as sampling based 

planning [77] which are well suited for kinodynamic motion planning problem. 

Examples include the randomized path planner (RPP) [78], Ariadne's clew [79], 

probabilistic roadmap planners (PRM) [80], and rapidly-exploring random trees (RRT) 

[81]. The success of these planners in solving challenging problems can be explained 

by the fact that no explicit representation of the free configuration space is required. 

These practical planners satisfy a weaker form of completeness. They use 

randomization to treat the high dimensionality of configuration space and connect the 

collision free regions of the configuration space without requiring to explicitly 

computing this subset. The term probabilistically complete was introduced to 

characterize these sampling-based algorithms, able to find a solution if sufficient 

running time is given.  
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      According to the survey [82], the sampling-based approaches can be grouped in 

two main families: 1) those using sampling techniques for constructing a roadmap in 

free configuration space [80] and 2) those using sampling within incremental search 

methods for exploring the configuration space looking for a particular path [78,81,83].  

      The roadmap based methods are more suitable when several motion planning 

queries involving the same mechanical system moving in a static environment must 

be solved. Computing time is spent in a pre-processing phase and then planning 

queries can be solved in real-time. In some papers, they are also called multiple-query 

methods. Among one the well-known method is the PRM which creates a roadmap by 

randomly sampling configuration from the configuration space. If these 

configurations are collision-free, they are added as nodes to the roadmap. The PRM is 

probabilistically complete which means it can guarantee a solution, if it exists, from 

the start to goal configuration as time approaches infinity.  

      The incremental search methods, also known as single-query methods are in 

general faster since they need not pre-processing. Among them the most popular 

method is called the RRT. Unlike PRMs which require lots of effort into the pre-

processing and thus not very suitable for dynamic environment planning, RRTs aim to 

solve a specific query as quickly as possible, without using pre-processing. In RRT, a 

tree of valid paths is grown outward from the start configuration by random sampling, 

until any possible branch reaches the goal configuration. More details of RRT-like 

approaches related to this thesis are presented in the Chapter 6. 

2.6.3 Planning in Partially Known Dynamic Environments 

A natural feature of autonomous vehicle path planning problem as mentioned above is 

planning in dynamic environments, in which besides stationary obstacles, also moving 

obstacles are present. The simplest instance of the planning problem in dynamic 

environments is when the motions of the obstacles are predictable, that is, they are 

fully known and given beforehand.  

      In many cases, however, the motions of the moving obstacles are only predictable 

for the very near future, or are not predictable at all but with current measurement 

only. In this case, such on-board sensors are used for environment perception, 

providing information about the moving obstacles during the execution of the vehicle 

path. This can be used to extend the vehicle’s plan, or adapt a previously planned 
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global path to make it suitable for the new situation online. This is repeated until the 

goal has been reached, that is, during the motion of the vehicle there is a continuous 

cycle of interleaved sensing and planning. Hence, only lower level online planners are 

suitable for planning in partially known environments. There are two fundamental 

problems in partially known dynamic planning scheme. Assuming a global path 

planner is used at current time    giving a future path of the initial environmental 

situation till time       (  is the horizon of prediction time interval). First, the 

predicted situation from of the world at near future      may differ from the actual 

situation when moving obstacles change their trajectories during planning. This may 

result in invalid paths. Second, the path generated from global path planner that the 

vehicle will follow between    and      is not guaranteed to be collision-free, since 

the global planner can only consider limited environment information and is based on 

the previous trajectories of moving obstacles.  

2.7 Optimal Control Based Motion Planning  

The offline planner for known environments has been discussed in previous sections. 

However in these planning algorithms, the environment would have be to be perfectly 

known in advance which is not conductive to autonomous vehicle planning 

applications especially collision avoidance based motion planning.    

      Recently, model predictive control (MPC) architectures have been applied to 

collision avoidance problems [75]. They have many favourable properties compared 

to the commonly used artificial potential field (APF) [84] methods and velocity 

obstacle based methods [85], which could be generally more conservative when 

extended to higher order vehicle models and easily extends to robust and nonlinear 

problems. MPC is also increasingly being applied to autonomous vehicle and mobile 

robot motion planning problems. It is useful as it naturally combines path planning 

with on-line stability and convergence guarantees [86, 87]. In general, MPC planning 

methods are more optimal, allow for the future position of the vehicle, and account for 

situations where multiple obstacles, vehicles and complex vehicle dynamics are 

concurrently present more naturally, and do not necessarily carry an excessive 

computational burden.  

      As all methods, optimal control has some limitations. For instance, the solution 

may be a local maximum or minimum, instead of the global one as intended. Also, 
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usually the complexity of this kind of problems is very high and sometimes even 

computationally impossible to solve. Besides MPC, other optimization based path 

planning algorithms are also listed below according to the review [75]: 

      Graph search algorithms: examples include A* [88], D* [89], and fast marching 

[90]. Most methods hybridize the environment into a square graph, an irregular graph, 

or a Voronoi diagram (the skeleton of points, which separates all obstacles). A search 

can then be performed to calculate the optimal sequence of node transitions. In 

addition, this may be used as the first step to find a bounded area within which further 

path planning operations can take place. 

      Optimization of predefined paths: examples include Bezier curves [91], splines 

[92], and polynomial basis functions [93]. While these are inherently smoother, 

showing completeness may be more difficult in some situations. 

      Artificial potential field methods: these methods are also ideally suited to on-line 

reactive navigation of vehicles (without path planning). These can also be used as 

path planning approaches, essentially by using more information about the 

environment [94, 95]. However, the resultant trajectories would not be optimal in 

general. APF methods have lower computational requirements than local planning 

approaches, but this is becoming less of a concern with ever increasing computational 

powers of unmanned vehicles. 

      Mathematical programming and optimization: this usually is achieved using 

mixed integer linear programming (MILP) constraints to model obstacles as multiple 

convex polygons [96]. Currently, this is commonly used for MPC approaches. 

      Evolutionary algorithms, simulated annealing, particle swarm optimization: these 

are based on a population of possible trajectories, which follow some update rules 

until the optimal path is reached [97, 98]. However, these approaches seem to be 

suited to complex constraints, and may have slower convergence for normal path 

planning problems. 

      Partially observable Markov decision processes: this calculates a type of decision 

tree for different realizations of uncertainty, and uses probabilistic sampling to 

generate plans that may be used for navigation over long time frames [99]. However, 

this may not be necessary for all MPC-based navigation problems. 
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2.8 Collision Free Planning using MPC 

MPC-type approaches have previously been used to navigate vehicles in unknown 

environments [100, 101, 102]. Here, the MPC algorithm is combined with some type 

of mapping algorithms, however some of the rigorous guarantees normally provided 

in MPC approaches are harder to show. An approach to collision avoidance using 

these types of methods is to estimate obstacle positions based on bearing 

measurements combined with some state estimation method [103]. In this case, 

observability constraints can be taken into account during planning. When compared 

to potential field methods, MPC methods generally perform better as they consider a 

more optimal path that plans ahead as obstacles are approached. They are also less 

conservative, bringing the vehicle closer to the edge of its control capability.  

2.9 Summary 

This chapter provides a systematic literature review on two main aspects that will be 

covered in this thesis, namely situational awareness and decision making for 

autonomous vehicle. Particularly, the reviews of a wide variety of target tracking and 

path planning based techniques are covered and explained. The environmental 

information produced by target tracking (perception) system is used for achieving a 

collision free motion planning for autonomous vehicles.    

      First, the background of target tracking is explained with details discussion in two 

areas: the single target state estimation (filter) approaches and data association 

approaches based MTT algorithms. A detailed explanation of MHT algorithm is 

presented in this review.  

      Next, existing path planning techniques used in autonomous vehicle are surveyed 

and classified in details. Two specific algorithms RRT and MPC based path planning 

algorithms for solving autonomous vehicle motion planning in dynamic environment 

with collision avoidance functionality are also discussed.  
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Chapter 3 

Single Target Tracking using 

Constrained MHE 

3.1 Introduction 

Although current automotive tracking technologies can give relative reliable 

performance in ADAS applications such as automatic emergency braking systems. It 

has been agreed in common that the accuracy of tracking (state estimation) 

performance can be greatly improved by extra domain knowledge [104]. Besides 

using advanced sensors such as radar, laser and cameras, the tracking performance 

can also be greatly improved by utilizing trajectory constraints and other 

environmental related information imposed from the road network and digital maps 

[105]. Such additional prior information can be treated as different types of 

constraints and subsequently implemented in Bayes’ rule together with system 

measurement and other prior knowledge about the system dynamics [106]. As a result, 

the posterior distribution of the system state, taking into account constraints, is 

derived after measurement update process. Incorporating the constraint related 

information into state estimation can improve on the accuracy of tracking.  

      Different types of state constraints and the corresponding methods have been 

developed for solving the constrained state estimation problem. Based on D. Simon’s 

recent research in papers [106] and [107], an overview of various ways to incorporate 
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state constriants in the KF is provided including: model reduction, pseudo-

measurement approaches and projection based approaches. However theses 

approaches are restricted to deal with linear system and linear state constraints only 

and all these approaches result in the same state estimate under certain conditions 

[107]. To extend the above methods to inequality contraints, paper [108] mentioned a 

method of using an active set approach. An active set method uses the fact that it is 

only those constraints that are active at the solution of the problem that are significant 

in the optimality conditions. Further more, to apply the constrained KF to nonlinear 

systems and nonlinear state constrains, a basic linearization idea is used in [106] for 

both the system and constraints which is equivalent to the core concept of EKF. 

Although constrained KF methods are relatively easy in implementation, the above 

methods have several disadvantages even for basic linear and equality constraints 

[106]. Moreover, the technique used in projecting the unconstrained state estimate 

onto linearized state constraints is subject to constraint approximation errors which 

may result in convergence issues [109]. This makes KF not the optimal solution for 

constrained state estimation problem especially for the case of system inequality 

constraints when recursive analytic solution is not available.    

      Recently, some methods such as the constrained UKFs [110] and interior point 

likelihood maximization (IPLM) [111] are developed based on linearization 

approaches. Others such as Gaussian mixture filter (GMF) [112] and (constrained) 

Particle filter approches [113] are also developed using projection and trunction 

approaches. The majority of filters proposed to solve the constrained estimation 

problems focus on linear (in)equality or nonlinear equality constraints. A little 

research has been conducted on nonlinear inequality constraints so far [112]. However 

in ground vehicle tracking problems, (non)linear inequality constraints have played an 

important role for most tracking scenarios, e.g. highway road and roundabout 

boundary when road width is considered.     

      In this case, another strategy for determining an optimal state estimate is 

suggested and its core concept is to reformulate the estimation problem as an 

optimization approach based quadratic programming problem. More specifically, Rao 

et al. [114] have proposed a constrained state estimation for nonlinear discrete-time 

systems, where the state estimation is developed based on a moving horizon concept 

known as MHE. The basic strategy of MHE in determining the optimal state 

estimation is to reformulate the estimation problem as an optimisation problem using 
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a fixed-size estimation window. This method has been widely used in chemical 

engineering. Other applications include hybrid systems, distributed or network 

systems, large-scale systems and so on. However, the implementation of moving 

horizon approach based estimation methods in target tracking is still relatively an 

uncharted area. 

      Advantages for using MHE to solve target tracking state estimation could be 

significant. Since the method is optimization based, the road constraint and other 

relevant information in target tracking problems can be natually handled by MHE as 

additional restrictions in (non)linear and/or (in)equality form for both linear and 

nonlinear systems. In addition to state constraints, MHE is also capable of 

incorporating constraints on the state process and/or observation noises. In vehicle 

tracking, such constraints are typically used to model bounded disturbance or 

truncated distribution representing the influence of the operation environment on 

vehicle movement such as vehicle acceleration and deceleration. 

      Another advantage of using MHE as a state estimation method in target tracking is 

that it always considers a window of N latest measurements. Such feature is very 

meaningful in target tracking problems especially when targets are occluded by each 

other/stationary obstacles which leads to no reliable measurement at specific time 

step/steps. MHE utilizes the measurements in a receding horizon window could 

reduce the effect of unreliable measurements such as in the above situation in state 

estimation. Simulation results in [107] show that MHE achieves the smallest 

estimation error for nonlinear systems and nonlinear constraints. Theoretically, for a 

linear system without constraints and with a quadratic cost, MHE reduces to KF when 

the horizon length reduces to one [114].   

      A new target tracking strategy by using constrained MHE approach is proposed in 

this chapter. By applying optimization based MHE, not only the nonlinear 

measurement model but additional state constraints in target tracking problems such 

as road boundary are naturally handled. The proposed MHE algorithm is 

demonstrated by single target tracking scenarios verified by both linear and nonlinear 

measurement models. Compared with other filters, constrained MHE can produce 

high estimation accuracy while taking an acceptable computational load. 
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3.2 Constrained State Estimation 

In the operation of automated vehicles, it is necessary to track all the nearby road 

users to make sure the safety of the vehicles and other road users. This chapter 

considers situation of tracking a single vehicle that is moving on road. This is in fact a 

constrained estimation problem as the objects of interest must be on the road. In this 

section, both the road constrained state estimation problem and MHE based target 

tracking are described.  

3.2.1 Problem Formulation  

Consider the movement of objects of interest described by the discrete system: 

                                                      (3.1) 

                                                      (3.2)  

where                                                                                                  (3.3) 

where         is the nonlinear system dynamic function and         is the 

                           .         is the state vector which contains position 

along   and   axis respectively in Cartesian coordinate and     and     are the 

respective velocities.        is the vector of available measurements. The vectors 

        and         are Gaussian noises of the process and the measurement 

described by independent density              and              

respectively, where   and   are covariance matrices. It is commonly assumed that 

the initial distribution of the state vector   is known as a Gaussian 

distribution                 .  

      If let    and    be the linear (linearized) matrices respect to    and   , 

respectively, then the system shown above is now a linear time-invariant discrete-time 

system with dynamic function and measurement equation shown below: 

                                                          (3.4) 

                                                          (3.5) 
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3.2.2 State Constraints  

As discussed in Introduction, ground targets are constrained when moving on road. 

Thus the knowledge of terrain database and road maps can be used as constraints 

and incorporated into the tracking algorithm. In most existing techniques, the road 

maps constraint target motion in a one-dimensional physical space [115] (by 

ignoring the road width) and incorporate them as equality constraints. This is a 

fairly good approach when an observer is far away from the moving objects such 

as in the scenario of unmanned aircraft tracking a ground vehicle using GMTI 

radar. This however would result in highly nonlinear constraint formulation and 

low tracking accuracy for autonomous vehicle tracking scenarios where road width 

is comparable to the sensor accuracy (e.g. high accuracy with shorter detection 

range sensors such as LIDAR). Besides, from the operation point of view, the 

autonomous vehicle or relevant ADAS must know which lane or precise location 

of the other moving targets on the road. In this chapter, road network information 

is considered as road width inequality constraints and the target motion is 

restricted by these physical constraints in both straight and curved segment.   

Linear state inequality constraints  

Suppose that at each time step  ,    is subject to the following linear inequality 

constraint: 

                                                              (3.6) 

where  :      ,   ,        , and the inequality   holds for all elements of the 

vectors and      ,   .   is a known     matrix,    and    are the known vectors 

each with a dimension of     representing the lower and upper road boundary 

individually,   is the number of constraints,   is the number of states, and    .  

      Specifically, for target tracking with straight (linear) road width constraint shown 

in Figure 3.1, equation (3.6) is expressed as: 

 
  
 

    
       

   
  

                                              (3.7) 

where   
  is known as the transformation matrix representing the rotation from global 

coordinate l to the road network local coordinate g (with orientation along and 
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orthogonal to the road) by rotation angle  .    and    are the upper bound and lower 

bound of the straight road respectively. The details of mathmatic expression of   
  is 

given in seciton 3.3.2.  

 

y(g)

x(g)

x(
l)

y(
l)

Ѳ 

Ѳ
 

 

 Figure 3.1 Straight road width linear constraint  

 

Nonlinear state inequality constraints  

In the same form as the linear road width constraint shown in (3.6), a circular or 

curved road segment shown in Figure 3.2 can be represented as a nonlinear inequality 

constraint represented by function   as:  

                                                            (3.8) 

At each time step  , the road is defined by two arcs with radii   and    representing 

the lower/upper road boundary, with the center at the origin of the Cartesian 

coordinate system.  
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Figure 3.2 Curved road width nonlinear constraint 

 

3.3  Constrained MHE for Target Tracking 

MHE is an optimization approach based state estimation method which can take 

into account state constraints during estimation process. Essentially, MHE follows 

Bayes rule which maximizes the a posteriori probability density function (pdf) 

          given a fixed horizon of measurements. Here    represents a horizon of 

N states             and    is a horizon length of N past measurements 

           . The joint conditional density is then given by: 

                                                                    (3.9) 

where                                                                            (3.10) 

                                                          (3.11) 

where                 is the a priori state density given the measurements before 

the horizon;           is the joint measurement likelihood function.  

      Assuming    is a first order Markovian chain, the a posteriori joint 

conditional density           in (3.9) is reformed: 

                                    
   
     

   
                              (3.12) 
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where c is the constant and           is the likelihood function for each 

measurement within the horizon.             is the state transition pdf and 

                  is the a priori density of the initial state     .  

3.3.1 Constrained MHE  

By using Bayesian maximum a posteriori (MAP) criteria on equation (3.12), it 

becomes                              shown in equation (3.13):  

                                                                                                      (3.13) 

       
             

                            

   

     

                     

       
             

                

   

     

               

   

     

                      

      According to (3.13), the MHE cost function, subject to Eq. (3.4) and (3.5) with 

Gaussian noise, is then shown below as a quadratic programming problem:  

   
               

   
 

               

 
            

 
  

   

     

              

                                                              (3.14)        

where    represents the constrained region.             denotes the optimal 

system process noise and           denotes the optimal measurement noise at 

each time k.          is the ensemble of states from time instance     to   which 

solves the quadratic programming problem (3.14) while giving the optimal estimate 

solution. N is a moving horizon length which is chosen to give a trade-off between the 

estimation accuracy and the computational cost. For (3.14), different optimisation 

methods could be used to compute the states         .  

                                         as shown in (3.15) represents an arrival 

cost defined in [116] which plays an important role in summarising the effect of the 

past measurement as a priori information on the initial state     .  
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                                  (3.15)       

where      
   and      represents the previous moving horizon state estimate and 

covariance at    , respectively. The unconstrained EKF [116] is adopted as the 

approximate method for calculating the arrival cost error covariance      as: 

                                                    (3.16) 

      For nonlinear system equation (3.1) and (3.2), the linearized Jacobian matrix of 

dynamic function   and the measurement function   is calculated as:    
              

           
 

and     
             

         
 respectively.  

      The state estimate of the MHE optimisation function (3.14) at time k is denoted as: 

         
      

  
     

   
 , including the optimised initial state      

  and the optimised 

process noise sequence     
  

     

   
. Then, at time k, the optimised estimated state    

  

considering linear dynamic function (3.4) can be calculated as:     

    
           

      
  

     

   
         

            
    

             (3.17) 

      In constrained MHE, a horizon length of N states instead of only the current step 

is considered at each iteration. If considering the measurement update function (3.5) 

as a linear equality constraint, then the optimised state    
  is constrained by the 

following equation: 

         
              

      
     

     
   
              

   
          (3.18) 

where     
  

     

   
 is the optimised measurement noise for N horizon length and 

         

   
 is the horizon of N latest measurements.  

      As illustrated in Figure 3.3, a lower bound constraint is incorporated in the MHE. 

Correspondingly the estimated state is constrained to be only above the constraint 

value. The details of implementing road boundary based inequality constraints in 

MHE is discussed in the next section.  
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Figure 3.3 Illustration of MHE with constraints  

 

3.3.2 Constrained MHE with Road Inequality Constraint  

Since MHE is an optimization framework based state estimation algorithm, the 

physical road width constraints discussed above could be easily imposed in the MHE 

process. 

Linear Inequality Constraint of The Road: 

      Linear inequality constraints such as the straight road shown in Figure 3.1, the 

estimated positon     
     

   in global Cartesian coordinate x(g) and y(g) axis 

respectively, is transformed into a local coordinate    
     

   by an counter-clockwise 

rotation angle   from x(g) direction if considering a same coordinate origin. The 

constraint matrix   
  can be defined using a homogeneous transformation matrix from 

the global to local coordinate,    
    

              
            

  and the local position is formed 

in (3.19): 
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                                        (3.19) 

      Since the vehicle’s maneuver is only limited in the lateral direction by the width 

of the road, the road inequality constraint for    in local coordinate is represented 

below in (3.20)  

 
  
 

   
   

   
  

                                                (3.20) 

Road Nonlinear Inequality Constraint: 

      For nonlinear inequality constraints such as the curved road shown in Figure 3.2, 

the estimated positon     
     

   is constrained by the upper/lower road boundary   /  . 

In this case, the road width inequality constraint (3.8) is represented by equation 

(3.21). Thus the nonlinear inequality equation   is represented by    
      

  
. 

         
      

                                                   (3.21) 

      For a nonlinear measurement model (3.2) with two measurements: range   and 

bearing angle  . The nonlinear measurement equation is given below: 

    
  

  
   

   
    

 

       
  

  
 
                                          (3.22) 

      Then the nonlinear equality constraint according to the nonlinear measurement 

function (3.2) can be formulated similar to equation (3.18), however, the linear 

measurement function    is substituted by        
   

    
 

       
  

  
 
  and the 

measurements are          

   
  

         

   

         

    . 

      Besides the road width constraint on state values (position), constraint could also 

be combined in non-state vectors such as process noise. As mentioned in previous 

section, process noise is usually traded as acceleration in target tracking model. E.g. a 
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target is under acceleration mode if the process noise is greater than zero. MHE has a 

great advantage of capable to directly add inequality constraints on any variables 

defined in the objective function (e.g. state vector, process noise and measurement 

noise).  

3.3.3 Constrained MHE with Missing Measurement 

As discussed in Chapter 2, different from pure state estimation, in target tracking 

problems the data received by sensors is affected by measurement noise and other 

forms of interference. In this case the inherent uncertainties are always with 

measurements in target tracking problems and one main issue is measurement miss 

detection problem.  

      In MHE framework, a problem arises when missed measurement happens among 

a horizon of measurements since there is no individual prediction update process 

(unlike KF) and the estimation problem is solved by an optimization toolbox. In this 

chapter, the missed measurement is presumed as one step predicted state calculated by 

KF prediction update process shown in equation (2.18) and thus the estimated process 

noise    and measurement noise    for the current step are taken as null sets. This 

assumption is equivalent to treat the non-available measurement updated a posterior 

estimate as a prior predicted state which is used in KF target tracking problem [117]. 

However,  instead of directly using the predicted state as the estimation result, the 

estimation problem is resolved by the MHE quadratic programming cost function 

(3.14) considering a horizon of mixed measurements. In order to accommodate the 

road constraints, the missed measurements for the constrained MHE are replaced by 

the constrained predicted states. The detail of the mathematical explanation is shown 

in Chapter 4.   

3.4  Simulations 

In this section, two simulation examples are presented in the context of ground 

vehicle tracking. The first example is single target tracking with a linear 

measurement model and linear road inequality constraint. The second one is based 

on a nonlinear measurement model and nonlinear road inequality constraints. The 

results are compared with general KF and other constrained filters.   
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3.4.1 Linear MHE with Linear Road Inequality Constraint   

In this section, a single target tracking scenario is considered using linear 

measurement models with road boundary constraints. The vehicle dynamics is 

described by a CV with noisy acceleration: 

      

    
    
    
    

    

 
 
 
 
  

 
   

  

   
  

   
 
 
 
 

                          (3.23) 

where the state vector                      consists of the vehicle position and 

velocity in x and y directions, and     is the sampling interval,       
    

 
 
 
 is a 

two-dimensional Gaussian process noise with zero mean and covariance matrix         

Q = diag{8,4} in a local coordinate where         represents a diagonal matrix. This 

covariance represents higher motion uncertainty along the centre line direction and 

smaller uncertainty orthogonal to the road. The vehicle measurement model is a linear 

matrix in x and y potion with a Gaussian measurement noise    and covariance matrix 

R = diag{10, 10} in a global Cartesian coordinate as: 

    
    
    

                                             (3.24) 

      A vehicle is moving on a single carriage way starting from a position of the 

middle of the road with coordinates (0 m, 0 m). The road is assumed to have a total 

width of 4 meters and the vehicle’s trajectory is limited within the road width 

constraint. It is assumed that the vehicle accelerates straight to the east with an initial 

velocity of [10m/s 0m/s]. 

