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Abstract

A continuous nonsingular terminal sliding mode control approach is proposed for mismatched disturbance attenuation. A
novel nonlinear dynamic sliding mode surface is designed based on a finite-time disturbance observer. The time taken to reach
the desired setpoint from any initial states under mismatched disturbance is guaranteed to be finite time. In addition, the
proposed method exhibits the fine properties of nominal performance recovery as well as chattering alleviation.
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1 Introduction
Sliding mode control (SMC) is well known for its

fine robustness against disturbances and parameter un-
certainties (Utkin, 1992). Among the SMC community,
nonsingular terminal SMC (NTSMC) has been widely
studied since it can achieve finite-time fast convergence
property without causing any singularity problem en-
countered in the traditional terminal SMC (TSMC)
(Feng, Yu, & Man, 2002; Yu, Yu, Shirinzadeh, & Man,
2005; Zong, Zhao, & Zhang, 2008). However, the exist-
ing NTSMC is only insensitive to matched disturbances
and can not attenuate mismatched disturbances effec-
tively. In addition, the existing NTSMC law is essen-
tially discontinuous and the control chattering problem
is unavoidable.

Mismatched disturbances widely exist in various con-
trol engineering systems (Yang, Li, & Yu, 2012) and
bring big challenges for the SMC design. Due to the
significance of attenuating mismatched uncertainties in
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practical applications, combination of robust techniques
with SMC has been studied in literature, for example see
Choi (2002); Cao & Xu (2004); Cheng (2009); Estrada
& Fridman (2010); Kim, Park, & Oh (2000) and the ref-
erences therein. Roughly speaking, the aforementioned
SMC methods can be divided into the following two cat-
egories. The first category mainly focuses on the stabil-
ity (or robust stability) of different systems under mis-
matched structure uncertainties via some classical con-
trol design tools, such as Riccati approach (Kim, Park,
& Oh, 2000), LMI-based approach (Choi, 2002), adap-
tive approach (Cheng, 2009) and backstepping approach
(Estrada & Fridman, 2010). The second category is re-
ferred to as integral sliding-model control (I-SMC) (Cao
& Xu, 2004). The idea behind the I-SMC is that a high
frequency switching gain is designed to force the states
to achieve the integral sliding surface, and then the in-
tegral action in the sliding surface drives the states to
the desired equilibrium in the presence of mismatched
uncertainties.

Note that all the above two categories of SMC meth-
ods handle the mismatched uncertainties in a robust way,
which implies that the uncertainty attenuation ability
is achieved at the price of sacrificing its nominal control
performance. Yang, Li, & Yu (2012) proposed a linear
dynamic sliding surface design method based on a distur-
bance observer to attenuate the mismatched disturbance
without sacrificing the nominal performance. However,
the sliding motion from the sliding surface to the de-
sired setpoint therein is asymptotical convergence rather
than finite-time convergence due to the existence of lin-
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ear switching manifold. In Estrada & Fridman (2010), a
quasi-continuous high-order SMC method via backstep-
ping design is proposed to achieve finite-time tracking
control regardless of mismatched disturbance, where the
controller is still discontinuous in the sliding manifolds.

In this paper, a novel continuous NTSMC method
is proposed for the finite-time control of system sub-
ject to mismatched disturbances via a finite-time distur-
bance observer (FTDO). A new nonlinear dynamic slid-
ing surface which introduces the disturbance estimation
is designed to guarantee the finite-time sliding motion
in the presence of mismatched disturbance. The basic
principle of the proposed method is concluded by the
following three steps. Firstly, the error dynamics of the
FTDO converge to zero in finite time under appropriate
designed parameters. Secondly, a non-smooth but con-
tinuous control law is designed to force the initial states
outside the sliding surface to reach the designed sliding
surface in finite time. Finally, with the designed control
law, the system states are driven to the desired setpoint
in finite time by sliding motion along the sliding surface
even in the presence of mismatched disturbance.

2 Motivations
Consider the following dynamic system under mis-

matched disturbances, depicted by

ẋi = xi+1 + di(x̄i, t), i = 1, . . . , n − 1,

ẋn = a(x) + b(x)u + dn(x, t),

y = x1,

(1)

where x = [x1 · · ·xn]T is the state vector, x̄i =
[x1 · · ·xi]T , u is the control input, y is the controlled out-
put, dn(x, t) and di(x̄i, t) denote the matched and mis-
matched disturbances, respectively. a(x) and b(x) �= 0
are smooth nonlinear functions in terms of x.