      The constrained MHE (CMHE), standard MHE and KF are compared with a 

horizon size for MHE/CMHE chosen as 4. The results are shown below in Figure 3.4. 
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Figure 3.4 Comparison between KF (a), MHE (b), CMHE (c) 

 

      As shown in Figure 3.4, the KF and MHE without using road boundary 

constraint have the estimation result outside the road. The performance is improved 

in the CMHE with the tracking results being projected on the road boundary.  

      For further comparison, the root mean squares errors (RMSEs) for different filters 

are calculated. Table 3.1 shows the RMSE for the position states, each is calculated 

for an average of 100 times Monte Carlo simulations running MATLAB. The 

Mathworks’ Optimization           quadprog in MATLAB software is used. 

      Different MHE horizon length are also compared in Table 3.1. Usually, the choice 

of the horizon length N is a turning parameter in MHE. The horizon size is chosen to 

give a trade-off between estimation accuracy and computational effort. From the 

theoretical standpoint, MHE can keep stability as long as the horizon length is greater 

than the observability index of the system measurement model [118] which is two in 

this study. A practical rule of a proper value is usually to choose the horizon length as 

a positive integer as twice the order of the system [116].  

      From Table 3.1 some conclusions can be drawn. First it shows that the generic 

MHE with a horizon length of 1 is identical with KF when considering linear 

dynamic/measurement model without additional constraints. This is because for linear 

system without constraints, MHE often tends to perform the same as the iterated KF 

[107]. Second, by comparing MHE or CMHE using horizon of 1, 4 and 10, there is no 
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significant improvement when using a longer horizon in this study. This is because 

the system and constraint considered in this study are both linear equation which 

covers the advantage of using MHE for solving nonlinear dynamics. Third, the arrival 

cost in this study is calculated by KF covariance and all the results using different 

horizon length show a stable result. As proved in [118], when the process model is 

linear, the approximate arrival cost calculated by KF covariance, regardless of 

whether there are constraints, can yield a stable MHE with guaranteed 

convergence/stability. Last but not least, the constrained MHE with a proper horizon 

length presents a much better tracking result than unconstrained state estimation 

methods.  

 

Table 3.1 Averaged RMSEs for KF, MHE and CMHE.  

 

 

 

 

 

 

Filter Type RMSE Estimation Error (m) 

Kalman Filter 3.2666 

MHE (Horizon size 1) 3.2666 

MHE (Horizon size 4) 3.2574 

MHE (Horizon size 10) 3.2461 

CMHE (Horizon size 1) 2.8212 

CMHE (Horizon size 4) 2.8057 

 CMHE (Horizon size 10) 2.7960 
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3.4.2 MHE with Missing Measurements 

In this section, the target tracking measurement miss detection problem is considered. 

The same single target tracking scenario discussed in section 3.4.1 is used. However 

this time the sensor has a low detection rate        which means only partially 

measurements are available during the tracking process. The tracking scenario is 

shown in Figure 3.5 and the index of the measurement according to the sampling 

instance is shown in Figure 3.6. In this case, measurements 4, 8, 9, 12, 13, 14, 17, 18, 

19, 20 are miss detected which are shown with y position at 0 for illustration purpose.   

 

Figure 3.5 True trajectory with detected measurement  

 

Figure 3.6 Index of missed/detected measurements  
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      The CMHE, MHE and KF are compared with different horizon size. As discussed 

in section 3.3.3, the a prior predicted state and covariance are used as the estimation 

result for KF while miss detection happens while MHE resolves the estimation 

problem using a quadratic programming solver.  

 

Figure 3.7 Tracking result with missed measurements using MHE with horizon 1, 4 

and 20 against KF  

 

      As shown in Figure 3.7, the results between general MHE and KF without road 

constraints are compared. First, let’s focus on the beginning 7 sampling steps where 

target is only temperately missing for one sampling step at instance 4. Both methods 

despite of a longer horizon length show a very similar estimation result which bias to 

the detected measurements. This is because for a linear dynamic system with CV 

model the target maneuver is relatively simply and a one-step maneuver is predictable 

when the (a prior) velocity estimation does not change too much from the previous 

steps. However when a longer window of miss detection happens, such as step 12, 13 

and 14, the prediction information is not reliable any more. This is shown by the 

result from KF estimation between x position 300m and 500m. Due to very poor 

velocity estimation (prediction), the position estimation error is accumulated and 

results in an unrealistic turning around maneuver. On the other hand, the MHE using 

the optimization solver shows a much more accurate state estimation especially in 

orthogonal direction since the target vehicle has much higher maneuver uncertainty in 
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the orthogonal direction (x-axis) than lateral direction (y-axis). The same result is also 

shown in Figure 3.8 at the last couple of steps (17, 18, 19 and 20) for the tracking 

process when no measurement is detected for a continuous 4 steps. The MHE shows 

more accurate position estimation while the rough prediction from KF makes the 

estiamtion far away from the true trajecotory.  

 

Figure 3.8 Tracking result with missed measurements using MHE with horizon 1, 4 

and 20 against KF from step 17 to 20 

 

      The results of the CMHE with different horizon length are also compared as 

shown in Figure 3.9. Comparing the results between CMHE, MHE and KF shown in 

Figure 3.7 and 3.9, once again it confirms that the road constraints play a signification 

role in improving the tracking accuracy. The utilising of longer horizon length 

improves the tracking results but with only limited effect due to the linear dynamic 

system and constraints. When a continuous multiple steps miss detection happens (as 

shown in Figure 3.9 from x position 300m to 500m as well as 600m to 800m), the 

CMHE with longer horizon length tends to produce smoother and more stable 

estimation result which is less affected by missed measurement. This gives MHE a 

great benefit of solving autonomous vehicle target tracking problem where 

challenging tracking occlusion problem happens. On the other hand, the result from x 

position 0m to 100m shows that the reduced CMHE with only one horizon length, 

which can be taken as a KF solved by optimization method with constraints, is more 

sensitive for temporally missed measurement. The horizon length should be tuned for 

different tracking scenarios in practical tracking applications.  
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Figure 3.9 Tracking result with missed measurements using CMHE with horizon 1, 4 

and 20  
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Especially in this study, where the sensor measurement has less measure of 

confidence than the prediction model (with larger uncertainty/noise), the constrained 

state prediction in some sense is more suitable for representing the true trajectory than 

the measurement.  

      The increasing of horizon length could improve the tracking result under some 

conditions e.g. using a horizon of 20, which makes the MHE a full information 

estimation algorithm [119], for solving a temporary missed measurement during the 

horizon window though with diminishing returns once N is sufficiently large. 

However under some extreme situations, e.g. as shown in Figure 3.8 when a 

continuous of 4 measurements are missing in one iteration of MHE (with a horizon 

length of 4), the accumulated prediction error makes the longer horizon MHE worse 

than a single horizon length one. 

 

Table 3.2 RMSEs for KF, MHE and CMHE with missed measurement        

 

 

 

 

Filter Type RMSE Estimation Error (m) 

Kalman Filter 8.4034 

MHE (Horizon size 1) 8.0524 

MHE (Horizon size 4) 8.0668 

MHE (Horizon size 20) 7.8840 

CMHE (Horizon size 1) 7.0985 

CMHE (Horizon size 4) 7.1668 

 CMHE (Horizon size 20)  6.7617 
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3.4.3 Nonlinear MHE with Nonlinear Road Inequality 

Constraint   

      In this example, the test scenario is set up following the previous study of 

[112]. A moving vehicle on a circular road section is considered as shown in 

Figure 3.5. The road is defined by two boundaries with two arcs of   =96m and 

  =100m, respectively, centred at the origin of a Cartesian coordinate system. The 

same vehicle dynamics shown in (3.23) is used.    is a two-dimensional Gaussian 

process noise with zero mean and covariance matrix            . The initial state 

of the vehicle is                 . The vehicle is supposed to move for 20 seconds 

with    . The vehicle is tracked by a nonlinear range and bearing model shown in 

(3.22).    is a two-dimensional Gaussian zero-mean measurement noise with a 

diagonal covariance matrix               . Given the road boundaries shown in 

Figure 3.10, the nonlinear state inequality constraint (3.21) is considered. 

 

Figure 3.10 The simulated circular road tracking scenario 
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      The performance of CMHE with different horizon length (N=2 and 8) with 

some other conventional filters [112] aiming at illustration of handling nonlinear 

in system and constraints in position estimation are compared. A brief introduction 

of each filter used in comparison study is provided below while more details can 

be found in the provided relevant reference. 

 Unconstrained filters: 

      UKF [120]: As explained in Chapter 2, instead of approximating the nonlinear 

function, replaces the distribution of a state estimate by a set of deterministically 

chosen sigma-points and associated weights.  

      Divided difference filter (DDF) [121]: Similar to the EKF, the DDF 

approximates the nonlinear mappings, but instead of the Taylor series expansion. 

Stirling’s interpolation formula of the first order is used [121] which means the 

derivatives are replaced by differences. 

      Gaussian mixture filter (GMF) [112]: The GMF is based on the analytical 

solution to the Bayesian framework for solving nonlinear non-Gaussian dynamic 

stochastic system, where all the pdfs are assumed in the Gaussian mixture form. 

The GMF can be interpreted as an approximation of the true pdf e.g., using the EM 

algorithm. The GMF can be imagined as a parallel run of several local filters 

depending on the chosen approximation weighted with respect to the measurement. In 

this study, the GMF is based on the UKF and DDF [112].  

 Constrained filters: 

      tUKF [112] and tDDF [112]: are the extension of the generic UKF and DDF 

discussed above using truncation approach [112] handling nonlinear inequality 

constraint. The aim is to find the estimate subject to the constraint by 

approximating the truncated pdf. The Monte Carlo based truncation method are 

using with 500 samples.  

      tGMF[112]: the extension of the generic GMF by using the truncated Gaussian 

mixture pdf. The details of the mathematical explanation can be found in [112]. 

      cPF[113]: the extension of the PF discussion in Chapter 2 using a global 

sampling technique and truncation approaches  to directly trim the conditional pdf 

of the state with respect to the nonlinear constraints.     samples are used based 

on [112].  
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      CMHE: the proposed CMHE in this chapter is used. However it needs to be 

wary of the divergence (instability) of the arrival cost when the process 

model/constraint is nonlinear. Since the EKF covariance does not guarantee 

stability, additional measures might be used to guarantee stability. In this case, a 

degree of forgetting [38] is implemented in this study to guarantee convergence 

/stability: the MHE should not weigh the past data too heavily. One property of the 

KF is that it exponentially forgets the past data [38]. A ‘forgetting factor’ to the 

approximate arrival cost is added to premultiply the approximate arrival cost by a 

scalar        : 

                       
   

    
  

 
                                  (3.25)     

      The further discussion regarding forgetting factor in constrained MHE can be 

found in [38]. More recently, other sampling based nonlinear filters such as PF 

[122] and UKF [123] are proposed for calculating the arrival cost. The further 

study are suggested in the future work.  

      The constrained nonlinear optimization problem can be solved by various methods 

[88], therefore all of the theory that applies to the particular optimization algorithm 

that is used also applies to CMHE. In this study, the optimization problem is solved 

by fmincon solver in MATLAB on a 2.4 GHz CPU. 

      The performance of different filters was measured using the position RMSE. 

The results are shown in Table.3.3 with average results of 100 times Monte Carlo 

simulations. 7 

Table 3.3. Estimation performance of filters  

 UKF DDF GMF tUKF tDDF tGMF cPF(   ) CMHE(2) CMHE(8) 

RMSE 2.79 4.50 2.51 2.06 2.21 1.91 2.07 2.11 1.99 

Time(s) 0.019 0.027 0.042 3.280 3.458 6.612 20.010 1.09 2.97 

 

      From Table 3.3, the impact of different constrained filters, considering nonlinear 

measurement model and nonlinear inequality constraint, on the estimation quality 

with different increase of computational cost can be seen. It can be seen from Table 
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3.3 that the tUKF, tDDF, tGMF outperform their unconstrained conventional 

filters UKF, DDF and GMF. The cPF provides high quality estimates however at 

an expense of high computational cost. The optimization based CMHE algorithm in 

this case provide similar performance to those based on truncation approach such as 

the tUKF, tDDF and tGMF. This fact is supported by the results achieved by the 

proposed CMHE filter using the approximate arrival cost (3.25), which provides 

reasonable good performance especially when increasing the horizon length. When 

N=8 the CMHE provides the second best RMSE=1.99 among all filters in Table 

3.3 which is slightly worse than tGMF with RMSE=1.91 however CMHE provides 

a much better the computational cost with only half time taken for tGMF.  

      By comparing the result of CMHE using horizon length of 2 and 8 it can be found 

that the performance of CMHE improves as one increase the horizon length. The 

improvement is much more significant than the one in Table 3.1 since nonlinear 

system and nonlinear constraints are considered in this study. However, the 

computational cost also increases with the horizon length. Thus the estimation effect 

and the computing speed are needed to be balanced by choosing N. 

      Other recent studies on constrained state estimation algorithm, such as [107], 

[112], have also provide similar results. In [107] it is proven that for nonlinear 

measurement model and nonlinear constraints, the results indicate that of all the 

algorithms investigated, the CMHE results in the smallest estimation error. The 

related simulation results are provided in the Appendix A. However, this performance 

comes at the expense of programming effort and computational effort that is orders of 

magnitude higher than other methods. [112] also comprises CMHE with other 

truncation and projection based techniques for nonlinear dynamic system with linear 

state inequality constraint. The results vary when using different arrival cost and 

horizon length in CMHE. For and zero arrival cost with full horizon length where the 

CMHE now represents the full information filter, the relevant CMHE approach 

provides slightly better MSE results than other techniques. However the MHE 

computational costs is by two orders higher than others. If computational expense is a 

consideration then the truncation based techniques such as tGMF performs better than 

CMHE when a shorter and more realistic horizon length is implemented.   

      In summary, the “best” constrained estimation algorithm depends on the 

applications. For ground target tracking scenarios, the CMHE provides generally 

better performance but with relatively higher computational cost.  
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3.5  Summary  

      This chapter proposes CMHE algorithm for solving single target tracking 

problems for discrete-time linear and nonlinear measurement systems. External 

road information is employed by CMHE filters such as road boundary inequality 

constraints in both linear and nonlinear forms. The proposed MHE algorithm is 

demonstrated by single target tracking scenarios verified by both linear and nonlinear 

measurement models considering linear and nonlinear inequality constraints. Missed 

measurement issues is also considerd. Since in target tracking problems, targets are 

often occluded by other obstacles which leads to no reliable measurement at specific 

time step/steps. Simulation results show that, (C)MHE, utilizes the measurements in a 

receding horizon window, reduces the effect of unreliable measurements and 

produces more accurate tracking result. Comparing with other filters, CMHE can 

produce high estimation accuracy while taking an acceptable computational load. 

Hence, this research will extend the applicability of the MHE techniques to a wider 

application area in solving target tracking problems. In the next chapter, the CMHE 

will be implemented for solving more complicated MTT problems.   
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Chapter 4 

MHE-MHT with Road Constraint 

Information 

4.1 Introduction 

Tracking multiple ground moving objects (e.g. vehicles, pedestrians and 

motorbikes) is playing a significant role in autonomous vehicles and ADASs. 

Different from multiple target tracking approaches applied in aerospace area, the 

motion of the ground vehicles are likely limited by road and terrain constraints. This 

information could be taken as additional domain knowledge to enhance tracking 

quality and continuity. In Chapter 3, it has been proved that information of road 

constraint can be exploited to improve the tracking performance in single target 

tracking scenarios. In this chapter, the constrained MHE (CMHE) is extended to solve 

MTT when situations become more complex with missed detection, false alarm and 

tracking occlusion. 

      In this chapter, a new MTT strategy namely Moving Horizon Estimation based 

Multiple Hypothesis Tracking (MHE-MHT) is proposed. To solve tracking ambiguity 

(data association) problem in MTT, an improved multiple hypothesis tracking (MHT) 

framework is developed by implementing the constrained MHE as a state estimation 

technique. Different from most of other recent researches which focus on MTT data 

association process [14], this chaper focus on improving MTT performace utilising 
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extra domain knowledge which considers environmental physical constraints. 

Comparing with traditional MHT, the new MHE-MHT framework inherits the 

advantages from MHE which makes it suitable for systems with nonlinear 

measurement and capable to systematically deal with state constraints derived from 

environmental information. In addition to the state estimation layer, in order to 

explicitly deal with environmental constraints based extra domain knowledge, 

modifications have been made in the MHE-MHT framework comparing with the 

original MHT structure such as constrained state prediction and data association, 

target maintenance logic and m-best N scan prunning technique. The details of the 

improved MHT structure used in MHE-MHT is explained in Section 4.4 in this 

chapter.  

      Performance of the proposed MHE-MHT algorithm is demonstrated by multiple 

ground vehicle tracking scenarios considering road constraints with an unknown and 

time varying number of targets observed in clutter environments with both linear and 

nonlinear measurement models. Simulation results at the end of the chapter show that 

the proposed technique efficiently tracks multiple vehicles accurately and reliably 

even when targets approach or cross each other in a highly cluttered environment. The 

proposed MHE-MHT contributes a further improvement in reducing the tracking error 

in both state estimation and data association aspects by incorporating the road 

boundary constraints explicitly.  

4.2 Background 

The problem of estimating the position of multiple moving targets, also known as 

MTT, has become an important part in autonomous vehicles and advanced driver 

assistance systems. Knowledge about the state of moving objects can be taken as 

valuable information to improve the level of autonomy for vehicles. The aim is to 

achieve an improved collision avoidance behavior and safe road safety driving even in 

populated environments.  

      As mentioned in Chapter 2, several approaches for MTT have been developed 

over the last decades. Among them, the data association based methods have achieved 

a great success in a wide range of applications, especially in the autonomous vehicle 

area recently [14].  
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      Different from GNN and JPDA which consider data association decisions one 

scan at a time, summarising previous data by a single hypothesis, MHT algorithm in 

[48], however, is a more complex approach that considers data association across 

multiple scans and a number of hypotheses. In other words, MHT algorithm attempts 

to keep all possible association hypotheses over multiple frames of data. This will 

result in an exponentially growing number of hypotheses and thus a NP-hard problem. 

Cox [58] in 1997 developed an efficient implementation by using polynomial time 

optimization algorithms to find the k-best solutions to an assignment problem along 

with pruning and merging techiniques to reduce the number of low probability 

hypotheses. MHT essentially keeps a set of multiple hypotheses and thus the 

assignment ambiguity will be resolved in future when subsequently new observations 

are arrived. In this case, hard decisions are not made until they need to be with the 

fact of using more information rather than just the current data frame, thus possible 

association error could be corrected when more evidences are updated. MHT also has 

the advantage of being able to deal with track creation, confirmation, occlusion and 

deletion in a probabilistically consistent way and is very suitable for autonomous 

surveillance. Such features along with the dramatic increases in computational 

capabilities have made MHT a preferred data association method for modern systems 

[47]. 

4.3 Problem Formulation 

The aim of MTT algorithms is to track the state of a number of M targets. As with the 

formulation in Chapter 2, let the state of target n at discrete time k be denoted   
 , and 

let    denote the set of all states for target n during the tracking process, i.e.    

   
   for      , which is also known as a track for target n. In MHT based MTT, 

tracking initiation, maintenance and deletion is naturally considered without running 

any separate high level logic process. In this case, in addition to target states, each 

track    contains other parameters such as initiation time   
  (the time step when a 

new target is detected), life time    (the age of a detected target) and deletion time   
  

(the time step when a detected target is deleted from the tracking list).  

      Let       
  

   

  
 denote the set of    measurements received at time k. Since the 

data received by sensors are affected by measurement noise and other forms of 

interference, inherent uncertainties are always with measurements, e.g. false alarms 
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(clutter) represented by false alarm probability     (      ) and missed 

measurements represented by detection probability    (    ). In this case, each of 

the measurement may belong to one of the three possible circumstances: i) the 

measurement starts a new target, ii) the measurement is a false alarm, and iii) the 

measurement belongs to an existing target.  

      Such measurement to track assignment is known as a hypothesis. It is assumed 

that: i) each hypothesis contains a set of compatible measurement to track 

assignments and ii) assignments are defined as ‘compatible’ if they have no 

measurements in common which means that each measurement can only update with 

one of the existing tracks in each hypothesis. The detail of hypothesis generation 

process is illustrated in Figure 2.9 in Chapter 2. Let    denotes the total number of 

hypotheses      
      

   at time    . Each of the hypothesis     
  is a history of 

assignment sets to time k. Each of the assignment sets    is characterized by three 

elements: i) the assumed number of targets (tracks), ii) the assignment (data 

association) result and iii) the corresponding assignment probability      . Each 

existing hypothesis is extended to a set of new hypotheses    
      

   at time k by 

considering all possible track-measurement assignment sets when a new set of 

measurements       
  

   

  
 are received. 

      The evaluation of alternative hypotheses formation is based on the hypothesis 

probability      
  . The formulation of     

   includes the prior probability of the 

existing hypothesis       
         ; the false alarms density    

   
   

considering   
   

false alarms; the probability of detection sequences    

   
   

considering   
  detected 

new targets; dynamic consistency of the measurements in the tracks based on the 

predicted measurement density       
 

   

  
     

 . The detail of hypothesis probability 

calculation is explained in Section 4.5.  

      Instead of generating all possible hypotheses such as in the generic MHT [58], 

techniques are used in this chapter so as to avoid combinatoric explosion and make 

the proposed algorithm more feasible for real time application. The details are also 

explained in Section 4.5.  
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4.4 Road Constraint aided MHT  

4.4.1 Mobile Sensor Model 

In autonomous vehicle target tracking scenarios, the tracking sensors such as radar or 

LIDAR are equipped with the ego vehicle and thus moving during the tracking 

process. This is known as a positioning (as a part of navigation) problem in robotics 

[124] where the ego vehicle utilises on-board GPS or inertial sensors to identify its 

own position. To simplify the system complexity, in this chapter it is assumed that the 

positioning sensors can give perfect global position information about the ego vehicle 

without measurement noise and motion uncertainty. General state estimation methods 

such as KF, PF could be utilized to solve the localization position uncertainty problem 

[125] [126].  

      The other moving vehicles (targets) are tracked based on the sensor (ego vehicle’s) 

current location using either linear measurement model (3.23) with position 

information or nonlinear measurement model (3.20) with bearing and range 

information.   

 

 

Figure 4.1 Measurement of target vehicle according to the ego vehicle state    
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      As illustrated in Figure 4.1, the state of sensor (ego vehicle) at time   is defined as       

               located in the global Cartesian coordinate   with position    and 

   in global coordinate x and y axis respectively and a rotation angle    which is the 

angle between target moving direction and the global x axis. Besides the global 

coordinate, a sensor (ego vehicle) coordinate    is defined by    and    axis where    

represents the target moving direction and    is the direction perpendicular to   . The 

origin of   is located at the ego vehicle’s position [     ].  

      In this case, the state of the target at time   under the sensor coordinate    is 

defined as   
     

     
    

     
   (as shown in Figure 4.1 with position [  

 ,  
 ]). 

  
       is the measurement provided by the sensor under the sensor coordinate and   

is the measurement dimension. The measurement in     can either be the position of 

the target   
     

    
    or bearing-range   

     
    

   (as shown in Figure 4.1) 

based on the sensor’s current position.   
  which is associated with the state   

  and 

measurement noise    is modelled as: 

  
      

                                                         (4.1) 

      As mentioned in Chapter 3,   is the general nonlinear measurement function and 

         is Gaussian noises of the measurement uncertainty described by independent 

density             .  

      It is also assumed the availability of two kinds of transformation functions   
 (·) 

and   
 

 (·) representing the transformation for the global coordinate to sensor 

coordinate and sensor coordinate to the global one, respectively. Thus the sensor 

coordinate target state   
  and measurement   

  can be converted to the global 

Cartesian coordinate    and    in the same form as shown in Chapter 3 equation (3.1) 

and (3.2) using the transformation function considering the ego vehicle state   : 

     
 
   

                                                       (4.2) 

     
 
   

                                                       (4.3) 

      In this case, the target tracking problem using a mobile sensor model is now 

converted to the standard tracking model formulation in the global coordinate [127] as 

described in equation (4.21).    
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4.4.2 Road Constraint 

Assuming the road network information is given by a prior digital road map, then the 

relative road constraints can be accommodated in the MHE-MHT algorithm so as to 

improve the tracking performance. As mentioned in Chapter 3, the knowledge of 

road network could also be used as state constraints incorporated in the CMHE 

algorithm. Therefore in this chapter, road network information is considered as 

road boundary inequality constraint and the target motion is restricted by these 

physical constraints as illustrated in Figure 4.2.  