Taking a second-order system as an illustration (i.e.,
n = 2 for system (1)), the nonlinear sliding surface for
existing NTSMC method (Feng, Yu, & Man, 2002) is
usually defined as follows

s = x1 +
1
β

x
p/q
2 , (2)

where β > 0 is a design constant, p and q are positive odd
integers which satisfy the condition that 1 < p/q < 2.

The NTSMC law is usually designed as follows

u = −b−1(x)
[
a(x) + β

q

p
x

2−p/q
2 + ksgn(s)

]
, (3)

where k is the switching gain to be designed. Combining
(2) and (3) gives

ṡ = − 1
β

p

q
x

p/q−1
2 [ksgn(s) − dn] + d1. (4)

In the absence of mismatched disturbances, i.e., d1 =
0, it can be concluded from Feng, Yu, & Man (2002) that
the conventional NTSMC law (3) with appropriately
chosen parameters (actually k > sup |dn|) can drive arbi-
trary initial states of system (1) to the equilibrium point
x = 0 in finite time, which implies that the conventional
NTSMC is insensitive to matched disturbances.

However, in the presence of mismatched distur-
bances, i.e., d1 �= 0, two problems appear for the con-
ventional NTSMC method. Firstly, it is not easy to
determine the switching gain k such that the states of
system (1) initially outside the sliding surface will reach
the sliding surface s = 0 in finite time. Secondly, even if
the sliding surface s = 0 is reached, the system dynam-
ics is determined by the following nonlinear differential
equation ẋ1 = −x2 + d1 = −βq/px

q/p
1 + d1, which im-

plies that the output y = x1 of system (1) is affected by
the mismatched disturbance d1, and does not converge
to zero in finite time. To this end, it is imperative to ad-
dress the disturbance rejection problem of the NTSMC
design method in the case of mismatching condition.

3 Main results
Suppose that the disturbance di in (1) is (n−i+1)th

order differentiable and d
[n−i+1]
i has a Lipshitz constant

Li. A finite-time disturbance observer (FTDO) (Shtes-
sel, Shkolnikov, & Levant, 2007) is firstly used to esti-
mate the disturbance in system (1), given by

żi
0 = vi

0 + fi(x, u), żi
1 = vi

1, · · · , żi
n−i+1 = vi

n−i+1

vi
0 = −λi

0L
1

n−i+2
i |zi

0 − xi|
n−i+1
n−i+2 sgn(zi

0 − xi) + zi
1,

vi
j = −λi

jL
1

n−i+2−j

i |zi
j − vi

j−1|
n−i+1−j
n−i+2−j sgn(zi

j − vi
j−1) + zi

j+1,

vi
n−i+1 = −λi

n−i+1Lisgn(zi
n−i+1 − vi

n−i),

x̂i = zi
0, d̂i = zi

1,
ˆ̇
di = zi

2, · · · , d̂
[n−i]
i = zi

n−i+1,

(5)

for i = 1, . . . , n and j = 0, 1, . . . , n − i + 1, where
fi(x, u) = xi+1 for i = 1, . . . , n − 1, fn(x, u) = a(x) +
b(x)u, λi

j > 0 is the observer coefficients to be designed,

x̂i, d̂i,
ˆ̇
di, d̂

[n−i]
i are the estimates of xi, di, ḋi, d

[n−i]
i ,

respectively. Combining (1) with (5), the observer esti-
mation error is governed by

ėi
0 = −λi

0L
1

n−i+2
i |ei

0|
n−i+1
n−i+2 sgn(ei

0) + ei
1,

ėi
j = −λi

jL
1

n−i+2−j

i |ei
j − ėi

j−1|
n−i+1−j
n−i+2−j sgn(ei

j − ėi
j−1) + ei

j+1,

ėi
n−i+1 ∈ −λi

n−i+1Lisgn(ei
n−i+1 − ėi

n−i) + [−Li, Li],

(6)

where the estimation errors are defined as ei
0 = zi

0 −
xi, ei

j = zi
j −d

[j−1]
i . It follows from Shtessel, Shkolnikov,

& Levant (2007) that the observer error system (6) is
finite-time stable, that is, there is a finite time such that
ei
j(t) = 0.
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3.1 A second-order system case
A novel nonlinear dynamic sliding mode surface for

system (1) in the case n = 2 is defined by

s = x1 +
1
β

(x2 + d̂1)p/q, (7)

where β, p, and q have been defined in (2), d̂1 is the
disturbance estimation given by FTDO (5).

Theorem 1. For system (1) in the case n = 2 with
the proposed novel nonlinear sliding mode surface (7), if
the new NTSMC law is designed as

u = −b−1(x) ×
[
a(x) + β q

p (x2 + d̂1)2−p/q

+d̂2 + v1
1 + K1s + K2sgn(s)|s|α

]
,

(8)

where K1, K2 > 0, 0 < α < 1 is the parameters to be
designed, and v1

1 has been given in (5), then the system
output y = x1 will converge to zero in finite time.

Proof. For the proposed sliding surface (7), its
derivative along the system dynamics (1) is

ṡ = ẋ1 + 1
β

p
q (x2 + d̂1)p/q−1(ẋ2 + ˙̂

d1)

= − 1
β

p
q x̃

p/q−1
2 [K1s + K2sgn(s)|s|α + e2

1] − e1
1,

(9)

where x̃2 = x2+ d̂1. Substituting the control law (8) into
the system (1), yields

˙̃x2 = −β
q

p
x̃

2−p/q
2 − K1s − K2sgn(s)|s|α − e2

1. (10)

Define a finite time bounded (FTB) function (Li, & Tian,
2007) V1(s, x1, x̃2) = 1

2 (s2 + x2
1 + x̃2

2) for the sliding
mode dynamics (9) and the state dynamics (10). Note
that |s|α < 1 + |s|. Taking the derivative of V1(s) along
system (9) yields

V̇1 = − 1
β

p
q x̃

p/q−1
2 (K1s

2 + K2|s|α+1 + e2
1s) + x1(x̃2 − e1

1)

−e1
1s + x̃2(−β q

p x̃
2−p/q
2 − K1s − K2sgn(s)|s|α − e2

1)

≤ 1
β

p
q (1 + |x̃2|)|e2

1s| + |x1x̃2| + |x1e
1
1| + |e1

1s|
+|x̃2| [K1|s| + K2(1 + |s|)] + |x̃2e

2
1|

≤ 1
β

p
q

[
(e2

1)
2+s2

2 + |e2
1| x̃

2
2+(e2

1)
2

2

]
+ x2

1+x̃2
2

2 + x2
1+(e1

1)
2

2

+ (e1
1)

2+s2

2 + K2
1+x̃2

2
2 + (K1 + K2)

s2+x̃2
2

2 + (e2
1)

2+x̃2
2

2

≤ Kv1V1 + Lv1,

(11)

where Kv1 = max{1 + K1 + K2 + p
βq , 2 + K1 +

2K2 + p
βq |e2

1|, 2}, and Lv1 = max{(e1
1)

2 + K2
2 +

1
2

(
1 + p

βq

)
(e2

1)
2 + p

2βq (e2
1)

3} are bounded constants due

to the boundness of e1
1 and e2

1. It can be concluded from

(11) that V1(s, x1, x̃2) and so s, x1, x̃2 will not escape
in finite time (Li, & Tian, 2007).

Since the disturbance estimation errors e1
1 and e2

1
in (6) will converge to zero in a finite time, after then,
system (9) then reduces to

ṡ = −ρ(x̃2)[K1s + K2sgn(s)|s|α], (12)

where ρ(x̃2) = 1
β

p
q x̃

p/q−1
2 . Next we will show that (12)

is finite-time stable. The idea of the proof procedure is
inspired from Feng, Yu, & Man (2002).

For the case of x̃2 �= 0, it can be followed from ρ(x̃2) >
0 that (12) is finite-time stable. For x̃2 = 0, it is obtained
from (10) that ˙̃x2 = −K1s−K2sgn(s)|s|α. Similar with
the proof of Feng, Yu, & Man (2002), it can be shown
that x̃2 = 0 is not an attractor. Therefore, it can be
concluded that system (12) is finite-time stable.

Once the sliding surface s = 0 is reached, it is derived
from the sliding surface (7) and the system dynamics (1)
that

s = x1 +
1
β

(x2 + d1)p/q = x1 +
1
β

ẋ
p/q
1 = 0. (13)

With the chosen control parameters, system (13) is
finite-time stable, which completes the proof. �

3.2 A general high-order system case
A novel sliding surface for system (1) in the case

n > 2 is designed as

s = x̃n +
∫ τ

0

∑n
i=1 [kisgn(x̃i)|x̃i|αi ] dτ,

x̃1 = x1, x̃i = xi +
∑i−1

j=1 d̂
[i−j−1]
j , i = 2, . . . , n,

(14)

where αi−1 = αiαi+1/(2αi+1 − αi) (i = 2, . . . , n),
αn+1 = 1, αn = α0 ∈ (1 − ε, 1), ε ∈ (0, 1), and
ki > 0 should be selected such that polynomial
λn + knλn−1 + · · · + k2λ + k1 is Hurwitz.