Const
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Figure 4.2 Vehicle with road inequality constraint 

 

      In order to incorporate road constraints related to different road segments. In this 

chapter, local coordinates associated to different road segments are used when 

accommodating the road constraints on the target states. The movement of the target 

vehicle is constrained on the road network projected on two directions: along and 

perpendicular to the road curve. Similar to the mobile sensor problem described above, 

two kinds of coordinate systems are employed. Besides the global Cartesian 

coordinate  , a local coordinate frame associated to each road segment   is defined by 

  . The origin of    is attached to the starting point of the road predefined in the 

global coordinate, the    axis of    aligns with the continuous curve representing the 

road, whereas the    axis is perpendicular to   . Two kinds of transformation 
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functions are defined as   
 (·) and   

 
 (·) to represent the transformation for the global 

coordinate to road local coordinate and road local coordinate to the global one, 

respectively. The global coordinate state of the target vehicle                     is 

converted to road coordinate state   
     

     
    

     
    for the following state 

constraint formulation. 

      For the state constraint      
       

      according to equation (3.14), the road 

boundary constraint can be represented in (4.4):   

       
                                                    (4.4) 

where   is the constraint function represented by a full rank     matrix,    and    

are the known vectors each with a dimension of     representing the lower and 

upper road boundary individually,   is the number of constraints,   is the number of 

states. In terms of the geographic information, the constraint function is defined based 

on different roads types (straight/curved road shown in Chapter 3), and each of the 

road boundary can be represented by either a first order linear equation (4.5) for 

straight road or nonlinear equation (4.6) for curved junction under a road local 

coordinate    based on the digital map.    

    
      

                                                     (4.5) 

     
         

                                                  (4.6) 

where the coefficient   ,    and    are the parameters representing one boundary of 

the road r ;   
  and   

  represent the position in road local Cartesian coordinate in    

and    axis respectively.   

      The road inequality boundary constraints can then be presented by 

linear/nonlinear programming problems [109] defined by the inequality constrains 

below: 

        
      

                                                (4.7) 

         
         

                                             (4.8) 

where    and    are the normalized parameters according to equation (4.5) and 

(4.6) respectively;     and     represents the lower and upper boundary for road r. 
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      Due to the road boundary constraints, the vehicle motion uncertainty in the road 

local coordinate    direction and    direction is unequal. The maneuver along the road 

direction (  ) has more uncertainty than one in orthogonal direction (   . For model 

based target tracking problems covered in this thesis, the motion uncertainty is 

represented by the process noise shown in (3.1). In this case the system process noise 

   with the covariance matrix                defined in global coordinate x and 

y axis need to be converted to the road local coordinate    (according to different 

road r) by the transformation function   
 

 (·) denoted as   
 . Thus, the process noise 

covariance matrix along the road direction and orthogonal direction is defined as 

  
          

     
  .  

4.5 MHE-MHT Structure 

Initialize Priori 
Targets

Gate Check
Assignment Matrix 

Generator

MHE Filter 

N-scan Pruning

Current New 
Measurements

Generate k-best 
Hypotheses

Hypothesis Reduction
(merging)

Hypotheses at time k

Conformed 
Hypotheses/Tracks 

(at time k-N)

Track Maintenance

Target estimated states

Hypotheses
probability

Data association

Constrained state prediction

Figure 4.3 Flow diagram of MHE-MHT algorithm 
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The derivation of the standard MHT structure is presented in detail in Chapter 2, 

which contains three main processes: hypothesis generation, probability calculation 

and hypothesis reduction.  

      The performance of the MHT filter heavily depends on the particular 

implementation of gating and pruning techniques [58] that are ad-hoc in general and 

requires a careful design of the structures and algorithm. In this case, this section 

focus on the structure development for the proposed MHE-MHT. In MHE-MHT, in 

order to explicitly deal with environmental constraints based extra domain knowledge, 

modifications have been made comparing with the original MHT structure and the 

details are expliained below. The flow diagram of the MHE-MHT algorithm is 

presented in Figure 4.3. The high-level pseudo-code for MHE-MHT is provided in the 

Appendix B. The formation of MHE-MHT structure is set forth explicitly:  

Constrained state prediction 

In (E)KF, the state prediction is calculated below, following  (2.18):  

                                                                              (4.9) 

where            is the state estimate at time    ;          is the predicted state at time 

k;   is a linear state dynamic function. Since there is no process noise or measurement 

noise, the a priori predicted state          is equivalent to the a posteriori state estimate 

       at time k, considering a perfect measurement case where             . However, 

as discussed in previous chapters, in realistic target tracking problems the data 

received by sensors is affected by measurement noise and other forms of interference. 

In this case the inherent uncertainties are always with measurements and the so called 

‘perfect measurement’ is only considered when no actually measurement is received. 

This is also known as the missed measurement issue mentioned in Section 3.3.3, 

Chapter 3.  

      Due to the road boundary considered in this chapter, the road inequality 

constraints (4.4) are also accommodated in the predicted state. In MHE framework, 

the missed measurement issue is presumed as a one-step constrained state prediction 

and the additional road constraints can be naturally accommodated in the 

measurement using optimization based MHE quadratic programming cost function.  
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      In addition to the state estimation process, the constrained state prediction is also 

utilised in gate check and data association process in the MHE-MHT framework as 

discussed below. To solve this problem, the predicted state is projected within the 

road boundaries using estimation projection method with the active set approach in 

this chapter.  

      The position of any off road unconstrained state prediction          is projected 

onto the nearest road boundary (upper or lower). To deal with inequality constraint, 

an active set method uses the fact that it is only those constraints that are active at the 

solution of the problem that are significant in the optimality conditions. Suppose that 

there are   inequality constraints in (4,4), and q of the   inequality constraints are 

active at time k. Denote by     the q rows of    that correspond to the active 

constraints, and denote by    or    that correspond to the constraint vector 

representing the lower or upper boundary respectively. The constrained prediction 

         can therefore be written as a solution of the equality constrained problem: 

           
                                                                      (4.10) 

such that 

                
  

  

                                                     (4.11) 

where   is a positive-definite weighting matrix. The inequality constrained problem 

in (4.4) is equivalent to the equality constrained problem (4.11). Therefore the 

estimate projective method [106] is used giving the following solution: 

                                       
  

                                 (4.12) 

In this work, we set     to obtain the least squares estimate of the state constraints.  

      According to [106], the projected process error covariance matrix    can be 

expressed: 

                               
  

                           
  

              (4.13) 

Gate Check 

Similar to the standard MHT framework shown in Chapter 2, gate check is carried out  
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by calculating the Mahalanobis distance between the predicted target position and the 

current measurements. The prediction of target position is done by constrained (E)KF 

prediction update as mentioned above and only the measurements whose 

Mahalanobis distances with particular targets are smaller than a particular threshold 

are used for the further data association.   

               
          

  
 
          

          
                                   (4.14)  

where   
  is the position measurement m at time k,         

 
 is the constrained predicted 

target position calculated by (4.12) and         is the constrained covariance of 

innovation vector which can be calculated according to (2.23) using (4.13).        is 

a matrix of binary values which indicates maximum possible distance between 

measurement and targets. Only the measurements inside the gate are considered for 

assignment.  

Data Association 

MHE-MHT implements similar data association process as the Cox’s algorithm [58] 

which has been explained in Chapter 2. The assignment matrix is generated to 

represent all possible target-to-measurement associations. Then each new hypothesis 

contains a set of potential target-to-measurement assignments, leading to an 

exhaustive approach of enumerating all the possible assignment combinations. To 

solve this problem, the Murty’s algorithm is used to find the k-best assignment/ 

hypotheses generated from each parent hypothesis.  

      In MHE-MHT, the evaluation of alternative hypotheses formation is based on a 

probabilistic expression, the hypotheses probability     
   mentioned in section 4.3. 

Here   
       

      denotes a new hypothesis generated at time k which combines a 

relative past hypothesis     
  and a currently generated assignment   . Here    is one 

of the assignment combination generated by the assignment matrix (Table 2.1). Based 

on the Bayes’ rule, the probability     
        of hypothesis   

  considering a 

sequence of past measurements      is represented as: 

    
              

                                                                                        (4.15) 
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where c is a normalization constant;           
             represents the 

measurement likelihood function corresponding to current assignment   ; 

          
        is the assignment probability representing the current data 

association certainty; the last term of (4.15),        
          , represents the 

probability of the parent global hypothesis and is therefore available from the 

previous iteration. 

      Assuming at time k there are       targets existed from previous hypothesis 

    
 . Among the   targets,   

  targets are detected while    
  targets are non-detected 

according to the current measurement set       
  

   

  
 and assignment   . Thus the 

current a posteriori hypothesis probability (4.15) can be represented as: 

    
                                                                                                                (4.16) 

   

   
   

   

   
   

 
 
 
 

 
  

 
      

 
   

  
     

 

     
 

  
 
 

    
  

 
 
 

                           
                                       

        
                    

                                

        

where   
   is the number of false alarms in gate region at time k while the density of 

false alarms is    (number of FAs/area/scan) ;   
   is the number of new targets in 

gate region at time k and the density of new targets is    (number of NTs/area/scan). 

  
 
 is the detection probability of the  th target and the gate probability of the  th 

target is   
 
. 

      The expression in (4.16) can be further simplified by taking a logarithm 

transformation. The result is shown below in (4.17): 

       
          

           
                                                           (4.17) 

    
  

 
      

 
   

  
     

 

     
 

  
 
 

    

          
                          

      Here       
 

   

  
     

  is the predicted measurement density of  th target based on 

measurements    at time k and the current assignment      . In Bayesian framework 
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it can be calculated by the innovation likelihood function represented by a normal 

distribution function: 

      
 

   

  
     

                                               (4.18) 

where         denotes the predicted measurement(position) for target   and        is 

the corresponding associated innovation covariance. Both         and        are 

calculated using (E)KF in the standard MHT. However in the constrained MHE-MHT, 

the constrained position prediction         
 

 and constrained innovation covariance 

        as discussed above in (4.12) and (4.13) are used instead shown below: 

      
 

   

  
     

               
                                      (4.19) 

      As a result,       
 

   

  
     

  can be calculated using the multivariate normal 

distribution density function:  

      
 

   

  
     

                   
 

 

                                                               (4.20) 

     
 

 
            

  
 
       

  
            

    

      It is impractical to enumerate all possible global hypotheses and calculate the 

probability for each of the hypothesis. In the following part of this report, an 

improved pruning method is implemented in MHE-MHT framework.  

MHE Filter  

The details about implementing CMHE for road constrained target tracking have been 

discussed in Chapter 3. In the generic MHT, the ‘filter’ process is based on KF 

including two individual steps: prediction update and measurement update. However, 

the two steps are combined in MHE and solved directly by optimisation solver. In 

MHE, the state estimation is determined online by considering a finite horizon of 

latest measurements. The filtering process would be similar to KF if measurements 

are always observed and updated with the target. However, a problem arises in MHE 

when missed measurements (temporarily target missing) happens among a horizon of 
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measurements. Similar to the way that is used in Chapter 3, in the proposed MHE-

MHT, any missed measurement is represented by the constrained predicted position 

         calculated by (4.12) assuming no process noise    and measurement noise    

at current step.   

Target Maintenance: 

For ground target tracking scenarios, vehicles may enter or leave the surveillance field 

of view during the tracking process. Moreover, occlusion or miss detection is also 

possible when a vehicle is hidden behind another one. In order to achieve a fully 

functional tracking algorithm, a target maintenance logic is developed for in the 

MHE-MHT structure. Basically, there are three possible states for a set of targets in 

this logic: target initiation, confirmation/deletion and maintenance. The targets 

present at a time step are a combination of existing targets from the parent tracks and 

any new targets resulting from the set of measurement associations. For any target n 

in existence at time k-1, the possible associations at time k are shown: 

 Target initiation: If the measurement is associated with a new target n and the 

relevant hypothesis is selected from the current hypotheses tree. Add a lifetime 

index   to the target with value one and the relevant time step   
  is recorded. 

 Target confirmation/deletion: The new target is confirmed only if the detected 

target appears along the same track over a consecutive iteration of Ct 

(confirmation threshold) times. Once the tentative target is confirmed, the time 

step is recorded as   
 . The lifetime index is accumulated by one whenever the 

tentative target is detected but not over Ct. On the contrary, the lifetime index for 

any existing target is reduced by one whenever the target is not associated with the 

current measurement and will be permanently deleted from target list when the 

lifetime is zero. The time step is also recorded as   
 . 

 Target maintenance: The confirmed target may be temporally occluded or 

undetected by the sensor without measurements being associated. For this 

situation, the track is updated according to the predicted position calculated by KF 

of the target last associated states.  

Correspondingly, the high level logic for MHE-MHT target maintenance is shown in 

Table 4.1: 
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Table 4.1 High level logic for MHE-MHT target maintenance 

-- At time k, for nExistedTarg number of detected target in a hypothesis 

  For n=1: nExistedTarg   

  (Case one: permanently deleted targets)       

         If Lifetime    == 0 

              Continue; (the target is permanently deleted/already disappeared) 

         End 

  (Case two: target maintenance—target updating with measurement or  

  temporally miss detection) 

         If Targ asso (Target not associated with current measurement)  

                =     ; 

                If    > 0 (Target temporally miss detection) 

                     Implement KF prediction with road constraint for  

                    CMHE estimation result; 

                Else (Target permanently deleted from target tree) 

                     Deletion time   
   ; 

                End 

         Else (Target associated with current measurement) 

              Implement CMHE estimation; 

                If    < Conformation threshold Ct 

                       =     ; 

                     If       ; (Tentative target confirmed) 

                       
   ; 

                     End 

                Else 

                       = Ct; 

                End 

         End    

  (Case three: Target initiation) 

-- At time k, for nNewTarg number of detected new target  

  For i=1: nNewTarg (measurement is associated to a new target)               

         Use current measurement as initial position; 

         Initiation time   
   ; 

             ; 

End 
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m-best N Scan Pruning  

As mentioned above, hypothesis pruning or merging process is essential for MHT to 

reduce the computational cost due to exponential increase in the number of track 

hypotheses over time. This thesis considers on road vehicle tracking scenarios in 

relatively low target density environment. In this case, an m-best N scan pruning 

approach is proposed by combining both the standard N-scan pruning and m-best 

merging approaches. This enables us to minimize the computational load for real time 

tracking while maintains a relatively high tracking continuity and accuracy.  

      The key principle of the proposed method is that difficult data association 

decisions are deferred until more data are received which also matches the 

fundamental principle in MHE. The continued growth of the hypotheses is controlled 

by keeping only the N latest scans in the hypothesis trees. At each time step, only k 

global hypotheses (among all the generated hypotheses) with the highest probabilities 

are kept. The scan number N here is chosen as the same value of the horizon length in 

MHE. Thus, the association uncertainty at time k-N is resolved by the best hypothesis 

given at time k. In the meanwhile, the estimation process considers a horizon length of 

measurements within the last N scans. A lager N and k implies a deeper window gap 

and a wider range of different data associations hence the solution might be more 

accurate, but makes the running time longer. The number should be selected 

corresponding to different tracking scenarios.  
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Figure 4.4 m-best N scan pruning 
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An example is shown in Figure 4.4 with a 3-best 2 scan pruning. At each time step, 3 

hypotheses are generated from each of the parent hypothesis using the Murty’s 

algorithm with relatively highest probability. Then all the hypotheses generated at the 

same step are compared and only the best 3 among them all are kept in the hypothesis 

tree. Since hypothesis 19 has the highest probability among 19, 23, and 29 at time step 

k, its origin at step k-2 is chosen for states update in filtering procedure which is 

hypothesis 2 in this case.   

4.6 Simulations  

In this section, two simulation examples are presented in the context of autonomous 

vehicle MTT. The first example is a MTT using a linear measurement model. The 

second one is based on a nonlinear measurement model. The road constraints 

generated from maps are considered in both scenarios.  

4.6.1 MHE-MHT with Linear Measurement Model   

In this section, a MTT scenario is considered using linear measurement models with 

road boundary constraints. As shown in Figure 4.5, consider a two-dimensional (2-

D) unsupervised crossroad scenario with four vehicles observed in clutter over the 

surveillance of            (meters). Four vehicles start moving with initial 

position at (0m, 40m), (100m, 45m), (40m, 0m) and (45m, 100m) respectively. Each 

vehicle is moving on a single carriage way starting from a position of the middle of 

the road. The road is assumed to have a total width of 4 meters and the vehicle’s 

trajectory is limited within the road width constraint. All the vehicles have a same 

initial speed of 9m/s in a straight direction along the road network. The road speed 

limit is set as 10m/s. The autonomous ego vehicle starts moving from position (0m, 

40m) 5 seconds after vehicle 3 with a speed of 1m/s.  It is assumed that the ego 

vehicle is equipped with on-board radar which has an observation angle of 180 degree 

and a long detection range of 150m.   

      The vehicle dynamics is similar to the CV model shown in (3.22) under the 

global coordinate   with the state vector                     . Given road model   , 

the process noise   
  is defined under the road local coordinate     which is a two 

two-dimensional Gaussian process noise with zero mean and covariance matrix 
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             in    where         represents a diagonal matrix. This covariance 

represents higher motion uncertainty along the centre line direction and smaller 

uncertainty orthogonal to the road. Considering the road inequality constraint defined 

in (4.7) with state   
     

     
    

     
    under   , the global dynamic function (3.23) 

can be written as: 

       
 
     

           
                                       (4.21) 

      The vehicle measurement   
  model is a linear matrix with     and    potion under 

the sensor coordinate   : 

  
      

       
    
    

   
                                 (4.22) 

where    is a Gaussian noise with covariance matrix R = diag{25, 25} under   . In 

order to keep the tracking consistency, the measurement   
  is then converted to the 

global Cartesian coordinate   measurement    using the transformation function (4.3).   

      Each target is detected with a probability of          . The detected 

measurements are immersed in a clutter environment that can be modelled as a 

Poisson distribution with clutter density of               (false alarms/area/scan) 

over the       region (i.e., 12 clutter returns over the surveillance region at each 

scan). The sampling time interval is T=0.1s. New target density is            

and the gate region         .  

      It is worth to mention that if the collision volume is regardless for each vehicle, 

occlusions happen when two vehicles cross each other and more likely when one 

vehicle is in the line of sight of another vehicle (depending on the observer angle and 

direction) which  makes the tracking problem more challenging.  
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Figure 4.5 Multiple target trajectories for scenario 1 

 

The position estimates between generic KF base MHT (KF-MHT) (Figure 4.6), 

and constrained MHE-MHT (CMHE-MHT) (Figure 4.7) are demonstrated in a 

cluttered environment with false alarms and missed detection (i.e., 12 false alarms 

return over the surveillance region and one miss detection at k=99). It can be shown 

that the road boundary and speed limit constraints play a significant part in improving 

the tracking accuracy. Due to the inequality state constraints, the estimation results are 

limited within the road under the speed limit. For further comparing different 

algorithms, 100 trials of Monte-Carlo simulations are performed. The performances 

of different algorithms are measured using the root mean-square error (RMSE). As 

shown in Table 4.2, the CMHE-MHT gives better tracking results for all four targets 

by introducing both the road boundary and speed limit constraint.  
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Figure 4.6 KF-MHT tracking result for scenario 1(meter) 
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Figure 4.7 CMHE-MHT tracking result for scenario 1 (meter) 

 

Table 4.2 Averaged RMSEs for four vehicles by different approaches  

RMSE(m) Overall RMSE 

position 

Target 1 Target 2 Target 3 Target 4 

KF-MHT 4.7359 3.6943 4.8592 4.9702 5.4200

CMHE-

MHT(horizon=4) 

2.4884 2.1009 2.1685 2.6053 3.0790
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      To further analyse the proposed algorithm in terms of data association accuracy 

and tracking continuity, the target maintenance logic is implemented by setting the 

lifetime threshold Ct as 4 with a relatively low detection probability        . The 

total tracking life time is 99 time steps. The m-best N scan pruning technique is used 

with m=5 meaning only five best global hypotheses are kept at each scan and N=4 for 

N-scan pruning. The tracking result is defined as success only if all of the four tracks 

are maintained during the tracking process. The CMHE-MHT algorithm with 

different horizon length (N=4 and N=8) are also compared and the simulation results 

are shown in Table 4.3. 

 

Table 4.3 Data association simulation results  

Estimation Indexes KF-MHT CMHE-MHT(N=4) CMHE-MHT(N=8) 

Tracking success rate 

(all four targets) 

67% 96% 98% 

Average number of 

tracks (4 true tracks) 

7.3 4.3 4.1 

Average true track life 

(99 steps in total) 

78.2 97.8 99 

Average RMSE for 

position (m)  

5.1926 2.5764 2.3882 

 

 

      From the results, it can be seen that the proposed CMHE-MHT method improves 

both in the tracking quality and continuity. The successful rate proves that the CMHE-

MHT is capable of steadily tracking all four targets when using an appropriate 

horizon length and maintenance logic parameters. The successful rate is extremely 

high in this tracking scenario because a relatively low clutter density is considered 

and most of the false alarms are rejected by implementing gating with constrained 

state prediction. The constrained position prediction also provides a more realistic and 

reliable substitution measurement when miss detection happens. Most tracking 
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failures are caused by the occlusion where two vehicles cross each other. When no 

road constraints are used, the general KF may generate off road position estimate 

which could be associated with false alarms instead of the true measurement. As a 

result, the incorrect data association results generate the redundant false tracks and 

fail in tracking the true target after occlusion. The higher average number of tracks 

and average RMSE implies that the generic KF-MHT does not provide a stable data 

association and accurate state estimation comparing with the proposed method. On the 

other hand, the road knowledge aided CMHE-MHT algorithm can track the moving 

objects robustly. The use of map information can effectively reduce the number of 

incorrect assignments and, as a result, the number of false hypotheses and targets are 

also minimized.  

      A brief computational cost comparison between KF-MHT and MHE-MHT is also 

considered in this work. In order to exclude the effect of the structure complicity of 

the proposed method, the two algorithms are compared under the same structure of 

generic MHT with same parameters. In this case, the main computational difference 

comes from the state estimation step, which then becomes a comparison between KF 

and linear MHE. For linear and Gaussian target dynamic and measurement model 

used in this simulation, the ‘quadprog’ optimization toolbox in MATLAB software is 

used to solve the constrained linear optimization for MHE. The computational time 

for MHE-MHT is almost identical as KF-MHT when using a horizon length of 1. It is 

only mildly increased when using a longer horizon length of 4 and suitable for real 

time application in our simulation. It takes about double computational time when 

using a horizon length of 8. Considering the relatively small estimation improvement 

(shown in Table 3.1 and Table 4.3) while significant increase of computational cost, 

we would suggest using a horizon length of 4 for real time applications and the rest of 

work in this Chapter.  

4.6.2 MHE-MHT with Nonlinear Measurement Model   

To further analysis the proposed algorithm, in the second example, a more 

challenging MTT simulation for an interacting road scenario using a nonlinear 

Gaussian measurement model is set up. As illustrated in Figure 4.8, the surveillance 

region of a two-dimensional scenario is                                 

with an unknown and time varying number of targets observed in clutter environment. 
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The vehicle dynamics and relative state vector are the same as Scenario 1 with a 

two-dimensional Gaussian process noise which has a covariance matrix    

            . The sampling interval is     and the total simulation time is k=100.  

      Initially, two targets start moving in the environment with initial 

position            and               respectively. Each vehicle is moving 

on a single carriage way starting from a position on the middle of the road. The road 

is assumed to have a total width of 4 meters and the vehicle’s trajectory is limited 

within the road width constraint. The initial speed of two vehicles is 12m/s in along 

each road network. The road speed limit is set as 14m/s. The target initial covariance 

is defined as    
                       for both two targets. The two vehicles 

cross each other at k=53 when tracking occlusion happens. A new target appears at 

time k=66 with an initial velocity of 21m/s and the speed limit on road 3 is 23m/s. 

The ego vehicle starts to follow target 1 eight seconds later. It is assumed that the ego 

vehicle has a full range detection ability of all three targets during the whole tracking 

process.  

      The measurement model   
      

     is defined as a nonlinear range and 

bearing model shown in (3.20).    is a two-dimensional Gaussian zero-mean 

measurement noise with a covariance matrix                  under   . The 

measurement   
  is also converted to the global Cartesian coordinate   measurement 

   using the transformation function (4.3). Each target is detected with a probability 

of         . The detected measurements are immersed in high clutter environment 

with clutter density of    =          over the         surveillance region (i.e., 

50 false alarms return over the surveillance region).  

      The lifetime threshold Ct is defined as 5 in the CMHE-MHT implementation, 

which means any new target can only be confirmed if successfully detected in 5 

consecutive time steps. Similarly, tracking any existing target will be terminated after 

miss detection of 5 sequential time steps. The horizon length used in the MHE is set 

as 4 and so as for N-scan pruning. Since only a small number of targets are considered 

in this study, at each time step, 3 best hypotheses are kept so as to reduce the 

computational cost.  
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Figure 4.8 Multiple target trajectories for scenario 2 (meter) 

 

 

      An example of the overall tracking performance of three different algorithms,                 

(nonlinear)MHT [58] (Figure 4.9), GM-PHD [66] (Figure 4.10) and CMHE-MHT 

(Figure 4.11) are shown below. As proposed in [66], the GM-PHD recursion is a 

closed-form solution to the PHD recursion, which is proposed for jointly estimating 

the time-varying number of targets and their states from a sequence of noisy 

measurements sets in the presence of data association uncertainty, clutters and missed 

measurements. In contrast to explicit data association methods such as MHT, the 

posterior PHD function is approximated by a sum of of weighted Gaussian 

components for all target candidates whose weights, means and covariance are 

propagated analytically in time. In original GM-PHD [66], the mean and covariance 

of each Gaussian components are propagated by KF. The mean disadvantage of GM-

PHD is that it does not provide identities of individual target state estimates which are 

needed in this study for constructing tracks of each individual targets. To solve this 

problem, in this study, a separately method [128] is implemented to directly determine 

the state trajectories of the individual targets from the evolution of the Gaussian 
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mixture.  In this case, the solution provides not only the state estimates of targets at 

each time step but also association amongst state esitmates of targets over time so that 

estimates and labels of state trajectories for individual targets can be obtained.  

      The GM-PHD filter has been extended to accommodate non-linear target dynamic 

models [129] using EKF. In this case, the generic MHT and GM-PHD used in this 

study are based on the EKF filter. For mildly nonlinear problems such as this example, 

the EKF provides good approximations and the performance gap between EKF and 

other nonlinear filters such as UKF, PF may not be noticeable. It is not hard to tell 

that the proposed CMHE-MHT gives the best tracking performance by comparing 

these three figures.  

      The (nonlinear)MHT successfully picks up most of the target positions of Target 1 

and Target 2 in the front half of the trajectory 1 and 2. However the tracking 

performance decays rapidly after two targets cross each other at k=53 where tracking 

occlusion happens. The (nonlinear)MHT fails to continue tracking Target 2 while 

quite a few false tracking points are picked up which are obviously off road. 

(nonlinear)MHT successfully picks up the new target appears on trajectory 3, 

however the position estimate is far away from the true trajectory and wrong tracks 

are also picked up.  

      The GM-PHD filter outputs fewer false tracks than the generic KF-MHT filter 

during the whole tracking process. All three targets are successfully tracked in this 

case, however the position estimate are not very accurate with a lot of off road 

estimates. Target 3 is directly picked up just after its appearance, however there are a 

few wrong tracks picked up after tracking occlusion at k=53 and new target 

appearance at k=66 that suggest not very stable association performance.  

      Lastly, the proposed CMHE-MHT gives a relatively more accurate and stable 

tracking performance comparing with the other two filters. The three targets are not 

only successfully tracked but also with very accurate position estimation (within road 

boundaries). CMHE-MHT outputs least false tracks during the whole tracking process 

and relatively accurate and stable data association after tracking occlusion problem. It 

should be noted that for CMHE-MHT to pick up target tracks, the target must be 

present in the scene for at least a number of 5 time steps so as to confirm a new track 

hypothesis. The results are also presented with a horizon length of 5 steps delay. In 

this case, it gives the slowest reaction to the new target appearance.  
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Figure 4.9 Trajectories given by (nonlinear) MHT tracker for scenario 2 (m) 

 

Figure 4.10 Trajectories given by the GM-PHD tracker for scenario 2 (m) 
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Figure 4.11 Trajectories given by the CMHE-MHT tracker for scenario 2 (m) 

 

      Figure 4.12 to 4.14 show the details of tracking result from step 40 to 60 where 

target 1 and 2 cross each other with tracking occlusion problem. The results show that 

generic MHT tracker fails to keep tracking the true tracks after occlusion and also 

picks up a number of false tracks. GMPHD tracker correctly identifies target 1 and 2 

when they cross however the performance of position estimate is poor with lots of off 

road points. The CMHE-MHT presents the best tracking result which not only 

successfully overcomes the tracking failure when two targets cross over but also 

produces an accurate position estimate due to the benefit from the road information.   
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Figure 4.12 Trajectories given by the (nonlinear)MHT tracker. The results from time 

step 40 to step 60 is presented.  

 

 

Figure 4.13 Trajectories given by the GM-PHD tracker. The results from time step 40 

to step 60 is presented.  
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Figure 4.14 (Correct) trajectories by the CMHE-MHT tracker. The results from time 

step 40 to step 60 is presented. 

 

      In order to further assess the proposed multi-target tracking algorithm, two 

different measures of performance are used. The first one is a measure of the 

cardinality estimation, i.e., how well the algorithms estimate the number of targets. 

The name comes from set theory [130], where the cardinality of a set is the number of 

elements in the set. The cardinality measure used is the root-mean square error 

(RMSE) shown below: 

           
 

 
       

    
       

 

   
                        (4.23) 

where M is the number of Monte Carlo simulation,      
  is the estimate of cardinality 

at time k for the     iteration, and   
     is the true number of targets at time step k. In 

the scenario considered in this section, the estimate of cardinality could either mean 

the detected (estimated) targets which includes potential tracks, or the number of 

actual confirmed targets/tracks. Due to the nature of MHT and the relevant benefit of 
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the target maintenance logic considered in this Chapter, the       
  is considered as the 

number of actual confirmed targets.  

      In Figure 4.15, the cardinality error over time is shown, where the error is in 

relation to the true number of targets. For CMHE-MHT, the cardinality is the number 

of confirmed target tracks. A track is only presented if its probability of existence 

supersedes the threshold Ct.  

 

Figure 4.15 RMSE of cardinality estimation error for CMHE-MHT, GM-PHD and 

KF-MHT 

 

      A number of interesting conclusions can be drawn from Figure 4.15. First, the 

CMHE-MHT shows an overall lower number of error estimation representing a stable 

estimate of cardinality (once the cardinality estimate is equal to the true track number). 

This is due to the implementation of the road information and the extra target 

maintenance logic with m-best N Scan Pruning which provides a robust algorithm and 

helps reducing the number of false cardinality targets to be confirmed. The GM-PHD 

on the other hand is relatively sensitive to any possible new targets. It turns out that it 

over estimates the number of true new tracks in this scenario. The GM-PHD however 
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has relatively fast response to the changes in number of potential tracks. Most of the 

false detected targets are discarded very quickly.  

      The second thing shown from Figure 4.15 is that the CMHE-MHT is slower in 

adapting to new target appearance. In this scenario, a new target appears at k=66 and 

the RMSE of cardinality estimation error is higher than 1 for about 5 time steps which 

is due to the nature of target maintenance logic. The GM-PHD, on the other hand, is 

fast in adapting to changes in the cardinality. After the new target appearance, GM-

PHD almost immediately estimates the number of target to 3 with a lower RMSE 

estimation error.  

      The third observation from Figure 4.15 is the behaviour of CMHE-MHT and GM-

PHD, when two targets cross each other at time k=55, i.e., where tracking occlusion 

happens and the true visible number of targets decrease. The CMHE-MHT produces a 

stable cardinality estimation shown lower and smoother estimation error curve during 

the occlusion process while the GM-PHD and KF-MHT shows an increase estimation 

error. The reason for this is also due to the implementation of extra road information 

in CMHE-MHT which discards the less possible association results that are off road 

network. The GM-PHD and MHT on the other hand do not use the road information 

and thus resulting in generating a number of false tracks.  

      Overall the proposed CMHE-MHT is relatively slower in confirming and reducing 

the cardinality, but on the other hand keeps the tracking continuity over short periods 

of target occlusion. No method is uniformly better than the other, but for autonomous 

vehicle tracking applications where targets are frequently occluded by others, a slower 

response to a cardinality decrease has the benefit of allowing for track continuity but 

not removing the target track. Extra death model or new target detection and 

reconnection method could be introduced in MHT framework to allow for a fast 

response to cardinality reduction/appearance [131] as suggested in the future work. 
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      On top of the cardinality performance, a measure is also required on how well the 

algorithms estimate the target states especially position error. This is measured by the 

position (R)MSE in previous scenarios in Chapter 3 and 4. However, since the 

scenario in this section is more challenging with unknown number of estimated 

targets, the position (R)MSE is not suitable for a straight-forward measure. Instead, 

the recently developed Optimal Sub-pattern Assignment metric (OSPA) [130] is used. 

The OSPA is proposed for evaluating the performance of MTT algorithms, which 

considers not only the estimation performance but also association accuracy. The 

OSPA metric computes the distance between two sets of tracks by adding the error 

between target labels (or target indices) to the spatial distance. Let Y be the set of true 

target states and X be the set of target estimates, with cardinalities n and m, 

respectively. The OSPA measure   
  is then defined as: 

  
 
        

 

 
    

    
             

 
        

 

   

  

 
  

                    

if     and   
 
         

 
       otherwise. Here                        is the 

distance   between x and y, cut-off at  . Further,    is the set of all possible 

permutations of Y. In this thesis, the d is set as the Euclidean distance [130]. In 

practice,   
 
  performs an optimal assignment of target estimates to true target states 

which is calculated by Hungarian algorithm in this Chapter.  

      The average OSPA performance measure of KF-MHT, GM-PHD and CMHE- 

MHT is presented in Figure 4.16. For OSPA,   = 1 and   = 200 m. The results are 

based on 100 Monte Carlo simulations. 
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Figure 4.16.  OSPA performance for CMHE-MHT, GM-PHD and KF-MHT 

 

      The overall performance of different filters including both cardinality estimation 

and the state estimation is shown in Figure 4.16 namely OSPA. A low value indicates 

good performance. Some conclusions can be drawn. The measure captures the 

cardinality estimation performance, where the OSPA measure increase dramatically 

around time step k=53 and k=66 which indicates a less accurate cardinality estimate. 

The figures clearly show that the CMHE-MHT aided with road information yields 

better performance. It is more stable than the others by observing the variation of 

the OSPA distance over time, which presents the smoothest OSPA results. The 

CMHE-MHT only shows a high OSPA value around k=66 where the cardinality 

estimate is very bad. Besides, the overall OSPA performance is very stable due to the 

extra road information and target maintenance strategy. The CMHE-MHT still shows 

a lower OSPA even when the cardinality estimates of different filters are very similar 

which indicates a better state estimate due to the road information. The GM-PHD on 

the other hand shows a relatively faster response to the change of the number of 

cardinality. Due these different natures, which behavior that is better between CMHE-

MHT and GM-PHD is a matter of application requirement. 
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      The CMHE-MHT algorithm performance is also more stable than KF-MHT 

which is concluded by the variation of the OSPA distance over time. This is 

because of the more accurate state estimation performance for constrained MHE 

which also affects the accuracy of new target detection and data association. In 

original KF-MHT, road width constraint is not considered which makes the 

predicted target more likely to associate with clutter and thus generate false new 

targets. At time k=66, the new target appears which makes OSPA increase 

significantly, however in MHE-MHT the faulty association hypotheses will soon 

be discarded by the correct one which has a higher hypothesis probability. 

      The OSPA performance of different filters gets worse after time step k=80 

comparing with the beginning 20 steps because the ego vehicle is getting further to 

the targets with higher nonlinearity and lower measurement accuracy.  

      Due to the implementation complexity of MHT based filters, the tradeoff 

exists between the performance of the MHE-MHT filter and the associated 

computational cost and memory. Additional improvement on the performance would 

require more memory and increased computational cost e.g. extended horizon length 

for MHE and N-scan pruning. On the other hand, the MHE filter employs 

optimization based algorithm hence can be used for non-linear measurement models 

without further modification. The computational cost heavily relies on the efficiency 

of the optimization toolbox. In this study the fmincon optimization toolbox in 

MATLAB software is used. It is obvious that in order to tracking a large number of 

moving objects, a number of nonlinear MHE algorithms are involved (working in 

parallel) which would make the overall MHE-MHT tracking algorithm more 

computational expensive.  

      The main purpose of this chapter is not to select a better MTT algorithm 

between MHT and other filters. A more detailed performance comparison above 

between generic MHT and GM-PHD algorithm can be found in of recent reviews 

[131],[132]. However from this study the conclusion is drawn that the road 

information based constraints play an important role in improving MTT 

performance of the autonomous vehicle. 
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4.7 Summary 

This chapter proposes a novel constrained MHE-MHT algorithm for MTT 

problems with the aid of road constraints considering multiple aspects of 

autonomous vehicle applications. The key idea is to use road knowledge from 

maps and geological information systems in different layers of the MTT structure. 

Besides, the contribution also comes from the combination of MHE and MHT. 

The external road information is employed in not only the state estimation process 

by the constrained MHE filter (as mentioned in Chapter 3) but also other data 

association process by projected state prediction. An improved merging and 

pruning technique and target maintenance logic are designed for the proposed 

algorithm to manage the hypothesis generation and track multiple targets efficiently 

and accurately.  

      A number of simulation scenarios have been set up to test the proposed 

algorithms to track an unknown and time-varying number of targets under detection 

uncertainty and false alarms with both linear and nonlinear measurement models. The 

performance of the proposed algorithm has also been compared with standard MHT 

and recently proposed GM-PHD algorithms. By using qualitative and quantitative 

results it was shown that the proposed framework significantly improved the tracking 

results in both state estimation and data association aspects.  

      Although the proposed MHE-MHT algorithm has proven its efficiency for 

autonomous vehicle tracking scenarios by accommodating the road constraint 

information, it does not fully take into account the domain knowledge introduced by 

environmental conditions. In most of the current model based MTT algorithms, the 

targets are considered moving independently without having interacting behaviors 

with other targets or physical environment. However in realistic tracking scenarios, 

the vehicle’s maneuver is more complex and influenced by factors such as the 

intended directive/speed, other moving vehicles on the road, environment 

construction and road marks/rules. Such information could be modelled as potential 

force based interaction and implemented in the MTT structure. To overcome this 

problem and so as to achieve more accurate MTT results, the proposed MHE-MHT is 

further improved in Chapter 5 incorporating both the road constraint and target 

interaction information. 
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Chapter 5 

Environmental Interaction Modelling 

and Target Tracking 

5.1 Introduction 

      As mentioned in previous chapters, the motion of the ground vehicles is often 

affected by its operational environment. This information could be taken as domain 

knowledge and exploited in the development of tracking algorithms in order to 

enhance tracking quality and continuity. The most apparent domain knowledge for 

ground vehicle tracking is the road constraint information such as the constrained 

region imposed by a road map. The studies on the road network-aided ground vehicle 

tracking have been reported in [105], [133-136]. In these papers, the road network is 

taken as physical constraint information. Although comprehensive studies have been 

made for dealing with constraint information, limitations still exist. In Chapter 3 and 4, 

the MTT assisted by road map inequality constraints have been solved by using the 

proposed MHE-MHT framework. However for a realistic tracking scenario, in 

addition to physical road constraints, there are other interactions between the target 

and its surrounding environment which need to be considered. For instance, the driver 

behaviours are affected by the surrounding environment and tend to obey the traffic 

rules. Drivers typically try to keep away from the road boundary while following the 
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road/lane centre and speed limit. They also anticipate potential collision risks with 

incoming cars and make avoidance manoeuvres whenever necessary.  

      An accurate dynamic model reflecting the aforementioned realistic movement of 

a vehicle is vital to obtain good tracking performance, especially when limited or even 

no measurements are available. However, most of the current vehicle dynamic models 

for target tracking [30] predict the target’s location from its past trajectory without 

fully taking into account the environmental interaction information. Recently, a social 

force model [137, 138] has been applied to model the interactions between 

pedestrians and environmental objects (building and walls) by using forces introduced 

by a potential field. These forces reflect different motion behaviours, for example, 

targets may be attracted to other objects or pushed away from them. However, the 

applications of the social force model are limited to pedestrian tracking in the context 

of surveillance rather than vehicle tracking. 

      With this background, a new vehicle dynamic modelling approach is proposed 

and its application to the MTT problem in this chapter. The proposed modelling 

extends the traditional methods by incorporating the environmental information into 

the noisy control input of a dynamic model. The interaction between the target and the 

environment is modelled by virtual forces constructed by the target state, target 

dynamics and environment information. Compared with existing social force model 

used for pedestrian tracking [137, 138], the proposed model is more suitable for 

ground vehicle tracking involving much faster manoeuvres as it utilises the entire 

vehicle dynamic states (e.g. position and speed) and the predicted future position 

rather than using the current position information only.  

      Among various estimation algorithms [107, 112], the optimisation-based MHE 

[37, 106, 117] has a promising capability of being able to accommodate different 

types of constraints as mention in previous chapters. Thus, in this chapter a domain 

knowledge-aided MHE method (denoted as DMHE) by using the aforementioned 

vehicle dynamic model is proposed, which incorporates both the physical 

environmental constraints (as mentioned in Chapter 3 and 4) and interaction 

information into the tracking process in a comprehensive manner. The DMHE is 

further combined with the improved MHT structure developed in Chapter 4, denoted 

as the DMHE-MHT, to deal with data association problems with miss detection and 

false alarm considering realistic MTT scenarios. Note that although miss detection 

and false alarms frequently occur in a cluttered environment, they have not been fully 
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considered in most domain knowledge-aided tracking works [105], [133-136]; only 

miss-detection is considered in [105, 134]. Different from MHE-MHT developed in 

Chapter 4, DMHE-MHT exploits the constraint information in both the state and 

measurement. The measurements are pre-projected into the constraint region to obtain 

more effective measurement values so as to improve the data association accuracy.  

      This remaining part of this chapter is structured as follows. The literature review 

on the associated problems in target interaction and domain knowledge aided MTT is 

presented in section 5.2. The domain knowledge dependent dynamic and 

measurement model are proposed in section 5.3. Section 5.4 explains the DMHE 

based target tracking algorithm, as well as its extension by combining with MHT for 

solving MTT problem. In order to verify the benefit and efficiency of the proposed 

algorithm, numerical simulation results are presented in Section V. Finally, 

conclusions are given in Section 5.5. 

5.2 Background 

In this section, different traffic models and relative target interaction behaviour in 

MTT are reviewed.  

Various dynamic models can be generally divided into three categories: 

macroscopic, mesoscopic and microscopic models [139], [140]. In macroscopic 

models, the dynamics of the whole group of moving objects is described as an 

aggregate flow. Mesoscopic models determine the state of the system by the position 

or velocity distribution of each entity on the basis of aggregate relationships. 

Microscopic models refer to entities individually. In this case, the dynamics of every 

individual is considered by incorporating the social behaviour of each target taking 

into account the interaction between the target and environmental moving/stationary 

objects.  

This chapter focuses on incorporating the environmental information in a target 

tracking problem using the concept of the microscopic model. Examples of 

microscopic models include car-following model [139], cellular automata (CLA) 

model [140], optimisation-based models [144] and force-based models [137]. Car-

following model mentioned in [139] is particularly applied in the traffic modelling, in 

this model, a driver is assumed to adjust the velocity and acceleration of the vehicle 

according to the conditions ahead. The acceleration of a vehicle-driver unit is related 
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to motivational or perceived stimuli such as desired speed, speed difference and 

distance to the predecessor. However the application field of the car-following model 

is limited which is only used for modelling the traffic with respect to the following 

vehicles. Besides, it is assumed that a vehicle’s velocity is only affected by its leader, 

which is not realistic considering other environmental elements, such as road 

boundary, will also affect its state. Optimal velocity (OV) models [141] may be 

interpreted as a technical variant of the car following approach, where the acceleration 

is determined by the difference between the velocity of the vehicle   (t) and an 

optimal velocity     .  

      In CLA model [140], moving objects are represented as cells and the moving 

areas are divided into a number of girds. A set of general logic rules are applied to 

state which particular cell will be occupied by a moving object, in this way, the 

dynamic of every individual is modelled. This model is discrete in space so that the 

precise estimation of the state of a moving object (position and velocity) could not be 

obtained.  In order to obtain an accurate state estimation, a large number of cells and 

rules are needed, which will increase the computational complexity.  

      In [142-144], the optimization based technique are applied to model the air traffic. 

In these works, a function whose variables are the control parameters of different 

aircrafts is defined to be optimized. Constraints are also incorporated into the 

optimization problem e.g., speed limit of aircrafts and the constraint that two aircrafts 

could not conflict with each other. In this case the optimization problem becomes a 

constrained one. Stochastic optimization is applied in CLAs considering the 

uncertainties exist in the control model (such as the effects of wind, sensor noise, 

control noise, etc.). Different stochastic based optimization techniques are applied in 

[142-144], such as the Monte Carlo Markov Chain (MCMC) based sampling method 

applied in [142] and [143], and the Sequential Monte Carlo (SMC) optimization 

applied in [144]. 

        Force based models are based on the assumption that the dynamic of every 

individual is affected by different sources of ‘potential forces’. The concept of 

potential field is also presented in [138] for robot navigation problem, the potential 

field of different objects (either obstruction or attraction in the environment) are 

estimated and combined within a certain area. And the robot is navigated according to 

certain algorithms to reach the minimum point of the combined potential field. 
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However, in the robot navigation problem as in [138], the movement of the robot is 

only dependent on the potential field corresponding to the surrounding environment. 

No considerations are taken for the interaction between a robot and other moving 

objects, and it is also thought that there is no `desired velocity’ for a robot in the robot 

navigation problem as we model the movement of vehicles/pedestrians. Comparing 

with other interaction models, the force-based models have a great advantage of 

incorporating the environmental information as different sources of forces 

deterministically in a continuous model as described in the following details. The 

force-based model could be applied for modelling vehicles in MTT in comprehensive 

behaviours which are not only limited to car-following scenarios or optimal velocity 

model. It considers comprehensive aspects for affecting the dynamics of a moving 

target for a more realistic modelling; Different from the CLA model which could only 

describe the object movement in discrete space represented as cells, force based 

model could describe the vehicle movement in continuous space for a more accurate 

state representation; It is also easy to implement and needs much less computational 

time compared with the optimization based methods especially considering multiple 

moving targets.  

5.3 Environmental Information aided Dynamic, 

Measurement and Road Model 

5.3.1 Environmental Information aided Dynamic Model: 

First let us review the general dynamic model for target tracking problem: 

                                      (5.1) 

where    represents the state vector, which usually includes the position and velocity 

for tracking problem.    is generally known as the process noise and more 

specifically considered as noisy acceleration components that controls the dynamic 

evolution of    and follows a certain type of distribution to represent uncertainty of a 

driver’s behaviour.      represents the system dynamic function which reflects a 

desired target dynamic type representing the state transition between consecutive time 

steps. According to [30], in most of the target tracking problems, the control term    
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is modelled as a Gaussian distribution with zero mean and constant covariance matrix 

representing target movement uncertainty irrespective to the surrounding environment. 

However, in realistic tracking scenarios, targets’ movements are affected by the 

surrounding environment (e.g. road boundary, road centreline or speed limit). In other 

words, the vehicle noisy control input    from uncertain driver behaviours is related 

with the environment.  

 

(a) (b)

desired velocity 

 

 

Figure 5.1 The influence of the environment on a moving target by forces: (a) 

different repulsive forces      and      on objects i and j with different dynamics 

between T=t (when objects position are marked as green circles) and T=t+   (where 

objects position are marked as dash circles) (b)    receives interaction force      from 

another vehicle, attractive force      from the centreline and repulsive force      from 

the road boundary. 

 

      Therefore, this section proposes a new vehicle dynamic modelling approach 

which incorporates environmental information into the vehicle control input, inspired 

by the social force model [137, 145]. In the original social force model, pedestrians 

are assumed moving with low and constant velocity in a short time interval and force 

is considered to be only related to the relative distance between pedestrian’s current 

position and other environmental objects. Compared with the human tracking scenario, 
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our problem exhibits much more complex vehicle movements with high velocity. In 

this case, the force (control) term needs to consider not only position but velocity 

information and the desired dynamics of the vehicle. As illustrated in Figure 5.1(a), 

the object j is assumed to perform a turning manoeuvre should receive a higher 

repulsive force than the object i because it will get closer to the boundary. Besides, 

forces should also relate to the magnitude of the velocity; for instance, if the velocity 

   of the object j towards the road boundary becomes larger, a larger repulsive force 

should be imposed on the object.  