Theorem 2. For high-order system (1) with the pro-
posed nonlinear sliding mode surface (14), if the gener-
alized continuous NTSMC law is designed as

u = −b−1(x) ×
{

a(x) + d̂n +
∑n−1

i=1 vi
n−i

+
∑n

i=1 [kisgn(x̃i)|x̃i|αi ] + K1s + K2sgn(s)|s|α} ,
(15)

where vi
n−i has been given in (5), then the system output

y = x1 will converge to zero in finite time.
Proof. Taking derivative of the sliding surface (14)

along system dynamics (1) under control law (15) gives

ṡ = −K1s − K2sgn(s)|s|α − en
1 . (16)

The dynamics of states x̃i are obtained from (14), gov-
erned by

˙̃xi = x̃i+1 + ẽi, i = 1, . . . , n − 1,

˙̃xn = −∑n
i=1 [kisgn(x̃i)|x̃i|αi ] + ṡ,

(17)
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where ẽ1 = −e1
1, ẽi =

∑i−1
j=1

(
ėj
i−j − ej

i−j+1

)
− ei

1 for
i = 2, . . . , n − 1. The dynamics (17) implies that the
states suffer from the sliding surface dynamics (16) and
the observer error dynamics (6). Next we will show the
observer error dynamics (6) will not drive the sliding
surface dynamics (16) and the state dynamics (17) to
infinity in finite time.

Define a FTB function V2(s, x̃) = 1
2s2+

∑n
i=1

1
2 x̃2

i for
system (17). Note that the parameter αi(i = 1, . . . , n)
satisfy the condition αi ∈ (0, 1), which implies that
|x̃i|αi < 1 + |x̃i|. Taking derivative of V2(x̃) along dy-
namics (17), one obtains

V̇2 = sṡ +
∑n−1

i=1 x̃i(x̃i+1 + ẽi)

−x̃n

∑n
i=1 kisgn(x̃i)|x̃i|αi + x̃nṡ

≤ |sen
1 | +

∑n−1
i=1 |x̃i|(|x̃i+1| + |ẽi|)

+|x̃n|
∑n

i=1 ki(1 + |x̃i|)
+|x̃n|(K1|s| + K2(1 + |s|) + |en

1 |)
≤ s2+(en

1 )2

2 +
∑n−1

i=1

x̃2
i +x̃2

i+1
2

+
∑n−1

i=1
x̃2

i +ẽ2
i

2 +
x̃2

n+(
∑n

i=1
ki)

2

2 +
∑n

i=1 ki
x̃2

i +x̃2
n

2

+K1+K2
2 (x̃2

n + s2) + x̃2
n+(K2+|en

1 |)2
2

≤ Kv2V2 + Lv2

(18)

where Kv2 = 3 + kn +
∑n

i=1 ki + K1 + K2, and Lv2 =
1
2 max

[
(en

1 )2 +
∑n−1

i=1 ẽ2
i + (

∑n
i=1 ki)2 + (K2 + |en

1 |)2
]
.

Eq. (6) shows that the estimation error ei
j will converge

to zero in finite time regardless of the states xi, which
implies that ẽi, en

1 and so Lv2 are bounded. Therefore,
it can be concluded from (18) that V2(s, x̃) and so the
state x̃i will not escape to infinity in finite time before
the convergence of observer error dynamics (Li, & Tian,
2007). Since the disturbance estimation errors e1

1 and e2
1

in (6) will converge to zero in a finite time, after then,
system (16) then reduces to

ṡ = −K1s − K2sgn(s)|s|α, (19)

which is finite time stable. Once the sliding surface s = 0
and disturbance estimation error ei

j = 0 are achieved in
a finite time, the system dynamics (17) will reduce to
the following system

˙̃xi = x̃i+1, ˙̃xn = −
n∑

i=1

[kisgn(x̃i)|x̃i|αi ] , (20)

for i = 1, . . . , n− 1. It is derived from Bhat & Bernstein
(2005) that (20) is finite-time stable, which completes
the proof. �

Remark 1 (Nominal Performance Recovery). In the
absence of disturbance, it is derived from the observer

error dynamics (6) that ei
j(t) = 0 and vi

n−i(t) = 0 if
the initial values of the observer states are selected as
zi
0(t0) = xi(t0) and zi

1(t0) = · · · = zi
n−i+1(t0) = 0. In

this case, the proposed sliding surface (7) and the control
law (8) reduce to those of the traditional NTSMC, also
the proposed sliding surface (14) and the control law
(15) reduce to the high-order NTSMC in Zong, Zhao,
& Zhang (2008). This implies that the nominal control
performance of the proposed method is retained.