      In the proposed dynamic model, both repulsive and attractive effects from the 

environment are considered where the repulsive (or attractive) force is modelled as a 

monotonously decreasing (or increasing) exponential function. According to the 

current state    (including both position and velocity states) of the vehicle i, the 

predicted position   
       

 is first calculated from the dynamic model determined 

by        . In this way, the entire state and dynamic model information are 

incorporated. Then, the relative Euclidean distance    
          

 between   
       

 and 

position of the object j (e.g. road boundary, road centreline or other vehicles) is 

estimated. The repulsive/attractive force between target i and object j can then be 

represented as: 

               
                

    
          

 
                    (5.2)       

    
                     

    
          

 
                  (5.3) 

where A and B are positive constants representing the magnitude and range of the 

force, respectively.     is the normalised vector pointing form i to j.  

      As shown in Figure 5.1(b), it is assumed that there exist different forces acting on 

ego vehicle i generated by the surrounding environmental objects, such as the 

repulsive force      from road boundary o, attractive force      to the centreline c and 

the repulsive force      from another moving vehicle j to avoid a collision,  

      These forces are summed to a net environmental force     acting on the vehicle i, 

which can be incorporated into the dynamic model (5.1) shown below in (5.4):  

                
                                              (5.4) 
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where    
  

   
 

 
 represents the acceleration introduced by the environmental force. 

     
   is the function representing the influence of the acceleration    

  on the vehicle 

dynamic model, which has different forms according to different dynamic function 

     as shown in (5.1). 

5.3.2 Environmental Information aided Measurement Model: 

In order to incorporate the road constraint information, in Chapter 4 the road 

inequality constraints is accommodated in the predicted state. Besides, the state vector, 

the environmental information is also considered in the measurement vectors.  

      For the model based tracking problem, usually measurements are associated with 

a measurement model which can be generally represented as: 

                                                                                                (5.5) 

where    is a measurement vector,       is the measurement function and     is zero 

mean Gaussian noise of the measurement with the covariance  . 

      It is assumed that the ground vehicles only move within the road network region. 

This matches with a realistic scenario where road boundaries are considered as 

physical constrains and all drivers are supposed to move within the constraint region.      

In addition to the physical constraints, the behaviour of a vehicle is affected by the 

environment following the Highway Code and traffic rules. As a result, when moving 

on the road, the vehicle not only keeps away from the road border but also tends to 

follow the centre line of the road according to the heading direction.  

      Due to the limited tracking sensor’s capability, the received measurements usually 

contain noises as in (5.5), which make them not always stay on the road network and 

far away from the ground truth values. Such noisy measurements are usually known 

as false alarms in MTT which make data association process really difficult with lots 

of tracking ambiguity problems. Especially in MHT based approaches, where a 

number of candidate hypotheses are generated at each step. The ‘hard decision’ is 

only made when more measurements are received. In this case, the prior decisions 

could be evaluated and corrected so as to achieve a higher probability for correct data 

association. Such off road noisy measurements could result in lots of redundant 

hypotheses with low probabilities which are most likely discussed later.  
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      To this end, a pre-processing approach is used in this paper to project the raw 

measurements onto the constrained surface (road network) at each time step so as to 

decrease the uncertainty from the false alarms. The pre-processing approach could 

also bring down the number of unnecessary MHT hypotheses and as a result 

substantial amount of computation time could be reduced for real time tracking 

applications.    

      Assuming that that target vehicles are traveling on linear road following the centre 

line, the raw measurement data    could then be projected by the following linear 

equality constraint (5.6) to reflect more effective measurements:   

                                                                                          (5.6) 

where   is a full-rank constraint matrix and    is the constraint vector.     is the 

projected (constrained) Cartesian measurement. Following [106], the expression of 

deriving constrained measurement     by directly projecting the unconstrained 

Cartesian coordinate measurement    onto the constraint surface is by solving the 

problem: 

              
                                                                  (5.7) 

where   is a symmetric positive definite weighting matrix. In this work, it is chosen 

as     following the mean square method, where   is a measurement error 

covariance matrix of the original measurements. The solution of this problem is then 

given by: 

                                                                            (5.8) 

      According to [106], the projected measurement error covariance matrix    can be 

expressed as: 

                                                                   (5.9) 

      In this way, the measurement model is modified as: 

                                                                       
  

  
                                                  (5.10) 
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where     is the projected measurement,  
  

  
  represents the target position and     is 

the measurement noise for the projected measurement with zeros mean and 

covariance   . 

      For nonlinear road constraint           , the development of the constrained 

measurement (5.10) as given above is still valid with a linearisation process. A first 

order Taylor series expansion of the constraint equation around    to is used to obtain:  

                                                                             (5.11) 

which indicates that:   

                                                                                 (5.12) 

      An approximated nonlinear constraint is now formed that is equivalent to the 

linear constraint          where   is replaced with         and    is replaced 

with                     .  

5.3.3 State Dependent Road Model Transition 

In a realistic tracking scenario, in addition to multiple target data association and state 

estimation problems, each vehicle may undergo different road segments with different 

environmental conditions. Thus, one single model might not be able to accurately 

describe various movement types. E.g. the vehicle may have different dynamic model 

such as CV, CT and CA model when moving on different road segments incorporated 

with different environmental constraints.  

      Multiple state models have been exploited for target tracking in [136], [127] 

namely the interacting multiple model methods (IMM). These approaches assume a 

Markov jump model with constant state transition probabilities. However, the 

manoeuvring type of a certain target is actually state dependent and environmentally 

related. E.g. a vehicle may slow down and then turn when it approaches to a road 

junction. To its end, the non-Markov jump model approaches [146] is required. The 

transition probabilities between different models are not constant but modelled in a 

state dependent way related to surrounding environmental conditions.   

      Considering that multiple state models are involved, before performing the 

DMHE-MHT algorithm, it is required to associate the vehicle to different road 
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segments so that the corresponding information, such as road width, speed limits, can 

be taken in to account as system constraints. In this chapter, it is assumed that each 

vehicle is moving on the road structure restricted by road boundaries. The road 

structure is constructed by different segments and associated with different constraints 

which are known from a prior digital road map. A vehicle may jump from one to 

another road segment depending on the vehicle state (positions, velocities) and the 

road map information. The chosen road segment is then applied for DMHE-MHT 

implementation to track each specific target.  

5.4 MHE based Target Tracking with Environmental 

Information 

Based on the domain knowledge aided dynamic modelling and measurements as 

mentioned in the previous section, the MHE based optimization scheme is applied for 

the state estimation, which is detailed as follows: 

5.4.1 Domain Knowledge aided MHE (DMHE)  

Although the aforementioned MHE method could incorporate the constraint 

information for the state estimation as discussed in Chapter 3, it cannot exploit the 

environmental information in a comprehensive way: 

i. The interaction between the target and surrounding environment (e.g. a vehicle 

keeps away from stationary/moving environmental objects, such as road 

boundary, another vehicle, etc.) is not considered in the original MHE 

framework 

ii. Domain knowledge is not considered in the measurement model  

      To this end, a new framework of the MHE which fully exploits the domain 

knowledge (denoted as DMHE for short) is proposed. Both the proposed state model 

(5.4), which considers the interaction information and the projected measurement 

model (5.10) are exploited to construct a new MHE optimization function for 

estimating the state, which is illustrated as:   
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                                                                   (5.13) 

      Compared with the constrained MHE function in (3.14), besides the road 

constraint based information the domain knowledge is better exploited from two folds: 

i. a new     
   term is introduced, which is related to the environmental force 

modelling the interaction as mentioned previously. In this way, the interaction 

information is considered in the new MHE process.  

ii. the projected measurements     and associated error covariance    are exploited 

to model measurement information in a more accurate way 

      By solving the DMHE cost function (5.13), the optimised estimated state at time 

k considering a linear dynamic system with estimated initial state      
  and the 

optimised process noise sequence     
  

     

   
 in the horizon length N as: 

    
           

      
  

     

   
    

    
     

   
   

       
             

      
        

            (5.14)                                                                                  

Note that,   
   

 is a function of      
  and     

  
     

   
, according to the force terms 

defined as in (2) and (3). The covariance required for the arrival cost computation as 

in equation (3.16) is modified by considering the influence of the term     
   at time 

instance k by: 

              
     

            
     

   
 

 

        
     

                            
     

          (5.15)                                                                

where     
     

   represents the gradient of the term     
   with respect to    

  at time k. 
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5.4.2 DMHE based MHT (DMHE-MHT)  

The proposed DMHE algorithm is further extended to address the data association 

problem by incorporating it into a multiple hypothesis tracking (MHT) structure, 

which constructs a DMHE-MHT framework for MTT in a more complicated scenario 

with both miss detections and false alarms. The detail of the improved MHT structure 

has been explained in Chapter 4. The flow diagram of the DMHE-MHT algorithm is 

presented in Figure 5.2.  
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Figure 5.2 Flow diagram of DMHE-MHT algorithm. 

 

      Comparing with MHE-MHT, the structure is more completed by incorporating the 

domain knowledge from both road physical constraint in the state and measurement as 
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well as interaction behaviour between targets and the environment. This is achieved 

by three blocks as shown in Figure 5.2: measurement projection, road map aided road 

model transition and force model state prediction. First the road map aided road 

model transition process considering a state-dependent process to determine which 

road the target is moving on with which specific constrains as discussed above. The 

candidate measurements are then projected to the road using the process shown in 

section 5.3.2 considering road constraints. The projected measurement    and related 

covariance    are calculated and utilised in the data association process later on.  

      Once state dependent road model transition process is solved, the corresponding 

target environment interaction force such as (5.2) and (5.3) can be determined and 

calculated considering the specific road segment. The interaction force based state 

dynamic prediction is then calculated which is used in both data association and MHE 

process when missed measurement issue happens. Different from the constrained state 

prediction process (4.12) mentioned in Chapter 4, where the predicted state           is 

only constrained by the physical road boundary, in this chapter the interaction 

information is also accommodated in the state prediction shown below in (5.16): 

                         
                                                (5.16) 

where          is the constrained prediction calculated by equation (4.12).    
  

   
 

 
 as 

discussed above represents the acceleration introduced by the environmental force. 

     
   is the function representing the interaction influence of the acceleration    

  on 

the vehicle according to different dynamic model     .   

      In this thesis, the missed measurement issue is presumed as a one-step state 

prediction under the MHE framework. In this case, both road constraint and 

environmental interaction information are vital to reflect the realistic movement. In 

addition to the state estimation process, the force model state prediction is also 

utilised in gate check and data association process in the DMHE-MHT with the same 

form as mention in Chapter 4. In order to avoid wasting the computational time in 

generating a lot of low certainty MHT hypotheses (generated by noisy false alarms) 

which will be most likely to be discarded from the hypotheses tree later, the projected 

measurement   , constrained measurement error covariance    and forced based state 

prediction are used for calculating a more convergent data association result.    
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5.5 Numerical Simulation Results 

In this section, two simulation examples are presented in the context of ground 

vehicle tracking. The first example is single target tracking, aiming at illustrating 

the proposed DMHE with both linear and nonlinear inequality road constraint. The 

second one is a complex multiple vehicle tracking scenario incorporating road 

inequality constraints from real world map data for the DMHE-MHT. The details 

of implementation with fragments of the code is provided in the Appendix C.  

5.5.1 Single Target Tracking   

The proposed DMHE algorithm is evaluated by single target tracking scenario for 

both linear (position) and nonlinear (bearing/range) measurement models with 

road boundary constraints. The first one is a linear trajectory, considering a single 

carriageway with road width of 4 meters and an angle of 45 degrees anticlockwise 

to the horizontal axis. The vehicle dynamics is described by a constant velocity 

model with the noisy acceleration: 

                           

    
    
    
    

    

 
 
 
 
  

 
   

  

   
  

   
 
 
 
 

                                (5.16) 

where the state vector                      consists of the vehicle position and 

velocity in x and y directions, and     is the sampling interval,    is a two-

dimensional Gaussian process noise with zero mean and covariance matrix Q = 

diag{5,2} in a local coordinate as discussed in Chapter 4 where         represents a 

diagonal matrix. This covariance represents higher motion uncertainty along the 

centre line direction and smaller uncertainty orthogonal to the road. The vehicle 

measurement model is a linear matrix in x and y potion with a Gaussian measurement 

noise    and covariance matrix R = diag{20/  , 20/  } in a global Cartesian 

coordinate as: 

              
    
    

                                                (5.17)                             
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      The vehicle has a centre line direction velocity of 10m/s with no initial lateral 

velocity and the initial state is                                .  

 The movement of the target is constrained by road boundaries and supposed to 

follow the centre line of the road. Different environmental forces are considered 

including lateral forces orthogonal to the road as: 

 Repulsive force generated from lower road boundary 

           
           

    

 
                                          (5.18) 

 Repulsive force generated from upper road boundary 

      
           

    

 
                             (5.19) 

 Attractive force to centre line of the road 

       
             

        

 
                      (5.20) 

where i and j represents the target and the environment (road boundary, centre line, 

and speed limit where applicable), respectively.     and     represent the Euclidean 

distance between lower and upper boundary of the road and the predicted vehicle 

position   
       

calculated from the dynamic model (11) base on the current location, 

respectively. Similarly,          represents the distance between centre line and 

predicted vehicle position. Note that the closer (further) the vehicle gets to the road 

boundaries (away from the centre line), the larger the repulsive (attractive) force will 

be generated.  

 Beside above lateral forces, a velocity-based breaking (repulsive) force is also 

considered along the centre line direction so as to present the road speed limit: 

                      
            

                  

 
                            (5.21) 

where              
     

   is the speed of the vehicle towards heading direction. 

And similar to    ,   represents a unit velocity vector. The speed limit        is 

defined as a specific speed value in the heading direction which is different for 

each road section. The breaking force has the same manner as the repulsive force 
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(5.18) and (5.19) and the vehicle always tends to follow the speed limit. When the 

vehicle’s heading velocity is within the speed limit (        <      ) only a small 

repulsive force will be affected. However the repulsive effect grows exponentially 

when the vehicle exceeds the speed limit, as illustrated in Figure 5.3: 

 

 

Figure 5.3 Force generated from the speed limit. 

 

      To evaluate the performance, four different tracking models are compared:  i) 

general MHE without considering any environmental information (MHE), ii) force 

based MHE without considering physical constraints (FMHE), iii) general MHE 

with inequality physical constraints (road boundaries) (CMHE), and iv) the 

proposed DMHE approach. In Table 5.1, the performance of different models is 

compared in terms of RMSE in three different aspects: i) position RMSE, ii) 

centre line direction position RMSE and iii) orthogonal position RMSE to the road 

with a horizon length of N=4. It is shown that road physical constraint is of great 

importance when comparing the CMHE with the MHE and the DMHE with the 

DMHE, especially in orthogonal direction where road boundary is considered. In 

addition to physical constraints, environmental forces further improve the 

estimation accuracy. Both the FMHE and the DMHE have shown a significant 

improvement for target’s position estimate compared with their relative MHE and 

CMHE. 
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Table 5.1 Estimation performance comparison of MHE, FMHE, CMHE, and DMHE 

RMSE(m) MHE FMHE CMHE DMHE 

Position(m) 2.6506 2.4206 2.4877 2.3216

Centre line 

direction(m) 

3.1298 2.9606 3.1181 2.9414

Orthogonal 

position(m) 

2.8932 2.5160 1.6295 1.4588

 

In the second scenario, a vehicle is simulated to move along the quarter of a 

circular road with an angular velocity of 0.1 rad/s along the road centreline for 15 

seconds. Small noises are added to the simulated vehicle position to represent the 

disturbance of the vehicle movement. The road has a width of 4 meters and is defined 

by two arc boundaries of   =96 m and   =100 m, respectively, centred at the origin 

of a Cartesian coordinate system, as shown in Figure 5.4. The speed limit of this 

road segment for the vehicle to keep is assumed to be 30 miles/hour (13.4m/s). 

      Regarding the range and bearing measurement model in (5.22), it is assumed 

that a radar sensor is positioned at the origin. The corresponding measurement 

noise    follows a Gaussian distribution with zero mean and covariance    

             . 

                             
  

  
   

   
    

 

       
  

  
 
                                         (5.22) 
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Figure 5.4 The simulated circular road tracking scenario. 

 

Three algorithms are chosen for comparison for this simulated scenario including 

the EKF, the constrained MHE (CMHE) which considers the road boundary 

constraint and the proposed DMHE. The system dynamic model for tracking is the 

same as the previous scenario. The reason a constant velocity model is still used here 

is to emphasise the benefit of using domain knowledge in the target tracking even 

with a poor dynamic model. Although better nonlinear models (e.g. a constant turning 

model) could be used, by using a relatively less accurate dynamic model, the benefit 

of the additional force-based interaction information could be emphasised especially 

when comparing the DMHE with the CMHE. For the EKF and the CMHE, the system 

dynamic model for tracking is the same as the previous scenario. For the proposed 

DMHE method, additional interactions between the target and environment are 

considered by using two forces: i) road repulsive forces generated by the road upper 

and lower boundary and ii) force acting in the opposite of movement tangential 

direction to prevent the vehicle from exceeding the speed limit. For a fair comparison, 
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all the algorithms are set to have the same initial condition with mean     

               and covariance                   . 

Firstly, a sample tracking performance of three different algorithms is 

illustrated in Figure. 5.5. It can be observed that the estimation result of the EKF 

is outside the road boundary. The performance is improved in the CMHE with the 

tracking results being projected on the road boundary. However, it is still quite 

different from the true trajectory. The most accurate and reasonable tracking result 

is obtained by the DMHE. Next, numerical evaluations are performed on three 

algorithms using the root mean square errors (RMSEs) through a hundred Monte 

Carlo simulations for the same scenario. Figure 5.6 presents the averaged RMSE 

time history of the estimated position of each filter (the sampling interval is 0.5s). It 

can be seen that the DMHE approach achieves the minimum RMSEs during the 

majority of times. Besides, the averaged RMSEs for the whole target trajectory by 

different methods are presented in Table 5.2. Again, the DMHE achieves the most 

accurate tracking performance. In comparison to the EKF and the CMHE, the 

averaged RMSE for position estimation by the DMHE is improved by 66.8% and 

27.7%, respectively. 
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Figure 5.5 True and estimated results for EKF, CMHE and DMHE. 

 

 

Figure 5.6 RMSE of estimated position of EKF, CMHE and DMHE. 
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Table 5.2 Averaged RMSEs for EKF, CMHE and DMHE.  

 

 

 

5.5.2 Multiple Target Tracking   

Simulation scenario: The performance of the DMHE-MHT is compared against the 

MHT, and the CMHE-MHT for multiple target tracking. A more realistic 

environment is considered. Three vehicles are simulated to move in a realistic region 

(near Loughborough town in the UK, and the region’s geographic information is 

obtained from the GIS). As shown in Figure 5.7, a road intersection scenario is 

considered with a rectangular region of surveillance, with an unknown and time 

varying number of targets observed in a clutter environment. The vehicle dynamics 

is described the same as (21). The two-dimensional Gaussian process noise has 

covariance matrix    of 25     . Initially, two targets start moving in the 

environment: vehicle 1 (shown as the red point) heads to the southwest direction with 

an initial speed along road one of 12    , it then crosses the intersection and travel 

on road 3; vehicle 2 (shown as the black point) starts from road 4 heading to the 

northwest direction with an initial speed along the road network of 8    , it then 

crosses the intersection and travel on road 2. A new vehicle 3 starts to move three 

seconds later from road 2 with initial speed of 8     heading to southeast direction 

and then change its direction at the intersection heading to northeast on road 1. As 

shown in Figure 5.7, tracking ambiguity occurs during the process around the 

intersection and on road 1 and 2, which makes the problem challenging. 

 EKF CMHE DMHE 

RMSE(m) 8.8261 4.0494 2.9281 
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Figure 5.7 Multiple target tracking scenario. 

 

      The target initial covariance is defined as    
                      for all 

three targets. Each target is detected with a probability of         . Regarding the 

range and bearing measurement model in (28), it is assumed that a radar sensor 

positioned at the bottom right corner. The corresponding measurement noise    

follows a Gaussian distribution with zero mean and covariance                 . 

The detected measurements are immersed in a high clutter environment that can be 

modelled as a Poisson distribution with clutter density of              (false 

alarms/area/scan) over the             region (i.e., clutter returns over the region 

of interest).  

Domain knowledge exploitation: The speed limits of the main road (road one and 

road three along the east-west direction) and side road (road two and road four along 

the north-south direction) are 40 miles/hour (17.9m/s) and 30 miles/hour, respectively. 

And the road constraints are applied to constrain the vehicle positions and 

measurements. 

      In addition to physical constraints, different target interactions with the 

environment are considered including interaction between: i) the vehicle and road 

boundary, ii) the vehicle speed and speed limit, and iii) vehicle in the minor road (2 
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and 4) and the junction (the vehicle in the minor road will slow down when it 

approaches the junction). Besides, the interactions between moving vehicles are also 

considered. These interactions are represented by forces, which is defined below: 

        
      

      
    

 
                      

    
                                   

                       (5.23) 

where     represents the relative distance between vehicle i and vehicle j in a 

Cartesian coordinate. A threshold value    is defined for interaction force so that 

repulsive behaviour is activated only if the relative distance     is less than   .  

Parameters setting for the DMHE-MHT: The lifetime threshold is defined as 5 in 

the MHT implementation, which means any new target can only be confirmed if 

successfully detected in 5 consecutive time steps. Similarly, tracking any existing 

target will be terminated after miss detection of 5 sequential time steps. The horizon 

length used in the MHE is set as 4 and so as for N-scan pruning. Since only a small 

number of targets are considered in this study, at each time step, 3 new hypotheses 

generated from one existing parent hypothesis are kept so as to reduce the 

computational cost.  

The position estimates are shown in Figure 5.8 and it can be shown that the road 

constraint and force based interaction play a significant part for improving the 

tracking accuracy. By comparing Figure 5.8 (a) and (b) it is shown that map-based 

road boundary constraints improves the overall tracking results significantly. Due to 

the inequality state constraints, the vehicle positions are constrained within the road. 

The results are getting even better after introducing the force-based interaction 

information. In this case, the estimated vehicle trajectories are not only limited within 

the road boundaries but also get closer to the real trajectories.  
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(a) 

 

(b) 
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(c) 

 

Figure 5.8 Multiple target tracking using (a) EKF-MHT; (b) CMHE-MHT with road 

constraint ; (c) DMHE-MHT with force interaction model and road constraint . 

 

 

For further comparing different algorithms, 50 trials of Monte-Carlo simulations 

are performed. The performances of different algorithms are measured using the 

root mean-square error (RMSE). As shown in Table 5.3, the DMHE-MHT gives the 

best tracking results for all three targets by introducing both road boundary constraint 

and force based interaction. A more remarkable performance improvement is obtained 

for target 3 as it has the most interactions with the road and other incoming vehicles.  
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Table 5.3 Averaged RMSEs for three vehicles by different approaches. 

 

 EKF-MHT CMHE-MHT DMHE-MHT 

Overall RMSE 

position (m) 

8.9004 5.6353 5.0077 

RMSE for Target 1(m) 6.9271 5.4747 5.1271 

RMSE for Target 2 (m) 8.7000 5.3629 4.8760 

RMSE for Target 3(m) 11.0740 6.0683 5.0200 

 

The EKF-MHT, the CMHE-MHT and the proposed DMHE-MHT are also 

compared using the OSPA [130]. The OSPA is proposed for evaluating the 

performance of MTT algorithms, which considers not only the estimation 

performance but also association accuracy. The OSPA metric computes the distance 

between two sets of tracks by adding the error between target labels (or target indices) 

to the spatial distance. As can be seen in Figure 5.9, the DMHE-MHT has the smallest 

OSPA value, which represents the smallest estimation error and least amount of 

incorrect data association. Besides, the proposed DMHE-MHT algorithm 

performance is more stable than the others by observing the variation of the OSPA 

distance over time, which presents the smoothest OSPA results.  
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Figure 5.9 OSPA(m) for different algorithms. 

 

 

Table 5.4 Computational cost for different approaches. 

 

      The computation time of tracking algorithms is compared as shown in Table 5. 

Each algorithm is run on a 2.4 GHz PC for a hundred Monte Carlo simulations. The 

original MHT, using the EKF for state estimation considering no extra environmental 

information, shows the fastest computation time as expected. Comparing with the 

EKF, the MHE requires a higher computation cost due to the nature of optimisation 

based on the quadratic programming. However, it still shows an acceptable 

computational load for a real time application. Note that the computational cost for 

the MHE heavily relies on the efficiency of the optimisation method. In this study, the 

optimisation toolbox in the MATLAB software is used. There is only a slight 

computation time difference between the CMHE-MHT and the DMHE-MHT while 

 EKF-MHT CMHE-MHT DMHE-MHT 

Mean computation time (s) 16.464987 25.443732 24.135973 
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the DMHE-MHT actually shows a better result. This is because after introducing the 

interaction information and using the improved MHT data association process, the 

relatively poor data association branches with a low probability are trimmed from the 

whole MHT hypotheses tree; thus less time is wasted on the unnecessary data 

association process. 

5.6 Summary 

This chapter has proposed a new model-based ground vehicle tracking method 

considering domain knowledge in a comprehensive way. The main contribution 

comes from the use of interaction models with target tracking. In particular, the 

physical road constraint together with a force-based dynamic model representing 

interactions between the target and the environment is used in the DMHE target 

tracking approach. This DMHE is further extended to the DMHE-MHT to deal with 

target association ambiguity, noisy measurements and multiple road model transition 

in multiple target tracking. By comparing the DMHE based approach with 

traditional constrained state estimation methods using numerical simulation 

studies, it was shown that a significant improvement can be obtained in terms of 

target position estimate. Besides, the simulation results also showed that the 

proposed DMHE-MHT algorithm provides the most accurate tracking performance 

and robustness for an unknown and time varying number of targets observed in 

clutter environment using real road map constraint information and force-based target 

interaction information. To further verify the benefit and effectiveness of the proposed 

algorithm, real world experiments with actual sensor measurements will be 

considered as future work. 
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Chapter 6 

Path Planning in Dynamic and 

Partially Known Environment with 

Trajectory Prediction  

6.1 Introduction 

Recently, various advanced driver assistant systems (ADASs) have successfully 

incorporated into the automotive industry to realise a fully or semi-autonomous 

vehicle. Most ADASs are used to assist human drivers with the main purpose of 

improving driving safety while reducing poses new aims to reduce the amount of 

traffic accidents which are mostly caused by human errors. Here, one of the most 

important research challenges is to execute autonomous driving and collision 

avoidance in a partially known dynamic environment.   

      This chapter particularly focuses on path planning for autonomous vehicle, one of 

the fundamental tasks of autonomous robots and vehicles [147]. In autonomous 

navigation tasks [148], the path planning is concerned with finding a path or a 

trajectory that leads the vehicle from its current state to a desired final state while 

avoiding collisions with obstacles in the environment. For this purpose, usually a 

given map of the environment is used together with knowledge of the kinematic and 

dynamic models of the robot [147]. However, in order to achieve collision-free 

autonomous driving in a realistic environment, the path planning approach must be 
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able to deal with moving objects considering motion uncertainties that were not 

considered on the map when the path was generated, but are detected at the time of 

execution using sensors and target tracking system  (namely,  perception information).  

      In order to get the perception information, in this thesis, sensing and MTT 

algorithms are developed to estimate the states (e.g. position, velocity and 

acceleration) and relevant motion uncertainty of the surrounding moving objects 

which have been discussed in Chapters 3 and 4. In order to achieve a more effective 

and accurate sensor information and reduce the perception uncertainty, the domain 

knowledge such as the operation environment, the rules of the road and interactions 

between the environmental objects are also accommodated in the developed MTT 

algorithms in Chapter 5. This perception information will then be used in the path 

planning system to achieve early warning and collision avoidance in this chapter.  

      Based on the availability of environmental information, path planning problems 

can be roughly classified into two levels [149]. The higher level global planning 

primarily concerns environments where workspace information about stationary 

obstacles and map are known in advance. Path planning in this case is the problem of 

finding a geometric feasible path from a known initial position to a given goal. Unlike 

path planning problems in traditional indoor mobile robots assuming deterministic 

motion and full knowledge of the environment, the outdoor autonomous vehicle 

motion planning problems are more complicated due to the vehicle kinematic and 

dynamic constraints while avoiding both stationary and moving objects; global 

planning is not suitable to deal with dynamic environment. In this case, the lower 

level local planning approaches need to be implemented for autonomous vehicle 

which concerns a partially known dynamic environment.  

      In recent years, sampling based planning methods [150] have proved great success 

in path planning problems. These methods are probabilistically complete, in other 

words able to find a feasible path relatively quickly, even in high dimensional 

configuration spaces. Among them, the RRT algorithm, in particular, handles high 

dimensional kinodynamic systems including differential constraints effectively while 

avoiding the state explosion problems [81] that are often found in classical methods 

such as A*. These features make the RRT particularly suitable for autonomous 

vehicle path planning problems.  

      One major problem of standard RRT is that it only tries to find a feasible solution 

as quickly as possible while does not use a metric to measure the optimality of the 
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trajectory between the initial state and the other nodes. Usually, the algorithm is not 

terminated after finding the first feasible solution. The remaining computation time is 

used to optimize the trajectory with respect to a cost function. In this case, the RRT* 

[151] is introduced, which addresses the optimality problem of the RRT-based 

planning algorithms. RRT* achieves this by incrementally rewiring the tree as lower 

cost trajectories become available with the addition of new nodes to the tree. Under 

certain assumptions, this algorithm converges to the optimal solution as the number of 

samples reaches infinity [81]. RRT* does not guarantee upper bounds for the 

computation time of the optimal solution which makes it not suitable for real time 

applications. 

      Other approaches have also been investigated to improve the standard RRT in 

other aspects. In [152], continuous cost functions are incorporated in RRT for 

producing higher-quality paths in a global planning problem. Similarly, in [100] a 

dynamic model based cost function is used to expand and prune the nodes of RRT 

tree. Methods for incorporating dynamic environments have also been investigated. 

Solutions include extending the configuration space with a time dimension (    

space), in which the obstacles are static [154], as well as pruning and rebuilding the 

tree when changes occur [155] [156]. Other methods [153] use RRT to generate 

feasible path without guaranteeing the optimal solution and then subsequently 

optimise the generated path based on different algorithms such as close-loop control 

methods. In [157], a reachable set approach is proposed for better choices of vertices 

to expand RRT. Meanwhile in [158], the anytime algorithm approach is used for real 

time RRT with bounded solution time. The RRT keeps being improved until a new 

trajectory is required by the robot, which can happen at any time. 

      On the other hand, methods for incorporating moving objects have also been 

investigated. Among them, model predictive control (MPC) methods have been taken 

for solving collision avoidance problem in local planning [75]. MPC is increasingly 

being applied to autonomous vehicle applications because it naturally combines path 

planning with on-line stability and convergence guarantees [87]. Furthermore, MPC 

has the advantage of considering future position of the moving objects and suitable 

for situations where multiple objects with complex dynamic models are involved. 

However, one big issue of this optimisation based method is that it may get stuck in a 

local minimum during execution and MPC itself is not capable of solving path 

planning problem.  
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      Some approaches have been developed to overcome these problems. In [159], 

MPC type approaches are used to navigate vehicle in unknown environments by 

combining with some mapping algorithms. In [160], MPC is used to search the 

control space deterministically by projecting the vehicle forward along fixed set of 

elemental paths such as lines, circles etc. In [161], the sampling based MPC (SBMPC) 

algorithm is introduced for expanding the configuration area for local path planning. 

When expanding a vertex, different from traditional RRT based sampling method, a 

random control input is used for sampling. This method can efficiently solve the local 

minimization problem which is often seen in original MPC based planning. However, 

the results only consider in planning in static environments.        

      More recently, in [100], a dynamic model of the robot and MPC cost function is 

used in RRT to expand and prune the nodes of the tree. However in this paper, MPC 

was used as a pruning process in assistance of the RRT algorithm for a higher level 

trajectory generation. In this case, the rigorous guarantees of constraint satisfaction 

normally provided in MPC approaches are harder to show. Neither were the other 

relative benefits such as dealing with kinodynamic constraints and solving planning in 

a dynamic environment. Similarly, in [149] cost functions are incorporated in RRT to 

make the algorithm able to produce optimized paths for a global planning problem.  

      In this chapter, the main focus is on collision avoidance in autonomous vehicle 

path planning. An autonomous vehicle path planning framework is developed, which 

is able to quickly generate a feasible path in the configuration area as well as integrate 

information from both digital map (which contains the road map constraints and 

stationary obstacles) and previously developed MTT system (which provides state and 

the covariance estimation for surrounding moving objects) 

      In particular, a modified Rapidly-Exploring Random trees (RRTs) is proposed in 

this framework as a solution to the find a feasible trajectory through partially known 

environment. The planned trajectory from RRT is updated by seeding the tree using 

the best trajectory from the previous iteration, and using a pruning mechanism for 

selecting the best current planned trajectory. Instead of planning an entire trajectory 

from initial point to the goal region as in the RRT, the modified RRT is used to plan 

only a short segment trajectory at each iteration. When planned, an optimization based 

MPC approach is used for executing the planned trajectory aiming towards the nodes 

calculated by the modified RRT. In order to deal with dynamic environment, the on-

board sensor is utilized to estimate the position and velocity of moving vehicles using 
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the proposed MTT structure which incorporates the domain knowledge as discussed 

in previous chapters. When planning, instead of only relying on the estimated position, 

the motion uncertainty of other moving vehicles is also considered which is presented 

as an uncertain region defined by state mean under a specified confidence level 

represented by the covariance. 

      Furthermore, to achieve a collision free manoeuvre, the motion uncertainty of the 

moving vehicles from current to the multiple step ahead are predicted in a stochastic 

way using the KF. The predicted prior error covariance for each vehicle is used to 

represent the motion uncertainty along the predicted trajectory mean and used in the 

MPC optimization function. The planning problem then becomes to optimize a 

trajectory cost function through a dynamic potential field. 

      The reset of this chapter is organised as follow: The overall logic and structure of 

the proposed algorithm is explained in Section 6.2. Section 6.3 explains how the 

modified RRT is used for trajectory generation. The MPC optimization is formulated 

and the trajectory prediction method is described in Section 6.4. In Section 6.5, the 

algorithm is demonstrated in a simulated road intersection environment with moving 

vehicles. Finally, concluding remarks are made in Section 6.6. 

6.2 System Overview 

6.2.1 System Architecture 

In order to achieve collision-free autonomous driving in partially known environment 

with both stationary obstacles and moving objects, several realtime systems must be 

interoperated, usually including environmental perception, localization, planning and 

control (as discussed in Chapter 1).  

      As shown in Figure 6.1, the system architecture considered in this chapter is 

simplified into two layers with three main components, sensing and extra domain 

knowledge, environmental perception and path planning. The raw data provided by 

different perception sensors such as cameras, radar and LIDAR are used in the 

proposed MTT algorithm (as mention in previous chapters) to understand the 

surrounding environment of the ego vehicle. Extra domain knowledge is also 

considered to achieve better tracking performance. Estimation of the states and 

covariances of surrounding moving objects provided by the MTT system is essential 
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for the path planning layer to achieve an early warning and collision-free behaviour. 

Meanwhile, finding the ego vehicle’s pose or configuration in the surrounding 

environment namely localization is achieved by on-board sensors such as GPS, an 

inertial measurement unit (IMU), odometer and etc. This chapter assumes that the ego 

vehicle has perfect position information from GPS and a predefined road map without 

localization problem.  
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Figure 6.1 System Architecture 

 

      For path planning, a two level hierarchical scheme is adopted as shown in Figure 

6.2 for details. The requirement for the algorithm is to minimise the probability of 

collision, while performing local path planning through a partially known 

environment considering road constraints and moving objects.  

      The high level path planning module generates the directions and way-points by 

using a modified RRT algorithm. Different trajectories are classified according to the 

nodes in the RRT ‘tree’ while only the ‘best trajectory’ is collected by a pruning 

process. The low level MPC motion control computes the control commands for the 

autonomous vehicle attempting to follow the ‘best trajectory’ under the vehicle’s 

dynamic and kinematic constraints meanwhile plans a feasible collision free path for a 

certain horizon period of time in future. At each iteration, the planner uses sensor 

(perception) information to update the estimates of the states of dynamic targets in the 

configuration area. By using the perception information, the MPC approach is taken 
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to accommodate the motion uncertainty and prediction of the moving objects so as to 

prevent collision in the near future. When the short segment trajectory is executed, a 

new one is calculated online and the entire process is repeated.      
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Figure 6.2 Overview of path planning structure 

 

6.2.2 Kinematic Vehicle Model: 

The ego vehicle is modelled as a simplified non-holonomic car-like model with 

second order dynamics due to its relative lower cost and convenience for applications. 

It is assumed that the vehicle is a rigid body and has non-deforming wheels. Due to 

the presence of non-holonomic constraints in its kinematic model, it is also assumed 

that the vehicle moves without slipping. Under these assumptions, the nonlinear mode 

of an Acker-man steered vehicle [162] is shown in Figure 6.3.  
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                          Figure 6.3 A simplified ego vehicle model for planning 

 

      In this model, the state              of the vehicle is a four-dimensional vector 

consisting of the Cartesian coordinates of the centre point of the rear axle      ; the 

heading (orientation) angle   with respect to the horizontal   axis and its steering 

angle  .   is the sampling time and   is the longitudinal wheel separation as shown in 

Figure 6.3. The system control input           is a two-dimensional vector 

consisting of the vehicle heading velocity    and the steering rate   . This gives the 

following non-linear model shown in (6.1) 

                        

  

      
      

      
      

  

 
 
 
 
 
                    

                    

             
       

 

             
 
 
 
 

                   (6.1) 

where the non-holonomic constraint can be expressed as: 

                                                                                              (6.2) 
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      Note that when       
 

 
, the model becomes singular. This corresponds to the 

situation where the front wheel heading is orthogonal to the car longitudinal axis. In 

practice, the range of the steering angle   is restricted to prevent this singular case. 

This is also considered in the simulation section in this chapter.  

6.3 Trajectory Generation 

In this chapter, a 2D configuration space is considered.        and       , 

where      and     , denote the ego vehicle state space and the control input 

space respectively at step k. It is assumed that time is discretized into stages of equal 

duration, and that applying a control input      at step k brings the ego vehicle from 

state      to state       , according to (6.1). Let      denote the obstacle region, 

and              define the obstacle-free space. Bounds on the control input, and 

constraints of various conditions, such as stationary and dynamic obstacles avoidance 

and the physical rules of the environment, can be captured with a set of constraints 

imposed on the states and the inputs,           ,       . The situation 

considered in this chapter is a partially known environment with a given 

environmental map representing the stationary obstacles and road boundaries. 

      If given a start sate      where the vehicle initializes at time k=0 and a goal 

region         where the ego vehicle aims to go. The motion planning problem is 

then to find a series of feasible path states            and control inputs      from 

an initial state to the goal region that obeys the system constraints.  

6.3.1 Modified RRT Planning 

The standard RRT algorithm grows and maintains a tree where each node of the tree 

is a point (state) in the workspace, presented in Figure 6.4. The area explored by the 

algorithm is the area occupied by the tree. Initially the algorithm starts with a tree 

which has source as the only node. At each iteration the tree is expanded by selecting 

a random state and expanding the tree towards that state. Expansion is done by 

extending the closest node in the tree towards the selected random state by a small 

step. The algorithm runs till some expansion takes the tree near enough to the goal. 

The size of the step is an algorithm parameter. Small values result in slow expansion, 

but finer paths or paths which can take fine turns. The tree expansion may be made 
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biased towards the direction of the goal by selecting goal as the random state with 

some probability. The high level logic for standard RRT can be found in appendix.  

 

 

 

 

 

 

 

 

 

Figure 6.4 Illustration of standard RRT 

      One major problem of standard RRT is that it is not feasible for real time vehicle 

planning in partially known dynamic environment. For the dynamic environment with 

limited computational time and moving objects, the ego vehicle needs to plan for the 

next couple of steps while making a control decision for the current movement. This 

means that the predefined goal region is only suitable for high level planning but not 

short segment aiming direction for the ego vehicle. Instead of expanding the RRT tree 

for searching in the entire configuration area to find a feasible path, the limited time 

should be used to focus on computation for desired areas of the configuration space in 

autonomous vehicle path planning problem. 

      The modified RRT algorithm in this chapter as shown in Table 6.1 aims to solve 

the path planning problem by using an on-line updating strategy. Here different from 

the standard RRT where the extending process is repeated indefinitely till a new 

vertex reaches the goal region, the modified algorithm focus on keeping a desired 

direction using only limited steps. In other words, instead of searching for a complete 

feasible path from the initial position to the goal region, only a small portion of the 

planned trajectory is executed by the MPC scheme, while the planner is restarted to 

plan a new trajectory on-line. To facilitate this, the stopping condition in line 3 is 

changed. When the ego vehicle needs a new trajectory, or when certain maximum 

number of vertexes (Nmax) have been satisfied, the modified RRT is stopped. The 

Nmax is adjusted dynamically depending on the current state of the ego vehicle 
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(position, forward velocity and orientation angle) and the environmental constraints 

such as road structure and stationary obstacles given by the road map.  

 

Goal

Short term goal

 

Figure 6.5 Modified RRT on-line planning strategy 

 

      As illustrated in Figure 6.5, the path planning strategy is implemented in a 

roundabout scenario. The ego vehicle needs to drive through the roundabout with road 

structure given by a known map. Since the location of stationary obstacles is known 

by the map, instead of generating trajectories cross the whole scenario from the start 

point to the final goal, the planning problem can be separated into several segments.  

E.g. we can take the location of the edge of the roundabout as a short term goal and 

the path planning is only carried out within the desired areas between the short term 

goal and ego vehicle’s current location. The length of the short segment trajectory can 

be determined by Nmax which is calculated based on the ego vehicle dynamic 

constraints (how far it could move in each step) and environmental constraints (the 

location of stationary obstacles/road structure). For more complex planning 

scenarios with more obstacles, a smaller Nmax needs to be utilized to generate 

more precise path so as to avoid collisions. Besides, improvement on the 

performance would mean an increased computational cost e.g. a smaller Nmax 
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requires more planning iterations repeated overall. Therefore, the tradeoff needs to 

be considered between Nmax and the associated computational cost requirement 

depending on scenarios. 

Table 6.1 Modified RRT   

 Modified RRT for autonomous vehicle planning 

   RRTmain(Tree) 

1.             

2.             

3. while (Nnodes<Nmax) do 

4.               = SampleTarget() 

5.                = NearestVertex(Tree,       ) 

6.            = ExtendTowards(        ,       ) 

7.             if      valid (environmental constraints) 

8.                 Tree.add(    ) 

9.            else 

10.                  continue 

11.            end if 

12.  end while 

13. Trajectorys=Separate_Tree_to_Trajectories(Tree.add) 

14. Best_trajectory=Prun(Trajectorys) 

15. MPC_Trajectory_Execution(Best_trajectory) 

 

6.3.2 Pruning and Trajectory Selection 

Once the RRT ‘tree’ is built, all the possible trajectories (branches) are scored and 

pruned based on a minimal cost criteria and only the ‘best’ trajectory is chosen by 

using a specific pruning strategy. 

      At each iteration, the entire tree is classified into different trajectories (branches) 

by line 13 in Table 6.1. A pruning process in line 14 is designed to pick the best 

trajectory based on a cost function which is similar to RRT*. The main idea for the 

pruning strategy is to allow potentially large areas of state space to be ignored if a 

provably better trajectory has already been found. There are several different 
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optimality criteria of choosing one possible trajectory over another [163] including: 

minimum distance, minimum wheel rotation, minimum control effort, optimal 

surveillance rate and etc. The cost function in this chapter is defined in a rewarding 

distance such as A* algorithm [164] based on each trajectory length and the minimum 

distance from the ending node (of each trajectory) to the goal region. As illustrated in 

Figure 6.6, an RRT ‘tree’ is generated towards the short term goal (according to 

Figure 6.5) which includes 6 trajectories in total. Base on the minimal cost criteria, 

the red trajectory is chosen as the ‘best’. 

Goal

Short term goal

‘Best’ trajectory

 

Figure 6.6 Modified RRT pruning and trajectory selection 

 

      Once the ‘best’ trajectory is chosen, a MPC approach is then used for executing 

the short segment trajectory as shown in line 15 in Table 6.1, the details is explained 

in Section 6.4. When the ego vehicle reaches the short term goal or when certain 

number of the nodes has been extended, the current iteration of RRT is finished. The 

new iteration RRT tree is continued from the last node of the RRT ‘best’ trajectory.  
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6.4 MPC for Collision Avoidance Path Planning 

As discussed above, it is not enough just to use the RRT for autonomous vehicle path 

planning in a partially known dynamic environment where moving objects are 

involved. In order to achieve a collision-free maneuver, the autonomous vehicle 

should not be directed to completely follow the reference given by the high level 

module which is assumed to be collision-free and achievable by the vehicle in a static 

environment. The main reasons are that the path generated from high level module for 

autonomous vehicle is not guaranteed to be collision-free, since the high level RRT 

module only considers the map information for road structure and stationary obstacles; 

even if the moving objects are considered in the high level module, the predicted 

situation from the world in the near future may differ from the actual situation when 

moving objects change their trajectories during execution which may result in invalid 

paths. 

      In this case, a MPC strategy needs to be used to optimise a cost function over a 

limited receding time-horizon which will safely bring the ego vehicle closer to the 

goal region. The details of the cost function formulation are explained in the 

following.  

6.4.1 On-board Target Tracking  

Firstly, in order to deal with moving objects in a dynamic environment, a MTT 

algorithm is implemented as discussed in previous chapters. The vehicles are tracked 

by range and bearing sensors modelled as (6.3), where      and      are the global 

coordinates of the sensor in x and y direction while      and      represent the global 

coordinates of the ego vehicle platform.    is the heading of the sensor relative to the 

platform.   is a two-dimensional Gaussian zero-mean measurement noise. The details 

of the proposed MTT algorithm can be found in Chapter 4.  

        
                          

       
           

           
    

                                          (6.3) 

      Comparing with traditional target tracking algorithms, the proposed method has 

the advantage of incorporating additional domain knowledge for ground vehicle 
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tracking such as road weight constraint, speed limit and target interaction information. 

As a result, the tracking performance is improved by achieving a more accurate state 

estimation. This is very important to achieve collision avoidance behaviour in 

autonomous vehicle path planning problems especially when multiple moving targets 

are involved in. The estimated posterior state and error covariance for each target will 

be used for trajectory prediction and further more in MPC based motion planning 

process.  

6.4.2 Trajectory Prediction with Motion Uncertainty 

In order to plan a collision free trajectory, the motion planning algorithm needs the 

ability of ‘looking ahead’ for several steps based on the current states of the dynamic 

environment. The trajectory prediction process in this chapter relies on the target 

vehicle current state and kinematic motion models. It is assumed that the driver’s 

behaviour is not significant changed during the prediction period from   to    . 

The future motion is then predicted using vehicle’s dynamic models such as CV, CA 

and CT. Considering a discrete time linear system, in each prediction step of the KF, 

the state vector x and error covariance matrix P are estimated using: 

                                                                       (6.4) 

                                        
 +                                                (6.5) 

where A is the process model and B is the control input matrix.                      

is the state vector which contains position and velocity for the target vehicle in x and y 

axis respectively.           is the predicted state,           is the predicted error 

covariance which represents the motion uncertainty. The predicting process is 

performed for a horizon of N steps. At each iteration, the predicted state and error 

covariance generated from last time step are used as prior information.  

      However due to the road boundary considered in this thesis, the road inequality 

constraints such as equation (4.4) in Chapter 4 are also accommodated in the 

predicted state. In this case, the constrained state/covariance prediction is considered 

in this chapter as shown in equation (4.12) and (4.13) where the detail of the 

explanation can be found in Section 4.5 in Chapter 4.   
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      By repeating the KF Gaussian prediction process, one can obtain a mean and error 

covariance matrix of the state of the target vehicle for future time steps, which can be 

transformed into a mean trajectory with associated uncertainty (Gaussian distribution 

at each time step). In Figure 6.7, each ellipse of the target vehicle is drawn by the 

predicted error covariance matrix with a certain level of confidence and a predicted 

mean shown by a mass point in center.  