4 Simulation example
Consider the simulation example of a permanent

magnet synchronous motor (PMSM) in Liu, & Li (2012)

dω
dt = Kt

J iq − B
J ω − 1

J TL,
did

dt = −Rs

Ld
id + npωiq + 1

Ld
ud,

diq

dt = −Rs

Lq
iq − npωid − npφv

Lq
ω + 1

Lq
uq,

(21)

where ω the rotor speed, id and iq the d-axis and q-
axis stator currents, ud and uq the d-axis and q-axis
stator voltages, TL the load torque, respectively. The
significance and values of the PMSM parameters under
consideration are referred to Liu, & Li (2012).

By appropriate coordinate transformation (Yang,
Liu, Li, & Chen, 2012), the PMSM model (21) can be
transferred to two subsystems, including a two-order
speed one and a one-order current one, where the speed
one satisfies the formation of (1). The proposed method
is employed for the speed subsystem of the PMSM
system. In addition, to show the effectiveness of the pro-
posed method, the baseline NTSM controller, I-SMC
and DO-LSMC (Yang, Li, & Yu, 2012) are employed for
performance comparison. The same control design of
the one-order current subsystem (id loop) is employed
for the four methods, which is omitted here for space
due to its simplicity.

The parameters of the proposed method are designed
as β = 4 × 104, p = 5, q = 3, K1 = K2 = 4.2 × 105,
λ0 = 2, λ1 = 1.5, λ2 = 0.01, L = 100. The parameters of
baseline NTSM controller are designed the same as the
proposed method. The parameters of DO-LSMC are de-
signed as c = 55, k = 1.5×107, l = 500. The parameters
of I-SMC are designed as c1 = 180, k = 1.5 × 107.

The disturbance (unknown load torque variation)
TL(t) = 2 for 0.2 ≤ t < 0.4 and TL(t) = 2 + sin 20πt for
0.4 ≤ t ≤ 0.8 is supposed to impose on the system. The
simulations are carried out in a Gaussian measurement
noise environment that with mean of 0 and covariance
of diag {5, 0.001, 0.005} for practicality. Response curves
of the state variables under the four methods are shown
by Figs. 1. The corresponding control signals are shown
in Fig. 2.

It is observed from Figs. 1 that the state responses
of the proposed method are the same as those of the
baseline NTSMC method during the first 0.2 sec, which
shows nominal performance recovery property as stated
in Remark 1. As shown by Fig. 1, the DO-LSMC and
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(a)

ω

(d)

(b)

ω

(e)

(c)

ω

(f)

Fig. 1. State response curves of the PMSM under FT-
DO-NTSMC (solid line) and the other three control methods
(dashed line) in measurement noise environment.

(a) (c)

(b) (d)

Fig. 2. Control signals of the PMSM under the four con-
trol methods in measurement noise environment: (a) FT-
DO-NTSMC; (b) NTSMC; (c) DO-LSMC; and (d) I-SMC.

the I-SMC methods only attenuate the harmonic dis-
turbance to a specified small region, while the proposed
method has removed such disturbance completely.

5 Conclusion
The continuous finite-time control problem of the

system with mismatched disturbance has been addressed
in this paper by using nonsingular terminal sliding mode
technique. A novel nonlinear dynamic sliding mode sur-
face design has been proposed for the mismatched dis-
turbance attenuation via a finite-time disturbance ob-
server. The proposed method has the following two re-
markable properties. Firstly, the proposed method re-
tains the nominal control performance since the FTDO
serves like a patch to the baseline NTSMC and does not
cause any adverse effects on the system in the absence of
disturbance. Secondly, the proposed method largely alle-
viates the chattering problem of NTSMC since the mis-
matched disturbance has been compensated by FTDO-
based compensation and no discontinuous control action
is required to reject the disturbance.
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