Target 
Vehicle1

Target 
Vehicle2

Ego Vehicle

t=k

t=k+1

t=k+3

t=kt=k+1t=k+3

 

Figure 6.7 Trajectory prediction for a target vehicle with a constant velocity motion 

model and Gaussian noise. Ellipses (predicted error covariance) represent prediction 

uncertainty.   

 

6.4.3 Dynamic Cost Function  

Based on the ‘best trajectory’ provided by the modified RRT algorithm as well as the 

dynamics of the vehicle and the a priori road map of the environment, the planning 

problem is then formulated as optimizing a trajectory cost function for a limited time 

horizon. At each time iteration, the on-line MTT algorithm uses sensor information to 

update estimates of the position and velocity as well as the error covariance of the 

target vehicles, and the relevant predictions for the time horizon are also calculated. 

Using these estimates and predictions, and the short term goal provided by the ‘best 
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trajectory’ from the modified RRT, a feasible collision-free path over the next few 

seconds is generated. 

      The cost function in the MPC problem formulation includes with four different 

aspects: 1) a penalty cost associated with the ego vehicle position avoiding stationary 

obstacles in the environment given by the road map; 2) a penalty cost associated with 

the ego vehicle position avoiding other target vehicles in the region of interest; 3) a 

rewarding cost associated with the ego vehicle moving towards the short term goal; 4) 

a penalty cost avoiding excessive control inputs considering the energy. 

1) Cost related to stationary obstacle: A road map including all stationary obstacles is 

assumed to be given as prior information e.g. road structure constraints. For the RRT 

layer, the road structure information is represented by occupancy grids, which 

indicate if a grid is occupied by the road structure. The feasible path is only generated 

in the obstacle-free region      . In addition to the occupancy grids, in the MPC cost 

function, the road network structure such as the roundabout shown in Figure 6.6 is 

considered as a stationary obstacle. Higher costs are assigned to the position closer to 

the road structure areas.  

      The Euclidean distance between the stationary obstacle and the ego vehicle is used 

to calculate the cost function as given in (6.6). 

                                                                                   (6.6) 

where    is a constant determining how much the ego vehicle should keep away from 

the stationary obstacle,         represents the current 2-D location of the ego vehicle. 

   represents the location of the centre of the stationary obstacle.      depends on the 

shape of the stationary obstacle, e.g. rectangle, circle, ellipse etc. 

2) Cost related to moving target vehicles of interest: the cost function (6.7) is 

designed as a form of normal distribution for a target vehicle. It is assumed that the 

target vehicles are considered as a mass point without a geometric size. As explained 

before, the motion uncertainty of each target vehicle is represented by its error 

covariance centred at the mean position. In this case, the ellipse defined by the error 

covariance then can provide a safe margin such that the ego vehicle dose not collide 

with other moving vehicles. However, in order to generate a collision-free path in the 

near future over the horizon of N steps, at current time k, the predicted position and 
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covariance for the target vehicle at the future time     (where          ) are 

calculated:  

                                                                                                        (6.7) 

        
 

 
                          

 
 

            
  

                          
   

where    is a normalizing constant for target vehicle.              and              

represents the predicted position mean and relative error covariance for the target 

vehicle respectively at future time     which are calculated from the MTT algorithm 

estimation from last step at    . The predicted position        of the ego vehicle 

is calculated, following the ego vehicle dynamic equation              in (6.1), 

which is based on its current position      and a horizon of the predicted control 

inputs                 calculated by the MPC optimization. In this case, a 

horizon time of prediction information will be considered in the MPC cost function at 

each time step so as to achieve collision avoidance in path planning. The details will 

be explained in Section 6.4.4.  

      Figure 6.8 shows a potential field around a target vehicle which is represented by 

the Gaussian form cost function   . The target vehicle is located at (8m, 8m) with a 

process noise covariance matrix             (  ) which means the vehicle has 

more moving uncertainty in x axis. The contour plot shows the spreads of the cost 

function. The ego vehicle should try to move around the potential field or at least 

towards the lower parts of the cost function, i.e. the dark blue areas, and avoid the red 

area.  

      Figure 6.9 shows a potential field of the target vehicle with a prediction horizon of 

N=2. The target vehicle is moving along the x axis with velocity (5m/s, 0m/s). In this 

case, the mixture Gaussian function (  , N=2) for the ego vehicle of its current state 

(8m,8m) and the one step-ahead prediction is plotted. Comparing with Figure 6.8, the 

high cost potential field area occupies a larger area where the ego vehicle should not 

be in order to avoid collision to the target vehicle.  
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Figure 6.8 The contour plot (upper) and 3-D shaded surface plot (lower) for the cost 

function    with N=1.  
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Figure 6.9 The contour plot (upper) and 3-D shaded surface plot (lower) for the cost 

function    with N=2.  

 

 

3) Cost rewarding moving towards the short term goal: this cost function (6.8) 

rewards the ego vehicle for moving towards the short term goal of the ‘best’ trajectory 

given by the modified RRT layer. The function penalizes if the ego vehicle dose not 

move forward towards the desired goal. This is important for a path planning problem 

since the ego vehicle needs to not only avoid stationary obstacle and moving objects 

but eventually move to the desired location.  



 

154 
  

 

 

Figure 6.10 The contour plot for cost function    with ego vehicle position (square) 

and short term goal (cross) 

 

      Similar to the cost function (6.7) related to moving target vehicle, the cost 

function (6.8) is defined based on the Euclidean distance between the ego vehicle’s 

current position and the short term goal. It is set up as an exponential function which 

means that larger distances are penalized much, while it is close to the same value for 

short distances (getting close enough to the short term goal), i.e. it does not change 

much if the ego vehicle is only 1 or 2 meters away from the end point. As shown in 

Figure 6.10, the contour plot shows the spreads of the cost function. The ego vehicle 

should try to move from its initial position (high cost red area) towards the short term 

goal (low cost dark blue area).  

                                                               (6.8) 

where      and      are the positive scaling constants and      is the desired short 

term goal of the ‘best’ trajectory defined by the modified RRT algorithm. The 
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selection of the short term goal is the end point of the ‘best’ trajectory which leads the 

ego vehicle to move towards the desired direction.  

4) Cost penalizing control input considering the energy cost: is the cost function 

rewards the ego vehicle for generating an energy efficient path as given in (6.9)   

             
                                             (6.9) 

where    is a scaling constant and     is the steering rate control input. The function 

(6.9) is defined to penalize sharp turns, which reflects the last moment emergency 

maneuver for collision avoidance. By implementing the prediction information of 

other moving vehicles, the proposed algorithm should be able to make early warning 

for possible collisions. In this case, the last moment sharp turns should be avoided and 

smoother trajectory will be generated. The reason    is raised to the fourth-order is to 

keep the term closer to zero for any general turns while enlarge the effect of 

emergency turns.  

6.4.4 MPC Minimization with Trajectory Prediction 

To achieve the collision free path planning in a dynamic environment with moving 

vehicles, the discrete time cost function for the ego vehicle to traverse the dynamic 

potential function is solved by a MPC approach.  

      The problem can be posed as follows. At current time k, the current state      of 

the ego vehicle is given considering the state transition equation shown in (6.1). The 

short term goal      of the ‘best’ trajectory is defined by the modified RRT 

algorithms. The potential filed of stationary obstacles          is assumed known 

from a prior road map. The behavior of the moving target vehicle is estimated by the 

proposed on-line MTT algorithm and its future motion is predicted by (6.4) and (6.5) 

represented by predicted state             and predicted error covariance             . At 

time k, the planning occurs considering a horizon of N steps prediction information of 

moving target vehicles. The planning problem then becomes to determine a horizon of 

control input         
 , which minimizes the cost of the potential function           

    

as given: 
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                                                                                        (6.10) 

                                        

   

   

                         
 

             
 

  

 

   

  

where      is the ego vehicle’s state at time k;   ,   ,    and    represent each 

individual cost function as explained above.   is the number of detected moving 

target vehicles. It is assumed that the short term goal      is not changed during the 

prediction horizon meaning the ego vehicle is heading to the same direction during 

the horizon of N steps. The optimization cost function (6.10) is solved by fmincon 

solver in MATLAB which is able to find the minimum of solution of a constrained 

nonlinear multivariable function. The details of MPC constraints considered in 

(6.10) is explained in Section 6.4.5.         
  determines a horizon of optimized 

discrete control input sequence from   to       so as to achieve collision 

avoidance but also keep moving towards the goal position. The implementation 

details of the optimization cost function is provided in Appendix D.  

      However instead of applying the full sequence of control input         
 , only the 

first control   
  at time k is directly implemented in the ego vehicle state transition 

function                 
   in (6.1) considering the ego vehicle’s current state 

    . Note that, the next step state        of the ego vehicle is executed 

considering not only the current information but a horizon of predicted information. 

For autonomous vehicle scenarios with moving objects, the ability of ‘look-ahead’ is 

extremely important to achieve collision avoidance in path planning. The above 

process is repeated at each time instant until the ego vehicle reaches the desired short 

term goal.  
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Figure 6.11 The contour plot for a scenario with two moving target vehicles and a 

stationary roundabout. The ego vehicle should move from current position (square) 

towards short term goal (cross) while avoid collisions.   

 

      Figure 6.11 illustrates an example of a roundabout scenario with two moving 

target vehicles. A cost function is formed considering the stationary roundabout and 

two moving target vehicles with N=1. The ego vehicle starts from the current position 

at (40m, 26m) and heading to the short term goal (32m, 40m). The ego vehicle would 

run into the moving target vehicle 2 while moving towards the low cost goal area. 

Therefor it is important to take into account the predicted motion uncertainty of other 

moving objects while planning the trajectory.  

6.4.5 Constraints analysis for MPC 

Besides the non-holonomic constraint shown in (6.1), there are other types of 

constraints encountered in the MPC cost function. The first one deals with constraints 

Short term  
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imposed on the control variables     , and the second deals with ego vehicle state 

    . 

      According to the kinematics and dynamics of vehicle model, the constraints, 

imposed on velocity and steering rate, for path planning problem are specified as: 

 
  
 

     
    

   
  

                                            (6.11) 

where    and    represents the upper bound and lower bound of the control input 

           respectively. Since    is a two-dimensional vector consisting of the 

vehicle heading velocity    and the steering rate   , different set of value for    and 

  are defined. The constraints for    represent the limitations for ego vehicle 

velocity. E.g. maximum speed limit    given by the road domain knowledge; and 

positive lower speed limit    if the vehicle is only moving forward. The constraints 

for    represent the physical limitation of the turning rate (rad/s) in clockwise (  ) 

and anti-clockwise (  ). 

      For the ego vehicle state      according to (6.1), the road boundary constrains as 

mention in Chapter 4 are also considered on the ego vehicle position state         so 

as to guarantee that the planned trajectory is executed in the feasible area: 

                                                      (6.12) 

where    is the constraint function.    and    are the known vectors representing the 

lower and upper road boundary individually. The details can be found in Section 4.4.2. 

Other ego vehicle state constraints for heading angle   and the steering angle   are 

defined in the similar manner as (6.11).   

6.5 Numerical Simulation Results 

In this section, the performance of the proposed algorithm is tested with numerical 

simulations. The algorithm is applied on a road intersection scenario incorporating 

road map based environmental domain knowledge as well as moving target vehicles. 

The objectives are to test the collision avoidance performance and robustness of the 

proposed algorithm.  

Simulation scenario setup: The simulation setup is to navigate the ego vehicle 

starting from position (25m, 5m) to a goal point at (25m, 40m). During the process, 
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the ego car needs to cross a road interaction with a region of 50m*50m with two 

incoming vehicles from side roads. The situation considered in this section is a 

partially known environment with a given environmental map representing the road 

structure. Any off-road region is taken as infeasible area and thus feasible trajectories 

are only generated within road region      . The path planning problem is then to find 

a series of feasible path states            and control inputs      from an initial 

state to the goal region that obeys the system constraints.  

MTT: In order to obtain the perception information for moving target vehicles such 

as state and error covariance, the proposed MTT algorithm is implemented for the ego 

vehicle. The ego vehicle is equipped with on-board sensors with measurements 

modelled by equation (6.3).   

      As shown in Figure 6.12, a road intersection scenario with a rectangular region of 

surveillance in a clutter environment is considered. Vehicle 1 starts from state (0m, 

27m, 12m/s, 0m/s) moving towards the straight right while Vehicle 2 starts from (50m, 

23m, -12m/s, 0m/s) moving towards the straight left. Each target vehicle is moving on 

a single carriage way starting from a position of the middle of the road. Each road is 

assumed to have a total width of 4 meters and the vehicle’s trajectory is limited within 

the road width constraint. All the vehicles have the same initial speed of 12m/s in a 

straight direction along the road network and try to follow the road centre line. The 

road speed limit is set as 13m/s.  

      The tracking scenario set up is similar to Section 4.6.1 in Chapter 4. The 

vehicle dynamics is defined as the CV model shown in (3.23) under the global 

coordinate   with the state vector                     . The sensor sampling time 

interval is        . Given a road model  , the process noise   
  is defined under the 

road local coordinate     which is a two-dimensional Gaussian process noise with 

zero mean and covariance matrix   
           . This covariance represents higher 

motion uncertainty along the centre line direction and smaller uncertainty orthogonal 

to the road. Considering the road inequality constraint defined in (4.7) with state 

  
     

     
    

     
    under   , the global dynamic function can be written below 

which is similar to (4.21): 

       
 
     

           
                                       (6.13) 
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      As mentioned, a nonlinear measurement model (6.3) in the global Cartesian 

coordinate is considered with Gaussian noise    and the corresponding covariance 

matrix R = diag{8,     }. 

 

 

Figure 6.12 MTT in road intersection scenario 

       

     Each target is detected with a probability of          . The detected 

measurements are immersed in a clutter environment that can be modelled as a 

Poisson distribution with clutter density of             (false alarms/area/scan) 

over the       region (i.e., 20 clutters return over the surveillance region at each 

scan). New target density is            and the gate region         .  

Parameters setting for Path Planning: The ego vehicle state transition model (6.1) 

is employed for the simulation with the following constraints and simulation 

parameters. The constraint for ego vehicle velocity control input    is             

corresponding to the road speed limit and the vehicle only move in the single 

direction. The constraint for steering rate    is   
 

 
 
 

 
         so as to avoid the 
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vehicle moving to the opposite wrong direction. The x axis position constraint for ego 

vehicle state      is limited within the road boundary           . The heading 

(orientation) angle   with respect to the horizontal   axis is constrained as   
 

 
 
 

 
  

      meaning it only moves forward. The time interval for the MPC is also set as 

       according to the sensor sampling time interval.  

      The weights for cost functions are design parameters which determine the ego 

vehicle’s behaviour. The weights    (for moving target vehicle) and     (for moving 

towards the goal) specify the relative importance of achieving moving object 

avoidance and reaching the goal. In this simulation,   =1 is set as and            

which represents that collision avoidance is important, but the ego vehicle also need 

to keep moving toward the goal position. The choice of the weights will affect the 

shape of the trajectory that the vehicle will move towards the goal position. Similarly, 

the weight      defines how much the ego vehicle should keep away from the 

stationary obstacle which is chosen individually according to the stationary obstacle 

function      for different shape of the stationary obstacle.      is scaling factors 

that are used to weight the importance minimizing the use of control energy while 

satisfying the other requires such as achieving the goal and collision avoidance. In this 

scenario,    is chosen as          to generate a smooth trajectory and avoid 

following the wrong direction. Compared to a heuristic algorithm such as Vector 

Field Histogram [165], the process of parameter selection is relatively simple because 

each paramater has a clear physical meaning with obvious consequences. The choice 

of the cost function and relevant weights for evaluating the quality of the plans is 

scenario dependent.  

      The main objective for this simulation is to test if the ego vehicle can pass through 

the incoming vehicle by changing its steering rate and forward velocity while 

avoiding any collision risks. Different horizon lengths for the moving vehicle motion 

prediction are considered including N=1, 4 and 8.   

      As shown in Figures 6.13 to 6.15, three different planning trajectories are 

compared. When the prediction horizon is N=1, it means the planner has no prediction 

ability and as a result it presents a rough trajectory with sharp turn and braking so as 

to avoid the coming vehicles e.g. the ego vehicle has to make two emergency 

manoeuvres during t=2 to t=3 sec so as to avoid the coming vehicle. Comparing the 

position of the ego vehicle at the same time e.g. t=1, 2, 3s using different prediction 
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horizons, it is clear that when increasing a prediction step to N=4 and N=8, the ego 

vehicle exploits a prediction information about the near future position of the coming 

vehicles and decide to maintain its velocity and heading direction while crossing the 

road intersection (t=1s to t=2s) from energy saving point of view. As a result, both 

trajectories are smooth and relatively straight without aggressive and sudden change 

of maneuver.  
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  Figure 6.13 Collision avoidance based planning using prediction horizon length N=1 
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  Figure 6.14 Collision avoidance based planning using prediction horizon length N=4 
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  Figure 6.15 Collision avoidance based planning using prediction horizon length N=8 

 

      The details of how the ego vehicle avoids coming vehicles are also shown in 

Figures 6.16 to 18. Figures 6.16 (a) to (f) show the result for the trajectory planning 

with prediction horizon N=1 from time step 20 to 25; Figures 6.17 (a) to (f) show the 

result for the trajectory planning with prediction horizon N=4 from time step 16 to 21; 

Figure 6.18 (a) to (f) show the result for the trajectory planning with prediction 

horizon N=8 from time step 12 to 17; 
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                  (a) Time step 20                                                  (b) Time step 21                     

       (c) Time step 22                                           (d) Time step 23                     

(e) Time step 24                                           (f) Time step 25                     

  

Figure 6.16 Trajectory planning with prediction horizon N=1 at time step 20 to 25 

 



 

166 
  

                   (a) Time step 16                                                  (b) Time step 17                     

      (c) Time step 18                                            (d) Time step 19                    

     (e) Time step 20                                          (f) Time step 21    

                 

Figure 6.17 Trajectory planning with prediction horizon N=4 at time step 16 to 21 



 

167 
  

                   (a) Time step 13                                                (b) Time step 14                     

                   (c) Time step 15                                                (d) Time step 16                     

                 (e) Time step 17                                                (f) Time step 18                    

 

Figure 6.18 Trajectory planning with prediction horizon N=8 at time step 13 to 18 
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      As shown in Figure 6.16, when no trajectory prediction (N=1) is used, the 

potential field represents only the current motion uncertainty of the coming vehicles. 

The ego vehicle becomes conscious of the coming vehicle very late at time step 21 

and as a result the vehicle has to take a sudden turn to the left.  

      Situations are improved when the ego vehicle has a longer window of prediction 

ability such as N=4 and 8, it becomes conscious of the coming vehicle at a much 

earlier stage. Since a horizon of prediction is used, the potential fields of the moving 

target vehicles shown in Figures 6.17 and 18 are the mixture Gaussian of a horizon of 

predicted error covariance as discussed in equation (6.8). The actual position of the 

moving target vehicle is located close to the tail end of each of the moving target 

potential field. The ego vehicle actually keeps a long distance (safety range) away 

from the moving targets. In this case, the ego vehicle has longer prediction time and 

space to avoid the coming vehicles and thus the maneuver then becomes smoother 

with small turning angle meanwhile maintaining a relatively stable velocity. 

      A distance to collision criterion is also used in this study to compare the effect of 

using different prediction horizon length. However only the target vehicle coming 

from the right side is considered. The Euclidean distance between the ego vehicle and 

the coming vehicle is calculated. Since the ego vehicle and target vehicle have the 

same speed limit (13m/s) and start moving about the similar distance (about 25m) 

from the center of the road intersection, they are expected to meet each other in the 

cross road area at about t=2s during the simulation unless further collision avoidance 

maneuver is made by the ego vehicle.  
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                         Figure 6.19 Distance between the ego and the target vehicle 

 

      As shown in Figure 6.19, without any prediction ability, the distance between two 

vehicles becomes quite close during the potential collision period at around t=2s, the 

minimum distance is 2.2 meters. The relative distance is increased when a longer 

prediction window is considered with the minimum distance higher than five meters. 

There the improvement is less significant when using a horizon length of eight instead 

of four. This is because in this scenario it is assumed that the target vehicle is not 

aware of the ego vehicle and only the ego vehicle has the ability to predict and change 

its maneuver for collision avoidance. The maximum maneuver rate of the ego vehicle 

is also limited due to the vehicle control input constraints.  
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                  Figure 6.20 MC simulation for collision avoidance based planning     

 

      To further analyse the efficiency of the collision avoidance function, 200 trials of 

MonteCarlo simulations are performed for different planning scenarios shown in 

Figure 6.20. It is assumed that the ego vehicle has a geometric collision region of 

circular shape with a radius of 3 meters. Any coming vehicle moving within this area 

will be regarded as collision. The target vehicles are set with random initial positions 

within the side road region and moving towards the other side of the road following 

the road center line. The ego vehicle starts from the same initial position towards the 

goal region however different ‘best trajectory’ and corresponding short term goals are 

generated at each trial using the sampling based modified RRT algorithm. 

Comparison of the proposed method with different prediction horizon is shown below 

in Table 6.2: 
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 Table 6.2: Comparison of collision probability using 200 Monte Carlo simulations 

Horizon length N=1 N=4 N=8 

Collision rate (%) 94% 2% 0% 

 

      As shown in Table 6.2, the planner with no predication ability presents a high 

collision percentage while a proper prediction window can greatly enhance the safety 

of the planned trajectory. When a length of four step prediction window is used, the 

98% planning can produce a collision free trajectory while is number is even 

increased to 100% by using an eight step prediction window.  

      In other to analysis the trajectory generation performance by the modified RRT, a 

more complex roundabout scenario is considered as shown in Figure 6.21, where the 

ego vehicle (bottom) attempts to cross the roundabout while avoiding the coming 

vehicles. Similar to the first scenario, the ego vehicle is equipped with on-board 

sensors which can scan the entire planning region of         . The measurement 

model noise parameters are considered in the similar fashion as the above scenario. 

Each target is detected with a probability of           and the detected 

measurements are immersed in clutters that can be modelled as a Poisson distribution 

with clutter density of    =         over the        region (20 clutters return 

over the region of interest). Its task is to navigate from the starting position (35m, 5m) 

towards the second exit with the goal region located at (35m, 75m). Three target 

vehicles start from the initial position shown in Figure 6.21 approaching the 

roundabout with an initial velocity of 12m/s. The environmental constraints such as 

give way marks, speed limit and road boundary are incorporated in proposed MTT 

algorithm as discussed in Chapter 4 and 5. The roundabout is defined as a stationary 

obstacle cost function .The MPC prediction horizon in this case is set as N=5.  
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Figure 6.21 An example of the simulation result. The trajectories generated by the 

modified RRT are shown with different colours and the short term goals are shown as 

green nodes. Only the vertex node of each trajectory is presented to avoid clutter of 

the graph. As a result, the green trajectory is the planned trajectory with the least cost.   

 

      As shown in Figure 6.21, a feasible collision free path is successfully found by the 

proposed algorithm. Although MPC and its modifications have been used for obstacle 

avoidance technique, they are not are able to make path planning in a partially known 

environment without an overall planner. The modified RRT explores the environment 

by the short term goals (vertices) represented by green circles. In the first iteration, 

four possible trajectories are generated while only the best green path is reserved and 

executed. When the ego vehicle reached the first short term goal (green circle), a new 
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tree and corresponding trajectories are generated based the ego vehicle’s current 

position for the next iteration. 

      In the proposed algorithm, instead of executing the whole trajectory, only a short 

segment of the trajectory is executed each time while the modified RRT is used to 

find feasible paths. This gives it a great benefit of avoiding the local minimum 

problem that is often found in traditional MPC path planning problem [169]. In order 

to compare the proposed algorithm against traditional MPC for solving local 

minimum in path planning, the simulation scenario shown in Figure 6.21 is carried 

out for 50 Monte Carlo simulations with step time T=1.    

 

                        Table 6.3 Planning robustness: MPC and Proposed Algorithm 

 

      As shown in Table 6.3, the proposed method is better than traditional MPC for 

solving local minimum in partially known dynamic environment. The proposed 

method has the ability to create kinematic feasible trajectory in a complex 

environment without getting stuck in a local minimum while the traditional MPC has 

a high rate of getting stuck in a local minimum during the planning.  

6.6 Summary 

This chapter present a path planning framework for autonomous vehicle in dynamic 

environments that takes into account the motion uncertainty of moving objects 

perceived by an on-board target tracking system. The main contribution comes from 

the use of uncertainty information to inform path planning. The modified RRT is 

proposed in this framework as a solution to find a feasible trajectory through partially 

known environment. Instead of executing a whole trajectory, when planned, an 

optimization based MPC approach is used for executing only a short segment of the 

planned trajectory with a limited time horizon while a new iteration of the RRT is 

computed. In order to deal with a dynamic environment, an on-board sensor based 

target tracking system is implemented to estimate the states and error covariance of 

moving vehicles. To achieve collision free manoeuvres, the future motions of the 

 MPC Proposed method 

Stuck in local minimum 36% 0% 
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moving target vehicles are predicted in a stochastic way using the KF. The predicted 

prior error covariance for each vehicle is used to present the motion uncertainty along 

the predicted trajectory. These predictions and their associated uncertainty together 

with other factors are incorporated in the cost function of MPC. The algorithm is 

demonstrated in a simulated road intersection environment with moving vehicles and 

different horizon steps. Our results show that the proposed method can generate a 

smooth and accurate trajectory taking into account domain knowledge and constraints 

while efficiently achieving collision avoidance with moving vehicles.  

      This chapter focus on experimental implementation of the proposed path planning 

framework and the contextual information aided target tracking algorithms which are 

developed in previous chapters. Potential future researches are suggested in Chapter 7 

to make the whole autonomous vehicle path planning system more mature.  
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Chapter 7 

Conclusions and Future Work 
 

This chapter summarises the main contributions of this thesis and concludes with 

suggestions of possible future work.  

7.1 Summary 

This thesis considers the problem of improving the automation level of intelligent 

vehicles in both situational awareness and decision making layers. This includes two 

specific sub-systems: model based target tracking in the environmental perception 

module and motion planning in the path planning module. The focus is to utilise 

additional domain knowledge such as road constraints and interaction between the 

vehicle and its operational environment to assist both of these two systems. In 

summary, the overall contributions are threefold: 

 Develop a rigorous Bayesian MTT approach for pooling road constraint 

information and sensor measurement data to provide better situational awareness 

of ground vehicles.  

 Propose a dynamic modelling approach considering the target interaction 

information. The proposed modelling approach is incorporated into the proposed 

MTT strategy to accommodating different types of domain knowledge in a 

comprehensive manner so as to improve target tracking performance.    
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 Develop an autonomous vehicle motion planning strategy for partially known 

dynamic uncertain environment. The strategy aims to achieve a collision free 

planning in dynamic environment by making use of the estimated and predicted 

position and their associated uncertainty provided by the situational awareness 

algorithms.  

7.2 Conclusions 

In this thesis, to address the challenge of MTT using external domain knowledge 

information from the world model, a rigorous Bayesian framework is developed for 

pooling road constraint information and sensor measurement data to provide a better 

multiple ground targets state estimation.  

      Among various state estimation algorithms, MHE is of particular interest. This is 

because by applying on-line optimization in MHE, not only nonlinear dynamic 

systems but also additional state constraints in target tracking problems can be 

naturally handled. Besides, the unique moving horizon property of MHE provides a 

natural benefit for ground target tracking especially in cluttered environment with 

noisy measurements and occlusion problems. A new single target tracking strategy by 

using the constrained MHE approach is proposed in Chapter 3. External road 

information is incorporated in CMHE filters as road boundary inequality 

constraints in both linear and nonlinear forms. The proposed MHE algorithm is 

demonstrated by single target tracking scenarios consisting of both linear and 

nonlinear measurement models and both linear or nonlinear inequality constraints. 

Simulation results show that the constrained MHE can produce better estimation 

accuracy comparing with traditional state estimation algorithms without taking into 

account constraint information. Furthermore, to validate the performance of the 

proposed algorithm, the proposed algorithm is compared with a number of state-of-art 

algorithms. Results show that the constrained MHE can produce high estimation 

accuracy with an acceptable computational load. 

      In order to extend the target tracking method developed in Chapter 3 for solving 

more complicated multiple target issues, an improved MTT framework is developed 

in Chapter 4 by combining MHT with the constrained MHE namely MHE-MHT 

where the constrained MHE replaces the traditional KF. Comparing with traditional 

MHT, the new MHE-MHT framework inherits the advantages from MHE which 
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makes it suitable for system with nonlinear measurement and capable to 

systematically deal with state constraint based environmental information such as 

road width and speed limit in not only the state estimation but also the data 

association layer. The proposed MHE-MHT algorithm is demonstrated by a multiple 

ground vehicle tracking scenario considering road constraints with an unknown and 

time varying number of targets observed in cluttered environments using nonlinear 

measurements. The performance of the proposed algorithm is also compared with 

standard MHT and recently proposed GM-PHD algorithms. By using qualitative and 

quantitative analysis, it is clearly shown that the proposed framework significantly 

improves the tracking results in terms of both the state estimation and data association 

aspects.  

      Although the proposed MHE-MHT algorithm has proved its efficiency for 

autonomous vehicle tracking scenarios by accommodating road constraint 

information, it does not fully take into account the domain knowledge introduced by 

environmental conditions. To further improve situational awareness for autonomous 

vehicle, target interaction information for MTT problems is considered in Chapter 5. 

In a realistic ground tracking scenario, a target’s movement is generally affected by its 

surrounding environment both stationary and moving objects, which means there are 

interactions between the tracked target and its surrounding environment in addition to 

constraint information. For example, the vehicle may be repelled away or attracted to 

certain objects, e.g. road centre line, in the environment and thus the surrounding 

environment may interact with vehicle’s movement to a certain level. To address this 

issue, a dynamic modelling approach is proposed in Chapter 5 by considering the 

interaction information between a vehicle and its surrounding environment by using 

the ‘virtual force’ concept. The proposed model is then utilised in the target tracking 

strategy developed in Chapter 3 for an improved algorithm namely DMHE which can 

incorporate domain knowledge information including both environmental physical 

constraints and target interaction information in a comprehensive way. The DMHE is 

then introduced in the newly developed MHE-MHT framework namely DMHE-MHT 

for ground MTT with complicated environmental information. Compared with the 

results in Chapter 4, where limited/no interaction information is used, the proposed 

algorithms in this chapter shows a better tracking performance in terms of both 

estimation RMSE and data association accuracy.  
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      Finally, utilising the MTT strategy developed in the previous chapters, an 

autonomous vehicle motion planning strategy in dynamic environments is suggested 

in Chapter 6. The estimated or anticipated environmental situation provided by the 

improved situational awareness approaches are fed to this novel decision maker. The 

proposed MTT technique is utilized to provide accurate on-board tracking information 

while taking into account the motion uncertainty of moving objects perceived by the 

sensor-based target tracking system. A modified Rapidly-Exploring Random trees 

(RRTs) is proposed in this framework as a solution to find a feasible trajectory 

through partially known environment. Instead of executing a whole trajectory, when 

planned, a Model Predictive Control (MPC) approach is used for executing only a 

short segment of the planned trajectory with a limited time horizon while a new 

iteration of the RRT is computed. In order to deal with dynamic environments, an 

onboard target tracking system is implemented to estimate the states and error 

covariances of each object of interest. The planning problem is then implemented by 

optimizing a trajectory cost function consisting of safety imposed by both stationary 

environment and moving objects and other factors. To achieve collision free 

manoeuvres, the future motions of the other vehicles are predicted in a stochastic way 

using the KF. The predicted prior error covariance for each vehicle is used to capture 

the motion uncertainty along the predicted trajectory and incorporated in the MPC 

optimization function. The algorithm is successfully demonstrated in a simulated road 

intersection environment with moving vehicles.  

7.3 Future Work 

This thesis introduced new methods to solve situational awareness and decision 

making problems for autonomous vehicles. Most of the work was evaluated via 

simulations, which leaves much scope for development in real world applications with 

real measurement data. As an outcome from this thesis, a number of future research 

challenges have been identified as follows. This section introduces these challenges 

along with some technical suggestions.  

(1) The approach to explore an area with the constrained MHE for target tracking 

leaves some developments for future work. It is common in MHE 

implementations to assume that the a priori pdf representing the arrival cost is 

a multivariate Gaussian distribution. For linear unconstrained systems, the 
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standard KF covariance update formula can be used to express the arrival cost 

explicitly. However, for nonlinear or constrained systems, the initialization of 

the MHE with the best choice of arrival cost term is still an open issue, which 

also leaves the computational complexity of MHE implementation as an open 

challenge. The existing methods of recursively updating the arrival cost based 

on functional approximations of nonlinearities by truncated Taylor series can 

lead to unpredictable behaviour e.g. the covariance used to weight the arrival 

cost may diverge and thus fail to be a reliable measure of the quality of the 

knowledge of the state. This gives the motivation to investigate methods such 

as sampling based nonlinear filters [167] to properly parameterize the arrival 

cost. 

(2) The novel approach of MHE-MHT target tracking structure also leaves room 

for future work. Although the algorithm successfully tracks multiple vehicles 

in a challenging environment, the essential structural complexity of the MHT 

algorithm makes the proposed approach suffer from the additional 

computational effort. Possible future work would include developing a 

detection and track management system which can reduce the total size of 

measurements by using multiclustering methods. In this case, a parallel 

process can be implemented for target detection before the data association 

process is done. Other possible approaches of improving the computational 

efficiency would include investigating MHE based state estimation into other 

MTT structures such as PHD and JPDA structures. Further work would be 

required for performance comparison. The introduction of multi-core 

processors could be used to boost processing speed by utilizing the concepts of 

parallel processing. Facilitating real-time implementation of the proposed 

MTT algorithms by modifying the algorithms for parallel processing can be a 

future research direction. 

(3) Another area of interest is how to simplify and estimate the parameters used in 

the DMHE-MHT algorithm. Since the proposed domain knowledge aided 

dynamic model could incorporate a number of interaction forces which are 

defined by functions with individual parameter properties. The overall number 

of parameters considered in DMHE-MHT makes it difficult to be used in real 

world applications. To solve this problem, some optimization algorithms could 

be used to determine the optimal parameter specifications for the force model. 
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Such optimization method could be accommodated in the MHE optimization 

function for direct parameter estimation iteratively. The MHE cost function 

needs to be modified for incorporating both the state and parameter vectors. 

Heuristic global optimal search techniques such like differential evolution (DE) 

[168] could be applied to solve the complex optimization problems.  

(4) For path planning layer, more detailed dynamic/kinematic models for 

autonomous vehicle could be considered for more accurate trajectory planning. 

Such as the vehicle model described by the derivative of lateral and 

longitudinal movement [148]. The characterization of different types of 

moving obstacles could also be considered for real world vehicle motion 

planning experiments such as the IMM approach. Besides, the prediction of 

obstacles future position is directly relevant to obstacles behaviour. If the 

motion of vehicles is known stochastically, the overall probability of collision 

for a potential trajectory may also be computed based on the expected 

behavior of other obstacles. The prediction information could then be used in 

MPC using a receding horizon structure for a better future motion planning.  
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Appendix B 

Code for MHE-MHT main structure: 

for t = 1 : nStep 

 

Z = meas{t};  

cellHypoSeed = {cellHypo{head:rear}};     % generate new hypoes in MHT 

cellTargSeed = {cellTarg{head:rear}};   

 

if isempty(Z) 

 error('There in no measurement at step %d.', t); 

 else 

 [cellHypoNew] = GenHypo(cellHypoSeed, cellTargSeed,F, Q, G, M,Z, H, R, Pd,  

                                      densNew, densClt,pg);    % data association in MHT 

 

 R_cellHypoNew = Reduce_Hypo(cellHypoNew, M, N, t);   % Hypothesis merging   

 

cellTargNew = MHE_MHT_Update(cellTargSeed, R_cellHypoNew,M, Z, H, R, F, Q,  

G, maxLifePoint,lasttime_index,t, numTarget,nStep); % MHE and MHT combination 

 

 cellHypo = [cellHypo, R_cellHypoNew];  

 cellTarg = [cellTarg, cellTargNew];    

 lasttime_index=[]; 

 

 for i=1:M 

    lasttime_index(i) = cell2mat(R_cellHypoNew{i}(3));   

 end 

       if t < N 

         head = rear + 1;    

         rear = rear + M; 

       else 

         [finalcellEstm,cellEstm, cellHypo, cellTarg] = Prune(finalcellEstm,cellEstm, 

                 cellHypo, cellTarg, M, N, t, maxLifePoint); % m best N scan prunning 

       end  

  end 

 last=[]; 

end 
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Code for MHE_MHT_Update function: 

function cellTargNew = MHE_MHT_Update(cellTargSeed, R_cellHypoNew,... 
    M, Z, H, R,A,Q,G, maxLifePoint,lasttime_index,t,numTarget,nStep) 

  
cellTargNew = cell(1, size(R_cellHypoNew, 2)); %%%%3 empty cells 
index=[]; 
global time_new; 
global X; 
global Xmhe; 
global Wmhe; 
global Vmhe; 
global xhat0; 
global dk; 
global horizon; 
global Pnow; 
global X0; 
global nx;%number of states  
global nm; %number of measurements (noise) v 
global nw; %number of process noise w 
global nmw;% total number of combined noise 
for i = 1 : size(R_cellHypoNew, 2)  
     asso = R_cellHypoNew{i}{1}  ;    
     index(i) = R_cellHypoNew{i}{4}  ; 
     a=find(index(i)==lasttime_index);   
      %%% 
     saving=i+M; 
     time_new(saving,:)= time_new(a,:);      
        nExistedTarg = size(cellTargSeed{a}, 2);  
        maxTargIdx = max(cellfun(@(v) v{1}, cellTargSeed{a}));  
        nNewTarg = sum(asso > maxTargIdx); 
        aCase = cell(1, nExistedTarg+nNewTarg); 

         
        for k = 1 : nExistedTarg 
            aTarg = cellTargSeed{a}{k}; % one target  
            idx = aTarg{1}; % the index of aTarg     
            lifePoint = aTarg{2};  
            XX = aTarg{3}; 
            P = aTarg{4}; 
               %% Case one permanent disappeared target (Already 

disappeared previously) 
           if lifePoint == 0 % a disappeared target 
                aCase{k} = aTarg; 
                continue; % just pass it 
           end 

              
                %% Case two updating to existing target or target 

temporary missing at current time step (or already missing from 

previous time step but not yet permanantly disappeared ) 
            flg = find(asso == idx); 
                     %% Case two.one: temporary missing  
               if isempty(flg) % there is no meas asso with aTarg 
                lifePoint = lifePoint - 1; 
                     if lifePoint>0 
                   saving=i+M; 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   tt=t-time_new{a,idx}; 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   if tt<=horizon  
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                   Pnow{saving,idx}=diag([R(1,1), R(2,2), Q(1,1), 

Q(2,2)]); 
                       if tt==1 
                       dk{saving,idx}(:,tt)=H*A*XX;  %%presuming that 

the predicted state are measurement  
                       %X0=zeros((2*nx+nm+nw),1);  
                       xhat0{saving,idx}=XX  ;   %%%not changed  
                       

X{saving,idx}=[zeros(nmw,1);xhat0{saving,idx};zeros(nx,1)]; 
                       Xmhe{saving,idx}(:,tt)=A*XX; 
                       else 
                       dk{saving,idx}=dk{a,idx}; 
                       dk{saving,idx}(:,tt)=H*A*XX;  %%presuming that 

the predicted state are measurement  
                       X{saving,idx}= [X{a,idx}(1:(tt-

1)*nmw);zeros(nmw,1);X{a,idx}((tt-1)*nmw+1:(tt-

1)*nmw+nx);zeros(nx,1)]; 
                       xhat0{saving,idx}=X{a,idx}((tt-1)*nmw+1:(tt-

1)*nmw+nx); 
                       Xmhe{saving,idx}= Xmhe{a,idx}; 
                       Xmhe{saving,idx}(:,tt)=A*XX; 
                       end 
                   else 
                   xhat0{saving,idx}=Xmhe{a,idx}(:,tt-horizon);  %% 

now xhat0 will not be affected by the non-detected measurement  
                   Pnow{saving,idx} = A * Pnow{a,idx}* A' + G*Q*G'; 
                   dk{saving,idx}(:,1:horizon-

1)=dk{a,idx}(:,2:horizon); 
                   dk{saving,idx}(:,horizon)=H*A*XX;   
                   

X{saving,idx}=[X{a,idx}(nmw+1:horizon*nmw);zeros(nmw,1);xhat0{saving,

idx};X{a,idx}((end-(nmw-1)):end)]; 
                   Xmhe{saving,idx}= Xmhe{a,idx}; 
                   Xmhe{saving,idx}(:,tt)=A*XX; 
                   end 
                     end 
                  XX=A*XX; 
                %% need to be discussed as either predicted update or 

measurement update 
                  P = A * P * A' + G*Q*G';    
            else 
              %% target associated with measurement 
                    %% Case two.two: target detected  
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
                aMeas= Z(:, flg);             
       % MHE estimation%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       % cellTargSeed{a}{k} :: here at each time step t: 'a' 

represeting 
       % the number of hypothesis (target cell) and 'k' represeting 

the each target in 
       % that target cell 
              if idx==1 
                

[Xmhe,Wmhe,Vmhe]=C_MHT_MHE(t,i,a,idx,R,Q,H,XX,aMeas,M);  
              elseif idx==2 
                

[Xmhe,Wmhe,Vmhe]=C2_MHT_MHE(t,i,a,idx,R,Q,H,XX,aMeas,M);  
              else 
                

[Xmhe,Wmhe,Vmhe]=C3_MHT_MHE(t,i,a,idx,R,Q,H,XX,aMeas,M);  
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              end 
               saving=i+M; 
               ttt=t-time_new{a,idx}; 
               XX=Xmhe{saving,idx}(:,ttt);     
               %%%%%%%%%%%%%%%%   
                P = A * P * A' + G*Q*G'; 
                S = R + H*P*H'; 
                K = P*H'/S; 
                P = P - K*S*K';          
                      if lifePoint < maxLifePoint 
                           lifePoint = lifePoint + 1; 
                      end 
            end 
              aTarg{2} = lifePoint; 
              aTarg{3} = XX;   %%%%%%%%%%%%%%%%%%%it can either be 

measurement updated or not updated%%% 
              aTarg{4} = P; 
              aCase{k} = aTarg; 
        end     
        for k = 1 : nNewTarg 
            idx = maxTargIdx + k; %%%starts from the 5th target (the 

first new target) 
            flg = find(asso == idx); 
            aMeas = Z(:, flg);  
            time_new{saving,idx}=t; 
            % initialize a new target 
            aTarg = cell(1, 4); 
            aTarg{1} = idx;   
            aTarg{2} = 1;  
            aTarg{3} = [aMeas(1), aMeas(2),  0,0]'; 
            aTarg{4} = diag([R(1,1), R(2,2), Q(1,1), Q(2,2)]); 
            aCase{idx} = aTarg; 
        end 

        
    cellTargNew{i} = aCase;    
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Appendix C 

Code for force_model function: 

function [cellTargSeed, 

socialcellTargSeed]=force_model(t,cellTargSeed,parameter,roads,F,Q,G,

T) 

  
for i = 1 : size(cellTargSeed, 2) 
 forcecell = cellTargSeed{i}; 
 %%known as three targets only 
for j = 1 : size( forcecell, 2) 
if forcecell{j}{2} == 0 
  continue; %Pass control to next iteration of for or while loop 
end 
 index=setdiff([1:size( forcecell, 2)],j);  
 %%define all the parameters 
 x_socialforce= forcecell{j}{3};  %x 
 rmode=forcecell{j}{5}(end);  %mode 
 predicted_x=F * x_socialforce;  
 %% road repulsive force 
predicted_distance_to_boundary1=(roads(rmode).boundary(1,:)*[predicte

d_x(2);predicted_x(1);1])/sqrt(roads(rmode).boundary(1,1)^2+roads(rmo

de).boundary(1,2)^2); 
predicted_distance_to_boundary2=(roads(rmode).boundary(2,:)*[predicte

d_x(2);predicted_x(1);1])/sqrt(roads(rmode).boundary(2,1)^2+roads(rmo

de).boundary(2,2)^2); 
if (roads(rmode).angle<=pi/2) 
boundary1_force=parameter(1)*exp(-

parameter(2)*predicted_distance_to_boundary1)*[-

sin(roads(rmode).angle);cos(roads(rmode).angle)]; 
boundary2_force=parameter(1)*exp(parameter(2)*predicted_distance_to_b

oundary2)*[sin(roads(rmode).angle);-cos(roads(rmode).angle)]; 
else 
boundary1_force=parameter(1)*exp(-

parameter(2)*predicted_distance_to_boundary1)*[sin(roads(rmode).angle

);-cos(roads(rmode).angle)]; 
boundary2_force=parameter(1)*exp(parameter(2)*predicted_distance_to_b

oundary2)*[-sin(roads(rmode).angle);cos(roads(rmode).angle)]; 
end 
 % velocity repulsive force 
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along_road_velocities=[cos(roads(rmode).angle),sin(roads(rmode).angle

)]*predicted_x(3:4); 
directions=sign(along_road_velocities); 
amplitudes=abs(along_road_velocities); 
velocity_force=-

directions.*(parameter(5)*exp(parameter(6)*(amplitudes-

roads(rmode).speedlimitation)))*[cos(roads(rmode).angle);sin(roads(rm

ode).angle)]; 
 %% giveway_force 
 giveway_force=zeros(2,1); 
 if((rmode==2)|(rmode==4)) 
 

along_road_distances=abs([cos(roads(rmode).angle),sin(roads(rmode).an

gle)]*(x_socialforce(1:2)-roads(rmode).startpoint')); 
 if(along_road_distances<=16)&(directions==-1); 
 %giveway_force=parameter(7)*(1-exp(-

parameter(8)*amplitudes))*[cos(roads(rmode).angle);sin(roads(rmode).a

ngle)]; 
  giveway_force=parameter(7)*(1-exp(-

parameter(8)*amplitudes))*[cos(roads(rmode).angle);sin(roads(rmode).a

ngle)]; 
 end 
 end 
 %% interaction force 
 for ii=1:length(index) 
 othervehicle(:,ii)= F*forcecell{index(ii)}{3};  
 distances(ii)=sqrt((predicted_x(1)-

othervehicle(1,ii))^2+(predicted_x(2)-othervehicle(2,ii))^2);  
 vector_with_othervehicles(:,ii)=(predicted_x(1:2)-

othervehicle(1:2,ii))/distances(ii); 
 vehicle_force(:,ii)=zeros(2,1); 
 if distances(ii)<10 
 vehicle_force(:,ii)=parameter(3)*exp(-

parameter(4)*distances(ii))*vector_with_othervehicles(ii); 
 end 
 end 
if (sum(abs(boundary1_force))==Inf) 
    boundary1_force=[0;0]; 
end 
if (sum(abs(boundary2_force))==Inf) 
    boundary2_force=[0;0]; 
end 
if (sum(abs(velocity_force))==Inf) 
    velocity_force=[0;0]; 
end 
if (sum(abs(giveway_force))==Inf) 
    giveway_force=[0;0]; 
end 
 

total_force=boundary1_force+boundary2_force+velocity_force+giveway_fo

rce; 

  
 for ii=1:length(index) 

        
   if (sum(abs(vehicle_force(:,ii)))==Inf) 
    vehicle_force(:,ii)=[0;0]; 
   end 
 total_force=total_force+vehicle_force(:,ii); 
 end 
 predicted_x=predicted_x+ G * (total_force); 
 forcecell{j}{3}= predicted_x; 
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 forcecell{j}{6}= [forcecell{j}{6},total_force]; 
 %%%calculate jacobain F for social force 
 P = forcecell{j}{4};             
 P = F* P * F' + G*Q*G'; 
 forcecell{j}{4}=P; 
 %%%% 
 cellTargSeed{i}{j}{6}=[forcecell{j}{6}]; 
 %%%% 
end 
 socialcellTargSeed{i} =  forcecell; 
end 
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Appendix D 

Standard RRT algorithm 

Standard RRT algorithm 

Standard RRT [43] 

    RRTmain(Tree) 

1.             

2.             

3.  while Distance              < Error-tolerance 

4.               = SampleTarget() 

5.               = NearestVertex(Tree,       ) 

6.           = ExtendTowards(        ,       ) 

7.       if      valid 

8.            Tree.add(    ) 

9.       else 

10.          continue 

11.     end if 

12.  end while 

       SampleTarget() 

13.    = RandomReal([0.0, 1.0]) 

14.      if (  < goal-sampling-prob)  

15.           return        

16.      else  

17.          return RandomConfiguration() 

18.      end if 
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